WO2016009859A1 - 重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置 - Google Patents

重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置 Download PDF

Info

Publication number
WO2016009859A1
WO2016009859A1 PCT/JP2015/069335 JP2015069335W WO2016009859A1 WO 2016009859 A1 WO2016009859 A1 WO 2016009859A1 JP 2015069335 W JP2015069335 W JP 2015069335W WO 2016009859 A1 WO2016009859 A1 WO 2016009859A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
wavelength conversion
polymerizable liquid
quantum rod
crystal compound
Prior art date
Application number
PCT/JP2015/069335
Other languages
English (en)
French (fr)
Inventor
森嶌 慎一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016009859A1 publication Critical patent/WO2016009859A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a polymerizable liquid crystal composition, a wavelength conversion film, a wavelength conversion member and a method for producing the same, a backlight unit, and a liquid crystal display device.
  • Patent Document 1 discloses an aspect in which polarized light is obtained by irradiating an optically active structure including quantum rods oriented in one direction with pumping light, and is useful as a backlight system for a display device. Is marked.
  • the quantum rod is oriented by mechanically stretching a polymer film in which the quantum rod is dispersed.
  • Patent Document 2 discloses a liquid crystal display including a nematic liquid crystal and a zinc sulfide or zinc oxide nanorod having a domain-like structure, and each nanorod in the domain is arranged in a substantially parallel state. Nanorod formulations are disclosed. In this formulation, the orientation of the nanorods is controlled by the characteristics of the nematic liquid crystal.
  • nanorods with extremely small dimensions, which have an inner diameter of 1.2 nm and a length of 4.0 nm, are specifically used.
  • the quantum rods cannot be sufficiently oriented. Therefore, the polarized light emission property of the polymer film that has been subjected to the stretching treatment does not necessarily satisfy the level required recently.
  • polarized light emission means a property of emitting predetermined polarized light, and when the polarized light emission property is excellent, the intensity of a specific polarization becomes high. Moreover, productivity is not necessarily good in the above stretching treatment, and it is difficult to reduce the thickness of the resulting film.
  • the polarized light emission does not necessarily satisfy the level required recently. Furthermore, in Patent Document 2, since the liquid crystal compound is aligned using an external electric field, the orientation of the nanorods is easily lost when the application of the external electric field is stopped. In particular, in a high-temperature and high-humidity environment, the orientation of the liquid crystal compound is likely to be lost, and as a result, the polarized light emission is reduced.
  • the present invention provides a polymerizable liquid crystal compound that can easily produce a wavelength conversion film that is excellent in polarized light emission and that suppresses a decrease in polarized light emission even in a high-temperature and high-humidity environment. Is an issue. Moreover, this invention also makes it a subject to provide a wavelength conversion film, a wavelength conversion member, its manufacturing method, a backlight unit, and a liquid crystal display device.
  • a desired wavelength conversion film can be obtained by using a quantum rod having a predetermined size and a polymerizable liquid crystal compound in combination. I found that the problem could be solved. That is, it has been found that the above object can be achieved by the following configuration.
  • the length of the long axis of the quantum rod is 20 to 100 nm
  • the aspect ratio is the ratio of the long axis length to the short axis length of the quantum rod.
  • the quantum rod is A quantum rod (A) having an emission center wavelength in a wavelength band in the range of 600 to 680 nm and a half width of 60 nm or less; Quantum rod (B) having an emission center wavelength in the wavelength range of 500 to 600 nm and a half width of 60 nm or less, and an emission center wavelength in a wavelength range of 430 to 480 nm and a half width of 60 nm.
  • the polymerizable liquid crystal composition according to (1) comprising at least one selected from the group consisting of the following quantum rods (C).
  • Quantum rod is CdS, CdSe, CdTe, ZnS, ZnSe, ZnSeS, ZnTe, ZnO, GaAs, GaP, GaAs, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, AlSb, CuS And at least one component selected from the group consisting of Cu 2 S, Cu 2 Se, CuInS, CuInS 2 , CuInSe 2 , Cu 2 (ZnSn) S 4 , and Cu 2 (InGa) S 4 , The polymerizable liquid crystal composition according to 1) or (2).
  • Lq represents the length of the long axis of the quantum rod
  • Lp represents the length of the molecular long axis of the polymerizable liquid crystal compound X.
  • the polymerizable liquid crystal compound includes at least one selected from the group consisting of a liquid crystal compound having one polymerizable group and a liquid crystal compound having two polymerizable groups (1) to (4) The polymerizable liquid crystal composition according to any one of the above.
  • the oxygen permeability is 50 cm 3 / (m 2 ⁇ day ⁇ atm) or less, disposed on at least one surface of the wavelength conversion film according to (11) or (12) and the wavelength conversion film.
  • a wavelength conversion member comprising a support.
  • the wavelength conversion member according to (13), wherein the support is disposed on both surfaces of the wavelength conversion film.
  • the support is a barrier film having an inorganic layer containing silicon oxide, silicon nitride, silicon carbide, or aluminum oxide.
  • the barrier film includes an inorganic layer and at least one organic layer on the inorganic layer.
  • a backlight unit comprising the wavelength conversion member according to any one of (13) to (17) and at least a blue light emitting diode or an ultraviolet light emitting diode.
  • a liquid crystal display device comprising at least the backlight unit according to any one of (18) to (20) and a liquid crystal cell.
  • the present invention it is an object of the present invention to provide a polymerizable liquid crystal compound that can easily produce a wavelength conversion film that is excellent in polarized light emission and that suppresses the decrease in polarized light emission even in a high-temperature and high-humidity environment. Moreover, according to this invention, the wavelength conversion film, the wavelength conversion member, its manufacturing method, a backlight unit, and a liquid crystal display device can also be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a quantum rod having a predetermined size and a polymerizable liquid crystal compound are used. If the size of the quantum rod is within a predetermined range, the polymerizable liquid crystal compound acts cooperatively when aligned, the quantum rod is easily aligned in a specific direction, and excellent polarized light emission is obtained. Further, by using a polymerizable liquid crystal compound that is a liquid crystal compound having a polymerizable group, polymerization can be performed in a state where the liquid crystal compound is aligned, and the alignment state of the liquid crystal compound can be fixed.
  • the movement of the quantum rods aligned in a predetermined direction is suppressed, and the alignment state can be fixed. Therefore, even in a high-temperature and high-humidity environment, the mobility of the quantum rod is limited by the polymer matrix, and the orientation of the quantum rod is easily maintained, and as a result, a decrease in polarized light emission is suppressed.
  • the aspect ratio of the quantum rod (the long axis of the quantum rod / the short axis of the quantum rod) is 4 to 20, and 4 to 15 is preferable and 4 to 10 is more preferable in that the effect of the present invention is more excellent. If the aspect ratio is less than 4, the shape anisotropy of the quantum rod becomes insufficient, and the polarization emission property of the quantum rod itself is reduced (that is, it becomes non-polarized light emission as well as the quantum dot). The effect of direct orientation is significantly impaired. On the other hand, when the aspect ratio is more than 20, it cannot be dispersed in the liquid crystal compound and phase separation occurs, resulting in white turbidity.
  • the aspect ratio is an average value, and is an arithmetic average value obtained by measuring the aspect ratio of 20 or more arbitrarily selected quantum rods with a microscope (for example, a transmission electron microscope).
  • the composition of the present invention may contain components other than the above-described quantum rod and polymerizable liquid crystal compound.
  • examples thereof include a monomer having a polymerizable group different from the polymerizable liquid crystal compound, a polymerization initiator, a solvent, and a surfactant.
  • optional components that may be added to the composition will be described in detail.
  • Step A is a step of rubbing the support surface.
  • the method of rubbing treatment is not particularly limited, and a known method can be adopted.
  • a method of obtaining orientation by rubbing the surface of the support in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used.
  • it is carried out by rubbing several times using a cloth or the like in which fibers having a uniform length and thickness are planted on average.
  • a general method for rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
  • the description in JP-A-2003-329833 can be referred to.
  • the quantum rods dispersed in the polymerizable liquid crystal compound are also aligned, and as a result, a plurality of quantum rods are aligned in one direction in the composition (coating film). A state is formed.
  • a suitable alignment state of the polymerizable liquid crystal compound when the polymerizable rod-like liquid crystal compound is used, it is preferable to horizontally align the polymerizable rod-like liquid crystal compound.
  • horizontal alignment means that the molecular major axis direction of the rod-like liquid crystal compound is parallel to the coating film surface (layer surface).
  • the quantum rod is also horizontally aligned with the polymerizable rod-like liquid crystal compound.
  • the “horizontal orientation” means that the long axis direction of the quantum rod and the coating surface (layer surface) are parallel. “Parallel” does not require strictly parallel, but means an orientation with an inclination angle of 20 ° or less between the major axis direction of the quantum rod and the coating surface (layer surface).
  • the inclination angle is preferably 0 to 5 °, more preferably 0 to 3 °, still more preferably 0 to 2 °, and most preferably 0 to 1 °.
  • the polymerizable discotic liquid crystal compound is vertically aligned.
  • vertical alignment means that the disc surface of the discotic liquid crystal compound and the coating surface (layer surface) are vertical.
  • “Vertical” does not require strictly vertical, but means an orientation in which the tilt angle formed by the disc surface of the discotic liquid crystal compound and the coating surface (layer surface) is 70 ° or more.
  • the inclination angle is preferably 85 to 90 °, more preferably 87 to 90 °, still more preferably 88 to 90 °, and most preferably 89 to 90 °.
  • the incident angle of the measurement light to the optically anisotropic layer is changed, and three or more The retardation value is measured at the measurement angle.
  • Such measurements include KOBRA-21ADH and KOBRA-WR (manufactured by Oji Scientific Instruments), transmission type ellipsometer AEP-100 (manufactured by Shimadzu Corporation), M150 and M520 (manufactured by JASCO Corporation). , ABR10A (manufactured by UNIOPT Co., Ltd.).
  • the refractive index of ordinary light in each layer is no
  • the refractive index of extraordinary light is ne (ne is the same in all layers, and no is the same)
  • the thickness of the entire multilayer body is Let d.
  • the calculation of the angular dependence of the retardation value of the optically anisotropic layer agrees with the measured value. Fitting is performed using the tilt angle ⁇ 1 on one surface of the isotropic layer and the tilt angle ⁇ 2 on the other surface as variables, and ⁇ 1 and ⁇ 2 are calculated.
  • known values such as literature values and catalog values can be used for no and ne. If the value is unknown, it can also be measured using an Abbe refractometer.
  • the thickness of the optically anisotropic layer can be measured by an optical interference film thickness meter, a cross-sectional photograph of a scanning electron microscope, or the like.
  • the alignment characteristics vary depending on the type of the polymerizable liquid crystal compound in the coating film, it is preferable that the slow axis of the polymerizable liquid crystal compound and the long axis of the quantum rod are parallel to each other. Parallel does not require strictly parallel, but means that the angle formed between the slow axis of the polymerizable liquid crystal compound and the long axis of the quantum rod is 20 ° or less.
  • the angle is preferably 0 to 5 °, more preferably 0 to 3 °, still more preferably 0 to 2 °, and most preferably 0 to 1 °.
  • the method for fixing the alignment state of the polymerizable liquid crystal compound is preferably carried out by advancing polymerization of a polymerizable group in the polymerizable liquid crystal compound.
  • the procedure for proceeding the polymerization is not particularly limited, and includes heat treatment or light irradiation treatment (ultraviolet irradiation, electron beam irradiation, etc.), and light irradiation treatment is preferable.
  • heat treatment it is preferable to perform the heat treatment at 90 to 150 ° C. for 10 to 120 minutes. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 10 mJ / cm 2 to 50 J / cm 2 .
  • light irradiation may be performed under heating conditions.
  • Step D is a step of forming an alignment film that has been subjected to an alignment treatment on a support. By carrying out this step, an alignment film to which the polymerizable liquid crystal composition is applied is formed.
  • the type of the alignment film subjected to the alignment treatment is not particularly limited, and examples thereof include an alignment film subjected to rubbing treatment and a photo alignment film subjected to photo alignment treatment.
  • the alignment film that has been subjected to the rubbing treatment is a film that has been treated so as to have the ability to regulate the alignment of the liquid crystal compound by the rubbing treatment. Examples of the rubbing treatment method include the method described in the above-described step A.
  • a material constituting the alignment film a known material can be used.
  • the photo-alignment treatment is a treatment for irradiating the photo-alignment group contained in the photo-alignment film with light and arranging it in a certain direction to impart liquid crystal alignment ability.
  • One method of the photo-alignment treatment includes a method of irradiating the photo-alignment film with polarized light.
  • wavelength conversion film By the manufacturing method described above, a wavelength conversion film exhibiting predetermined characteristics can be obtained.
  • the quantum rods are fixed in a state of being oriented in a predetermined direction, exhibiting excellent polarized light emission properties, and excellent after carrying out a durability test that is left in a high-temperature and high-humidity environment. Shows polarized light emission.
  • the wavelength conversion film can be suitably used as a constituent member of a backlight unit of a liquid crystal display device.
  • the polymer matrix is a matrix obtained by polymerizing the above-described polymerizable liquid crystal compound.
  • the polymer matrix has a crosslinked structure formed by polymerizing a polymerizable liquid crystal compound having two or more polymerizable groups.
  • a dimensional matrix is mentioned.
  • the polymer matrix includes a liquid crystal structure derived from a polymerizable liquid crystal compound. That is, a repeating unit having a liquid crystal structure as a partial structure is included in the polymer matrix. Further, since the polymerization is performed in a state where the polymerizable liquid crystal compound is aligned as described above, the liquid crystal structure is fixed while being aligned in a predetermined direction.
  • the liquid crystal structure (liquid crystal molecular structure) intends a structural portion exhibiting liquid crystallinity, and includes a partial structure exhibiting liquid crystallinity contained in the polymerizable liquid crystal compound contained in the above-described composition.
  • the liquid crystal structure (rod-like liquid crystal structure) in the polymer matrix is preferably horizontally aligned.
  • horizontal alignment intends that the molecular major axis direction of a liquid crystal structure and the wavelength conversion film surface are parallel. “Parallel” does not require strictly parallel, but means an orientation in which the inclination angle formed by the major axis direction of the liquid crystal structure and the surface of the wavelength conversion film is 20 ° or less.
  • the inclination angle is preferably 0 to 5 °, more preferably 0 to 3 °, still more preferably 0 to 2 °, and most preferably 0 to 1 °.
  • the liquid crystal structure (discotic liquid crystal structure) in the polymer matrix is preferably vertically aligned.
  • “Vertical alignment” means that the disc surface of the discotic liquid crystal structure is perpendicular to the surface of the wavelength conversion film. “Vertical” does not require strictly vertical, but means an orientation in which an inclination angle formed by the disc surface of the discotic liquid crystal structure and the surface of the wavelength conversion film is 70 ° or more. The inclination angle is preferably 85 to 90 °, more preferably 87 to 90 °, still more preferably 88 to 90 °, and most preferably 89 to 90 °.
  • the quantum rods dispersed in the polymer matrix are aligned and fixed in a predetermined direction together with the alignment of the polymerizable liquid crystal compound. That is, the quantum rod is oriented so that the long axis of the quantum rod is parallel to one direction.
  • the quantum rod is also horizontally aligned with the liquid crystal structure.
  • the “horizontal orientation” means that the major axis direction of the quantum rod and the surface of the wavelength conversion film are parallel.
  • “Parallel” does not require strictly parallel, but means an orientation in which the inclination angle formed between the major axis direction of the quantum rod and the surface of the wavelength conversion film is 20 ° or less.
  • the inclination angle is preferably 0 to 5 °, more preferably 0 to 3 °, still more preferably 0 to 2 °, and most preferably 0 to 1 °.
  • the quantum rod which is not oriented may be contained.
  • the said wavelength conversion film can be used as a wavelength conversion member by laminating
  • a wavelength conversion member provided with a wavelength conversion film and a support disposed on at least one surface of the wavelength conversion film can be mentioned.
  • the support body may be arrange
  • the type of support includes a resin substrate. Among them, a support having an oxygen permeability of 50 cm 3 / (m 2 ⁇ day ⁇ atm) or less is preferable in that oxygen inhibition of light emission characteristics of the wavelength conversion film can be further suppressed.
  • the oxygen permeability of the support is preferably 10 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and more preferably 1 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability is measured by a method according to JIS K 7126 (differential pressure method). Specifically, it is a value measured using an oxygen gas permeability measuring device (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%.
  • a so-called barrier film can be suitably used as the support.
  • the barrier film is a layer having a gas barrier function of blocking oxygen. It is also preferable that the barrier film has a function of blocking water vapor.
  • the barrier film is preferably contained in the wavelength conversion member as a layer adjacent to or directly in contact with the wavelength conversion film.
  • One or more barrier films may be included in the wavelength conversion member, and the wavelength conversion member has a structure in which a barrier film, a wavelength conversion film, and a barrier film are laminated in this order. Preferably it is.
  • the barrier film preferably has a total light transmittance of 80% or more in the visible light region and an oxygen permeability of 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the measuring method of oxygen permeability is as above-mentioned.
  • the visible light region is a wavelength region of 380 to 780 nm, and the total light transmittance is an average value of light transmittance over the visible light region.
