WO2022019327A1 - 過マンガン酸イオンを含む水の製造方法 - Google Patents

過マンガン酸イオンを含む水の製造方法 Download PDF

Info

Publication number
WO2022019327A1
WO2022019327A1 PCT/JP2021/027308 JP2021027308W WO2022019327A1 WO 2022019327 A1 WO2022019327 A1 WO 2022019327A1 JP 2021027308 W JP2021027308 W JP 2021027308W WO 2022019327 A1 WO2022019327 A1 WO 2022019327A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
divalent
permanganate
iron
manganese
Prior art date
Application number
PCT/JP2021/027308
Other languages
English (en)
French (fr)
Inventor
正好 高橋
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US18/015,704 priority Critical patent/US20230286840A1/en
Priority to JP2022538039A priority patent/JPWO2022019327A1/ja
Publication of WO2022019327A1 publication Critical patent/WO2022019327A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a method for producing water containing permanganate ions.
  • Patent Document 1 The method for producing water containing permanganate ions reported by the present inventor in Patent Document 1 is highly evaluated by those skilled in the art because the permanganate ions can be stably present in water for a long period of time. ..
  • Patent Document 1 when water containing permanganate ions is produced by this method, a precipitate is generated in the water, but the amount of the precipitate generated is large and the precipitate is generated. Since it takes several days to settle, it was later discovered that there was an inconvenience that it took time to filter the generated precipitate and ship it as a product. As for the cause of why it occurs, it was speculated that an organic iron compound was used as a raw material for production.
  • the method for producing water containing a permanganate ion of the present invention comprises divalent inorganic iron compound and divalent in water having a pH of less than 3.5, as described in claim 1.
  • the divalent inorganic iron compound is selected from iron (II) chloride, iron (II) sulfate, and iron (II) nitrate in the production method according to claim 1. It is one kind.
  • a divalent inorganic iron compound is dissolved so that the concentration of divalent iron ions is 1 to 100 ppb.
  • At least one divalent manganese compound is selected from manganese chloride (II), manganese sulfate (II), and manganese nitrate (II) in the production method according to claim 1. It is a seed. Further, in the production method according to claim 5, in the production method according to claim 1, the divalent manganese compound is dissolved so that the concentration of the divalent manganese ion is 0.1 ⁇ M to 1 mM. Further, the production method according to claim 6 does not further dissolve the inorganic salt in the production method according to claim 1. Further, in the manufacturing method according to claim 7, the pH is set to 5.0 to 9.0 after supplying ozone microbubbles to water in the manufacturing method according to claim 1.
  • a divalent inorganic iron compound and a divalent manganese compound are dissolved in water having a pH of less than 3.5, and then ozone microbubbles are supplied to the water. It depends.
  • a divalent inorganic iron compound and a divalent manganese compound are dissolved in water having a pH of less than 3.5.
  • the reason why the pH of the water in which the divalent inorganic iron compound and the divalent manganese compound are dissolved is less than 3.5 is that when the divalent inorganic iron compound is dissolved in water having a pH of 3.5 or more, it is later added to water.
  • trivalent iron oxide Fe 2 O 3
  • divalent manganese compound when a divalent manganese compound is dissolved in water having a pH of 3.5 or higher, when ozone microbubbles are later supplied to the water, divalent manganese ions to trivalent manganese oxide (Mn 2 O 3 ) or This is because tetravalent manganese oxide (manganese dioxide: MnO 2 ) may be generated and precipitated, and permanganate ions may not be sufficiently generated.
  • the pH of the water that dissolves the divalent inorganic iron compound and the divalent manganese compound is preferably less than 3.0.
  • the water may be, for example, water having an electric conductivity of less than 300 ⁇ S / cm, and pure water having an electric conductivity of 3 ⁇ S / cm or less can be preferably used, but tap water or groundwater may also be used. ..
  • an inorganic acid such as hydrochloric acid, sulfuric acid, or sulfuric acid as the acid for lowering the pH of water to less than 3.5.
  • the divalent inorganic iron compound having a pH of less than 3.5 iron (II) chloride, iron (II) sulfate, iron (II) nitrate and the like can be used. It is desirable that the divalent inorganic iron compound is dissolved so that the concentration of the divalent iron ion is 1 to 100 ppb. If the concentration of divalent iron ions is less than 1 ppb, permanganate ions may not be sufficiently generated. On the other hand, when the concentration of divalent iron ions exceeds 100 ppb, when ozone microbubbles are later supplied to water, trivalent iron oxide (Fe 2 O 3 ) is easily generated from the divalent iron ions and precipitates. There is a risk of becoming.
  • divalent manganese ion when the concentration of divalent manganese ion exceeds 1 mM, when ozone microbubbles are later supplied to water, divalent manganese ion to trivalent manganese oxide (Mn 2 O 3 ) or tetravalent manganese oxide (Mn 2 O 3) Manganese dioxide: MnO 2 ) may be generated and easily settled. It is more desirable that the divalent manganese compound is dissolved so that the concentration of the divalent manganese ion is 1 to 100 ⁇ M.
  • the order of dissolution of the divalent inorganic iron compound and the divalent manganese compound in water having a pH of less than 3.5 is not particularly limited, and the compounds may be dissolved at the same time or in stages. ..
  • sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate, etc. are used as in the method for producing water containing permanganate ions described in Patent Document 1. Does not require further dissolution of the inorganic salt of. Further dissolution of the inorganic salt does not adversely affect the production of water containing permanganate ions by the method of the present invention, but may limit the use of the produced water containing permanganate ions. Therefore, it is desirable that the inorganic salt is not further dissolved (it is not desirable to apply it to water having a high salinity such as electric equipment).
  • ozone microbubbles are supplied for a predetermined time, for example, 1 minute to 24 hours in water having a pH of less than 3.5 in which a divalent inorganic iron compound and a divalent manganese compound are dissolved.
  • the method of supplying ozone microbubbles to water may be a method known per se, and a microbubble generator by a two-phase flow swirling method or a pressure dissolution method capable of generating microbubbles having a particle size of 5 to 50 ⁇ m. Can be done using.
  • ozone is forcibly generated inside a microbubble by using a rotor or the like to forcibly generate a vortex flow with a radius of 10 cm or less, and to include obstacles such as walls and fluids with different relative velocities inside the microbubbles.
  • a desired ozone microbubble can be generated by dispersing the gas component acquired in the vortex flow with the disappearance of the vortex.
  • the pressure dissolution method is adopted, the ozone contained in the microbubbles is dissolved in water under a high pressure of 2 atm or more, and then the ozone is released to the atmospheric pressure from the supersaturation condition of the dissolved gas.
  • the ozone microbubbles generated by these methods have a particle size of 50 ⁇ m or less, and the particle size peaks at 10 to 15 ⁇ m when measured by a laser light blocking type submerged particle counter (for example, LiQuilaz-E20 manufactured by SPM).
  • the number of microbubbles in the peak region is 1000 cells / mL or more (see JP-A-2000-51107, JP-A-2003-265938, etc., if necessary).
  • Examples of the ozone gas used for supplying ozone microbubbles into water include those prepared to a concentration of 1 to 300 g / Nm 3 using a commercially available oxygen source ozone generator.
  • ozone gas having a concentration of less than 1 g / Nm 3 When ozone gas having a concentration of less than 1 g / Nm 3 is used, a large amount of ozone microbubbles may not be efficiently supplied into the water. On the other hand, it is difficult to prepare ozone gas having a concentration of more than 300 g / Nm 3.
  • the ozone gas may contain oxygen, nitrogen, or the like in addition to ozone.
  • the pH of water containing permanganate ions is set to 5.0 to 9.0, a precipitate is generated in the water, but the amount of the generated precipitate is small and the generation is settled within a short time. .. Therefore, for example, the next day when the pH of water containing permanganate ions is adjusted to 5.0 to 9.0, the generated precipitate can be filtered and shipped as a product.
  • Example 1 In a glass container having a volume of 15 L, put 10 L of ultrapure water having an electric conductivity of 0.06 ⁇ S / cm, add hydrochloric acid to adjust the pH to 2.8, and then add iron (II) chloride. It was dissolved so that the concentration of divalent iron ions was about 25 ppb, and manganese chloride (II) was dissolved so that the concentration of divalent manganese ions was 50 ⁇ M. Ozone microbubbles having a particle size of 15 to 50 ⁇ m were generated in this liquid using a pressure-dissolving type microbubble generator and supplied for 10 minutes. The device was driven by circulating the water inside.
  • the concentration of permanganate ion in the water containing permanganate ion thus produced is about 10 ⁇ M (the height of the peak group of permanganate ion measured by the ultraviolet-visible near-infrared spectrophotometer is used as the standard solution for permanganate.
  • Example 2 Examples except that instead of the operation of adjusting the pH of water by adding sodium hydroxide in Example 1 to 7.0, the amount of sodium hydroxide to be added is reduced to adjust the pH to 5.5.
  • Water containing caustic acid ion was produced by the same method as in 1.
  • the permanganate ion concentration of the water containing the permanganate ion thus produced was about 10 ⁇ M, and the salinity was about 0.03%.
  • the half-life of the permanganate ion of the water containing the permanganate ion and the measurement result by the electron spin resonance apparatus were the same as those of the water containing the permanganate ion produced in Example 1.
  • Example 3 Water containing permanganate ions was produced by the same method as in Example 1 except that iron (II) sulfate was added instead of iron (II) chloride.
  • the permanganate ion concentration of the water containing the permanganate ion thus produced was about 10 ⁇ M, and the salinity was about 0.05%.
  • the half-life of the permanganate ion of the water containing the permanganate ion and the measurement result by the electron spin resonance apparatus were the same as those of the water containing the permanganate ion produced in Example 1.
  • Example 4 Water containing permanganate ions was produced by the same method as in Example 1 except that manganese sulfate (II) was added instead of manganese (II) chloride.
  • the permanganate ion concentration of the water containing the permanganate ion thus produced was about 10 ⁇ M, and the salinity was about 0.05%.
  • the half-life of the permanganate ion of the water containing the permanganate ion and the measurement result by the electron spin resonance apparatus were the same as those of the water containing the permanganate ion produced in Example 1.
  • Example 5 When the bactericidal effect of the water containing permanganate ion produced in Example 1 against the pathogenic bacterium Salmonella enterica was examined, an excellent bactericidal effect was observed.
  • Example 6 When the water containing permanganate ion produced in Example 1 was orally administered to the primary chicks in which SPF eggs of Line-M chickens were hatched and the toxicity was examined, no toxicity was observed.
  • Example 7 When the cytotoxicity of the permanganate ion-containing water produced in Example 1 to chicken fetal fibroblasts (CEF cells) was examined, no cytotoxicity was observed.
  • the present invention has industrial applicability in that it can provide a novel method for producing water in which permanganate ions are stably present for a long period of time without using an organic iron compound as a production raw material.

Abstract

本発明の課題は、製造原料として有機鉄化合物を用いない、過マンガン酸イオンが長期に亘って安定に存在する水の新規な製造方法を提供することである。その解決手段は、pHが3.5未満の水に、2価の無機鉄化合物と2価のマンガン化合物を溶解した後、水中にオゾンマイクロバブルを供給することによる。

Description

過マンガン酸イオンを含む水の製造方法
 本発明は、過マンガン酸イオンを含む水の製造方法に関する。
 過マンガン酸イオン(MnO :VII)は、酸化剤として各種の酸化反応に用いられていることは周知の通りである。また、過マンガン酸イオンには、殺菌剤や消臭剤といった用途も知られている。しかしながら、過マンガン酸イオンを過マンガン酸カリウムなどの過マンガン酸化合物を水に溶解することで調製した場合、過マンガン酸イオンが短期間のうちに還元されて消滅してしまうという問題がある。この問題を解決するため、本発明者は、過マンガン酸イオンが長期に亘って安定に存在する水の製造方法の研究に取り組み、その成果として、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解することによる、過マンガン酸イオンを含む水の製造方法を、特許文献1において報告している。
国際公開第2016/017820号
 本発明者が特許文献1において報告した過マンガン酸イオンを含む水の製造方法は、過マンガン酸イオンを水中で長期に亘って安定に存在させることができることから、当業者に高く評価されている。しかしながら、この方法で過マンガン酸イオンを含む水を製造すると、水中に沈殿物が発生することは特許文献1に記載の通りであるが、発生する沈殿物は多量であり、沈殿物の発生が収まるまでに数日間を要するため、発生した沈殿物の濾過作業を行って製品として出荷することができるまでに時間がかかるという不便があることが後に判明し、こうした数日間続く沈殿物の発生がなぜ起こるのかの原因については、製造原料として有機鉄化合物を用いていることが推察された。
 そこで本発明は、製造原料として有機鉄化合物を用いない、過マンガン酸イオンが長期に亘って安定に存在する水の新規な製造方法を提供することを目的とする。
 上記の点に鑑みてなされた本発明の過マンガン酸イオンを含む水の製造方法は、請求項1記載の通り、pHが3.5未満の水に、2価の無機鉄化合物と2価のマンガン化合物を溶解した後、水中にオゾンマイクロバブルを供給することによる。
 また、請求項2記載の製造方法は、請求項1記載の製造方法において、2価の無機鉄化合物が、塩化鉄(II)、硫酸鉄(II)、硝酸鉄(II)から選択される少なくとも1種である。
 また、請求項3記載の製造方法は、請求項1記載の製造方法において、2価の鉄イオンの濃度が1~100ppbとなるように2価の無機鉄化合物を溶解する。
 また、請求項4記載の製造方法は、請求項1記載の製造方法において、2価のマンガン化合物が、塩化マンガン(II)、硫酸マンガン(II)、硝酸マンガン(II)から選択される少なくとも1種である。
 また、請求項5記載の製造方法は、請求項1記載の製造方法において、2価のマンガンイオンの濃度が0.1μM~1mMとなるように2価のマンガン化合物を溶解する。
 また、請求項6記載の製造方法は、請求項1記載の製造方法において、無機塩をさらに溶解しない。
 また、請求項7記載の製造方法は、請求項1記載の製造方法において、水中にオゾンマイクロバブルを供給した後にpHを5.0~9.0にする。
 本発明によれば、製造原料として有機鉄化合物を用いない、過マンガン酸イオンが長期に亘って安定に存在する水の新規な製造方法を提供することができる。
 本発明の過マンガン酸イオンを含む水の製造方法は、pHが3.5未満の水に、2価の無機鉄化合物と2価のマンガン化合物を溶解した後、水中にオゾンマイクロバブルを供給することによる。
 本発明の過マンガン酸イオンを含む水の製造方法では、まず、pHが3.5未満の水に、2価の無機鉄化合物と2価のマンガン化合物を溶解する。2価の無機鉄化合物と2価のマンガン化合物を溶解する水のpHを3.5未満とする理由は、pHが3.5以上の水に、2価の無機鉄化合物を溶解すると、後に水中にオゾンマイクロバブルを供給した際、2価の鉄イオンから3価の酸化鉄(Fe)が生成して沈殿し、過マンガン酸イオンを十分に生成させることができない恐れがあるからである。また、pHが3.5以上の水に、2価のマンガン化合物を溶解すると、後に水中にオゾンマイクロバブルを供給した際、2価のマンガンイオンから3価の酸化マンガン(Mn)や4価の酸化マンガン(二酸化マンガン:MnO)が生成して沈殿し、過マンガン酸イオンを十分に生成させることができない恐れがあるからである。2価の無機鉄化合物と2価のマンガン化合物を溶解する水のpHは、3.0未満が望ましい。
 水は、例えば電気伝導度が300μS/cm未満である水であってよく、電気伝導度が3μS/cm以下である純水を好適に用いることができるが、水道水や地下水を用いてもよい。
 水のpHを3.5未満にするための酸としては、塩酸、硫酸、硫酸などの無機酸を用いることが望ましい。
 pHが3.5未満の水に溶解する2価の無機鉄化合物としては、塩化鉄(II)、硫酸鉄(II)、硝酸鉄(II)などを用いることができる。2価の無機鉄化合物は、2価の鉄イオンの濃度が1~100ppbとなるように溶解することが望ましい。2価の鉄イオンの濃度が1ppb未満であると、過マンガン酸イオンを十分に生成させることができない恐れがある。一方、2価の鉄イオンの濃度が100ppbを超えると、後に水中にオゾンマイクロバブルを供給した際、2価の鉄イオンから3価の酸化鉄(Fe)が生成して沈殿しやすくなる恐れがある。
 pHが3.5未満の水に溶解する2価のマンガン化合物としては、塩化マンガン(II)、硫酸マンガン(II)、硝酸マンガン(II)などを用いることができる。2価のマンガン化合物は、2価のマンガンイオンの濃度が0.1μM~1mMとなるように溶解することが望ましい。2価のマンガンイオンの濃度が0.1μM未満であると、過マンガン酸イオンを十分に生成させることができない恐れがある。一方、2価のマンガンイオンの濃度が1mMを超えると、後に水中にオゾンマイクロバブルを供給した際、2価のマンガンイオンから3価の酸化マンガン(Mn)や4価の酸化マンガン(二酸化マンガン:MnO)が生成して沈殿しやすくなる恐れがある。2価のマンガン化合物は、2価のマンガンイオンの濃度が1~100μMとなるように溶解することがより望ましい。
 pHが3.5未満の水への2価の無機鉄化合物と2価のマンガン化合物の溶解順序は特に限定されるものではなく、同時に溶解してもよいし、段階的に溶解してもよい。
 なお、本発明の過マンガン酸イオンを含む水の製造方法においては、特許文献1に記載の過マンガン酸イオンを含む水の製造方法のように、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムなどの無機塩をさらに溶解することを必要としない。無機塩をさらに溶解することが、本発明の方法による過マンガン酸イオンを含む水の製造に悪影響を及ぼすことはないが、製造された過マンガン酸イオンを含む水の用途に制約を与える場合があるため(塩分濃度が高い水の例えば電気機器などへの適用は望ましくない)、無機塩はさらに溶解しないことが望ましい。
 次に、2価の無機鉄化合物と2価のマンガン化合物を溶解したpHが3.5未満の水の中に、オゾンマイクロバブルを所定の時間、例えば1分間~24時間供給する。水中にオゾンマイクロバブルを供給する方法は自体公知の方法であってよく、粒径が5~50μmのマイクロバブルを発生させることができる、二相流旋回方式や加圧溶解方式による微小気泡発生装置を用いて行うことができる。二相流旋回方式を採用する場合、回転子などを利用して半径が10cm以下の渦流を強制的に生じせしめ、壁面などの障害物や相対速度の異なる流体にマイクロバブルの内部に含ませるオゾンを含んだ気液混合物を打ち当てることにより、渦流中に獲得した気体成分を渦の消失とともに分散させることで、所望のオゾンマイクロバブルを発生させることができる。また、加圧溶解方式を採用する場合、2気圧以上の高圧下でマイクロバブルの内部に含ませるオゾンを水中に溶解した後、これを大気圧に開放することにより生じた溶解気体の過飽和条件からオゾンマイクロバブルを発生させることができる。この場合、圧力の開放部位において、水流と障害物を利用して半径が1mm以下の渦を多数発生させ、渦流の中心域における水の分子揺動を起因として多量の気相の核(気泡核)を形成させるとともに、過飽和条件に伴ってこれらの気泡核に向かって水中の気体成分を拡散させ、気泡核を成長させることにより、所望のオゾンマイクロバブルを大量に発生させることができる。なお、これらの方法によって発生したオゾンマイクロバブルは、粒径が50μm以下で、レーザー光遮断方式の液中パーティクルカウンター(例えばSPM社製LiQuilaz-E20など)による計測において10~15μmに粒径のピークを有しており、そのピークの領域における微小気泡の個数は1000個/mL以上である(必要であれば特開2000-51107号公報や特開2003-265938号公報などを参照のこと)。水中にオゾンマイクロバブルを供給するために用いるオゾンガスとしては、例えば市販の酸素源オゾン発生装置を用いて1~300g/Nmの濃度に調製したものが挙げられる。濃度が1g/Nm未満のオゾンガスを用いた場合、水中に多量のオゾンマイクロバブルを効率よく供給することができない恐れがある。一方、濃度が300g/Nmを超えるオゾンガスは調製が困難である。なお、オゾンガスは、オゾンの他に酸素や窒素などを含んでいてもよい。
 以上の工程によって、過マンガン酸イオンが長期に亘って安定に存在する水を製造することができるが、製造された過マンガン酸イオンを含む水のpHは3.5未満である。このため、製造された過マンガン酸イオンを含む水を、酸化剤、殺菌剤、消臭剤といった過マンガンイオンの用途に対して汎用性に富む弱酸性~弱アルカリ性のものにするため、水中へのオゾンマイクロバブルの供給を所定の時間行った後、pHを5.0~9.0にすることが望ましい。水のpHを5.0~9.0にするためのアルカリとしては、水酸化ナトリウムや水酸化カリウムなどの無機アルカリを用いることが望ましい。
 こうして製造された過マンガン酸イオンを含む水は、pHが5.0~9.0であり、過マンガンイオンの用途に対して汎用性に富むものであって、特許文献1に記載の製造方法で製造される過マンガン酸イオンを含む水と同様、過マンガン酸イオンが0.1μM~1mMの濃度で、典型的には1~100μMの濃度で水中で長期に亘って安定に存在しており、その半減期は例えば大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3ヶ月間以上である。塩分濃度は0.3%以下であることが望ましく、0.1%以下であることがより望ましい。また、過マンガン酸イオンを含む水のpHを5.0~9.0にした際、水中に沈殿物が発生するが、発生する沈殿物は少量であって、短時間のうちに発生が収まる。従って、過マンガン酸イオンを含む水のpHを5.0~9.0にした例えば翌日に、発生した沈殿物の濾過作業を行って製品として出荷することができる。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
実施例1:
 容積が15Lのガラス製容器に、電気伝導度が0.06μS/cmである超純水を10L入れ、そこに塩酸を添加してpHを2.8に調整した後、塩化鉄(II)を2価の鉄イオン濃度が約25ppbとなるように溶解するとともに、塩化マンガン(II)を2価のマンガンイオンの濃度が50μMとなるように溶解した。この液中に、加圧溶解型のマイクロバブル発生装置を用い、粒径が15~50μmのオゾンマイクロバブルを発生させて10分間供給した。装置は内部の水を循環させながら駆動させた。マイクロバブル発生装置には、酸素源オゾン発生装置を用いて約50g/Nmの濃度で調製したオゾンガスを約1L/分で供給した。10分後、水は淡いピンク色を呈し、水中に過マンガン酸イオンが生成したことを予感させた。マイクロバブル発生装置の駆動を停止した後、水酸化ナトリウムを添加してpHを7.0に調整し、室内環境下で一昼夜自然放置してから、pHを7.0に調整した際に水中に発生した少量の沈殿物を1.2μmのメンブレンフィルタで濾過して除去した(それ以降の沈殿物のさらなる発生は認められなかった)。得られた濾液を紫外可視近赤外分光光度計で測定したところ、500-600nm付近に過マンガン酸イオンのピーク群が存在した(蒸留水に塩化ナトリウムを溶解して塩分濃度を0.25%にしてから過マンガン酸カリウムを溶解することで製造した過マンガン酸イオンを含む水について同じ条件で測定を行うことで同じ場所に同じ形状のピーク群が存在することを確認)。
 こうして製造した過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約10μMであり(紫外可視近赤外分光光度計で測定した過マンガン酸イオンのピーク群の高さを、標準液として過マンガン酸カリウムを用いて製造した過マンガン酸イオンを20μMの濃度で含む水のピーク群の高さと比較することで換算した濃度)、塩分濃度を塩分濃度計で測定したところ約0.05%であった。この過マンガン酸イオンを含む水を大気圧下で密閉容器としてペットボトルに充填して40℃の温度条件下において保存した場合における過マンガン酸イオンの半減期を調べたところ、3か月間以上であった(3か月間が経過した時点で半分以上の過マンガン酸イオンが残存)。また、この過マンガン酸イオンを含む水から1mLをサンプリングし、これにエチレンジアミン四酢酸(EDTA)を濃度が20mMになるように加えた後、5,5-ジメチル-1-ピロリン N-オキシド(DMPO)を濃度が200mMになるように加え、さらに塩酸を濃度が500mMになるように加え、得られた混合液を石英セルに吸引し、電子スピン共鳴装置(ESR)で測定したところ、1:2:2:1のピークパターンを持つ顕著なDMPO-OHの信号を確認することができた。また、この過マンガン酸イオンを含む水をペットボトルに入れて冷暗所で保管し、3か月後に同様の測定を行ったところ、1:2:2:1のピークパターンを持つ信号を確認することができ、そのピーク長は、製造直後のピーク長の90%以上であった。
実施例2:
 実施例1における水酸化ナトリウムを添加することによる水のpHを7.0に調整する操作のかわりに、添加する水酸化ナトリウムの量を減らしてpHを5.5に調整すること以外は実施例1と同様の方法で、過マンガン酸イオンを含む水を製造した。こうして製造した過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約10μMであり、塩分濃度は約0.03%であった。この過マンガン酸イオンを含む水の過マンガン酸イオンの半減期と電子スピン共鳴装置による測定結果は、実施例1で製造した過マンガン酸イオンを含む水のものと同じであった。
実施例3:
 塩化鉄(II)にかわりに硫酸鉄(II)を添加すること以外は実施例1と同様の方法で、過マンガン酸イオンを含む水を製造した。こうして製造した過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約10μMであり、塩分濃度は約0.05%であった。この過マンガン酸イオンを含む水の過マンガン酸イオンの半減期と電子スピン共鳴装置による測定結果は、実施例1で製造した過マンガン酸イオンを含む水のものと同じであった。
実施例4:
 塩化マンガン(II)にかわりに硫酸マンガン(II)を添加すること以外は実施例1と同様の方法で、過マンガン酸イオンを含む水を製造した。こうして製造した過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約10μMであり、塩分濃度は約0.05%であった。この過マンガン酸イオンを含む水の過マンガン酸イオンの半減期と電子スピン共鳴装置による測定結果は、実施例1で製造した過マンガン酸イオンを含む水のものと同じであった。
実施例5:
 実施例1で製造した過マンガン酸イオンを含む水の、病原菌であるサルモネラ・エンテリティディス(Salmonella Enteritidis)に対する殺菌効果を調べたところ、優れた殺菌効果が認められた。
実施例6:
 実施例1で製造した過マンガン酸イオンを含む水を、Line-M系ニワトリのSPF卵を孵化させた初生ヒナに経口投与して毒性を調べたところ、毒性は認められなかった。
実施例7:
 実施例1で製造した過マンガン酸イオンを含む水の、ニワトリ胎児線維芽細胞(CEF細胞)に対する細胞毒性を調べたところ、細胞毒性は認められなかった。
 本発明は、製造原料として有機鉄化合物を用いない、過マンガン酸イオンが長期に亘って安定に存在する水の新規な製造方法を提供することができる点において産業上の利用可能性を有する。

Claims (7)

  1.  pHが3.5未満の水に、2価の無機鉄化合物と2価のマンガン化合物を溶解した後、水中にオゾンマイクロバブルを供給することによる過マンガン酸イオンを含む水の製造方法。
  2.  2価の無機鉄化合物が、塩化鉄(II)、硫酸鉄(II)、硝酸鉄(II)から選択される少なくとも1種である請求項1記載の製造方法。
  3.  2価の鉄イオンの濃度が1~100ppbとなるように2価の無機鉄化合物を溶解する請求項1記載の製造方法。
  4.  2価のマンガン化合物が、塩化マンガン(II)、硫酸マンガン(II)、硝酸マンガン(II)から選択される少なくとも1種である請求項1記載の製造方法。
  5.  2価のマンガンイオンの濃度が0.1μM~1mMとなるように2価のマンガン化合物を溶解する請求項1記載の製造方法。
  6.  無機塩をさらに溶解しない請求項1記載の製造方法。
  7.  水中にオゾンマイクロバブルを供給した後にpHを5.0~9.0にする請求項1記載の製造方法。
PCT/JP2021/027308 2020-07-22 2021-07-21 過マンガン酸イオンを含む水の製造方法 WO2022019327A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/015,704 US20230286840A1 (en) 2020-07-22 2021-07-21 Method for producing water containing permanganate ions
JP2022538039A JPWO2022019327A1 (ja) 2020-07-22 2021-07-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020125863 2020-07-22
JP2020-125863 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019327A1 true WO2022019327A1 (ja) 2022-01-27

Family

ID=79729595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027308 WO2022019327A1 (ja) 2020-07-22 2021-07-21 過マンガン酸イオンを含む水の製造方法

Country Status (3)

Country Link
US (1) US20230286840A1 (ja)
JP (1) JPWO2022019327A1 (ja)
WO (1) WO2022019327A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017820A1 (ja) * 2014-08-01 2016-02-04 国立研究開発法人産業技術総合研究所 過マンガン酸イオンを含む水およびその製造方法
CN106745956A (zh) * 2016-11-16 2017-05-31 安徽建筑大学 一种高pH源水的氧化过滤除锰除铁方法
CN107540021A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 含有非锰元素的四氧化三锰复合物、制备方法、使用的反应系统及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017820A1 (ja) * 2014-08-01 2016-02-04 国立研究開発法人産業技術総合研究所 過マンガン酸イオンを含む水およびその製造方法
CN107540021A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 含有非锰元素的四氧化三锰复合物、制备方法、使用的反应系统及其用途
CN106745956A (zh) * 2016-11-16 2017-05-31 安徽建筑大学 一种高pH源水的氧化过滤除锰除铁方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Nanobubble that has unknown potential", NANOTECHJAPAN BULLETIN, vol. 2, no. 1, 27 February 2009 (2009-02-27), Retrieved from the Internet <URL:http://www.nanonet.go.jp/magazine/archive/?page=1151.html> *

Also Published As

Publication number Publication date
US20230286840A1 (en) 2023-09-14
JPWO2022019327A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
ES2688381T3 (es) Métodos para hacer nanopartículas de plata y sus aplicaciones
US4214962A (en) Activated oxygen product and water treatment using same
BRPI0112455B1 (pt) método de tratamento, no local de uso, de mistura aquosa com, pelo menos, uma impureza e dispositivos de síntese contínua de ferrato em anbiente aquoso.
JP6422976B2 (ja) 過マンガン酸イオンを含む水の製造方法
EP0672625A1 (de) Mittel zur Wasserbehandlung mit Polyasparaginsäure oder einem Derivat davon und Phosphonsäure
US20090104239A1 (en) Method, Material and System for Controlled Release of Anti-Microbial Agents
WO2010050634A1 (en) Manufacturing method for peracetic acid solution using column-type reactor and coil-tube-type aging reactor
ES2553431T3 (es) Métodos y composiciones para la generación de ácido peracético en el sitio en el punto de uso
JPWO2015071995A1 (ja) 超微細気泡含有微酸性次亜塩素酸水溶液の製造方法及び使用方法
WO2022019327A1 (ja) 過マンガン酸イオンを含む水の製造方法
JP6047699B2 (ja) オゾン含有水溶液の製造方法、製造装置およびオゾン含有水溶液
JP2006198499A (ja) 水の殺菌方法および殺菌装置
Barışçı The disinfection and natural organic matter removal performance of electro-synthesized ferrate (VI)
JP6341581B2 (ja) オゾン水の製造方法
JP2011050931A (ja) 水中における水酸基ラジカルの生成方法
WO2005108304A1 (en) Method and apparatus for liquid treatment
JP2002086155A (ja) 水系の殺菌方法
JP7475025B2 (ja) 酸素を含有するナノ粒子を含む水
KR100944725B1 (ko) 오존과 산성도 증가에 의한 바닷물속의 미생물 제거 방법
KR101847924B1 (ko) 고농도 복합 살균수의 제조장치
El Shaer et al. Effect of Water Parameters on Decolourization Efficiency of Organic Dyes by Dielectric Barrier Discharge Plasma
US5486538A (en) Precious metal humates and their preparations
JP2021115507A (ja) 酸素を含有するナノ粒子を含む水
US20170274109A1 (en) Use of Ozone to Control Bioburden in Precipitated Calcium Carbonate Slurry (PCC)
JP2024052631A (ja) 水中のトリハロメタン濃度低減方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847074

Country of ref document: EP

Kind code of ref document: A1