WO2016017792A1 - 含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途 - Google Patents

含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途 Download PDF

Info

Publication number
WO2016017792A1
WO2016017792A1 PCT/JP2015/071752 JP2015071752W WO2016017792A1 WO 2016017792 A1 WO2016017792 A1 WO 2016017792A1 JP 2015071752 W JP2015071752 W JP 2015071752W WO 2016017792 A1 WO2016017792 A1 WO 2016017792A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
silicon oligomer
containing metal
metal silicon
plating
Prior art date
Application number
PCT/JP2015/071752
Other languages
English (en)
French (fr)
Inventor
大祐 佐土原
西川 賢一
靖丈 根道
勝己 下田
美代子 泉谷
Original Assignee
株式会社Jcu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jcu filed Critical 株式会社Jcu
Priority to JP2016538459A priority Critical patent/JP6709155B2/ja
Priority to CN201580034265.6A priority patent/CN106471001B/zh
Priority to KR1020167036056A priority patent/KR102445276B1/ko
Publication of WO2016017792A1 publication Critical patent/WO2016017792A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated

Definitions

  • the present invention relates to a catalyst-containing metal silicon oligomer capable of imparting autocatalytic properties and conductivity to a substrate, a production method thereof, and uses of the catalyst-containing metal silicon oligomer.
  • ⁇ ⁇ ⁇ Plating is generally performed for the purpose of improving the decorative properties of the base metal and improving the corrosion resistance.
  • etching with an aqueous solution containing a cationic polymer and a bifluoride salt is also carried out as a pretreatment (Patent Document 1), but this still cannot be applied to all difficult-to-platable materials.
  • an object of the present invention is to provide a new pretreatment technique that enables plating regardless of the type of substrate.
  • the present inventors have conducted a condensation reaction between an alkoxysilane and a polyhydric alcohol having a hydroxy group bonded to a specific position in the presence of a catalytic metal.
  • a condensation reaction between an alkoxysilane and a polyhydric alcohol having a hydroxy group bonded to a specific position in the presence of a catalytic metal.
  • the present invention includes tetraalkoxysilane, A polyhydric alcohol having a hydroxy group bonded to at least the n, n + 1 position or the n, n + 2 position (where n is an integer of 1 or more), In the presence of catalytic metal, It is a catalyst-containing metal silicon oligomer obtained by a condensation reaction.
  • the present invention also includes tetraalkoxysilane, A polyhydric alcohol having a hydroxy group bonded to at least the n, n + 1 position or the n, n + 2 position (where n is an integer of 1 or more), In the presence of catalytic metal, It is a method for producing a catalyst-containing metal silicon oligomer characterized by carrying out a condensation reaction.
  • the present invention is a coating agent characterized by containing the above catalyst-containing metal silicon oligomer.
  • the present invention is a method for plating a substrate, characterized in that after the substrate is treated with the above coating agent, the catalytic metal is activated, and then plated.
  • the catalyst-containing metal silicon oligomer of the present invention has a catalyst metal incorporated in its structure, it can be provided with autocatalytic properties and conductivity based on the catalyst metal by coating the substrate.
  • the catalyst-containing metal silicon oligomer of the present invention can be coated without chemically or physically roughening the surface of the substrate before coating, which has been essential in the past.
  • the type of substrate to be coated is not limited.
  • the catalyst-containing metal silicon oligomer can easily be plated on various substrates.
  • the catalyst-containing metal silicon oligomer of the present invention does not cause problems such as gelation, which has been a problem with conventional silicon oligomers, it can be stably stored for more than one year after production.
  • the catalyst-containing metal silicon oligomer of the present invention is Tetraalkoxysilane, A polyhydric alcohol having a hydroxy group bonded to at least the n, n + 1 position or the n, n + 2 position (where n is an integer of 1 or more), In the presence of catalytic metal, It is obtained by a condensation reaction.
  • the tetraalkoxysilane used above is not particularly limited, and examples thereof include tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane. Among these, tetraethoxysilane is preferable. These tetraalkoxysilanes may be used alone or in combination of two or more.
  • the polyhydric alcohol having a hydroxy group bonded to at least the n, n + 1 position or n, n + 2 position (where n is an integer of 1 or more) used in the above is not particularly limited.
  • n is an integer of 1 to 3
  • dihydric to tetrahydric alcohols preferably dihydric to trihydric alcohols where n is an integer of 1 to 2.
  • polyhydric alcohols include, for example, ethylene glycol, 1,2-propanediol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 2-methyl-1,3-propylene glycol, 1,2-pentylene glycol, 1,3-pentylene glycol, 2,3-pentylene glycol, dihydric alcohols such as 2,4-pentylene glycol, glycerin, etc. And tetrahydric alcohols such as erythritol. Of these polyhydric alcohols, dihydric alcohols are preferred, ethylene glycol and / or 1,3-propylene glycol are more preferred, and ethylene glycol is particularly preferred. These polyhydric alcohols can be used alone or in combination of two or more.
  • the catalyst metal used above is not a metal having a catalytic action for the condensation reaction of tetraalkoxysilane and polyhydric alcohol, but a metal having an autocatalytic action for the deposition reaction of plating described later. Therefore, it is different from the metal catalyst referred to in WO2014 / 20785 and WO2014 / 207886.
  • Examples of such catalytic metals include iron, nickel, cobalt, copper, palladium, silver, gold, platinum, and the like.
  • iron, nickel, cobalt, copper, and palladium are preferable, iron, nickel, copper, and palladium are more preferable, and palladium is particularly preferable.
  • a method for subjecting the above tetraalkoxysilane and polyhydric alcohol to a condensation reaction in the presence of a catalytic metal is not particularly limited.
  • 0.01 to 20 g / kg of catalytic metal is added to the polyhydric alcohol, preferably After adding and dissolving at 0.1 to 10 g / kg, the mixture is heated to the reaction temperature while stirring, and tetraalkoxysilane is further added and reacted.
  • the reaction temperature is 25 to 150 ° C., preferably 30 to 70 ° C.
  • the reaction time is 30 minutes to 8 hours, preferably 2 hours to 4 hours.
  • the tetraalkoxysilane and the polyhydric alcohol are separated into two layers before the condensation reaction, but when the reaction is completed, one layer is formed. Also good.
  • the catalyst-containing metal silicon oligomer of the present invention is a product obtained by condensation reaction of an alkoxy group of tetraalkoxysilane and one or two of n, n + 1-position or n, n + 2-position hydroxy groups present in a polyhydric alcohol.
  • it has the following partial structures (a) to (d).
  • the catalyst metal exists between oxygen atoms, and is presumed to be stabilized by forming a 5-membered ring structure or a 6-membered ring structure having the catalyst metal as a vertex. . Therefore, the catalyst-containing metal silicon oligomer of the present invention does not show any catalyst metal precipitation even after one year has passed after the production.
  • Such a catalyst-containing metal silicon oligomer of the present invention can be identified by known methods such as NMR such as 1 HNMR and 29 SiNMR, IR, and MASS. Specifically for NMR, the alcohol produced by the condensation reaction of tetraalkoxysilane and polyhydric alcohol is confirmed by 1 HNMR, and further, the number of silicon in the catalyst-containing metal silicon oligomer is confirmed by 29 SiNMR, The catalyst-containing metal silicon oligomer of the present invention can be identified. In addition, the catalytic metal is taken into the silicon oligomer can be confirmed by the fact that no precipitation of the catalytic metal is observed after a certain period of time has elapsed after the silicon oligomer has been generated, for example, after one year.
  • the catalyst-containing metal silicon oligomer of the present invention can be treated on the surface of the base material as a coating agent in the same manner as conventional silicon oligomers.
  • the catalyst-containing metal silicon oligomer of the present invention has a catalytic metal incorporated in its structure. Therefore, after the substrate is treated with a coating agent, an activation treatment is performed, whereby the substrate is self-catalytic and conductive. Sex can be imparted.
  • the coating agent may contain, for example, a solvent added to a conventionally known coating agent, a resin for improving wettability to a substrate, and the like.
  • a coating agent can be prepared by appropriately stirring and mixing the above components.
  • the solvent added to the coating agent is not particularly limited, and examples thereof include water, isopropyl alcohol, and ethyl cellosolve.
  • the catalyst-containing metal silicon oligomer of the present invention can be stably stored even in the presence of water when diluted with a glycol-based solvent such as polyethylene glycol or ethyl cellosolve.
  • a glycol-based solvent such as polyethylene glycol or ethyl cellosolve.
  • polyethylene glycol 200 to 1000, preferably polyethylene glycol 200, as a glycol solvent it can be stably stored for a long time even in the presence of moisture.
  • the coating agent may be blended with a colorant, a friction coefficient adjusting agent, a film thickener, and other additives that impart functionality as long as the effects of the present invention are not impaired.
  • the said coating agent does not specifically limit as a base material processed by the said coating agent, If the said coating agent is utilized, it will be difficult to provide autocatalytic property and electroconductivity by the conventional technology, from the relationship of an ionization tendency etc. Self-catalytic properties and electrical conductivity can be imparted to difficult-to-platable substrates such as metals that cannot be plated, such as magnesium, metals that are not self-catalytic, wood, cloth, glass, ceramics, plastics, and the like. Therefore, it is preferable to use the coating agent for the aforementioned difficult-to-platable substrate. Further, among the above base materials, those having oxygen or hydroxy groups on the surface of the base material, for example, ABS, glass, etc., will have high adhesion.
  • the substrate may be treated with the coating agent in the same manner as a conventionally known coating agent.
  • the substrate may be treated by an immersion method such as a dip-and-spin method or a spray method such as a spray coating method. That's fine.
  • a picture or a circuit may be formed with a coating agent by masking or an inkjet method.
  • the thickness of the coating agent on the substrate is not particularly limited as long as the substrate is covered. After the treatment, it may be dried as it is or with warm air.
  • an activation treatment is performed to reduce the catalytic metal.
  • This activation treatment may be performed by appropriately combining heat treatment and chemical reduction treatment according to the characteristics of the substrate. For example, if it is a base material which does not have a problem even if it heats to 100 degreeC or more, such as glass and a ceramic, what is necessary is just to heat-process at 100 degreeC or more.
  • heat treatment may be performed at less than 100 ° C., preferably 50 to 100 ° C., and then chemical reduction treatment may be performed.
  • the heat treatment is not particularly limited.
  • the temperature may be maintained for about 10 minutes to 2 hours in an oven, an electric furnace, or the like.
  • the atmosphere of the heat treatment is not particularly limited and may be air. After the heat treatment, it may be allowed to cool.
  • the chemical reduction treatment is not particularly limited, and may be immersed in an aqueous solution containing a reducing agent for about 1 to 3 minutes, for example.
  • a reducing agent examples include hypophosphorous acid, dimethylamine borane, formaldehyde, sodium borohydride, hydrazine and the like. These reducing agents can be used alone or in combination of two or more. What is necessary is just to wash with water, dry, etc. after a chemical reduction process.
  • the base material subjected to the above chemical reduction treatment is given autocatalytic properties, it can be subsequently plated.
  • the type of plating is not particularly limited, and any of electroplating, electroless plating and the like may be used.
  • the type of metal to be plated is not particularly limited, and may be any of nickel, copper, and the like.
  • the coating agent containing the catalyst-containing metal silicon oligomer of the present invention is used, plating can be performed regardless of the type of substrate. And the plating product obtained consists of the layer of the metal which plated, the layer of the coating agent containing the catalyst-containing metal silicon oligomer of this invention, and the layer of a base material in order from the surface.
  • Reference example 1 Preparation of reaction condensate of tetraethoxysilane and water: After adding 1.7 g of palladium chloride previously dissolved in 1.7 g of hydrochloric acid to 336 g of water, the mixture was stirred and dissolved. To this was added 564 g of tetraethoxysilane, and the mixture was stirred for 2 hours while heating to 50 ° C. with a mantle heater, and subjected to a condensation reaction to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, water and tetraethoxysilane were not mixed and separated into two layers, but after the condensation reaction, they became a single layer. Therefore, it was found that the reaction rate of this reaction was 100%.
  • This reaction product was a reaction condensate of tetraethoxysilane and water. Further, since the reaction product showed precipitation of palladium within 24 hours, it was found that palladium was not taken into this structure. In addition, the reaction solidified within 2 months at room temperature.
  • Example 1 Preparation of palladium-containing silicon oligomer: After adding 1.7 g of palladium chloride previously dissolved in 1.7 g of hydrochloric acid to 336 g of ethylene glycol, the mixture was stirred and dissolved. To this was added 564 g of tetraethoxysilane, and the mixture was stirred for 2 hours while heating to 50 ° C. with a mantle heater, and subjected to a condensation reaction to obtain a reaction product. The alcohol produced during this reaction was not fractionated. In addition, before this reaction, ethylene glycol and tetraethoxysilane were not mixed but separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 2 Preparation of palladium-containing silicon oligomer: After adding 1.7 g of palladium chloride previously dissolved in 1.7 g of hydrochloric acid to 380 g of 1,3-propylene glycol, the mixture was stirred and dissolved. To this, 521 g of tetraethoxysilane was added, stirred while heating to 50 ° C. with a mantle heater, and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, 1,3-propylene glycol and tetraethoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 3 Preparation of palladium-containing silicon oligomer: After adding 1.7 g of palladium chloride previously dissolved in 1.7 g of hydrochloric acid to 248 g of ethylene glycol, the mixture was stirred and dissolved. To this, 641 g of tetrabutoxysilane was added, stirred while heating to 50 ° C. with a mantle heater, and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, ethylene glycol and tetrabutoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 4 Preparation of palladium-containing silicon oligomer: After adding 1.7 g of palladium chloride previously dissolved in 1.7 g of hydrochloric acid to 405 g of ethylene glycol, the mixture was stirred and dissolved. To this, 496 g of tetramethoxysilane was added, stirred at room temperature (25 ° C.), and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, ethylene glycol and tetramethoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 5 Preparation of iron-containing silicon oligomer: 6.7 g of iron chloride tetrahydrate was added to 335 g of ethylene glycol, and then stirred and dissolved. To this, 575 g of tetraethoxysilane was added, stirred while heating to 70 ° C. with a mantle heater, and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, ethylene glycol and tetraethoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 6 Preparation of copper-containing silicon oligomer: After adding 5.5 g of copper chloride dihydrate to 336 g of ethylene glycol, the mixture was stirred and dissolved. To this, 563 g of tetraethoxysilane was added, stirred while heating to 90 ° C. with a mantle heater, and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, ethylene glycol and tetraethoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Example 2 1 HNMR and 29 SiNMR measurements were performed in the same manner as in Example 1 to confirm that the condensation reaction between the ethoxy group of tetraethoxysilane and ethylene glycol occurred, and that the number of Si in the molecule was 2 to 4. confirmed.
  • the silicon oligomer obtained above did not precipitate nickel even after 1 year. From this, it was considered that nickel was incorporated into the structure of the silicon oligomer. (Hereinafter, this is referred to as “Ni-containing silicon oligomer”).
  • Example 8 Preparation of cobalt-containing silicon oligomers: After adding 8.1 g of cobalt chloride hexahydrate to 336 g of ethylene glycol, the mixture was stirred and dissolved. To this, 564 g of tetraethoxysilane was added, stirred while heating to 50 ° C. with a mantle heater, and subjected to a condensation reaction for 2 hours to obtain a reaction product. The alcohol produced during this reaction was not fractionated. Before this reaction, ethylene glycol and tetraethoxysilane were not mixed and separated into two layers, but after a 2-hour condensation reaction, a single layer was formed. Therefore, it was found that the reaction rate of this reaction was 100%.
  • Coating agents 1 to 8 were obtained by adding and mixing the catalyst-containing metal silicon oligomers obtained in Examples 1 to 8 at a concentration of 150 ppm to the ethyl cell solob.
  • Example 10 Plating on glass plate: Of the coating agents obtained in Example 9, the coating agents 1 to 5 and 7 to 8 were plated on glass plates as follows. First, a glass plate (2 ⁇ 5 cm) was immersed in the coating agent, and then pre-dried with warm air. Next, this was dried in an oven at 200 ° C. for 20 minutes and cooled to room temperature. Thereafter, this glass plate was immersed in an electroless nickel plating bath (manufactured by JCU: Enirex NI-100) at 40 ° C. for 7 minutes for plating.
  • an electroless nickel plating bath manufactured by JCU: Enirex NI-100
  • Example 9 the coating agent 6 obtained in Example 9 was plated using the same method as above except that the electroless nickel plating bath was changed to an electroless copper plating bath (manufactured by JCU: Evashield EC). Went. Finally, whether or not plating was deposited on the glass plate and the deposition area were evaluated according to the following evaluation criteria. The results are shown in Table 1.
  • the wet area ((area coated after drying / area immersed in coating agent) ⁇ 100 (%)) after dipping the glass plate in the coating agent and drying in an oven was 80%.
  • the coating agents 1 to 4 containing the Pd-containing oligomer were deposited at 100% of the wet area.
  • Example 11 Plating on ABS plate Among the coating agents obtained in Example 9, the coating agents 1 to 5 and 7 to 8 were used to plate the ABS plate as follows. First, an ABS plate (2 ⁇ 5 cm) was immersed in the coating agent, and then pre-dried with warm air. Next, it was dried in an oven at 70 ° C. for 20 minutes and cooled to room temperature. Thereafter, the ABS plate was immersed in a dimethylamine borane aqueous solution (100 ppm) to reduce the metal of the catalyst-containing metal silicon oligomer contained in the coating agent. Further, this was washed with water and then immersed in an electroless nickel plating bath (manufactured by JCU: Enirex NI-100) at 40 ° C.
  • an electroless nickel plating bath manufactured by JCU: Enirex NI-100
  • Example 9 the coating agent 6 obtained in Example 9 was plated using the same method as above except that the electroless nickel plating bath was changed to an electroless copper plating bath (manufactured by JCU: Evashield EC). Went. Finally, whether or not plating was deposited on the ABS plate and the deposition area were evaluated based on the same evaluation criteria as in Example 10. The results are shown in Table 2.
  • Plating was deposited on the ABS plate treated with all coating agents.
  • the wet area after the ABS plate was dipped in the coating agent and dried in an oven was 80%.
  • the coating agents 1 to 4 containing the Pd-containing oligomer had plating deposited at 100% of the wet area.
  • Example 12 Preparation of coating agent with resin: 8.75 g of an acrylic resin (manufactured by Aika Kogyo Co., Ltd .: APX-1256) was added to 78.75 g of ethyl celsolob, and the mixture was stirred and dissolved. To this, the Pd-containing silicon oligomer 1 obtained in Example 1 was added and mixed in such a concentration that the palladium concentration became 150 ppm to obtain a coating agent 1 containing a resin.
  • an acrylic resin manufactured by Aika Kogyo Co., Ltd .: APX-1256
  • Example 13 Preparation of coating agent with resin: After adding and mixing the Pd-containing silicon oligomer 1 obtained in Example 1 in ethyl cersolob at a concentration of 150 ppm of palladium, further polyethylene powder (CERAFLOUR 990, manufactured by Big Kay Japan) has a solid content of 3%. It added and mixed by the density
  • CERAFLOUR 990 manufactured by Big Kay Japan
  • a glass plate (2 ⁇ 5 cm) was immersed in this resin-containing coating agent 2 and then pre-dried with warm air. Next, when this was dried in an oven at 200 ° C. for 20 minutes and cooled to room temperature, the wetted area was 100%.
  • Example 14 Preparation of binary coating agent: 8.75 g of an acrylic resin (manufactured by Aika Kogyo Co., Ltd .: APX-1256) was added to 78.75 g of ethyl celsolob, and the mixture was stirred and dissolved.
  • the binary coating agent 1 was obtained by adding and mixing the Pd-containing silicon oligomer 1 obtained in Example 1 and the Fe-containing silicon oligomer obtained in Example 5 at a concentration of 150 ppm each. It was. Further, the Fe-containing silicon oligomer obtained in Example 5 was replaced with the Cu-containing silicon oligomer obtained in Example 6, the Ni-containing silicon oligomer obtained in Example 7, and the Co-containing silicon oligomer obtained in Example 8.
  • Binary coating agents 2 to 4 were obtained in the same manner as described above except that:
  • Example 15 Plating on glass plate: Of the binary coating agents 1 to 4 obtained in Example 14, the coating agents 1 and 3 to 4 were plated on glass plates as follows. First, a glass plate (2 ⁇ 5 cm) was immersed in the coating agent, and then pre-dried with warm air. Next, this was dried in an oven at 200 ° C. for 20 minutes and cooled to room temperature. Thereafter, this glass plate was immersed in an electroless nickel plating bath (manufactured by JCU: Enilex NI-100) at 25 ° C. for 7 minutes for plating.
  • an electroless nickel plating bath manufactured by JCU: Enilex NI-100
  • the binary coating agent 3 obtained in Example 14 was used in the same manner as above except that the electroless nickel plating bath was changed to an electroless copper plating bath (manufactured by JCU: PB-506). Then, plating was performed. Further, the binary coating agent was changed to the coating agent containing the palladium-containing oligomer 1 obtained in Example 1, and the plating was performed in the same manner as described above was used as a control. In addition, since the temperature of the electroless plating bath is lower by 15 ° C. than the plating condition of Example 1, this control condition is a condition in which the plating is deposited only about several percent of the wet area. Finally, the increase ratio was calculated from the wetted area where plating was deposited on the control glass plate, the wetted area and the wetted area where plating was deposited on the glass plate obtained using the binary coating agent. The results are shown in Table 3.
  • Example 16 Preparation of palladium-containing iron silicon oligomer: In Example 1, the reaction was performed in the same manner as in Example 1 except that 6.7 g of iron chloride tetrahydrate was added to 1.7 g of palladium chloride.
  • the silicon oligomer obtained by this reaction was considered to have palladium and iron incorporated into its structure.
  • Example 17 Preparation of coating agent: The palladium-containing / iron-silicon oligomer obtained in Example 16 was added to and mixed with ethyl cersolob at a concentration such that the total metal concentration of palladium and iron was 150 ppm to obtain a coating agent.
  • Example 18 Plating on glass plate: When the coating agent obtained in Example 17 was used to plate a glass plate in the same manner as in the control of Example 15, the deposition area increased compared to the catalyst-containing metal silicon oligomer containing one type of catalyst metal. To do.
  • the catalyst-containing metal silicon oligomer of the present invention can impart autocatalytic properties and conductivity regardless of the type of substrate.
  • the catalyst-containing metal silicon oligomer of the present invention can be used for plating a substrate. more than

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Catalysts (AREA)

Abstract

 基材の種類を問わず、めっきを可能とする新しい技術を提供することを目的とする。 当該技術は、 テトラアルコキシシランと、少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、 触媒金属の存在下、 縮合反応させることにより得られる含触媒金属シリコンオリゴマーおよびこれを含むコーティング剤を利用しためっき方法である。

Description

含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途
 本発明は、基材に自己触媒性や導電性を付与することができる含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途に関する。
 めっきは、一般的に基材となる金属の装飾性を向上させたり、耐食性を向上させる目的で施されている。
 しかし、ガラス、セラミックス、プラスチック等のいわゆる難めっき性基材にめっきする場合、まず、化学的や物理的に表面を荒らす前処理が必須となる。
 これまでABS等のプラスチックに対しては、クロム酸エッチングで前処理が行われているが、このクロム酸エッチングではプラスチック以外の難めっき性基材にはほとんど対応できないことや、環境規制のためクロム酸自体の使用を減らすことが望まれているため、近年ではあまり行われていない。
 また、前処理としてカチオンポリマーとビフルオリド塩を含有する水溶液でエッチングすることも行われているが(特許文献1)、これでも全ての難めっき性素材に対応できるものではなかった。
特開2011-162806号公報
 従って、本発明は基材の種類を問わず、めっきを可能とする新しい前処理の技術を提供することを課題とした。
 本発明者らは、上記課題を解決するために鋭意研究した結果、アルコキシシランと、特定の位置にヒドロキシ基が結合している多価アルコールとを、触媒金属の存在下で縮合反応させることにより得られる含触媒金属シリコンオリゴマーを用いることで、基材の種類を問わず自己触媒性や導電性を付与でき、その結果、めっきが簡便にできることを見出し、本発明を完成させた。
 すなわち、本発明はテトラアルコキシシランと、
 少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、
 触媒金属の存在下、
 縮合反応させることにより得られる含触媒金属シリコンオリゴマーである。
 また、本発明はテトラアルコキシシランと、
 少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、
 触媒金属の存在下、
 縮合反応させることを特徴とする含触媒金属シリコンオリゴマーの製造方法である。
 更に、本発明は上記含触媒金属シリコンオリゴマーを含有することを特徴とするコーティング剤である。
 また更に、本発明は基材を、上記コーティング剤で処理した後、触媒金属の活性化処理を行い、次いで、めっきを行うことを特徴とする基材へのめっき方法である。
 本発明の含触媒金属シリコンオリゴマーは、その構造中に触媒金属が取り込まれているため、基材にコーティングすることにより触媒金属に基づく自己触媒性や導電性を付与することができる。
 また、本発明の含触媒金属シリコンオリゴマーは、従来、必須であった、コーティング前に基材の表面を化学的や物理的に荒らさなくてもコーティングすることができる。
 更に、本発明の含触媒金属シリコンオリゴマーは、触媒金属の活性化のために行われる加熱処理や化学還元処理を適宜選択できるため、コーティングする基材の種類を問わない。
 そのため、含触媒金属シリコンオリゴマーは種々の基材にめっき等を容易にすることができる。
 また更に、本発明の含触媒金属シリコンオリゴマーは、従来のシリコンオリゴマーで問題となっていたゲル化等の問題も生じないため、生成後1年以上も安定に保存することができる。
 本発明の含触媒金属シリコンオリゴマーは、
テトラアルコキシシランと、
 少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、
 触媒金属の存在下、
 縮合反応させることにより得られるものである。
 上記で用いられるテトラアルコキシシランは、特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン等が挙げられ、これらの中でもテトラエトキシシランが好ましい。これらテトラアルコキシシランは1種または2種以上を組み合わせてもよい。
 また、上記で用いられる少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールは、特に限定されず、例えば、nが1~3の整数である2価~4価アルコール、好ましくはnが1~2の整数である2~3価アルコール等が挙げられる。これら多価アルコールの具体例としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、2-メチル-1,3-プロピレングリコール、1,2-ペンチレングリコール、1,3-ペンチレングリコール、2,3-ペンチレングリコール、2,4-ペンチレングリコール等の2価アルコール、グリセリン等の3価アルコール等、エリスリトール等の4価アルコールが挙げられる。これらの多価アルコールの中でも2価アルコールが好ましく、エチレングリコールおよび/または1,3-プロピレングリコールがより好ましく、エチレングリコールが特に好ましい。これら多価アルコールは1種または2種以上を組み合わせて用いることができる。
 更に、上記で用いられる触媒金属は、テトラアルコキシシランと多価アルコールの縮合反応について触媒作用を有する金属ではなく、後記するめっきの析出反応について自己触媒作用を有する金属である。そのため、WO2014/207885やWO2014/207886でいうところの金属触媒とは異なるものである。このような触媒金属としては、例えば、鉄、ニッケル、コバルト、銅、パラジウム、銀、金、白金等が挙げられる。これらの触媒金属の中でも、鉄、ニッケル、コバルト、銅、パラジウムが好ましく、鉄、ニッケル、銅、パラジウムがより好ましく、パラジウムが特に好ましい。なお、上記触媒金属は縮合反応の際に、上記多価アルコールに溶解させた状態で存在させることが好ましく、その場合には、例えば、塩化鉄、塩化ニッケル、塩化銅、塩化パラジウム、塩化金(III)、塩化銀(I)、塩化白金(IV)等の触媒金属を含む金属塩を利用することが好ましい。なお、多価アルコールに触媒金属が溶解し難い場合には、予め塩酸等の無機酸に溶解させておいてもよい。これら触媒金属は1種または2種以上を組み合わせて用いることができ、その場合には、パラジウムを少なくとも含むことが好ましい。
 上記したテトラアルコキシシランと、多価アルコールとを、触媒金属の存在下、縮合反応させる方法は特に限定されず、例えば、上記多価アルコールに、触媒金属を0.01~20g/kg、好ましくは0.1~10g/kgで添加、溶解させた後、反応温度まで撹拌しながら加熱し、更に、テトラアルコキシシランを添加し、反応させればよい。反応温度は25~150℃、好ましくは30~70℃であり、反応時間は30分~8時間、好ましくは2時間~4時間である。なお、上記反応の際には、テトラアルコキシシランと多価アルコールをモル比で4:1~1:4、好ましくは1:2~1:4で反応させることが重要である。これによりテトラアルコキシシランとテトラアルコキシシランの間に多価アルコールが取り込まれる。
 なお、上記反応の際には、アルコールが生成するが、このアルコールを分留しないことにより重合反応が制御されるので、アルコールを分留しないことが好ましい。
 また、上記反応において、テトラアルコキシシランと多価アルコールを縮合反応させる前は2層に分離しているが、反応が完了すると1層になるため、1層になった時点で反応を終了させてもよい。
 斯くして得られる本発明の含触媒金属シリコンオリゴマーは、テトラアルコキシシランの2~4と、多価アルコールの1~13が縮合反応したシリコンオリゴマーに触媒金属が取り込まれたものである。
 なお、本発明の含触媒金属シリコンオリゴマーは、テトラアルコキシシランのアルコキシ基と、多価アルコールに存在するn,n+1位またはn,n+2位のヒドロキシ基の1つまたは2つが縮合反応したものであり、例えば、下記(a)~(d)の様な部分構造を有している。そして、本発明の含触媒金属シリコンオリゴマーにおいて、触媒金属は酸素原子間に存在し、触媒金属を頂点とする5員環構造または6員環構造を形成し、安定化しているものと推測される。そのため、本発明の含触媒金属シリコンオリゴマーは生成後、1年経過しても触媒金属の沈殿は認められない。
Figure JPOXMLDOC01-appb-C000001
 このような本発明の含触媒金属シリコンオリゴマーは、HNMR、29SiNMR等のNMR、IR、MASS等の公知の方法により同定することができる。具体的にNMRであれば、テトラアルコキシシランと多価アルコールの縮合反応により生成したアルコールをHNMRで確認し、更に、含触媒金属シリコンオリゴマー中のシリコンの数を29SiNMRで確認することにより、本発明の含触媒金属シリコンオリゴマーを同定することができる。また、シリコンオリゴマーに触媒金属が取り込まれていることは、シリコンオリゴマーを生成した後、一定期間経過後、例えば、1年経過後に触媒金属の沈殿が認められないことにより確認することができる。
 本発明の含触媒金属シリコンオリゴマーは、従来のシリコンオリゴマーと同様に、コーティング剤として、基材の表面等に処理をすることができる。特に本発明の含触媒金属シリコンオリゴマーは、その構造中に触媒金属が取り込まれているため、基材をコーティング剤で処理した後、活性化処理を行うことにより、基材に自己触媒性や導電性を付与することができる。
 本発明の含触媒金属シリコンオリゴマーを含有するコーティング剤は、本発明の含触媒金属シリコンオリゴマーを含有さえしていればよいが、例えば、含まれる触媒金属が異なる2種類以上の含触媒金属シリコンオリゴマーを組み合わせて用いたり、含触媒金属シリコンオリゴマーの調製の際に2種以上の触媒金属の存在下で調製したものを用いることにより、触媒金属の触媒作用が増強されるため好ましい。また、触媒金属の組み合わせとしては、特に限定されないが、例えば、パラジウムと、鉄、ニッケル、コバルト、銅から選ばれる1種以上との組み合わせが好ましい。
 上記コーティング剤は、例えば、従来公知のコーティング剤に添加される溶媒、基材への濡れ性を向上させるための樹脂等を含有させてもよい。このようなコーティング剤は、上記成分を適宜、撹拌、混合することにより調製することができる。
 上記コーティング剤に添加される溶媒としては特に限定されず、例えば、水、イソプロピルアルコール、エチルセロソルブ等が挙げられる。なお、本発明の含触媒金属シリコンオリゴマーは、例えば、ポリエチレングリコールやエチルセロソルブ等のグリコール系溶媒で希釈すると水分存在下でも安定に保存することができる。特にグリコール系溶媒として、ポリエチレングリコール200~1000、好ましくはポリエチレングリコール200を用いることにより、水分存在下でも長期間安定に保存することができる。
 また、上記コーティング剤に添加される樹脂としては、コーティング剤に可溶、もしくは分散するものであれば特に限定されず、例えば、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂、エポキシ系樹脂等が挙げられる。また、これらの樹脂の中でもアクリル系樹脂が好ましく、メタアクリル酸アルキルエステル共重合体、コロイダルシリカ・アクリル複合体、エチレン・アクリル酸共重合物アンモニウム塩がより好ましく、メタアクリル酸アルキルエステル共重合体が特に好ましい。これらの樹脂は1種または2種以上を用いることができる。また、これらの樹脂は溶液状のものでも粉末状のもののどちらでも構わない。これらの樹脂は、コーティング剤に50質量%(以下、単に「%」という)以下、好ましくは0.1~50%、より好ましくは1~20%配合する。
 更に、上記コーティング剤には本発明の効果を損なわない範囲で、着色剤、摩擦係数調整剤、増膜剤、その他機能性付与するような添加剤を配合してもよい。
 なお、上記コーティング剤で処理される基材としては特に限定されず、上記コーティング剤を利用すれば、これまでの技術では自己触媒性や導電性を付与することが難しい、イオン化傾向等の関係からめっきが不可能なマグネシウム等の金属、自己触媒性のない等の金属、木材、布、ガラス、セラミックス、プラスチック等の難めっき性基材にも自己触媒性や導電性を付与することができる。そのため、上記コーティング剤は、前記した難めっき性基材に用いることが好ましい。また、上記基材の中でも、特に基材表面に酸素やヒドロキシ基があるもの、例えば、ABS、ガラス等であれば密着性も高くなる。
 また、上記コーティング剤による基材の処理は、従来公知のコーティング剤と同様に処理すればよく、例えば、ディップアンドスピン法等の浸漬法、スプレーコーティング法等の噴霧法等で基材を処理すればよい。また、これらの処理の際にマスキングやインクジェット方式等でコーティング剤で絵や回路を形成するようにしてもよい。更に、基材上のコーティング剤の厚さは特に限定されず、基材を覆っていればよい。上記処理後は、そのままあるいは温風等で乾燥させればよい。
 更に、上記処理後は、触媒金属の還元のため活性化処理を行う。この活性化処理は基材の特性に合わせて、加熱処理や化学還元処理を適宜組み合わせて行えばよい。例えば、ガラスやセラミック等の100℃以上に加熱しても問題のない基材であれば、100℃以上で加熱処理を行えばよい。一方、ABS等の100℃以上に加熱すると問題のある基材であれば、100℃未満、好ましくは50~100℃で加熱処理を行い、その後、化学還元処理を行えばよい。
 上記加熱処理は特に限定されず、例えば、オーブン、電気炉等で上記温度を10分~2時間程度維持すればよい。加熱処理の雰囲気は特に限定されず、空気でよい。加熱処理後は、放冷等すればよい。
 上記化学還元処理は特に限定されず、例えば、還元剤を含む水溶液等に1~3分程度浸漬すればよい。還元剤としては、例えば、次亜リン酸、ジメチルアミンボラン、ホルムアルデヒド、水素化ホウ素ナトリウム、ヒドラジン等が挙げられる。これらの還元剤は1種または2種以上を用いることができる。化学還元処理後は水洗、乾燥等をすればよい。
 上記化学還元処理をした基材は、自己触媒性が付与されているので、続いてめっきをすることができる。
 上記めっきにおいて、めっきの種類は特に限定されず、電気めっき、無電解めっき等の何れでもよい。また、めっきする金属の種類も特に限定されず、例えば、ニッケル、銅等の何れでもよい。
 本発明の含触媒金属シリコンオリゴマーを含むコーティング剤を利用すれば、基材の種類を問わず、めっきをすることができる。そして得られるめっき製品は、表面から順に、めっきした金属の層、本発明の含触媒金属シリコンオリゴマーを含むコーティング剤の層、基材の層からなる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
参 考 例 1
   テトラエトキシシランと水との反応縮合物の調製:
 予め1.7gの塩酸に溶解させた塩化パラジウム1.7gを、水336gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン564gを添加し、マントルヒーターで50℃に加温しながら2時間撹拌し、縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。また、この反応の前は、水とテトラエトキシシランは混和せずに、2層に分離していたが、縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 この反応物は、テトラエトキシシランと水との反応縮合物であった。また、この反応物は24時間もしないうちに、パラジウムの沈殿が認められたことから、この構造中に、パラジウムは取り込まれていないことがわかった。更に、この反応物は室温で2ヶ月以内に、固化した。
実 施 例 1
   含パラジウムシリコンオリゴマーの調製:
 予め1.7gの塩酸に溶解させた塩化パラジウム1.7gを、エチレングリコール336gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン564gを添加し、マントルヒーターで50℃に加温しながら2時間撹拌し、縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。また、この反応の前は、エチレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 反応後冷却を行い反応物を得た。反応前と反応後にHNMRおよび29SiNMRを測定した。HNMRにおいて、反応終了後のスペクトルには1.1および3.5ppm付近にエタノール由来のピークが現れていた。このエタノールは、テトラエトキシシランのエトキシ基とエチレングリコールとの縮合反応が起こった結果、生成したものと考えられた。
 また、29SiNMRにおいて、反応前のスペクトルでは-82ppm付近にテトラエトキシシラン由来の単一ピークのみ現れていたのものが、反応終了後のスペクトルでは-90ppmから-80ppmの範囲に複数のピークが表れていた。これから分子中のSiの数は2~4と考えられた。
 更に、上記で得られたシリコンオリゴマーは1年経過してもパラジウムの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、パラジウムが取り込まれていると考えられた。(以下、これを「含Pdシリコンオリゴマー1」という)。
実 施 例 2
   含パラジウムシリコンオリゴマーの調製:
 予め1.7gの塩酸に溶解させた塩化パラジウム1.7gを、1,3-プロピレングリコール380gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン521gを添加し、マントルヒーターで50℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、1,3-プロピレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラエトキシシランのエトキシ基と1,3-プロピレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過してもパラジウムの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、パラジウムが取り込まれていると考えられた。(以下、これを「含Pdシリコンオリゴマー2」という)。
実 施 例 3
   含パラジウムシリコンオリゴマーの調製:
 予め1.7gの塩酸に溶解させた塩化パラジウム1.7gを、エチレングリコール248gに添加した後、撹拌し、溶解させた。これにテトラブトキシシラン641gを添加し、マントルヒーターで50℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラブトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラブキシシランのブトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過してもパラジウムの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、パラジウムが取り込まれていると考えられた。(以下、これを「含Pdシリコンオリゴマー3」という)。
実 施 例 4
   含パラジウムシリコンオリゴマーの調製:
 予め1.7gの塩酸に溶解させた塩化パラジウム1.7gを、エチレングリコール405gに添加した後、撹拌し、溶解させた。これにテトラメトキシシラン496gを添加し、室温(25℃)で撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラメトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラメトキシシランのメトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過してもパラジウムの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、パラジウムが取り込まれていると考えられた。(以下、これを「含Pdシリコンオリゴマー4」という)。
実 施 例 5
   含鉄シリコンオリゴマーの調製:
 塩化鉄四水和物6.7gを、エチレングリコール335gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン575gを添加し、マントルヒーターで70℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラエトキシシランのエトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過しても鉄の沈殿は認められなかった。これからシリコンオリゴマーの構造中に、鉄が取り込まれていると考えられた。(以下、これを「含Feシリコンオリゴマー」という)。
実 施 例 6
   含銅シリコンオリゴマーの調製:
 塩化銅二水和物5.5gを、エチレングリコール336gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン563gを添加し、マントルヒーターで90℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラエトキシシランのエトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過しても銅の沈殿は認められなかった。これからシリコンオリゴマーの構造中に、銅が取り込まれていると考えられた。(以下、これを「含Cuシリコンオリゴマー」という)。
実 施 例 7
   含ニッケルシリコンオリゴマーの調製:
 塩化ニッケル六水和物8.4gを、エチレングリコール336gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン564gを添加し、マントルヒーターで100℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラエトキシシランのエトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過してもニッケルの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、ニッケルが取り込まれていると考えられた。(以下、これを「含Niシリコンオリゴマー」という)。
実 施 例 8
   含コバルトシリコンオリゴマーの調製:
 塩化コバルト六水和物8.1gを、エチレングリコール336gに添加した後、撹拌し、溶解させた。これにテトラエトキシシラン564gを添加し、マントルヒーターで50℃に加温しながら撹拌し、2時間縮合反応させて反応物を得た。なお、この反応の際に生成するアルコールは分留しなかった。この反応の前は、エチレングリコールとテトラエトキシシランは混和せずに、2層に分離していたが、2時間縮合反応後は、単一層となった。そのため、この反応の反応率は100%であることがわかった。
 また、実施例1と同様にHNMRおよび29SiNMR測定を行い、テトラエトキシシランのエトキシ基とエチレングリコールとの縮合反応が起こったことと、分子中のSiの数は2~4であることを確認した。また、上記で得られたシリコンオリゴマーは1年経過してもコバルトの沈殿は認められなかった。これからシリコンオリゴマーの構造中に、コバルトが取り込まれていると考えられた。(以下、これを「含Coシリコンオリゴマー」という)。
実 施 例 9
   コーティング剤の調製:
 エチルセルソロブに、実施例1~8で得られた含触媒金属シリコンオリゴマーを金属濃度が150ppmとなる濃度でそれぞれ添加、混合してコーティング剤1~8を得た。
実 施 例 10
   ガラス板へのめっき:
 実施例9で得られたコーティング剤のうち、コーティング剤1~5、7~8については、次のようにこれを利用してガラス板へめっきを行った。まず、コーティング剤中に、ガラス板(2×5cm)を浸漬した後、温風でプレ乾燥した。次に、これを200℃のオーブンにて20分間乾燥させ、室温まで冷却した。その後、このガラス板を40℃の無電解ニッケルめっき浴(JCU社製:エニレックスNI-100)に7分間浸漬し、めっきを行った。また、実施例9で得られたコーティング剤6については、無電解ニッケルめっき浴を無電解銅めっき浴(JCU社製:エバシールドEC)に変更する以外は上記と同様にこれを利用してめっきを行った。最後にガラス板にめっきが析出したかどうかと、析出面積を以下の評価基準で評価した。その結果を表1に示した。
<析出面積評価基準>
(評価)  (内容)
  ○ : 析出が100%以下50%以上
  △ : 析出が50%未満
  × : 析出無し
Figure JPOXMLDOC01-appb-T000002
 ガラス板をコーティング剤に浸漬し、オーブンで乾燥させた後の濡れ面積((乾燥後にコーティングされた面積/コーティング剤に浸漬した面積)×100(%))はいずれも80%であった。また、全てのコーティング剤で処理したガラス板にめっきが析出した。特に含Pdオリゴマーを含むコーティング剤1~4は、濡れ面積の100%でめっきが析出した。
実 施 例 11
   ABS板へのめっき:
 実施例9で得られたコーティング剤のうち、コーティング剤1~5、7~8については、次のようにこれを利用してABS板へめっきを行った。まず、コーティング剤中に、ABS板(2×5cm)を浸漬した後、温風でプレ乾燥した。次に、これを70℃のオーブンにて20分間乾燥させ、室温まで冷却した。その後、このABS板をジメチルアミンボラン水溶液(100ppm)に浸漬し、コーティング剤に含まれる含触媒金属シリコンオリゴマーの金属の還元を行った。更に、これを水洗した後、40℃の無電解ニッケルめっき浴(JCU社製:エニレックスNI-100)に7分間浸漬し、めっきを行った。また、実施例9で得られたコーティング剤6については、無電解ニッケルめっき浴を無電解銅めっき浴(JCU社製:エバシールドEC)に変更する以外は上記と同様にこれを利用してめっきを行った。最後にABS板にめっきが析出したかどうかと、析出面積を実施例10と同様の評価基準で評価した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
 全てのコーティング剤で処理したABS板にめっきが析出した。なお、ABS板をコーティング剤に浸漬し、オーブンで乾燥させた後の濡れ面積はいずれも80%であった。また、含Pdオリゴマーを含むコーティング剤1~4は、濡れ面積の100%でめっきが析出した。
実 施 例 12
   樹脂入りコーティング剤の調製:
 アクリル樹脂(アイカ工業株式会社製:APX-1256)8.75gを、エチルセルソロブ78.75gに添加し、撹拌し溶解させた。これに実施例1で得られた含Pdシリコンオリゴマー1をパラジウム濃度が150ppmとなる濃度で添加、混合して樹脂入りコーティング剤1を得た。
 この樹脂入りコーティング剤1中に、ガラス板(2×5cm)を浸漬した後、温風でプレ乾燥した。次に、これを200℃のオーブンにて20分間乾燥させ、室温まで冷却したところ、濡れ面積は100%であった。
実 施 例 13
   樹脂入りコーティング剤の調製:
 エチルセルソロブに実施例1で得られた含Pdシリコンオリゴマー1をパラジウム濃度が150ppmとなる濃度で添加、混合した後、更にポリエチレン粉末(ビックケーミージャパン社製:CERAFLOUR990)を固形分が3%となる濃度で添加、混合し、樹脂入りコーティング剤2を得た。
 この樹脂入りコーティング剤2中に、ガラス板(2×5cm)を浸漬した後、温風でプレ乾燥した。次に、これを200℃のオーブンにて20分間乾燥させ、室温まで冷却したところ、濡れ面積は100%であった。
実 施 例 14
   2元系コーティング剤の調製:
 アクリル樹脂(アイカ工業株式会社製:APX-1256)8.75gを、エチルセルソロブ78.75gに添加し、撹拌し溶解させた。これに実施例1で得られた含Pdシリコンオリゴマー1および実施例5で得られた含Feシリコンオリゴマーを、金属濃度がそれぞれ150ppmとなる濃度で添加、混合して2元系コーティング剤1を得た。また、実施例5で得られた含Feシリコンオリゴマーを、実施例6で得られた含Cuシリコンオリゴマー、実施例7で得られた含Niシリコンオリゴマー、実施例8で得られた含Coシリコンオリゴマーに変更する以外は、上記と同様にして2元系コーティング剤2~4を得た。
実 施 例 15
   ガラス板へのめっき:
 実施例14で得られた2元系コーティング剤1~4のうち、コーティング剤1、3~4については、次のようにこれを利用してガラス板へめっきを行った。まず、コーティング剤中に、ガラス板(2×5cm)を浸漬した後、温風でプレ乾燥した。次に、これを200℃のオーブンにて20分間乾燥させ、室温まで冷却した。その後、このガラス板を25℃の無電解ニッケルめっき浴(JCU社製:エニレックスNI-100)に7分間浸漬し、めっきを行った。また、実施例14で得られた2元系コーティング剤3については、無電解ニッケルめっき浴を無電解銅めっき浴(JCU社製:PB-506)に変更する以外は上記と同様にこれを利用してめっきを行った。また、それぞれ2元系コーティング剤を実施例1で得られた含パラジウムオリゴマー1を含むコーティング剤に変更したもので、上記と同様にしてめっきを行ったものを対照とした。なお、この対照の条件は、実施例1のめっき条件よりも無電解めっき浴の温度を15℃下げているため、めっきは濡れ面積の数%程度しか析出しない条件である。最後に対照のガラス板にめっきが析出した濡れ面積と、その濡れ面積と2元系コーティング剤を用いて得られたガラス板にめっきが析出した濡れ面積から増加倍率を算出した。その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000004
 含触媒金属シリコンオリゴマーを2種類組み合わせることにより、含触媒金属シリコンオリゴマーを単独で用いるよりも析出面積が増加することが示された。
実 施 例 16
   含パラジウム・鉄シリコンオリゴマーの調製:
 実施例1において、塩化パラジウム1.7gに追加して塩化鉄四水和物6.7gを添加する以外は、実施例1と同様にして反応を行った。
 この反応により得られたシリコンオリゴマーは、その構造中に、パラジウムと鉄が取り込まれていると考えられた。
実 施 例 17
   コーティング剤の調製:
 エチルセルソロブに、実施例16で得られた含パラジウム・鉄シリコンオリゴマーをパラジウムと鉄の総金属濃度が150ppmとなる濃度で添加、混合してコーティング剤を得た。
実 施 例 18
   ガラス板へのめっき:
 実施例17で得られたコーティング剤を利用して、実施例15の対照と同様にしてガラス板へめっきを行うと、1種類の触媒金属を含有する含触媒金属シリコンオリゴマーよりも析出面積が増加する。
 本発明の含触媒金属シリコンオリゴマーは、基材の種類を問わず自己触媒性や導電性を付与することができる。
 従って、本発明の含触媒金属シリコンオリゴマーは、基材をめっきをするのに利用することができる。
 
                         以  上

Claims (20)

  1.  テトラアルコキシシランと、
     少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、
     触媒金属の存在下、
     縮合反応させることにより得られる含触媒金属シリコンオリゴマー。
  2.  縮合反応の際に生成するアルコールを分留しないものである請求項1記載の含触媒金属シリコンオリゴマー。
  3.  テトラアルコキシシランが、テトラメトキシシラン、テトラエトキシシランおよびテトラブトキシシランからなる群から選ばれる1種または2種以上である請求項1記載の含触媒金属シリコンオリゴマー。
  4.  少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールが、エチレングリコールおよび/または1,3-プロピレングリコールである請求項1記載の含触媒金属シリコンオリゴマー。
  5.  触媒金属が、鉄、ニッケル、コバルト、銅およびパラジウムからなる群から選ばれる1種または2種以上である請求項1記載の含触媒金属シリコンオリゴマー。
  6.  テトラアルコキシシランと、
     少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールとを、
     触媒金属の存在下、
     縮合反応させることを特徴とする含触媒金属シリコンオリゴマーの製造方法。
  7.  縮合反応の際に生成するアルコールを分留しないものである請求項6記載の含触媒金属シリコンオリゴマーの製造方法。
  8.  テトラアルコキシシランが、テトラメトキシシラン、テトラエトキシシランおよびテトラブトキシシランからなる群から選ばれる1種または2種以上である請求項6記載の含触媒金属シリコンオリゴマーの製造方法。
  9.  少なくともn,n+1位またはn,n+2位(ただしnは1以上の整数)にヒドロキシ基が結合した多価アルコールが、エチレングリコールおよび/または1,3-プロピレングリコールである請求項6記載の含触媒金属シリコンオリゴマーの製造方法。
  10.  触媒金属が、鉄、ニッケル、コバルト、銅およびパラジウムからなる群から選ばれる1種または2種以上である請求項6記載の含触媒金属シリコンオリゴマーの製造方法。
  11.  請求項1~5の何れかに記載の含触媒金属シリコンオリゴマーを含有することを特徴とするコーティング剤。
  12.  更に、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂およびエポキシ系樹脂からなる群から選ばれる樹脂の1種または2種以上を含有するものである請求項11記載のコーティング剤。
  13.  自己触媒性付与用である請求項11または12記載のコーティング剤。
  14.  導電性付与用である請求項11または12記載のコーティング剤。
  15.  基材を、請求項11~14の何れかに記載のコーティング剤で処理した後、触媒金属の活性化処理を行い、次いで、めっきを行うことを特徴とする基材へのめっき方法。
  16.  触媒金属の活性化処理が、100℃以上で行う加熱処理である請求項15記載の基材へのめっき方法。
  17.  触媒金属の活性化処理が、100℃未満で行う加熱処理の後、化学還元処理を行うものである請求項15記載の基材へのめっき方法。
  18.  化学還元処理が、次亜リン酸、ジメチルアミンボラン、ホルマリン、水素化ホウ素ナトリウム、ヒドラジンからなる群から選ばれる1種または2種以上を用いて行うものである請求項17記載の基材へのめっき方法。
  19.  基材が、難めっき性基材である請求項15記載の基材へのめっき方法。
  20.  請求項15~19の何れかに記載の基材へのめっき方法により得られる、表面から順に、めっきした金属の層、含触媒金属シリコンオリゴマーを含むコーティング剤の層、基材の層からなるめっき製品。
PCT/JP2015/071752 2014-08-01 2015-07-31 含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途 WO2016017792A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016538459A JP6709155B2 (ja) 2014-08-01 2015-07-31 含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途
CN201580034265.6A CN106471001B (zh) 2014-08-01 2015-07-31 含催化剂金属的有机硅低聚物、其制造方法以及含催化剂金属的有机硅低聚物的用途
KR1020167036056A KR102445276B1 (ko) 2014-08-01 2015-07-31 촉매 함유 금속 실리콘 올리고머, 그의 제조방법 및 촉매 함유 금속 실리콘 올리고머의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-157517 2014-08-01
JP2014157517 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017792A1 true WO2016017792A1 (ja) 2016-02-04

Family

ID=55217687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071752 WO2016017792A1 (ja) 2014-08-01 2015-07-31 含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途

Country Status (5)

Country Link
JP (1) JP6709155B2 (ja)
KR (1) KR102445276B1 (ja)
CN (1) CN106471001B (ja)
TW (1) TWI684616B (ja)
WO (1) WO2016017792A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236251B2 (en) 2017-05-31 2022-02-01 Kolon Industries, Inc. Resin composition for coating, and coating film comprising cured product thereof as coating layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221980A1 (ko) * 2017-05-31 2018-12-06 코오롱인더스트리 주식회사 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 코팅필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103438A (zh) * 1985-04-02 1986-10-15 山东大学 新型室温硫化硅橡胶的制作法
JP2004231560A (ja) * 2003-01-30 2004-08-19 Nippon Shokubai Co Ltd アルコキシシランの製造方法
JP2007070353A (ja) * 2005-08-12 2007-03-22 Shiseido Co Ltd 水溶性シラン誘導体の製造方法
JP2008531787A (ja) * 2005-02-23 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ケイ素含有ポリトリメチレンホモ−またはコポリエーテル組成物
WO2014207885A1 (ja) * 2013-06-28 2014-12-31 株式会社Jcu シリコンオリゴマーおよびその製造方法
WO2014207886A1 (ja) * 2013-06-28 2014-12-31 株式会社Jcu シリコンオリゴマーを含有するコーティング剤およびその用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO138030C (no) * 1970-09-24 1978-06-14 Mobil Oil Corp Lagringsbestandig, sinkstoevholdig maling, omfattende et bindemiddel paa basis av organiske silikater
JPH10251516A (ja) * 1997-03-14 1998-09-22 Chisso Corp シランオリゴマー組成物
JP2000212510A (ja) * 1999-01-22 2000-08-02 Matsushita Electric Works Ltd 機能性無機塗料、その塗装方法および機能性塗装品
KR100495164B1 (ko) * 2000-04-25 2005-06-14 가부시키 가이샤 닛코 마테리알즈 도금 전처리제 및 그것을 사용한 금속도금 방법
KR101001441B1 (ko) * 2004-08-17 2010-12-14 삼성전자주식회사 유무기 금속 하이브리드 물질 및 이를 포함하는 유기절연체 조성물
CN101243094A (zh) * 2005-08-12 2008-08-13 株式会社资生堂 水溶性金属醇化物衍生物、其制备方法及含有该物质的固体凝胶状外用剂
JP2011162806A (ja) 2010-02-04 2011-08-25 Rohm & Haas Denshi Zairyo Kk 無電解めっきを行うための前処理液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103438A (zh) * 1985-04-02 1986-10-15 山东大学 新型室温硫化硅橡胶的制作法
JP2004231560A (ja) * 2003-01-30 2004-08-19 Nippon Shokubai Co Ltd アルコキシシランの製造方法
JP2008531787A (ja) * 2005-02-23 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ケイ素含有ポリトリメチレンホモ−またはコポリエーテル組成物
JP2007070353A (ja) * 2005-08-12 2007-03-22 Shiseido Co Ltd 水溶性シラン誘導体の製造方法
WO2014207885A1 (ja) * 2013-06-28 2014-12-31 株式会社Jcu シリコンオリゴマーおよびその製造方法
WO2014207886A1 (ja) * 2013-06-28 2014-12-31 株式会社Jcu シリコンオリゴマーを含有するコーティング剤およびその用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236251B2 (en) 2017-05-31 2022-02-01 Kolon Industries, Inc. Resin composition for coating, and coating film comprising cured product thereof as coating layer
CN115851117A (zh) * 2017-05-31 2023-03-28 可隆工业株式会社 用于涂覆的树脂组合物及含其固化产物作为涂层的涂覆膜

Also Published As

Publication number Publication date
TW201619242A (zh) 2016-06-01
CN106471001B (zh) 2019-05-07
JPWO2016017792A1 (ja) 2017-07-13
KR102445276B1 (ko) 2022-09-20
TWI684616B (zh) 2020-02-11
CN106471001A (zh) 2017-03-01
KR20170040125A (ko) 2017-04-12
JP6709155B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
TWI524939B (zh) 用於無電金屬化之安定催化劑
JP6124955B2 (ja) 無電解銅めっき組成物
US9353443B2 (en) Stable catalysts for electroless metallization
EP1876261B1 (en) Electroless copper and redox couples
JP6047707B2 (ja) 前処理液を用いた無電解銅メッキ方法
JP6047713B2 (ja) 無電解銅メッキ方法
TWI499691B (zh) 用於無電金屬化之安定無錫催化劑
TWI567233B (zh) 以含有嘧啶衍生物之鹼性安定性催化劑無電金屬化介電質
JP6322691B2 (ja) プリント回路基板及びスルーホールの無電解金属化のための環境に優しい安定触媒
TW200809004A (en) Formaldehyde free electroless copper compositions
JP2012052222A (ja) ナノ粒子の組成物
JP6709155B2 (ja) 含触媒金属シリコンオリゴマー、その製造方法および含触媒金属シリコンオリゴマーの用途
JP6322692B2 (ja) プリント回路基板及びスルーホールの無電解金属化のための環境に優しい安定触媒
JP6322690B2 (ja) プリント回路基板及びスルーホールの無電解金属化のための環境に優しい安定触媒
Rahmani et al. Impact of barium in improving corrosion resistance and properties of electroless Ni–Ba–B alloy deposits
KR102644596B1 (ko) 기판 위에 회로의 형성방법
JP2014214353A (ja) 電磁波透過性材料
JP6600506B2 (ja) 基材の所望の部位への金属めっき方法およびこの方法により得られる金属めっき製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538459

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167036056

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827693

Country of ref document: EP

Kind code of ref document: A1