  • the “inorganic layer” is a layer mainly composed of an inorganic material, and is preferably a layer formed only from an inorganic material.
  • the organic layer is a layer containing an organic material as a main component and intended for a layer having an organic material content of 50% by mass or more, preferably 80% by mass or more, and 90% by mass or more. More preferred.
  • metal oxides, nitrides, oxynitrides or carbides selected from Si, Al, In, Sn, Zn, Ti are preferable, and in particular, metal oxides, nitrides, oxynitrides or Si or Al Carbides are more preferable, including one of silicon oxide, silicon nitride, silicon carbide, and aluminum oxide, particularly preferably silicon nitride.
  • a method for forming the inorganic layer is not particularly limited, and various film formation methods that can evaporate or scatter the film formation material and deposit it on the deposition surface can be used.
  • the thickness of the inorganic layer is preferably 1 to 500 nm, more preferably 5 to 300 nm, and even more preferably 10 to 150 nm.
  • the organic layer preferably contains a cardo polymer. Thereby, the adhesiveness between the organic layer and the adjacent layer, particularly the adhesiveness with the inorganic layer is improved, and a further excellent gas barrier property can be realized.
  • the thickness of the organic layer is preferably 0.05 to 10 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the wavelength conversion member can be used as a constituent member of a backlight unit.
  • the backlight unit includes a light source together with at least the wavelength conversion member.
  • the light source one that emits blue light having an emission center wavelength in a wavelength band of 430 nm to 480 nm, for example, a blue light emitting diode that emits blue light can be used.
  • the wavelength conversion film preferably includes at least a quantum rod A that is excited by excitation light and emits red light, and a quantum todd B that emits green light.
  • white light can be embodied by blue light emitted from the light source and transmitted through the wavelength conversion member, and red light and green light emitted from the wavelength conversion member.
  • a light source that emits ultraviolet light having an emission center wavelength in a wavelength band of 300 nm to 430 nm, for example, an ultraviolet light emitting diode can be used.
  • the wavelength conversion film preferably includes the quantum rods A and B, and the quantum rod C that is excited by the excitation light and emits blue light.
  • white light can be embodied by red light, green light, and blue light emitted from the wavelength conversion member.
  • a laser light source can be used instead of the light emitting diode.
  • the backlight unit preferably includes a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M Limited), and a light guide.
  • a known diffusion plate for example, BEF series manufactured by Sumitomo 3M Limited
  • prism sheet for example, BEF series manufactured by Sumitomo 3M Limited
  • a light guide for example, BEF series manufactured by Sumitomo 3M Limited
  • Other members are also described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the above backlight unit can be applied to a liquid crystal display device.
  • the liquid crystal display device may include at least the backlight unit and the liquid crystal cell.
  • the driving mode of the liquid crystal cell is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), and optically compensated bend cell (OCB).
  • TN twisted nematic
  • STN super twisted nematic
  • VA vertical alignment
  • IPS in-plane switching
  • OCB optically compensated bend cell
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 is given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • This coating solution was applied onto the PET film with a roll toe roll using a die coater, and passed through a drying zone at 50 ° C. for 3 minutes. Then, ultraviolet rays were irradiated in a nitrogen atmosphere (accumulated dose: about 600 mJ / cm 2 ), cured by UV (ultraviolet light) curing, and wound up.
  • the thickness of the first organic layer formed on the PET film was 1 ⁇ m.
  • an inorganic layer (silicon nitride layer) was formed on the surface of the first organic layer using a roll-to-roll CVD (chemical vapor deposition) apparatus.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • a high frequency power supply having a frequency of 13.56 MHz was used as the power supply.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • the barrier film 10 in which the inorganic layer was laminated on the surface of the first organic layer was produced.
  • a second organic layer was laminated on the surface of the inorganic layer of the barrier film 10 according to the following procedure.
  • a urethane skeleton acrylic polymer (Acrit 8BR500 manufactured by Taisei Fine Chemical Co., Ltd.) and a photopolymerization initiator (Irgacure 184 manufactured by Ciba Chemical Co., Ltd.) are weighed to a mass ratio of 95: 5, dissolved in methyl ethyl ketone, and a solid content concentration of 15 % Coating solution.
  • This coating solution was applied to the surface of the inorganic layer of the barrier film 10 by a roll toe roll using a die coater, passed through a 100 ° C. drying zone for 3 minutes, and wound up.
  • the thickness of the formed second organic layer was 1 ⁇ m.
  • Example 1 (Preparation of quantum rod-containing polymerizable liquid crystal composition 1) The following quantum rod-containing polymerizable liquid crystal composition 1 was prepared, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and used as a coating solution.
  • Quantum rod-containing polymerizable liquid crystal composition 1 100 parts by mass of toluene dispersion of quantum rod 1 (emission center wavelength: 520 nm, half-value width: 25 nm) 100 parts by mass of toluene dispersion of quantum rod 2 (emission center wavelength: 630 nm, half-value width: 30 nm) 80 parts by mass of the following rod-like liquid crystal compound (A) 20 parts by mass of the following rod-like liquid crystal compound (B) Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass sensitizer (Kayacure DETX, Nippon Kayaku) 1 part by mass Fluoropolymer (FP4) 0.3 parts by mass methyl ethyl ketone (MEK) 193 parts by mass cyclohexanone 50 parts by mass ⁇ ⁇
  • the quantum rod 1 in the “toluene dispersion of the quantum rod 1” is a core / shell type quantum rod having a core made of CdSe and a shell made of CdS (long axis: 36 nm, short axis: 7 nm, aspect ratio Ratio (major axis / minor axis): 5.1), and the concentration of the quantum rod 1 with respect to the total amount of the toluene dispersion was 1% by mass.
  • the quantum rod 2 in the “toluene dispersion of the quantum rod 2” is a core / shell type quantum rod having a core made of CdSe and a shell made of CdS (long axis: 25 nm, short axis: 3 nm, aspect ratio (Major axis / minor axis): 8.3), and the concentration of the quantum rod 2 with respect to the total amount of the toluene dispersion was 1% by mass.
  • the length (molecular length) of the molecular long axis of the rod-shaped liquid crystal compound (A) was 3.7 nm
  • the length (molecular length) of the molecular long axis of the rod-shaped liquid crystal compound (B) was 3.0 nm.
  • the barrier film 10 was prepared, and the coating liquid for forming the alignment film 1 having the following composition was continuously applied to the inorganic layer surface with a # 8 wire bar.
  • the alignment film 1 was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • the thickness of the alignment film 1 was 0.5 ⁇ m.
  • Composition of coating solution for alignment film 1 formation ⁇ Modified polyvinyl alcohol below 2.4 parts by weight Isopropyl alcohol 1.6 parts by weight Methanol 36 parts by weight Water 60 parts by weight ⁇ ⁇
  • the quantum rod-containing polymerizable liquid crystal composition 1 was applied to the surface of a slide glass and observed with a polarizing microscope while heating. As a result, it was confirmed to have nematic liquid crystal properties.
  • the surface of the alignment film 1 disposed on the barrier film 10 was rubbed.
  • the quantum rod-containing polymerizable liquid crystal composition 1 was applied on the rubbing-treated surface using a bar coater.
  • the film surface temperature was 100 ° C. for 60 seconds and the film was aged and oriented in the nematic phase, then cooled to 70 ° C., and an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 70 mW / cm 2 was used under air.
  • the wavelength conversion film 1 was formed by irradiating ultraviolet rays of 1000 mJ / cm 2 and fixing the alignment state.
  • the thickness of the wavelength conversion film 1 was 7.0 ⁇ m.
  • the barrier film 10 on which the wavelength conversion film 1 is formed is wound around a backup roller, and the barrier film 10 is laminated on the wavelength conversion film 1 so that the inorganic layer surface is in contact with the wavelength conversion film 1.
  • the wavelength conversion member 1 which sandwiched the wavelength conversion film 1 was formed.
  • Example 2 (Production of wavelength conversion member 2) A barrier film 11 was prepared, and the coating liquid for forming the alignment film 1 was continuously applied on the second organic layer surface with a # 8 wire bar.
  • the alignment film 2 was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • the thickness of the alignment film 2 was 0.5 ⁇ m.
  • the surface of the alignment film 2 disposed on the barrier film 11 was rubbed.
  • the quantum rod-containing polymerizable liquid crystal composition 1 was applied on the rubbing surface using a bar coater.
  • the film surface temperature was 100 ° C. for 60 seconds and the film was aged and oriented in the nematic phase, then cooled to 70 ° C., and an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 70 mW / cm 2 was used under air.
  • the wavelength conversion film 2 was formed by irradiating with 1000 mJ / cm 2 of ultraviolet rays to fix the orientation state.
  • the thickness of the wavelength conversion film 2 was 7.0 ⁇ m.
  • the barrier film 11 on which the wavelength conversion film 2 is formed is wound around a backup roller, and the barrier film 11 is laminated on the wavelength conversion film 2 so that the second organic layer surface is in contact with the wavelength conversion film 2. 11, the wavelength conversion member 2 which sandwiched the wavelength conversion film 2 was formed.
  • Example 3 (Preparation of quantum rod-containing polymerizable liquid crystal composition 3) The following quantum rod-containing polymerizable liquid crystal composition 3 was prepared, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and used as a coating solution.
  • Quantum rod-containing polymerizable liquid crystal composition 3 100 parts by mass of toluene dispersion of quantum rod 1 (emission center wavelength: 520 nm, half-value width: 25 nm) 100 parts by mass of toluene dispersion of quantum rod 2 (emission center wavelength: 630 nm, half-value width: 30 nm)
  • Rod-shaped liquid crystal compound (A) 80 parts by mass Lauryl methacrylate 20 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Fluoropolymer (FP4) 0.3 parts by weight methyl ethyl ketone (MEK) 193 parts by weight cyclohexanone 50 parts by weight ⁇ ⁇
  • the barrier film 11 was prepared, and the coating liquid for forming the photo-alignment film 3 having the following composition was applied on the second organic layer surface with a wire bar.
  • the film was dried with warm air of 100 ° C. for 120 seconds, and irradiated with an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 300 mW / cm 2 under air.
  • the produced photo-alignment film 3 was vertically irradiated with ultraviolet rays using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 mW / cm 2 under air.
  • Example 6 (Preparation of quantum rod-containing polymerizable liquid crystal composition 6) Except for changing the rod-like liquid crystal compound (B) in the quantum rod-containing polymerizable liquid crystal composition 1 used in Example 1 to a rod-like liquid crystal compound (B ′) having a group (carboxyl group) adsorbing to the following quantum rod.
  • a rod-like liquid crystal compound (B ′) having a group (carboxyl group) adsorbing to the following quantum rod. was prepared in the same manner as in Example 1, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and then used as the quantum rod-containing polymerizable liquid crystal composition 6.
  • the length (molecular length) of the molecular long axis of the rod-like liquid crystal compound (B ′) is 3.7 nm.
  • the above-described quantum rod-containing polymerizable liquid crystal composition 6 was applied to the surface of a slide glass and observed with a polarizing microscope while heating. As a result, it was confirmed to have nematic liquid crystal properties.
  • the thickness of the wavelength conversion film 6 was 7.0 ⁇ m.
  • the barrier film 10 on which the wavelength conversion film 6 is formed is wound around a backup roller, and the barrier film 10 is laminated on the wavelength conversion film 6 so that the inorganic layer surface is in contact with the wavelength conversion film 6.
  • a wavelength conversion member 6 sandwiching the wavelength conversion film 6 was formed.
  • Example 7 (Preparation of quantum rod-containing polymerizable liquid crystal composition 7)
  • the rod-like liquid crystal compound (B) in the quantum rod-containing polymerizable liquid crystal composition 1 used in Example 1 was changed to a rod-like liquid crystal compound (B ′′) having a group (amino group) adsorbed on the following quantum rod. Except for the above, it was prepared in the same manner as in Example 1, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and then used as the quantum rod-containing polymerizable liquid crystal composition 7.
  • the length of the molecular long axis (molecular length) of the rod-like liquid crystal compound (B ′′) is 3.7 nm.
  • the quantum rod-containing polymerizable liquid crystal composition 7 was applied on the surface of a slide glass and observed with a polarizing microscope while heating. As a result, it was confirmed to have nematic liquid crystal properties.
  • Example 1 Example 1 except that the following toluene dispersion of the quantum rod 3 was used instead of the toluene dispersion of the quantum rod 1, and the following toluene dispersion of the quantum rod 4 was used instead of the toluene dispersion of the quantum rod 2. According to the same procedure, the wavelength conversion member 10 in which the wavelength conversion film 10 was sandwiched by the barrier film 10 was formed.
  • Quantum rod 3 toluene dispersion (emission center wavelength: 530 nm, half width: 25 nm)
  • Quantum rod 4 toluene dispersion (emission center wavelength: 640 nm, half width: 30 nm)
  • the quantum rod 3 of the “toluene dispersion of the quantum rod 3” is a core / shell type quantum rod having a core made of CdSe and a shell made of ZnS (long axis: 3.3 nm, short axis: 3. 0 nm, aspect ratio (major axis / minor axis): 1.1), and the concentration of the quantum rod 3 with respect to the total amount of the toluene dispersion was 1% by mass.
  • the quantum rod of the toluene dispersion of the quantum rod 4 is a core / shell type quantum rod having a core made of CdSe and a shell made of ZnS (long axis: 6.3 nm, short axis: 4.0 nm, aspect ratio (Major axis / minor axis): 1.5), and the concentration of the quantum rod 4 with respect to the total amount of the toluene dispersion was 1% by mass.
  • the quantum rod of the toluene dispersion of the quantum rod 5 is a ZnS rod (long axis: 4.0 nm, short axis: 1.2 nm, aspect ratio (long axis / short axis): 3.3),
  • concentration with respect to the toluene dispersion liquid whole quantity of the quantum rod 5 was 1 mass%.
  • Quantum rod-containing liquid crystal composition 30 ⁇ 100 parts by mass of toluene dispersion of quantum rod 6 (emission center wavelength: 520 nm, half-value width: 25 nm) 100 parts by mass of toluene dispersion of quantum rod 7 (emission center wavelength: 630 nm, half width: 30 nm)
  • the following rod-like liquid crystal compound (D) 100 parts by mass photopolymerization initiator (Irgacure 907, manufactured by Ciba Japan) 3 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Polymer (FP4) 0.3 parts by weight Methyl ethyl ketone (MEK) 193 parts by weight cyclohexanone 50 parts by weight ⁇ ⁇
  • the quantum rod 6 in the “toluene dispersion of the quantum rod 6” is a core / shell type quantum rod having a core made of CdSe and a shell made of CdS (long axis: 36 nm, short axis: 7 nm, aspect ratio Ratio (major axis / minor axis): 5.1), and the concentration of the quantum rod 6 with respect to the total amount of the toluene dispersion was 1% by mass.
  • the quantum rod 7 of the “toluene dispersion of quantum rod 7” is a core / shell type quantum rod having a core of CdSe and a shell of CdS (molecular long axis: 25 nm, short axis: 3 nm, aspect ratio (Long axis / short axis): 8.3), and the concentration of the quantum rod 7 with respect to the total amount of the toluene dispersion was 1% by mass.
  • Example 3 the tilt angle of the optical axis was 0 °, and it was confirmed that the rod-like liquid crystal was horizontally aligned perpendicular to the transmission axis of the wire grid polarizer (that is, the polarization irradiation direction). In Example 4, it was confirmed that the discotic liquid crystal was vertically aligned perpendicular to the rubbing direction.
  • the polarized light emission property of the wavelength conversion films prepared in Examples 1 to 7 and Comparative Examples 1 to 3 was measured by the following method. After irradiating the wavelength conversion member produced in Example 1 with a blue LED (Light Emitting Diode) and removing the blue light from the converted green light and red light through a filter, the emission intensity is measured by a CCD (Charge Coupled Device). ). At this time, the intensity in two polarization directions, that is, the rubbing direction and the direction orthogonal to the rubbing direction was measured with a polarizer.
  • a blue LED Light Emitting Diode
  • CCD Charge Coupled Device
  • the measured polarization emission ratio (intensity in the rubbing direction: intensity in the direction orthogonal to the rubbing direction) was 8: 1.
  • the wavelength conversion member prepared in Example 2 to 7 and Comparative Examples 1 to 3 was used, and the polarization emission ratio was measured by the above procedure. The results are summarized in Table 1 described later.
  • strength of the transmission axis direction of a wire grid polarizer and the direction orthogonal to the transmission axis direction is measured, and polarization emission ratio (orthogonal to the transmission axis direction) Direction strength: strength in the transmission axis direction).
  • the polarization emission ratio (intensity in the direction orthogonal to the rubbing direction: intensity in the rubbing direction) was 6: 1.
  • the wavelength conversion member (wavelength conversion film) exhibited excellent polarized light emission, and there was little decrease in polarized light emission even after the durability test.
  • Examples 8 to 14, Comparative Examples 4 to 6 Manufacture of liquid crystal display devices
  • a wavelength conversion member produced in Examples 1 to 7 and Comparative Examples 1 to 3 was disassembled between a backlight side polarizing plate and a backlight unit by disassembling a commercially available liquid crystal display device (trade name TH-L42D2 manufactured by Panasonic Corporation).
  • the liquid crystal display devices of Examples 8 to 14 and Comparative Examples 4 to 6 were manufactured by arranging each of them and changing the backlight unit to the following B narrow band backlight unit. At this time, it arrange
  • the wavelength conversion member of Comparative Example 1 is used for the liquid crystal display device of Comparative Example 4
  • the wavelength conversion member of Comparative Example 2 is used for the liquid crystal display device of Comparative Example 5
  • the wavelength conversion member of Comparative Example 3 is used for the liquid crystal display device of Comparative Example 6.
  • a member is used.
  • the used B narrow band backlight unit includes a blue light emitting diode (Nichia B-LED: Royal Blue, main wavelength 445 nm, half-value width 20 nm, hereinafter also referred to as B light source) as a light source.
  • a reflection member that re-reflects the light emitted from the light source and reflected by the wavelength conversion member is provided at the rear of the light source.
  • X0 represents a color reproduction range (NTSC ratio) before continuous irradiation
  • X1 represents a color reproduction range (NTSC ratio) after continuous irradiation.
  • ⁇ X [%] (X0 ⁇ X1) / X0 ⁇ 100 Based on the value of ⁇ X obtained, the color gamut (NTSC ratio) change was evaluated according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 本発明は、偏光発光性に優れ、高温高湿環境下でも偏光発光性の低下が抑制される波長変換フィルムを簡便に製造することができる重合性液晶化合物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、並びに、液晶表示装置を提供する。本発明の重合性液晶組成物は、入射する励起光により励起され蛍光を発光する量子ロッド、および、重合性液晶化合物を含み、量子ロッドの長軸の長さが20~100nmであり、量子ロッドのアスペクト比が4~20である。なお、アスペクト比は、量子ロッドの長軸の長さと短軸の長さとの比である。

