WO2016013273A1 - 熱間工具材料、熱間工具の製造方法および熱間工具 - Google Patents
熱間工具材料、熱間工具の製造方法および熱間工具 Download PDFInfo
- Publication number
- WO2016013273A1 WO2016013273A1 PCT/JP2015/063318 JP2015063318W WO2016013273A1 WO 2016013273 A1 WO2016013273 A1 WO 2016013273A1 JP 2015063318 W JP2015063318 W JP 2015063318W WO 2016013273 A1 WO2016013273 A1 WO 2016013273A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- crystal grains
- hot tool
- ferrite crystal
- tool material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a hot tool material optimal for various hot tools such as a press die, a forging die, a die casting die, and an extrusion tool, a hot tool manufacturing method using the hot tool material, and a hot tool. Is.
- Hot tool materials are usually steel ingots or steel slabs made by splitting steel ingots as a starting material, and various hot working and heat treatments are applied to this to produce a predetermined steel material, which is then annealed. To finish.
- hot tool material is normally supplied to the manufacture maker side of a hot tool in the annealing state with low hardness.
- the hot tool material supplied to the manufacturer of the hot tool is machined into the shape of the hot tool and then adjusted to a predetermined working hardness by quenching and tempering.
- the hot tool material in the annealed state is first quenched and tempered and then machined into the shape of the hot tool together with the finishing process.
- Quenching refers to heating the hot tool material in the annealed state (or the hot tool material after the hot tool material has been machined) to the austenite temperature range and quenching it, thereby cooling the structure. It is work to transform martensite. Therefore, the component composition of the hot tool material can be adjusted to a martensite structure by quenching.
- the toughness of a hot tool can be improved by appropriately operating the annealed structure at the time of the hot tool material before quenching and tempering.
- the steel material in which the precipitation of coarse bainite is suppressed the precipitation of carbides in the shape of needles along this coarse bainite grain boundary is suppressed, and as a result, annealing in which the carbide is uniformly dispersed is performed.
- a hot tool material having a structure has been proposed (Patent Document 4). If it is a hot tool material in which the carbide is uniformly dispersed, a hot tool having excellent toughness can be obtained by quenching and tempering the material.
- the Charpy impact value of the hot tool can be improved. However, even if a high Charpy impact value is obtained for the entire hot tool, some of the Charpy impact value varies, and the Charpy impact value is higher than the target Charpy impact value. Or a low part may occur. In one hot tool, when such a difference in Charpy impact value is present at a position where toughness is particularly required, the life of the hot tool is affected considerably.
- An object of the present invention is to provide a hot tool material having an annealed structure effective for suppressing variation in toughness when used as a hot tool, a method of manufacturing a hot tool using the hot tool material, and a hot tool It is to be.
- the present invention relates to a hot tool material that has an annealed structure and is used after being quenched and tempered.
- This hot tool material has a component composition that can be adjusted to a martensite structure by the above-described quenching.
- the ferrite crystal grains in the annealed structure of the cross section of the material have a ratio of the number of ferrite crystal grains having a maximum diameter L of 100 ⁇ m or more of 10.0% or less of the entire ferrite crystal grains, and the maximum diameter L and the maximum orthogonal to it.
- This is a hot tool material in which the ratio of the number of ferrite crystal grains having an aspect ratio L / T of 3.0 or more is 10.0% or less of the entire ferrite crystal grains.
- the ferrite crystal grains in the annealed structure of the cross section of the hot tool material have an average grain diameter of 25.0 ⁇ m or less in terms of the equivalent circle diameter.
- this invention is a manufacturing method of the hot tool which quenches and tempers the hot tool material of this invention mentioned above.
- the present invention provides a grain size number in accordance with JIS-G-0551 in a cross-sectional structure of a hot tool having a martensite structure, and a grain size number different by 3 or more from the prior austenite crystal grains having the largest frequency.
- a hot tool in which the proportion of the prior austenite crystal grains is 5 area% or less.
- the hot tool does not have a field of view in which the grain size number of the prior austenite crystal grain conforms to JIS-G-0551 is different between the fields of view in the cross-sectional structure of the hot tool. .
- An example of a grain boundary diagram (b) obtained by an optical micrograph (a) of a cross-sectional structure of the hot tool material D of the present invention and electron beam backscatter diffraction (hereinafter referred to as “EBSD”). is there. It is an example of the optical micrograph (a) of the cross-sectional structure
- FIG. 4 is a diagram showing an example of the cumulative number ratio of the ferrite crystal grains distributed in the cross-sectional structures of the hot tool materials A to G of the present invention example and the comparative example with respect to the maximum diameter L. It is a figure which shows an example of the cumulative number ratio with respect to the aspect-ratio L / T of the ferrite crystal grain distributed in the cross-sectional structure
- the present inventor investigated the factors in the annealed structure of the hot tool material that affect the toughness variation of the hot tool. As a result, it has been found that this factor has a distribution state of ferrite crystal grains “self” in the annealed structure. Then, it was found that by adjusting the ferrite crystal grains in the annealed structure to a predetermined distribution, variation in toughness that occurs after quenching and tempering can be suppressed, and the present invention has been achieved. Below, each component of this invention is demonstrated.
- the hot tool material of the present invention is an hot tool material that has an annealed structure and is used after being quenched and tempered, and has a component composition that can be adjusted to a martensite structure by the above quenching. It is.
- An annealed structure is a structure obtained by annealing treatment, and is generally a ferrite phase or a structure in which pearlite or cementite (Fe 3 C) is mixed with this ferrite phase.
- the ferrite phase constitutes “ferrite crystal grains” in the annealed structure.
- carbides such as Cr, Mo, W, and V are present in the ferrite crystal grains and in the grain boundaries as in, for example, SKD61 series alloy tool steel.
- an annealed structure with little pearlite and cementite is preferable.
- Pearlite and cementite can significantly degrade the machinability of hot tool materials.
- due to factors such as extremely rapid cooling after the annealing treatment it becomes difficult to adjust the structure after the annealing treatment to the above-described structure having a ferrite phase, and bainite and martensite are easily formed.
- And bainite and martensite deteriorate the machinability of the hot tool material. Therefore, in this invention, it is preferable that it is a structure
- the hot tool material of the present invention has an annealed structure in which, for example, 80 area% or more in the cross-sectional structure is confirmed as ferrite crystal grains. More preferably, it is 90 area% or more.
- the carbides such as Cr, Mo, W, V, etc. present in the ferrite crystal grains and at the grain boundaries have less influence on the machinability than pearlite, cementite, etc. It shall be included in the area.
- a hot tool material having an annealed structure is usually a steel ingot or a material made of a steel piece obtained by dividing a steel ingot, and is subjected to various hot working and heat treatments to obtain a predetermined steel material.
- the steel material is annealed and finished into a block shape.
- tissue by quenching and tempering is conventionally used for the hot tool material.
- the martensite structure is a structure necessary for basing the absolute toughness of various hot tools.
- As a raw material of such a hot tool material for example, various hot tool steels are typical.
- Hot tool steel is used in an environment where the surface temperature is raised to approximately 200 ° C. or higher.
- the component composition of the hot tool steel for example, the standard steel types in “Alloy Tool Steel” in JIS-G-4404 and those proposed elsewhere can be representatively applied.
- element types other than those specified in the hot tool steel can be added as necessary.
- the toughness variation suppressing effect of the present invention can be achieved by satisfying the requirement (2) described later if the annealed structure is a material that is quenched and tempered to develop a martensite structure. It is. Therefore, it is not necessary to specify the component composition of the material in order to achieve the toughness variation suppressing effect of the present invention.
- mass C: 0.30 to 0.50%, Cr: 3.00
- it has a component composition of hot tool steel containing ⁇ 6.00%.
- the composition of the hot tool steel contains V: 0.10 to 1.50%.
- C 0.30 to 0.50%, Si: 2.00% or less, Mn: 1.50% or less, P: 0.050% or less, S: 0.0500% or less Cr: 3.00 to 6.00%, one or two of Mo and W according to the relational expression (Mo + 1 / 2W): 0.50 to 3.50%, V: 0.10 to 1. It preferably has a component composition of 50%, balance Fe and impurities.
- C 0.30 to 0.50 mass% (hereinafter simply expressed as “%”)
- C is a basic element of a hot tool material that partly dissolves in the matrix and imparts strength, and partly forms carbides to increase wear resistance and seizure resistance.
- C dissolved as interstitial atoms when added together with substitutional atoms having a high affinity with C, such as Cr, has an I (interstitial atom) -S (substitutional atom) effect (the drag resistance of solute atoms).
- the strength of the hot tool is increased).
- the content is preferably 0.30 to 0.50%. More preferably, it is 0.34% or more. Further, it is more preferably 0.40% or less.
- Si is a deoxidizer during steelmaking, but if it is too much, ferrite is generated in the tool structure after quenching and tempering. Therefore, it is preferable to set it as 2.00% or less. More preferably, it is 1.00% or less. More preferably, it is 0.50% or less. On the other hand, Si has the effect of increasing the machinability of the material. In order to obtain this effect, addition of 0.20% or more is preferable. More preferably, it is 0.30% or more.
- Mn has the effect of improving hardenability, suppressing the formation of ferrite in the tool structure, and obtaining appropriate quenching and tempering hardness.
- MnS of a nonmetallic inclusion, there is a great effect in improving machinability.
- addition of 0.10% or more is preferable. More preferably, it is 0.25% or more. More preferably, it is 0.45% or more.
- P is an element which can be inevitably contained in various hot tool materials, even if it is not usually added. It is an element that segregates at the prior austenite grain boundaries and embrittles the grain boundaries during heat treatment such as tempering. Therefore, in order to improve the toughness of the hot tool, it is preferable to limit it to 0.050% or less including the case where it is added.
- S 0.0500% or less
- S is an element that can be inevitably contained in various hot tool materials even if not usually added. And it is an element which degrades hot workability at the time of the raw material before hot working, and causes a crack in the raw material during hot working. Therefore, in order to improve the hot workability described above, it is preferable to limit the amount to 0.0500% or less.
- S has the effect of improving machinability by being bonded to the above-mentioned Mn and existing as MnS of non-metallic inclusions. In order to obtain this effect, 0.0300% or more is preferably added.
- ⁇ Cr 3.00 to 6.00% Cr is an element that enhances hardenability and forms carbides, and is effective in strengthening the base and improving wear resistance. And it is a basic element of a hot tool material that contributes to the improvement of temper softening resistance and high-temperature strength. However, excessive addition causes a decrease in hardenability and high temperature strength. Therefore, the content is preferably 3.00 to 6.00%. And it is 5.50% or less more preferably. Further, it is more preferably 3.50% or more. More preferably, it is 4.00% or more. Particularly preferably, it is 4.50% or more.
- Mo and W can be added alone or in combination in order to impart strength by precipitating or agglomerating fine carbides by tempering and to improve softening resistance.
- the addition amount at this time can be defined together with the Mo equivalent defined by the relational expression of (Mo + 1 / 2W) since W is an atomic weight about twice that of Mo (of course, as addition of only one of them) Or both can be added together).
- 0.50% or more of addition is preferable by the value by the relational expression of (Mo + 1 / 2W). More preferably, it is 1.50% or more. More preferably, it is 2.50% or more. However, if too much, the machinability and toughness are reduced, so the value according to the relational expression (Mo + 1 / 2W) is preferably 3.50% or less. More preferably, it is 2.90% or less.
- V 0.10 to 1.50% V has the effect of forming carbides and improving the strength of the base, wear resistance, and temper softening resistance.
- tissue acts as "pinning particle
- addition of 0.10% or more is preferable. More preferably, it is 0.30% or more. More preferably, it is 0.50% or more. However, if it is too much, machinability and toughness decrease due to an increase in the carbide itself are caused, so it is preferable to be 1.50% or less. More preferably, it is 1.00% or less. More preferably, it is 0.70% or less.
- Ni is an element that increases the viscosity of the base and lowers the machinability. Therefore, the Ni content is preferably 1.00% or less. More preferably, it is less than 0.50%, More preferably, it is less than 0.30%.
- Ni is an element that suppresses the formation of ferrite in the tool structure.
- C, Cr, Mn, Mo, W, etc. give excellent hardenability to the tool material, and even when the cooling rate during quenching is slow, a martensite-based structure is formed, reducing toughness. It is an effective element to prevent. Furthermore, since the essential toughness of the matrix is also improved, it may be added as necessary in the present invention. When added, 0.10% or more is preferable.
- Co 0-1.00% Since Co reduces toughness, it is preferable to make it 1.00% or less.
- Co forms a very dense and protective oxide film with good adhesion on the surface when the temperature is raised. This oxide film prevents metal contact with the counterpart material, suppresses temperature rise on the tool surface, and provides excellent wear resistance. Therefore, Co may be added as necessary. When added, addition of 0.30% or more is preferable.
- Nb causes a decrease in machinability, and is therefore preferably set to 0.30% or less.
- Nb has the effect of forming carbides and improving the reinforcement of the base and the wear resistance.
- Nb may be added as necessary. When added, 0.01% or more is preferable.
- Cu, Al, Ca, Mg, O (oxygen), and N (nitrogen) are elements that may remain in the steel as inevitable impurities. In the present invention, these elements are preferably as low as possible. However, on the other hand, a small amount may be contained in order to obtain additional functions and effects such as control of the shape of inclusions, other mechanical properties, and improvement of production efficiency. In this case, Cu ⁇ 0.25%, Al ⁇ 0.025%, Ca ⁇ 0.0100%, Mg ⁇ 0.0100%, O ⁇ 0.0100%, and N ⁇ 0.0300% are sufficient. This is a preferable upper limit of regulation of the present invention.
- the number ratio of ferrite crystal grains having a maximum diameter L of 100 ⁇ m or more among the ferrite crystal grains in the annealed structure of the cross section is 10.0% or less of the entire ferrite crystal grains.
- the ratio of the number of ferrite crystal grains having an aspect ratio L / T of 3.0 or more, which is the ratio of the maximum diameter L and the maximum lateral width T orthogonal thereto, is 10.0% or less of the entire ferrite crystal grains. is there.
- the hot tool material having an annealed structure is subjected to quenching and tempering.
- quenching is a process in which a hot tool material is heated to a quenching temperature (austenite temperature range) and rapidly cooled to generate a martensite structure from the annealed structure of the hot tool material.
- a quenching temperature austenite temperature range
- a martensite structure from the annealed structure of the hot tool material.
- the metal structure undergoes martensitic transformation, and the grain boundaries of the new austenite crystal grains are confirmed as “old austenite grain boundaries”. It becomes a martensite structure and quenching is completed.
- the distribution of the “old austenite grain size” formed at the prior austenite grain boundaries is substantially maintained even in the metal structure after the next tempering (that is, the structure of the finished hot tool). ing.
- new austenite crystal grains are precipitated in a uniform distribution in the quenching process, and the newly precipitated austenite crystal grains grow to a uniform size. do it.
- the present inventor has prepared the ferrite crystal grains of the annealed structure of the hot tool material “finely” and “in an equiaxed shape” before quenching and heating. It has been found that "uniform" precipitation and growth of the above new austenite grains can be achieved.
- this principle is based on the fact that the ferrite grains in the annealed structure before quenching heating are arranged in “fine” and “equiaxial shape” so that new austenite grains are precipitated during quenching heating. (Hereinafter referred to as “precipitation sites”) is distributed uniformly. Thereby, a new austenite crystal grain precipitates with uniform distribution in a hardening process. And the new austenite crystal grain which precipitated with this uniform distribution grows in a uniform size.
- the ferrite crystal grains in the annealed structure are coarse, the density difference of the precipitation sites is noticeable between the grain boundaries of the ferrite crystal grains and within the grains, and the distribution of the precipitation sites of the new austenite crystal grains is markedly "become.
- the ferrite crystal grains in the annealed structure are not equiaxed but are needle-shaped, new austenite grains that precipitate along the grain boundaries of the ferrite crystal grains become “anisotropic”. Therefore, when a hot tool material having such an annealed structure is quenched, the distribution of new austenite crystal grains precipitated at the precipitation site becomes non-uniform.
- the newly precipitated austenite crystal grains grow to a non-uniform size.
- the size of the prior austenite grain size confirmed in the martensitic structure after quenching is non-uniform, and a martensitic structure with a significant mixture of prior austenite crystal grains is obtained. Therefore, in order to suppress the mixing of prior austenite crystal grains, it is important to arrange the ferrite crystal grains of the annealed structure of the hot tool material before quenching and tempering into a fine and equiaxed shape.
- the number ratio of ferrite crystal grains having a maximum diameter L of 100 ⁇ m or more in the annealed structure of the cross section is 10.0% or less of the entire ferrite crystal grains, and the aspect ratio L
- the number ratio of ferrite crystal grains having a / T of 3.0 or more is 10.0% or less of the entire ferrite crystal grains (hereinafter, the number ratio is referred to as “number%”).
- the precipitated austenite crystal grains become “isotropic”, and the prior austenite grain size after quenching is uniform. Become.
- it is 8.0 number% or less, More preferably, it is 7.0 number% or less.
- the measurement method of “maximum diameter L”, “maximum lateral width T” orthogonal to the maximum diameter L, and “aspect ratio L / T” used for the evaluation of ferrite crystal grains in the present invention will be described.
- the cross-sectional structure of the hot tool material must be observed with a microscope, and individual ferrite crystal grains must be identified from the aggregate of ferrite crystal grains in the cross section.
- EBSD electron beam backscatter diffraction analysis
- EBSD is a method for performing orientation analysis of a crystalline sample. Thereby, individual crystal grains in the cross-sectional structure are identified as “units having the same orientation”, that is, the crystal grain boundaries of the crystal grains can be made to stand out.
- FIG.3 (b) is an example of the crystal grain boundary diagram obtained by the EBSD about the cross-sectional structure
- FIG. 3B shows a large-angle grain boundary having an orientation difference of 15 ° or more by analyzing the diffraction pattern of EBSD.
- wire is a ferrite crystal grain.
- the maximum diameter L of each ferrite crystal grain and the maximum lateral width T perpendicular to the ferrite crystal grain obtained from the crystal grain boundary diagram are obtained.
- the ratio L / T is determined.
- the sectional area of each ferrite crystal grain is also obtained, and the equivalent circle diameter can be obtained from the value.
- a “particle size distribution” based on the existence ratio of the maximum diameter L and the aspect ratio L / T is created.
- the existence ratio is based on the number of ferrite crystal grains in the measurement range.
- an “oversize” cumulative distribution is adopted in which the smaller side of the maximum diameter L and the aspect ratio L / T is zero.
- the created particle size distribution is a “upward cumulative distribution diagram” with the cumulative number ratio (%) of ferrite crystal grains as the vertical axis and the maximum diameter L or aspect ratio L / T of the ferrite crystal grains as the horizontal axis.
- FIG. 5 is an example of the cumulative number ratio with respect to the maximum diameter L of the ferrite crystal grains due to the oversize cumulative distribution.
- FIG. 6 is an example of the cumulative number ratio with respect to the aspect ratio L / T of the ferrite crystal grains by the oversize cumulative distribution.
- Each point of the broken line in FIGS. 5 and 6 represents a cumulative value of the value “less than” on the horizontal axis.
- the cumulative number when the maximum diameter L of the ferrite crystal grains is less than 100 ⁇ m is confirmed from FIG.
- the value is “number% of ferrite crystal grains having a maximum diameter L of less than 100 ⁇ m in the entire ferrite crystal grains”.
- “number% of ferrite crystal grains having a maximum diameter L of less than 100 ⁇ m” in the above-described grain boundary diagram of FIG. 3B is 84.8 number% (hot tool material A).
- a value obtained by subtracting the value of 84.8% by number from 100% is the “number% of ferrite crystal grains having a maximum diameter L of 100 ⁇ m or more” as required by the present invention. That is, the “number% of ferrite crystal grains having a maximum diameter L of 100 ⁇ m or more” required by the present invention in the crystal grain boundary diagram of FIG. 3B is 15.2% by number. In the case of the present invention, if this value is 10.0% by number or less, it is effective for suppressing variation in toughness of the hot tool after quenching and tempering.
- the value is “the aspect ratio L / T occupying the entire ferrite crystal grains is less than 3.0.
- the number% of ferrite crystal grains ”.
- the “number% of ferrite crystal grains having an aspect ratio L / T of less than 3.0” in the grain boundary diagram of FIG. 3B is 95.1 number% (hot tool) Material A).
- a value obtained by subtracting the value of 95.1% by number from 100% is the “number% of ferrite crystal grains having an aspect ratio L / T of 3.0 or more” that is required by the present invention.
- the “number% of ferrite crystal grains having an aspect ratio L / T of 3.0 or more” required by the present invention in the grain boundary diagram of FIG. 3B is 4.9 number%. In the case of the present invention, if this value is 10.0% by number or less, it is effective for suppressing variation in toughness of the hot tool after quenching and tempering.
- the average grain diameter of ferrite crystal grains in the annealed structure of the cross section is 25.0 ⁇ m or less in terms of the equivalent circle diameter. Since the average grain size of the ferrite crystal grains is small, the above-described precipitation sites are more uniform. Further, since the average grain size of the ferrite crystal grains is small, the prior austenite crystal grains in the structure after quenching and tempering can be made fine, and the toughness of the entire hot tool is improved. For the refinement of the prior austenate crystal grains, preferably, the prior austenite crystal grains in the cross-sectional structure of the hot tool have a grain size number in accordance with JIS-G-0551, No.
- the particle number according to JIS-G-0551 can be handled equivalently to the particle number according to ASTM-E112, which is an international standard.
- the confirmation can be performed in the “tempering” structure before tempering. This is because in the case of the structure at the time of quenching, fine tempered carbides are not precipitated, and confirmation of the prior austenite crystal grains is easy. And the grain size of the prior austenite crystal grains at the time of quenching is maintained even after tempering. The same applies to the confirmation of “mixed grains of prior austenite crystal grains in the structure after quenching and tempering” described later.
- the hot tool material having an annealed structure is a steel ingot or a raw material made of a steel piece obtained by dividing the steel ingot, as a starting material, and various hot working and heat treatments are performed to obtain a predetermined steel material.
- This steel is finished by annealing.
- the structure of the steel material before the annealing treatment is, for example, a martensite structure, and a bainite structure inevitably remains in the martensite structure. If the annealing treatment performed on such a steel material is inappropriate, the generation of ferrite crystal grains is incomplete, and acicular ferrite crystal grains are generated in the portion where the bainite structure becomes a trace.
- the annealing holding temperature when annealing a steel material. By restricting the annealing holding temperature (for example, less than 870 ° C.), it is possible to suppress the coarsening of the ferrite crystal grains. For example, it is important to adjust the “annealing holding time” after the steel material reaches the annealing holding temperature.
- a sufficient annealing holding time for example, 180 minutes or more
- the formation of acicular ferrite crystal grains can be suppressed.
- the coarsening of a ferrite crystal grain can be suppressed by restrict
- limiting annealing holding time for example, shall be less than 400 minutes.
- the annealing holding temperature is 600 ° C. It is preferable to adjust the cooling rate to a slow cooling rate of “20 ° C./h or less”.
- the method for manufacturing a hot tool of the present invention involves quenching and tempering the above-described hot tool material of the present invention.
- quenching the hot tool material of the present invention mixing of prior austenite crystal grains in the martensitic structure after quenching can be suppressed.
- the degree of mixing of the prior austenite crystal grains is substantially maintained even after the next tempering. Therefore, by performing quenching and tempering on the hot tool material of the present invention, variation in toughness of the hot tool can be suppressed.
- variation in toughness the standard deviation of 5.00 (J / cm ⁇ 2 >) or less can be achieved with respect to the average Charpy impact value which a hot tool has, for example. Furthermore, a standard deviation of 4.00 (J / cm 2 ) or less can be achieved.
- JIS-G-0551 defines the definition of mixed grains as follows: “In one field of view, grains having a grain size number that differs by about 3 or more from grains having the highest frequency grain size. "It is unevenly distributed and these grains occupy an area of about 20% or more, or there is a field of view having a particle size number different by 3 or more between the fields of view.” Even in such a definition of mixed grains, according to the present invention, in the cross-sectional structure of the hot tool, the prior austenite crystal grains having a grain size number different by 3 or more from the old austenite crystal grains having the maximum grain size number. It is possible to achieve a hot tool having a ratio of 5% by area or less. Preferably, the proportion of the prior austenite crystal grains is 4 area% or less. More preferably, it is 3 area% or less.
- crystal grains of grain size number G means “individual crystal grains” having a cross-sectional area corresponding to “average cross-sectional area of crystal grains calculated” possessed by the cross-sectional structure of grain size number G. It is.
- the “calculated average cross-sectional area of crystal grains” is calculated from “the number m of crystal grains per 1 mm 2 of calculated cross-sectional area” obtained by the calculation formula (8 ⁇ 2 G ).
- the cross-sectional area of the cross-sectional structure for confirming the “ratio of the prior austenite crystal grains” is “0.16 mm 2 (400 ⁇ m ⁇ 400 ⁇ m)”. Then, it is sufficient if the cross-sectional area is taken as 1 field of view and confirmation is made with 10 fields of view.
- the present invention it is possible to achieve a hot tool that does not have a field of view in which the grain size number of the prior austenite crystal grains differs by 3 or more between the fields of view in the cross-sectional structure of the hot tool.
- it is a hot tool in which there is no field of view having a particle size number different by 2 or more between the above fields of view.
- the number of visual fields for confirming the above-mentioned “non-existence” is sufficient if the cross-sectional area of one visual field is “0.16 mm 2 (400 ⁇ m ⁇ 400 ⁇ m)” and confirmed between 10 visual fields. It is.
- the particle size number is No. A hot tool of 8.0 or higher can be achieved. This also improves the toughness of the entire hot tool.
- the hot tool material of the present invention is prepared into a martensitic structure having a predetermined hardness by quenching and tempering, and is prepared into a hot tool product.
- the hot tool material is adjusted to the shape of the hot tool by various machining processes such as cutting and drilling.
- the timing of this machining is preferably performed in a state of a hot tool material having a low hardness (that is, in an annealed state) before quenching and tempering. In this case, finishing may be performed after quenching and tempering.
- the quenching and tempering temperatures vary depending on the component composition of the material and the target hardness, but the quenching temperature is preferably about 1000 to 1100 ° C., and the tempering temperature is preferably about 500 to 650 ° C.
- the quenching temperature is about 1000 to 1030 ° C.
- the tempering temperature is about 550 to 650 ° C.
- the quenching and tempering hardness is preferably 50 HRC or less. More preferably, it is 48 HRC or less.
- Materials A to G having the component composition shown in Table 1 were prepared.
- the materials A to G are improved steels of hot working tool steel SKD61, which is a standard steel type of JIS-G-4404.
- these materials were heated to 1100 ° C., which is a general hot working temperature of hot tool steel, to perform hot working, and then allowed to cool.
- the steel materials after cooling after the hot working were annealed at 860 ° C. to produce hot tool materials A to G corresponding to the order of the raw materials A to G.
- the annealing holding time after reaching the annealing temperature of 860 ° C.
- hot tool material A 540 minutes
- hot tool material B 400 minutes
- hot tool material C 300 Minutes
- hot tool material D 240 minutes
- hot tool material E 180 minutes
- hot tool material F 100 minutes
- hot tool material G 30 minutes.
- the cooling rate up to 600 ° C. was set to 20 ° C./h in all hot tool materials.
- hot tool material H “hot tool material H” with a cooling rate of 120 ° C./h was prepared separately from the above cooling rate of 20 ° C./h.
- the cross-sectional structures of the hot tool materials A to H after the annealing treatment were observed.
- the observed cross-section was the center of the hot tool material and a plane parallel to the hot working direction (that is, the length direction of the material). Observation was performed with an optical microscope (magnification 200 times), and the observed cross-sectional area was 0.16 mm 2 (400 ⁇ m ⁇ 400 ⁇ m).
- the cross-sectional structures of the hot tool materials A to G were almost entirely occupied by the ferrite phase, and the ferrite crystal grains occupied 99 area% or more of the observed cross section.
- the hot tool material H in the cross-sectional structure of the hot tool material H, a ferrite phase was not substantially recognized, and 95% by area or more of the observed cross section was bainite or martensite. And since the hot tool material H is inferior to machinability, it is a material which is difficult to apply to a hot tool in this state.
- 1 to 4 also show optical micrographs (a) of cross-sectional structures (magnification is 200 times). And according to the above-mentioned point, the maximum diameter L and the aspect ratio L / T of each ferrite crystal grain obtained by the above-mentioned grain boundary diagram were obtained together with the equivalent circle diameter. And the particle size distribution of the ferrite crystal grain by this maximum diameter L and aspect-ratio L / T was confirmed.
- FIG. 5 shows the cumulative number ratio of the ferrite crystal grains with respect to the maximum diameter L of the hot tool materials A to G.
- the vertical axis represents the cumulative number (%) of ferrite crystal grains
- the horizontal axis represents the maximum diameter L of ferrite crystal grains.
- FIG. 6 shows the cumulative number ratio of the ferrite crystal grains with respect to the aspect ratio L / T.
- the vertical axis represents the cumulative number (%) of ferrite crystal grains
- the horizontal axis represents the aspect ratio L / T of ferrite crystal grains.
- the hot work tool materials A to G after observing the cross-sectional structure were quenched from 1030 ° C. and tempered at 630 ° C. (target hardness: 45 HRC), corresponding to the hot tool materials A to G in that order.
- Hot tools A to G having a site structure were obtained.
- 10 Charpy impact test pieces T direction, 2 mmU notch
- the test was conducted. And about the obtained ten Charpy impact values, the average value and the standard deviation were calculated
- the grain size of the prior austenite crystal grains in the structure was measured and evaluated with a grain size number based on JIS-G-0551.
- the particle size number was rounded to 0.5 units by averaging the particle size numbers measured with the 10 Charpy impact test pieces.
- the presence or absence of mixed grains according to the judgment criteria of the present invention that is, (1) the presence and area ratio of prior austenite crystal grains having a grain size number different by 3 or more from the old austenite crystal grains having the maximum grain size number, ( 2) The presence or absence of a visual field in which the grain size number of the prior austenite crystal grains was different by 3 or more was investigated. The results are shown in Table 3.
- the hot tools achieved a high average Charpy impact value, and the tool as a whole had high toughness.
- the hot tools C, D and E are combined with the fact that the average grain size of the ferrite crystal grains was small at the time of the hot tool material before quenching and tempering, and thus the average Charpy impact The value was high.
- the hot tools B to E obtained by quenching and tempering the hot tool material of the present invention have a standard deviation of 5.00 (J / cm 2 ) or less with respect to the average Charpy impact value. And variation in toughness was also suppressed.
- the structures of the hot tools B to E of the examples of the present invention are 3 or more from the prior austenite crystal grains having the maximum frequency grain size number (that is, the particle size number shown in Table 3). Old austenite crystal grains having different grain sizes were not confirmed. Moreover, there was no visual field in which the grain size number of the prior austenite crystal grains differed by 3 or more between the visual fields, and no mixed grains were produced according to the criteria of the present invention.
- the average grain size of the ferrite crystal grains was small at the time of the hot tool material. It was 8.5 or more.
- the hot tools A, F and G of the comparative examples also have the old austenite grain size No. It was 8.0 or more.
- a field of view in which the grain size number of the prior austenite crystal grains was different by 3 or more was not confirmed between the fields of view.
- the structure of the hot tools A, F, and G includes old austenite having a large particle size and having a particle size number of 3 or more smaller than the old austenite crystal particle having the largest particle size number (that is, the particle size number shown in Table 3). Crystal grains were confirmed. And the area ratio which the austenite crystal grain with this particle size number 3 or less occupies is about 8 area%, and the mixed grain by the criterion of this invention was recognized.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Forging (AREA)
Abstract
Description
好ましくは、上記の熱間工具材料の断面の焼鈍組織中のフェライト結晶粒は、平均粒径が円相当径で25.0μm以下である。
焼鈍組織とは、焼鈍処理によって得られる組織のことであり、一般的には、フェライト相や、このフェライト相にパーライトやセメンタイト(Fe3C)が混合した組織である。そして、上記のフェライト相が、焼鈍組織中の「フェライト結晶粒」を構成している。そして、熱間工具材料の場合、例えば、SKD61系の合金工具鋼のように、上記のフェライト結晶粒の粒内や粒界には、Cr、Mo、W、V等の炭化物が存在しているものもある。本発明においては、パーライトやセメンタイトが少ない焼鈍組織であることが好ましい。パーライトやセメンタイトは、熱間工具材料の機械加工性を少なからず劣化させ得る。
また、焼鈍処理後の冷却が著しく速い等の要因によって、焼鈍処理後の組織は、上記のフェライト相を有した組織に調整することが難しくなり、ベイナイトやマルテンサイトが形成されやすくなる。そして、ベイナイトやマルテンサイトは、熱間工具材料の機械加工性を劣化させる。よって、本発明においては、ベイナイトやマルテンサイトが少ない組織であることが好ましい。
但し、熱間工具の絶対的な機械的特性を基礎付ける上で、例えば、マルテンサイト組織を発現する成分組成として、質量%で、C:0.30~0.50%、Cr:3.00~6.00%を含む熱間工具鋼の成分組成を有することが好ましい。また、さらに、熱間工具の絶対的な靱性を向上させる上で、V:0.10~1.50%を含む熱間工具鋼の成分組成を有することが好ましい。そして、一具体例としては、C:0.30~0.50%、Si:2.00%以下、Mn:1.50%以下、P:0.050%以下、S:0.0500%以下、Cr:3.00~6.00%、(Mo+1/2W)の関係式によるMoおよびWのうちの1種または2種:0.50~3.50%、V:0.10~1.50%、残部Feおよび不純物の成分組成を有することが好ましい。熱間工具の基本的な靱性値を上げておくことで、これに本発明の“靱性のばらつきを抑制する”という効果が相乗的に作用して、「高靱性」と「靱性の安定性」という二つの面で靱性に優れた熱間工具を得ることができる。
Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める、熱間工具材料の基本元素である。また、侵入型原子として固溶したCは、CrなどのCと親和性の大きい置換型原子と共に添加した場合に、I(侵入型原子)-S(置換型原子)効果(溶質原子の引きずり抵抗として作用し、熱間工具を高強度化する作用)も期待される。但し、過度の添加は靭性や熱間強度の低下を招く。よって、0.30~0.50%とすることが好ましい。より好ましくは0.34%以上である。また、より好ましくは0.40%以下である。
Siは、製鋼時の脱酸剤であるが、多過ぎると焼入れ焼戻し後の工具組織中にフェライトの生成を招く。よって、2.00%以下とすることが好ましい。より好ましくは1.00%以下である。さらに好ましくは0.50%以下である。一方、Siには、材料の被削性を高める効果がある。この効果を得るためには、0.20%以上の添加が好ましい。より好ましくは0.30%以上である。
Mnは、多過ぎると基地の粘さを上げて、材料の被削性を低下させる。よって、1.50%以下とすることが好ましい。より好ましくは1.00%以下である。さらに好ましくは0.75%以下である。一方、Mnには、焼入性を高め、工具組織中のフェライトの生成を抑制し、適度の焼入れ焼戻し硬さを得る効果がある。また、非金属介在物のMnSとして存在することで、被削性の向上に大きな効果がある。これらの効果を得るためには、0.10%以上の添加が好ましい。より好ましくは0.25%以上である。さらに好ましくは0.45%以上である。
Pは、通常、添加しなくても、各種の熱間工具材料に不可避的に含まれ得る元素である。そして、焼戻しなどの熱処理時に旧オーステナイト粒界に偏析して粒界を脆化させる元素である。したがって、熱間工具の靭性を向上するためには、添加する場合も含めて、0.050%以下に規制することが好ましい。
Sは、通常、添加しなくても、各種の熱間工具材料に不可避的に含まれ得る元素である。そして、熱間加工前の素材時において熱間加工性を劣化させ、熱間加工中の素材に割れを生じさせる元素である。したがって、上記の熱間加工性を向上するためには、0.0500%以下に規制することが好ましい。一方、Sには、上述のMnと結合して、非金属介在物のMnSとして存在することで、被削性を向上する効果がある。この効果を得るためには、0.0300%以上の添加が好ましい。
Crは、焼入性を高め、また炭化物を形成して、基地の強化や耐摩耗性の向上に効果を有する元素である。そして、焼戻し軟化抵抗および高温強度の向上にも寄与する、熱間工具材料の基本元素である。但し、過度の添加は、焼入性や高温強度の低下を招く。よって、3.00~6.00%とすることが好ましい。そして、より好ましくは5.50%以下である。また、より好ましくは3.50%以上である。さらに好ましくは4.00%以上である。特に好ましくは4.50%以上である。
MoおよびWは、焼戻しにより微細炭化物を析出または凝集させて強度を付与し、軟化抵抗を向上させるために単独または複合で添加できる。この際の添加量は、WがMoの約2倍の原子量であることから、(Mo+1/2W)の関係式で定義されるMo当量で一緒に規定できる(当然、いずれか一方のみの添加としても良いし、双方を共に添加することもできる)。そして、上記の効果を得るためには、(Mo+1/2W)の関係式による値で、0.50%以上の添加が好ましい。より好ましくは1.50%以上である。さらに好ましくは2.50%以上である。但し、多過ぎると被削性や靭性の低下を招くので、(Mo+1/2W)の関係式による値で、3.50%以下が好ましい。より好ましくは2.90%以下である。
Vは、炭化物を形成して、基地の強化や耐摩耗性、焼戻し軟化抵抗を向上する効果を有する。そして、焼鈍組織中に分布したVの炭化物は、焼入れ加熱時のオーステナイト結晶粒の粗大化を抑制する“ピン止め粒子”として働き、靭性の向上に寄与する。これらの効果を得るためには0.10%以上の添加が好ましい。より好ましくは0.30%以上である。さらに好ましくは0.50%以上である。但し、多過ぎると被削性や、炭化物自身の増加による靭性の低下を招くので、1.50%以下とするのが好ましい。より好ましくは1.00%以下である。さらに好ましくは0.70%以下である。
・Ni:0~1.00%
Niは、基地の粘さを上げて被削性を低下させる元素である。よって、Niの含有量は1.00%以下とすることが好ましい。より好ましくは0.50%未満、さらに好ましくは0.30%未満である。一方、Niは、工具組織中のフェライトの生成を抑制する元素である。また、C、Cr、Mn、Mo、Wなどとともに工具材料に優れた焼入性を付与し、焼入時の冷却速度が緩やかな場合でもマルテンサイト主体の組織を形成して、靭性の低下を防ぐための効果的元素である。さらに、基地の本質的な靭性も改善するので、本発明では必要に応じて添加してもよい。添加する場合、0.10%以上の添加が好ましい。
Coは、靭性を低下させるので、1.00%以下とするのが好ましい。一方、Coは、熱間工具の使用中において、その昇温時の表面に極めて緻密で密着性の良い保護酸化皮膜を形成する。この酸化皮膜は、相手材との間の金属接触を防ぎ、工具表面の温度上昇を抑制するとともに、優れた耐摩耗性をもたらす。よって、Coは、必要に応じて添加してもよい。添加する場合、0.30%以上の添加が好ましい。
Nbは、被削性の低下を招くので、0.30%以下とするのが好ましい。一方、Nbは、炭化物を形成し、基地の強化や耐摩耗性を向上する効果を有する。また、焼戻し軟化抵抗を高めるとともに、Vと同様、結晶粒の粗大化を抑制し、靭性の向上に寄与する効果を有する。よって、Nbは、必要に応じて添加してもよい。添加する場合、0.01%以上の添加が好ましい。
上述の通り、焼鈍組織を有した熱間工具材料には、焼入れ焼戻しが行われる。この焼入れ焼戻しにおいて、焼入れは、熱間工具材料が焼入れ温度(オーステナイト温度域)に加熱され、急冷されることで、熱間工具材料の焼鈍組織からマルテンサイト組織が生成される過程である。具体的には、まず、熱間工具材料が焼入れ温度に向けて加熱されていく過程で、温度がA1点に達したときから、焼鈍組織中のフェライト結晶粒の粒界に優先的に「新たなオーステナイト結晶粒」が析出し始める。次に、熱間工具材料が焼入れ温度に到達して、所定時間保持される過程で、焼鈍組織の全ては、実質、新たなオーステナイト結晶粒と入れ替わる。そして、焼入れ温度に保持された後の熱間工具材料を冷却することで、金属組織がマルテンサイト変態して、上記の新たなオーステナイト結晶粒の粒界が「旧オーステナイト粒界」として確認されるマルテンサイト組織となり、焼入れが完了する。この旧オーステナイト粒界で形成される「旧オーステナイト粒径」の分布状況は、次に焼戻しされた後の金属組織(つまり、完成された熱間工具の組織)においても、実質的に、維持されている。
最大径Lが100μm以上のフェライト結晶粒が10.0個数%以下であると、析出サイトの“粗密”な分布状態が解消され、析出サイトが均一になる。好ましくは8.0個数%以下であり、より好ましくは5.0個数%以下である。そして、アスペクト比L/Tが3.0以上のフェライト結晶粒が10.0個数%以下であると、析出するオーステナイト結晶粒が“等方的”となり、焼入れ後の旧オーステナイト粒径が均一になる。好ましくは8.0個数%以下であり、より好ましくは7.0個数%以下である。
例えば、鋼材を焼鈍処理するときの「焼鈍保持温度」の調整が大切である。焼鈍保持温度を制限する(例えば、870℃未満とする)ことで、フェライト結晶粒の粗大化を抑えることができる。そして、例えば、鋼材が上記の焼鈍保持温度に到達してからの「焼鈍保持時間」の調整が大切である。焼鈍保持時間を十分に確保する(例えば、180分以上とする)ことで、針状のフェライト結晶粒の生成を抑えることができる。そして、焼鈍保持時間を制限する(例えば、400分以内とする)ことで、フェライト結晶粒の粗大化を抑えることができる。
そして、上記のベイナイトやマルテンサイトの形成を抑えて、熱間工具材料の断面組織中に占めるフェライト結晶粒の面積率を、例えば「80面積%以上」にするには、焼鈍保持温度から600℃までの間の冷却速度を「20℃/h以下」の遅い冷却速度に調整することが好ましい。
本発明の熱間工具材料に焼入れを行うことで、焼入れ後のマルテンサイト組織中の旧オーステナイト結晶粒の混粒を抑制することができる。そして、この旧オーステナイト結晶粒の混粒の程度は、次の焼戻し後においても、実質的に維持される。よって、本発明の熱間工具材料に焼入れ焼戻しを行うことで、熱間工具の靱性のばらつきを抑制することができる。そして、靱性のばらつきの程度については、例えば、熱間工具の有する平均のシャルピー衝撃値に対して、5.00(J/cm2)以下の標準偏差を達成することができる。更には、4.00(J/cm2)以下の標準偏差を達成することもできる。
このような混粒の定義に対しても、本発明であれば、熱間工具の断面組織中において、最大頻度をもつ粒度番号の旧オーステナイト結晶粒から3以上異なった粒度番号の旧オーステナイト結晶粒の占める割合が「5面積%以下」の、熱間工具を達成することができる。好ましくは、上記の旧オーステナイト結晶粒の占める割合が4面積%以下である。より好ましくは、3面積%以下である。
そして、本発明において、上記の「旧オーステナイト結晶粒の占める割合」を確認する断面組織の断面積は「0.16mm2(400μm×400μm)」とする。そして、この断面積を1視野として、10視野で確認を行えば、十分である。
このとき、本発明において、上記の「存在しないこと」を確認する視野数は、その1視野の断面積を「0.16mm2(400μm×400μm)」として、10視野の間で確認すれば十分である。
Claims (5)
- 焼鈍組織を有し、焼入れ焼戻しされて使用される熱間工具材料において、
前記熱間工具材料は、前記焼入れによってマルテンサイト組織に調整できる成分組成を有し、前記熱間工具材料の断面の焼鈍組織中のフェライト結晶粒は、最大径Lが100μm以上のフェライト結晶粒の個数割合がフェライト結晶粒全体の10.0%以下であり、かつ、最大径Lとそれに直交する最大の横幅Tとの比であるアスペクト比L/Tが3.0以上のフェライト結晶粒の個数割合がフェライト結晶粒全体の10.0%以下であることを特徴とする熱間工具材料。 - 前記熱間工具材料の断面の焼鈍組織中のフェライト結晶粒は、平均粒径が円相当径で25.0μm以下であることを特徴とする請求項1に記載の熱間工具材料。
- 請求項1または2に記載の熱間工具材料に、焼入れ焼戻しを行うことを特徴とする熱間工具の製造方法。
- マルテンサイト組織を有する熱間工具の断面組織中において、JIS-G-0551に準拠した粒度番号で、最大頻度をもつ粒度番号の旧オーステナイト結晶粒から3以上異なった粒度番号の旧オーステナイト結晶粒の占める割合が5面積%以下であることを特徴とする熱間工具。
- 前記熱間工具の断面組織中には、その視野間において、JIS-G-0551に準拠した旧オーステナイト結晶粒の粒度番号が3以上異なった視野が存在しないことを特徴とする請求項4に記載の熱間工具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177001530A KR101954003B1 (ko) | 2014-07-23 | 2015-05-08 | 열간 공구 재료, 열간 공구의 제조 방법 및 열간 공구 |
CN201580040913.9A CN106574335B (zh) | 2014-07-23 | 2015-05-08 | 热作工具材料、热作工具的制造方法及热作工具 |
JP2016533676A JP6004142B2 (ja) | 2014-07-23 | 2015-05-08 | 熱間工具材料、熱間工具の製造方法および熱間工具 |
US15/327,049 US10533235B2 (en) | 2014-07-23 | 2015-05-08 | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
EP15824454.1A EP3173500B2 (en) | 2014-07-23 | 2015-05-08 | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-149487 | 2014-07-23 | ||
JP2014149487 | 2014-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013273A1 true WO2016013273A1 (ja) | 2016-01-28 |
Family
ID=55162812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063318 WO2016013273A1 (ja) | 2014-07-23 | 2015-05-08 | 熱間工具材料、熱間工具の製造方法および熱間工具 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10533235B2 (ja) |
EP (1) | EP3173500B2 (ja) |
JP (1) | JP6004142B2 (ja) |
KR (1) | KR101954003B1 (ja) |
CN (1) | CN106574335B (ja) |
WO (1) | WO2016013273A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018165400A (ja) * | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | 焼入れ時に粗大な結晶粒が発生しない焼鈍鋼材およびその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102550394B1 (ko) * | 2018-10-05 | 2023-07-03 | 가부시키가이샤 프로테리아루 | 열간 공구강 및 열간 공구 |
CN109913768B (zh) * | 2019-04-30 | 2020-05-22 | 浙江自贸区北重金属科技有限公司 | 一种电渣重熔热作模具钢及其制备方法 |
CN114965525A (zh) * | 2021-02-24 | 2022-08-30 | 宝武特种冶金有限公司 | 一种钛合金晶粒等轴度表征方法 |
CN114774650B (zh) * | 2022-04-06 | 2024-08-27 | 成都先进金属材料产业技术研究院股份有限公司 | 叶片钢1Cr12Ni3Mo2VN的热处理方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002248508A (ja) * | 2001-02-23 | 2002-09-03 | Sumitomo Metal Ind Ltd | コールドピルガーミル用ロールダイスの製造方法 |
JP2007297703A (ja) * | 2006-04-05 | 2007-11-15 | Hitachi Metals Ltd | 軟化特性および表面仕上げ特性に優れた高強度工具ならびに、その製造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE426177B (sv) | 1979-12-03 | 1982-12-13 | Uddeholms Ab | Varmarbetsstal |
JPS6383249A (ja) | 1986-09-26 | 1988-04-13 | Daido Steel Co Ltd | 熱間工具鋼およびその製造方法 |
JP2700264B2 (ja) | 1988-12-30 | 1998-01-19 | 愛知製鋼株式会社 | 熱間工具鋼 |
JP3269384B2 (ja) * | 1996-05-23 | 2002-03-25 | 日本鋼管株式会社 | 打抜性と焼入性に優れた高炭素鋼 |
JPH1136044A (ja) * | 1997-07-16 | 1999-02-09 | Nkk Corp | 打抜き加工性に優れた高炭素鋼 |
SE511758C2 (sv) † | 1998-03-27 | 1999-11-22 | Uddeholm Tooling Ab | Stålmaterial för varmarbetsverktyg |
JP2000042606A (ja) * | 1998-07-31 | 2000-02-15 | Nkk Corp | 打抜き加工性に優れた高炭素鋼板の製造方法 |
US6265096B1 (en) | 1998-08-21 | 2001-07-24 | Eveready Battery Company, Inc. | Electrochemical cell having collector electrically insulated from cover |
JP2000328196A (ja) | 1999-05-25 | 2000-11-28 | Daido Steel Co Ltd | 熱間工具鋼 |
JP2001294935A (ja) | 2000-04-06 | 2001-10-26 | Sanyo Special Steel Co Ltd | 靱性に優れた工具鋼の製造方法 |
JP2005336553A (ja) | 2004-05-27 | 2005-12-08 | Daido Steel Co Ltd | 熱間工具鋼 |
JP2006104519A (ja) | 2004-10-05 | 2006-04-20 | Daido Steel Co Ltd | 高靭性熱間工具鋼およびその製造方法 |
JP4835972B2 (ja) * | 2005-07-08 | 2011-12-14 | 日立金属株式会社 | 工具鋼中間素材の製造方法及び工具鋼の製造方法 |
JP4423608B2 (ja) | 2005-08-23 | 2010-03-03 | 日立金属株式会社 | 焼入れ用工具鋼素材 |
JP4739105B2 (ja) * | 2006-04-25 | 2011-08-03 | 山陽特殊製鋼株式会社 | 高靱性熱間工具鋼およびその製造方法 |
US8177924B2 (en) * | 2006-06-01 | 2012-05-15 | Honda Motor Co., Ltd. | High-strength steel sheet and process for producing the same |
EP2065483A4 (en) | 2006-09-15 | 2016-03-23 | Hitachi Metals Ltd | HOT FORMING TOOL STEEL HAVING EXCELLENT RIGIDITY AND RESISTANCE QUALITIES AT HIGH TEMPERATURES, AND PROCESS FOR PRODUCING THE SAME |
JP5359582B2 (ja) | 2009-06-12 | 2013-12-04 | 日立金属株式会社 | 焼入れ用工具鋼素材 |
JP2011001572A (ja) * | 2009-06-16 | 2011-01-06 | Daido Steel Co Ltd | 熱間工具鋼及びこれを用いた鋼製品 |
WO2012118053A1 (ja) * | 2011-03-03 | 2012-09-07 | 日立金属株式会社 | 靭性に優れた熱間工具鋼およびその製造方法 |
JP5486634B2 (ja) * | 2012-04-24 | 2014-05-07 | 株式会社神戸製鋼所 | 冷間加工用機械構造用鋼及びその製造方法 |
CN103352108A (zh) * | 2013-06-24 | 2013-10-16 | 米云霞 | 一种h13钢水冷热处理工艺 |
WO2015182586A1 (ja) * | 2014-05-28 | 2015-12-03 | 日立金属株式会社 | 熱間工具材料および熱間工具の製造方法 |
-
2015
- 2015-05-08 KR KR1020177001530A patent/KR101954003B1/ko active IP Right Grant
- 2015-05-08 JP JP2016533676A patent/JP6004142B2/ja active Active
- 2015-05-08 WO PCT/JP2015/063318 patent/WO2016013273A1/ja active Application Filing
- 2015-05-08 EP EP15824454.1A patent/EP3173500B2/en active Active
- 2015-05-08 US US15/327,049 patent/US10533235B2/en active Active
- 2015-05-08 CN CN201580040913.9A patent/CN106574335B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002248508A (ja) * | 2001-02-23 | 2002-09-03 | Sumitomo Metal Ind Ltd | コールドピルガーミル用ロールダイスの製造方法 |
JP2007297703A (ja) * | 2006-04-05 | 2007-11-15 | Hitachi Metals Ltd | 軟化特性および表面仕上げ特性に優れた高強度工具ならびに、その製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3173500A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018165400A (ja) * | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | 焼入れ時に粗大な結晶粒が発生しない焼鈍鋼材およびその製造方法 |
JP7062961B2 (ja) | 2017-03-28 | 2022-05-09 | 大同特殊鋼株式会社 | 焼鈍鋼材およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3173500A4 (en) | 2018-01-03 |
US10533235B2 (en) | 2020-01-14 |
CN106574335A (zh) | 2017-04-19 |
JPWO2016013273A1 (ja) | 2017-04-27 |
CN106574335B (zh) | 2019-06-18 |
US20170166987A1 (en) | 2017-06-15 |
KR101954003B1 (ko) | 2019-03-04 |
EP3173500B2 (en) | 2024-03-27 |
EP3173500A1 (en) | 2017-05-31 |
KR20170020879A (ko) | 2017-02-24 |
JP6004142B2 (ja) | 2016-10-05 |
EP3173500B1 (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5991564B2 (ja) | 熱間工具材料および熱間工具の製造方法 | |
JP6226086B2 (ja) | 冷間鍛造部品用圧延棒鋼または圧延線材 | |
JP6004142B2 (ja) | 熱間工具材料、熱間工具の製造方法および熱間工具 | |
JP2012246527A (ja) | 高疲労強度、高靭性機械構造用鋼部品およびその製造方法 | |
JPWO2018016505A1 (ja) | 高周波焼入れ用鋼 | |
WO2018008355A1 (ja) | 冷間加工用機械構造用鋼およびその製造方法 | |
KR101828228B1 (ko) | 냉간 공구 재료 및 냉간 공구의 제조 방법 | |
KR101852316B1 (ko) | 냉간 공구 재료 및 냉간 공구의 제조 방법 | |
CN111936655A (zh) | 感应淬火曲轴和感应淬火曲轴用坯料的制造方法 | |
JP6650104B2 (ja) | 冷間工具材料および冷間工具の製造方法 | |
JP5597999B2 (ja) | 被削性に優れた冷間工具鋼 | |
JP6465206B2 (ja) | 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法 | |
JP6347153B2 (ja) | 鋼材およびその製造方法 | |
JP7061263B2 (ja) | 冷間工具材料および冷間工具の製造方法 | |
TW201636432A (zh) | 冷加工工具及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15824454 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016533676 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015824454 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015824454 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177001530 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327049 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |