WO2016006935A1 - 이차전지의 양극재 및 그 제조방법 - Google Patents

이차전지의 양극재 및 그 제조방법 Download PDF

Info

Publication number
WO2016006935A1
WO2016006935A1 PCT/KR2015/007092 KR2015007092W WO2016006935A1 WO 2016006935 A1 WO2016006935 A1 WO 2016006935A1 KR 2015007092 W KR2015007092 W KR 2015007092W WO 2016006935 A1 WO2016006935 A1 WO 2016006935A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode
positive electrode
precursor
weight
Prior art date
Application number
PCT/KR2015/007092
Other languages
English (en)
French (fr)
Inventor
정주호
황규옥
황수지
박홍규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150096499A external-priority patent/KR101737207B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580033736.1A priority Critical patent/CN106471651B/zh
Priority to JP2016575922A priority patent/JP6618195B2/ja
Priority to US15/035,293 priority patent/US10490806B2/en
Priority to EP15819632.9A priority patent/EP3168907B1/en
Publication of WO2016006935A1 publication Critical patent/WO2016006935A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a cathode material of a secondary battery and a method of manufacturing the same.
  • the general lithium secondary battery developed so far has a structure in which the discharge is limited by the negative electrode during overdischarge and is terminated.
  • a solid electrolyte interface (SEI) film is formed on the surface of the negative electrode during initial charging, and a large amount of lithium ions emitted from the positive electrode is used to charge and discharge The amount of Li participating will be reduced.
  • SEI solid electrolyte interface
  • the voltage of the battery is defined as the voltage difference between the positive electrode and the negative electrode. If the battery continues to discharge at low current even after the voltage of the battery falls below the normal operating voltage, the voltage of the positive electrode no longer drops due to Li ion consumption at the negative electrode. Because of this, the voltage of the positive electrode decreases slowly, and the voltage of the negative electrode rises rapidly first, eventually reaching 3.6 V, in which the copper foil used as the current collector of the negative electrode is oxidized. In this case, the copper foil melts in the state of copper ions to contaminate the electrolyte, and then reattaches to the surface of the negative electrode when it is recharged so that the negative electrode active material cannot be used. In this way, when the oxidation reaction of the copper foil occurs, the capacity after the overdischarge rapidly decreases and cannot be used.
  • One embodiment of the present invention to solve the above problems, to provide a positive electrode material and a method of manufacturing the secondary battery with improved over-discharge characteristics is a technical problem.
  • one embodiment of the present invention is a cathode active material mixture comprising a cathode active material, a conductive material, and a binder prepared from an active material precursor and a lithium compound; And an active material precursor as an additive, wherein the active material precursor as the additive and the active material precursor as the material of the positive electrode active material are the same.
  • a cathode including the cathode material is provided.
  • the positive electrode material according to an embodiment of the present invention further includes an active material precursor used to prepare a positive electrode active material as an additive in the production of the positive electrode material, thereby suppressing Li consumption at the negative electrode when the positive electrode is continuously discharged at low current during overdischarge. can do. Accordingly, it is possible to prevent the cathode voltage from rising sharply, thereby preventing the melting of the copper (Cu), and further, to improve the overdischarge characteristics such as the prevention of the capacity reduction after the overdischarge and the improvement of the capacity recovery.
  • an active material precursor used to prepare a positive electrode active material as an additive in the production of the positive electrode material, thereby suppressing Li consumption at the negative electrode when the positive electrode is continuously discharged at low current during overdischarge. can do. Accordingly, it is possible to prevent the cathode voltage from rising sharply, thereby preventing the melting of the copper (Cu), and further, to improve the overdischarge characteristics such as the prevention of the capacity reduction after the overdischarge and the improvement of the capacity recovery.
  • One embodiment of the present invention is a positive electrode active material mixture comprising a positive electrode active material, a conductive material, and a binder prepared from an active material precursor and a lithium compound; And an active material precursor as an additive.
  • the cathode material may further include the same active material precursor as an active material precursor as a material of the positive electrode active material as an additive in the production of the positive electrode material, thereby suppressing Li consumption at the cathode when the anode is continuously discharged at a low current during overdischarge. Accordingly, it is possible to prevent the cathode voltage from rising sharply, thereby preventing the melting of the copper (Cu), and further, to improve the overdischarge characteristics such as the prevention of the capacity reduction after the overdischarge and the improvement of the capacity recovery.
  • the cathode active material may be prepared from an active material precursor and a lithium compound, and the active material precursor may be further included in the cathode material together with the cathode active material, the conductive material, and the binder.
  • the positive electrode material according to an embodiment of the present invention further includes the same active material precursor as the active material precursor as the material of the positive electrode active material as an additive, so that the positive electrode can suppress Li consumption at the negative electrode when continuously discharged at low current during overdischarge. have. Accordingly, it is possible to prevent the cathode voltage from rising sharply, thereby preventing the melting of the copper (Cu), and further, to improve the overdischarge characteristics such as the prevention of the capacity reduction after the overdischarge and the improvement of the capacity recovery.
  • the active material precursor as the material of the positive electrode active material and the active material precursor as the additive may mean that the specific chemical formula is the same, but means that the material used as the precursor of the active material is the same. Specific chemical formulas may be different, but may be used in a broad sense that all are the same in terms of active material precursors.
  • the present invention is not limited thereto.
  • the case where the active material precursor as the material of the positive electrode active material is the same as the active material precursor as the additive may be more preferable in the improvement of the overdischarge characteristic when the same meaning of agreement is reached to the specific chemical formula.
  • the active material precursor may be prepared as a cathode active material by mixing with a lithium compound, the active material precursor is a manganese composite oxide precursor, iron phosphate composite oxide precursor, cobalt oxide precursor, nickel-cobalt oxide precursor and nickel- It may include one or two or more selected from the group consisting of cobalt-manganese composite oxide-based precursors.