Description

重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
 本発明は、重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、および、液晶表示装置に関する。
 光の偏光特性は、テレビ、コンピューター、携帯電話など種々の表示デバイスにおいて利用されている。通常、光源から発生させた光は非偏光であるため、偏光子を用いて偏光を得る場合が多い。しかし、偏光子を用いて特定の偏光を得る態様ではエネルギー損失を伴い、通常、入射光の略50%が失われる。
 上記のような問題に対して、近年、量子ロッドを用いる態様が提案されている。量子ロッドとは、棒状(ロッド状)の半導体化合物の微粒子(半導体ナノ結晶)であり、形状が棒状で指向性を持つため、偏光を発する。
 例えば、特許文献1においては、一方向に配向した量子ロッドを含む光学活性構造体にポンピング光を照射して、偏光を得る態様が開示されており、表示デバイスのバックライトシステムとして有用である旨が記されている。なお、特許文献1の実施例欄においては、量子ロッドが分散したポリマーフィルムを機械的に引き伸ばすことによって、量子ロッドの配向を行っている。
 また、特許文献2においては、ネマチック液晶と、ドメイン状構造を有する硫化亜鉛若しくは酸化亜鉛ナノロッドであって、ドメイン内各々のナノロッドは実質的に平行な状態に並んでいるナノロッドとを含む液晶ディスプレイ用ナノロッド配合物が開示されている。この配合物においては、ネマチック液晶の特性により、ナノロッドの配向性の制御が行われている。なお、特許文献2では、内径1.2nmおよび長さ4.0nmである極めて小さな寸法のナノロッドが具体的に使用されている。
特表2014-502403号公報 特開2010-144032号公報
 一方、特許文献1で使用されるようなポリマーフィルムの延伸処理により量子ロッドを配向させる処理では、量子ロッドの配向を十分に実施することができない。そのため、延伸処理が施されたポリマーフィルムの偏光発光性は、昨今求められるレベルを必ずしも満たしてない。なお、偏光発光性とは、所定の偏光を発光する性質を意図し、偏光発光性が優れる場合は、特定の偏光の強度が高くなる。
 また、上記のような延伸処理では生産性が必ずしも良くなく、かつ、得られる膜の薄膜化も困難である。
 また、特許文献2で具体的に開示されているような、液晶化合物と小さな寸法のナノロッドとを含む配合物においても、偏光発光性は昨今求められるレベルを必ずしも満たしてない。
 さらに、特許文献2では外部電場を使用して液晶化合物を配向させているため、外部電場の印加をやめると、ナノロッドの配向性が失われやすい。特に、高温高湿環境下においては、液晶化合物の配向性が失われやすく、結果として偏光発光性が低下する。
 本発明は、上記実情に鑑みて、偏光発光性に優れ、高温高湿環境下でも偏光発光性の低下が抑制される波長変換フィルムを簡便に製造することができる重合性液晶化合物を提供することを課題とする。
 また、本発明は、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、並びに、液晶表示装置を提供することも課題とする。
 本発明者は、従来技術の問題点について鋭意検討した結果、所定の大きさの量子ロッドと、重合性液晶化合物とを併用することにより、所望の波長変換フィルムが得られることを知見し、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 入射する励起光により励起され蛍光を発光する量子ロッド、および、重合性液晶化合物を含み、
 量子ロッドの長軸の長さが20~100nmであり、
 量子ロッドのアスペクト比が4~20である、重合性液晶組成物。なお、アスペクト比は、量子ロッドの長軸の長さと短軸の長さとの比である。
(2) 量子ロッドは、
 600~680nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(A)、
 500~600nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(B)、および
 430~480nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(C)、からなる群から選択される少なくとも1種を含む、(1)に記載の重合性液晶組成物。
(3) 量子ロッドが、CdS、CdSe、CdTe、ZnS、ZnSe、ZnSeS、ZnTe、ZnO、GaAs、GaP、GaAs、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、AlSb、CuS、CuS、CuSe、CuInS、CuInS、CuInSe、Cu(ZnSn)S、および、Cu(InGa)Sからなる群から選択される少なくとも1種の成分を含む、(1)または(2)に記載の重合性液晶組成物。
(4) 重合性液晶化合物は、量子ロッドの長軸との間で以下式(1)を満足する重合性液晶化合物Xを含む、(1)~(3)のいずれかに記載の重合性液晶組成物。
 式(1)   2≦Lq/Lp≦10
 式(1)中、Lqは量子ロッドの長軸の長さを表し、Lpは重合性液晶化合物Xの分子長軸の長さを表す。
(5) 重合性液晶化合物が、重合性基を1つ有する液晶化合物、および、重合性基を2つ有する液晶化合物からなる群から選択される少なくとも1種を含む、(1)~(4)のいずれかに記載の重合性液晶組成物。
(6) 重合性液晶化合物の少なくとも1種が、量子ロッドに吸着する基を有する、(1)~(5)のいずれかに記載の重合性液晶組成物。
(7) 量子ロッドに吸着する基が、ホスフィンオキサイド基、ホスフィン基、ホスホン酸基、アミノ基、メルカプト基、および、カルボキシル基からなる群から選択される、(6)に記載の重合性液晶組成物。
(8) さらに、重合性液晶化合物とは異なる、重合性基を有するモノマーを含む、(1)~(7)のいずれかに記載の重合性液晶組成物。
(9) 重合性基を有するモノマーが、炭素数4~30のアルキル基を有するモノマーを含む、(8)に記載の重合性液晶組成物。
(10) さらに、重合開始剤を含む、(1)~(9)のいずれかに記載の重合性液晶組成物。
(11) (1)~(10)のいずれかに記載の重合性液晶組成物から形成された波長変換フィルム。
(12) 架橋構造を有する高分子マトリックスと、高分子マトリックス中に分散した量子ロッドとを含み、
 高分子マトリックスが、部分構造として液晶構造を含む繰り返し単位を有し、液晶構造は配向した状態で固定されており、
 量子ロッドの長軸が一方向と平行となるように量子ロッドが配向しており、
 量子ロッドの長軸の長さが20~100nmであり、
 量子ロッドのアスペクト比が4~20である、波長変換フィルム。なお、アスペクト比は、量子ロッドの長軸の長さと短軸の長さとの比である。
(13) (11)または(12)に記載の波長変換フィルムと、波長変換フィルムの少なくとも一方の面上に配置された、酸素透過度が50cm/(m2・day・atm)以下である支持体とを含む、波長変換部材。
(14) 波長変換フィルムの両面上に支持体が配置される、(13)に記載の波長変換部材。
(15) 支持体が、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物、または、アルミニウム酸化物を含む無機層を有するバリアフィルムである、(13)または(14)に記載の波長変換部材。
(16) バリアフィルムが、無機層と無機層の上に少なくとも1層の有機層とを含む、(15)に記載の波長変換部材。
(17) 波長変換フィルムと支持体との間に、配向処理が施された配向膜を含む、(13)~(16)のいずれかに記載の波長変換部材。
(18) (13)~(17)のいずれかに記載の波長変換部材と、青色発光ダイオードまたは紫外線発光ダイオードとを少なくとも含む、バックライトユニット。
(19) さらに、導光板を含み、波長変換部材が、導光板から出射される光の経路上に配置される、(18)に記載のバックライトユニット。
(20) さらに、プリズムシートを含む、(18)または(19)に記載のバックライトユニット。
(21) (18)~(20)のいずれかに記載のバックライトユニットと、液晶セルとを少なくとも含む液晶表示装置。
(22) (13)~(16)のいずれかに記載の波長変換部材の製造方法であって、
 支持体表面をラビング処理する工程Aと、
 工程Aの後に、ラビング処理を施した支持体表面に(1)~(10)のいずれかに記載の重合性液晶組成物を塗布する工程Bと、
 重合性液晶組成物中の重合性液晶化合物を配向させた後、配向状態を重合により固定させて、波長変換フィルムを形成する工程Cと、を含む、波長変換部材の製造方法。
(23) (17)に記載の波長変換部材の製造方法であって、
 支持体上に、配向処理が施された配向膜を形成する工程Dと、
 工程Dの後に、配向膜上に(1)~(10)のいずれかに記載の重合性液晶組成物を塗布する工程Eと、
 重合性液晶組成物中の重合性液晶化合物を配向させた後、配向状態を重合により固定させて、波長変換フィルムを形成する工程Fと、を含む、波長変換部材の製造方法。
 本発明によれば、偏光発光性に優れ、高温高湿環境下でも偏光発光性の低下が抑制される波長変換フィルムを簡便に製造することができる重合性液晶化合物を提供することを課題とする。
 また、本発明によれば、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、並びに、液晶表示装置を提供することもできる。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の重合性液晶組成物の特徴点としては、所定の大きさの量子ロッド、および、重合性液晶化合物を用いている点が挙げられる。量子ロッドの大きさが所定範囲であれば、重合性液晶化合物が配向する際に共同的に作用しあって、量子ロッドが特定の方向に配向しやすく、優れた偏光発光性が得られる。また、重合性基を有する液晶化合物である重合性液晶化合物を使用することにより、液晶化合物が配向した状態で重合を行い、液晶化合物の配向状態を固定できる。重合性液晶化合物の重合によって形成される高分子マトリックス内では、所定の方向に配向している量子ロッドの動きが抑制され、その配向状態を固定することができる。そのため、高温高湿環境下においても、高分子マトリックスによって量子ロッドの運動性が制限され、量子ロッドの配向性が維持されやすくなり、結果として偏光発光性の低下が抑制される。
<重合性液晶組成物>
 本発明の重合性液晶組成物(以後、単に「組成物」とも称する)は、入射する励起光により励起され蛍光を発光する量子ロッド、および、重合性液晶化合物を少なくとも含む。以下、組成物に含まれる各成分について詳述し、その後、組成物を用いて形成される波長変換フィルム、波長変換フィルムを含む波長変換部材、バックライトユニット、および、液晶表示装置などについて詳述する。
(量子ロッド)
 量子ロッドとは、半導体ナノロッドとも呼ばれ、棒状(ロッド状)の半導体ナノ結晶(ナノ粒子)であり、形状がロッド状で指向性を持つため、光源から出射された光が入射すると偏光を発する。つまり、量子ロッドは、入射する励起光によって励起され、蛍光を発光する材料である。
 量子ロッドの長軸の長さ(長軸方向の長さ)は20~100nmであり、波長変換フィルムの偏光発光性がより優れる点、および、高温高湿環境下でも偏光発光性の低下がより抑制される点の少なくとも1つを満足する点(以後、単に「本発明の効果がより優れる点」とも称する)で、20~60nmが好ましく、20~50nmがより好ましい。
 長軸の長さが20nm未満の場合、量子ロッドの形状異方性が不十分となり、量子ロッドそのものの偏光発光性が低下する(すなわち、量子ドット同様、無偏光発光となる)ばかりでなく、液晶化合物と共同的に配向する効果が著しく損なわれる。また、長軸の長さが100nm超の場合、液晶化合物に分散できず相分離が起こり白濁する。
 量子ロッドの短軸の長さ(短軸方向の長さ)は特に制限されないが、波長変換フィルム中での量子ロッドの配向性がより優れる点で、2~10nmが好ましく、2~7nmがより好ましい。
 なお、量子ロッドの長軸とは、顕微鏡(例えば、透過型電子顕微鏡)観察して得られる量子ロッドの二次元像において、量子ロッドを横切る線分が最も長くなる線分のことをいう。短軸とは、長軸に直交し、かつ量子ロッドを横切る線分が最も長くなる線分のことをいう。
 また、上記長軸の長さは平均値であり、任意に選択した20個以上の量子ロッドの長軸の長さを顕微鏡(例えば、透過型電子顕微鏡)にて測定して、それらを算術平均した値である。
 さらに、上記短軸の長さは平均値であり、任意に選択した20個以上の量子ロッドの短軸の長さを顕微鏡(例えば、透過型電子顕微鏡)にて測定して、それらを算術平均した値である。
 量子ロッドのアスペクト比(量子ロッドの長軸/量子ロッドの短軸)は4~20であり、本発明の効果がより優れる点で、4~15が好ましく、4~10がより好ましい。
 アスペクト比が4未満の場合、量子ロッドの形状異方性が不十分となり、量子ロッドそのものの偏光発光性が低下する(すなわち、量子ドット同様、無偏光発光となる)ばかりでなく、液晶と共同的に配向する効果が著しく損なわれる。一方、アスペクト比が20超の場合、液晶化合物に分散できず相分離が起こり白濁する。
 なお、上記アスペクト比は平均値であり、任意に選択した20個以上の量子ロッドのアスペクト比を顕微鏡(例えば、透過型電子顕微鏡)にて測定して、それらを算術平均した値である。
 量子ロッドの形状は一方向に延在する形状(ロッド状)であればよく、いわゆる円柱状、四角柱状(好ましくは、直方体形状)、三角柱状、六角柱状などであってもよい。
 量子ロッドを構成する材料は特に制限されず、通常、半導体で構成され、例えば、II-VI半導体、III-V半導体、IV-VI半導体、または、これらの組み合わせが挙げられる。より具体的には、CdS、CdSe、CdTe、ZnS、ZnSe、ZnSeS、ZnTe、ZnO、GaAs、GaP、GaAs、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、AlSb、CuS、CuS、CuSe、CuInS、CuInS、CuInSe、Cu(ZnSn)S、Cu(InGa)S、これらのTiO合金、およびこれらの混合物から選択され得る。
 本発明の量子ロッドは、好ましくは、CdS、CdSe、ZnS、ZnSe、InP、CuS、CuInSである。
 量子ロッドは、単一成分からなる量子ロッドであってもよいし、第一の半導体のコアおよび第二の半導体のシェルを備えたコア/シェル型の量子ロッドでもよい。また、コア/多重シェル型の量子ロッドでもよく、シェルが段階的な組成のコア/シェル構成となっている量子ロッドも使用可能である。
 量子ロッドの表面には必要に応じて配位子が配位していてもよい。配位子としては、例えば、トリオクチルホスフィン酸化物(TOPO,Trioctylphosphine oxide)、トリオクチルホスフィン(TOP,Trioctylphosphine)、トリブチルホスフィン(TBP,Tributylphosphine)等のホスフィンおよびホスフィン酸化物;ドデシルホスホン酸(DDPA,Dodecylphosphonic acid)、トリデシルホスホン酸(TDPA,Tridecylphosphonic acid)、ヘキシルホスホン酸(HPA,Hexylphosphonic acid)等のホスホン酸;ドデジルアミン(DDA,Dodecyl amine)、テトラデシルアミン(TDA,Tetradecyl amine)、ヘキサデシルアミン(HDA,Hexadecyl amine)、オクタデシルアミン(ODA,Octadecyl amine)等のアミン;ヘキサデカンチオール、ヘキサンチオール等のチオール;メルカプトプロピオン酸、メルカプトウンデカン酸等のメルカプトカルボン酸が挙げられる。
 量子ロッドの具体的な態様としては、例えば、600nm~680nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッドA、500nm~600nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッドB、および、430nm~480nmの波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッドCなどが挙げられる。なお、「半値幅」とは、発光スペクトルの発光ピークを1とした場合に、発光強度が0.5を示す波長の両端の波長差を意味する。
 量子ロッドAは、励起光により励起され赤色光を発光し、量子ロッドBは緑色光を、量子ロッドCは青色光を発光する。例えば、量子ロッドAと量子ロッドBを含む波長変換フィルムへ励起光として青色光を入射させると、量子ロッドAにより発光される赤色光、量子ロッドBにより発光される緑色光と、波長変換フィルムを透過した青色光により、白色光を具現化することができる。または、量子ロッドA、B、およびCを含む波長変換フィルムに励起光として紫外光を入射させることにより、量子ロッドAにより発光される赤色光、量子ロッドBにより発光される緑色光、および量子ロッドCにより発光される青色光により、白色光を具現化することができる。量子ロッドとしては、公知の方法により調製されるものを、何ら制限なく用いることができる。量子ロッドの発光波長は、通常、粒子の組成、サイズ、ならびに組成およびサイズにより調整することができる。
 なお、本明細書中、430~480nmの波長帯域に発光中心波長を有する光を青色光と呼び、500~600nmの波長帯域に発光中心波長を有する光を緑色光と呼び、600~680nmの波長帯域に発光中心波長を有する光を赤色光と呼ぶ。
 本発明の組成物中における量子ロッドの含有量は特に制限されないが、波長変換フィルム中の量子ロッドの配向性および組成物の取り扱い性などの点で、組成物全質量に対して、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。
 量子ロッドは、1種のみを用いてもよいし、2種以上を併用してもよい。
 2種以上併用する場合は、発光の波長が異なる2種以上の量子ロッドを使用してもよい。
 なお、複数種の量子ロッドを使用する場合は、その合計量が上記範囲であることが好ましい。
(重合性液晶化合物(重合性基を有する液晶化合物))
 重合性液晶化合物とは、重合性基を有し、特定温度条件で液晶状態(例えば、スメクチック液晶相の液晶状態)を示す化合物である。後述するように、重合性液晶化合物を配向させた状態で重合させることにより、波長変換フィルム中において所定の方向に配向した液晶構造が固定化されると共に、波長変換フィルム中において量子ロッドの配向を保持することができる。
 重合性液晶化合物としては、棒状の重合性液晶化合物であっても、円盤状の重合性液晶化合物(ディスコティック液晶性分子)であってもよい。言い換えると、重合性基を有する棒状液晶化合物(重合性棒状液晶化合物)であっても、重合性基を有する円盤状液晶化合物(重合性円盤状液晶化合物)であってもよい。
 重合性液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基およびアクリロイル基の両者を包含する概念である。
 重合性液晶化合物に含まれる重合性基の数は特に制限されないが、1つであっても、2つ以上であってもよく、高温高湿環境下での量子ロッドの配向性がより維持されやすい点で、2つ以上が好ましく、2~10が好ましく、2~6がより好ましい。
 棒状液晶化合物としては、公知の棒状液晶化合物を使用でき、例えば、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類など棒状液晶化合物が挙げられる。
 棒状液晶化合物については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
 円盤状(ディスコティック)液晶化合物としては、公知の円盤状(ディスコティック)液晶化合物を使用でき、例えば、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、Mol.Cryst.122巻、141頁(1985年)、Physics lett、A、78巻、82頁(1990)に記載されているトルキセン誘導体、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体、J.Chem.Commun.1794頁(1985年)、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどが挙げられる。
 円盤状液晶化合物としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。
 なお、重合性基を有する円盤状液晶化合物は、円盤状液晶化合物の円盤状コアに、置換基として重合性基が結合しており、円盤状コアと重合性基は連結基を介して結合することができる。
 重合性液晶化合物の分子長軸(Lp)の長さ(分子長)は特に制限されないが、重合性液晶化合物の配向性がより優れると共に、波長変換フィルムの偏光発光性がより優れる点で、2~10nmが好ましく、3~6nmがより好ましい。
 重合性液晶化合物の分子長軸(Lp)の長さが2nm以上であれば、量子ロッドに対する配向アンカリングが機能しやすく、重合性液晶化合物の分子長軸(Lp)の長さが10nm以下であれば、重合性液晶化合物が配向しやすい粘度となりやすい。
 重合性液晶化合物における分子長軸は、コンピューターを用いた密度汎関数計算によって算出することができる。すなわち、密度汎関数計算によって分子の最適化構造を得て、得られた分子構造中の任意の2原子間距離のうち、最も距離の長い2原子同士を結んだ軸を分子長軸とする。上記における分子構造の構築にあたっては、GausView3.0(商品名、Gaussain Inc.社製)を用いる。分子構造の最適化に用いるプログラムとしては、Gaussian03 Rev.D.02(商品名、Gaussain Inc.社製)を用い、基底関数としてB3LYP/6-31G(d)を用い、収束条件はデフォルト値を用いる。
 なお、本発明の効果がより優れる点で、重合性液晶化合物としては、量子ロッドの長軸との間で以下式(1)(好ましくは、式(2))を満足する重合性液晶化合物Xが含まれることが好ましい。つまり、重合性液晶化合物Xが、重合性液晶化合物として使用されてもよい。なお、後述するように、重合性液晶化合物としては、2種以上を併用してもよく、例えば、以下の式(1)を満足する重合性液晶化合物Xと、以下の式(1)を満足しない重合性液晶化合物とが併用されていてもよい。
 式(1)   2≦Lq/Lp≦10
 式(2)   4≦Lq/Lp≦8
 式(1)中、Lqは量子ロッドの長軸の長さを表し、Lpは重合性液晶化合物Xの分子長軸の長さを表す。
 なお、重合性液晶化合物は、1種のみを用いてもよいし、2種以上を併用してもよい。なかでも、本発明の効果がより優れる点で、本発明の組成物には、重合性基を1つ有する液晶化合物、および、重合性基を2つ有する液晶化合物からなる群から選択される少なくとも1種が含まれることが好ましく、2種以上が含まれていてもよい。
 なお、本発明の効果がより優れる点で、重合性液晶化合物には、量子ロッドに吸着する基が含まれていてもよい。つまり、量子ロッドに吸着する基を有する重合性液晶化合物が使用されてもよく、このような重合性液晶化合物は量子ロッドの配位子としても機能する。
 量子ロッドに吸着する基としては、ホスフィンオキサイド基、ホスフィン基、ホスホン酸基、アミノ基、メルカプト基、および、カルボキシル基からなる群から選択されることが特に好ましい。
 本発明の組成物中における重合性液晶化合物の含有量は特に制限されないが、波長変換フィルム中での量子ロッドの配向性および組成物の取り扱い性などの点で、組成物全質量に対して、5~50質量%が好ましく、10~50質量%がより好ましい。
 複数種の重合性液晶化合物を使用する場合は、その合計量が上記範囲であることが好ましい。
 また、組成物中における量子ロッドと重合性液晶化合物との質量比は特に制限されないが、本発明の効果がより優れる点で、組成物中において、量子ロッドの含有量が、重合性液晶化合物100質量部に対して、0.005~10質量部であることが好ましく、0.01~1質量部であることがより好ましい。
(その他の成分)
 本発明の組成物には、上述した量子ロッドおよび重合性液晶化合物以外の他の成分が含まれていてもよい。例えば、重合性液晶化合物とは異なる重合性基を有するモノマー、重合開始剤、溶媒、界面活性剤などが挙げられる。
 以下、組成物に加えてもよい任意成分について詳述する。
(重合性モノマー(重合性基を有するモノマー)
 本発明の組成物には、上述した重合性液晶化合物とは異なる重合性基を有するモノマーが含まれていてもよい。言い換えると、重合性基を有し、液晶構造を有さない単量体(モノマー)が含まれていてもよい。
 重合性基の種類は特に制限されず、上述した重合性液晶化合物に含まれる重合性基の例が挙げられる。
 重合性モノマーとしては、重合性基を1つ有する単官能モノマーであっても、重合性基を2つ以上有する多官能モノマーであってもよい。
 重合性モノマーには、重合性基以外の各種官能基(例えば、ボロン酸基)が含まれていてもよい。
 重合性モノマーの好適態様の一つとしては、本発明の効果がより優れる点で、炭素数4~30の長鎖アルキル基を有するモノマーが好ましい。なお、長鎖アルキル基の炭素数は、12~22であることが好ましい。
 上記重合性モノマーとしては、炭素数4~30の長鎖アルキル基を有する、単官能(メタ)アクリレートモノマーまたは単官能(メタ)アクリルアミドモノマーが好ましく、具体的には、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミドが挙げられる。なかでも、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。
 本発明の組成物中における重合性モノマーの含有量は特に制限されないが、本発明の効果がより優れる点で、重合性液晶化合物100質量部に対して、1~40質量部が好ましく、5~30質量部がより好ましい。
(重合開始剤)
 組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、光重合開始剤が挙げられる。例えば、光重合開始剤の例としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、または、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 本発明の組成物中における重合開始剤の含有量は特に制限されないが、本発明の効果がより優れる点で、重合性液晶化合物および重合性モノマーの合計量100質量部に対して、0.1~10質量部が好ましく、0.2~8質量部がより好ましい。
(溶媒)
 組成物には溶媒が含まれていてもよく、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が挙げられる。
(界面活性剤)
 組成物には、塗工膜の均一性、膜の強度の点から、界面活性剤が含まれていてもよい。界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001-330725号公報の段落[0028]~[0056]に記載の化合物、特願2003-295212号明細書の段落[0069]~[0126]に記載の化合物が挙げられる。
 さらに、組成物には、上記成分以外に、配向剤、密着改良剤、可塑剤、ポリマーなどが含まれていてもよい。
<波長変換フィルムおよびその製造方法>
 上述した組成物を用いることにより、本発明の波長変換フィルムを製造することができる。以下では、まず、上記組成物を用いた波長変換フィルム製造方法の一態様を詳述し、その後、波長変換フィルムの構成について詳述する。
[製造方法の第1実施形態]
 上記組成物を用いた波長変換フィルムの製造方法の第1実施形態としては、支持体表面をラビング処理する工程Aと、上記組成物を支持体上に塗布する工程Bと、重合性液晶化合物を配向させた後、重合させ、波長変換フィルムを形成する工程Cとを備える方法が挙げられる。以下、各工程の手順について詳述する。
(工程A:ラビング処理工程)
 工程Aは、支持体表面をラビング処理する工程である。本工程を実施することにより、支持体上に塗布される重合性液晶化合物の配向方向を制御することができる。なお、支持体表面上がすでに所望の表面状態であれば、工程Aは実施しなくてもよい。
 ラビング処理の方法は特に制限されず、公知の方法を採用できる。例えば、支持体の表面を、紙、ガーゼ、フェルト、ゴム、ナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。なお、ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
 また、ラビング処理の際の条件としては、特開2003-329833号公報の記載を参照することもできる。
 本工程で使用される支持体の種類は特に制限されず、上記組成物を支持できる基板であればよく、例えば、樹脂基板(セルロース、環状オレフィン、アクリル、ポリカーボネート、ポリエステル、または、ポリビニルアルコールなどを含む透明支持体)が挙げられる。
 また、後述するバリアフィルムを支持体として用いてもよい。バリアフィルムを用いる場合は、バリアフィルム中に含まれる有機層に対して、ラビング処理を施すことが好ましい。
(工程B:塗布工程)
 工程Bは、上記工程Aの後に、ラビング処理を施した支持体表面に上述した重合性液晶組成物を塗布する工程である。本工程を実施することにより、後述する工程Cによって波長変換フィルムとなる塗膜(前駆体膜)が支持体上に配置される。
 組成物の塗布方法としては、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。
 なお、塗布後、必要に応じて、溶媒除去のために乾燥処理を施してもよい。
(工程C:配向固定工程)
 工程Cは、工程Bにて得られた支持体上の重合性液晶組成物中の重合性液晶化合物を配向させた後、配向状態を重合により固定させて、波長変換フィルムを形成する工程である。
 支持体上の重合性液晶組成物(重合性液晶組成物の塗膜)中の重合性液晶化合物を配向させる方法は特に制限されず、加熱処理などが挙げられる。特に、重合性液晶化合物の相転移温度以上まで加熱する方法が好ましく挙げられる。また、上記加熱処理を実施した後、必要に応じて、配向状態を維持するために、冷却処理を実施してもよい。
 なお、上記工程Bにて実施した塗布によって、すでに所定の重合性液晶化合物の配向が達成されている場合は、加熱処理の実施は不要である。
 重合性液晶化合物が配向する際に、重合性液晶化合物中に分散している量子ロッドも共同的に配向し、結果として、組成物(塗膜)中において複数の量子ロッドが一方向に配向した状態が形成される。
 重合性液晶化合物の好適な配向状態としては、重合性棒状液晶化合物を使用する場合、重合性棒状液晶化合物を水平配向させるのが好ましい。なお、本明細書において「水平配向」とは、棒状液晶化合物の分子長軸方向と塗膜面(層面)とが平行であることをいう。「平行」とは、厳密に平行であることを要求するものではなく、棒状液晶化合物の分子長軸方向と塗膜面(層面)とのなす傾斜角が20°以下の配向を意味するものとする。傾斜角は0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましく、0~1°が最も好ましい。なお、上記水平配向を達成するためには、重合性棒状液晶化合物はネマチック液晶化合物であってもスメクチック液晶化合物であってもよいが、高い配向度が得られるため、スメクチック液晶化合物であることが好ましい。
 上記のように重合性棒状液晶化合物が水平配向している場合、量子ロッドも重合性棒状液晶化合物と共同的に水平配向となることが好ましい。なお、「水平配向」とは、量子ロッドの長軸方向と塗膜面(層面)が平行であることをいう。「平行」とは、厳密に平行であることを要求するものではなく、量子ロッドの長軸方向と塗膜面(層面)とのなす傾斜角が20°以下の配向を意味するものとする。傾斜角は0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましく、0~1°が最も好ましい。
 また、重合性液晶化合物として重合性ディスコティック液晶化合物を使用する場合、重合性ディスコティック液晶化合物を垂直配向させるのが好ましい。なお、本明細書において「垂直配向」とは、ディスコティック液晶化合物の円盤面と塗膜面(層面)とが垂直であることをいう。「垂直」とは、厳密に垂直であることを要求するものではなく、ディスコティック液晶化合物の円盤面と塗膜面(層面)とのなす傾斜角が70°以上の配向を意味するものとする。傾斜角は85~90°が好ましく、87~90°がより好ましく、88~90°がさらに好ましく、89~90°が最も好ましい。
 上記のように重合性ディスコティック液晶化合物が垂直配向している場合、垂直配向した重合性ディスコティック液晶化合物の円盤部分が形成するカラムとカラムの間に、量子ロッドが挿入される形で水平配向することが好ましい。重合性ディスコティック液晶化合物はネマチック液晶化合物でもカラムナー液晶化合物であってもよいが、カラムを容易に形成するという観点からカラムナー液晶化合物であることが特に好ましい。
 重合性液晶化合物を配向させた塗膜(以後、「光学異方性層」とも称する)において、光学異方性層の一方の面におけるチルト角(液晶化合物における物理的な対象軸が光学異方性層の界面となす角度をチルト角とする)θ1および他方の面のチルト角θ2を、直接的にかつ正確に測定することは困難である。そこで本明細書においては、θ1およびθ2は、以下の手法で算出する。本手法は本発明の実際の配向状態を正確に表現していないが、光学異方性層のもつ一部の光学特性の相対関係を表す手段として有効である。
 本手法では算出を容易にすべく、下記の2点を仮定し、光学異方性層の2つの界面におけるチルト角とする。
1.光学異方性層は重合性液晶化合物を含む層で構成された多層体と仮定する。さらに、それを構成する最小単位の層(重合性液晶化合物のチルト角は層内において一様と仮定)は光学的に一軸と仮定する。
2.各層のチルト角は光学異方性層の厚み方向に沿って一次関数で単調に変化すると仮定する。
 具体的な算出法は下記のとおりである。
(1)各層のチルト角が光学異方性層の厚み方向に沿って一次関数で単調に変化する面内で、光学異方性層への測定光の入射角を変化させ、3つ以上の測定角でレターデーション値を測定する。測定および計算を簡便にするためには、光学異方性層に対する法線方向を0°とし、-40°、0°、+40°の3つの測定角でレターデーション値を測定することが好ましい。このような測定は、KOBRA-21ADHおよびKOBRA-WR(王子計測器(株)製)、透過型のエリプソメータAEP-100((株)島津製作所製)、M150およびM520(日本分光(株)製)、ABR10A(ユニオプト(株)製)で行うことができる。
(2)上記のモデルにおいて、各層の常光の屈折率をno、異常光の屈折率をne(neは各々すべての層において同じ値、noも同様とする)、および、多層体全体の厚みをdとする。さらに各層におけるチルト方向とその層の一軸の光軸方向とは一致するとの仮定の元に、光学異方性層のレターデーション値の角度依存性の計算が測定値に一致するように、光学異方性層の一方の面におけるチルト角θ1および他方の面のチルト角θ2を変数としてフィッティングを行い、θ1およびθ2を算出する。
 ここで、noおよびneは文献値、カタログ値等の既知の値を用いることができる。値が未知の場合はアッベ屈折計を用いて測定することもできる。光学異方性層の厚みは、光学干渉膜厚計、走査型電子顕微鏡の断面写真等により測定することができる。
 上述したように、塗膜中において重合性液晶化合物の種類によってその配向特性は異なるが、重合性液晶化合物の遅相軸と量子ロッドの長軸とは平行となることが好ましい。平行とは、厳密に平行であることを要求するものではなく、重合性液晶化合物の遅相軸と量子ロッドの長軸とのなす角が20°以下を意味するものとする。上記角は0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましく、0~1°が最も好ましい。
 重合性液晶化合物の配向状態を固定する方法としては、重合性液晶化合物中の重合性基の重合を進行させることによって実施されることが好ましい。重合を進行させる手順は特に制限されず、加熱処理または光照射処理(紫外線照射、電子線照射など)が挙げられ、光照射処理が好ましい。
 加熱処理が実施される場合は、90~150℃で10~120分時間加熱処理を実施することが好ましい。
 光照射には、紫外線を用いることが好ましい。照射エネルギーは、10mJ/cm2~50J/cm2であることが好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
 上記処理を実施することにより、重合性液晶化合物中の重合性基間での反応が進行し、重合性液晶化合物が配向した状態で固定される。
[製造方法の第2実施形態]
 上記組成物を用いた波長変換フィルムの製造方法の第2実施形態としては、支持体上に、配向処理が施された配向膜を形成する工程Dと、上記組成物を配向膜上に塗布する工程Eと、重合性液晶化合物を配向させた後、重合させ、波長変換フィルムを形成する工程Fとを備える方法が挙げられる。
 この第2実施形態と、上述した第1実施形態とを比較すると、第2実施形態において配向膜を使用している点以外は、同様の手順が実施される。より具体的には、第2実施形態の工程Eと第1実施形態の工程Bとは同様の手順が実施され、第2実施形態の工程Fと第1実施形態の工程Cとは同様の手順が実施される。そこで、以下では、主に、上記工程Dについて詳述する。
(工程D:配向膜形成工程)
 工程Dは、支持体上に、配向処理が施された配向膜を形成する工程である。本工程を実施することにより、重合性液晶組成物が塗布される配向膜が形成される。
 配向処理が施された配向膜の種類は特に制限されず、例えば、ラビング処理が施された配向膜や、光配向処理が施された光配向膜が挙げられる。
 ラビング処理が施された配向膜とは、ラビング処理によって、液晶化合物の配向規制能を有するように処理された膜である。ラビング処理の方法としては、上述した工程Aで説明した方法が挙げられる。配向膜を構成する材料としては、公知の材料を使用することができ、例えば、ポリビニルアルコールまたはポリイミド、および、その誘導体が好ましい。特に、変性または未変性のポリビニルアルコールが好ましい。ポリビニルアルコールは、種々の鹸化度のものが存在する。
 また、光配向処理が施された光配向膜とは、光配向処理によって、液晶化合物の配向規制能を有するように処理された膜である。光配向膜は、光の吸収により液晶配向能を生じる基(光配向性基)を有する化合物を含有する、液晶配向能を有する膜である。また、光配向処理とは、光配向膜中に含まれる光配向性基に対して光を照射して、一定の方向に配列させ、液晶配向能を付与する処理である。光配向処理の一つの方法としては、偏光を光配向膜に照射する方法が挙げられる。また、光配向処理の他の方法としては、斜め方向から非偏光(無偏光の光)を光配向膜に照射する方法が挙げられる。
[波長変換フィルム]
 上述した製造方法によって、所定の特性を示す波長変換フィルムが得られる。波長変換フィルム中においては、量子ロッドが所定の方向に配向した状態で固定されており、優れた偏光発光性を示すと共に、高温高湿環境下に放置する耐久試験を実施した後においても優れた偏光発光性を示す。波長変換フィルムは、後述するように、液晶表示装置のバックライトユニットの構成部材として好適に使用することができる。
 波長変換フィルムのより具体的な態様としては、架橋構造を有する高分子マトリックスと、高分子マトリックス中に分散した量子ロッドとを含み、高分子マトリックスが、部分構造として液晶構造を含む繰り返し単位を有し、液晶構造は配向した状態で固定されており、量子ロッドの長軸が一方向と平行となるように量子ロッドが配向している波長変換フィルムが挙げられる。
 高分子マトリックスは、上述した重合性液晶化合物が重合して得られるマトリックスであり、例えば、2つ以上の重合性基を有する重合性液晶化合物を重合させることにより形成される、架橋構造を有する3次元マトリックスが挙げられる。高分子マトリックスには、重合性液晶化合物由来の液晶構造が含まれる。つまり、部分構造として液晶構造を有する繰り返し単位が高分子マトリックスに含まれる。また、上述したように重合性液晶化合物を配向させた状態で重合するため、液晶構造は所定の方向に配向した状態で固定されている。
 なお、液晶構造(液晶分子構造)とは、液晶性を示す構造部分を意図し、上述した組成物中に含まれる重合性液晶化合物中に含まれる液晶性を示す部分構造が挙げられる。
 重合性液晶化合物として重合性棒状液晶化合物を使用する場合、高分子マトリックス中の液晶構造(棒状液晶構造)は水平配向していることが好ましい。なお、水平配向とは、液晶構造の分子長軸方向と波長変換フィルム表面とが平行であることを意図する。「平行」とは、厳密に平行であることを要求するものではなく、液晶構造の長軸方向と波長変換フィルム表面とのなす傾斜角が20°以下の配向を意味するものとする。傾斜角は0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましく、0~1°が最も好ましい。
 重合性液晶化合物として重合性ディスコティック液晶化合物を使用する場合、高分子マトリックス中の液晶構造(ディスコティック液晶構造)は垂直配向していることが好ましい。なお、「垂直配向」とは、ディスコティック液晶構造の円盤面と波長変換フィルム表面とが垂直であることをいう。「垂直」とは、厳密に垂直であることを要求するものではなく、ディスコティック液晶構造の円盤面と波長変換フィルム表面とのなす傾斜角が70°以上の配向を意味するものとする。傾斜角は85~90°が好ましく、87~90°がより好ましく、88~90°がさらに好ましく、89~90°が最も好ましい。
 高分子マトリックス中に分散している量子ロッドは、重合性液晶化合物の配向と共に所定の方向に配向し、固定化されている。つまり、量子ロッドの長軸が一方向と平行になるように量子ロッドが配向している。
 例えば、上述したように、高分子マトリックス中の液晶構造(棒状液晶構造)が水平配向している場合、量子ロッドも液晶構造と共同的に水平配向となることが好ましい。なお、「水平配向」とは、量子ロッドの長軸方向と波長変換フィルム表面とが平行であることをいう。「平行」とは、厳密に平行であることを要求するものではなく、量子ロッドの長軸方向と波長変換フィルム表面とのなす傾斜角が20°以下の配向を意味するものとする。傾斜角は0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましく、0~1°が最も好ましい。
 なお、本発明の効果を損なわない範囲で、配向していない量子ロッドが含まれていてもよい。
<波長変換部材>
 上記波長変換フィルムは、他の部材と積層することにより、波長変換部材として使用できる。
 例えば、波長変換部材の一実施形態としては、波長変換フィルムと、波長変換フィルムの少なくとも一方の表面上に配置された支持体とを備える波長変換部材が挙げられる。なお、支持体は、波長変換フィルムの両面に配置されていてもよい。
 支持体の種類としては、上述したように、樹脂基板が挙げられる。なかでも、波長変換フィルムの発光特性の酸素阻害がより抑制できる点で、酸素透過度が50cm/(m2・day・atm)以下である支持体が好ましく挙げられる。なかでも、支持体の酸素透過度は、10cm/(m2・day・atm)以下が好ましく、1cm/(m2・day・atm)以下がより好ましい。
 上記酸素透過度は、JIS K 7126(差圧法)に準じた方法にて行う。具体的には、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した値である。
 支持体として、いわゆるバリアフィルムを好適に使用できる。バリアフィルムは酸素を遮断するガスバリア機能を有する層である。バリアフィルムが、水蒸気を遮断する機能を有していることも好ましい。
 バリアフィルムは、波長変換フィルムに隣接してまたは直接接する層として波長変換部材に含まれることが好ましい。また、バリアフィルムは、波長変換部材中に1つまたは2つ以上含まれていてもよく、波長変換部材は、バリアフィルム、波長変換フィルム、バリアフィルムがこの順で積層された構造を有していることが好ましい。
 バリアフィルムとしては、公知のいずれのバリアフィルムであってもよく、例えば以下に説明するバリアフィルムであってもよい。
 バリアフィルムは少なくとも無機層を含んでいることが好ましく、基材フィルムおよび無機層を含むフィルムであってもよい。バリアフィルムは、基材フィルム上に少なくとも1層の無機層と、少なくとも1層の有機層とを含むバリア積層体を含むものであってもよい。このように複数の層を積層することは、より一層バリア性を高めることができるため、好ましい。他方、積層する層の数が増えるほど、波長変換部材の光透過率は低下する傾向があるため、良好な光透過率を維持し得る範囲で、積層数を増やすことが望ましい。具体的には、バリアフィルムは、可視光領域における全光線透過率が80%以上であり、かつ、酸素透過度が1.00cm/(m・day・atm)以下であることが好ましい。ここで、酸素透過度の測定方法は、上述の通りである。また、可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。
 「無機層」とは、無機材料を主成分とする層であり、好ましくは無機材料のみから形成される層である。これに対し、有機層とは、有機材料を主成分とする層であって、有機材料の含有量が50質量%以上である層を意図し、80質量%以上が好ましく、90質量%以上がより好ましい。
 無機層を構成する無機材料としては、特に限定されるものではなく、金属酸化物、金属窒化物、金属炭化物、金属酸化窒化物または金属酸化炭化物であり、Si、Al、In、Sn、Zn、Ti、Cu、Ce、またはTa等から選ばれる1種以上の金属を含む酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物などを好ましく用いることができる。これらの中でも、Si、Al、In、Sn、Zn、Tiから選ばれる金属の酸化物、窒化物、酸化窒化物または炭化物が好ましく、特にSiまたはAlの金属酸化物、窒化物、酸化窒化物または炭化物がより好ましく、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物、および、アルミニウム酸化物のいずれか1つを含むことが特に好ましく、ケイ素窒化物であることがより特に好ましい。
 無機層の形成方法としては、特に限定されず、例えば成膜材料を蒸発または飛散させ被蒸着面に堆積させることができる各種成膜方法を用いることができる。
 無機層の厚さは、1~500nmが好ましく、5~300nmがより好ましく、10~150nmがさらに好ましい。
 「有機層」としては、特開2007-290369号公報の段落0020~0042、特開2005-096108号公報の段落0074~0105を参照できる。なお有機層は、カルドポリマーを含むことが好ましい。これにより、有機層と隣接する層との密着性、特に、無機層とも密着性が良好になり、より一層優れたガスバリア性を実現することができるからである。
 有機層の膜厚は、0.05~10μmが好ましく、0.5~10μmがより好ましい。
<バックライトユニット、液晶表示装置>
 上記波長変換部材は、バックライトユニットの構成部材として使用することができる。
 バックライトユニットは、少なくとも、上記波長変換部材とともに、光源を含む。
 光源として、430nm~480nmの波長帯域に発光中心波長を有する青色光を発光するもの、例えば、青色光を発光する青色発光ダイオードを用いることができる。青色光を発光する光源を用いる場合、波長変換フィルムには、少なくとも、励起光により励起され赤色光を発光する量子ロッドAと、緑色光を発光する量子トッドBが含まれることが好ましい。これにより、光源から発光され波長変換部材を透過した青色光と、波長変換部材から発光される赤色光および緑色光により、白色光を具現化することができる。
 または他の態様では、光源として、300nm~430nmの波長帯域に発光中心波長を有する紫外光を発光するもの、例えば、紫外線発光ダイオードを用いることができる。この場合、波長変換フィルムには、量子ロッドA、Bとともに、励起光により励起され青色光を発光する量子ロッドCが含まれることが好ましい。これにより、波長変換部材から発光される赤色光、緑色光および青色光により、白色光を具現化することができる。
 また他の態様では、発光ダイオードに替えてレーザー光源を使用することもできる。
 バックライトユニットの構成としては、導光板や反射板などを構成部材とするエッジライト方式であることができる。バックライトユニットが導光板を有する場合、波長変換部材は導光板から出射される光の経路上に配置される。導光板としては、公知のものを何ら制限なく使用することができる。
 また、バックライトユニットは、光源の後部に、反射部材を備えることもできる。このような反射部材としては特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
 バックライトユニットは、その他、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器を備えていることも好ましい。その他の部材についても、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
 上述のバックライトユニットは液晶表示装置に応用することができる。液晶表示装置は上述のバックライトユニットと液晶セルとを少なくとも含む構成とすればよい。
 液晶セルの駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、またはTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(製造例1.バリアフィルム10の作製)
 ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡社製、商品名:コスモシャインA4300、厚さ50μm)の片面側に以下の手順でバリア性積層体を形成した。
 TMPTA(ダイセルサイテック社製)および光重合開始剤(ランベルティ社製、ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールにて上記PETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)し、UV(紫外光)硬化にて硬化させ、巻き取った。PETフィルム上に形成された第一有機層の厚さは、1μmであった。
 次に、ロールトウロールのCVD(chemical vapor deposition)装置を用いて、上記第一有機層の表面に無機層(窒化ケイ素層)を形成した。原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。このようにして第一有機層の表面に無機層が積層されたバリアフィルム10を作製した。
(製造例2.バリアフィルム11の作製)
 上記バリアフィルム10の無機層の表面に、以下の手順に従って、第二有機層を積層した。
 ウレタン骨格アクリルポリマー(大成ファインケミカル社製 アクリット8BR500)と光重合開始剤(チバケミカル社製、Irgacure184)を質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールにて上記バリアフィルム10の無機層の表面に塗布し、100℃の乾燥ゾーンを3分間通過させ、巻き取った。形成された第二有機層の厚さは、1μmであった。このようにして第一有機層の表面に無機層が積層され、さらに第二有機層が積層されたバリアフィルム11を作製した。
[実施例1]
(量子ロッド含有重合性液晶組成物1の作製)
 下記の量子ロッド含有重合性液晶組成物1を調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、塗布液として用いた。
──────────────────────────────────
量子ロッド含有重合性液晶組成物1
──────────────────────────────────
量子ロッド1のトルエン分散液              100質量部
(発光中心波長:520nm、半値幅:25nm)
量子ロッド2のトルエン分散液              100質量部
(発光中心波長:630nm、半値幅:30nm)
下記の棒状液晶化合物(A)                80質量部
下記の棒状液晶化合物(B)                20質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)  3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
下記のフッ素系ポリマー(FP4)            0.3質量部
メチルエチルケトン(MEK)              193質量部
シクロヘキサノン                     50質量部
──────────────────────────────────
 上記において、「量子ロッド1のトルエン分散液」中の量子ロッド1は、コアがCdSeで、シェルがCdSで構成されたコア/シェル型の量子ロッド(長軸:36nm、短軸:7nm、アスペクト比(長軸/短軸):5.1)であり、量子ロッド1のトルエン分散液全量に対する濃度は1質量%であった。
 また、「量子ロッド2のトルエン分散液」中の量子ロッド2は、コアがCdSeで、シェルがCdSで構成されたコア/シェル型の量子ロッド(長軸:25nm、短軸:3nm、アスペクト比(長軸/短軸):8.3)であり、量子ロッド2のトルエン分散液全量に対する濃度は1質量%であった。
Figure JPOXMLDOC01-appb-C000001
 棒状液晶化合物(A)の分子長軸の長さ(分子長)は3.7nmであり、棒状液晶化合物(B)の分子長軸の長さ(分子長)は3.0nmであった。
(波長変換部材1の作製)
 バリアフィルム10を用意し、無機層面上に下記の組成の配向膜1形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜1を形成した。配向膜1の厚みは0.5μmであった。
──────────────────────────────────
配向膜1形成用塗布液の組成
──────────────────────────────────
下記変性ポリビニルアルコール              2.4質量部
イソプロピルアルコール                 1.6質量部
メタノール                        36質量部
水                            60質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000002
 続いて、上記量子ロッド含有重合性液晶組成物1をスライドガラスの表面に塗布し、加熱しながら偏光顕微鏡で観察した。その結果、ネマチック液晶性を有することを確認した。
 バリアフィルム10上に配置された配向膜1の表面にラビング処理を施した。ラビング処理面上に量子ロッド含有重合性液晶組成物1を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム1を形成した。波長変換フィルム1の厚みは、7.0μmであった。最後に、波長変換フィルム1の形成されたバリアフィルム10をバックアップローラに巻きかけ、波長変換フィルム1の上にバリアフィルム10を無機層面が波長変換フィルム1に接する向きでラミネートし、バリアフィルム10で波長変換フィルム1を挟持した波長変換部材1を形成した。
[実施例2]
(波長変換部材2の作製)
 バリアフィルム11を用意し、第二有機層面上に上記配向膜1形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜2を形成した。配向膜2の厚みは、0.5μmであった。
 バリアフィルム11上に配置された配向膜2の表面にラビング処理を施した。ラビング処理面上に上記量子ロッド含有重合性液晶組成物1を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム2を形成した。波長変換フィルム2の厚みは、7.0μmであった。最後に、波長変換フィルム2の形成されたバリアフィルム11をバックアップローラに巻きかけ、波長変換フィルム2の上にバリアフィルム11を第二有機層面が波長変換フィルム2に接する向きでラミネートし、バリアフィルム11で波長変換フィルム2を挟持した波長変換部材2を形成した。
[実施例3]
(量子ロッド含有重合性液晶組成物3の作製)
 下記の量子ロッド含有重合性液晶組成物3を調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、塗布液として用いた。
──────────────────────────────────
量子ロッド含有重合性液晶組成物3
──────────────────────────────────
量子ロッド1のトルエン分散液              100質量部
(発光中心波長:520nm、半値幅:25nm)
量子ロッド2のトルエン分散液              100質量部
(発光中心波長:630nm、半値幅:30nm)
棒状液晶化合物(A)                   80質量部
ラウリルメタクリレート                  20質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)  3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
フッ素系ポリマー(FP4)               0.3質量部
メチルエチルケトン(MEK)              193質量部
シクロヘキサノン                     50質量部
──────────────────────────────────
(波長変換部材3の作製)
 バリアフィルム11を用意し、第二有機層面上、下記の組成の光配向膜3形成用塗布液をワイヤーバーで塗布した。100℃の温風で120秒乾燥し、空気下にて300mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて照射した。作製した光配向膜3に、空気下にて160mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を垂直に照射した。このとき、ワイヤーグリッド偏光子(Moxtek社製, ProFlux PPL02)を光配向膜3の面と平行にセットして露光を行った。この際用いる紫外線の照度はUV-A領域(波長320~380nmの積算)において100mW/cm、照射量はUV-A領域において1000mJ/cmとした。なお、光配向膜3の厚みは、0.1μmであった。
──────────────────────────────────
光配向膜3形成用塗布液の組成
──────────────────────────────────
下記光配向用素材                      2質量部
クロロホルム                       98質量部
────────────────────────────────── 
光配向用素材:
Figure JPOXMLDOC01-appb-C000003
 続いて、上記量子ロッド含有重合性液晶組成物3をスライドガラスの表面に塗布し、加熱しながら偏光顕微鏡で観察した。その結果、ネマチック液晶性を有することを確認した。
 バリアフィルム11上に配置された光配向膜3の光配向処理が施された表面に量子ロッド含有重合性液晶組成物3を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム3を形成した。波長変換フィルム3の厚みは、7.0μmであった。最後に、波長変換フィルム3の形成されたバリアフィルム11をバックアップローラに巻きかけ、波長変換フィルム3の上にバリアフィルム11を第二有機層面が波長変換フィルム3に接する向きでラミネートし、バリアフィルム11で波長変換フィルム3を挟持した波長変換部材3を形成した。
[実施例4]
(量子ロッド含有重合性液晶組成物4の作製)
 下記の量子ロッド含有重合性液晶組成物4を調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、塗布液として用いた。
──────────────────────────────────
量子ロッド含有重合性液晶組成物4
──────────────────────────────────
量子ロッド1のトルエン分散液              100質量部
(発光中心波長:520nm、半値幅:25nm)
量子ロッド2のトルエン分散液              100質量部
(発光中心波長:630nm、半値幅:30nm)
下記のディスコティック液晶化合物(A)          80質量部
下記のディスコティック液晶化合物(B)          20質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製)           10質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)  3質量部
下記のピリジニウム塩(A)               0.9質量部
下記のボロン酸含有化合物               0.08質量部
下記のフッ素系ポリマー(FP1)            0.3質量部
メチルエチルケトン                   220質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 ディスコティック液晶化合物(A)の分子長軸の長さ(分子長)は4.3nmであり、ディスコティック液晶化合物(B)の分子長軸の長さ(分子長)は3.9nmであった。
(波長変換部材4の作製)
 バリアフィルム11を用意し、第二有機層面上に上記配向膜1形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜4を形成した。配向膜4の厚みは、0.5μmであった。
 バリアフィルム11上に配置された配向膜4の表面にラビング処理を施した。ラビング処理面上に上記量子ロッド含有重合性液晶組成物4を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム4を形成した。波長変換フィルム4の厚みは、7.0μmであった。最後に、波長変換フィルム4の形成されたバリアフィルム11をバックアップローラに巻きかけ、波長変換フィルム4の上にバリアフィルム11を第二有機層面が波長変換フィルム4に接する向きでラミネートし、バリアフィルム11で波長変換フィルム4を挟持した波長変換部材4を形成した。
[実施例5]
(量子ロッド含有重合性液晶組成物5の作製)
 下記の量子ロッド含有重合性液晶組成物5を調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、塗布液として用いた。
──────────────────────────────────
量子ロッド含有重合性液晶組成物5
──────────────────────────────────
量子ロッド1のトルエン分散液              100質量部
(発光中心波長:520nm、半値幅:25nm)
量子ロッド2のトルエン分散液              100質量部
(発光中心波長:630nm、半値幅:30nm)
棒状液晶化合物(A)                   80質量部
下記の棒状液晶化合物(C)                20質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)  3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
フッ素系ポリマー(FP4)               0.3質量部
メチルエチルケトン(MEK)              193質量部
シクロヘキサノン                     50質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000006
 棒状液晶化合物(A)の分子長軸の長さ(分子長)は3.7nmであり、棒状液晶化合物(C)の分子長軸の長さ(分子長)は4.1nmである。
 続いて、上記量子ロッド含有重合性液晶組成物5をスライドガラスの表面に塗布し、加熱しながら偏光顕微鏡で観察した。その結果、ネマチック液晶性を有することを確認した。
(波長変換部材5の作製)
 バリアフィルム11を用意し、第二有機層表面にラビング処理を施した。ラビング処理面上に量子ロッド含有重合性液晶組成物5を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム5を形成した。波長変換フィルム5の厚みは、7.0μmであった。最後に、波長変換フィルム5の形成されたバリアフィルム11をバックアップローラに巻きかけ、波長変換フィルム5の上にバリアフィルム11を第二有機層面が波長変換フィルム5に接する向きでラミネートし、バリアフィルム11で波長変換フィルム5を挟持した波長変換部材5を形成した。
[実施例6]
(量子ロッド含有重合性液晶組成物6の作製)
 実施例1で用いた量子ロッド含有重合性液晶組成物1における、棒状液晶化合物(B)を、下記の量子ロッドに吸着する基(カルボキシル基)を有する棒状液晶化合物(B’)に変更した以外は、実施例1同様に調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、量子ロッド含有重合性液晶組成物6として用いた。
棒状液晶化合物(B’)
Figure JPOXMLDOC01-appb-C000007
 棒状液晶化合物(B’)の分子長軸の長さ(分子長)は3.7nmである。
 続いて、上記量子ロッド含有重合性液晶組成物6をスライドガラスの表面に塗布し、加熱しながら偏光顕微鏡で観察した。その結果、ネマチック液晶性を有することを確認した。
(波長変換部材6の作製)
 実施例1と同様に、バリアフィルム10上に配置された配向膜1の表面にラビング処理を施した。ラビング処理面上に量子ロッド含有重合性液晶組成物6を、バーコーターを用いて塗布した。次いで、膜面温度100℃で60秒間加熱熟成しネマチック相で配向させた後、70℃まで冷却し、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより波長変換フィルム6を形成した。波長変換フィルム6の厚みは、7.0μmであった。最後に、波長変換フィルム6の形成されたバリアフィルム10をバックアップローラに巻きかけ、波長変換フィルム6の上にバリアフィルム10を無機層面が波長変換フィルム6に接する向きでラミネートし、バリアフィルム10で波長変換フィルム6を挟持した波長変換部材6を形成した。
[実施例7]
(量子ロッド含有重合性液晶組成物7の作製)
 実施例1で用いた量子ロッド含有重合性液晶組成物1における、棒状液晶化合物(B)を、下記の量子ロッドに吸着する基(アミノ基)を有する棒状液晶化合物(B’’)に変更した以外は、実施例1同様に調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、量子ロッド含有重合性液晶組成物7として用いた。
棒状液晶化合物(B’’)
Figure JPOXMLDOC01-appb-C000008
 棒状液晶化合物(B’’)の分子長軸の長さ(分子長)は3.7nmである。
 続いて、上記量子ロッド含有重合性液晶組成物7をスライドガラスの表面に塗布し、加熱しながら偏光顕微鏡で観察した。その結果、ネマチック液晶性を有することを確認した。
(波長変換部材7の作製)
 量子ロッド含有重合性液晶組成物6の代わりに、量子ロッド含有重合性液晶組成物7を使用した以外は、波長変換部材6の作製手順に従って、バリアフィルム10で波長変換フィルム7を挟持した波長変換部材7を形成した。
[比較例1]
 量子ロッド1のトルエン分散液の代わりに以下の量子ロッド3のトルエン分散液を、量子ロッド2のトルエン分散液の代わりに以下の量子ロッド4のトルエン分散液を用いた以外は、実施例1と同様の手順に従って、バリアフィルム10で波長変換フィルム10を挟持した波長変換部材10を形成した。
量子ロッド3のトルエン分散液
(発光中心波長:530nm、半値幅:25nm)
量子ロッド4のトルエン分散液
(発光中心波長:640nm、半値幅:30nm)
 上記において、「量子ロッド3のトルエン分散液」の量子ロッド3は、コアがCdSeで、シェルがZnSで構成されたコア/シェル型の量子ロッド(長軸:3.3nm、短軸:3.0nm、アスペクト比(長軸/短軸):1.1)であり、量子ロッド3のトルエン分散液全量に対する濃度は1質量%であった。
 また、量子ロッド4のトルエン分散液の量子ロッドは、コアがCdSeで、シェルがZnSで構成されたコア/シェル型の量子ロッド(長軸:6.3nm、短軸:4.0nm、アスペクト比(長軸/短軸):1.5)であり、量子ロッド4のトルエン分散液全量に対する濃度は1質量%であった。
[比較例2]
 量子ロッド1のトルエン分散液の代わりに以下の量子ロッド5のトルエン分散液(発光中心波長:500nm、半値幅:80nm)を用い、量子ロッド2のトルエン分散液を使用しなかった以外は、実施例1と同様の手順に従って、バリアフィルム10で波長変換フィルム20を挟持した波長変換部材20を形成した。
 上記において、量子ロッド5のトルエン分散液の量子ロッドは、ZnSロッド(長軸:4.0nm、短軸:1.2nm、アスペクト比(長軸/短軸):3.3、)であり、量子ロッド5のトルエン分散液全量に対する濃度は1質量%であった。
[比較例3]
(量子ロッド含有液晶組成物30の作製)
 下記の量子ロッド含有液晶組成物30を調製し、孔径0.2μmのポリプロピレン製フィルターでろ過した後、塗布液として用いた。
──────────────────────────────────
量子ロッド含有液晶組成物30
──────────────────────────────────
量子ロッド6のトルエン分散液              100質量部
(発光中心波長:520nm、半値幅:25nm)
量子ロッド7のトルエン分散液              100質量部
(発光中心波長:630nm、半値幅:30nm)
下記の棒状液晶化合物(D)               100質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製)  3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
上記フッ素系ポリマー(FP4)             0.3質量部
メチルエチルケトン(MEK)              193質量部
シクロヘキサノン                     50質量部
──────────────────────────────────
 上記において、「量子ロッド6のトルエン分散液」中の量子ロッド6は、コアがCdSeで、シェルがCdSで構成されたコア/シェル型の量子ロッド(長軸:36nm、短軸:7nm、アスペクト比(長軸/短軸):5.1)であり、量子ロッド6のトルエン分散液全量に対する濃度は1質量%であった。
 また、「量子ロッド7のトルエン分散液」の量子ロッド7は、コアがCdSeで、シェルがCdSで構成されたコア/シェル型の量子ロッド(分子長軸:25nm、短軸:3nm、アスペクト比(長軸/短軸):8.3)であり、量子ロッド7のトルエン分散液全量に対する濃度は1質量%であった。
Figure JPOXMLDOC01-appb-C000009
 液晶化合物(D)の分子長軸の長さ(分子長)は1.5nmであった。
(波長変換部材30の作製)
 量子ロッド含有重合性液晶組成物1の代わりに量子ロッド含有液晶組成物30を用いた以外は、実施例1と同様の手順に従って、バリアフィルム10で波長変換フィルム30を挟持した波長変換部材30を形成した。
<各種評価>
(液晶化合物(液晶構造)の配向測定)
 自動複屈折率計(KOBRA-21ADH、王子計測機器(株)社製)を用いて、各実施例および比較例にて得られた波長変換部材中の波長変換フィルムの光軸の傾斜角(即ち、液晶化合物(液晶構造)の屈折率が最大となる方向の、支持体に対する傾き)を測定した。
 実施例1~2、5~7、および、比較例1~3においては、光軸の傾斜角は0°であり、棒状液晶はラビング方向に平行に水平配向していることが確認できた。
 また、実施例3においては、光軸の傾斜角は0°であり、棒状液晶はワイヤーグリッド偏光子の透過軸(すなわち、偏光照射方向)に直交に水平配向していることが確認できた。
 また、実施例4においては、ディスコティック液晶はラビング方向に直交に垂直配向していることが確認できた。
(偏光発光性測定(初期偏光発光評価))
 実施例1~7および比較例1~3にて作製した波長変換フィルムの偏光発光性の測定を下記の方法で行った。
 実施例1で作製した波長変換部材に青色LED(Light Emitting Diode)を照射し、変換された緑色光および赤色光から、フィルターを介して青色光を除去した後、発光強度をCCD(Charge Coupled Device)で測定した。この際、偏光子によって、二つの偏光方向、すなわち、ラビング方向とラビング方向に直交する方向の強度を測定した。測定された偏光発光比(ラビング方向の強度:ラビング方向に直交する方向の強度)は、8:1であった。
 実施例1で作製した波長変換部材の代わりに、実施例2~7および比較例1~3にて作製した波長変換部材を用いて、上記手順によって偏光発光比を測定した。結果を後述する表1にまとめて示す。なお、実施例3で作製した波長変換部材を使用する場合は、ワイヤーグリッド偏光子の透過軸方向と、その透過軸方向に直交する方向の強度を測定し、偏光発光比(透過軸方向に直交する方向の強度:透過軸方向の強度)を求めた。また、実施例4においては、偏光発光比(ラビング方向に直交する方向の強度:ラビング方向の強度)は、6:1であった。
(耐久試験後の偏光発光評価)
 各実施例および各比較例で作製した波長変換部材を、温度:85℃、相対湿度:85%RHのオーブン内に5日間放置する耐久試験を実施した後、上述の(偏光発光性測定)を実施して、耐久試験後の波長変換部材の偏光発光比を測定した。
(酸素透過度の評価)
 オービスフェアラボラトリー社製型酸素濃度計の検出部にバリアフィルム10およびバリアフィルム11それぞれをシリコングリスを介して貼付し、上述した方法に沿って、平衡酸素濃度値から酸素透過度(P)を得た。得られた酸素透過度(P)を、以下基準に従って評価した。結果を表1にまとめて示す。
<評価基準>
A:P<10[cm/(m2・day・atm)]
B:10[cm/(m2・day・atm)]≦P<100[cm/(m2・day・atm)]
C:100[cm/(m2・day・atm)]≦P<1000[cm/(m2・day・atm)]
D:1000[cm/(m2・day・atm)]≦P
 上記各種評価の結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、各実施例においては、波長変換部材(波長変換フィルム)は優れた偏光発光性を示すと共に、耐久試験後においても偏光発光性の低下が少なかった。特に、実施例6および7に示すように、重合性液晶化合物の少なくとも1種が、量子ロッドに吸着する基を有する場合、より効果が優れることが確認された。
 一方、アスペクト比が所定の範囲でない量子ロッドを用いている比較例1および2の波長変換部材(波長変換フィルム)、および、重合性液晶化合物を使用していない比較例3の波長変換部材(波長変換フィルム)では、所望の効果が得られなかった。
[実施例8~14、比較例4~6]
(液晶表示装置の製造)
 市販の液晶表示装置(パナソニック社製、商品名TH-L42D2)を分解し、バックライト側偏光板とバックライトユニットの間に実施例1~7および比較例1~3で作製した波長変換部材をそれぞれ配置し、バックライトユニットを以下のB狭帯域バックライトユニットに変更し、実施例8~14および比較例4~6の液晶表示装置を製造した。このとき、波長変換部材の偏光発光方向と、バックライト側偏光板の透過軸が平行となるように配置した。なお、実施例8の液晶表示装置では実施例1の波長変換部材が、実施例9の液晶表示装置では実施例2の波長変換部材が、実施例10の液晶表示装置では実施例3の波長変換部材が、実施例11の液晶表示装置では実施例4の波長変換部材が、実施例12の液晶表示装置では実施例5の波長変換部材が、実施例13の液晶表示装置では実施例6の波長変換部材が、実施例14の液晶表示装置では実施例7の波長変換部材が、使用されている。また、比較例4の液晶表示装置では比較例1の波長変換部材が、比較例5の液晶表示装置では比較例2の波長変換部材が、比較例6の液晶表示装置では比較例3の波長変換部材が、使用されている。
 用いたB狭帯域バックライトユニットは、光源として青色発光ダイオード(日亜B-LED:Royal Blue、主波長445nm、半値幅20nm、以下B光源とも言う)を備える。また、光源の後部に光源から発光されて波長変換部材で反射された光を再反射する反射部材を備える。
(色再現域変化の評価)
1.初期(連続照射前)色再現域の評価
 液晶表示装置の色再現域(NTSC比)を、特開2012-3073号公報に記載の方法で測定した。実施例8~14の液晶表示装置の色再現域(NTSC比)は100%と良好であったが、比較例4、6は偏光発光比が小さいため、青光、緑光、赤光のバランスが悪く70%であった。また、比較例5は赤光が得られず、測定不可であった。
2.連続照射後の色再現域の評価
 温度25℃、相対湿度60%RHに保たれた部屋で、実施例8~14および比較例4~6の液晶表示装置を配置して、バックライトユニットから青色光を250時間連続で照射した。
 連続照射後の実施例および比較例の液晶表示装置の色再現域(NTSC比)を、上記1.の連続照射前の色再現域(NTSC比)の評価と同様の方法で測定し、下式記載の初期の色再現域(NTSC比)との変化率(ΔX)を取って色再現域(NTSC比)変化の指標とした。なお、X0は連続照射前の色再現域(NTSC比)を、X1は連続照射後の色再現域(NTSC比)を表す。
 ΔX[%]=(X0-X1)/X0×100
 得られたΔXの値により、色再現域(NTSC比)変化を下記基準で評価した。
(評価基準)
A ΔX<20[%]
B 20[%]≦ΔX<40[%]
C 40[%]≦ΔX<60[%]
D 60[%]≦ΔX
 実施例8~14および比較例4の液晶表示装置の色再現域(NTSC比)は、波長変換フィルムが重合により3次元架橋されているため、連続照射後でもA判定と良好であったが、比較例6の波長変換フィルムは非重合性棒状液晶により形成されているため、光劣化が大きくD判定であった。
(輝度変化の評価)
1.初期(連続照射前)輝度の評価
 市販の青色光源(OPTEX-FA株式会社製OPSM-H150X142B)上に各実施例および比較例の波長変換部材を置き、透過した光の輝度Y0を、波長変換部材の面に対して垂直方向740mmの位置に設置した輝度計(SR3、TOPCON社製)にて測定した。実施例1~7の波長変換部材の輝度は、偏光発光比が大きいため、偏光板の光吸収による輝度低下が小さく、200と良好であったが、比較例4、6は偏光発光比が小さいため、120であった。また、比較例5は赤光が得られず、測定不可であった。
2.連続照射後の輝度の評価
 温度25℃、相対湿度60%RHに保たれた部屋で、市販の青色光源(OPTEX-FA株式会社製OPSM-H150X142B)上に実施例および比較例の各波長変換部材を置き、実施例および比較例の波長変換部材に対して青色光を250時間連続で照射した。
 連続照射後の実施例および比較例の波長変換部材の輝度(Y1)を、上記1.の連続照射前の輝度の評価と同様の方法で測定し、下式記載の初期の輝度値(Y0)との変化率(ΔY)を取って輝度変化の指標とした。
 ΔY[%]=(Y0-Y1)/Y0×100
 得られたΔYの値により、輝度変化を下記基準で評価した。評価結果がAおよびBであれば、連続照射後も端部の発光効率が良好に維持されていると判断することができる。
(評価基準)
A ΔY<20[%]
B 20[%]≦ΔY<40[%]
C 40[%]≦ΔY<60[%]
D 60[%]≦ΔY
 実施例1~7および比較例1の波長変換部材の輝度は、波長変換フィルムが重合により3次元架橋されているため、連続照射後でもA判定と良好であったが、比較例3の波長変換フィルムは非重合性棒状液晶により形成されているため、光劣化が大きくD判定であった。

Claims (23)

  1.  入射する励起光により励起され蛍光を発光する量子ロッド、および、重合性液晶化合物を含み、
     前記量子ロッドの長軸の長さが20~100nmであり、
     前記量子ロッドのアスペクト比が4~20である、重合性液晶組成物。なお、前記アスペクト比は、前記量子ロッドの長軸の長さと短軸の長さとの比である。
  2.  前記量子ロッドは、
     600~680nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(A)、
     500~600nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(B)、および
     430~480nmの範囲の波長帯域に発光中心波長を有し、半値幅が60nm以下である量子ロッド(C)、からなる群から選択される少なくとも1種を含む、請求項1に記載の重合性液晶組成物。
  3.  前記量子ロッドが、CdS、CdSe、CdTe、ZnS、ZnSe、ZnSeS、ZnTe、ZnO、GaAs、GaP、GaAs、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、AlSb、CuS、CuS、CuSe、CuInS、CuInS、CuInSe、Cu(ZnSn)S、および、Cu(InGa)Sからなる群から選択される少なくとも1種の成分を含む、請求項1または2に記載の重合性液晶組成物。
  4.  前記重合性液晶化合物は、前記量子ロッドの長軸との間で以下式(1)を満足する重合性液晶化合物Xを含む、請求項1~3のいずれか1項に記載の重合性液晶組成物。
     式(1)   2≦Lq/Lp≦10
     式(1)中、Lqは前記量子ロッドの長軸の長さを表し、Lpは前記重合性液晶化合物Xの分子長軸の長さを表す。
  5.  前記重合性液晶化合物が、重合性基を1つ有する液晶化合物、および、重合性基を2つ有する液晶化合物からなる群から選択される少なくとも1種を含む、請求項1~4のいずれか1項に記載の重合性液晶組成物。
  6.  前記重合性液晶化合物の少なくとも1種が、前記量子ロッドに吸着する基を有する、請求項1~5のいずれか1項に記載の重合性液晶組成物。
  7.  前記量子ロッドに吸着する基が、ホスフィンオキサイド基、ホスフィン基、ホスホン酸基、アミノ基、メルカプト基、および、カルボキシル基からなる群から選択される、請求項6に記載の重合性液晶組成物。
  8.  さらに、前記重合性液晶化合物とは異なる、重合性基を有するモノマーを含む、請求項1~7のいずれか1項に記載の重合性液晶組成物。
  9.  前記重合性基を有するモノマーが、炭素数4~30のアルキル基を有するモノマーを含む、請求項8に記載の重合性液晶組成物。
  10.  さらに、重合開始剤を含む、請求項1~9のいずれか1項に記載の重合性液晶組成物。
  11.  請求項1~10のいずれか1項に記載の重合性液晶組成物から形成された波長変換フィルム。
  12.  架橋構造を有する高分子マトリックスと、前記高分子マトリックス中に分散した量子ロッドとを含み、
     前記高分子マトリックスが、部分構造として液晶構造を含む繰り返し単位を有し、前記液晶構造は配向した状態で固定されており、
     前記量子ロッドの長軸が一方向と平行となるように前記量子ロッドが配向しており、
     前記量子ロッドの長軸の長さが20~100nmであり、
     前記量子ロッドのアスペクト比が4~20である、波長変換フィルム。
  13.  請求項11または12に記載の波長変換フィルムと、前記波長変換フィルムの少なくとも一方の面上に配置された、酸素透過度が50cm/(m2・day・atm)以下である支持体とを含む、波長変換部材。
  14.  前記波長変換フィルムの両面上に前記支持体が配置される、請求項13に記載の波長変換部材。
  15.  前記支持体が、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物、または、アルミニウム酸化物を含む無機層を有するバリアフィルムである、請求項13または14に記載の波長変換部材。
  16.  前記バリアフィルムが、前記無機層と前記無機層の上に少なくとも1層の有機層とを含む、請求項15に記載の波長変換部材。
  17.  前記波長変換フィルムと前記支持体との間に、配向処理が施された配向膜を含む、請求項13~16のいずれか1項に記載の波長変換部材。
  18.  請求項13~17のいずれか1項に記載の波長変換部材と、青色発光ダイオードまたは紫外線発光ダイオードとを少なくとも含む、バックライトユニット。
  19.  さらに、導光板を含み、前記波長変換部材が、前記導光板から出射される光の経路上に配置される、請求項18に記載のバックライトユニット。
  20.  さらに、プリズムシートを含む、請求項18または19に記載のバックライトユニット。
  21.  請求項18~20のいずれか1項に記載のバックライトユニットと、液晶セルとを少なくとも含む液晶表示装置。
  22.  請求項13~16のいずれか1項に記載の波長変換部材の製造方法であって、
     前記支持体表面をラビング処理する工程Aと、
     前記工程Aの後に、ラビング処理を施した前記支持体表面に請求項1~10のいずれか1項に記載の重合性液晶組成物を塗布する工程Bと、
     前記重合性液晶組成物中の前記重合性液晶化合物を配向させた後、配向状態を重合により固定させて、前記波長変換フィルムを形成する工程Cと、を含む、波長変換部材の製造方法。
  23.  請求項17に記載の波長変換部材の製造方法であって、
     前記支持体上に、配向処理が施された配向膜を形成する工程Dと、
     前記工程Dの後に、前記配向膜上に請求項1~10のいずれか1項に記載の重合性液晶組成物を塗布する工程Eと、
     前記重合性液晶組成物中の前記重合性液晶化合物を配向させた後、配向状態を重合により固定させて、前記波長変換フィルムを形成する工程Fと、を含む、波長変換部材の製造方法。
PCT/JP2015/069335 2014-07-18 2015-07-03 重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置 WO2016009859A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-147945 2014-07-18
JP2014147945 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016009859A1 true WO2016009859A1 (ja) 2016-01-21

Family

ID=55078357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069335 WO2016009859A1 (ja) 2014-07-18 2015-07-03 重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置

Country Status (2)

Country Link
JP (1) JP6353410B2 (ja)
WO (1) WO2016009859A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897882B1 (en) * 2015-12-04 2018-02-20 Shenzhen China Star Optoelectronics Technology Co., Ltd. Methods of fabricating COA type liquid crystal display panels and COA type liquid crystal display panels
WO2018117131A1 (ja) * 2016-12-22 2018-06-28 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502950A (ja) 2014-12-23 2018-02-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア メソゲンリガンドで機能化されたナノ粒子の三次元構造、及びこれを作製して使用する方法
KR102608422B1 (ko) * 2016-03-07 2023-12-01 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
KR20190094145A (ko) 2016-12-12 2019-08-12 디아이씨 가부시끼가이샤 편광 발광 필름
CN106833612B (zh) * 2017-02-07 2019-11-08 深圳市华星光电技术有限公司 量子棒组合物、量子棒偏光片及其制作方法
JP7219222B2 (ja) * 2017-09-15 2023-02-07 住友化学株式会社 積層体及びデバイス
KR102175231B1 (ko) * 2017-12-28 2020-11-06 쇼와덴코머티리얼즈가부시끼가이샤 적층체, 파장 변환 부재, 백라이트 유닛, 및 화상 표시 장치
JP7210952B2 (ja) * 2018-09-12 2023-01-24 住友化学株式会社 組成物、硬化膜および表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515273A (ja) * 2001-10-24 2005-05-26 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア 半導体液晶組成物及びその製造方法
JP2007233162A (ja) * 2006-03-02 2007-09-13 Fujifilm Corp 新規配向性を有する偏光板及び液晶表示装置
JP2008052076A (ja) * 2006-08-25 2008-03-06 Fujifilm Corp ガラス
JP2010144032A (ja) * 2008-12-18 2010-07-01 National Institute For Materials Science 偏光調整型電気光学装置のための液晶ディスプレイ用ナノロッド配合物
JP2012012651A (ja) * 2010-06-30 2012-01-19 Kyushu Univ 金ナノロッドの配向制御方法とその基板等
JP2013182120A (ja) * 2012-03-01 2013-09-12 Seiko Epson Corp 偏光素子およびその製造方法、液晶装置、電子機器
JP2014502403A (ja) * 2010-11-05 2014-01-30 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム・リミテッド 偏光照明システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515273A (ja) * 2001-10-24 2005-05-26 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア 半導体液晶組成物及びその製造方法
JP2007233162A (ja) * 2006-03-02 2007-09-13 Fujifilm Corp 新規配向性を有する偏光板及び液晶表示装置
JP2008052076A (ja) * 2006-08-25 2008-03-06 Fujifilm Corp ガラス
JP2010144032A (ja) * 2008-12-18 2010-07-01 National Institute For Materials Science 偏光調整型電気光学装置のための液晶ディスプレイ用ナノロッド配合物
JP2012012651A (ja) * 2010-06-30 2012-01-19 Kyushu Univ 金ナノロッドの配向制御方法とその基板等
JP2014502403A (ja) * 2010-11-05 2014-01-30 イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム・リミテッド 偏光照明システム
JP2013182120A (ja) * 2012-03-01 2013-09-12 Seiko Epson Corp 偏光素子およびその製造方法、液晶装置、電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897882B1 (en) * 2015-12-04 2018-02-20 Shenzhen China Star Optoelectronics Technology Co., Ltd. Methods of fabricating COA type liquid crystal display panels and COA type liquid crystal display panels
WO2018117131A1 (ja) * 2016-12-22 2018-06-28 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
JPWO2018117131A1 (ja) * 2016-12-22 2019-10-31 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ

Also Published As

Publication number Publication date
JP2016029149A (ja) 2016-03-03
JP6353410B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6353410B2 (ja) 重合性液晶組成物、波長変換フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
JP6380979B2 (ja) 液晶組成物、偏光発光フィルム、波長変換部材およびその製造方法、バックライトユニット、液晶表示装置
JP4985550B2 (ja) 位相差フィルム及びその製造方法、光学機能フィルム、偏光フィルム、並びに表示装置
JP6453662B2 (ja) 液晶組成物、偏光発光フィルム、波長変換部材及びその製造方法、バックライトユニット、液晶表示装置
US20170108726A1 (en) Liquid crystal display device
WO2016002343A1 (ja) 液晶表示装置
US10151864B2 (en) Optical film, illumination device, and image display device
JP2016153281A (ja) ウインドシールドガラスおよびヘッドアップディスプレイシステム
JPWO2016052367A1 (ja) 投映像表示用部材および投映像表示システム
KR101944227B1 (ko) 투영상 표시용 하프 미러 및 그 제조 방법, 그리고 투영상 표시 시스템
KR20160035070A (ko) 응력 표시 부재 및 응력 표시 부재를 이용한 스트레인 측정 방법
WO2004063779A1 (ja) 広帯域コレステリック液晶フィルム、その製造方法、円偏光板、直線偏光子、照明装置および液晶表示装置
TW201543116A (zh) 液晶面板、液晶顯示裝置、偏光板及偏光板保護膜
JP5163802B2 (ja) 位相差フィルム、光学機能フィルム、偏光フィルム、並びに、表示装置
JP2004524568A (ja) ねじれa板および偏光子を含む光学フィルムの組合せ
JP2019204086A (ja) 光学積層体、表示パネル及び表示装置
JP6286440B2 (ja) 投映像表示用ハーフミラーおよび投映像表示システム
JPWO2015046399A1 (ja) 偏光板の製造方法
JP4191711B2 (ja) 位相差フィルムおよびその製造方法、光学機能フィルム、偏光フィルム、並びに、表示装置
JP2007333981A (ja) 配向膜、配向膜シート、偏光分離シートおよび液晶表示装置
JP2023155243A (ja) 偏光子を備えた面光源及びそれを用いた液晶表示装置
KR102532379B1 (ko) 광학 이방성층의 제조 방법
JP2011203426A (ja) 長尺状の光学積層体、輝度向上フィルム及び液晶表示装置
KR20050049491A (ko) 지연체 및 타원형 편광판
JP7494445B2 (ja) 表示パネル及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822234

Country of ref document: EP

Kind code of ref document: A1