WO2016009920A1 - 基板の検査装置及び基板の検査方法 - Google Patents

基板の検査装置及び基板の検査方法 Download PDF

Info

Publication number
WO2016009920A1
WO2016009920A1 PCT/JP2015/069668 JP2015069668W WO2016009920A1 WO 2016009920 A1 WO2016009920 A1 WO 2016009920A1 JP 2015069668 W JP2015069668 W JP 2015069668W WO 2016009920 A1 WO2016009920 A1 WO 2016009920A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
inspected
light irradiation
irradiation unit
inspection
Prior art date
Application number
PCT/JP2015/069668
Other languages
English (en)
French (fr)
Inventor
藤倉 序章
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP15822847.8A priority Critical patent/EP3187861B1/en
Publication of WO2016009920A1 publication Critical patent/WO2016009920A1/ja
Priority to US15/405,605 priority patent/US10209203B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/634Specific applications or type of materials wear behaviour, roughness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention relates to a substrate inspection apparatus and a substrate inspection method.
  • an inspection for detecting a defect existing on the inspection surface of the substrate is there.
  • an apparatus for performing such an inspection for example, an apparatus provided with an optical microscope or an apparatus that obtains an image of the entire surface to be inspected by irradiating light from a light source is used (for example, Patent Documents 1 and 2). reference).
  • an object of the present invention is to solve the above-described problems and to accurately inspect a substrate in a short time.
  • a light irradiation unit that irradiates light on a surface to be inspected of a substrate, an imaging unit that acquires an image of the light irradiation unit reflected on the surface to be inspected, and a position of the substrate or the light irradiation unit
  • the image is formed by scattering the light irradiated from the light irradiating part at the defective part of the surface to be inspected, and the moving part that moves the image of the light irradiating part reflected on the surface to be inspected.
  • the light irradiating unit irradiates light on the surface to be inspected of the substrate and acquires an image of the light irradiating unit reflected on the surface to be inspected, and the substrate or light. It is formed by moving the image of the light irradiation part reflected on the surface to be inspected by controlling the position of the irradiation part, and the light irradiated from the light irradiation part is scattered by the defective part of the surface to be inspected.
  • the substrate can be inspected accurately in a short time.
  • substrate concerning one Embodiment is shown.
  • the top view of the schematic structure figure of the inspection device of the substrate concerning one embodiment is shown. It is a figure which shows an example of the picked-up image acquired by the imaging part with which the inspection apparatus of the board
  • a substrate inspection apparatus 1 (Light irradiation part) As shown in FIGS. 1A and 1B, a substrate inspection apparatus 1 (hereinafter, also simply referred to as “inspection apparatus 1”) includes a light source.
  • a light source is an example of the light irradiation part 3 which irradiates light on the to-be-inspected surface 2a of the board
  • the light irradiation unit 3 is preferably provided such that the light irradiated onto the surface 2a to be inspected is a distance at which the light is close to parallel rays and the distance to the surface 2a to be inspected is as short as possible.
  • the light irradiation part 3 is good to be provided so that the length of the optical axis between a light source and the to-be-inspected surface 2a may be 30 cm or more and 2 m or less.
  • a light source line light source
  • the light irradiation part 3 is good to be comprised so that the strip
  • a fluorescent lamp or an LED fluorescent lamp can be used as the light irradiation unit 3.
  • the inspection apparatus 1 includes an imaging unit 5 that acquires or captures an image of the light irradiation unit 3 reflected on the inspection surface 2a.
  • the imaging unit 5 uses a contour line (hereinafter, also simply referred to as “contour line”) of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected, and a contour line. It is preferable that an image including the outer region is acquired.
  • the imaging unit 5 is a distance at which the image of the light irradiation unit 3 (that is, the reflected image of the light irradiation unit 3) reflected on the inspection surface 2a can be regarded as substantially parallel light, and the distance to the inspection surface 2a. Is preferably provided so as to be as short as possible. For example, the imaging part 5 is good to be provided in the distance of 30 cm or more and 2 m or less from the to-be-inspected surface 2a.
  • the imaging unit 5 it is preferable to use a two-dimensional imaging element that two-dimensionally acquires an image of a region outside the contour line of the image of the light irradiation unit 3 reflected on the inspection surface 2a.
  • a digital camera may be used as the two-dimensional image sensor.
  • a control unit 10 described later is electrically connected to the imaging unit 5. The imaging unit 5 transmits the acquired image (that is, the captured image) to the control unit 10.
  • the inspection apparatus 1 includes a substrate moving mechanism 6.
  • the substrate moving mechanism 6 is an example of a moving unit that moves the position of the image of the light irradiation unit 3 shown on the surface 2a to be inspected by controlling the position of the substrate 2. That is, the substrate moving mechanism 6 moves the position of the image of the light irradiation unit 3 shown on the surface 2a to be inspected by changing the relative position between the substrate 2 and the light irradiation unit 3.
  • the substrate moving mechanism 6 may be configured to move the substrate 2 in, for example, a horizontal direction (for example, a horizontal direction with respect to the paper surface on which FIG. 1A or FIG. 1B is shown).
  • a controller 10 described later is electrically connected to the substrate moving mechanism 6.
  • the inspection apparatus 1 includes a control unit 10.
  • the control unit 10 performs necessary processing for inspecting the surface 2a to be inspected.
  • the control unit 10 may be realized using a computer device that executes a predetermined program. That is, the control unit 10 is configured as a computer including a combination of a CPU (Central Processing Unit), a RAM (Random Access Memory), and / or a storage device such as an HDD (Hard Disk Drive).
  • the computer apparatus may be composed of a single unit or a plurality of units connected via a communication line. Further, when the computer apparatus is composed of a plurality of units, the functions of each part described later may be distributed over the plurality of units.
  • the control unit 10 is connected with, for example, a display as an information output unit.
  • the information output unit outputs and displays the captured image received by the control unit 10 from the imaging unit 5 and information about the inspection result in the control unit 10.
  • the control unit 10 includes an inspection unit and an image processing unit.
  • the control unit 10 reads out and executes a program stored in the storage device, thereby realizing an inspection function by the inspection unit, an image processing function by the image processing unit, and the like.
  • the inspection unit inspects the surface 2a to be inspected. Specifically, the inspection unit detects an image 11 (see FIG. 2C) formed outside the contour line of the image of the light irradiation unit 3 from the captured image transmitted from the imaging unit 5. The inspection surface 2a is inspected for defects.
  • the light irradiated from the light irradiation unit 3 is specularly reflected on the inspection surface 2a.
  • the defective part that is, the uneven part
  • the light irradiated from the light irradiation unit 3 is scattered (that is, irregularly reflected) as indicated by a solid line in FIG.
  • an image is formed at a position away from the contour line of the image of the light irradiation unit 3. That is, a bright region is generated in an originally dark region outside the contour line of the image of the light irradiation unit 3.
  • the image formed by the light from the light irradiation part 3 being scattered by a defect part is also called a scattered image.
  • the defect portion formed on the surface 2a to be inspected becomes larger (for example, the depth of the concave portion becomes deeper or the height of the convex portion becomes higher), the inclination of the side surface of the defective portion becomes larger.
  • a scattered image is formed at a position further away from the contour line of the image.
  • the side surface of the defective portion is the inner peripheral side surface of the concave portion or the outer peripheral side surface of the convex portion.
  • the inspection unit detects such a scattered image, which is a scattered image 11 formed outside the contour line of the image of the light irradiation unit 3 from the captured image.
  • the inspection unit detects the scattered image 11 formed outside the outline of the image of the light irradiation unit 3 and in the region where the scattered image 11 is detected (hereinafter also referred to as “detection region”).
  • the detection area may be within a predetermined distance (for example, 4 mm) from the contour line.
  • the detection region is preferably a region within a range of a predetermined width (for example, 2 mm width) from a line parallel to the contour line separated from the contour line by a predetermined distance (for example, 2 mm) toward the outside of the contour line.
  • the range in which the scattered image 11 is detected is the distance between the substrate 2 and the light irradiation unit 3, the distance between the substrate 2 and the imaging unit 5, and the light irradiation unit 3.
  • the angle can be appropriately changed according to the angle (for example, 0 ° to 90 °) formed by the optical axis and the optical axis of the imaging unit 5 (ie, the imaging axis) and / or the size of the defect to be detected.
  • the inspection unit approximates the contour line of the image of the light irradiation unit 3 by a polynomial, and uses the line approximated by the polynomial as the contour line. That is, the inspection unit approximates the shape of the contour line of the image of the light irradiation unit 3 with a quadratic expression or a higher order polynomial of the third or higher order.
  • a straight line light source is used as the light irradiating unit 3 and no irregularities such as defects are formed on the surface 2a to be inspected, and the surface 2a to be inspected is completely flat (that is, a flat surface)
  • the contour line of the image of the light irradiation unit 3 shown on 2a is a straight line.
  • the contour line of the image of the light irradiation unit 3 can be expressed by a linear expression.
  • the substrate 2 is usually subjected to various processes such as film formation.
  • the surface 2a to be inspected of the substrate 2 is not a perfect flat surface.
  • the surface 2a to be inspected is deformed into a concentric concave shape, deformed into a concentric convex shape, or deformed into a trapezoid shape.
  • the contour line of the image of the light irradiation unit 3 shown on the surface 2a to be inspected is a curved line.
  • the inspection unit can approximate the contour of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected by a simple quadratic expression.
  • the outer periphery of the substrate 2 is deformed when the cutting blade is pushed into the substrate 2 when the substrate 2 is cut into a predetermined shape using the cutting blade (that is, the outer periphery of the substrate 2 is distorted). If it occurs), the contour of the image of the light irradiation unit 3 shown on the surface 2a to be inspected has a more complicated shape, but can be approximated by a polynomial. That is, the inspection unit can approximate the contour of the image of the light irradiation unit 3 with a polynomial.
  • the substrate 2 is deformed into a concentric concave shape having a constant curvature or a concentric convex shape
  • the position of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected is moved, the light irradiation unit 3 The outline of the image moves in parallel. Therefore, the same polynomial can be applied to the contour lines of all the images of the light irradiation unit 3 acquired by moving the image of the light irradiation unit 3 on the surface 2a to be inspected.
  • the inspection unit approximates the shape of the contour line by a polynomial to one contour line passing through the position closest to the center of the surface 2a to be inspected (for example, a contour line passing through the center position of the substrate 2, hereinafter “center contour line”).
  • the contour of the image of the light irradiation unit 3 at another position on the surface 2a to be inspected is approximated using a polynomial that approximates the center contour of the surface 2a to be inspected.
  • the inspection unit acquires an image of the light irradiation unit 3 having a contour line that passes through a position closest to the center of the surface 2a to be inspected, and approximates the contour line included in the image by a polynomial.
  • the calculation amount can be reduced and the inspection speed (that is, the processing speed) can be improved.
  • the image processing unit is an image including an outline of the image of the light irradiation unit 3 reflected on the surface to be inspected 2a photographed by the imaging unit 5 at each inspection position on the surface to be inspected 2a and an area outside the contour line. The images of the detection areas outside the contour line are joined together. Thereby, the image processing unit generates a collective image of the entire surface to be inspected 2a as shown in FIG. 4, for example. Further, the image processing unit detects the scattered image 11 formed in the collective image, and binarizes the detected scattered image 11 and other portions to generate a binarized image as shown in FIG. 5, for example. .
  • the substrate 2 is placed on the substrate moving mechanism 6 as a moving unit. Then, light is irradiated from the light irradiation unit 3 onto the surface 2a to be inspected. Subsequently, the imaging unit 5 captures an image of the light irradiation unit 3 reflected on the inspection surface 2a. Specifically, the imaging unit 5 captures and acquires an image including the contour line of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected and a region outside the contour line. The imaging unit 5 transmits the captured image to the inspection unit.
  • the substrate moving mechanism 6 moves the substrate 2 in a predetermined direction by a predetermined amount to move the position of the image of the light irradiation unit 3 reflected on the inspection surface 2a.
  • the substrate 2 is moved by the substrate moving mechanism 6 in the horizontal direction (for example, the left direction of the paper shown in FIGS. 1A and 1B), and the relative position between the substrate 2 and the light irradiation unit 3 is changed.
  • the position of the image of the light irradiation unit 3 shown on the inspection surface 2a is moved by a predetermined amount.
  • the inspection unit receives the captured image of the entire surface 2a to be inspected from the imaging unit 5
  • the inspection unit detects the scattered image 11 formed outside the contour line of the image of the light irradiation unit 3 from the captured image and inspects it. I do. Specifically, first, an image of the light irradiation unit 3 having a center outline is acquired by the inspection unit. Subsequently, the contour of the acquired image of the light irradiation unit 3 is approximated by a polynomial. Then, a line obtained by approximating with a polynomial is defined as a contour line.
  • the contour lines of the image of the light irradiation unit 3 at other positions on the same inspection surface 2a are regarded as lines having the same shape as the central contour line, and approximated using the same polynomial as the central contour line.
  • the inspection unit detects the scattered image 11 formed in the detection region for detecting (extracting) the scattered image 11 outside the outline of the image of the light irradiation unit 3 among the images captured by the imaging unit 5. It detects from a picked-up image and inspects the presence or absence of a defect on the inspection surface 2a.
  • the inspection unit is outside the contour line of the image of the light irradiation unit 3 and outside the contour line from a line parallel to the contour line separated from the contour line of the image of the light irradiation unit 3 by a predetermined distance (for example, 2 mm).
  • a predetermined distance for example, 2 mm.
  • a scattered image 11 formed in a detection region that is a region having a predetermined width (for example, a width of 2 mm) is detected.
  • Image processing process When the inspection of the entire surface 2a to be inspected is completed, the image processing unit, the contour line of the image of the light irradiation unit 3 taken by the imaging unit 5 at each inspection position on the surface 2a to be inspected, and the region outside the contour line , The images in the detection area outside the contour line are connected to each other. As a result, the image processing unit generates a collective image of the captured images of the entire surface to be inspected 2a. In addition, after generating the collective image, the image processing unit detects the scattered image 11 in the collective image, and generates an image binarized by the detected scattered image 11 and other portions.
  • the light irradiation unit 3 irradiates light onto the surface 2a to be inspected, and the imaging unit 5 captures and acquires an image of the light irradiation unit 3 reflected on the surface 2a to be inspected.
  • the inspection surface 2a is inspected by detecting the scattered image 11 formed outside the contour line of the image of the light irradiation unit 3 reflected on the inspection surface 2a. Thereby, the inspection of the substrate 2 can be accurately performed in a short time.
  • the inspection surface 1a can be accurately inspected without the inspection apparatus 1 having a large and complicated optical system. That is, the substrate 2 can be accurately inspected with the simple and small inspection apparatus 1.
  • the inspection apparatus 1 can be formed at low cost.
  • the surface 2a to be inspected is detected by detecting a scattered image 11 formed outside the contour line of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected and within a predetermined distance from the contour line. It is possible to detect a defect formed on or above a predetermined size (for example, the depth of the concave portion or the height of the convex portion is several hundred nm or more). For example, when a predetermined film is formed on the substrate 2, defects caused by a film forming environment such as particles (that is, dust) in a processing furnace provided in an apparatus for forming the predetermined film can be detected.
  • the size is on the order of several hundred nm or more ⁇ m.
  • this embodiment is particularly effective when detecting a defect having a size of several hundred nm or more.
  • the entire surface of the surface to be inspected 2a can be inspected by controlling the position of the substrate 2 by the substrate moving mechanism 6 and moving the position of the image of the light irradiation unit 3 shown on the surface 2a to be inspected.
  • the entire surface 2a to be inspected can be inspected simply by moving the substrate 2 in the horizontal direction by the substrate moving mechanism 6. That is, it is possible to accurately inspect the entire surface 2a to be inspected in a short time.
  • the image capturing unit 5 acquires an image including the contour line of the image of the light irradiation unit 3 and a region outside the contour line, so that the light from the light irradiation unit 3 is scattered at the defect portion.
  • An image formed by scattering the light from the light irradiation unit 3 with unevenness (for example, fine unevenness of about several tens of nm) smaller than the defect portion, and , Can be obtained at the same time. That is, it is possible to simultaneously perform an inspection for the presence or absence of a defect on the surface 2a to be inspected and an inspection (for example, evaluation) of the surface roughness of the surface 2a to be inspected.
  • the surface roughness of the surface 2a to be inspected can be inspected from the contour line of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected.
  • the fine unevenness smaller than the defective portion has a depth of the concave portion or a height of the convex portion lower than that of the defective portion. Therefore, the inclination of the inner peripheral side surface of the concave portion or the outer peripheral side surface of the convex portion is smaller than that of the defective portion. As a result, light scattering due to fine irregularities smaller than the defect portion is observed at a position closer to the contour line.
  • corrugation smaller than a defect part has a small flat area of an uneven
  • the brightness of the region closer to the contour line of the image of the light irradiation unit 3 is only randomly modulated by light irregularly reflected by fine irregularities smaller than the defective portion.
  • the degree of brightness modulation in the region close to the contour line reflects the surface roughness of the surface 2a to be inspected.
  • an image in the vicinity of the contour line (for example, within a range within 2 mm from the contour line) formed by scattering the light irradiated from the light irradiation unit 3 with fine unevenness smaller than the defect portion is acquired, and the image
  • the surface roughness of the surface 2a to be inspected can be evaluated based on the luminance dispersion. It can be evaluated that the smaller the degree of luminance dispersion, the smaller the surface roughness value and the flatter the surface 2a to be inspected.
  • the effect (a) can be further obtained.
  • the entire surface 2a to be inspected can be inspected simply by moving the substrate 2 so as to move from one end of a straight line passing through the center of the substrate 2 to the other end. As a result, the entire surface to be inspected 2a can be inspected in several tens of seconds.
  • the position of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected is moved by moving the position of the substrate 2 by the substrate moving mechanism 6.
  • the present invention is not limited to this. That is, the position of the image of the light irradiation unit 3 shown on the surface 2a to be inspected may be moved by controlling the light irradiation position by the light irradiation unit 3. Further, by controlling the position of the substrate 2 and the light irradiation position by the light irradiation unit 3, the position of the image of the light irradiation unit 3 reflected on the surface 2a to be inspected may be moved.
  • control unit 10 is electrically connected to the substrate moving mechanism 6 and the movement of the substrate moving mechanism 6 is controlled by the control unit 10, but the present invention is not limited to this.
  • the substrate moving mechanism 6 may be moved manually.
  • an image of the light irradiation unit 3 having a contour line passing through the position closest to the center of the surface 2a to be inspected is acquired, and only the contour line of the image of the light irradiation unit 3 has the shape of the contour line.
  • the contour line of the image of the other light irradiation unit 3 that is approximated by a polynomial and appears at another position on the surface 2a to be inspected is a curve having the same shape as the contour line passing through the position closest to the center of the surface 2a to be inspected.
  • the contour line of the image of the light irradiation unit 3 shown on the inspection surface 2a may be approximated by a polynomial at each inspection position of the inspection surface 2a.
  • the image processing unit may be configured to generate an image as shown in FIG. 6, for example, by summing the luminance for each pixel and color-coding for each luminance sum. Thereby, the surface roughness of the surface 2a to be inspected can be easily grasped.
  • the inspection process is performed after acquiring the image of the light irradiation unit 3 on the entire surface 2a to be inspected.
  • the present invention is not limited to this.
  • the scattered image 11 is detected for the image of the light irradiation unit 3 reflected on the inspection surface 2a acquired at a predetermined position on the inspection surface 2a
  • the light irradiation unit 3 reflected on the inspection surface 2a is detected.
  • the position of the image may be moved.
  • the position of the image of the light irradiation unit 3 reflected on the inspection surface 2a acquired at a predetermined position on the inspection surface 2a the position of the image of the light irradiation unit 3 reflected on the inspection surface 2a is moved.
  • the scattered image 11 formed outside the contour line of the image of the light irradiation unit 3 may be detected.
  • the image processing step is performed, but the image processing step may not be performed.
  • a two-dimensional image sensor is used as the imaging unit 5, but the present invention is not limited to this.
  • a one-dimensional imaging element for example, a line camera
  • the imaging unit 5 when the substrate 2 is not curved, a one-dimensional imaging element (for example, a line camera) that acquires the image of the light irradiation unit 3 reflected on the surface 2a to be inspected in one dimension may be used as the imaging unit 5.
  • the substrate 2 when the substrate 2 is curved, if a one-dimensional imaging device is used, the substrate 2 may not be correctly inspected. That is, since the image of the light irradiation unit 3 reflected on the inspection surface 2a is curved, the contour line of the image of the light irradiation unit 3 is also curved.
  • the scattered image detected from the image of the light irradiation unit 3 reflected on the surface 2a to be inspected acquired by the one-dimensional image sensor has a different distance from the contour line for each element in the array included in the one-dimensional image sensor. May end up.
  • the defective part of the surface to be inspected may not be obtained accurately.
  • the information on the defective portion and the information on the fine uneven portion smaller than the defective portion cannot be separated with high accuracy.
  • a meaningful image may not be acquired.
  • a light irradiator for irradiating light onto the surface to be inspected of the substrate An imaging unit for acquiring an image of the light irradiation unit reflected on the surface to be inspected; A moving unit that moves the image of the light irradiation unit reflected on the surface to be inspected by controlling the position of the substrate or the light irradiation unit; Detecting an image formed by scattering light emitted from the light irradiation unit at a defect portion of the surface to be inspected and formed outside a contour line of the image of the light irradiation unit.
  • a substrate inspection apparatus is provided that includes an inspection unit that inspects the surface to be inspected.
  • Appendix 2 The board inspection apparatus according to appendix 1, preferably, The imaging unit acquires an image including the contour line and a region outside the contour line.
  • Appendix 3 The board inspection apparatus according to appendix 1 or 2, preferably, The inspection unit detects the image formed within a predetermined distance from the contour line.
  • Appendix 4 An inspection apparatus for a substrate according to any one of appendices 1 to 3, preferably, The said light irradiation part is provided with the light source which radiate
  • Appendix 5 An inspection apparatus for a substrate according to any one of appendices 1 to 4, preferably, The inspection unit detects the contour line by approximating it with a polynomial.
  • Appendix 6 An inspection apparatus for a substrate according to any one of appendices 1 to 5, preferably, The imaging unit is configured to capture an image of a region outside the contour line in two dimensions.
  • Appendix 7 An inspection apparatus for a substrate according to any one of appendices 1 to 6, preferably, The moving unit includes a substrate moving mechanism that moves the substrate in the horizontal direction.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 基板の被検査面上に光を照射する光照射部と、被検査面上に映る光照射部の画像を取得する撮像部と、基板又は光照射部の位置を制御することで、被検査面上に映る光照射部の画像を移動させる移動部と、光照射部から照射された光が被検査面の欠陥部分で散乱することで形成された像であって光照射部の画像の輪郭線よりも外側に形成された像を検出することで、被検査面の検査を行う検査部と、を備える。

Description

基板の検査装置及び基板の検査方法
 本発明は、基板の検査装置及び基板の検査方法に関する。
 従来より、基板の品質や、基板上に所定の膜を成膜する装置の成膜環境等の評価を行うために、例えば基板の被検査面上に存在する欠陥を検出する検査を行うことがある。このような検査を行う装置として、例えば、光学顕微鏡を備える装置や、光源から光を照射して基板の被検査面の全面の像を取得する装置が用いられている(例えば特許文献1,2参照)。
特開2009-283633号公報 特開2012-13632号公報
 しかしながら、特許文献1に示されるような光学顕微鏡を用いた検査装置では、被検査面の一部しか検査を行うことができないことがある。つまり、被検査面の全面の検査を行うことができないことがある。従って、検査が行われない被検査面の領域での欠陥の情報が得られず、被検査面の正確な検査を行うことができないことがある。また、特許文献2に示されるような光源として点状のレーザ光を照射するスポットレーザが用いられた場合、被検査面の全面を検査しようとすると、被検査面の全面で点状のレーザ光を走査させるため、測定時間が長くなってしまうことがある。
 そこで、本発明は、上記課題を解決し、基板の検査を短時間で正確に行うことを目的とする。
 本発明の一態様によれば、基板の被検査面上に光を照射する光照射部と、被検査面上に映る光照射部の画像を取得する撮像部と、基板又は光照射部の位置を制御することで、被検査面上に映る光照射部の画像を移動させる移動部と、光照射部から照射された光が被検査面の欠陥部分で散乱することで形成された像であって光照射部の画像の輪郭線よりも外側に形成された像を検出することで、被検査面の検査を行う検査部と、を備える基板の検査装置が提供される。
 本発明の他の態様によれば、光照射部により、基板の被検査面上に光を照射して、被検査面上に映る光照射部の画像を取得する画像取得工程と、基板又は光照射部の位置を制御することで、被検査面上に映る光照射部の画像を移動させる移動工程と、光照射部から照射された光が被検査面の欠陥部分で散乱することで形成された像であって光照射部の画像の輪郭線よりも外側に形成された像を検出することで、被検査面の検査を行う検査工程と、を有し、画像取得工程と、移動工程と、を被検査面の全面の検査が完了するまで繰り返す基板の検査方法が提供される。
 本発明によれば、基板の検査を短時間で正確に行うことができる。
一実施形態にかかる基板の検査装置の概略構成図の縦断面図を示す。 一実施形態にかかる基板の検査装置の概略構成図の上面図を示す。 一実施形態にかかる基板の検査装置が備える撮像部により取得した撮影画像の一例を示す図である。 一実施形態にかかる基板の検査装置が備える撮像部により取得した撮影画像の一例を示す図である。 一実施形態にかかる基板の検査装置が備える撮像部により取得した撮影画像の一例を示す図である。 一実施形態にかかる基板の検査装置が備える光照射部から照射された光が基板の被検査面上で反射される様子を示す説明図である。 一実施形態にかかる基板の検査装置が備える制御部により生成される画像の一例を示す図である。 一実施形態にかかる基板の検査装置が備える制御部により生成される画像の一例を示す図である。 他の実施形態にかかる基板の検査装置が備える制御部により生成される画像の一例を示す図である。
 <一実施形態>
(1)基板の検査装置の構成
 以下に、一実施形態にかかる基板の検査装置について、主に図1~図5を参照しながら説明する。
 (光照射部)
 図1A及び図1Bに示すように、基板の検査装置1(以下では、単に「検査装置1」とも言う。)は、光源を備えている。光源は、被検査体である基板2の被検査面2a上に光を照射する光照射部3の一例である。光照射部3は、被検査面2a上に照射される光が平行光線に近くなる距離で、被検査面2aとの間の距離ができるだけ短くなるように設けられているとよい。例えば、光照射部3は、光源と被検査面2aとの間の光軸の長さが30cm以上2m以下になるように設けられているとよい。光照射部3としては、例えば帯状(直線帯状)の光を出射する光源(ライン光源)を用いるとよい。光照射部3は、被検査面2aの最大長さ(基板2の直径)よりも長い帯状の光を出射するように構成されているとよい。光照射部3としては例えば蛍光灯やLED蛍光灯を用いることができる。
 (撮像部)
 検査装置1は、被検査面2a上に映る光照射部3の画像を取得又は撮影する撮像部5を備えている。撮像部5は、例えば図2A~図2Cにそれぞれ示すように、被検査面2a上に映る光照射部3の画像の輪郭線(以下では、単に「輪郭線」とも言う)と、輪郭線よりも外側の領域と、を含む画像を取得するように構成されているとよい。撮像部5は、被検査面2a上に映る光照射部3の画像(即ち、光照射部3の反射像)を略平行光として捉えることができる距離で、被検査面2aとの間の距離ができるだけ短くなるように設けられているとよい。例えば、撮像部5は、被検査面2aから30cm以上2m以内の距離に設けられているとよい。撮像部5として、被検査面2a上に映る光照射部3の画像の輪郭線よりも外側の領域の画像を2次元で取得する2次元撮像素子が用いられるとよい。2次元撮像素子としては、例えばデジタルカメラを用いるとよい。撮像部5には、後述の制御部10が電気的に接続されている。撮像部5は、取得した画像(即ち、撮影画像)を制御部10に送信する。
 (移動部)
 図1A及び図1Bに示すように、検査装置1は、基板移動機構6を備えている。基板移動機構6は、基板2の位置を制御することで、被検査面2a上に映る光照射部3の画像の位置を移動させる移動部の一例である。つまり、基板移動機構6は、基板2と光照射部3との相対的位置を変更させることで、被検査面2a上に映る光照射部3の画像の位置を移動させる。基板移動機構6は、例えば水平方向(例えば図1A又は図1Bが示されている紙面に対して左右方向)に基板2を移動させるように構成されているとよい。基板移動機構6には、後述の制御部10が電気的に接続されている。
 (制御部)
 検査装置1は、制御部10を備えている。制御部10は、被検査面2aの検査を行うために、必要な処理を行う。制御部10は、所定のプログラムを実行するコンピュータ装置を利用して実現されてよい。つまり、制御部10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、及び/又は記憶装置としての例えばHDD(Hard disk drive)等の組み合わせからなるコンピュータとして構成されている。コンピュータ装置は、単数台で構成されていてもよく、通信回線を介して接続された複数台で構成されていてもよい。また、コンピュータ装置が複数台で構成される場合、後述の各部の機能を複数台に分散配置させてもよい。
 制御部10には、情報出力部としての例えばディスプレイ等が接続されている。情報出力部は、制御部10が撮像部5から受信した撮影画像や、制御部10での検査結果についての情報が出力されて表示される。
 制御部10は、検査部及び画像処理部を備えている。制御部10は、記憶装置内に保管されているプログラムを読み出して実行することで、検査部による検査機能、画像処理部による画像処理機能等を実現させる。
 [検査部]
 検査部は、制御部10が撮像部5から撮影画像を受信すると、被検査面2aの検査を行う。具体的には、検査部は、撮像部5から送信された撮影画像から、光照射部3の画像の輪郭線よりも外側に形成された像11(図2C参照)を検出することで、被検査面2aの欠陥の有無についての検査を行う。
 被検査面2aの欠陥が形成されていない箇所では、例えば図3に点線で示すように、光照射部3から照射された光が被検査面2a上で鏡面反射する。これに対し、被検査面2a上の欠陥部分(即ち、凹凸部分)では、例えば図3に実線で示すように、光照射部3から照射された光は散乱(即ち、乱反射)する。このため、光照射部3の画像の輪郭線から離れた位置に像が形成される。つまり、光照射部3の画像の輪郭線より外側の本来は暗い領域内に、明るい領域が発生する。以下では、光照射部3からの光が欠陥部分で散乱されることで形成された像を散乱像とも言う。被検査面2a上に形成された欠陥部分が大きくなるほど(例えば凹部の深さが深くなる又は凸部の高さが高くなるほど)、欠陥部分の側面の傾きが大きくなるため、光照射部3の画像の輪郭線からより離れた位置に散乱像が形成される。欠陥部分の側面とは、凹部の内周側面又は凸部の外周側面である。
 検査部は、このような散乱像であって、光照射部3の画像の輪郭線よりも外側に形成された散乱像11を撮影画像から検出する。例えば、検査部は、光照射部3の画像の輪郭線より外側であって、散乱像11を検出する領域(以下では、「検出領域」とも言う。)内に形成された散乱像11を検出するとよい。検出領域は、輪郭線から所定距離(例えば4mm)の範囲内であるとよい。検出領域は、輪郭線から所定距離(例えば2mm)離れた輪郭線と平行な線から、輪郭線の外側に向かって所定幅(例えば2mm幅)の範囲内の領域であるとよりよい。なお、散乱像11の検出を行う範囲(つまり輪郭線からの距離)は、基板2と光照射部3との間の距離、基板2と撮像部5との間の距離、光照射部3の光軸と撮像部5の光軸(即ち、撮影軸)とがなす角度(例えば、0°~90°)、及び/又は検出しようとする欠陥の大きさ等に従って適宜変更できる。
 検査部は、光照射部3の画像の輪郭線を多項式で近似し、多項式で近似した線を輪郭線として用いる。つまり、検査部は光照射部3の画像の輪郭線の形状を2次式や、3次以上の高次の多項式で近似する。光照射部3として一直線のライン光源が用いられ、被検査面2aに欠陥等の凹凸が形成されておらず、被検査面2aが完全に平ら(即ち、平坦面)である場合、被検査面2a上に映る光照射部3の画像の輪郭線は直線になる。つまり、光照射部3の画像の輪郭線は、1次式で表すことができる。しかしながら、基板2には、通常、成膜等の種々の処理が施されている。その結果、基板2の被検査面2aは完全な平坦面ではない。例えば、被検査面2aは、同心円の凹形状に変形していたり、同心円状の凸形状に変形していたり、くら型に変形している。このため、光照射部3として一直線のライン光源が用いられた場合であっても、被検査面2a上に映る光照射部3の画像の輪郭線は曲線となる。例えば基板2が同心円の凹形状又は凸形状に変形している場合、検査部は、被検査面2a上に映る光照射部3の画像の輪郭線を単純な2次式で近似できる。また、例えば基板2の外周が、切断刃を用いて基板2を所定形状に切断する際に切断刃が基板2に押込まれることで変形している場合(つまり、基板2の外周にダレが発生している場合)、被検査面2a上に映る光照射部3の画像の輪郭線は、より複雑な形状になるが、多項式で近似することができる。つまり、検査部は、光照射部3の画像の輪郭線を多項式で近似できる。
 また、基板2が一定の曲率を持つ同心円の凹形状又は同心円の凸形状に変形している場合、被検査面2a上に映る光照射部3の画像の位置を移動させると、光照射部3の画像の輪郭線は平行移動する。従って、被検査面2a上で光照射部3の画像を移動させて取得した全ての光照射部3の画像の輪郭線に対して同一の多項式を適用することができる。つまり、検査部は、多項式による輪郭線の形状の近似を被検査面2aの中心に最も近い位置を通る一の輪郭線(例えば基板2の中心位置を通る輪郭線、以下では「中心輪郭線」とも言う。)だけで行い、被検査面2aの他の位置での光照射部3の画像の輪郭線は、被検査面2aの中心輪郭線を近似した多項式を用いて近似する。例えば、検査部は、被検査面2aの中心に最も近い位置を通る輪郭線を有する光照射部3の画像を取得し、この画像に含まれる輪郭線を多項式で近似する。これにより、計算量を減らして検査速度(即ち、処理速度)を向上させることができる。
 [画像処理部]
 画像処理部は、被検査面2a上の各検査位置でそれぞれ撮像部5により撮影した被検査面2aに映る光照射部3の画像の輪郭線と輪郭線の外側の領域とを含む画像のうち、輪郭線よりも外側の領域の検出領域の画像を繋ぎ合わせる。これにより、画像処理部は、例えば図4に示すような被検査面2aの全面の集合画像を生成する。また、画像処理部は、集合画像内に形成された散乱像11を検出し、検出した散乱像11と他の箇所とで2値化し、例えば図5に示すような2値化画像を生成する。
 (2)検査方法
 次に、上述の検査装置1を用いて、被検査体である基板2を検査する方法について説明する。
 (画像取得工程)
 まず、移動部としての基板移動機構6上に基板2を載置する。そして、光照射部3から被検査面2a上に光を照射する。続いて、撮像部5により被検査面2a上に映る光照射部3の画像を撮影する。具体的には、撮像部5により、被検査面2a上に映る光照射部3の画像の輪郭線と、輪郭線より外側の領域とを含む画像を撮影して取得する。撮像部5は、撮影した撮影画像を検査部に送信する。
 (移動工程)
 画像取得工程が終了した後、基板移動機構6により、基板2を所定方向に所定量移動させて、被検査面2a上に映る光照射部3の画像の位置を移動させる。例えば、基板移動機構6により基板2を水平方向(例えば図1A及び図1Bを示す紙面の左方向)に移動させ、基板2と光照射部3との相対的な位置を変更することで、被検査面2a上に映る光照射部3の画像の位置を所定量移動させる。
 (繰り返し工程)
 そして、被検査面2aの全面の検査が完了するまで、画像取得工程と、移動工程と、を交互に繰り返して行う。
 (検査工程)
 検査部が被検査面2a全面の撮影画像を撮像部5から受信すると、検査部により、光照射部3の画像の輪郭線よりも外側に形成された散乱像11を撮影画像から検出して検査を行う。具体的には、まず、検査部により、中心輪郭線を有する光照射部3の画像を取得する。続いて、取得した光照射部3の画像の輪郭線を多項式で近似する。そして、多項式で近似することで得られた線を輪郭線とする。また、同一の被検査面2aの他の位置での光照射部3の画像の輪郭線をそれぞれ、中心輪郭線と同一の形状を有する線とみなし、中心輪郭線と同一の多項式を用いて近似する。そして、検査部は、撮像部5によって撮影された画像のうち、光照射部3の画像の輪郭線よりも外側の散乱像11を検出(抽出)する検出領域内に形成された散乱像11を撮影画像から検出し、被検査面2aの欠陥の有無についての検査を行う。例えば、検査部は、光照射部3の画像の輪郭線の外側であって、光照射部3の画像の輪郭線から所定距離(例えば2mm)離れた輪郭線と平行な線から輪郭線の外側に向かって所定幅(例えば2mm幅)の範囲の領域である検出領域内に形成された散乱像11を検出する。
 (画像処理工程)
 被検査面2aの全面の検査が完了したら、画像処理部は、被検査面2a上の各検査位置で撮像部5により撮影した光照射部3の画像の輪郭線と、輪郭線より外側の領域と、を含む画像のうち、輪郭線より外側の検出領域の画像をそれぞれ繋ぎ合わせる。これにより、画像処理部は、被検査面2aの全面の撮影画像の集合画像を生成する。また、画像処理部は、集合画像を生成したら、集合画像内の散乱像11を検出し、検出した散乱像11と他の箇所とで2値化した画像を生成する。
 (3)本実施形態にかかる効果
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
 (a)本実施形態によれば、光照射部3により被検査面2a上に光を照射し、撮像部5により、被検査面2a上に映る光照射部3の画像を撮影して取得し、被検査面2a上に映る光照射部3の画像の輪郭線よりも外側に形成された散乱像11を検出することで、被検査面2aの検査を行っている。これにより、基板2の検査を短時間で正確に行うことができる。
 また、本実施形態では、検査装置1が大掛かりで複雑な光学系を備えることなく、被検査面2aの検査を正確に行うことができる。つまり、簡易で小型な検査装置1で基板2の検査を正確に行うことができる。また、光照射部3としてレーザ光を照射する光源を用いることなく被検査面2aの検査を行うことができるため、検査装置1を安価に形成できる。
 (b)被検査面2a上に映る光照射部3の画像の輪郭線の外側であって、輪郭線から所定距離以内の領域に形成された散乱像11を検出することで、被検査面2a上に形成された所定の大きさ以上(例えば凹部の深さ又は凸部の高さが数100nm以上)の欠陥を検出できる。例えば、基板2に所定の膜が成膜されている場合、所定の膜を成膜する装置が備える処理炉内のパーティクル(即ち、ゴミ)等の成膜環境に起因する欠陥を検出できる。特に、輪郭線から2mm離れた輪郭線と平行な線から輪郭線の外側に向かって2mm幅の範囲の検出領域内に形成された散乱像11を検出することで、数100nm以上μmオーダの大きさの欠陥を検出できる。このように、本実施形態は、大きさが数100nm以上である欠陥を検出する場合に、特に有効である。
 (c)基板移動機構6により基板2の位置を制御して、被検査面2a上に映る光照射部3の画像の位置を移動させることで、被検査面2aの全面を検査できる。例えば、基板移動機構6により基板2を水平方向に移動させるだけで、被検査面2aの全面を検査できる。つまり、被検査面2aの全面の検査を短時間で正確に行うことができる。
 (d)撮像部5により、光照射部3の画像の輪郭線と、輪郭線よりも外側の領域とを含む画像を取得することで、光照射部3からの光が欠陥部分で散乱されることで形成された像(例えば、散乱像11)と、光照射部3からの光が欠陥部分よりも小さな凹凸(例えば数10nm程度の微細な凹凸)で散乱されることで形成された像と、を同時に得ることができる。つまり、被検査面2aの欠陥の有無の検査と、被検査面2aの表面粗さの検査(例えば、評価)と、を同時に行うことができる。
 被検査面2aの表面粗さは、被検査面2aに映る光照射部3の画像の輪郭線から検査できる。欠陥部分よりも小さな微細な凹凸は、欠陥部分よりも凹部の深さが浅くなる又は凸部の高さが低くなる。従って、凹部の内周側面又は凸部の外周側面の傾きが、欠陥部分よりも小さくなる。その結果、欠陥部分よりも小さな微細な凹凸による光の散乱は、より輪郭線に近い位置で観察される。また、欠陥部分よりも小さな微細な凹凸は、凹凸部分の平面積も小さい。従って、欠陥部分により形成される光の像(例えば、散乱像11)のように、2値化に適した強いコントラストを有する明部とはならない。つまり、欠陥部分よりも小さな微細な凹凸により乱反射された光により、光照射部3の画像のより輪郭線に近い領域の明るさがランダムに変調するだけである。しかしながら、輪郭線に近い領域の明るさの変調の度合いは、被検査面2aの表面粗さを反映することになる。従って、光照射部3から照射された光が欠陥部分よりも小さな微細な凹凸で散乱することで形成される輪郭線付近(例えば、輪郭線から2mm以内の範囲内)の像を取得し、像の輝度の分散により被検査面2aの表面粗さを評価できる。輝度の分散の度合いが小さいほど、表面粗さの値が小さく、被検査面2aがより平坦であると評価できる。
 (e)光照射部3として、被検査面2aの最大長さ(例えば、基板2の直径)よりも長い帯状の光を出射するライン光源を用いることで、上記(a)の効果をより得ることができる。例えば、基板2の中心を通る直線の一端部から他端部まで移動するように基板2を移動させるだけで、被検査面2aの全面を検査できる。これにより、被検査面2aの全面の検査を数十秒程度で行うことができる。
 (f)撮像部5として2次元撮像素子を用いることで、基板2に反りが発生している(つまり基板2が湾曲している)場合であっても、被検査面2aの検査を正確に行うことができる。さらに、2次元画像内での輪郭線の位置をソフトウェアにより自動的に判別できる。その結果、光照射部3の位置が所定の位置よりも多少ずれている場合であっても、検査に及ぼす影響を低減できる。
 (g)画像処理部により、例えば図5に示すような2値化画像を生成することで、被検査面2a上に存在する欠陥部分の位置や大きさを容易に把握できる。
 (本発明の他の実施形態)
 以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
 上述の実施形態では、基板移動機構6により基板2の位置を移動させることで、被検査面2a上に映る光照射部3の画像の位置を移動させたが、これに限定されない。つまり、光照射部3による光の照射位置を制御することで、被検査面2a上に映る光照射部3の画像の位置を移動させてもよい。また、基板2の位置及び光照射部3による光の照射位置を制御することで、被検査面2a上に映る光照射部3の画像の位置を移動させてもよい。
 上述の実施形態では、基板移動機構6に制御部10を電気的に接続し、基板移動機構6の移動を制御部10により制御したが、これに限定されない。例えば、基板移動機構6の移動を手動で行ってもよい。
 上述の実施形態では、被検査面2aの中心に最も近い位置を通る輪郭線を有する光照射部3の画像を取得し、この光照射部3の画像の輪郭線のみについて、輪郭線の形状を多項式で近似し、被検査面2a上の他の位置に映る他の光照射部3の画像の輪郭線は、被検査面2aの中心に最も近い位置を通る輪郭線と同一の形状の曲線とみなしたが、これに限定されない。例えば、被検査面2aの各検査位置でそれぞれ、被検査面2a上に映る光照射部3の画像の輪郭線を多項式で近似してもよい。
 また、画像処理部は、各ピクセル毎に輝度を合計し、輝度の合計毎に色分けした例えば図6に示すような画像を生成するように構成されていてもよい。これにより、被検査面2aの表面粗さを容易に把握できる。
 上述の実施形態では、被検査面2aの全面において、光照射部3の画像を取得した後に検査工程を行ったが、これに限定されない。例えば、被検査面2a上の所定の位置で取得した被検査面2a上に映る光照射部3の画像について散乱像11の検出を行った後に、被検査面2a上に映る光照射部3の画像の位置を移動させてもよい。また、被検査面2a上の所定の位置で取得した被検査面2a上に映る光照射部3の画像を取得した後、被検査面2a上に映る光照射部3の画像の位置を移動させつつ、光照射部3の画像の輪郭線よりも外側に形成された散乱像11の検出を行ってもよい。
 上述の実施形態では、画像処理工程を行ったが、画像処理工程は行わなくてもよい。
 上述の実施形態では、撮像部5として2次元撮像素子を用いたが、これに限定されない。例えば、基板2が湾曲していない場合は、撮像部5として、被検査面2a上に映る光照射部3の画像を1次元で取得する1次元撮像素子(例えばラインカメラ)を用いてもよい。しかしながら、基板2が湾曲している場合、1次元撮像素子が用いられると、基板2の検査を正確に行うことができないことがある。つまり、被検査面2a上に映る光照射部3の画像が湾曲するため、光照射部3の画像の輪郭線も湾曲してしまう。このため、1次元撮像素子で取得した被検査面2a上に映る光照射部3の画像から検出した散乱像は、1次元撮像素子が備えるアレイ内の素子ごとに、輪郭線からの距離が異なってしまうことがある。その結果、被検査面の欠陥箇所を正確に取得できないことがある。また、欠陥部分の情報と、欠陥部分よりも小さな微細な凹凸部分の情報と、を精度よく分離することができない場合がある。また、何らかの原因で光源位置がずれた場合には、意味のある画像を取得できない場合がある。
 <本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
 [付記1]
 本発明の一態様によれば、
 基板の被検査面上に光を照射する光照射部と、
 前記被検査面上に映る前記光照射部の画像を取得する撮像部と、
 前記基板又は前記光照射部の位置を制御することで、前記被検査面上に映る前記光照射部の画像を移動させる移動部と、
 前記光照射部から照射された光が前記被検査面の欠陥部分で散乱することで形成された像であって前記光照射部の画像の輪郭線よりも外側に形成された像を検出することで、前記被検査面の検査を行う検査部と、を備える基板の検査装置が提供される。
 [付記2]
 付記1の基板の検査装置であって、好ましくは、
 前記撮像部は、前記輪郭線と前記輪郭線よりも外側の領域とを含む画像を取得する。
 [付記3]
 付記1又は2の基板の検査装置であって、好ましくは、
 前記検査部は、前記輪郭線から所定距離の範囲内に形成された前記像を検出する。
 [付記4]
 付記1から3のいずれかの基板の検査装置であって、好ましくは、
 前記光照射部は、帯状の光を出射する光源を備えている。
 [付記5]
 付記1から4のいずれかの基板の検査装置であって、好ましくは、
 前記検査部は、前記輪郭線を多項式で近似することで検出する。
 [付記6]
 付記1から5のいずれかの基板の検査装置であって、好ましくは、
 前記撮像部は、前記輪郭線よりも外側の領域の画像を2次元で撮影するように構成されている。
 [付記7]
 付記1から6のいずれかの基板の検査装置であって、好ましくは、
 前記移動部として、前記基板を水平方向に移動させる基板移動機構を備えている。
 [付記8]
 本発明の他の態様によれば、
 光照射部により、基板の被検査面上に光を照射して、撮像部により前記被検査面上に映る前記光照射部の画像を取得する画像取得工程と、
 前記基板又は前記光照射部の位置を制御することで、前記被検査面上に映る前記光照射部の画像を移動させる移動工程と、
 前記光照射部から照射された光が前記被検査面の欠陥部分で散乱することで形成された像であって前記光照射部の画像の輪郭線よりも外側に形成された像を検出することで、前記被検査面の検査を行う検査工程と、を有し、
 前記画像取得工程と、前記移動工程と、を前記被検査面の全面の検査が完了するまで繰り返す基板の検査方法が提供される。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1    検査装置
 2    基板
 2a   被検査面
 3    光照射部
 5    撮像部
 6    移動部(基板移動機構)

Claims (4)

  1.  基板の被検査面上に光を照射する光照射部と、
     前記被検査面上に映る前記光照射部の画像を取得する撮像部と、
     前記基板又は前記光照射部の位置を制御することで、前記被検査面上に映る前記光照射部の画像を移動させる移動部と、
     前記光照射部から照射された光が前記被検査面の欠陥部分で散乱することで形成された像であって前記光照射部の画像の輪郭線よりも外側に形成された像を検出することで、前記被検査面の検査を行う検査部と、を備える
    基板の検査装置。
  2.  前記撮像部は、前記輪郭線と前記輪郭線よりも外側の領域とを含む画像を取得する
    請求項1に記載の基板の検査装置。
  3.  前記検査部は、前記輪郭線から所定距離の範囲内に形成された前記像を検出する
    請求項1又は2に記載の基板の検査装置。
  4.  光照射部により、基板の被検査面上に光を照射して、撮像部により前記被検査面上に映る前記光照射部の画像を取得する画像取得工程と、
     前記基板又は前記光照射部の位置を制御することで、前記被検査面上に映る前記光照射部の画像を移動させる移動工程と、
     前記光照射部から照射された光が前記被検査面の欠陥部分で散乱することで形成された像であって前記光照射部の画像の輪郭線よりも外側に形成された像を検出することで、前記被検査面の検査を行う検査工程と、を有し、
     前記画像取得工程と、前記移動工程と、を前記被検査面の全面の検査が完了するまで繰り返す
    基板の検査方法。
PCT/JP2015/069668 2014-07-14 2015-07-08 基板の検査装置及び基板の検査方法 WO2016009920A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15822847.8A EP3187861B1 (en) 2014-07-14 2015-07-08 Substrate inspection device and substrate inspection method
US15/405,605 US10209203B2 (en) 2014-07-14 2017-01-13 Wafer inspection apparatus and wafer inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144062 2014-07-14
JP2014144062A JP6436664B2 (ja) 2014-07-14 2014-07-14 基板の検査装置及び基板の検査方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/405,605 Continuation US10209203B2 (en) 2014-07-14 2017-01-13 Wafer inspection apparatus and wafer inspection method

Publications (1)

Publication Number Publication Date
WO2016009920A1 true WO2016009920A1 (ja) 2016-01-21

Family

ID=55078416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069668 WO2016009920A1 (ja) 2014-07-14 2015-07-08 基板の検査装置及び基板の検査方法

Country Status (5)

Country Link
US (1) US10209203B2 (ja)
EP (1) EP3187861B1 (ja)
JP (1) JP6436664B2 (ja)
TW (1) TW201606288A (ja)
WO (1) WO2016009920A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899080B2 (ja) 2018-09-05 2021-07-07 信越半導体株式会社 ウェーハ形状データ化方法
CN112888531B (zh) * 2018-12-11 2023-04-14 本田技研工业株式会社 工件检查装置和工件检查方法
WO2022225545A1 (en) * 2021-04-19 2022-10-27 Kla Corporation Edge profile inspection for delamination defects
JP2023094962A (ja) * 2021-12-24 2023-07-06 東レエンジニアリング株式会社 ウエーハ外観検査装置
KR102558405B1 (ko) * 2022-08-22 2023-07-24 미르테크 주식회사 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135353A (ja) * 1983-01-24 1984-08-03 Toshiba Corp 表面傷検出装置
JP2001349716A (ja) * 2000-06-07 2001-12-21 Sumitomo Chem Co Ltd 表面凹凸検査方法および装置
WO2003005007A1 (en) * 2001-07-05 2003-01-16 Nippon Sheet Glass Co., Ltd. Method and device for inspecting defect of sheet-shaped transparent body
JP2004212353A (ja) * 2003-01-09 2004-07-29 Tb Optical Co Ltd 光学的検査装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601577A (en) 1982-09-21 1986-07-22 Tokyo Shibaura Denki Kabushiki Kaisha Method and apparatus for detecting defects in a pattern
US5274434A (en) * 1990-04-02 1993-12-28 Hitachi, Ltd. Method and apparatus for inspecting foreign particles on real time basis in semiconductor mass production line
US5293538A (en) * 1990-05-25 1994-03-08 Hitachi, Ltd. Method and apparatus for the inspection of defects
JP3668294B2 (ja) * 1995-08-22 2005-07-06 オリンパス株式会社 表面欠陥検査装置
JP3025946B2 (ja) * 1995-10-11 2000-03-27 茨城県 物体表面の粗さ測定方法及び装置
US6381356B1 (en) * 1996-10-23 2002-04-30 Nec Corporation Method and apparatus for inspecting high-precision patterns
US5801824A (en) * 1996-11-25 1998-09-01 Photon Dynamics, Inc. Large area defect monitor tool for manufacture of clean surfaces
US6774991B1 (en) * 1999-05-27 2004-08-10 Inspex Incorporated Method and apparatus for inspecting a patterned semiconductor wafer
US7072034B2 (en) * 2001-06-08 2006-07-04 Kla-Tencor Corporation Systems and methods for inspection of specimen surfaces
JP2003307499A (ja) * 2002-04-15 2003-10-31 Mitsui Chemicals Inc 基板の欠陥観察方法
US7126699B1 (en) * 2002-10-18 2006-10-24 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional metrology and/or inspection of a specimen
JP4988223B2 (ja) * 2005-06-22 2012-08-01 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
CN1940540A (zh) * 2005-09-30 2007-04-04 Hoya株式会社 缺陷检查装置和缺陷检查方法
US7564544B2 (en) * 2006-03-22 2009-07-21 3i Systems Corporation Method and system for inspecting surfaces with improved light efficiency
JP5078583B2 (ja) * 2007-12-10 2012-11-21 インターナショナル・ビジネス・マシーンズ・コーポレーション マクロ検査装置、マクロ検査方法
JP2009283633A (ja) 2008-05-21 2009-12-03 Hitachi High-Technologies Corp 表面検査装置及び表面検査方法
US7623229B1 (en) * 2008-10-07 2009-11-24 Kla-Tencor Corporation Systems and methods for inspecting wafers
JP5417205B2 (ja) * 2010-01-29 2014-02-12 株式会社日立ハイテクノロジーズ 欠陥検査装置及び欠陥検査方法
JP2012013632A (ja) 2010-07-05 2012-01-19 Sumco Corp 表面欠陥検査装置および表面欠陥検出方法
EP2492668B1 (en) * 2011-02-28 2013-08-28 C.R.F. Società Consortile per Azioni System and method for monitoring painting quality of components, in particular of motor-vehicle bodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135353A (ja) * 1983-01-24 1984-08-03 Toshiba Corp 表面傷検出装置
JP2001349716A (ja) * 2000-06-07 2001-12-21 Sumitomo Chem Co Ltd 表面凹凸検査方法および装置
WO2003005007A1 (en) * 2001-07-05 2003-01-16 Nippon Sheet Glass Co., Ltd. Method and device for inspecting defect of sheet-shaped transparent body
JP2004212353A (ja) * 2003-01-09 2004-07-29 Tb Optical Co Ltd 光学的検査装置

Also Published As

Publication number Publication date
JP2016020824A (ja) 2016-02-04
EP3187861A1 (en) 2017-07-05
JP6436664B2 (ja) 2018-12-12
EP3187861B1 (en) 2021-08-25
US10209203B2 (en) 2019-02-19
EP3187861A4 (en) 2017-07-19
US20170131219A1 (en) 2017-05-11
TW201606288A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2016009920A1 (ja) 基板の検査装置及び基板の検査方法
JP4322890B2 (ja) 起伏検査装置、起伏検査方法、起伏検査装置の制御プログラム、記録媒体
JP5031691B2 (ja) 表面疵検査装置
TWI695164B (zh) 寬頻晶圓缺陷偵測系統及寬頻晶圓缺陷偵測方法
JP5014003B2 (ja) 検査装置および方法
WO2007145223A1 (ja) 起伏検査装置、起伏検査方法、起伏検査装置の制御プログラム、記録媒体
JP2017053764A (ja) ウェーハ検査方法およびウェーハ検査装置
JP5830229B2 (ja) ウエハ欠陥検査装置
JP2006292412A (ja) 表面検査装置、表面検査方法、及び基板の製造方法
WO2018168510A1 (ja) 円筒体表面検査装置および円筒体表面検査方法
JP6566903B2 (ja) 表面欠陥検出方法および表面欠陥検出装置
JP5787668B2 (ja) 欠陥検出装置
JP2010085165A (ja) 表面検査装置および表面検査方法
JP2015200544A (ja) 表面凹凸検査装置及び表面凹凸検査方法
JP4496257B2 (ja) 欠陥検査装置
JP2019066222A (ja) 外観検査装置および外観検査方法
JP4408902B2 (ja) 異物検査方法および装置
JP5367292B2 (ja) 表面検査装置および表面検査方法
JP2008139126A (ja) 欠陥検出装置および欠陥検出方法
JP6402082B2 (ja) 表面撮像装置、表面検査装置、及び表面撮像方法
JP2006003168A (ja) 表面形状の測定方法およびその装置
JP6251049B2 (ja) 表面形状検査装置
JP2009180597A (ja) 欠陥検出装置および欠陥検出方法
JP2017187938A (ja) 棒材の計数装置及び棒材の計数方法
JP5297717B2 (ja) 欠陥検出装置及び欠陥検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015822847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822847

Country of ref document: EP

REEP Request for entry into the european phase

Ref document number: 2015822847

Country of ref document: EP