WO2016013218A1 - 架橋性ゴム組成物およびゴム架橋物 - Google Patents

架橋性ゴム組成物およびゴム架橋物 Download PDF

Info

Publication number
WO2016013218A1
WO2016013218A1 PCT/JP2015/003676 JP2015003676W WO2016013218A1 WO 2016013218 A1 WO2016013218 A1 WO 2016013218A1 JP 2015003676 W JP2015003676 W JP 2015003676W WO 2016013218 A1 WO2016013218 A1 WO 2016013218A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
cross
rubber composition
mass
ethylenically unsaturated
Prior art date
Application number
PCT/JP2015/003676
Other languages
English (en)
French (fr)
Inventor
有信 堅田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP15824034.1A priority Critical patent/EP3173440B1/en
Priority to CN201580038049.9A priority patent/CN106661280B/zh
Priority to JP2016535797A priority patent/JP6624057B2/ja
Priority to KR1020177001206A priority patent/KR20170035894A/ko
Priority to US15/326,544 priority patent/US10538641B2/en
Publication of WO2016013218A1 publication Critical patent/WO2016013218A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/205Compounds containing groups, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled

Definitions

  • the present invention relates to a crosslinkable rubber composition and a rubber cross-linked product, and particularly relates to a cross-linkable rubber composition containing carbon nanotubes and a cross-linked rubber obtained by cross-linking the cross-linkable rubber composition.
  • CNT carbon nanotubes
  • Patent Document 1 as a composite material excellent in heat resistance and mechanical properties, a crosslinkable rubber composition containing hydrogenated carboxylated nitrile rubber, a crosslinking agent made of peroxide, and CNT is crosslinked. A rubber cross-linked product obtained in this manner is disclosed.
  • the conventional rubber cross-linked product has room for improvement in terms of further improving heat resistance.
  • the rubber cross-linked product used as a composite material is also required to have high processability.
  • the conventional rubber cross-linked product is improved in terms of further improving heat resistance while ensuring processability. There was room.
  • an object of the present invention is to provide a rubber cross-linked product excellent in processability and heat resistance, and a cross-linkable rubber composition capable of forming the rubber cross-linked product.
  • the present inventor has intensively studied to achieve the above object. And this inventor is the rubber crosslinked material obtained by bridge
  • the crosslinkable rubber composition of the present invention has a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit and a melting point. It contains an amine-based crosslinking agent at 50 ° C. or higher and 180 ° C. or lower and a carbon nanotube. If such a crosslinkable rubber composition containing a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, an amine-based crosslinking agent having a melting point of 50 ° C. or higher and 180 ° C. or lower, and a carbon nanotube is crosslinked. A rubber cross-linked product excellent in processability and heat resistance can be obtained.
  • “having a monomer unit” means “a monomer-derived structural unit is contained in a polymer (rubber) obtained using the monomer”. To do.
  • the BET specific surface area of the carbon nanotube is preferably 600 m 2 / g or more and 2000 m 2 / g or less. This is because if carbon nanotubes having a BET specific surface area of 600 m 2 / g or more and 2000 m 2 / g or less are used, the heat resistance of the rubber cross-linked product can be further improved while ensuring processability.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the present invention aims to advantageously solve the above-mentioned problems, and the rubber cross-linked product of the present invention is obtained by cross-linking the cross-linkable rubber composition described above.
  • a rubber cross-linked product obtained by cross-linking the cross-linkable rubber composition described above is excellent in both processability and heat resistance.
  • the crosslinked rubber of the present invention preferably has a flow temperature Tf of 330 ° C. or higher and a hardness of 20 or more and 95 or less. This is because if the flow temperature Tf is 330 ° C. or higher, sufficiently high heat resistance can be obtained. Moreover, when the hardness is 20 or more and 95 or less, the rubber cross-linked product can exhibit a function as an elastic body, and processability can be sufficiently ensured.
  • the “flow temperature Tf” refers to the flow temperature obtained using thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • hardness refers to the hardness of durometer type A conforming to JIS K6253.
  • a rubber cross-linked product excellent in processability and heat resistance, and a cross-linkable rubber composition capable of forming the rubber cross-linked product can be provided.
  • the crosslinkable rubber composition of the present invention is a crosslinkable rubber composition, and can be used when the rubber cross-linked product of the present invention is produced.
  • the rubber cross-linked product of the present invention is a cross-linked product obtained by cross-linking the cross-linkable rubber composition of the present invention, and is excellent in processability and heat resistance.
  • the rubber cross-linked product of the present invention is not particularly limited and can be used for various applications such as a belt, a hose, a gasket, a packing, and an oil seal.
  • a crosslinkable rubber composition according to an embodiment of the present invention includes a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, an amine-based crosslinking agent having a melting point of 50 ° C. or higher and 180 ° C. or lower, and a carbon nanotube. To do.
  • the crosslinkable rubber composition according to the embodiment of the present invention includes a rubber having a specific monomer unit, an amine-based crosslinker having a predetermined melting point, and a carbon nanotube.
  • a crosslinked rubber obtained by crosslinking a rubber composition is excellent in processability and heat resistance.
  • the crosslinkable rubber composition according to the embodiment of the present invention may contain a compounding agent usually used in the field of rubber processing in addition to the above components.
  • the crosslinkable rubber composition needs to contain at least a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit as a rubber component.
  • Rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is excellent in cross-linking reactivity with an amine-based cross-linking agent. Therefore, if a rubber having the carboxyl group-containing ethylenically unsaturated monomer unit is used as a rubber component, the crosslinking reaction using an amine-based crosslinking agent proceeds well to sufficiently increase the heat resistance of the rubber crosslinked product. be able to.
  • the crosslinkable rubber composition may further include a rubber having no carboxyl group-containing ethylenically unsaturated monomer unit in addition to the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit.
  • Rubber having a carboxyl group-containing ethylenically unsaturated monomer unit As the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, any synthetic rubber in which a structural unit derived from a carboxyl group-containing ethylenically unsaturated monomer is contained in the rubber should be used. Can do.
  • carboxyl group-containing ethylenically unsaturated monomer which can be used for the preparation of rubber having a carboxyl group-containing ethylenically unsaturated monomer unit
  • ethylene having one or more carboxyl groups is not particularly limited.
  • An unsaturated monomer can be used.
  • examples of the carboxyl group-containing ethylenically unsaturated monomer include carboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid (2-ethylacrylic acid), itaconic acid, maleic acid, fumaric acid, and citraconic acid.
  • Acid monomers such as monomethyl maleate, monoethyl maleate, mono-n-butyl maleate, monomethyl fumarate, monoethyl fumarate, mono-n-butyl fumarate; It is done.
  • the carboxyl group may be a carboxylic anhydride group, and specific examples of the carboxylic anhydride monomer which is a carboxylic anhydride group-containing ethylenically unsaturated monomer include maleic anhydride and citraconic anhydride. Is mentioned.
  • the carboxyl group-containing ethylenically unsaturated monomer it is preferable to use a butenedionic acid monoalkyl ester monomer, particularly monoethyl maleate, mono-n-butyl maleate, monomethyl fumarate, fumaric acid It is more preferable to use those having an alkyl group having 1 to 4 carbon atoms such as monoethyl and mono-n-butyl fumarate. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit may be the above-mentioned carboxyl group-containing ethylenic unsaturated monomer.
  • Nitrile rubber (carboxylated nitrile rubber) synthesized using a saturated monomer, hydrogenated nitrile rubber (hydrogenated carboxylated nitrile rubber) and acrylic rubber (carboxylated acrylic rubber) are preferred.
  • hydrogenated carboxylated nitrile rubber and carboxylated acrylic rubber are more preferable as the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit.
  • Carboxylated nitrile rubber is more preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • the carboxylated nitrile rubber that can be blended in the crosslinkable rubber composition includes an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a diene monomer unit, a carboxyl group-containing ethylenically unsaturated monomer unit, And, optionally, nitrile rubber further containing other monomer units copolymerizable with the monomers forming these monomer units.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited, and is not limited to acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc.
  • acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the carboxylated nitrile rubber is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more. Preferably, it is 60 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 35 mass% or less.
  • the rubber cross-linked product can exhibit excellent physical properties (for example, oil resistance and cold resistance).
  • Examples of the diene monomer forming the diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like having 4 or more carbon atoms.
  • Conjugated diene monomers Non-conjugated diene monomers having preferably 5 to 12 carbon atoms, such as 1,4-pentadiene and 1,4-hexadiene. Among these, as the diene monomer, a conjugated diene monomer is preferable, and 1,3-butadiene is more preferable.
  • the content of the diene monomer unit in the carboxylated nitrile rubber is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, and particularly preferably 35% by mass or more.
  • it is 89.5 mass% or less, More preferably, it is 81 mass% or less, More preferably, it is 74.5 mass% or less, Most preferably, it is 69.5 mass% or less.
  • the carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit is not particularly limited, and the above-described carboxyl group-containing ethylenically unsaturated monomer may be used. it can.
  • carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated nitrile rubber maleic Monomethyl acid, monoethyl maleate, and mono-n-butyl maleate are preferably used, and mono-n-butyl maleate is more preferably used.
  • the content of the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated nitrile rubber is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less. If the content of the carboxyl group-containing ethylenically unsaturated monomer unit is too small, the crosslinking reaction with the amine-based crosslinking agent does not occur sufficiently, and it is difficult to sufficiently improve the heat resistance of the rubber crosslinked product. On the other hand, if the content of the carboxyl group-containing ethylenically unsaturated monomer unit is too large, the resulting rubber cross-linked product becomes too hard and the processability of the rubber cross-linked product may be reduced.
  • Other monomers that form other monomer units include ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, diene monomer units, and carboxyl group-containing ethylenically unsaturated monomer units. Examples thereof include known monomers that can be polymerized. Specifically, other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid.
  • monovalent alcohol and monovalent (meth) acrylic acid such as isopropyl, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate Esters (alkyl esters of (meth) acrylic acid); aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and vinylpyridine; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluorovinyl benzoate, Fluorine content such as difluoroethylene and tetrafluoroethylene N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl
  • the content of other monomer units in the carboxylated nitrile rubber is an amount that does not substantially hinder the effects of the present invention, and is usually less than 50% by mass, preferably 0% by mass to 10% by mass, more preferably Is 0 mass% or more and 5 mass% or less.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxylated nitrile rubber is preferably 15 or more and 200 or less, more preferably 15 or more and 150 or less, and further preferably 15 or more and 100 or less. If the Mooney viscosity is too small, the mechanical strength of the rubber cross-linked product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the rubber cross-linked product may be inferior.
  • the carboxylated nitrile rubber can be obtained by polymerizing a monomer mixture containing the above monomers.
  • any of an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method and a solution polymerization method can be used.
  • the emulsion polymerization method under normal pressure is used. It is preferable to use it.
  • emulsion polymerization may be performed by any of a batch type, a semibatch type, and a continuous type.
  • Examples of the hydrogenated carboxylated nitrile rubber that can be blended in the crosslinkable rubber composition include hydrogenated rubbers obtained by hydrogenating the diene monomer units in the carboxylated nitrile rubber described above by a known method.
  • the hydrogenated carboxylated nitrile rubber obtained by hydrogenating the above carboxylated nitrile rubber by a known method a part or all of the diene monomer unit of the carboxylated nitrile rubber is hydrogenated to form an ⁇ -olefin unit. It is a mass.
  • the hydrogenated carboxylated nitrile rubber that can be blended in the crosslinkable rubber composition includes an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a diene monomer unit and / or an ⁇ -olefin monomer unit.
  • the selective hydrogenation of the diene monomer unit in the carboxylated nitrile rubber described above can be performed using a known method such as an oil layer hydrogenation method or an aqueous layer hydrogenation method.
  • the hydrogenated carboxylated nitrile rubber preferably has an iodine value of 120 or less, more preferably 80 or less, still more preferably 25 or less, and particularly preferably 15 or less. If the iodine value of the hydrogenated carboxylated nitrile rubber is too high, the physical properties (for example, thermal stability, ozone resistance, etc.) of the rubber cross-linked product may be lowered.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the hydrogenated carboxylated nitrile rubber is preferably 15 or more and 200 or less, more preferably 15 or more and 150 or less, and further preferably 15 or more and 100 or less. If the Mooney viscosity is too small, the mechanical strength of the rubber cross-linked product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the rubber cross-linked product may be inferior.
  • the carboxylated acrylic rubber that can be blended in the crosslinkable rubber composition includes a (meth) acrylic acid ester monomer unit and a carboxyl group-containing ethylenically unsaturated monomer unit.
  • An acrylic rubber further containing another monomer unit copolymerizable with the monomer forming the body unit is exemplified.
  • the (meth) acrylic acid ester monomer forming the (meth) acrylic acid ester monomer unit which is the main component of the carboxylated acrylic rubber, is not particularly limited, for example, (meth) acrylic Examples thereof include acid alkyl ester monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
  • the (meth) acrylic acid alkyl ester monomer is not particularly limited, but an ester of an alkanol having 1 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, Examples thereof include isopropyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n-butyl acrylate are particularly preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the (meth) acrylic acid alkoxyalkyl ester monomer is not particularly limited, but an ester of an alkoxyalkyl alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid Methoxymethyl, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate , 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, and the like.
  • 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the (meth) acrylic acid ester monomer unit in the carboxylated acrylic rubber is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 92% by mass or more. In addition, it is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and still more preferably 99% by mass or less.
  • the ratio of the (meth) acrylic-acid alkylester monomer unit in a (meth) acrylic-ester monomer unit is 30 to 100 mass%.
  • the carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit is not particularly limited, and the above-described carboxyl group-containing ethylenically unsaturated monomer may be used. it can.
  • the carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated acrylic rubber is Monomethyl acid, monoethyl fumarate, and mono-n-butyl fumarate are preferably used, and monomethyl fumarate is more preferably used.
  • the content of the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated acrylic rubber is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less. If the content of the carboxyl group-containing ethylenically unsaturated monomer unit is too small, the crosslinking reaction with the amine-based crosslinking agent does not occur sufficiently, and it is difficult to sufficiently improve the heat resistance of the rubber crosslinked product. On the other hand, if the content of the carboxyl group-containing ethylenically unsaturated monomer unit is too large, the resulting rubber cross-linked product becomes too hard and the processability of the rubber cross-linked product may be reduced.
  • Other monomers forming other monomer units include known monomers copolymerizable with (meth) acrylic acid ester monomers and carboxyl group-containing ethylenically unsaturated monomers. .
  • other monomers include acrylonitrile, methacrylonitrile, ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, ethyl vinyl ether, butyl vinyl ether, styrene, ⁇ -methylstyrene, isoprene, butadiene, chloroprene.
  • Piperylene dicyclopentadiene, norbornene, ethylidene norbornene, hexadiene, norbornadiene, divinylbenzene, ethylene glycol diacrylate, propylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate and the like.
  • polyfunctional (meth) acrylates such as ethylene glycol diacrylate, propylene glycol diacrylate, ethylene glycol dimethacrylate, and propylene glycol dimethacrylate are not included in the above-described (meth) acrylic acid ester monomers. .
  • the content of other monomer units in the carboxylated acrylic rubber is an amount that does not substantially hinder the effects of the present invention, and is usually less than 50% by mass, preferably 0% by mass to 10% by mass, more preferably Is 0 mass% or more and 5 mass% or less.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxylated acrylic rubber is preferably 10 or more and 80 or less, more preferably 20 or more and 70 or less. If the Mooney viscosity is too small, the mechanical strength of the rubber cross-linked product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the rubber cross-linked product may be inferior.
  • the carboxylated acrylic rubber can be obtained by polymerizing a monomer mixture containing the above monomers.
  • any of an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method and a solution polymerization method can be used.
  • the emulsion polymerization method under normal pressure is used. It is preferable to use it.
  • emulsion polymerization may be performed by any of a batch type, a semibatch type, and a continuous type.
  • the amine-based crosslinking agent reacts with a carboxyl group in the rubber when the crosslinkable rubber composition is cross-linked to obtain a rubber cross-linked product, thereby forming a cross-linked structure in the rubber cross-linked product and heat resistance of the rubber cross-linked product.
  • the amine-based crosslinking agent is not particularly limited, and includes (1) a compound having two or more amino groups, or (2) a compound that has two or more amino groups at the time of crosslinking.
  • a polyamine-based crosslinking agent can be used.
  • amine-based crosslinking agent for example, a plurality of hydrogen atoms of an aliphatic hydrocarbon or an aromatic hydrocarbon have an amino group or a hydrazide structure (a structure represented by —CONHNH 2 , CO is a carbonyl group)
  • the amine crosslinking agent used in the crosslinkable rubber composition needs to have a melting point of 50 ° C. or more and 180 ° C. or less, and the melting point of the amine crosslinking agent is preferably 80 ° C. or more, preferably 100 ° C. or more. It is more preferable that it is 140 degreeC or more, It is still more preferable that it is 150 degreeC or more, It is preferable that it is 170 degreeC or less, It is more preferable that it is 160 degreeC or less. This is because an amine-based cross-linking agent having a melting point of over 180 ° C.
  • the melting point of the amine-based crosslinking agent is less than 50 ° C.
  • the crosslinking reaction proceeds during preparation of the crosslinkable rubber composition (particularly during kneading), and as a result, the rubber crosslinking having an appropriate degree of crosslinking. This is because it is difficult to form a product, and a rubber cross-linked product having excellent processability and heat resistance cannot be obtained.
  • the amine-based crosslinking agent having the above-mentioned melting point is not particularly limited, and examples thereof include fats such as hexamethylenediamine carbamate (melting point: 155 ° C.) and hexamethylenediamine cinnamaldehyde adduct (melting point: 80 ° C.).
  • the amine-based cross-linking agents include hexamethylenediamine carbamate and 2,2-bis [4- (4- Aminophenoxy) phenyl] propane is preferred, and hexamethylenediamine carbamate is particularly preferred.
  • an amine type crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the compounding quantity of an amine type crosslinking agent is 0.1 mass part or more per 100 mass parts of rubber
  • the heat resistance of the crosslinked product can be sufficiently improved. Moreover, if the amount of the amine crosslinking agent per 100 parts by mass of the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is 10 parts by mass or less, the rubber crosslinked product becomes too hard and the processability of the rubber crosslinked product is increased. Can be suppressed. Moreover, it can suppress that an unreacted amine type crosslinking agent bleeds out from a rubber crosslinked material.
  • the CNT is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used.
  • the CNTs are preferably single-walled to carbon-walled carbon nanotubes. It is more preferable that If single-walled carbon nanotubes are used, the heat resistance of the rubber cross-linked product can be improved with a small amount of addition compared to the case of using multi-walled carbon nanotubes, so that the hardness of the resulting rubber cross-linked product is increased (that is, ), The heat resistance of the rubber cross-linked product can be sufficiently improved.
  • the average diameter (Av) of CNT is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and more preferably 10 nm or less. If the average diameter (Av) of CNTs is 0.5 nm or more, CNT aggregation can be suppressed and the dispersibility of CNTs can be improved. Moreover, if the average diameter (Av) of CNT is 15 nm or less, the heat resistance of the rubber cross-linked product obtained can be sufficiently enhanced.
  • CNTs preferably have an average structure length of 100 ⁇ m or more and 5000 ⁇ m or less during synthesis.
  • the average diameter (Av) and average length of CNTs can be obtained by measuring the diameter (outer diameter) and length of 100 carbon nanotubes randomly selected using a transmission electron microscope, respectively. . And the average diameter (Av) and average length of CNT may be adjusted by changing the manufacturing method and manufacturing conditions of CNT, or by adjusting multiple types of CNTs obtained by different manufacturing methods. Also good.
  • the BET specific surface area of the CNT is preferably 600 m 2 / g or more, more preferably 700 m 2 / g or more, further preferably 800 m 2 / g or more, and 2000 m 2 / g or less. Preferably, it is 1800 m 2 / g or less, more preferably 1500 m 2 / g or less.
  • the BET specific surface area is preferably 1300 m 2 / g or more. If the BET specific surface area of CNT is 600 m 2 / g or more, the heat resistance of the resulting rubber cross-linked product can be sufficiently enhanced.
  • the BET specific surface area of the CNT is 2000 m 2 / g or less, it is possible to suppress the aggregation of the CNT and increase the dispersibility of the CNT, and the rubber cross-linked product becomes too hard and the workability is reduced. Can be suppressed.
  • CNTs are obtained as aggregates (CNT aggregates) oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later.
  • the mass density of the CNTs as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the CNTs are weakly bonded, so that the CNTs can be uniformly dispersed. In addition, if the mass density is 0.002 g / cm 3 or more, the integrity of the CNTs can be improved and the variation can be suppressed, so that handling becomes easy.
  • the CNT having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for producing carbon nanotubes on the surface, and performing chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a catalyst is synthesized, a method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of an oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655) ).
  • an oxidizing agent catalyst activating substance
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • the compounding quantity of CNT is 0.01 mass part or more per 100 mass parts of rubber
  • it is more preferably 1 part by mass or more, particularly preferably 3 parts by mass or more, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and 5 parts by mass or less. More preferably it is. If the amount of CNT per 100 parts by mass of the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is 0.01 parts by mass or more, the heat resistance of the rubber crosslinked product can be sufficiently improved.
  • the amount of CNT per 100 parts by mass of rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is 20 parts by mass or less, the rubber cross-linked product becomes too hard and the processability of the rubber cross-linked product decreases. Can be suppressed.
  • Examples of a compounding agent arbitrarily blended in the crosslinkable rubber composition include a crosslinking accelerator, a crosslinking aid, a crosslinking retarder, a reinforcing filler (carbon black, silica, etc.), and a non-reinforcing filler (calcium carbonate).
  • plasticizer phthalate ester, dioctyl adipate, diisononyl adipate, dinormal alkyl adipate, dialkyl adipate, dioctyl azelate, dialkyl sebacate, dialkyl sebacate, trialkyl citrate Epoxidized unsaturated fatty acid esters, trimellitic acid esters, polyether esters, etc.
  • anti-aging agents antioxidants, light stabilizers, scorch inhibitors such as primary amines, processing aids, lubricants, adhesives, lubricants Flame retardants, antifungal agents, acid acceptors, antistatic agents, magnetic compounds, colorants, and the like.
  • compounding quantity of these compounding agents will not be specifically limited if it is the range which does not inhibit the effect of this invention, It can be set as the quantity according to the compounding purpose.
  • the crosslinkable rubber composition includes a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit as described above (hereinafter sometimes simply referred to as “rubber”) and an amine having a melting point of 50 ° C. or higher and 180 ° C. or lower. It can be prepared by mixing a system cross-linking agent, CNT, and a compounding agent optionally blended by a known method.
  • the rubber when the rubber is obtained in a state dispersed in a dispersion medium such as water (latex state), such as when an emulsion polymerization method is used for preparing the rubber, the rubber is coagulated and dried by a known method. It is preferable to knead with the amine-based cross-linking agent and CNTs after the formation. This is because when CNT is mixed and dispersed in a latex in which rubber is dispersed in a dispersion medium such as water, the applied shear force is insufficient and it is difficult to obtain a good dispersion state.
  • a dispersion medium such as water
  • an amine type crosslinking agent, CNT, and arbitrary compounding agents can be performed using a Banbury mixer or a roll, for example.
  • rubber, amine-based crosslinking agent, CNT, and optional compounding agent are, for example, after kneading rubber, CNT, and optional compounding agent, and then adding an amine-based crosslinking agent. Furthermore, it can mix by kneading
  • CNT easily aggregates and is difficult to disperse in rubber. Therefore, in order to obtain a crosslinked rubber product having the desired performance by dispersing CNTs well in rubber, it is necessary to apply a large shearing force when kneading the rubber and CNTs. In particular, when the BET specific surface area of the CNT blended with the rubber is large or when the blending amount of the CNT is large, it is necessary to apply a large shearing force to suppress the aggregation of the CNT and to disperse the CNT satisfactorily. .
  • the kneading of rubber, amine-based crosslinking agent, CNT, and any compounding agent can be performed at a temperature below the melting point of the amine-based crosslinking agent. Preferably, it is more preferably performed at 150 ° C. or less, and more preferably at 100 ° C. or less.
  • the kneading time is appropriately set depending on the type and amount of the raw material used, but is usually 1 minute or more and 180 minutes or less.
  • the rubber cross-linked product according to the embodiment of the present invention is obtained by cross-linking the cross-linkable rubber composition described above.
  • crosslinking the crosslinkable rubber composition known methods such as pressurization and heating in a mold can be used.
  • crosslinking a crosslinkable rubber composition is 50 to 250 degreeC normally, and it is preferable that it is more than melting
  • crosslinking a crosslinkable rubber composition is 1 MPa or more and 100 MPa or less normally.
  • the rubber cross-linked product obtained by cross-linking the cross-linkable rubber composition described above is excellent in heat resistance.
  • the flow temperature Tf is preferably 330 ° C. or higher, more preferably 350 ° C. or higher, and further preferably 385. °C or more.
  • the rubber cross-linked product is excellent in processability, for example, the hardness is preferably 95 or less, more preferably 90 or less, and still more preferably 85 or less.
  • the hardness of the rubber cross-linked product is preferably 20 or more, more preferably 50 or more, and still more preferably 60 or more.
  • the flow temperature Tf of the rubber cross-linked product was evaluated using a thermomechanical analysis (TMA) apparatus (manufactured by SII, “TMA / SS6100”). Specifically, a test piece having a thickness of 0.2 cm and a size of 0.5 cm ⁇ 0.5 cm was cut out from the obtained rubber cross-linked product. And according to JIS K7197, a load was applied in the thickness direction of the test piece, and a TMA curve (horizontal axis: temperature-vertical axis: deformation amount) was measured for the test piece.
  • TMA thermomechanical analysis
  • the measurement was performed in a compressed mode under a nitrogen atmosphere.
  • the heating rate was 10 ° C./min and the load was 1.0 N.
  • the flow temperature Tf of the rubber cross-linked product was calculated as follows. That is, of the detected TMA curves (horizontal axis: temperature-vertical axis: deformation amount), the temperature at which the deformation amount is maximum is defined as Tmax.
  • Tmax The temperature at the intersection of the tangent of the TMA curve at a temperature 5 ° C. lower than Tmax (Tmax ⁇ 5 ° C.) and the tangent of the TMA curve at a temperature 2 ° C. higher than Tmax (Tmax + 2 ° C.) was defined as the flow temperature Tf.
  • ⁇ Hardness> The hardness of the rubber cross-linked product was measured according to JIS K6253 using a durometer type A.
  • Example 1 Synthesis of hydrogenated carboxylated nitrile rubber (HXNBR)>
  • HXNBR hydrogenated carboxylated nitrile rubber
  • a metal bottle 180 parts of ion-exchanged water, 25 parts of an aqueous 10% sodium dodecylbenzenesulfonate solution, 35 parts of acrylonitrile as an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, a carboxyl group-containing ethylenically unsaturated monomer 6 parts of mono-n-butyl maleate as a monomer and 0.5 part of t-dodecyl mercaptan (molecular weight modifier) are sequentially added, and the internal gas is substituted with nitrogen three times, and then a conjugated diene monomer As a sample, 59 parts of 1,3-butadiene was added.
  • the metal bottle was kept at 5 ° C., and 0.1 part of cumene hydroperoxide (polymerization initiator) was added. And it was made to polymerize for 16 hours, rotating a metal bottle.
  • 0.1 part of 10% hydroquinone aqueous solution (polymerization terminator) was added to stop the polymerization reaction, and then the residual monomer was removed using a rotary evaporator at a water temperature of 60 ° C. (Solid content concentration of about 30%) was obtained.
  • the latex produced above and a palladium catalyst 1% palladium acetate acetone
  • HXNBR hydrogenated carboxylated nitrile rubber
  • ⁇ Preparation of crosslinkable rubber composition According to the blending amount shown in Table 1, using a Banbury mixer, 100 parts of the obtained hydrogenated carboxylated nitrile rubber (HXNBR), 5 parts of multi-walled carbon nanotubes (MWCNT), 1 part of stearic acid as a processing aid and One part of polyoxyethylene stearyl ether phosphoric acid (trade name “phosphanol RL-210”, manufactured by Toho Chemical Co., Ltd.) was kneaded.
  • HXNBR hydrogenated carboxylated nitrile rubber
  • MWCNT multi-walled carbon nanotubes
  • stearic acid as a processing aid
  • polyoxyethylene stearyl ether phosphoric acid trade name “phosphanol RL-210”, manufactured by Toho Chemical Co., Ltd.
  • a product name “NC7000” (BET specific surface area: 256 m 2 / g, average diameter (Av): 9.5 nm, average length: 1.5 ⁇ m) manufactured by Nanosil Co., Ltd. is used. did.
  • HMDAC hexamethylenediamine carbamate
  • DIK # 1 trade name “DIAK # 1”, manufactured by DuPont Dow Elastomer Co., Ltd.
  • the temperature of the crosslinkable rubber composition during kneading was set to 100 ° C. or lower.
  • ⁇ Preparation of rubber cross-linked product> The obtained crosslinkable rubber composition was put into a mold having a length of 15 cm, a width of 15 cm and a depth of 0.2 cm, and press-molded at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa to obtain a sheet-like cross-linked product. It was. Next, the obtained crosslinked product was transferred to a gear type oven and subjected to secondary crosslinking at 170 ° C. for 4 hours to obtain a rubber crosslinked product. Evaluation and measurement of fluid temperature Tf and hardness of the obtained rubber crosslinked product Went. The results are shown in Table 1.
  • Example 2 to 4 A crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except that single-walled carbon nanotubes (SWCNT-1 to SWCNT-3) were used instead of MWCNT when preparing the crosslinkable rubber composition. Prepared. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • SWCNT-1 which is a single-walled carbon nanotube, is manufactured by NanoIntegrity Inc.
  • the product name is “HiPco (registered trademark)” (BET specific surface area: 512 m 2 / g, average diameter (Av): 1.1 nm, average length: 3.0 ⁇ m).
  • SWCNT-2 and SWCNT-3 which are single-walled carbon nanotubes, are SGCNTs prepared using the super-growth method.
  • SWCNT-2 had a BET specific surface area of 706 m 2 / g, an average diameter (Av) of 3.8 nm, and an average length of 2500 ⁇ m.
  • SWCNT-3 had a BET specific surface area of 865 m 2 / g, an average diameter (Av) of 3.4 nm, and an average length of 2350 ⁇ m.
  • Example 5 A crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 4 except that the amount of SWCNT-3 was changed to the amount shown in Table 1 when the crosslinkable rubber composition was prepared. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 A crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except that, when preparing the crosslinkable rubber composition, 1 part of single-walled carbon nanotube (SWCNT-4) was blended instead of 5 parts of MWCNT. did. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • SWCNT-4 which is a single-walled carbon nanotube, is SGCNT prepared using the super-growth method. SWCNT-4 had a BET specific surface area of 1756 m 2 / g, an average diameter (Av) of 2.2 nm, and an average length of 2580 ⁇ m.
  • Example 8 In preparing the cross-linkable rubber composition, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPOPP; melting point) was used as an amine-based cross-linking agent instead of 2.4 parts of hexamethylene diamine carbamate (HMDAC). : 128 ° C., manufactured by Wakayama Seika Kogyo Co., Ltd.) A crosslinkable rubber composition and a crosslinked rubber were prepared in the same manner as in Example 4 except that 6.7 parts were used. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 When preparing the crosslinkable rubber composition, 100 parts of carboxylated acrylic rubber (XACM) synthesized as follows was used instead of 100 parts of hydrogenated carboxylated nitrile rubber (HXNBR), and MWCNT and hexamethylenediamine carbamate (A crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except that the blending amount of HMDAC was changed as shown in Table 1. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • gum was confirmed in the following procedures. That is, 0.2 g of a sample of about 2 mm square was cut out from the obtained rubber, 100 mL of 2-butanone was added and stirred for 4 hours, and then 20 mL of ethanol and 10 mL of water were added. Then, with stirring, a 0.02N aqueous ethanol solution of potassium hydroxide was used to determine the number of moles of carboxyl groups relative to 100 g of rubber by titration using thymolphthalein as an indicator at room temperature. And when the calculated
  • Example 10 A crosslinkable rubber composition and a rubber crosslink were prepared in the same manner as in Example 9 except that single-walled carbon nanotubes (SWCNT-3) were blended in the amounts shown in Table 1 instead of MWCNT when preparing the crosslinkable rubber composition.
  • SWCNT-3 single-walled carbon nanotubes
  • Table 1 instead of MWCNT when preparing the crosslinkable rubber composition.
  • a product was prepared. Then, the flow temperature Tf and hardness were evaluated and measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Except for using 1,5-diaminonaphthalene (DAN; melting point: 190 ° C., manufactured by Tokyo Chemical Industry Co., Ltd.) as an amine-based crosslinking agent in place of hexamethylenediamine carbamate (HMDAC) when preparing the crosslinkable rubber composition.
  • DAN 1,5-diaminonaphthalene
  • HMDAC hexamethylenediamine carbamate
  • Comparative Example 4 Except for using 1,3-diaminopropane (DAP; melting point: 49 ° C., manufactured by Tokyo Chemical Industry Co., Ltd.) as an amine-based crosslinking agent in place of hexamethylenediamine carbamate (HMDAC) when preparing the crosslinkable rubber composition.
  • DAP 1,3-diaminopropane
  • HMDAC hexamethylenediamine carbamate
  • a rubber cross-linked product of Comparative Example 1 that does not use an amine-based cross-linking agent a rubber cross-linked product of Comparative Example 2 that does not use a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, and a melting point. It can be seen that the heat resistance can be improved while ensuring sufficient processability as compared with the rubber cross-linked products of Comparative Examples 3 and 4 using an amine-based cross-linking agent of less than 50 ° C. or more than 180 ° C.
  • Examples 1 to 7 and 9 to 12 in Table 1 it can be seen that the heat resistance of the crosslinked rubber can be improved by using single-walled CNTs, particularly single-walled CNTs having a large BET specific surface area.
  • Examples 4 to 6 and 10 to 12 and Comparative Example 4 when an amine-based cross-linking agent having a melting point of 50 ° C. or higher is used, a large amount of CNT which has a large BET specific surface area and easily aggregates is used.
  • a rubber cross-linked product excellent in processability and heat resistance can be obtained by suppressing the progress of cross-linking during kneading while favorably dispersing CNTs by kneading.
  • a rubber cross-linked product excellent in processability and heat resistance, and a cross-linkable rubber composition capable of forming the rubber cross-linked product can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、加工性および耐熱性に優れるゴム架橋物、並びに、当該ゴム架橋物を形成可能な架橋性ゴム組成物を提供することを目的とする。本発明の架橋性ゴム組成物は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、カーボンナノチューブとを含有する。また、本発明のゴム架橋物は、当該架橋性ゴム組成物を架橋して得られる。なお、カーボンナノチューブのBET比表面積は600~2000m2/gであることが好ましい。

Description

架橋性ゴム組成物およびゴム架橋物
 本発明は、架橋性ゴム組成物およびゴム架橋物に関し、特には、カーボンナノチューブを含有する架橋性ゴム組成物および当該架橋性ゴム組成物を架橋して得られるゴム架橋物に関するものである。
 近年、耐熱性や機械的特性に優れる材料として、ゴム等のエラストマーにカーボンナノチューブ(以下「CNT」と称することがある。)を配合してなる複合材料が注目されている。
 そして、例えば特許文献1には、耐熱性および機械的特性に優れる複合材料として、水素化カルボキシル化ニトリルゴムと、過酸化物よりなる架橋剤と、CNTとを含む架橋性ゴム組成物を架橋して得られるゴム架橋物が開示されている。
特開2010-1475号公報
 しかし、上記従来のゴム架橋物には、耐熱性を更に向上させるという点において改善の余地があった。特に、複合材料として用いられるゴム架橋物には加工性が高いことも求められているところ、上記従来のゴム架橋物には、加工性を確保しつつ耐熱性を更に向上させるという点において改善の余地があった。
 そこで、本発明は、加工性および耐熱性に優れるゴム架橋物、並びに、当該ゴム架橋物を形成可能な架橋性ゴム組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた。そして、本発明者は、特定の単量体単位を有するゴムと、所定の融点を有するアミン系架橋剤と、カーボンナノチューブとを含む架橋性ゴム組成物を架橋して得られるゴム架橋物が、加工性および耐熱性に優れていることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の架橋性ゴム組成物は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、カーボンナノチューブとを含有することを特徴とする。このような、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、カーボンナノチューブとを含有する架橋性ゴム組成物を架橋すれば、加工性および耐熱性に優れるゴム架橋物が得られる。
 なお、本発明において、「単量体単位を有する」とは、「その単量体を用いて得た重合体(ゴム)中に単量体由来の構造単位が含まれている」ことを意味する。
 ここで、本発明の架橋性ゴム組成物は、前記カーボンナノチューブのBET比表面積が600m2/g以上2000m2/g以下であることが好ましい。BET比表面積が600m2/g以上2000m2/g以下のカーボンナノチューブを使用すれば、加工性を確保しつつゴム架橋物の耐熱性を更に向上させることができるからである。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のゴム架橋物は、上述した架橋性ゴム組成物を架橋して得られることを特徴とする。上述した架橋性ゴム組成物を架橋して得られるゴム架橋物は、加工性および耐熱性の双方に優れている。
 そして、本発明のゴム架橋物は、流動温度Tfが330℃以上で、且つ、硬さが20以上95以下であることが好ましい。流動温度Tfが330℃以上であれば、十分に高い耐熱性を得ることができるからである。また、硬さが20以上95以下であれば、ゴム架橋物に弾性体としての機能を発揮させることができると共に、加工性を十分に確保することができるからである。
 なお、本発明において、「流動温度Tf」とは、熱機械分析(TMA)を用いて求めた流動温度を指す。また、本発明において、「硬さ」とは、JIS K6253に準拠したデュロメータータイプAの硬さを指す。
 本発明によれば、加工性および耐熱性に優れるゴム架橋物、並びに、当該ゴム架橋物を形成可能な架橋性ゴム組成物を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の架橋性ゴム組成物は、架橋可能なゴム組成物であり、本発明のゴム架橋物を製造する際に用いることができる。そして、本発明のゴム架橋物は、本発明の架橋性ゴム組成物を架橋して得られる架橋物であり、加工性および耐熱性に優れている。なお、本発明のゴム架橋物は、特に限定されることなく、ベルト、ホース、ガスケット、パッキン、オイルシールなどの種々の用途に使用することができる。
(架橋性ゴム組成物)
 本発明の実施形態に係る架橋性ゴム組成物は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、カーボンナノチューブとを含有する。そして、本発明の実施形態に係る架橋性ゴム組成物は、特定の単量体単位を有するゴムと、所定の融点を有するアミン系架橋剤と、カーボンナノチューブとを含んでいるので、当該架橋性ゴム組成物を架橋させて得られるゴム架橋物は、加工性および耐熱性に優れている。なお、本発明の実施形態に係る架橋性ゴム組成物は、上記成分以外に、ゴムの加工分野において通常使用される配合剤を含んでいてもよい。
<ゴム>
 架橋性ゴム組成物は、ゴム成分として、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムを少なくとも含むことを必要とする。カルボキシル基含有エチレン性不飽和単量体単位を有するゴムは、アミン系架橋剤との架橋反応性に優れている。従って、当該カルボキシル基含有エチレン性不飽和単量体単位を有するゴムをゴム成分として使用すれば、アミン系架橋剤を用いた架橋反応を良好に進行させてゴム架橋物の耐熱性を十分に高めることができる。
 なお、架橋性ゴム組成物は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム以外に、カルボキシル基含有エチレン性不飽和単量体単位を有さないゴムを更に含んでいてもよい。
[カルボキシル基含有エチレン性不飽和単量体単位を有するゴム]
 ここで、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、カルボキシル基含有エチレン性不飽和単量体由来の構造単位がゴム中に含まれている任意の合成ゴムを使用することができる。
 そして、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムの調製に使用し得るカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、カルボキシル基を一つ以上有するエチレン性不飽和単量体を用いることができる。具体的には、カルボキシル基含有エチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、エタクリル酸(2-エチルアクリル酸)、イタコン酸、マレイン酸、フマル酸、シトラコン酸などのカルボン酸単量体;マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルなどのブテンジオン酸モノアルキルエステル単量体;などが挙げられる。なお、カルボキシル基はカルボン酸無水物基であってもよく、カルボン酸無水物基含有エチレン性不飽和単量体である無水カルボン酸単量体の具体例としては無水マレイン酸、無水シトラコン酸などが挙げられる。これらの中でも、カルボキシル基含有エチレン性不飽和単量体としては、ブテンジオン酸モノアルキルエステル単量体を用いることが好ましく、特にマレイン酸モノエチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルなどの炭素数1~4のアルキル基を有するものを用いることがより好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
 ここで、架橋性ゴム組成物を架橋して得られるゴム架橋物の耐熱性の観点からは、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、上述したカルボキシル基含有エチレン性不飽和単量体を用いて合成されるニトリルゴム(カルボキシル化ニトリルゴム)、水素化ニトリルゴム(水素化カルボキシル化ニトリルゴム)およびアクリルゴム(カルボキシル化アクリルゴム)が好ましい。中でも、ゴム架橋物の耐熱性を更に向上させる観点からは、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、水素化カルボキシル化ニトリルゴムおよびカルボキシル化アクリルゴムがより好ましく、水素化カルボキシル化ニトリルゴムが更に好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
[カルボキシル化ニトリルゴム]
 架橋性ゴム組成物に配合し得るカルボキシル化ニトリルゴムとしては、α,β-エチレン性不飽和ニトリル単量体単位と、ジエン単量体単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有するニトリルゴムが挙げられる。
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、特に限定されることなく、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリルなどのニトリル基を有するα,β-エチレン性不飽和ニトリル化合物が挙げられる。これらの中でも、アクリロニトリルおよびメタクリロニトリルが好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
 カルボキシル化ニトリルゴム中のα,β-エチレン性不飽和ニトリル単量体単位の含有量は、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上であり、また、好ましくは60質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。α,β-エチレン性不飽和ニトリル単量体単位の含有量がこの範囲であると、ゴム架橋物に優れた物性(例えば、耐油性や耐寒性)を発揮させることができる。
 ジエン単量体単位を形成するジエン単量体の例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数が4以上の共役ジエン単量体;1,4-ペンタジエン、1,4-ヘキサジエンなどの炭素数が好ましくは5~12の非共役ジエン単量体が挙げられる。これらの中でも、ジエン単量体としては、共役ジエン単量体が好ましく、1,3-ブタジエンがより好ましい。
 カルボキシル化ニトリルゴム中のジエン単量体単位の含有量は、好ましくは20質量%以上、より好ましくは25質量%以上、更に好ましくは30質量%以上、特に好ましくは35質量%以上であり、また、好ましくは89.5質量%以下、より好ましくは81質量%以下、更に好ましくは74.5質量%以下、特に好ましくは69.5質量%以下である。ジエン単量体単位の含有量がこの範囲であると、ゴム架橋物に優れた物性(例えば、ゴム弾性、耐熱性、耐油性および化学的安定性)を発揮させることができる。
 カルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、前述したカルボキシル基含有エチレン性不飽和単量体を用いることができる。中でも、架橋性および後述するCNTの分散性の観点からは、カルボキシル化ニトリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノ-n-ブチルを用いることが好ましく、マレイン酸モノ-n-ブチルを用いることがより好ましい。
 カルボキシル化ニトリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、また、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。カルボキシル基含有エチレン性不飽和単量体単位の含有量が少なすぎると、アミン系架橋剤との架橋反応が十分に起こらず、ゴム架橋物の耐熱性を十分に向上させ難い。一方で、カルボキシル基含有エチレン性不飽和単量体単位の含有量が多すぎると、得られるゴム架橋物が硬くなり過ぎてゴム架橋物の加工性が低下するおそれがある。
 その他の単量体単位を形成するその他の単量体としては、α,β-エチレン性不飽和ニトリル単量体単位、ジエン単量体単位およびカルボキシル基含有エチレン性不飽和単量体単位と共重合可能な既知の単量体が挙げられる。具体的には、その他の単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどの1価のアルコールと1価の(メタ)アクリル酸とのエステル((メタ)アクリル酸アルキルエステル);スチレン、α-メチルスチレン、ビニルピリジンなどの芳香族ビニル単量体;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル単量体;N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどの共重合性老化防止剤;などが挙げられる。
 なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 カルボキシル化ニトリルゴム中のその他の単量体単位の含有量は、本発明の効果を実質的に阻害しない量であり、通常50質量%未満、好ましくは0質量%以上10質量%以下、より好ましくは0質量%以上5質量%以下である。
 そして、カルボキシル化ニトリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは15以上200以下、より好ましくは15以上150以下、更に好ましくは15以上100以下である。ムーニー粘度が小さすぎるとゴム架橋物の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎるとゴム架橋物の加工性が劣る場合がある。
 なお、カルボキシル化ニトリルゴムは、上記各単量体を含んでなる単量体混合物を重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれも用いることができるが、重合反応の制御の容易性などから、常圧下での乳化重合法を用いることが好ましい。そして、乳化重合は、回分式、半回分式、連続式のいずれで行ってもよい。
[水素化カルボキシル化ニトリルゴム]
 架橋性ゴム組成物に配合し得る水素化カルボキシル化ニトリルゴムとしては、上述したカルボキシル化ニトリルゴム中のジエン単量体単位を既知の方法で水素化して得られる水素化ゴムが挙げられる。そして、上述したカルボキシル化ニトリルゴムを既知の方法で水素化して得られる水素化カルボキシル化ニトリルゴムでは、カルボキシル化ニトリルゴムのジエン単量体単位の一部または全部が水素化されてα-オレフィン単量体となっている。即ち、架橋性ゴム組成物に配合し得る水素化カルボキシル化ニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体単位と、ジエン単量体単位および/またはα-オレフィン単量体単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有する。
 ここで、上述したカルボキシル化ニトリルゴム中のジエン単量体単位の選択的な水素化は、油層水素化法や水層水素化法などの公知の方法を用いて行なうことができる。
 そして、水素化カルボキシル化ニトリルゴムは、ヨウ素価が120以下であることが好ましく、80以下であることがより好ましく、25以下であることが更に好ましく、15以下であることが特に好ましい。水素化カルボキシル化ニトリルゴムのヨウ素価が高すぎると、ゴム架橋物の物性(例えば、熱安定性、耐オゾン性など)が低下するおそれがある。
 なお、水素化カルボキシル化ニトリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは15以上200以下、より好ましくは15以上150以下、更に好ましくは15以上100以下である。ムーニー粘度が小さすぎるとゴム架橋物の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎるとゴム架橋物の加工性が劣る場合がある。
[カルボキシル化アクリルゴム]
 架橋性ゴム組成物に配合し得るカルボキシル化アクリルゴムとしては、(メタ)アクリル酸エステル単量体単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有するアクリルゴムが挙げられる。
 ここで、カルボキシル化アクリルゴムの主成分である(メタ)アクリル酸エステル単量体単位を形成する(メタ)アクリル酸エステル単量体としては、特に限定されることなく、例えば、(メタ)アクリル酸アルキルエステル単量体および(メタ)アクリル酸アルコキシアルキルエステル単量体などを挙げることができる。
 (メタ)アクリル酸アルキルエステル単量体としては、特に限定されないが、炭素数1~8のアルカノールと(メタ)アクリル酸とのエステルが好ましい。具体的には、(メタ)アクリル酸アルキルエステル単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどが挙げられる。これらの中でも、(メタ)アクリル酸エチルおよび(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチルおよびアクリル酸n-ブチルが特に好ましい。これらは1種単独で、または2種以上を組み合わせて使用することができる。
 (メタ)アクリル酸アルコキシアルキルエステル単量体としては、特に限定されないが、炭素数2~8のアルコキシアルキルアルコールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-プロポキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸4-メトキシブチルなどが挙げられる。これらの中でも、(メタ)アクリル酸2-エトキシエチルおよび(メタ)アクリル酸2-メトキシエチルが好ましく、アクリル酸2-エトキシエチルおよびアクリル酸2-メトキシエチルが特に好ましい。これらは1種単独で、または2種以上を組み合わせて使用することができる。
 カルボキシル化アクリルゴム中の(メタ)アクリル酸エステル単量体単位の含有量は、通常50質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは92質量%以上であり、また、好ましくは99.9質量%以下、より好ましくは99.5質量%以下、更に好ましくは99質量%以下である。(メタ)アクリル酸エステル単量体単位の含有量が少なすぎると、ゴム架橋物の耐熱性などが低下するおそれがある。
 なお、(メタ)アクリル酸エステル単量体単位中の(メタ)アクリル酸アルキルエステル単量体単位の割合は、30質量%以上100質量%以下であることが好ましい。
 カルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、前述したカルボキシル基含有エチレン性不飽和単量体を用いることができる。中でも、架橋性および後述するCNTの分散性の観点からは、カルボキシル化アクリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルを用いることが好ましく、フマル酸モノメチルを用いることがより好ましい。
 カルボキシル化アクリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、また、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。カルボキシル基含有エチレン性不飽和単量体単位の含有量が少なすぎると、アミン系架橋剤との架橋反応が十分に起こらず、ゴム架橋物の耐熱性を十分に向上させ難い。一方で、カルボキシル基含有エチレン性不飽和単量体単位の含有量が多すぎると、得られるゴム架橋物が硬くなり過ぎてゴム架橋物の加工性が低下するおそれがある。
 その他の単量体単位を形成するその他の単量体としては、(メタ)アクリル酸エステル単量体およびカルボキシル基含有エチレン性不飽和単量体と共重合可能な既知の単量体が挙げられる。具体的には、その他の単量体としては、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテル、スチレン、α-メチルスチレン、イソプレン、ブタジエン、クロロプレン、ピペリレン、ジシクロペンタジエン、ノルボルネン、エチリデンノルボルネン、ヘキサジエン、ノルボルナジエン、ジビニルベンゼン、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどが挙げられる。
 なお、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどの多官能(メタ)アクリレートは、上述した(メタ)アクリル酸エステル単量体には含まれないものとする。
 カルボキシル化アクリルゴム中のその他の単量体単位の含有量は、本発明の効果を実質的に阻害しない量であり、通常50質量%未満、好ましくは0質量%以上10質量%以下、より好ましくは0質量%以上5質量%以下である。
 そして、カルボキシル化アクリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは10以上80以下、より好ましくは20以上70以下である。ムーニー粘度が小さすぎるとゴム架橋物の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎるとゴム架橋物の加工性が劣る場合がある。
 なお、カルボキシル化アクリルゴムは、上記各単量体を含んでなる単量体混合物を重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれも用いることができるが、重合反応の制御の容易性などから、常圧下での乳化重合法を用いることが好ましい。そして、乳化重合は、回分式、半回分式、連続式のいずれで行ってもよい。
<アミン系架橋剤>
 アミン系架橋剤は、架橋性ゴム組成物を架橋してゴム架橋物を得る際に、上記ゴム中のカルボキシル基などと反応し、ゴム架橋物中に架橋構造を形成してゴム架橋物の耐熱性を良好に向上させる。そして、アミン系架橋剤としては、特に限定されることなく、(1)2つ以上のアミノ基を有する化合物、或いは、(2)架橋時に2つ以上のアミノ基を有する形態になる化合物などのポリアミン系架橋剤を用いることができる。具体的には、アミン系架橋剤としては、例えば、脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNH2で表される構造、COはカルボニル基を表す。)で置換されたポリアミン系架橋剤を用いることができる。
 ここで、架橋性ゴム組成物に用いるアミン系架橋剤は、融点が50℃以上180℃以下である必要があり、アミン系架橋剤の融点は、80℃以上であることが好ましく、100℃以上であることがより好ましく、140℃以上であることが更に好ましく、150℃以上であることが特に好ましく、170℃以下であることが好ましく、160℃以下であることがより好ましい。融点が180℃超のアミン系架橋剤は、ゴム中のカルボキシル基などとの架橋反応を進行させ難く、ゴム架橋物の耐熱性を向上させ難いからである。また、一般に、架橋性ゴム組成物中においてCNTを良好に分散させるためには架橋性ゴム組成物の調製時に架橋性ゴム組成物に比較的高いせん断力を与えてゴムとCNT等とを混練する必要があるところ、高いせん断力を与えて混練すると架橋性ゴム組成物は発熱する。そのため、アミン系架橋剤の融点が50℃未満であると、架橋性ゴム組成物の調製中(特に、混練中)に架橋反応が進行してしまい、その結果、適切な架橋度を有するゴム架橋物の形成が困難になって加工性および耐熱性に優れるゴム架橋物が得られないからである。
 そして、上述した融点を有するアミン系架橋剤としては、特に限定されることなく、例えば、ヘキサメチレンジアミンカルバメート(融点:155℃)、ヘキサメチレンジアミンシンナムアルデヒド付加物(融点:80℃)などの脂肪族多価アミン類;2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(融点:128℃)、4,4’-メチレンジアニリン(融点:92℃)、m-フェニレンジアミン(融点:64℃)、p-フェニレンジアミン(融点:64℃)、4,4’-メチレンビス(o-クロロアニリン)(融点:102℃)などの芳香族多価アミン類;アジピン酸ジヒドラジド(融点:177℃)などのヒドラジド構造を2つ以上有する化合物;などが挙げられる。これらの中でも、架橋の容易性、並びに、得られるゴム架橋物の加工性および耐熱性の観点からは、アミン系架橋剤としては、ヘキサメチレンジアミンカルバメートおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましく、ヘキサメチレンジアミンカルバメートが特に好ましい。なお、アミン系架橋剤は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 なお、アミン系架橋剤の配合量は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たり、0.1質量部以上であることが好ましく、0.2質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、10質量部以下であることが好ましく、9質量部以下であることがより好ましく、8質量部以下であることが更に好ましい。カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのアミン系架橋剤の量を0.1質量部以上とすれば、ゴム架橋物中に架橋構造を十分に形成してゴム架橋物の耐熱性を十分に向上させることができる。また、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのアミン系架橋剤の量を10質量部以下とすれば、ゴム架橋物が硬くなり過ぎてゴム架橋物の加工性が低下するのを抑制することができる。また、未反応のアミン系架橋剤がゴム架橋物からブリードアウトするのを抑制することができる。
<カーボンナノチューブ(CNT)>
 CNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、少ない添加量でゴム架橋物の耐熱性を向上させることができるので、得られるゴム架橋物の硬さの増加(即ち、加工性の低下)を抑制しつつ、ゴム架橋物の耐熱性を十分に向上させることができる。
 また、CNTの平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。CNTの平均直径(Av)が0.5nm以上であれば、CNTの凝集を抑制してCNTの分散性を高めることができる。また、CNTの平均直径(Av)が15nm以下であれば、得られるゴム架橋物の耐熱性を十分に高めることができる。
 また、CNTは、合成時における構造体の平均長さが100μm以上5000μm以下であることが好ましい。
 なお、CNTの平均直径(Av)および平均長さは、それぞれ、透過型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の直径(外径)および長さを測定して求めることができる。
 そして、CNTの平均直径(Av)や平均長さは、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
 更に、CNTのBET比表面積は、600m2/g以上であることが好ましく、700m2/g以上であることがより好ましく、800m2/g以上であることが更に好ましく、2000m2/g以下であることが好ましく、1800m2/g以下であることがより好ましく、1500m2/g以下であることが更に好ましい。また、CNTが主として開口したものにあっては、BET比表面積が1300m2/g以上であることが好ましい。CNTのBET比表面積が600m2/g以上であれば、得られるゴム架橋物の耐熱性を十分に高めることができる。また、CNTのBET比表面積が2000m2/g以下であれば、CNTの凝集を抑制してCNTの分散性を高めることができると共に、ゴム架橋物が硬くなり過ぎて加工性が低下するのを抑制することができる。
 更に、CNTは、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(CNT配向集合体)として得られるが、当該集合体としての、CNTの質量密度は、0.002g/cm3以上0.2g/cm3以下であることが好ましい。質量密度が0.2g/cm3以下であれば、CNT同士の結びつきが弱くなるので、CNTを均質に分散させることができる。また、質量密度が0.002g/cm3以上であれば、CNTの一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。
 なお、上述した性状を有するCNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)により製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 なお、CNTの配合量は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たり、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、3質量部以上であることが特に好ましく、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、5質量部以下であることが更に好ましい。カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのCNTの量を0.01質量部以上とすれば、ゴム架橋物の耐熱性を十分に向上させることができる。また、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのCNTの量を20質量部以下とすれば、ゴム架橋物が硬くなり過ぎてゴム架橋物の加工性が低下するのを抑制することができる。
<配合剤>
 架橋性ゴム組成物に任意に配合される配合剤としては、例えば、架橋促進剤、架橋助剤、架橋遅延剤、補強性充填材(カーボンブラック、シリカなど)、非補強性充填材(炭酸カルシウム、クレー、タルク、珪藻土など)、可塑剤(フタル酸エステル、アジピン酸ジオクチル、アジピン酸ジイソノニル、アジピン酸ジノルマルアルキル、アジピン酸ジアルキル、アゼライン酸ジオクチル、セバシン酸ジアルキル、セバシン酸ジオクチル、クエン酸トリアルキル、エポキシ化不飽和脂肪酸エステル、トリメリット酸エステル、ポリエーテルエステル等)、老化防止剤、酸化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、磁性化合物、着色剤などが挙げられる。そして、これらの配合剤の配合量は、本発明の効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量とすることができる。
<架橋性ゴム組成物の調製方法>
 上記架橋性ゴム組成物は、上述したカルボキシル基含有エチレン性不飽和単量体単位を有するゴム(以下、単に「ゴム」と称することがある。)と、融点が50℃以上180℃以下のアミン系架橋剤と、CNTと、任意に配合される配合剤とを既知の方法で混合して調製することができる。
 ここで、上述したゴムの調製に乳化重合法を用いた場合など、ゴムが水などの分散媒に分散した状態(ラテックス状態)で得られた場合には、ゴムは既知の方法で凝固および乾燥させた後にアミン系架橋剤およびCNT等と混練することが好ましい。水などの分散媒中にゴムが分散しているラテックス中にCNTを混合して分散させた場合、加わるせん断力が不十分であり、良好な分散状態が得られ難いからである。
 そして、ゴムと、アミン系架橋剤と、CNTと、任意の配合剤との混合は、例えばバンバリーミキサーやロールを用いて行うことができる。具体的には、ゴムと、アミン系架橋剤と、CNTと、任意の配合剤とは、例えば、ゴムと、CNTと、任意の配合剤とを混練した後、アミン系架橋剤を添加して更に混練することにより混合することができる。なお、配合剤は、その種類および用途などに応じてゴムとCNTとの混練後に添加してもよい。
 ここで、一般にCNTは凝集し易く、ゴム中で分散させ難い。そのため、CNTをゴム中で良好に分散させて所期の性能を有するゴム架橋物を得るためには、ゴムとCNTとを混練する際に大きなせん断力を付与する必要がある。特に、ゴムに配合するCNTのBET比表面積が大きい場合や、CNTの配合量が多い場合には、CNTの凝集を抑制してCNTを良好に分散させるために大きなせん断力を付与する必要がある。一方で、大きなせん断力を与えつつゴムとCNT等とを混練した場合には、せん断時に発生する熱により架橋性ゴム組成物の温度が上昇し、アミン系架橋剤を介した架橋反応が進行してしまう虞がある。しかしながら、本発明の実施形態に係る架橋性ゴム組成物では、融点が所定値以上のアミン系架橋剤を使用しているので、架橋反応の進行を抑制しつつ、CNTおよびアミン系架橋剤などがゴム中に良好に分散した架橋性ゴム組成物を得ることができる。そして、当該架橋性ゴム組成物を用いれば、加工性および耐熱性に優れたゴム架橋物を形成することができる。
 なお、混練中の架橋反応の進行を抑制する観点からは、ゴムと、アミン系架橋剤と、CNTと、任意の配合剤との混練は、アミン系架橋剤の融点未満の温度で行うことが好ましく、150℃以下で行うことがより好ましく、100℃以下で行うことが更に好ましい。また、混練時間は、用いられる原料の種類や量によって適宜設定されるが、通常、1分以上180分以下である。
(ゴム架橋物)
 本発明の実施形態に係るゴム架橋物は、上述した架橋性ゴム組成物を架橋して得られるものである。
 ここで、架橋性ゴム組成物の架橋方法としては、金型内での加圧および加熱などの既知の手法を用いることができる。そして、架橋性ゴム組成物を架橋する際の温度は、通常50℃以上250℃以下であり、アミン系架橋剤の融点以上であることが好ましい。また、架橋性ゴム組成物を架橋する際のプレス圧力は、通常1MPa以上100MPa以下である。
 そして、上述した架橋性ゴム組成物を架橋して得られるゴム架橋物は、耐熱性に優れており、例えば流動温度Tfが、好ましくは330℃以上、より好ましくは350℃以上、更に好ましくは385℃以上である。また、ゴム架橋物は、加工性に優れており、例えば硬さが、好ましくは95以下、より好ましくは90以下、更に好ましくは85以下である。なお、ゴム弾性を発揮させる観点からは、ゴム架橋物の硬さは、20以上であることが好ましく、50以上であることがより好ましく、60以上であることが更に好ましい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、ゴムのヨウ素価およびポリマームーニー粘度、カーボンナノチューブのBET比表面積、架橋剤の融点、並びに、ゴム架橋物の流動温度および硬さは、下記の方法で測定および評価した。
<ヨウ素価>
 ゴムのヨウ素価は、JIS K6235に準じて測定した。
<ポリマームーニー粘度>
 ゴムのムーニー粘度(ML1+4、100℃)は、JIS K6300-1に従って測定した。
<BET比表面積>
 CNTのBET比表面積は、JIS Z8830に準拠し、BET比表面積測定装置((株)マウンテック製、HM model-1210)を用いて測定した。
<融点>
 架橋剤の融点は、JIS K0064に準拠して測定した。測定装置としては、ヤマト科学(株)製のMP-21を使用し、固体の架橋剤を入れたガラス毛細管をシリコンオイル中に浸漬して目視で融点を測定した。
<流動温度>
 ゴム架橋物の流動温度Tfは、熱機械分析(TMA)装置(SII社製、「TMA/SS6100」)を用いて評価した。
 具体的には、得られたゴム架橋物から、厚さ0.2cm、寸法0.5cm×0.5cmの大きさの試験片を切り出した。そして、試験片について、JIS K7197に準拠し、試験片の厚さ方向に荷重を負荷してTMA曲線(横軸:温度-縦軸:変形量)を測定した。なお、測定は、窒素雰囲気下にて、圧縮モードで行った。昇温速度は毎分10℃、荷重は1.0Nとした。
 そして、ゴム架橋物の流動温度Tfを、次のようにして算出した。即ち、検出されたTMA曲線(横軸:温度-縦軸:変形量)のうち、変形量が最大となる温度をTmaxとした。そして、Tmaxより5℃低い温度(Tmax-5℃)におけるTMA曲線の接線と、Tmaxより2℃高い温度(Tmax+2℃)におけるTMA曲線の接線との交点の温度を流動温度Tfとした。
<硬さ>
 ゴム架橋物の硬さは、デュロメータータイプAを使用し、JIS K6253に準拠して測定した。
(実施例1)
<水素化カルボキシル化ニトリルゴム(HXNBR)の合成>
 金属製ボトルに、イオン交換水180部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、α,β-エチレン性不飽和ニトリル単量体としてのアクリロニトリル35部、カルボキシル基含有エチレン性不飽和単量体としてのマレイン酸モノn-ブチル6部、および、t-ドデシルメルカプタン(分子量調整剤)0.5部を順次投入し、内部の気体を窒素で3回置換した後、共役ジエン単量体としての1,3-ブタジエン59部を投入した。その後、金属製ボトルを5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部を添加した。そして、金属製ボトルを回転させながら16時間重合させた。次いで、濃度10%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、カルボキシル化ニトリルゴムのラテックス(固形分濃度約30%)を得た。
 次に、上記で得られたラテックスに含有されるゴムの乾燥重量に対するパラジウム含有量が1,000ppmになるように、オートクレーブ中に、上記にて製造したラテックスと、パラジウム触媒(1%酢酸パラジウムアセトン溶液と等重量のイオン交換水とを混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化カルボキシル化ニトリルゴムのラテックスを得た。
 最後に、上記で得られた水素化カルボキシル化ニトリルゴムのラテックスに2倍容量のメタノールを加えて凝固させた後、ろ過して固形物(クラム)を取り出し、それを60℃で12時間真空乾燥することにより、水素化カルボキシル化ニトリルゴム(HXNBR)を得た。そして、得られた水素化カルボキシル化ニトリルゴム(HXNBR)のヨウ素価およびムーニー粘度を上述の方法により測定したところ、ヨウ素価は11であり、ムーニー粘度は45であった。
 なお、得られた水素化カルボキシル化ニトリルゴム(HXNBR)について、ゴム中にカルボキシル基含有エチレン性不飽和単量体単位として含まれているマレイン酸モノn-ブチル単位の量を以下の手順で確認した。即ち、得られたゴムから約2mm角の試料0.2gを切り出し、2-ブタノン100mLを加えて4時間攪拌した後、エタノール20mLおよび水10mLを加えた。そして、攪拌下、水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数を求めた。そして、求めたモル数をマレイン酸モノn-ブチルの量に換算したところ、ゴム中にはマレイン酸モノn-ブチル単位が6%含まれていた。
<架橋性ゴム組成物の調製>
 表1に示す配合量に従い、バンバリーミキサーを用いて、得られた水素化カルボキシル化ニトリルゴム(HXNBR)100部と、多層カーボンナノチューブ(MWCNT)5部と、加工助剤としてのステアリン酸1部およびポリオキシエチレンステアリルエーテルリン酸(商品名「フォスファノールRL-210」、東邦化学社製)1部とを混練した。なお、多層カーボンナノチューブ(MWCNT)としては、ナノシル社製の商品名「NC7000」(BET比表面積:256m2/g、平均直径(Av):9.5nm、平均長さ:1.5μm)を使用した。
 次いで、得られた混練物をロールに移した後、アミン系架橋剤としてのヘキサメチレンジアミンカーバメート(HMDAC;融点:155℃、商品名「DIAK#1」、デュポン・ダウ・エラストマー社製)2.4部を添加して更に混練し、架橋性ゴム組成物を得た。なお、混練中の架橋性ゴム組成物の温度は100℃以下とした。
<ゴム架橋物の調製>
 得られた架橋性ゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレス成形してシート状の架橋物を得た。次いで、得られた架橋物をギヤー式オーブンに移して170℃で4時間二次架橋してゴム架橋物を得た
 そして、得られたゴム架橋物について、流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(実施例2~4)
 架橋性ゴム組成物の調製時に、MWCNTに替えて、単層カーボンナノチューブ(SWCNT-1~SWCNT-3)を使用した以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
 なお、単層カーボンナノチューブであるSWCNT-1は、NanoIntegris Inc.社製の商品名「HiPco(登録商標)」(BET比表面積:512m2/g、平均直径(Av):1.1nm、平均長さ:3.0μm)である。
 また、単層カーボンナノチューブであるSWCNT-2およびSWCNT-3は、スーパーグロース法を用いて調製したSGCNTである。そして、SWCNT-2は、BET比表面積が706m2/g、平均直径(Av)が3.8nm、平均長さが2500μmであった。また、SWCNT-3は、BET比表面積が865m2/g、平均直径(Av)が3.4nm、平均長さが2350μmであった。
(実施例5~6)
 架橋性ゴム組成物の調製時に、SWCNT-3の配合量を表1に示す量に変更した以外は実施例4と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(実施例7)
 架橋性ゴム組成物の調製時に、MWCNT5部に替えて、単層カーボンナノチューブ(SWCNT-4)1部を配合した以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
 なお、単層カーボンナノチューブであるSWCNT-4は、スーパーグロース法を用いて調製したSGCNTである。そして、SWCNT-4は、BET比表面積が1756m2/g、平均直径(Av)が2.2nm、平均長さが2580μmであった。
(実施例8)
 架橋性ゴム組成物の調製時に、ヘキサメチレンジアミンカーバメート(HMDAC)2.4部に替えて、アミン系架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPOPP;融点:128℃、和歌山精化工業社製)6.7部を用いた以外は実施例4と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(実施例9)
 架橋性ゴム組成物の調製時に、水素化カルボキシル化ニトリルゴム(HXNBR)100部に替えて以下のようにして合成したカルボキシル化アクリルゴム(XACM)100部を使用し、MWCNTおよびヘキサメチレンジアミンカーバメート(HMDAC)の配合量を表1に示すように変更した以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
<カルボキシル化アクリルゴム(XACM)の合成>
 温度計および攪拌装置を備えた重合反応器に、イオン交換水200部、ラウリル硫酸ナトリウム3部、(メタ)アクリル酸エステル単量体としてのアクリル酸エチル49部およびアクリル酸n-ブチル49部、並びに、カルボキシル基含有エチレン性不飽和単量体としてのフマル酸モノメチル2部を投入した。その後、減圧脱気および窒素置換を2度行って酸素を十分に除去した後、クメンハイドロパーオキシド0.005部およびホルムアルデヒドスルホキシル酸ナトリウム0.002部を加えて、常圧下、30℃で乳化重合を開始し、重合転化率が95%に達するまで反応させた。そして、得られたラテックスを塩化カルシウム水溶液で凝固させ、水洗、乾燥してカルボキシル化アクリルゴム(XACM)を得た。得られたカルボキシル化アクリルゴム(XACM)のムーニー粘度を上述の方法により測定したところ、ムーニー粘度は35であった。
 なお、得られたカルボキシル化アクリルゴム(XACM)について、ゴム中にカルボキシル基含有エチレン性不飽和単量体単位として含まれているフマル酸モノメチル単位の量を以下の手順で確認した。即ち、得られたゴムから約2mm角の試料0.2gを切り出し、2-ブタノン100mLを加えて4時間攪拌した後、エタノール20mLおよび水10mLを加えた。そして、攪拌下、水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数を求めた。そして、求めたモル数をフマル酸モノメチルの量に換算したところ、ゴム中にはフマル酸モノメチル単位が2%含まれていた。
(実施例10~12)
 架橋性ゴム組成物の調製時に、MWCNTに替えて、単層カーボンナノチューブ(SWCNT-3)を表1に示す量で配合した以外は実施例9と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(比較例1)
 架橋性ゴム組成物の調製時に、ヘキサメチレンジアミンカーバメート(HMDAC)2.4部に替えて、過酸化物である1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン(BIBP;ハーキュレス社製)8.0部を用いた以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(比較例2)
 架橋性ゴム組成物の調製時に、水素化カルボキシル化ニトリルゴム(HXNBR)100部に替えてカルボキシル基含有エチレン性不飽和単量体単位を含まない水素化ニトリルゴム(HNBR;日本ゼオン製、商品名「Zetpol(登録商標)2010L」、ヨウ素価11、ムーニー粘度(ML1+4,100℃)57.5)を使用した以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(比較例3)
 架橋性ゴム組成物の調製時に、ヘキサメチレンジアミンカーバメート(HMDAC)に替えて、アミン系架橋剤として1,5-ジアミノナフタレン(DAN;融点:190℃、東京化成工業株式会社製)を用いた以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
(比較例4)
 架橋性ゴム組成物の調製時に、ヘキサメチレンジアミンカーバメート(HMDAC)に替えて、アミン系架橋剤として1,3-ジアミノプロパン(DAP;融点:49℃、東京化成工業株式会社製)を用いた以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。そして、実施例1と同様にして流動温度Tfおよび硬さの評価および測定を行った。結果を表1に示す。
 なお、比較例4では、ロールを用いた混練中に1,3-ジアミノプロパン(DAP)を介した架橋反応が進行し、ゴム架橋物に架橋ムラができた。
Figure JPOXMLDOC01-appb-T000001
 表1より、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、カーボンナノチューブとを併用した実施例1~12のゴム架橋物は、アミン系架橋剤を使用していない比較例1のゴム架橋物、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムを使用していない比較例2のゴム架橋物、並びに、融点が50℃未満または180℃超のアミン系架橋剤を使用している比較例3および4のゴム架橋物と比較し、十分な加工性を確保しつつ耐熱性を向上することができることが分かる。
 また、表1の実施例1~7および9~12より、単層のCNT、特にBET比表面積の大きな単層CNTを使用することにより、ゴム架橋物の耐熱性を向上させ得ることが分かる。また、実施例4~6および10~12、並びに、比較例4より、融点が50℃以上のアミン系架橋剤を使用すれば、BET比表面積が大きく、凝集し易いCNTを多量に使用した場合であっても、混練によりCNTを良好に分散させつつ混練中の架橋の進行を抑制して加工性および耐熱性に優れるゴム架橋物が得られることが分かる。
 更に、表1の実施例4および8より、アミン系架橋剤の融点を変更することにより混練中の架橋の進行を抑制して加工性および耐熱性に優れるゴム架橋物が得られることが分かる。
 本発明によれば、加工性および耐熱性に優れるゴム架橋物、並びに、当該ゴム架橋物を形成可能な架橋性ゴム組成物を提供することができる。

Claims (4)

  1.  カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、
     融点が50℃以上180℃以下のアミン系架橋剤と、
     カーボンナノチューブと、
    を含有する架橋性ゴム組成物。
  2.  前記カーボンナノチューブのBET比表面積が600m2/g以上2000m2/g以下である、請求項1に記載の架橋性ゴム組成物。
  3.  請求項1または2に記載の架橋性ゴム組成物を架橋して得られる、ゴム架橋物。
  4.  流動温度Tfが330℃以上で、且つ、硬さが20以上95以下である、請求項3に記載のゴム架橋物。
PCT/JP2015/003676 2014-07-25 2015-07-22 架橋性ゴム組成物およびゴム架橋物 WO2016013218A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15824034.1A EP3173440B1 (en) 2014-07-25 2015-07-22 Cross-linkable rubber composition and cross-linked rubber
CN201580038049.9A CN106661280B (zh) 2014-07-25 2015-07-22 交联性橡胶组合物和橡胶交联物
JP2016535797A JP6624057B2 (ja) 2014-07-25 2015-07-22 架橋性ゴム組成物およびゴム架橋物
KR1020177001206A KR20170035894A (ko) 2014-07-25 2015-07-22 가교성 고무 조성물 및 고무 가교물
US15/326,544 US10538641B2 (en) 2014-07-25 2015-07-22 Crosslinkable rubber composition and crosslinked rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152283 2014-07-25
JP2014-152283 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013218A1 true WO2016013218A1 (ja) 2016-01-28

Family

ID=55162760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003676 WO2016013218A1 (ja) 2014-07-25 2015-07-22 架橋性ゴム組成物およびゴム架橋物

Country Status (6)

Country Link
US (1) US10538641B2 (ja)
EP (1) EP3173440B1 (ja)
JP (1) JP6624057B2 (ja)
KR (1) KR20170035894A (ja)
CN (1) CN106661280B (ja)
WO (1) WO2016013218A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170579A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
WO2017217203A1 (ja) * 2016-06-15 2017-12-21 日本ゼオン株式会社 ゴム組成物および成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733761A4 (en) * 2017-12-26 2021-07-21 Zeon Corporation COMPOSITION OF RUBBER AND CROSS-LINKED RUBBER PRODUCT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163074A (ja) * 2006-12-27 2008-07-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013194234A (ja) * 2012-03-23 2013-09-30 Nippon Zeon Co Ltd 架橋性ゴム組成物およびゴム架橋物
WO2014098170A1 (ja) * 2012-12-20 2014-06-26 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062828B2 (ja) * 1999-08-20 2008-03-19 日本ゼオン株式会社 架橋性ゴム組成物および架橋物
CN1250633C (zh) 2003-12-26 2006-04-12 江汉石油钻头股份有限公司 一种改性氢化丁腈橡胶及其制备方法
TWI404675B (zh) 2004-07-27 2013-08-11 Nat Inst Of Advanced Ind Scien 單層奈米碳管及定向單層奈米碳管/塊材構造體暨該等之製造方法/裝置及用途
CN101613495B (zh) 2008-06-23 2013-03-27 朗盛德国有限责任公司 含纳米碳管的橡胶组合物
PL2392599T3 (pl) * 2009-01-30 2022-08-22 Zeon Corporation Wysoce nasycony kauczuk kopolimerowy zawierający grupy nitrylowe
CN102575066B (zh) * 2009-10-19 2014-10-29 日本瑞翁株式会社 交联性腈橡胶组合物及其制造方法
EP2316861A1 (de) 2009-11-03 2011-05-04 LANXESS Deutschland GmbH Nitrilkautschuke
PL2368916T3 (pl) 2010-03-25 2013-03-29 Lanxess Int Sa Sposób wytwarzania kauczuków nitrylowych wolnych od wody i rozpuszczalników
WO2014097626A1 (ja) * 2012-12-21 2014-06-26 日本ゼオン株式会社 ゴム組成物および成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163074A (ja) * 2006-12-27 2008-07-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013194234A (ja) * 2012-03-23 2013-09-30 Nippon Zeon Co Ltd 架橋性ゴム組成物およびゴム架橋物
WO2014098170A1 (ja) * 2012-12-20 2014-06-26 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170579A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
EP3438046A4 (en) * 2016-03-31 2019-12-18 Zeon Corporation METHOD FOR PRODUCING A CARBON NANOSTRUCTURE AGGREGATE AND CARBON NANOSTRUCTURE AGGREGATE
WO2017217203A1 (ja) * 2016-06-15 2017-12-21 日本ゼオン株式会社 ゴム組成物および成形体
KR20190017766A (ko) 2016-06-15 2019-02-20 니폰 제온 가부시키가이샤 고무 조성물 및 성형체
EP3473671A4 (en) * 2016-06-15 2020-02-26 Zeon Corporation RUBBER COMPOSITION AND MOLDED ARTICLES

Also Published As

Publication number Publication date
EP3173440B1 (en) 2019-06-26
CN106661280A (zh) 2017-05-10
EP3173440A1 (en) 2017-05-31
EP3173440A4 (en) 2018-03-14
US20170204244A1 (en) 2017-07-20
US10538641B2 (en) 2020-01-21
JPWO2016013218A1 (ja) 2017-04-27
JP6624057B2 (ja) 2019-12-25
KR20170035894A (ko) 2017-03-31
CN106661280B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
JP5338658B2 (ja) ニトリル共重合体ゴム組成物
JP5640748B2 (ja) ニトリル基含有高飽和共重合体ゴム
JP6202008B2 (ja) ゴム組成物および成形体
JP5742719B2 (ja) 架橋性ニトリルゴム組成物およびその製造方法
WO2005092971A1 (ja) マスターバッチ組成物、これを含有してなるゴム組成物及び加硫物
WO2017047571A1 (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物およびゴム架橋物
JP5429097B2 (ja) ニトリル基含有高飽和共重合体ゴム
JPWO2018008474A1 (ja) アクリルゴム組成物
CN108473724B (zh) 腈橡胶组合物、交联性腈橡胶组合物和橡胶交联物
JP6465103B2 (ja) 架橋性ゴム組成物及びゴム架橋物の製造方法
JPWO2011115093A1 (ja) ホース用ニトリル共重合体ゴム組成物および架橋物
WO2016017735A1 (ja) ニトリル基含有共重合体ゴム、架橋性ゴム組成物およびゴム架橋物
JP6624057B2 (ja) 架橋性ゴム組成物およびゴム架橋物
JP5531729B2 (ja) ゴム組成物および架橋物
WO2017217203A1 (ja) ゴム組成物および成形体
JPWO2020004284A1 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP2010070713A (ja) アクリルゴム
JP6908055B2 (ja) 架橋性ゴム組成物、及びゴム架橋物
JPWO2012002356A1 (ja) ニトリル共重合体ゴム組成物
JP4573035B2 (ja) ニトリル基含有共重合ゴム組成物及びゴム加硫物
JP2012193294A (ja) 摺動部材用ゴム組成物および摺動部材用ゴム架橋物
JP4985922B2 (ja) 高飽和ニトリルゴム、その製造方法およびゴム架橋物
JPWO2018198998A1 (ja) ゴム架橋物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535797

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001206

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326544

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015824034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824034

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE