WO2016008312A1 - 有机固体材料的新型纯化方法 - Google Patents

有机固体材料的新型纯化方法 Download PDF

Info

Publication number
WO2016008312A1
WO2016008312A1 PCT/CN2015/074262 CN2015074262W WO2016008312A1 WO 2016008312 A1 WO2016008312 A1 WO 2016008312A1 CN 2015074262 W CN2015074262 W CN 2015074262W WO 2016008312 A1 WO2016008312 A1 WO 2016008312A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
distillation
temperature
solid
vessel
Prior art date
Application number
PCT/CN2015/074262
Other languages
English (en)
French (fr)
Inventor
鲁锦鸿
李哲
戴雷
陈金鑫
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Publication of WO2016008312A1 publication Critical patent/WO2016008312A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives

Definitions

  • the invention relates to a method and a device for purifying a chemical substance, in particular to a novel purification method of an organic solid (photoelectric) material, in particular to a method for purifying an organic solid (photoelectric) material in which a liquid phase exists in a vacuum heating state.
  • the first category is the transformation process of “solid-gas-solid”
  • the second category is the transformation process of “solid-liquid-gas-solid (liquid)”.
  • the first type of material is not sublimed directly through the liquid state, such as the commonly used electron transport material AlQ 3 .
  • the second type of material is also widely existed.
  • the purification process of the material of the triarylamine in the sublimation instrument belongs to the second type of transformation process, and the gasification temperature Te of the material is higher than the melting point Tm.
  • the purification of such substances by sublimation instruments often has some problems: on the one hand, the vaporized material will condense in the region between the temperature between Te and Tm, and will exist in liquid form, which will easily cause the liquid to flow to other areas and be contaminated.
  • the glass transition temperature of such materials is usually greater than room temperature, so the liquid will agglomerate after condensation, which causes difficulties in product collection, grinding and dispensing. Since such Tm ⁇ Te type solids are converted to a liquid state after heating, it is considered to use distillation to purify such substances.
  • the conventional distillation purification method is directed to substances that are liquid at normal temperature and pressure, such as alcohol, oil, seawater, and the like.
  • Such materials only need to heat the liquid at a lower temperature and under reduced pressure, and the pure components of different components are distilled in order from the lowest to the highest boiling point, and are separately collected by condensation to achieve a purification effect.
  • Industrial distillation equipment for these liquid materials has matured, but such liquid-oriented distillation apparatus and processes are not suitable for the purification of solid organic materials.
  • distillation equipment for solid materials in the industry such as lithium, zinc distillation equipment, and molecular distillation equipment, but because these equipments are complex in structure, bulky, and costly, they do not have good purification of organic solid (photoelectric) materials. Economic.
  • the present invention provides a novel method for purifying organic solids for the purification of an organic photoelectric material having a gasification temperature (Te) close to or greater than a melting point (Tm) thereof in a vacuum heating state, which can separately collect impurities and products.
  • Te gasification temperature
  • Tm melting point
  • the purity of the product can reach 99.5% or higher, and the method has lower equipment cost, faster purification speed, higher yield, less energy consumption, dust hazard than the sublimation method generally adopted in the industry. It is smaller and can increase the amount of material added in the vapor deposition crucible.
  • a novel purification method of an organic solid material comprising a distillation and impurity and product collection step of a substance to be purified under vacuum or a low pressure state, characterized in that the distillation step is heated in a stepwise manner, the step heating method is: firstly, the substance to be purified Adding to the distillation vessel, heating the distillation vessel and the product collection vessel to T1, keeping T1, removing the impurities with low boiling point or low sublimation temperature, collecting by the impurity collecting container; then continuing to heat the distillation vessel to T2 to boil the material to be purified, and keeping warm T2, distilling out all products, collected by the product collection container; the T1 is greater than or equal to the liquid-vapor transition temperature of the low boiling point or low sublimation temperature impurities, and T1 is higher than the melting point temperature Tm of the product, and the T2 is greater than or equal to the product liquid a gas transition temperature, and T2 is smaller than a decomposition temperature Td of the product, wherein the distillation vessel, the product collection
  • a melting step of the substance to be purified is carried out, wherein the substance to be purified is heated and melted in a solid liquefier, and the solid liquefier is connected to the distillation vessel through a switchable high temperature valve.
  • a protective gas is also introduced into the solid liquefier.
  • the shielding gas is nitrogen or argon.
  • the T1 is higher than the volatilization temperature of the low boiling or low sublimation temperature impurities and is lower than the boiling point Tb of the product.
  • the T2 is greater than the boiling point Tb of the product.
  • the temperature within the solid liquefier is greater than the melting point of the product.
  • the low pressure is ⁇ 10 Pa.
  • the purification method of the present invention is a purification method for an organic photoelectric material having a vaporization temperature (Te) close to or greater than its melting point (Tm) and a boiling point (Tb) smaller than a decomposition temperature (Td) in a vacuum heating state.
  • the raw material is heated to liquefy in a distillation vessel, and then the low boiling point (or low sublimation temperature) impurities and the higher boiling point product are successively distilled in a stepwise manner;
  • the product collection container is heated and maintained at a certain temperature, which is high At the boiling point (or sublimation temperature) of the impurity but below the boiling point of the product, the product condenses and the impurities are driven away to the impurity collection container;
  • the impurity collection container is at a sufficiently low temperature where the impurities condense; the vacuum system is connected to the impurity collection
  • the end of the container is a distillation container, a product collection container and a miscellaneous
  • the mass collection vessel provides a high vacuum that reduces the boiling point (sublimation temperature) of the product and impurities.
  • the purification process has batch continuity to facilitate large-scale production; the solid is melted and maintained in a liquid state in the solid liquefier, the high temperature valve is opened, and the liquid material is sucked into the distiller due to the pressure difference between the solid liquefier and the distiller
  • the product is heated and distilled, and the distilled product is condensed and collected in the product collector, and the impurities obtained by distillation (sublimation) are condensed and accumulated in the impurity collector; after the raw materials in the distiller are purified, they can be immediately removed from the solid liquefier.
  • a new batch of raw materials is added to the distiller to continue distillation, ensuring the demand for large-scale continuous production.
  • the shielding gas may be nitrogen, argon, or other gas inert to the purification material to protect the product from oxidation during heating.
  • the heating is stopped, and after the system is cooled to below 50 ° C, the vacuum is taken out and the sample is taken out.
  • the second type of impurities are first distilled (sublimed) at a temperature higher than the boiling point of the product, and allowed to condense in the impurity collecting container. After the second type of impurities have been removed, the temperature of the distillation vessel is raised to the boiling point of the product, and the product is distilled off and condensed in the product collection vessel. The first type of impurities cannot be distilled and remain in the distillation vessel.
  • Figure 1 is a process flow diagram of the present invention.
  • NPB crude 100 g of the organic light emitting diode (OLED) hole transport material NPB crude was purified by the method of the present invention.
  • NPB is a solid at room temperature, its melting point is about 280 ° C, and the crude product has a purity of 97.5%, which requires a purity of 99.5% or more by distillation.
  • the specific operation method is as follows.
  • the vacuum pump is turned on, and the distillation container, the product collection container, and the impurity collection container are evacuated to a vacuum of less than 10 Pa.
  • the temperature of the distillation vessel is gradually raised to 450 ° C to boil the NPB liquid in the distillation vessel, and the distillation head is sufficiently heated and kept to allow the NPB vapor to enter the product collection vessel.
  • the whole distillation process lasted about 3 hours.
  • the whole distillation system cost about 35,000 RMB, and the power consumption was about 5 degrees.
  • 82 g of NPB block pure product was obtained, and the purity was 99.7% by HPLC.
  • Comparative Example In order to verify the advantages of the distillation apparatus and the purification method of the present invention, the same batch of 100 g NPB was subjected to sublimation purification using a model sublimation instrument (cost of about 500,000 RMB). The sublimation of 100g NPB takes 18 hours and consumes about 30 degrees of electricity. Finally, 75g of pure powder with a purity of 99.7% is obtained.
  • NPB 300 g of OLED hole transport material was purified by continuous distillation using the method of the present invention.
  • NPB is a solid at room temperature, its melting point is about 280 ° C, and the crude product has a purity of 97.5%, which requires a purity of 99.5% or more by distillation.
  • the specific operation method is as follows.
  • the temperature of the distiller is gradually increased to 450 ° C to boil the NPB liquid in the distiller, and the distillation head is sufficiently heated and kept to allow the NPB vapor to enter the product collector.
  • the whole distillation process lasted about 4 hours.
  • the whole distillation system cost about 50,000 RMB, and the power consumption was about 6 degrees.
  • 250g of NPB pure product was obtained, and the purity was 99.7% by HPLC.
  • the pure product obtained by distillation method is blocky, which is very convenient to obtain and transfer; and the pure NPB obtained by sublimation is powder, and the product is scraped and transferred. A large amount of dust floats or adheres, which is not conducive to product handling and personnel health.
  • the distillation apparatus and the purification method of the present invention have lower equipment cost, faster purification speed, higher yield, less energy consumption, and dust than the sublimation equipment and method commonly used for purifying solids in the electronics industry. A less harmful advantage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及有机固体材料新型纯化方法,包括在真空或低压状态下的待纯化物质的蒸馏和杂质与产物收集步骤,其特征在于蒸馏步骤采用阶梯方式加热,先将待纯化物质加入蒸馏容器中,将蒸馏容器和产物收集容器加热升温至T1并保温T1,由杂质收集容器收集;然后继续加热蒸馏容器至T2,蒸出全部产物,由产物收集容器收集。经过综合比较,本发明的蒸馏装置和纯化方法,相对于电子工业中纯化固体常用的升华设备及其方法,具有设备成本更低、纯化速度更快、产率更高、耗能更少、粉尘危害更小的优势。

Description

有机固体材料的新型纯化方法 技术领域
本发明一种化学物质的纯化方法和装置,特别是涉及一种有机固体(光电)材料的新型纯化方法,尤其是针对在真空加热状态下存在液相的有机固体(光电)材料的提纯方法。
背景技术
近年来随着有机光电材料的发展,对固体类有机材料的大规模纯化设备和方法又提出来了更高的要求。常用的固体有机材料纯化方法有重结晶、过层析柱、溶剂洗涤等,但这些方法已经不适用于有机光电类材料的提纯要求,因为通过这些化学纯化方法获得的材料难以达到99.5%以上的高纯度,而且材料中残留的溶剂会对有机光电器件的真空制程产生不良影响。所以国内外材料生产商普遍采用升华的方法来纯化材料以达到有机电子工业对材料高纯度的要求。
然而,由于物质物理性质的不同,固体有机材料在利用升华仪纯化过程中经历的物理过程也存在区别,大致上可以分为两类:第一类为“固体—气体—固体”的转变历程;第二类为“固体—液体—气体—固体(液体)”的转变历程。第一类物质不经过液态直接升华,例如常用的电子传输材料AlQ3。而第二类物质也广泛存在,例如三芳基胺类的材料在升华仪中的纯化过程属于第二类转变历程,该类材料的气化温度Te要高于熔点Tm。这类物质通过升华仪提纯往往存在一些问题:一方面气化的材料在温度介于Te和Tm之间的区域冷凝下来之后,会以液体形式存在,容易造成液体串流到其它区域而被污染;另一方面该类材料的玻璃化转变温度通常要大于室温,因此液体冷凝后会结块,造成产品收集、研磨和分装方面的困难。由于这类Tm<Te类型的固体在加热后会转变成液态,因此考虑采用蒸馏的方式来纯化此类物质。但是,传统的蒸馏纯化方法针对的是常温常压下为液体的物质,例如酒精、油类、海水等。这类物质只需在较低温度、减压条件下对液体进行加热,不同成分的纯品即会按照沸点由低到高的顺序依次被蒸馏出,通过冷凝进行分别收集,达到纯化效果。针对这些液体类物质的工业蒸馏设备已经十分成熟,但这类针对液体的蒸馏装置和工艺不适合固体类有机物的纯化。工业上也有针对固体物质的蒸馏设备,例如锂、锌的蒸馏设备,以及分子蒸馏设备等,但因为这些设备结构复杂、体积庞大、成本高昂,对于有机固体(光电)材料的纯化不具有好的经济性。
发明内容
针对上述在真空加热状态下的气化温度(Te)接近或大于其熔点(Tm)的有机光电材料的提纯问题,本发明专利提供一种新型纯化有机固体的方法,能将杂质和产物分别收集,利用该方法可使产品纯度达到99.5%以上的水平,且该方法相对行业内普遍采用的升华方法,具有设备成本更低、纯化速度更快、产率更高、耗能更少、粉尘危害更小以及可增加蒸镀坩埚内材料添加量的优势。
有机固体材料的新型纯化方法,包括在真空或低压状态下的待纯化物质的蒸馏和杂质与产物收集步骤,其特征在于蒸馏步骤采用阶梯方式加热,所述阶梯加热方法为:先将待纯化物质加入蒸馏容器中,将蒸馏容器和产物收集容器加热升温至T1,保温T1,除净低沸点或低升华温度杂质,由杂质收集容器收集;然后继续加热蒸馏容器至T2使待纯化物质沸腾,保温T2,蒸出全部产物,由产物收集容器收集;所述T1大于或等于低沸点或低升华温度杂质的液-气转变温度,且T1高于产物的熔点温度Tm,T2大于或等于产物的液-气转变温度,且T2小于产物的分解温度Td,所述蒸馏容器、产物收集容器、杂质收集容器相互连通,所述有机固体材料为任何于真空状态下升华时必先转变为液态的有机固体材料。
所述蒸馏工序前有待纯化物质的熔化步骤,所述熔化步骤是待纯化物质在固体液化器中被加热熔化,所述固体液化器通过可开关的高温阀门与蒸馏容器连通。
所述固体液化器中还通入有保护气体。
所述保护气体为氮气或氩气。
所述T1高于低沸点或低升华温度杂质的挥发温度,且低于产物的沸点Tb。
所述T2大于产物的沸点Tb。
所述固体液化器内的温度大于产物的熔点。
所述低压为<10Pa。
所述蒸出全部产物后,停止加热蒸馏容器和产物收集容器,待冷却至50℃以下后解除真空取出产物。
该本发明纯化方法是一种针对在真空加热状态下的气化温度(Te)接近或大于其熔点(Tm)、沸点(Tb)小于分解温度(Td)的有机光电材料的纯化方法。原料在蒸馏容器内被加热至液化,之后按照阶梯方式升温依次将低沸点(或低升华温度)的杂质和较高沸点的产品蒸出;产物收集容器被加热并保持在一定温度,该温度高于杂质的沸点(或升华温度)但低于产物的沸点,产物冷凝下来,而杂质被驱离至杂质收集容器;杂质收集容器处于足够低的温度,杂质在此冷凝;真空系统连接于杂质收集容器的末端,为蒸馏容器、产物收集容器和杂 质收集容器提供高真空,降低产物和杂质的沸点(升华温度)。
纯化作业过程具有批次连续性从而有利于大规模生产;固体在固体液化器中被熔化并维持在液态,打开高温阀门,由于固体液化器与蒸馏器中的压差,液态原料被吸入蒸馏器中,在蒸馏器中被加热蒸馏,蒸馏出的产物在产物收集器冷凝聚集,蒸馏(升华)出的杂质在杂质收集器冷凝聚集;蒸馏器内的原料纯化完毕后,可以立即从固体液化器中补充新的一批原料到蒸馏器中继续蒸馏,保证大规模连续性生产的需求。
所述保护气体可以是氮气、氩气,或其他对提纯物质具有惰性的气体,保护产物在加热过程中不被氧化。
待蒸馏容器内大部分物料蒸馏掉之后,停止加热,待系统冷却至50℃以下后解除真空取出样品。
工作原理:目前有机光电材料大部分是具有一定共轭程度的小分子化合物,工业上合成此类共轭小分子一般采用金属催化反应,产物中的杂质主要是在合成过程中引进或残留。根据仪器分析,杂质主要分为两类:一类是金属催化剂,该类杂质难以升华或者蒸馏,是高温纯化过程的主要残留物;另一类是催化反应进行不彻底而残留下的分子量较小的中间产物,该类杂质比产物的分子量更小,更容易被蒸馏或者升华。针对以上两类杂质,先在较高但低于产物沸点的温度,将第二类杂质蒸馏(升华)出来,让其冷凝在杂质收集容器。第二类杂质除尽之后,升高蒸馏容器温度达到产物沸点,让产物蒸馏出并在产物收集容器冷凝。第一类杂质无法蒸馏而残留在蒸馏容器。
附图说明
图1本发明的工艺流程图。
具体实施方式
实施例1
利用本发明的方法对100g有机发光二极管(OLED)空穴传输材料NPB粗品进行纯化。NPB在室温下为固体,其熔点为280℃左右,粗品的HPLC纯度为97.5%,需要通过蒸馏使其纯度达到99.5%以上。具体的操作方法如下。
(1)在蒸馏容器中加入100g NPB粗品,然后将蒸馏容器进行密封。
(2)打开真空泵,对蒸馏容器、产物收集容器、杂质收集容器抽至真空度小于10Pa以下。
(3)打开加热控温系统,将蒸馏容器温度设置在350℃,产物收集容器温度设置在320℃(液体的实际温度会一定程度上小于容器设置温度。)
(4)将蒸馏容器内液态的粗品NPB在350℃保温10分钟,以除掉大部分低沸点(或低 升华温度)杂质。
(5)将蒸馏容器温度逐渐升高至450℃,使蒸馏容器内的NPB液体沸腾,对蒸馏头进行充分加热和保温,使NPB蒸汽能够进入产物收集容器。
(6)持续加热,将蒸馏容器在450℃进行保温,直到大部分NPB蒸馏完毕,然后关闭加热冷却至50℃以下,解除真空取出产物收集容器内的淡黄色NPB固体。
整个蒸馏过程持续约3小时,整套蒸馏系统成本约为3.5万人民币,耗电约5度,获得NPB块状纯品82g,经HPLC检测纯度为99.7%。
对比实施例:为了验证本发明蒸馏装置和纯化方法的优势,对同一批次的100g NPB利用某型号的升华仪(成本约为50万人民币)进行升华提纯。100g NPB的升华耗时18小时,耗电约30度,最终获得纯度同样为99.7%的粉末状纯品75g。
实施例2
利用本发明的方法采用连续蒸馏对300g OLED空穴传输材料NPB粗品进行纯化。NPB在室温下为固体,其熔点为280℃左右,粗品的HPLC纯度为97.5%,需要通过蒸馏使其纯度达到99.5%以上。具体的操作方法如下。
(1)在固体液化器和蒸馏器中分别加入250g、50g的NPB粗品,高温阀门此时处于关闭状态。
(2)对固体液化器抽真空后冲入氮气,反复进行三次操作,以保证固体液化器内的NPB被充分保护,防止加热时被氧化。
(3)打开真空泵,对蒸馏器、产物收集器、杂质收集器抽真空至50mtorr以下。
(4)打开加热控温系统,将固体液化器温度设置在320℃,蒸馏器温度设置在350℃,产物收集器温度设置在320℃(应当注意的是,被加热液体的实际温度会一定程度上小于设置温度。)
(5)将蒸馏器内液态的粗品NPB在350℃保温10分钟,以除掉低沸点(或低升华温度)杂质。
(6)将蒸馏器温度逐渐升高至450℃,使蒸馏器内的NPB液体沸腾,对蒸馏头进行充分加热和保温,使NPB蒸汽能够进入产物收集器。
(7)持续加热,将蒸馏器在450℃进行保温,直到大部分NPB蒸馏完毕。
(8)打开高温阀,在一端为保护气体、另一端为真空的压差下,固体液化器内的液态NPB粗品被吸入蒸馏器内,当固体液化器内的NPB减少大概1/5后,关闭高温阀。
(9)重复以上第5至第8步的操作,从而进行NPB的连续性蒸馏。
整个蒸馏过程持续约4小时,整套蒸馏系统成本约为5万人民币,耗电约6度,获得NPB纯品250g,经HPLC检测纯度为99.7%。
对比实施例:为了验证本发明蒸馏装置和纯化方法的优势,对同一批次的300g NPB利用某型号的升华仪(成本约为50万人民币)进行升华提纯。300g NPB的升华共耗时24小时,耗电约40度,最终获得纯度同样为99.7%的纯品240g。
对比用不同纯化方法获得的NPB纯品,采用蒸馏方法获得的纯品为块状,其获取和转移都极为方便;而采用升华获得的NPB纯品为粉末,产品的刮取、转移过程中有大量的粉尘漂浮或粘附,不利于产品的处理和人员健康。
经过综合比较,本发明的蒸馏装置和纯化方法,相对于电子工业中纯化固体常用的升华设备及其方法,具有设备成本更低、纯化速度更快、产率更高、耗能更少、粉尘危害更小的优势。

Claims (9)

  1. 有机固体材料的新型纯化方法,包括在真空或低压状态下的待纯化物质的蒸馏和杂质与产物收集步骤,其特征在于蒸馏步骤采用阶梯方式加热,所述阶梯加热方法为:先将待纯化物质加入蒸馏容器中,将蒸馏容器和产物收集容器加热升温至T1,保温T1,除净低沸点或低升华温度杂质,由杂质收集容器收集;然后继续加热蒸馏容器至T2使待纯化物质沸腾,保温T2,蒸出全部产物,由产物收集容器收集;所述T1大于或等于低沸点或低升华温度杂质的液-气转变温度,且T1高于产物的熔点温度Tm,T2大于或等于产物的液-气转变温度,且T2小于产物的分解温度Td,所述蒸馏容器、产物收集容器、杂质收集容器相互连通,所述有机固体材料为任何于真空状态下升华时必先转变为液态的有机固体材料。
  2. 根据权利要求1所述的方法,所述蒸馏工序前有待纯化物质的熔化步骤,所述熔化步骤是待纯化物质在固体液化器中被加热熔化,所述固体液化器通过可开关的高温阀门与蒸馏容器连通。
  3. 根据权利要求2所述的方法,所述固体液化器中还通入有保护气体。
  4. 根据权利要求3所述的方法,所述保护气体为氮气或氩气。
  5. 根据权利要求1所述的方法,所述T1高于低沸点或低升华温度杂质的挥发温度,且低于产物的沸点Tb。
  6. 根据权利要求5所述的方法,所述T2大于产物的沸点Tb。
  7. 根据权利要求6所述的方法,所述固体液化器内的温度大于产物的熔点。
  8. 根据权利要求1所述的方法,所述低压为<10Pa。
  9. 根据权利要求1所述的方法,所述蒸出全部产物后,停止加热蒸馏容器和产物收集容器,待冷却至50℃以下后解除真空取出产物。
PCT/CN2015/074262 2014-07-15 2015-03-16 有机固体材料的新型纯化方法 WO2016008312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410337542.8A CN105315117A (zh) 2014-07-15 2014-07-15 有机固体材料新型纯化方法
CN201410337542.8 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016008312A1 true WO2016008312A1 (zh) 2016-01-21

Family

ID=55077882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074262 WO2016008312A1 (zh) 2014-07-15 2015-03-16 有机固体材料的新型纯化方法

Country Status (4)

Country Link
CN (1) CN105315117A (zh)
HK (1) HK1215565A1 (zh)
TW (1) TWI561288B (zh)
WO (1) WO2016008312A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832418A (zh) * 2022-06-09 2022-08-02 上海傲班科技有限公司 一种有机溶剂的纯化方法及纯化设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005471B1 (ko) * 2017-09-20 2019-07-30 주식회사 엘지화학 유기 발광 소자의 재료로 사용되는 유기 물질 정제방법
US20200165270A1 (en) * 2018-11-28 2020-05-28 Versum Materials Us, Llc Low Halide Lanthanum Precursors For Vapor Deposition
CN112370810A (zh) * 2020-09-30 2021-02-19 南通新邦化工科技有限公司 易氧化易凝固化工物料回收利用方法及装置
CN114712886A (zh) * 2022-03-29 2022-07-08 安徽贝意克设备技术有限公司 一种有机金属化合物提纯设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053250A1 (fr) * 2000-12-28 2002-07-11 Nippon Steel Chemical Co., Ltd. Procede et dispositif de purification et distillation pour materiaux organiques a point de fusion eleve
US20030089305A1 (en) * 2001-09-25 2003-05-15 Yuji Hamada Sublimation and purification method
CN1496760A (zh) * 2002-09-30 2004-05-19 Lg������ʽ���� 纯化装置和方法
CN1714061A (zh) * 2001-12-15 2005-12-28 Skc株式会社 用于提纯有机电致发光材料的装置和方法
CN102924207A (zh) * 2011-08-13 2013-02-13 广东阿格蕾雅光电材料有限公司 有机小分子升华纯化方法
WO2013065626A1 (ja) * 2011-10-31 2013-05-10 出光興産株式会社 有機材料の精製装置及び有機材料の精製方法
CN103427046A (zh) * 2012-05-23 2013-12-04 中央硝子株式会社 有机半导体组合物
CN103449947A (zh) * 2013-09-17 2013-12-18 烟台德润液晶材料有限公司 一种oled材料升华提纯前的预提纯方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527076B (zh) * 2010-12-31 2014-04-30 上海广茂达光艺科技股份有限公司 一种oled材料的真空升华提纯方法
KR102032587B1 (ko) * 2012-03-30 2019-10-15 가부시키가이샤 코세 수지 조성물 및 해당 수지 조성물을 배합하는 화장료

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053250A1 (fr) * 2000-12-28 2002-07-11 Nippon Steel Chemical Co., Ltd. Procede et dispositif de purification et distillation pour materiaux organiques a point de fusion eleve
US20030089305A1 (en) * 2001-09-25 2003-05-15 Yuji Hamada Sublimation and purification method
CN1714061A (zh) * 2001-12-15 2005-12-28 Skc株式会社 用于提纯有机电致发光材料的装置和方法
CN1496760A (zh) * 2002-09-30 2004-05-19 Lg������ʽ���� 纯化装置和方法
CN102924207A (zh) * 2011-08-13 2013-02-13 广东阿格蕾雅光电材料有限公司 有机小分子升华纯化方法
WO2013065626A1 (ja) * 2011-10-31 2013-05-10 出光興産株式会社 有機材料の精製装置及び有機材料の精製方法
CN103427046A (zh) * 2012-05-23 2013-12-04 中央硝子株式会社 有机半导体组合物
CN103449947A (zh) * 2013-09-17 2013-12-18 烟台德润液晶材料有限公司 一种oled材料升华提纯前的预提纯方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832418A (zh) * 2022-06-09 2022-08-02 上海傲班科技有限公司 一种有机溶剂的纯化方法及纯化设备
CN114832418B (zh) * 2022-06-09 2024-04-26 上海傲班科技有限公司 一种有机溶剂的纯化方法及纯化设备

Also Published As

Publication number Publication date
TW201601813A (zh) 2016-01-16
CN105315117A (zh) 2016-02-10
TWI561288B (en) 2016-12-11
HK1215565A1 (zh) 2016-09-02

Similar Documents

Publication Publication Date Title
WO2016008312A1 (zh) 有机固体材料的新型纯化方法
DE60132763T2 (de) Verfahren und vorrichtung zur reinigung durch sublimation
CN103101914B (zh) 从氯硅烷残液中回收和提纯六氯乙硅烷的间歇操作方法及装置
TWI589342B (zh) 有機固體材料連續蒸餾裝置
CN105237333B (zh) 从生产甲烷氯化物或四氯乙烯产生废料中提取六氯乙烷和六氯苯的方法
CN104844433A (zh) 一种高低压双塔精馏分离丙酮/dmf/水三元体系的方法
CN104610326A (zh) 固态mo源的固体精馏纯化装置及其方法
CN108046327B (zh) 一种二硫化钨纳米管的制备方法
JPS6149293B2 (zh)
JP2009106917A (ja) 昇華性物質の分離・精製装置
CN103159208A (zh) 一种制备石墨烯的方法
TW200507927A (en) Apparatus and process for vacuum sublimation
CN204356256U (zh) 固态mo源的固体精馏纯化装置
CN203954714U (zh) 有机固体材料连续蒸馏装置
CN106829989B (zh) 一种高纯三溴化硼的生产方法及装置
CN102060690B (zh) 乙醛酸精制提纯方法及其装置
WO2016004771A1 (zh) 有机固体材料连续蒸馏浇注成型装置
CN204525900U (zh) 有机固体材料连续蒸馏浇注成型装置
CN107586970A (zh) 一种提纯镁的方法
CN102001760B (zh) 含对苯二酚及其碱金属盐废水的回收利用方法
김완서 et al. A study on the mechanism of high-purity crystal growth in ionic liquid using solvent recrystallization method
CN101723379A (zh) 一种硅的物理提纯方法
Takahashi et al. Recovery of indium from ground powder by chlorination and solvent extraction
CN101723378A (zh) 一种重掺半导体废料的物理回收方法
CN106045911A (zh) 一种气相沉积法提纯吡唑醚菌酯的工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822113

Country of ref document: EP

Kind code of ref document: A1