  • the manganese composite oxide precursor may be represented by the composition of Formula 1 below.
  • M is at least one member selected from the group consisting of Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, and B.
  • the iron phosphate complex oxide precursor may be represented by the composition of the following formula (2).
  • M is at least one member selected from the group consisting of Mn, Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, and B,
  • X is 1 or more types chosen from the group which consists of F, S, and N.
  • the cobalt oxide precursor may include one or two selected from the group consisting of Co 2 O 3 , and Co 3 O 4 .
  • the nickel-cobalt oxide precursor may be represented by a composition of Formula 3 below.
  • M is at least one member selected from the group consisting of Mn, Ni, Co, Al, and Mg,
  • the nickel-cobalt-manganese composite oxide precursor may be represented by a composition of Formula 4 below.
  • A is a dopant
  • P is 1 type selected from the group which consists of -OH and -OOH.
  • the lithium compound used for preparing the positive electrode active material together with the active material precursor is a group consisting of lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium nitrate (LiNO 3 ), and lithium hydrate (LiOH ⁇ H 2 O).
  • Li 2 CO 3 lithium carbonate
  • LiOH lithium hydroxide
  • LiNO 3 lithium nitrate
  • LiOH ⁇ H 2 O lithium hydrate
  • the active material precursor may be prepared as a cathode active material by mixing with a lithium compound.
  • the method of preparing the positive electrode active material by mixing the active material precursor and the lithium compound may be a coprecipitation method, a solid phase reaction method, a sol-gel method, a supercritical hydrothermal method, and a wet synthesis method. Can be used without limitation.
  • the cathode material according to an embodiment of the present invention may include a cathode active material, a conductive material, a binder, and an active material precursor.
  • the positive electrode active material may include 80.0 to 99.0% by weight, preferably 95.0 to 98.0% by weight. When the positive electrode active material is less than 80.0% by weight, the capacity and lifespan characteristics of the secondary battery including the positive electrode active material may be significantly reduced, and when the positive electrode active material is greater than 99.0% by weight, the content of the conductive material and the binder is relatively decreased. The conductivity of the positive electrode including the active material and the adhesion between the positive electrode active material and the positive electrode current collector can be reduced.
  • the conductive material serves to impart conductivity between the cathode active material and the cathode current collector, and is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • graphite such as natural graphite and artificial graphite
  • Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may contain 0.1 to 30.0% by weight, preferably 1.0 to 5.0% by weight.
  • the conductive material may be less than 0.1% by weight, it may be difficult to impart conductivity between the positive electrode active material and the positive electrode current collector due to the insufficient amount of the conductive material.
  • the cathode active material may be relatively reduced, which may lower the capacity and life characteristics of the secondary battery.
  • the binder is a component that assists in the bonding between the positive electrode active material and the conductive material and the current collector, and examples thereof include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxide.
  • CMC carboxymethyl cellulose
  • the binder may include 0.1 to 30.0% by weight, preferably 1.0 to 5.0% by weight. When the binder is less than 0.1% by weight, the bonding force between the positive electrode active material and the conductive material and the current collector may be lowered. When the binder is greater than 30.0% by weight, the positive electrode active material may be relatively decreased, thereby reducing the life characteristics of the secondary battery. Can be.
  • the cathode material according to an embodiment of the present invention may further include an active material precursor in addition to the cathode active material, the conductive material, and the binder prepared from the active material precursor and the lithium compound.
  • the cathode material may further include the same active material precursor as the active material precursor as the cathode active material as an additive, and thus, when the cathode is continuously discharged at a low current during overdischarge, the cathode may suppress Li consumption at the cathode. Accordingly, it is possible to prevent the cathode voltage from rising sharply, thereby preventing the melting of the copper (Cu), and further, to improve the overdischarge characteristics such as the prevention of the capacity reduction after the overdischarge and the improvement of the capacity recovery.
  • the active material precursor included in the cathode material may include one or two or more selected from the group consisting of a manganese composite oxide precursor, an iron phosphate composite oxide precursor, and a nickel-cobalt-manganese composite oxide precursor.
  • the specific composition is as above-mentioned.
  • the active material precursor included in the cathode material may be included in an amount of 1.0 to 5.0 parts by weight, and preferably 2.0 to 4.0 parts by weight, based on the total weight of the cathode active material mixture.
  • the active material precursor is less than 1.0 part by weight, it may be difficult to suppress Li consumption of the negative electrode due to insufficient content of the active material precursor, and further, to prevent a decrease in capacity of the battery after overdischarge of the secondary battery including the active material precursor and It may be difficult to improve overdischarge characteristics, such as improving capacity recovery.
  • more than 5.0 parts by weight rather the capacity and life characteristics of the secondary battery may be lowered.
  • Another embodiment of the present invention is a cathode material comprising (a) preparing a cathode active material from an active material precursor and a lithium compound, and (b) mixing the prepared cathode active material, conductive material, binder, and active material precursor It can provide a manufacturing method.
  • the active material precursor and the lithium compound (a) used to prepare the cathode active material from the active material precursor and the lithium compound the above-described active material precursor and the lithium compound may be used.
  • a cathode material may be prepared by mixing the cathode active material prepared in step (a) with a conductive material, a binder, and an active material precursor, and the cathode material may be prepared by adding a conductive material, a cathode active material, an active material precursor, and a binder in order. can do.
  • the active material precursor may be added and mixed together when the positive electrode active material is added.
  • the content of the cathode active material, the conductive material, the binder, and the active material precursor is as described above.
  • Yet another embodiment of the present invention provides a cathode including the cathode material.
  • the positive electrode may be manufactured by applying a positive electrode material according to an embodiment of the present invention on a positive electrode current collector, followed by drying and pressing.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • a secondary battery including the positive electrode is provided.
  • the secondary battery may include a positive electrode, a separator, a negative electrode, and an electrolyte according to an embodiment of the present invention.
  • the separator is a conventional porous polymer film used as a conventional separator, for example, polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the prepared porous polymer films may be used alone or in a lamination thereof.
  • Conventional porous nonwovens may be used, such as but not limited to high melting point glass fibers, polyethylene terephthalate fibers, and the like.
  • the negative electrode is manufactured by coating, drying, and pressing a negative electrode active material on a negative electrode current collector, and optionally, the conductive material and binder as described above may be further included.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the lithium salt which can be included in the electrolyte may be used without limitation, if the ones commonly used in the secondary battery, the electrolyte, for example, as the lithium salt, the anion is F -, Cl -, I - , NO 3 -, N ( CN) 2 -, BF 4 - , ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • any organic solvent included in the electrolyte may be used without limitation as long as they are conventionally used, and typically propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl Carbonate, methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite and tetrahydrofuran 1 or more types can be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in electrolytes well.
  • a low viscosity, low dielectric constant linear carbonate such as carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the electrolyte may further include an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • a separator is disposed between the positive electrode and the negative electrode according to an embodiment of the present invention to form a battery structure, and the battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then injected with an electrolyte to complete a secondary battery. .
  • the battery structure is stacked in a bi-cell structure, and then impregnated in the electrolyte, and the resultant is placed in a pouch to seal the secondary battery.
  • Li (Ni 6. 0 Mn 2. 0 Co 2. 0) were baked for 6 hours a mixture of OOH and LiOH in a weight ratio of 50: 50 to 800 in an air atmosphere, Li (Ni 6.0 Mn 2.0 Co 2.0 ) O 2 of the positive electrode active material was prepared.
  • the prepared positive electrode active material is 93.6% by weight, super-p 3.3% by weight of a conductive material, then a solution of polyvinylidene fluoride 3.1 wt% of a binder, (Ni 6. 0 Mn 2 . 0 Co 2. 0) the OOH A positive electrode material was prepared by mixing 2.8 wt%.
  • the (Ni 6. 0 Mn 2. 0 Co 2. 0) OOH was added to 2.8% by weight relative to the total amount of the positive electrode active material mixture.
  • the cathode material was coated on one surface of an aluminum (Al) foil current collector, dried and rolled, and then punched to a predetermined size to prepare a cathode.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • a secondary battery was manufactured by interposing a polyolefin separator between the prepared positive electrode and the negative electrode and injecting the electrolyte solution.
  • Cathode active material Li (Ni 6.0 Mn 2.0 Co 2.0 ) O 2 A secondary battery was manufactured in the same manner as in Example 1, except that the cathode material was prepared by mixing only 93.8% by weight, 3.2% by weight of super-p as a conductive material and 3.0% by weight of polyvinylidene fluoride as a binder.
  • the secondary battery was produced in the same manner as in Example 1 except that a mixture of 5.8% by weight OOH producing a cathode material.
  • the capacity retention rate was calculated based on the discharge capacity of 50 th based on the 3 th discharge capacity of the over discharge.
  • the discharge capacity of the embodiment in which the active material precursor is included in the positive electrode increases after 6 th cycles as the overcharge proceeds, and the discharge capacity retention rate is excellent as the cycle progresses.
  • the positive electrode material according to an embodiment of the present invention further includes an active material precursor, thereby improving overdischarge characteristics such as prevention of capacity reduction after overdischarge and improvement of capacity recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 활물질 전구체와 리튬화합물로부터 제조된 양극활물질, 도전재, 및 바인더,를 포함하는 양극활물질 혼합물; 및 첨가제로서의 활물질 전구체;를 포함하고, 상기 첨가제인 활물질 전구체와 양극활물질의 재료인 활물질 전구체는 동일한 물질인 것인 양극재에 관한 것이다.

Description

이차전지의 양극재 및 그 제조방법
본 발명의 일 실시예는 이차전지의 양극재 및 그 제조방법에 관한 것이다.
최근의 이동 통신 및 정보전자 산업의 발달로 고용량이면서도 가벼운 이차 전지의 수요가 계속 증가되고 있다. 그러나, 이차 전지는 과충전되거나 단락될 경우 심한 발열로 인해 발화 또는 폭발할 가능성이 있고 정상 전압 범위 이하로 과방전될 경우에는 용량이 급격히 감소하여 더 이상 사용할 수 없는 상태가 되어 버리는 문제가 있다.
이와 같은 이유로 리튬 이차 전지가 처음 개발된 이래로 계속 전지에 보호회로 및 PTC 등의 안전장치를 장착하여 사용하여 왔다. 그러나, 이러한 보호회로 및 PTC 등은 가격이 비싸고 부피를 많이 차지하여 전지의 가격을 상승시키고 부피 및 무게를 크게 하여 바람직하지 않다. 따라서, 이와 같은 보호회로 및 PTC 없이 생산비용을 낮출 수 있고 전지의 용량을 더 크게 할 수 있는 전지의 개발이 요구되고 있다.
종래에는 전지가 과충전되거나 단락되었을 경우 전지의 안전성을 확보하기 위해서는 비수전해액 내에 유기 또는 무기 첨가제를 사용하거나 전지의 외부 구조를 변경하여 해결하여 왔다. 그러나, 전지가 적정 전압 이하로 과방전될 경우에는 다시 충전을 하여도 용량이 급격히 작아져서 더 이상 충방전이 어려워지는 문제가 있었다.
지금까지 개발되어 있는 일반적인 리튬 이차 전지는 과방전시 음극에 의해 방전이 제한되어 종료되는 구조로 되어있다. 구체적으로 설명하면, 비수계 리튬 이차 전지는 최초 충전시 음극의 표면에 고체 전해질 계면(solidelectrolyte interface: SEI) 막(film)이 형성되고, 이때 양극에서 방출된 리튬 이온이 다량 사용되어, 충방전에 참여하는 Li의 양이 감소하게 된다. 이렇게 Li 양이 감소된 상태에서 과방전이 되는 경우 양극의 활성화된 Li 자리가 다 채워지지 않게 되기 때문에 양극의 전압이 일정 전압 이하로 떨어지지 않게 되는 현상을 보인다. 따라서 방전이 음극에 의해서 종료된다.
한편, 과방전 이후 용량이 급격히 감소하는 이유는 다음과 같다. 전지의 전압은 양극과 음극의 전압 차이로 정의되는데, 전지의 전압이 일반 사용 전압 이하로 떨어진 후에도 저전류로 계속 방전이 될 경우, 양극의 전압이 음극에서의 Li 이온 소모로 인해 더 이상 떨어지지 않기 때문에 양극의 전압은 천천히 하강하고, 상대적으로 음극의 전압은 먼저 급격히 상승하게 되어 결국 음극의 집전체로 사용하는 구리 호일이 산화되는 3.6V에 도달하게 된다. 이 경우 구리 호일이 구리 이온 상태로 녹아 나와 전해질이 오염되며, 이후 다시 충전할 때 음극 표면에 다시 붙어 음극 활물질을 사용할 수 없게 한다. 이와 같이 구리 호일의 산화 반응이 일어나게 되면 과방전 후 용량이 급격히 감소하여 사용할 수 없게 된다.
따라서, 과방전 이후에도 전지의 용량이 크게 감소하지 않게 하기 위해서는 양극에 의해 방전이 제한되는 전지를 개발하여야 하며, 이와 같은 양극 제한적 전지를 만들기 위한 새로운 방법의 개발이 요구되고 있다.
본 발명의 일 실시예는 상기와 같은 문제점을 해결하고자 한 것으로, 과방전 특성이 향상된 이차전지의 양극재 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
상기 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일 실시예는 활물질 전구체와 리튬화합물로부터 제조되는 양극활물질, 도전재, 및 바인더를 포함하는 양극활물질 혼합물; 및 첨가제로서의 활물질 전구체;를 포함하는 것으로서, 상기 첨가제인 활물질 전구체와 양극활물질의 재료인 활물질 전구체는 동일한 것인 양극재를 제공한다.
본 발명의 다른 일 실시예에 있어서, (a) 활물질 전구체 및 리튬화합물로부터 양극활물질을 제조하는 단계, 및 (b) 상기 제조된 양극 활물질, 도전재, 바인더 및 첨가제로서의 활물질 전구체를 혼합하는 단계를 포함하는 양극재 제조방법을 제공한다.
본 발명의 또 다른 일 실시예에 있어서, 상기 양극재를 포함하는 양극을 제공한다.
본 발명의 일 실시예에 따른 양극재는 양극활물질을 제조하는 데에 사용되는 활물질 전구체를 양극재 제조시 첨가제로 추가 포함함으로써, 과방전시 저전류로 계속 방전될 경우 양극이 음극에서의 Li 소모를 억제할 수 있다. 이에 따라, 음극전압이 급격히 상승하는 것을 방지하여 구리(Cu)의 용융을 방지할 수 있으며, 나아가, 과방전 후 용량 감소의 방지 및 용량 회복성 향상 등의 과방전 특성을 향상시킬 수 있다.
도 1은 본 발명에 따른 실시예 및 비교예의 용량실험 결과를 나타낸 그래프이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 일 실시예는 활물질 전구체와 리튬화합물로부터 제조되는 양극활물질, 도전재, 및 바인더를 포함하는 양극활물질 혼합물; 및 첨가제로서의 활물질 전구체를 포함하는 양극재에 관한 것이다.
상기 양극재는 양극활물질의 재료로서의 활물질 전구체와 동일한 활물질 전구체를 첨가제로 양극재 제조시 추가 포함함으로써, 과방전시 저전류로 계속 방전될 경우 양극이 음극에서의 Li 소모를 억제할 수 있다. 이에 따라, 음극전압이 급격히 상승하는 것을 방지하여 구리(Cu)의 용융을 방지할 수 있으며, 나아가, 과방전 후 용량 감소의 방지 및 용량 회복성 향상 등의 과방전 특성을 향상시킬 수 있다.
상기 양극 활물질은 활물질 전구체 및 리튬화합물로 부터 제조될 수 있으며, 상기 활물질 전구체는 양극활물질, 도전재, 및 바인더와 함께 양극재에 더 포함될 수 있다.
즉, 본 발명의 일 실시예에 따른 양극재는 양극활물질의 재료로서의 활물질 전구체와 동일한 활물질 전구체를 첨가제로 더 포함함으로써, 과방전시 저전류로 계속 방전될 경우 양극이 음극에서의 Li 소모를 억제할 수 있다. 이에 따라, 음극전압이 급격히 상승하는 것을 방지하여 구리(Cu)의 용융을 방지할 수 있으며, 나아가, 과방전 후 용량 감소의 방지 및 용량 회복성 향상 등의 과방전 특성을 향상시킬 수 있다.
본 명세서에서, 양극활물질의 재료로서의 활물질 전구체와 첨가제로서의 활물질 전구체가 동일하다는 의미는 협의로는 구체적인 화학식이 동일한 물질을 의미하는 것일 수 있으나, 활물질의 전구체로 사용되는 물질이라는 점이 동일하다는 의미로, 구체적인 화학식은 다를 수 있으나, 모두 활물질 전구체라는 점에서 동일하다는 광의의 의미로 사용될 수 있다.
다만, 이에 제한되는 것은 아니나, 양극활물질의 재료로서의 활물질 전구체와 첨가제로서의 활물질 전구체가 동일하다는 것은 구체적인 화학식까지 동일한 협의의 의미인 경우가 과방전 특성의 향상에 있어서 더 바람직할 수 있다.
상기 활물질 전구체는 리튬화합물과의 혼합에 의하여 양극활물질로 제조될 수 있으며, 상기 활물질 전구체는 망간 복합 산화물계 전구체, 인산철 복합 산화물계 전구체, 코발트 산화물계 전구체, 니켈-코발트 산화물계 전구체 및 니켈-코발트-망간 복합 산화물계 전구체로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다.
상기 망간 복합 산화물계 전구체는 하기 화학식 1의 조성으로 표현될 수 있다.
[화학식 1]
[Mn1 - xMx]3O4
상기 식에서,
0≤x≤0.5 이고,
M은 Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, 및 B로 이루어진 군에서 선택되는 1종 이상이다.
상기 인산철 복합 산화물계 전구체는 하기 화학식 2의 조성으로 표현될 수 있다.
[화학식 2]
Fe1 - xMx(PO4-b)Xb
상기 식에서,
0≤x≤0.5 이고,
0≤b≤0.1 이며,
M은 Mn, Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, 및 B로 이루어진 군에서 선택되는 1종 이상이고,
X는 F, S, 및 N로 이루어진 군에서 선택되는 1종 이상이다.
상기 코발트 산화물계 전구체는 Co2O3, 및 Co3O4 로 이루어진 군에서 선택되는 1종 또는 2종을 포함할 수 있다.
상기 니켈-코발트 산화물계 전구체는 하기 화학식 3의 조성으로 표현될 수 있다.
[화학식 3]
M(OH1-x)2
상기 식에서,
M은 Mn, Ni, Co, Al, 및 Mg로 이루어진 군에서 선택되는 1종 이상이고,
0≤x≤1 이다.
상기 니켈-코발트-망간 복합 산화물계 전구체는 하기 화학식 4의 조성으로 표현될 수 있다.
[화학식 4]
MyP
상기 식에서,
M=M'1 - kAk 이고,
여기서, M'는 Ni1 -a- b(Ni1/2Mn1/2)aCob로서, 0.65≤a+b≤0.85 및 0.1≤b≤0.4이며,
A는 도펀드이고,
0≤k≤0.05이며,
0.95≤y≤1.05이고,
P는 -OH, 및 -OOH로 이루어진 군에서 선택되는 1종이다.
상기 활물질 전구체와 함께 양극활물질의 제조에 사용되는 리튬화합물은 탄산리튬(Li2CO3), 수산화리튬(LiOH), 질산리튬(LiNO3), 및 리튬수화물(LiOH·H2O)로 이루어진 군에서 선택된 1종 또는 2종 이상일 수 있으나, 양극활물질 제조에 통상적으로 사용되는 리튬화합물이라면 제한 없이 사용할 수 있다.
상기 활물질 전구체는 리튬화합물과의 혼합에 의하여 양극활물질로 제조될 수 있다. 상기 활물질 전구체 및 리튬화합물을 혼합하여 양극활물질을 제조하는 방법은 공침법, 고상반응법, 졸-겔법, 초임계 수열법, 및 습식합성법을 사용할 수 있으나, 통상적으로 양극활물질을 제조하는 방법이라면 이에 제한 없이 사용할 수 있다.
본 발명의 일 실시예에 따른 양극재는 양극활물질, 도전재, 바인더, 및 활물질 전구체를 포함할 수 있다.
상기 양극활물질은 상기 활물질 전구체 및 리튬화합물로부터 제조할 수 있으며, 상기 양극 활물질의 예로는, 화학식 LiMyO2(여기서, M은 M'1 - kAk 이고, M'는 Ni1 -a-b(Ni1/2Mn1/2)aCob이며, 0.65≤a+b≤0.85 및 0.1≤b≤0.4이다. 또한, 0≤k≤0.05이며, x+y=2 로서, 0.95≤y≤1.05 임)로 표현되는 리튬 니켈 망간 복합 산화물(LNMO); 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3, 또는 화학식 Li1 - aFe1 - xMx(PO4-b)Xb (여기서, a는 -0.5 ~ 0.5이고, x는 0 ~ 0.5 이며, b는 0 ~ 0.1 임)으로 표현되는 리튬 철인산 화합물(LiFePO4)등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극활물질은 80.0 ~ 99.0 중량% 포함할 수 있으며, 바람직하게는 95.0 내지 98.0 중량% 포함할 수 있다. 상기 양극활물질이 80.0 중량% 미만일 경우, 상기 양극활물질을 포함하는 이차전지의 용량 및 수명특성이 현저히 감소할 수 있으며, 99.0 중량% 초과일 경우, 상대적으로 도전재 및 바인더의 함량이 감소하여 상기 양극활물질을 포함하는 양극의 도전성 및 양극활물질과 양극집전체 간의 접착력이 감소할 수 있다.
상기 도전재는 상기 양극활물질과 양극집전체 간에 도전성을 부여해 주는 역할을 하며, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 0.1 ~ 30.0 중량% 포함할 수 있으며, 바람직하게는 1.0 ~ 5.0 중량% 포함할 수 있다. 상기 도전재가 0.1 중량% 미만일 경우, 도전재의 양이 미비하여 상기 양극활물질과 양극집전체 간에 도전성을 부여하기에 어려움이 있을 수 있다. 또한, 30.0 중량% 초과일 경우, 상대적으로 양극활물질이 감소하여 이차전지의 용량 및 수명특성이 저하될 수 있다.
상기 바인더는 상기 양극활물질과 상기 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 그 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 및 다양한 공중합체로 이루어진 군에서 선택된 1종 또는 2종 이상일 수 있으나, 통상적으로 사용하는 바인더라면 제한없이 사용할 수 있다.
상기 바인더는 0.1 ~ 30.0 중량% 포함할 수 있으며, 바람직하게는 1.0 ~ 5.0 중량%를 포함할 수 있다. 상기 바인더가 0.1 중량% 미만일 경우, 상기 양극활물질 및 도전재의 결합과 집전체에 대한 결합력이 저하될 수 있으며, 30.0 중량% 초과일 경우, 상대적으로 양극활물질이 감소하여 이차전지의 수명특성이 저하될 수 있다.
본 발명의 일 실시예에 따른 양극재는 활물질 전구체 및 리튬화합물로부터 제조되는 양극활물질, 도전재, 및 바인더 외에 활물질 전구체를 더 포함할 수 있다. 상기 양극재는 양극활물질 재료로서의 활물질 전구체와 동일한 활물질 전구체를 첨가제로 더 포함함으로써, 과방전시 저전류로 계속 방전될 경우 양극이 음극에서의 Li 소모를 억제할 수 있다. 이에 따라, 음극전압이 급격히 상승하는 것을 방지하여 구리(Cu)의 용융을 방지할 수 있으며, 나아가, 과방전 후 용량 감소의 방지 및 용량 회복성 향상 등의 과방전 특성을 향상시킬 수 있다.
상기 양극재에 포함되는 상기 활물질 전구체는 망간 복합 산화물계 전구체, 인산철 복합 산화물계 전구체, 및 니켈-코발트-망간 복합 산화물계 전구체로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있으며, 구체적인 조성은 상기 서술한 바와 같다.
상기 양극재에 포함되는 상기 활물질 전구체는 양극활물질 혼합물 총 중량에 대하여 1.0 ~ 5.0 중량부로 포함할 수 있으며, 바람직하게는 2.0 내지 4.0 중량부로 포함할 수 있다. 상기 활물질 전구체가 1.0 중량부 미만일 경우, 활물질 전구체의 함량이 미비하여 음극의 Li 소모를 억제하기에 어려움이 있을 수 있고, 나아가, 활물질 전구체를 포함하는 이차전지의 과방전 후 전지의 용량 감소 방지 및 용량 회복성 향상 등의 과방전 특성을 향상시키기 어려울 수 있다. 또한 5.0 중량부 초과일 경우, 오히려 이차전지의 용량 및 수명특성이 저하될 수 있다.
본 발명의 다른 일 실시예는 (a) 활물질 전구체 및 리튬화합물로부터 양극활물질을 제조하는 단계 및 (b) 상기 제조된 양극 활물질, 도전재, 바인더, 및 활물질 전구체를 혼합하는 단계를 포함하는 양극재 제조방법을 제공할 수 있다.
상기 (a) 활물질 전구체 및 리튬화합물로부터 양극활물질을 제조에 사용되는 활물질 전구체 및 리튬화합물은 상기 전술한 활물질 전구체 및 리튬화합물을 사용할 수 있다.
상기 (a) 단계에서 제조된 양극활물질과 도전재, 바인더, 및 활물질 전구체를 혼합하여 양극재를 제조할 수 있으며, 상기 양극재의 제조는 도전재, 양극활물질 및 활물질 전구체, 바인더 순으로 첨가하여 혼합할 수 있다. 이와같이, 상기 (b) 단계에서 상기 활물질 전구체는 상기 양극활물질을 첨가할 때 함께 첨가하여 혼합할 수 있다. 상기 양극활물질, 도전재, 바인더, 및 활물질 전구체의 함량은 상기 전술한 바와 같다.
본 발명의 또 다른 일실시예는 상기 양극재를 포함하는 양극을 제공한다.
상기 양극은 양극 집전체 상에 본 발명의 일 실시예에 따른 양극재를 도포한 후 건조 및 프레싱하여 제조할 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
본 발명의 또 다른 일실시예에 있어서, 상기 양극을 포함하는 이차전지를 제공한다. 상기 이차전지는 본 발명의 일 실시예에 따른 양극, 분리막, 음극, 및 전해질을 포함할 수 있다.
상기 분리막은 종래 분리막으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재 및 바인더 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 전해질로 포함될 수 있는 리튬염은 이차전지용 전해질에 통상적으로 사용되는 것들이면 제한없이 사용될 수 있으며, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
본 발명의 일실시예에서 사용되는 전해질에 있어서, 전해질에 포함되는 유기 용매로는 통상적으로 사용되는 것들이면 제한없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌카보네이트 및 프로필렌카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 상기 전해질은 통상의 전해질에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 양극과 음극 사이에 분리막을 배치하여 전지 구조체를 형성하고, 상기 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 이차전지가 완성된다. 또는 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 전해질에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 이차전지가 완성된다.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
[실시예 1]
1-1. 양극재의 제조
(Ni6 . 0Mn2 . 0Co2 . 0)OOH와 LiOH를 50:50의 중량비로 혼합하여 공기분위기에서 800로 6시간 동안 소성하여 Li(Ni6.0Mn2.0Co2.0)O2인 양극 활물질을 제조하였다.
상기 제조된 양극활물질 93.6 중량%, 도전재로 super-p 3.3 중량%, 바인더로 폴리비닐리덴플루오라이드 3.1 중량%를 혼합한 후, (Ni6 . 0Mn2 . 0Co2 . 0)OOH를 2.8 중량% 혼합하여 양극재를 제조하였다.
상기 (Ni6 . 0Mn2 . 0Co2 . 0)OOH는 상기 양극활물질 혼합물의 총량에 대하여 2.8 중량%로 첨가하였다.
1-2. 양극의 제조
제조된 양극재를 알루미늄(Al) 호일 집전체의 일면에 코팅하고, 건조 및 압연한 후 일정 크기로 펀칭(pouching)하여 양극을 제조하였다.
1-3. 음극의 제조
인조 흑연 : SBR계 바인더 : 증점제를 98 : 1 : 1의 중량비로 혼합하여 음극활물질 슬러리를 제조한 후, 통상적인 방법으로 구리(Cu) 호일 집전체에 코팅하여, 음극을 제조하였다.
1-4. 이차전지의 제조
에틸렌 카보네이트(EC): 프로필렌카보네이트(PC) : 디에틸 카보네이트(DEC) =3:2:5 (부피비)의 조성을 갖는 유기 용매 및 1.0M의 LiPF6를 첨가하여 비수성 전해액을 제조하였다.
또한, 상기 제조된 양극과 음극 사이에 폴리올레핀 분리막을 개재시킨 후, 상기 전해액을 주입하여 이차전지를 제조하였다.
[ 비교예 1]
양극활물질 Li(Ni6.0Mn2.0Co2.0)O2 93.8 중량%, 도전재로 super-p 3.2 중량%, 바인더로 폴리비닐리덴플루오라이드 3.0 중량%만을 혼합하여 양극재를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
[ 비교예 2]
(Ni6 . 0Mn2 . 0Co2 . 0)OOH를 5.8 중량% 혼합하여 양극재를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
[ 실험예 ]
1. 용량실험
상기 실시예 및 비교예에서 제조된 이차전지들에 대해 과방전 조건(1.0 ~ 4.25V)으로 용량실험을 하였다.
충방전 조건: 1st ~ 2nd cycles - 3.0~4.25V cut off
3rd ~ 50th Cycles - 1.0~4.25V cut off
2. 용량유지율(%)
용량유지율은 과방전을 진행한 3th 방전용량을 기준으로 50th의 방전용량의 유지율을 계산하였다.
활물질 전구체(첨가제) 방전용량유지율
중량% %
실시예 1 2.8 38.5
비교예 1 0 30.1
비교예 2 5.8 33.3
도 1은 실시예 및 비교예의 충방전 용량실험 결과를 나타낸 그래프이다.
도 1에 나타난 바와 같이. 과방전 초기의 방전 용량은 양극에 활물질 전구체를 포함하지 않거나(비교예 1), 과량 포함하는(비교예 2) 비교예들이 양극재에 활물질 전구체를 특정 중량% 범위로 더 포함하는 실시예보다 높았으나, 이는 초기반응(1st, 2nd Cycles)에서 활물질 전구체가 용량 발현을 할 수 없기 때문에 충전 용량 자체가 적었기 때문이다.
그러나, 과충전이 진행되면서 6th cycles 이후에는 양극에 활물질 전구체가 포함된 실시예의 방전 용량이 증가하는 것을 알 수 있으며, 사이클이 진행됨에 따른 방전용량유지율이 우수한 것을 알 수 있다.
또한, [표 1]에 나타낸 바와 같이, 충방전 사이클이 50이상일 때 비교예들 보다 양극에 활물질 전구체가 특정 함량으로 포함된 실시예들의 방전용량유지율이 5 내지 8%이상 우수한 것을 알 수 있다.
따라서, 본 발명의 일 실시예에 따른 양극재는 활물질 전구체를 더 포함함으로써, 과방전 후 용량 감소의 방지 및 용량 회복성 향상 등의 과방전 특성이 향상되는 것을 알 수 있다.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하였지만, 본 발명은 이와 같이 설명된 그대로의 구성 및 작용에만 국한되는 것은 아니며, 기술적 사상의 범주를 일탈함 없이 본 발명에 대해 다수의 적절한 변형 및 수정이 가능함을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변형 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (14)

  1. 활물질 전구체와 리튬화합물로부터 제조된 양극활물질, 도전재, 및 바인더,를 포함하는 양극활물질 혼합물; 및
    첨가제로서의 활물질 전구체;를 포함하고,
    상기 첨가제인 활물질 전구체와 양극활물질의 재료인 활물질 전구체는 동일한 물질인 것인 양극재.
  2. 청구항 1에 있어서,
    상기 활물질 전구체는 망간 복합 산화물계 전구체, 인산철 복합 산화물계 전구체, 코발트 산화물계 전구체, 니켈-코발트 산화물계 전구체, 및 니켈-코발트-망간 복합 산화물계 전구체로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함하는 양극재.
  3. 청구항 2에 있어서,
    상기 망간 복합 산화물계 전구체는 하기 화학식 1의 조성을 가진 양극재.
    [화학식 1]
    [Mn1 - xMx]3O4
    상기 식에서,
    0≤x≤0.5 이고,
    M은 Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, 및 B로 이루어진 군에서 선택되는 1종 이상이다.
  4. 청구항 2에 있어서,
    상기 인산철 복합 산화물계 전구체는 하기 화학식 2의 조성을 가진 양극재.
    [화학식 2]
    Fe1 - xMx(PO4-b)Xb
    상기 식에서,
    0≤x≤0.5 이고,
    0≤b≤0.1 이며,
    M은 Mn, Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, 및 B로 이루어진 군에서 선택되는 1종 이상이고,
    X는 F, S, 및 N로 이루어진 군에서 선택되는 1종 이상이다.
  5. 청구항 2에 있어서,
    상기 코발트 산화물계 전구체는 Co2O3, 및 Co3O4 로 이루어진 군에서 선택되는 1종 또는 2종을 포함하는 양극재.
  6. 청구항 2에 있어서,
    상기 니켈-코발트 산화물계 전구체는 하기 화학식 3의 조성을 가진 양극재.
    [화학식 3]
    M(OH1-x)2
    상기 식에서,
    M은 Mn, Ni, Co, Fe, Cr, V, Cu, Zn, Ti, Al, Mg, 및 B로 이루어진 군에서 선택되는 1종 이상이고,
    0≤x≤1 이다.
  7. 청구항 2에 있어서,
    상기 니켈-코발트-망간 복합 산화물계 전구체는 하기 화학식 4의 조성을 가진 양극재.
    [화학식 4]
    MyP
    상기 식에서,
    M=M'1 - kAk 이고,
    여기서, M'는 Ni1 -a- b(Ni1/2Mn1/2)aCob로서, 0.65≤a+b≤0.85 및 0.1≤b≤0.4이며,
    A는 도펀드이고,
    0≤k≤0.05이며,
    0.95≤y≤1.05이고,
    P는 -OH, -OOH, 및 -CO3로 이루어진 군에서 선택되는 1종이다.
  8. 청구항 1에 있어서,
    상기 리튬화합물은 탄산리튬(Li2CO3), 수산화리튬(LiOH), 질산리튬(LiNO3), 및 리튬수화물(LiOHH2O)로 이루어진 군에서 선택된 1종 또는 2종 이상인 양극재.
  9. 청구항 1에 있어서,
    상기 양극활물질 혼합물은 양극활물질 80.0 ~ 99.0 중량%, 도전재 0.1 ~ 30.0 중량%, 및 바인더 0.1 ~ 30.0 중량%를 포함하고,
    상기 양극재는 양극활물질 혼합물 총 중량에 대하여, 첨가제로서의 활물질 전구체를 1.0 ~ 5.0 중량%로 포함하는 양극재.
  10. 청구항 9에 있어서,
    상기 양극활물질 혼합물은 양극활물질 92.0 ~ 97.0 중량%, 도전재 1.0 ~ 5.0 중량% 및 바인더 1.0 ~ 5.0 중량%를 포함하고,
    상기 양극재는 양극활물질 혼합물 총 중량에 대하여, 첨가제로서의 활물질 전구체를 2.0 ~ 4.0 중량%로 포함하는 양극재.
  11. (a) 활물질 전구체 및 리튬화합물로부터 양극활물질을 제조하는 단계; 및
    (b) 상기 제조된 양극활물질, 도전재, 바인더 및 첨가제로서의 활물질 전구체를 혼합하는 단계;
    를 포함하는 청구항 1의 양극재 제조방법.
  12. 청구항 11에 있어서,
    상기 (b) 단계에서 첨가제로서의 활물질 전구체는 양극활물질을 첨가할 때 함께 첨가하여 혼합하는 양극재 제조방법.
  13. 청구항 1의 양극재를 포함하는 양극.
  14. 청구항 13의 양극을 포함하는 이차전지.
PCT/KR2015/007092 2014-07-11 2015-07-08 이차전지의 양극재 및 그 제조방법 WO2016006935A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580033736.1A CN106471651B (zh) 2014-07-11 2015-07-08 二次电池的正极材料及其制备方法
JP2016575922A JP6618195B2 (ja) 2014-07-11 2015-07-08 二次電池の正極材及びその製造方法
US15/035,293 US10490806B2 (en) 2014-07-11 2015-07-08 Positive electrode material of secondary battery and preparation method thereof
EP15819632.9A EP3168907B1 (en) 2014-07-11 2015-07-08 Cathode material of secondary battery, and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140087389 2014-07-11
KR10-2014-0087389 2014-07-11
KR10-2015-0096499 2015-07-07
KR1020150096499A KR101737207B1 (ko) 2014-07-11 2015-07-07 이차전지의 양극재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2016006935A1 true WO2016006935A1 (ko) 2016-01-14

Family

ID=55064491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007092 WO2016006935A1 (ko) 2014-07-11 2015-07-08 이차전지의 양극재 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2016006935A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120004340A (ko) * 2010-07-06 2012-01-12 삼성에스디아이 주식회사 니켈계 양극 활물질과 그 제조방법 및 이를 이용한 리튬 전지
KR20120022554A (ko) * 2010-08-13 2012-03-12 삼성에스디아이 주식회사 양극 활물질 및 이를 이용한 리튬 전지
KR20120138344A (ko) * 2011-06-15 2012-12-26 주식회사 엘지화학 양극 활물질 및 그것을 포함하는 리튬 이차전지
KR20130031079A (ko) * 2011-09-20 2013-03-28 주식회사 엘지화학 고용량 양극활물질 및 이를 포함하는 리튬이차전지
KR101372053B1 (ko) * 2013-04-09 2014-03-07 (주)이엠티 리튬이차전지용 양극활물질 전구체의 제조방법, 리튬이차전지용 양극활물질의 제조방법, 양극활물질을 포함하는 양극 및 리튬이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120004340A (ko) * 2010-07-06 2012-01-12 삼성에스디아이 주식회사 니켈계 양극 활물질과 그 제조방법 및 이를 이용한 리튬 전지
KR20120022554A (ko) * 2010-08-13 2012-03-12 삼성에스디아이 주식회사 양극 활물질 및 이를 이용한 리튬 전지
KR20120138344A (ko) * 2011-06-15 2012-12-26 주식회사 엘지화학 양극 활물질 및 그것을 포함하는 리튬 이차전지
KR20130031079A (ko) * 2011-09-20 2013-03-28 주식회사 엘지화학 고용량 양극활물질 및 이를 포함하는 리튬이차전지
KR101372053B1 (ko) * 2013-04-09 2014-03-07 (주)이엠티 리튬이차전지용 양극활물질 전구체의 제조방법, 리튬이차전지용 양극활물질의 제조방법, 양극활물질을 포함하는 양극 및 리튬이차전지

Similar Documents

Publication Publication Date Title
WO2019172568A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2015130106A1 (ko) 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019194433A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2016053059A1 (ko) 이종의 바인더를 포함하는 양극 활물질 슬러리 및 이로부터 제조된 양극
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018143612A1 (ko) 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지
WO2019031732A1 (ko) 리튬금속과 무기물 복합층을 이용한 전리튬화
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2019216695A1 (ko) 리튬 이차 전지
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019198961A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2018212429A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2013180522A1 (ko) 리튬 이차전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2019045399A2 (ko) 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15035293

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015819632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016575922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE