WO2016009617A1 - シラン系コーティング組成物 - Google Patents

シラン系コーティング組成物 Download PDF

Info

Publication number
WO2016009617A1
WO2016009617A1 PCT/JP2015/003427 JP2015003427W WO2016009617A1 WO 2016009617 A1 WO2016009617 A1 WO 2016009617A1 JP 2015003427 W JP2015003427 W JP 2015003427W WO 2016009617 A1 WO2016009617 A1 WO 2016009617A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane
coating composition
based coating
acid
Prior art date
Application number
PCT/JP2015/003427
Other languages
English (en)
French (fr)
Inventor
淳司 岩佐
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2016534102A priority Critical patent/JPWO2016009617A1/ja
Publication of WO2016009617A1 publication Critical patent/WO2016009617A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to an organic silane composition, and particularly relates to a composition having excellent adhesion to a plastic substrate, a metal substrate, etc., and also having excellent storage stability.
  • Transparent plastic moldings such as polycarbonate are widely used as an alternative to inorganic glass products by taking advantage of light weight, easy processability, impact resistance, etc., but they are easily affected by solvents and difficult to modify the surface. There are disadvantages such as. For this reason, there are still inferior points compared to inorganic glass, and attempts have been made to improve these properties. For example, glycidoxytrimethoxysilane is hydrolyzed with nitric acid in alcohol, and further, diethylenetriamine is added and further reacted to form a hard coat film corresponding to a pencil hardness of 2H on a polycarbonate plate. It is known that it can be formed.
  • Non-Patent Document 1 an amino compound represented by the general formula NH 2 —R 1 —NH—R 1 —NH 2 (R 1 represents a straight-chain or branched alkylene group having 6 or less carbon atoms), glycidoxy C1-6
  • a thermosetting resin composition obtained by hydrolyzing a mixture of a chain or branched alkylene trialkoxysilane monomer or a polymer thereof and a tetraalkoxysilane or an alkyltrialkoxysilane is known and applied to a metal surface. Then, it is known that a film having excellent physical properties such as wear resistance, surface hardness, and chemical resistance can be obtained by curing by heating. Further, it is described that hydrohalic acid, carboxylic acid, sulfonic acid and the like can be used as a hydrolysis catalyst. (Patent Document 1)
  • Non-Patent Document 1 has a problem of workability that it takes a long time of 24 hours for hydrolysis and 15 hours for curing after the coating film. There was also a problem with storage stability. Patent Document 1 describes that a strong acid such as perchloric acid is preferable as a hydrolysis catalyst, and the amount used is 1% by mass or less of the entire composition, and the composition is stored for a long time. There is no description or suggestion regarding stability, nor is there any description or suggestion regarding adhesion to the upper layer as a primer layer.
  • the present invention has been made in view of the above circumstances, and can be applied to a wide range of base materials including plastic, can be surface-modified like glass, can be manufactured in a short time, and can be cured in a short time.
  • An object of the present invention is to provide a coating composition having a sufficient hardness and capable of obtaining a coating film such as a primer layer having excellent adhesion to a substrate or an upper layer.
  • the present invention (1) (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane, (B) polyamines, (C) an organic acid having a pKa in the range of 2.0 to 6.0 at 25 ° C., an alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group or a perfluoroalkylene group, and (D) a metal compound particle. Containing silane-based coating composition, (2) The silane-based coating composition according to (1), wherein the z-average particle diameter of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane measured by a dynamic light scattering method is in the range of 5 to 50 nm.
  • the silane-based coating composition according to (1) wherein the polyamine is at least one polyamine selected from the group consisting of an alkylene polyamine, a polyalkylene polyamine, a poly (phenylene alkylene) polyamine, and a cycloalkylene alkyl polyamine.
  • the polyamine is at least one polyamine selected from the group consisting of an alkylene polyamine, a polyalkylene polyamine, a poly (phenylene alkylene) polyamine, and a cycloalkylene alkyl polyamine.
  • 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine) with respect to 1 mol of epoxy group in epoxy group-containing trialkoxysilane and / or its hydrolysis condensate The silane-based coating composition according to (1), which is used in a range of 1 mol or more and 1 / (total number of hydrogen atoms on all nitrogen atoms in 1 molecule of polyamine) or less.
  • the substrate surface can be modified to a glass-like surface with sufficient hardness in a short time, and fine irregularities are formed on the surface.
  • the thin film obtained by using the composition of the present invention can be used as a primer layer having excellent adhesion to the resin layer provided on the resin layer, and the resin layer is usually provided on the surface of a substrate having poor adhesion. It is useful as a primer layer for providing.
  • composition containing the components (A), (B), (C) and (D) of the present invention will be described in detail.
  • (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane The hydrolysis condensate of epoxy group-containing trialkoxysilane used in the present invention is produced from epoxy group-containing trialkoxysilane and / or its hydrolysis condensate as a raw material. can do.
  • the structure of the epoxy group-containing trialkoxysilane is not particularly limited as long as it is a trialkoxysilane containing an epoxy group in addition to the functional group portion converted by hydrolysis or the like.
  • a compound represented by the following formula (I) is exemplified.
  • R represents a hydrocarbon group having an epoxy group or a glycidoxy group
  • R 1 represents an alkyl group.
  • one or more epoxy groups or glycidoxy groups may be contained, and preferably 1 to 3 are included, and both epoxy groups and glycidoxy groups may be contained.
  • the “hydrocarbon group” of the “hydrocarbon group having an epoxy group or a glycidoxy group” of R includes an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, and an arylalkyl.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, isopentyl group.
  • neopentyl group n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, isononyl group, n-decyl group, lauryl group, tridecyl group, myristyl group, pentadecyl group, palmityl Group, heptadecyl group, stearyl group and the like.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • cycloalkylalkyl group is a group in which a cycloalkyl group and an alkyl group are bonded, and a group in which a cycloalkyl group having 3 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms are bonded is preferable.
  • alkenyl group examples include a vinyl group, a prop-1-en-1-yl group, an allyl group, a but-1-en-1-yl group, and a but-2-en-1-yl group.
  • But-3-en-1-yl group, but-1-en-2-yl group, but-3-en-2-yl group, penta-1-en-1-yl group, penta-4-ene -1-yl group, penta-1-en-2-yl group, penta-4-en-2-yl group, 3-methyl-but-1-en-1-yl group, hexa-1-ene-1 -Yl group, hexa-5-en-1-yl group, hepta-1-en-1-yl group, hepta-6-en-1-yl group, octa-1-en-1-yl group, octa- Examples include a 7-en-1-yl group and a buta-1,3-dien-1-yl
  • cycloalkenyl group examples include a 1-cyclopenten-1-yl group, 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, 3 -Cyclohexen-1-yl group and the like.
  • alkynyl group examples include ethynyl group, prop-1-in-1-yl group, prop-2-yn-1-yl group, but-1-in-1-yl group, but- 3-in-1-yl group, penta-1-in-1-yl group, penta-4-in-1-yl group, hexa-1-in-1-yl group, hexa-5-in-1- Yl group, hepta-1-in-1-yl group, octa-1-in-1-yl group, octa-7-in-1-yl group and the like.
  • Aryl group means a monocyclic or polycyclic aryl group. In the case of a polycyclic aryl group, a group having a partially saturated ring in addition to a fully unsaturated ring is also included. Specific examples include a phenyl group, a naphthyl group, an azulenyl group, an indenyl group, an indanyl group, and a tetralinyl group.
  • the “arylalkyl group” is a group in which an aryl group and an alkyl group are bonded, and a group in which an aryl group having 6 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms are bonded is preferable.
  • the “arylalkenyl group” is a group in which an aryl group and an alkenyl group are bonded, and a group in which an aryl group having 6 to 10 carbon atoms and an alkenyl group having 2 to 10 carbon atoms are bonded is preferable.
  • hydrocarbon group may have a substituent other than an epoxy group and a glycidoxy group.
  • substituents include a halogeno group, an alkyl group, an alkenyl group, an alkoxy group, (meth) An acryloxy group etc. are mentioned.
  • the halogeno group include a fluoro group, a chloro group, a bromo group, and an iodo group.
  • the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a t-butoxy group.
  • alkyl group and alkenyl group include the same hydrocarbon groups as the alkyl group and alkenyl group in R above.
  • Examples of the “alkyl group” for R 1 include the same hydrocarbon groups as the alkyl group for R.
  • the above-mentioned “alkyl group” may have a substituent, and examples of such a substituent include a halogeno group, an alkoxy group, a (meth) acryloxy group, and the like.
  • glycidoxyalkyltrialkoxysilane or glycidoxyalkenylalkoxysilane is preferable. These can be used individually by 1 type or in mixture of 2 or more types.
  • the compound represented by the formula (I) include methyl-triglycidyloxysilane, methyltris (3-methyl-3-oxetanemethoxy) silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Examples thereof include silane, 3-glycidoxy-n-propyltrimethoxysilane, 3-glycidoxy-n-propylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • the hydrolysis condensate of an epoxy group-containing trialkoxysilane can be prepared by mixing and stirring an epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, water, and, if necessary, a silanol condensation catalyst. .
  • the mixing order and the stirring speed are not particularly limited, and an arbitrary order or an arbitrary speed can be set.
  • the temperature at the time of mixing and stirring is not particularly limited, and it is preferably in the range of room temperature to the boiling point of the solvent used, more preferably at room temperature. In this case, the room temperature is the outside air temperature at the place where mixing and stirring is performed, but a temperature in the range of 15 to 35 ° C. is preferable.
  • the amount of water to be used is not particularly limited as long as the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate is more than the amount that can be hydrolyzed and condensed to some extent, and specifically, the epoxy group-containing trialkoxy to be used.
  • 0.5 mol or more is preferable with respect to 1 mol of silane and / or its hydrolysis condensate, and 1.0 mol or more, 2.0 mol or more, 5.0 mol or more, or 10 mol or more is more preferable.
  • the amount of the silanol condensation catalyst to be used is not particularly limited, but the molar amount relative to the amount of trialkoxysilyl group converted as uncondensed in the raw material epoxy group-containing trialkoxysilane and / or its hydrolysis condensate.
  • the ratio (silanol condensation catalyst / silyl group) is preferably in the range of 0.001 to 1.0, more preferably in the range of 0.01 to 1.0, or 0.1 to 0.5.
  • silanol condensation catalyst examples include metal compounds such as metal alkoxides, metal chelate compounds, organic acid metal salts, or hydrolysis condensates thereof, and more specifically, tetraisopropoxy titanium, diisopropoxy titanium bisacetylacetonate. Or a hydrolysis-condensation product thereof.
  • Examples of the silanol condensation catalyst include acids and bases in addition to the metal compounds.
  • Examples of acids include organic acids and mineral acids.
  • Examples of organic acids include acetic acid, formic acid, oxalic acid, carbonic acid, phthalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, and the like; Hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid, and the like.
  • examples of the acid include a photoacid generator that generates an acid upon irradiation with light, specifically, diphenyliodonium hexafluorophosphate, triphenylphosphonium hexafluorophosphate, and the like.
  • Bases include strong bases such as tetramethylguanidine and tetramethylguanidylpropyltrimethoxysilane; aliphatic primary amines; aliphatic secondary amines; aliphatic tertiary amines; aliphatic unsaturated amines Aromatic amines; polyamines such as diethylenetriamine, triethylenetetramine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine, triethylenediamine; salts of these amine compounds with carboxylic acids, etc .; carboxyls of organic amines Acid neutralized salts, quaternary ammonium salts; imidazoles such as imidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole; and the like.
  • strong bases such as tetramethylguanidine and tetramethylguanidylpropy
  • a silanol condensation catalyst can be used individually by 1 type or in combination of 2 or more types.
  • polyamines or imidazoles are used as the curing agent or curing accelerator of the epoxy group-containing trialkoxysilane, and therefore polyamines or imidazoles are preferably used as the silanol condensation catalyst.
  • the hydrolyzed condensate of epoxy group-containing trialkoxysilane used in the present invention preferably has a z-average particle size measured by a dynamic light scattering method in the range of 5 to 50 nm, more preferably 5 to 30 nm. If it is larger than 50 nm, the pot life is short, there may be a problem in storage stability, and smear may occur after coating. On the other hand, if the thickness is smaller than 5 nm, the resulting thin film may have insufficient hardness.
  • polyamines to be used are not particularly limited as long as they are compounds having two or more amino groups or imino groups bonded to one or more hydrogen atoms in one molecule. Specifically, ethylenediamine, Trimethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, methylaminopropylamine, ethylaminopropylamine, N, N′-dimethylhexamethylenediamine, bis (2 -Methylaminoethyl) ether, menthanediamine, isophoronediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxyspiro (5,5) undecane adduct, bis (4-aminocyclohexyl) ) Methane, o-fu Nirenjiamin, m- phenylened
  • alkylene polyamines polyalkylene polyamines, poly (phenylene alkylene) polyamines, and cycloalkylene alkyl polyamines are preferable, and polyalkylene polyamines are particularly preferable.
  • Specific examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine and the like.
  • the amount of the polyamines to be used is not particularly limited, but is 1 / (total of all the nitrogen atoms in one molecule of the polyamines with respect to 1 mol of the epoxy groups in the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate.
  • Numberer of hydrogen atoms It is preferable to use at least mol, and the range is 1.2 times to 10 times mol, 1.5 times to 5 times mol of 1 / (number of all hydrogen atoms on all nitrogen atoms in one molecule of polyamine). Or a range of 1.8 to 2.5 moles.
  • 1 / total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine
  • curing may be insufficient and a film with high hardness may not be obtained.
  • 1 / polyamines 1 If it is larger than 10 times the total number of hydrogen atoms on all nitrogen atoms in the molecule, polyamines may remain and a thin film with sufficient hardness may not be formed.
  • Organic acid or alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group or a perfluoroalkylene group The organic acid used has a pKa in the range of 2.0 to 6.0 at 25 ° C., preferably 3 Any organic acid in the range of 0.0 to 5.0 is not particularly limited.
  • aliphatic monocarboxylic acid, benzoic acid or substituted benzoic acid is preferable.
  • the amount of the organic acid to be used is not particularly limited, but is preferably in the range of 0.3 to 1.2 mol, preferably 0.5 to 1.0 mol, or 0.6 to 0.00 mol per mol of the polyamine to be used. A range of 9 moles is more preferred.
  • the amount is less than 0.3 mol, the storage stability of the silane-based coating composition may be lowered.
  • the amount is more than 1.2 mol, a coating film having sufficient hardness may not be formed.
  • alcohols having 2 to 5 carbon atoms (perfluorinated alcohols) having a perfluoroalkyl group or a perfluoroalkylene group to be used include 2,2,2-trifluoroethanol, 1,1,2, 2,2-pentafluoroethanol, 3,3,3-trifluoro-1-propanol, 2,2,3,3,3-pentafluoro-1-propanol, 1,1,2,2,3,3 3-heptafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2-trifluoromethyl-2-propanol, 2-methyl-1,1,1,3 3,3-hexafluoro-2-propanol, 2,2,3,3,4,4,4-heptafluoro-1-butanol, nonafluoro-t-butanol, 2,2,3,3,4, , 5,5-octafluoro-1-pentanol, and the like.
  • the usage-amount of the perfluorinated alcohol to be used is not restrict
  • the solid content concentration in the silane-based coating composition is not particularly limited, but considering the appearance of the thin film, coating properties, curability, properties of the thin film, storage stability of the composition, (A) epoxy group-containing trialkoxy It is preferable to use such an amount that the solid content concentration of the hydrolysis-condensation product of silane and (B) polyamines is in the range of 0.5 to 50% by mass with respect to the total mass, 1.0 to 30% by mass, A range of 1.0 to 20% by mass, 1.0 to 10% by mass, 1.5 to 5.0% by mass, or 1.8 to 3% by mass is more preferable. If it is less than 0.5% by mass, it may be difficult to form a film uniformly.
  • the amount of the organic solvent and water to be used can be appropriately determined within a range that can be adjusted to the solid content concentration.
  • Metal compound particles Specific examples of the metal of the metal compound particles include silicon, tungsten, antimony, zirconium, aluminum, titanium, magnesium, iron, tin, zinc, cadmium, nickel, copper, belium, ruthenium, and thorium. Yttrium, mercury, cesium, chromium, lanthanum, lead, indium, niobium, cadmium, bismuth, gallium, magnesium and the like.
  • the metal compound examples include silica, tungsten oxide, antimony oxide, zirconia, alumina, titania, magnesium oxide, tin oxide, zinc oxide, cadmium oxide, yttrium oxide, nickel oxide, copper oxide, beryllium oxide, ruthenium oxide, Examples include metal oxides such as thorium oxide, mercury oxide, cesium oxide, chromium oxide, lead oxide, indium oxide, niobium oxide, cadmium oxide, bismuth oxide, gallium oxide (III), and ferrous oxide, and magnesium fluoride. .
  • metal compound particles containing at least one metal element selected from the group consisting of Group 4 element, Group 5 element, Group 13 element, Group 14 element, and Group 8 to 10 element of the periodic table are preferable. Furthermore, metal compound particles containing at least one metal element selected from the group consisting of silicon, aluminum, titanium, and iron are preferable, and metal compound particles containing silicon are more preferable.
  • the particle diameter of the metal compound is not particularly limited, but the average primary particle diameter is preferably in the range of 1 nm to 500 nm, and more preferably in the range of 10 nm to 100 nm.
  • the metal compound particles may be sol or powder, but it is usually preferable to use sol.
  • each metal compound particle can be used that is surface-modified with a silane coupling agent or the like, and specific examples include silica sol that has been subjected to a hydrophobic treatment with a hydrocarbon group or the like.
  • the content of the metal compound particles is preferably from 20 to 83% by mass, more preferably from 65 to 75% by mass, based on the total solid content in the composition.
  • the silane-based coating composition can use an organic solvent in order to adjust the solid content concentration in the composition.
  • a solvent is not particularly limited as long as it can maintain the uniformity and stability of the solution, and examples thereof include alcohols, ethers, ketones, esters, amides, and the like. An alcohol of 5 is preferred. These can be used alone or in combination of two or more.
  • water is preferably used.
  • the organic solvent to be used is preferably an organic solvent that is soluble in water.
  • the ratio of water to the organic solvent is preferably an amount ratio that makes a uniform solution after using a necessary amount.
  • the mass ratio of water to organic solvent is in the range of 30/70 to 95/5.
  • the range of 50/50 to 90/10, 60/40 to 80/20, or 65/35 to 75/25 is more preferable.
  • the amount of water used is necessary for hydrolysis of trialkoxysilane because the solubility of water in the organic solvent is low. It is preferable to use an amount in a range that makes the composition uniform more than a certain amount.
  • silane-based coating composition of the present invention can be added to the silane-based coating composition of the present invention according to its use.
  • examples of the other components include various surfactants, dyes, pigments, dispersion materials, liquid repellent materials, and reinforcing agents.
  • examples include sticky materials, fragrances, and antibacterial components.
  • ii) Water, epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof, polyamines, and if necessary, an organic solvent is mixed and stirred at room temperature, and then an organic acid or perfluorinated alcohol and a metal compound Add particle sol or powder and dilute with organic solvent.
  • iii) Mixing and stirring water, epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, polyamines, organic acid or perfluorinated alcohol, and if necessary an organic solvent at room temperature, then metal compound particles Add sol or powder and dilute with organic solvent.
  • the stirring temperature is not particularly limited, but is preferably in the range of the boiling temperature of the solvent used from room temperature, and more preferably at room temperature. In this case, the room temperature is the outside temperature of the place where the stirring is performed, but a range of 15 to 35 ° C. is preferable.
  • the silane-based coating composition of the present invention is applied to the surface of the base material by any known coating means such as brush, spray, dipping, spin coating, bar coating, and gravure printing.
  • a thin film can be formed. Drying can be performed by room temperature drying and / or heating. Specifically, it is carried out at 20 ° C. to 250 ° C., preferably 20 ° C. to 150 ° C. for 10 seconds to 24 hours, preferably 30 seconds to 10 hours.
  • the thin film obtained is not particularly limited, it is preferably more than 10 nm and not more than 5 ⁇ m.
  • the substrate for treating the composition of the present invention is not particularly limited as long as it can be treated.
  • iron, stainless steel, copper, aluminum and other metals, ceramics, cement, glass, polycarbonate resin examples thereof include resin base materials such as acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone.
  • resin base materials such as acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone.
  • the surface of these base materials may be coated with another coating material.
  • a resin base material and a metal base material are particularly preferable.
  • An organic monomolecular film such as a resin layer such as a liquid repellent layer or a layer containing a hydrolytic condensate of a metal surfactant can be further laminated on the thin film formed from the composition of the present invention. Since the metal compound particles are contained in the composition of the present invention, the surface of the thin film becomes uneven, and the adhesion with the laminated film is improved.
  • the composition of the present invention can be applied to, for example, heat exchangers, fins for heat exchangers, building materials, roofs, window glasses, windshields, various mirrors, plastic lenses, lenses, tires, rubber, magnetic recording media, semiconductor material surfaces, and the like. Processing, antennas in snowy areas, steel towers, telecommunication facilities, road traffic signs, traffic lights, etc., reducing frictional resistance between the ship and water, preventing the adhesion of dirt on vehicles and aircraft bodies, various metal material surfaces and It can be used to prevent corrosion of electrodes such as battery materials, treatment on the surface of fish nets, addition to sealants, fireproof waterproof sealants, car wax, and the like. Moreover, since the surface of the resin base material treated with the composition of the present invention is hardened, it can be used as an alternative for applications where conventional glass such as an automobile windshield has been used. is there.
  • the static contact angle of the thin film was measured using a contact angle measuring device (Drop Master 700, manufactured by Kyowa Interface Science Co., Ltd.).
  • composition (A-1) 10.0 g of the composition (A-1) is mixed with 0.25 g of isopropanol-dispersed silica sol (solid content concentration 30%, particle size 70-100 nm, trade name: IPA-ST-ZL, manufactured by Nissan Chemical Industries, Ltd.) 5 g, 1.0 g, 2.0 g, and 3.0 g were mixed to obtain silane-based coating compositions (B-1) to (B-5).
  • isopropanol-dispersed silica sol solid content concentration 30%, particle size 70-100 nm, trade name: IPA-ST-ZL, manufactured by Nissan Chemical Industries, Ltd.
  • Silane coating compositions (B-1) to (B-5) are dip-coated on a Ni substrate to obtain coating composition-treated Ni substrates (D-1) to (D-5). A test was conducted. The results are shown in Table 2.

Abstract

 本発明の課題は、プラスチックを含む広範囲の基材に適応可能であり、ガラス様に表面改質でき、短時間で製造することができ、さらに短時間の硬化で十分な硬度を有し、さらにアンカー効果による密着性に優れた塗膜が得られる、長期の保存安定性に優れたコーティング組成物を提供することである。 (A)エポキシ基含有トリアルコキシシランの加水分解縮合物、(B)ポリアミン類、(C)25℃におけるpKaが2.0~6.0の範囲の有機酸、又はパーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類、及び(D)金属化合物粒子を含有する組成物を用いる。

Description

シラン系コーティング組成物
 本発明は、有機シラン系組成物に関し、特に、プラスチック基材、金属基材等への密着性に優れ、さらに保存安定性にも優れた組成物に関する。
 本願は、2014年7月16日に出願された日本国特許出願第2014-146252号に対し優先権を主張し、その内容をここに援用する。
 ポリカーボネートなどの透明プラスチック成形体は、軽量、易加工性、耐衝撃性などの長所を生かして、無機ガラス製品の代替として広く用いられているが、溶媒に侵されやすい、表面改質が困難である、といった欠点がある。そのため、無機ガラスに比べるとまだ劣る点があり、これらの性質を改良するための試みが従来よりなされてきている。
 例えば、グリシドキシトリメトキシシランをアルコール中、硝酸水を用いて加水分解し、さらに、ジエチレントリアミンを添加しさらに反応させ、コーティングすることにより、ポリカーボネート板上に、鉛筆硬度2Hに相当するハードコート膜が形成できることが知られている。(非特許文献1)
 また、一般式NH-R-NH-R-NH(Rは、炭素原子6個以下の直鎖及び分岐アルキレン基を表す。)で表されるアミノ化合物、グリシドキシC1-6直鎖又は分岐アルキレントリアルコキシシラン単量体又はその重合体、及びテトラアルコキシシラン又はアルキルトリアルコキシシランからなる混合物を加水分解して得られる熱硬化性樹脂組成物が知られており、金属表面に塗布して加熱により硬化させ、耐摩耗性、表面硬度、耐薬品性等優れた物性の被膜が得られることが知られている。また、加水分解触媒としてハロゲン化水素酸、カルボン酸、スルホン酸等が使用できることが記載されている。(特許文献1)
特開昭55-25469号公報
J. Korean Ind. Eng. Chem., Vol17, No2, April 2006, 170-176.
 しかしながら、非特許文献1に記載のコーティング組成物は、加水分解に24時間という長時間を要し、塗膜後の硬化に15時間も要するという作業性の問題があり、さらに後述するようにその保存安定性にも問題があった。
 また、特許文献1には、過塩素酸等の強酸が加水分解触媒として好ましいと記載されており、使用されている量は、組成物全体の1質量%以下であり、組成物の長期の保存安定性に関する記載も示唆もされておらず、また、プライマー層として上層との密着性に関する記載も示唆もされていない。
 本発明は上記事情を鑑みてなされたものであり、プラスチックを含む広範囲の基材に適応可能であり、ガラス様に表面改質でき、短時間で製造することができ、さらに短時間の硬化で十分な硬度を有し、基材との、または上層との密着性に優れたプライマー層等の塗膜が得られるコーティング組成物を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、エポキシ基含有トリアルコキシシラン加水分解縮合物、ポリアミン類、ある特定の有機酸または特定のアルコール、および金属化合物粒子を含む組成物を塗布・乾燥することで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)
(A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
(B)ポリアミン類、
(C)25℃におけるpKaが2.0~6.0の範囲の有機酸、又はパーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類、及び
(D)金属化合物粒子
を含有するシラン系コーティング組成物、
(2)エポキシ基含有トリアルコキシシランの加水分解縮合物の動的光散乱法で測定したz-平均粒子径が、5~50nmの範囲である、(1)のシラン系コーティング組成物、
(3)ポリアミン類が、アルキレンポリアミン、ポリアルキレンポリアミン、ポリ(フェニレンアルキレン)ポリアミン、及びシクロアルキレンアルキルポリアミンからなる群から選ばれる少なくとも1種のポリアミンである、(1)のシラン系コーティング組成物、
(4)ポリアミン類を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モル以下の範囲で用いる、(1)のシラン系コーティング組成物、
(5)pKaが2.0~6.0の範囲の有機酸をポリアミン類1モルに対して、0.3~1.2モルの範囲で用いる、(1)のシラン系コーティング組成物、
(6)パーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類が、組成物全体の30質量%以上である、(1)のシラン系コーティング組成物、
(7)さらに、パーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類以外の炭素数1~5のアルコール及び水を含む、(1)のシラン系コーティング組成物、
(8)金属化合物粒子の金属元素が、ケイ素、アルミニウム、チタン、及び鉄からなる群から選ばれる少なくとも1種である(1)のシラン系コーティング組成物、
(9)金属化合物粒子がシリカである、(1)のシラン系コーティング組成物、
(10)金属化合物粒子の平均一次粒子径が1~500nmである、(1)のシラン系コーティング組成物、
(11)金属化合物粒子が組成物の全固形分の20~83質量%の範囲で含まれる、(1)のシラン系コーティング組成物、
(12)(1)~(11)のいずれかに記載のシラン系コーティング組成物を基材上に塗布し室温乾燥及び/又は加熱して得られる薄膜に関する。
 本発明のシラン系コーティング組成物を用いて基材上に塗布することにより、短時間で基材表面を十分な硬度を有するガラス様の表面に改質でき、さらに、表面に微細な凹凸を形成させることができる。本発明の組成物を用いて得られた薄膜は、上に設けられる樹脂層との密着性に優れたプライマー層として使用することができ、通常、密着性の悪い基材の表面に樹脂層を設けるためのプライマー層として有用である。
 以下に、本発明の上記成分(A)、(B)、(C)及び(D)を含有する組成物について詳述する。
(A)エポキシ基含有トリアルコキシシランの加水分解縮合物
 本発明に用いるエポキシ基含有トリアルコキシシランの加水分解縮合物は、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物を原料にして製造することができる。
 エポキシ基含有トリアルコキシシランは、加水分解等により変換される官能基部分以外にエポキシ基が含まれているトリアルコキシシランであれば、その構造は特に制限されない。
 一般式で表す場合、下記式(I)で表される化合物が挙げられる。
R-Si(OR・・・(I)
 式中、Rは、エポキシ基又はグリシドキシ基を有する炭化水素基を表し、Rはアルキル基を表す。
 R中、エポキシ基、又はグリシドキシ基は、1個以上含まれていればよく、1~3個有するのが好ましく、エポキシ基、グリシドキシ基両方を含んでいてもよい。
 Rの「エポキシ基又はグリシドキシ基を有する炭化水素基」の「炭化水素基」としては、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基等が挙げられる。炭素数としては、1~30個の範囲が好ましく、1~10個の範囲がさらに好ましい。
 「アルキル基」としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、イソノニル基、n-デシル基等、ラウリル基、トリデシル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基等が挙げられる。
 「シクロアルキル基」としては、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 「シクロアルキルアルキル基」は、シクロアルキル基とアルキル基が結合した基であり、炭素数3~10のシクロアルキル基と炭素数1~10のアルキル基が結合した基が好ましい。
 「アルケニル基」としては、具体的には、ビニル基、プロパ-1-エン-1-イル基、アリル基、ブタ-1-エン-1-イル基、ブタ-2-エン-1-イル基、ブタ-3-エン-1-イル基、ブタ-1-エン-2-イル基、ブタ-3-エン-2-イル基、ペンタ-1-エン-1-イル基、ペンタ-4-エン-1-イル基、ペンタ-1-エン-2-イル基、ペンタ-4-エン-2-イル基、3-メチル-ブタ-1-エン-1-イル基、ヘキサ-1-エン-1-イル基、ヘキサ-5-エン-1-イル基、ヘプタ-1-エン-1-イル基、ヘプタ-6-エン-1-イル基、オクタ-1-エン-1-イル基、オクタ-7-エン-1-イル基、ブタ-1,3-ジエン-1-イル基等が挙げられる。
 「シクロアルケニル基」としては、具体的には、1-シクロペンテン-1-イル基、2-シクロペンテン-1-イル基、1-シクロヘキセン-1-イル基、2-シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基等が挙げられる。
 「アルキニル基」としては、具体的には、エチニル基、プロパ-1-イン-1-イル基、プロパ-2-イン-1-イル基、ブタ-1-イン-1-イル基、ブタ-3-イン-1-イル基、ペンタ-1-イン-1-イル基、ペンタ-4-イン-1-イル基、ヘキサ-1-イン-1-イル基、ヘキサ-5-イン-1-イル基、ヘプタ-1-イン-1-イル基、オクタ-1-イン-1-イル基、オクタ-7-イン-1-イル基等が挙げられる。
 「アリール基」は、単環又は多環のアリール基を意味し、多環アリール基の場合は、完全不飽和環に加え、部分飽和環を有する基も包含する。具体的には、フェニル基、ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等が挙げられる。
 「アリールアルキル基」は、アリール基とアルキル基が結合した基であり、炭素数6~10のアリール基と炭素数1~10のアルキル基が結合した基が好ましい。
 「アリールアルケニル基」は、アリール基とアルケニル基が結合した基であり、炭素数6~10のアリール基と炭素数2~10のアルケニル基とが結合した基が好ましい。
 上述した「炭化水素基」には、エポキシ基及びグリシドキシ基以外の置換基を有していてもよく、そのような置換基としては、ハロゲノ基、アルキル基、アルケニル基、アルコキシ基、(メタ)アクリロキシ基等が挙げられる。
 ここで、ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、イオド基等が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基等が挙げられる。
 アルキル基、アルケニル基としては、上記Rにおけるアルキル基、アルケニル基と同じ炭化水素基が挙げられる。
 Rの「アルキル基」としては、上記Rにおけるアルキル基と同じ炭化水素基が挙げられる。
 上述した「アルキル基」は、置換基を有していてもよく、そのような置換基としては、ハロゲノ基、アルコキシ基、(メタ)アクリロキシ基等が挙げられる。
 原料であるエポキシ基含有トリアルコキシシラン又はその加水分解縮合物としては、グリシドキシアルキルトリアルコキシシラン、又はグリシドキシアルケニルアルコキシシランが好ましい。これらは、1種単独で、又は2種以上を混合して用いることができる。
 式(I)で表される化合物としては、具体的には、メチル-トリグリシジロキシシラン、メチルトリス(3-メチル-3-オキセタンメトキシ)シラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシ-n-プロピルトリメトキシシラン、3-グリシドキシ-n-プロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランが挙げられる。
 エポキシ基含有トリアルコキシシランの加水分解縮合物は、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、水、及び、必要に応じてシラノール縮合触媒を混合、撹拌して調製することができる。その混合順序、及び撹拌速度は特に限定されず、任意の順序、又は任意の速度を設定できる。混合時及び撹拌時の温度は、特に限定されず、室温から、用いる溶媒の沸点の範囲で行うのが好ましく、室温で行うのがさらに好ましい。室温とは、この場合、混合撹拌を行う場所での外気温度になるが、15~35℃の範囲の温度が好ましい。
 エポキシ基含有トリアルコキシシランと、水、及び、必要に応じてシラノール縮合触媒のすべてが共存している状態で、室温で2時間から3時間撹拌するのが好ましい。調製において、必要ならば、有機溶媒や水で希釈する。
 用いる水の量は、用いるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物がある程度加水分解縮合できるだけの量以上であれば、特に制限されず、具体的には、用いるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物1モルに対して、0.5モル以上が好ましく、1.0モル以上、2.0モル以上、5.0モル以上、又は10モル以上がさらに好ましい。
 用いるシラノール縮合触媒の量は、特に制限はされないが、原料であるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中の全て未縮合として換算したトリアルコキシシリル基の量に対して、モル比(シラノール縮合触媒/当該シリル基)で、0.001~1.0の範囲が好ましく、0.01~1.0、又は0.1~0.5の範囲がさらに好ましい。
 シラノール縮合触媒としては、金属アルコキシド、金属キレート化合物、有機酸金属塩又はそれらの加水分解縮合物等の金属化合物が挙げられ、さらに具体的には、テトライソプロポキシチタン、ジイソプロポキシチタンビスアセチルアセトナート、又はその加水分解縮合物等が挙げられる。
 シラノール縮合触媒としては、前記金属化合物のほか、酸、塩基等が挙げられる。
 酸としては、有機酸、鉱酸が挙げられ、例えば、有機酸としては酢酸、ギ酸、シュウ酸、炭酸、フタル酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等;鉱酸としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等;が挙げられる。
 ここで、酸としては、光照射によって酸を発生する光酸発生剤、具体的には、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等も包含される。
 塩基としては、テトラメチルグアニジン、テトラメチルグアニジルプロピルトリメトキシシラン等の強塩基類;脂肪族第一アミン類;脂肪族第二アミン類;脂肪族第三アミン類;脂肪族不飽和アミン類;芳香族アミン類;ジエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン等のポリアミン類;これらのアミン系化合物のカルボン酸等との塩;有機アミンのカルボン酸中和塩、4級アンモニウム塩;イミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール等のイミダゾール類;等が挙げられる。
 シラノール縮合触媒は1種単独、又は2種以上の組合せで使用することができる。
 本発明の組成物においては、エポキシ基含有トリアルコキシシランの硬化剤又は硬化促進剤として、ポリアミン類又はイミダゾール類を用いることから、シラノール縮合触媒としても、ポリアミン類又はイミダゾール類を用いるのが好ましい。
 本発明において用いるエポキシ基含有トリアルコキシシランの加水分解縮合物は、動的光散乱法で測定したz-平均粒子径が、5~50nmの範囲が好ましく、5~30nmがさらに好ましい。50nmより大きい場合、可使時間が短く、保存安定性に問題が生じる場合があり、さらに塗工後に塗り斑が生じたりする場合がある。また、5nmより小さい場合には、得られる薄膜の硬度が不十分となる場合がある。
(B)ポリアミン類
 用いるポリアミン類は、1以上の水素原子が結合しているアミノ基又はイミノ基を1分子中に2以上有する化合物であれば、特に制限されず、具体的には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、メチルアミノプロピルアミン、エチルアミノプロピルアミン、N,N’-ジメチルヘキサメチレンジアミン、ビス(2-メチルアミノエチル)エーテル、メンタンジアミン、イソホロンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキシスピロ(5,5)ウンデカンアダクト、ビス(4-アミノシクロヘキシル)メタン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、m-キシレンジアミン等が挙げられる。これらは、1種単独で、又は2種以上を混合して用いることができる。中でも、アルキレンポリアミン、ポリアルキレンポリアミン、ポリ(フェニレンアルキレン)ポリアミン、及びシクロアルキレンアルキルポリアミンが好ましく、ポリアルキレンポリアミンが特に好ましい。具体的には、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン等が挙げられる。
 用いるポリアミン類の量は、特に制限されないが、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上用いるのが好ましく、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の1.2倍~10倍モルの範囲、1.5倍~5倍モル、または1.8倍~2.5倍モルの範囲が好ましい。1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モルより少ない場合には、硬化が不十分で、高い硬度の膜が得られない場合があり、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モルよりも大きい場合、ポリアミン類が残存して十分な硬度の薄膜を形成できない場合がある。
(C)有機酸又はパーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類
 用いる有機酸は、25℃におけるpKaが、2.0~6.0の範囲、好ましくは、3.0~5.0の範囲の有機酸であれば、特に制限されない。具体的には、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、カプロン酸、イソカプロン酸、クロロ酢酸、フルオロ酢酸、ブロモ酢酸、3-クロロプロピオン酸、2-ブロモプロピオン酸、2-ヒドロキシ酪酸、フェニル酢酸、フェニルプロピオン酸、4-フェニル酪酸、フェノキシ酢酸、シアノ酢酸、シュウ酸、マロン酸、2,2-ジメチルマロン酸、アジピン酸、コハク酸、ピメリン酸、フタル酸、グルタル酸、オキザロ酢酸、クエン酸、イソクエン酸、シクロヘキサン-1,1-ジカルボン酸、酒石酸、o-アニス酸、m-アニス酸、p-アニス酸、安息香酸、o-クロロ安息香酸、m-フルオロ安息香酸、2,3-ジフルオロ安息香酸、o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、サリチル酸、フタル酸、イロフタル酸、trans-ケイ皮酸、2-フランカルボン酸、グリオキシル酸、グルコール酸、クロトン酸、乳酸、2-ヒドロキシ-2-メチルプロピオン酸、ピルビン酸、マンデル酸、リンゴ酸、レブリン酸、2,6-ピリジンジカルボン酸、ニコチン酸等が挙げられ、中でも、脂肪族モノカルボン酸、又は安息香酸若しくは置換安息香酸が好ましい。
 用いる有機酸の量は、特に制限されないが、用いるポリアミン類1モルに対して、0.3~1.2モルの範囲が好ましく、0.5~1.0モル、又は0.6~0.9モルの範囲がさらに好ましい。
 0.3モルより少ない場合には、シラン系コーティング組成物の保存安定性が低下する場合があり、1.2モルよりも大きい場合には、十分な硬度の塗膜を形成できない場合がある。
 用いるパーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類(パーフルオロ化アルコール類)として、具体的には、2,2,2-トリフルオロエタノール、1,1,2,2,2-ペンタフルオロエタノール、3,3,3-トリフルオロ-1-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、1,1,2,2,3,3,3-ヘプタフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2-トリフルオロメチル-2-プロパノール、2-メチル-1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、ノナフルオロ-t-ブタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール等が挙げられる。
 用いるパーフルオロ化アルコール類の使用量は、特に制限されないが、シラン系コーティング組成物全体の30質量%以上が好ましく、40質量%以上がさらに好ましい。30質量%より小さい場合には、組成物の長期保存安定性が低下する場合がある。
(成分(A)及び(B)の配合割合)
 シラン系コーティング組成物中の固形分濃度は特に制限されないが、薄膜の外観、塗工性、硬化性、薄膜の性質、組成物の保存安定性等を考慮すると、(A)エポキシ基含有トリアルコキシシランの加水分解縮合物及び(B)ポリアミン類の固形分濃度が、その全質量に対して0.5~50質量%の範囲になる量を用いるのが好ましく、1.0~30質量%、1.0~20質量%、1.0~10質量%、1.5~5.0質量%、又は1.8~3質量%の範囲がさらに好ましい。0.5質量%より小さい場合には、膜を均質に成膜するのが困難な場合があり、50質量%より大きい場合には、組成物の安定性、薄膜の透明性、外観、又は塗工性等に問題が生じる場合がある。
 用いる有機溶媒及び水の量は、上記固形分濃度に調整できる範囲で適宜定めることができる。
(D)金属化合物粒子
 金属化合物粒子の金属としては、具体的には、ケイ素、タングステン、アンチモン、ジルコニウム、アルミニウム、チタン、マグネシウム、鉄、錫、亜鉛、カドミウム、ニッケル、銅、ベリウム、ルテニウム、トリウム、イットリウム、水銀、セシウム、クロム、ランタン、鉛、インジウム、ニオブ、カドミウム、ビスマス、ガリウム、マグネシウム等が挙げられる。
 金属化合物として、具体的には、シリカ、酸化タングステン、酸化アンチモン、ジルコニア、アルミナ、チタニア、酸化マグネシウム、酸化錫、酸化亜鉛、酸化カドミウム、酸化イットリウム、酸化ニッケル、酸化銅、酸化ベリウム、酸化ルテニウム、酸化トリウム、酸化水銀、酸化セシウム、酸化クロム、酸化鉛、酸化インジウム、酸化ニオブ、酸化カドミウム、酸化ビスマス、酸化ガリウム(III)、酸化第一鉄等の金属酸化物やフッ化マグネシウム等が挙げられる。
 中でも周期律表第4族元素、第5族元素、第13族元素、第14族元素、及び第8~10族元素からなる群より選ばれる少なくとも1種の金属元素を含む金属化合物粒子が好ましく、さらに、ケイ素、アルミニウム、チタン、および鉄からなる群より選ばれる少なくとも1種の金属元素を含む金属化合物粒子が好ましく、さらにケイ素を含む金属化合物粒子が好ましい。
 金属化合物の粒子径は、特に限定されないが、平均1次粒子径で1nm~500nmの範囲が好ましく、さらに10nm~100nmの範囲が好ましい。
 また、金属化合物粒子の性状は、ゾルであっても粉体であっても良いが、通常はゾルを用いるのが好ましい。ゾルは、通常、コロイド状の分散液であるので、他の成分と単に混合することで均一な分散液が簡便にでき、また、沈降などにより不均一になる問題も少ない。
 また、各金属化合物粒子の表面を、シランカップリング剤等により、表面修飾されたものを用いることができ、具体的には、炭化水素基等で疎水性処理を施されたシリカゾル等が挙げられる。
 金属化合物粒子の含有量は、組成物中の全固形分の20~83質量%が好ましく、さらに好ましくは65~75質量%の範囲である。
(溶媒)
 シラン系コーティング組成物は、組成物中の固形分濃度を調整するために、有機溶媒を用いることができる。そのような溶媒として、溶液の均一性、安定性等を保持できる溶媒であれば、特に限定されないが、アルコール類、エーテル類、ケトン類、エステル類、アミド類等が挙げられ、炭素数1~5のアルコールが好ましい。これらは1種単独で、又は2種以上を併用して用いることができる。
 その他の溶媒として、水を用いるのが好ましく、その場合、用いる有機溶媒は、水に溶解する有機溶媒が好ましい。また、水と有機溶媒の比率は、おのおの必要な量を用いた上で、均一な溶液になる量比が好ましい。炭素数1~3のアルコール等の水に比較的良く溶解する有機溶媒を用いた場合には、水と有機溶媒の質量比(水/有機溶媒)は、30/70~95/5の範囲が好ましく、50/50~90/10、60/40~80/20、又は65/35~75/25の範囲がさらに好ましい。
 また、炭素数4以上のアルコール等の水に比較的溶解しにくい有機溶媒を用いた場合に、有機溶媒に対する水の溶解度が低いために、用いる水の量は、トリアルコキシシランの加水分解に必要な量以上、組成物が均一になる範囲の量を用いることが好ましい。
(その他の配合成分)
 本発明のシラン系コーティング組成物には、その用途に応じて、他の成分を添加することができ、他の成分としては、各種界面活性剤、染料、顔料、分散材、撥液材、増粘材、香料、抗菌性成分等が挙げられる。
(組成物の調製方法)
 本発明のシラン系コーティング組成物の調製方法は、特に制限されないが、具体的には、以下の方法等が挙げられる。
 i)水、ポリアミン類、及び、有機酸又はパーフルオロ化アルコール類と、必要に応じて有機溶媒を室温で混合、撹拌し、次いで、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物と、金属化合物粒子ゾル又は粉末を添加し、有機溶媒で希釈する。
 ii)水、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、ポリアミン類、必要に応じて有機溶媒を室温で混合、撹拌し、次いで、有機酸又はパーフルオロ化アルコール類と、金属化合物粒子ゾルまたは粉末を添加し、有機溶媒で希釈する。
 iii)水、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、ポリアミン類、有機酸又はパーフルオロ化アルコール類、必要に応じて有機溶媒を室温で混合、撹拌し、次いで、金属化合物粒子ゾル又は粉末を添加し、有機溶媒で希釈する。
 撹拌温度は、特に制限されないが、室温から用いる溶媒の沸点温度の範囲が好ましく、室温で行うのが、さらに好ましい。この場合、室温とは、撹拌を行っている場所の外気温になるが、15~35℃の範囲が好ましい。
(本発明の組成物の使用の態様)
 本発明のシラン系コーティング組成物は、基材の表面に刷毛、スプレー、ディッピング、スピンコート、バーコート、グラビア印刷等の公知のあらゆる塗装手段により、上記のシラン系コーティング組成物を塗工することで、薄膜を形成することができる。乾燥は、室温乾燥及び/又は加熱により行うことができる。具体的には20℃~250℃、好ましくは20℃~150℃で、10秒~24時間、好ましくは30秒~10時間程度行なう。
 得られる薄膜は、特に制限されないが、10nmを超え、5μm以下であることが好ましい。
 本発明の組成物を処理する基材としては、処理が可能であれば特に制限されず、具体的には、鉄、ステンレス、銅、アルミニウム及びその他の金属、セラミックス、セメント、ガラス、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂、液晶ポリマー樹脂、ポリエーテルスルフォン等の樹脂基材等が挙げられ、これらの基材は、他のコーティング材で表面がコーティングされていてもよい。これらの中でも特に樹脂基材や金属基材が好ましい。
 本発明の組成物から形成した薄膜上に、さらに撥液性層等の樹脂層や金属系界面活性剤の加水分解縮合物を含有する層等の有機単分子膜等を積層することができる。本発明の組成物には金属化合物粒子が含まれるため、薄膜表面が凹凸になり積層膜との密着性が向上する。
 本発明の組成物は、例えば、熱交換器、熱交換器用フィン、建築材料、屋根、窓ガラス、風防ガラス、各種ミラー、プラスチックレンズ、レンズ、タイヤ、ゴム、磁気記録媒体、半導体材料表面等への処理、降雪地帯のアンテナ、鉄塔、電気通信施設、道路交通標識、信号機等への処理、船舶と水との摩擦抵抗の低減化、車両・航空機のボディの汚れ付着防止、各種金属材料表面や電池材料等の電極の腐食防止、魚網表面への処理、シーラント、耐火防水シール剤、カーワックス等への添加などに使用することができる。また、本発明の組成物を処理した樹脂基材は、その表面が硬質化されていることから、自動車のフロントガラス等の従来ガラスが使用されていた用途の代替品として使用することも可能である。
 以下に、実施例を記載するが、本発明の技術的範囲はこれらの実施例に限定されない。
[評価方法]
(密着性)
 JIS K-5400(1999年)に記載された碁盤目テープ剥離試験法に準じ、基材上の薄膜を1mm×1mmの碁盤目状にクロスカットし、透明粘着テープを用いて剥離試験を行なった。
(表面粗度)
 走査型白色干渉計(VertScan(登録商標)2.0、(株)菱化システム製)を用いて表面粗度の測定を行った。
 Saは測定領域におけるZ(x,y)の絶対値の算術平均を表す。Sqは測定領域におけるZ(x,y)の二乗平均平方根を表す。
(撥液性)
 薄膜の静的接触角を接触角測定器(Drop Master 700、協和界面科学社製)を用いて測定を行った。
[実施例1]~[実施例5]
(シラン系コーティング組成物の調製)
 2.0gの3-グリシドキシ-n-プロピルトリメトキシシラン(GPTMS)、0.5gのジエチレントリアミン、0.5gの安息香酸、70gの水および28gのイソプロパノールを混合し、室温で2時間撹拌し、組成物(A-1)を得た。組成物(A-1)10.0gにイソプロパノール分散シリカゾル(固形分濃度 30%、粒子径70~100nm、商品名:IPA-ST-ZL、日産化学工業社製)を各々0.25g、0.5g、1.0g、2.0g、3.0gを混合し、シラン系コーティング組成物(B-1)~(B-5)を得た。
(薄膜の形成)
 次に、PETフィルム(コスモシャイン(登録商標)A4300、東洋紡績社製)に、調製したシラン系コーティング組成物(B-1)~(B-5)をバーコートにて成膜し、オーブンにて100℃で10分間の加熱・乾燥し、シラン系コーティング組成物処理フィルム(C-1)~(C-5)を得た。(C-1)~(C-5)の密着性、表面粗度の測定を行った結果を表1に示す。
(有機単分子膜の積層)
 (C-1)~(C-5)の薄膜面を10分間、UVオゾン処理(約12000mJ/cm)し、さらに自己組織化単分子膜(SAM)形成溶液(SAMLAY(登録商標)、日本曹達社製)に10分間浸漬し、その後、その表面を炭化水素系洗浄剤(NSクリーン(登録商標)100、JX日鉱日石エネルギー社製)中で超音波洗浄し、60℃のオーブン中で乾燥し、SAM処理フィルム(C-6)~(C-10)を得た。(C-6)~(C-10)の静的接触角測定を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、PETフィルム上に微細な凹凸面を形成でき、さらに、前記薄膜上に単分子膜を積層することができた。高い表面粗度に由来したフラクタル効果により、高い撥液性が観測された。
[実施例6]~[実施例10]
 シラン系コーティング組成物(B-1)~(B-5)をNi基材にディップコートし、コーティング組成物処理Ni基材(D-1)~(D-5)を得、碁盤目テープ剥離試験を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、樹脂、金属を問わず、さまざまな基材に対して密着性の優れた塗膜を形成することができることがわかった。

Claims (12)

  1. (A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
    (B)ポリアミン類、
    (C)25℃におけるpKaが2.0~6.0の範囲の有機酸、又はパーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類、及び
    (D)金属化合物粒子
    を含有するシラン系コーティング組成物。
  2. エポキシ基含有トリアルコキシシランの加水分解縮合物の動的光散乱法で測定したz-平均粒子径が、5~50nmの範囲である、請求項1に記載のシラン系コーティング組成物。
  3. ポリアミン類が、アルキレンポリアミン、ポリアルキレンポリアミン、ポリ(フェニレンアルキレン)ポリアミン、及びシクロアルキレンアルキルポリアミンからなる群から選ばれる少なくとも1種のポリアミンである、請求項1に記載のシラン系コーティング組成物。
  4. ポリアミン類を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モル以下の範囲で用いる、請求項1に記載のシラン系コーティング組成物。
  5. pKaが2.0~6.0の範囲の有機酸をポリアミン類1モルに対して、0.3~1.2モルの範囲で用いる、請求項1に記載のシラン系コーティング組成物。
  6. パーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類が、組成物全体の30質量%以上である、請求項1に記載のシラン系コーティング組成物。
  7. さらに、パーフルオロアルキル基若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類以外の炭素数1~5のアルコール及び水を含む、請求項1に記載のシラン系コーティング組成物。
  8. 金属化合物粒子の金属元素が、ケイ素、アルミニウム、チタン、及び鉄からなる群から選ばれる少なくとも1種である請求項1に記載のシラン系コーティング組成物。
  9. 金属化合物粒子がシリカである、請求項1に記載のシラン系コーティング組成物。
  10. 金属化合物粒子の平均一次粒子径が1~500nmである、請求項1に記載のシラン系コーティング組成物。
  11. 金属化合物粒子が組成物の全固形分の20~83質量%の範囲で含まれる、請求項1に記載のシラン系コーティング組成物。
  12. 請求項1~11のいずれかに記載のシラン系コーティング組成物を基材上に塗布し室温乾燥及び/又は加熱して得られる薄膜。
PCT/JP2015/003427 2014-07-16 2015-07-08 シラン系コーティング組成物 WO2016009617A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534102A JPWO2016009617A1 (ja) 2014-07-16 2015-07-08 シラン系コーティング組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014146252 2014-07-16
JP2014-146252 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016009617A1 true WO2016009617A1 (ja) 2016-01-21

Family

ID=55078127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003427 WO2016009617A1 (ja) 2014-07-16 2015-07-08 シラン系コーティング組成物

Country Status (3)

Country Link
JP (1) JPWO2016009617A1 (ja)
TW (1) TWI550043B (ja)
WO (1) WO2016009617A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614228B (zh) * 2016-11-29 2018-02-11 財團法人金屬工業研究發展中心 陶瓷表面改質方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525469A (en) * 1978-08-14 1980-02-23 Japan Atom Energy Res Inst Thermosetting resin composition
JPH07242798A (ja) * 1994-03-08 1995-09-19 Sekisui Chem Co Ltd 型内被覆成形用被覆組成物
JP2002129102A (ja) * 2000-10-27 2002-05-09 Nikon-Essilor Co Ltd コーティング用組成物及びプラスチック成形物
JP2003160759A (ja) * 2001-09-14 2003-06-06 Nippon Steel Corp シリカ系コーティング液、およびそれを用いたシリカ系コーティング膜ならびにシリカ系コーティング膜被覆基材
WO2006082946A1 (ja) * 2005-02-02 2006-08-10 Nihon Parkerizing Co., Ltd. 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP2009024158A (ja) * 2007-04-06 2009-02-05 European Aeronautic Defence & Space Co Eads France 金属表面保護被膜として独得なナノ構造材料
WO2014119282A1 (ja) * 2013-01-29 2014-08-07 日本曹達株式会社 有機シラン系組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539486B2 (ja) * 2000-06-27 2004-07-07 荒川化学工業株式会社 コーティング組成物
JP2006143982A (ja) * 2004-10-20 2006-06-08 Arakawa Chem Ind Co Ltd 防音材およびその成型物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525469A (en) * 1978-08-14 1980-02-23 Japan Atom Energy Res Inst Thermosetting resin composition
JPH07242798A (ja) * 1994-03-08 1995-09-19 Sekisui Chem Co Ltd 型内被覆成形用被覆組成物
JP2002129102A (ja) * 2000-10-27 2002-05-09 Nikon-Essilor Co Ltd コーティング用組成物及びプラスチック成形物
JP2003160759A (ja) * 2001-09-14 2003-06-06 Nippon Steel Corp シリカ系コーティング液、およびそれを用いたシリカ系コーティング膜ならびにシリカ系コーティング膜被覆基材
WO2006082946A1 (ja) * 2005-02-02 2006-08-10 Nihon Parkerizing Co., Ltd. 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP2009024158A (ja) * 2007-04-06 2009-02-05 European Aeronautic Defence & Space Co Eads France 金属表面保護被膜として独得なナノ構造材料
WO2014119282A1 (ja) * 2013-01-29 2014-08-07 日本曹達株式会社 有機シラン系組成物

Also Published As

Publication number Publication date
JPWO2016009617A1 (ja) 2017-05-25
TWI550043B (zh) 2016-09-21
TW201606009A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5951050B2 (ja) 有機シラン系組成物
TWI691505B (zh) 膜形成用液體組成物及其製造方法
JP2002528590A (ja) 改良された接着性および改良された耐亀裂形成性を有する、耐磨耗性コーティングを支持体上に与える組成物
KR20100125339A (ko) 나노입자 졸-겔 복합 혼성 투명 코팅 물질
JP4384898B2 (ja) 撥水撥油性被膜の製造方法
JP5870190B2 (ja) 自己組織化膜を有する薄膜積層体
JP2019034282A (ja) 撥水・撥油性コーティングの形成方法及び撥水・撥油性コーティング
Seok et al. Preparation of corrosion protective coatings on galvanized iron from aqueous inorganic–organic hybrid sols by sol–gel method
Pathak et al. Sol gel derived organic-inorganic hybrid coating: A new era in corrosion protection of material
WO2016009617A1 (ja) シラン系コーティング組成物
JP2014205743A (ja) 無機塗料組成物及びその塗装品
JP2009154480A (ja) 撥水性フィルム
TW201837121A (zh) 組成物及包含其的膜、撥水膜與物品
JPWO2016006212A1 (ja) 積層体
CN110698979A (zh) 一种车漆用无氟有机硅自洁增滑液及其制备方法
CN113692432B (zh) 保护性涂料组合物和包括其的经涂覆的金属基底
WO2015015801A1 (ja) コーティング組成物
JP2001181862A (ja) 基材への防汚性付与方法及び防汚性部材
KR102254760B1 (ko) 실란계 발수코팅 조성물 및 이를 이용한 발수코팅 도막
JP7177889B2 (ja) 膜形成用液組成物
Suleiman et al. Anticorrosion Properties of a Novel Hybrid Sol–Gel Coating on Aluminum 3003 Alloy. Polymers 2022, 14, 1798
JP2016117820A (ja) ディップコーティング用有機シラン系組成物
JP2001064585A (ja) コーティング材組成物及び塗装品
TW201035259A (en) Weather durable self-cleaning coating and method for fabricating the same
JP2004351650A (ja) 樹脂成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822280

Country of ref document: EP

Kind code of ref document: A1