WO2016006842A1 - 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치 - Google Patents

미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치 Download PDF

Info

Publication number
WO2016006842A1
WO2016006842A1 PCT/KR2015/006320 KR2015006320W WO2016006842A1 WO 2016006842 A1 WO2016006842 A1 WO 2016006842A1 KR 2015006320 W KR2015006320 W KR 2015006320W WO 2016006842 A1 WO2016006842 A1 WO 2016006842A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid channel
substrate
fluid
channel
microfluidic chip
Prior art date
Application number
PCT/KR2015/006320
Other languages
English (en)
French (fr)
Inventor
김성우
변재영
Original Assignee
나노바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스 주식회사 filed Critical 나노바이오시스 주식회사
Priority to CN201580037239.9A priority Critical patent/CN106470937B/zh
Priority to ES15818381T priority patent/ES2881221T3/es
Priority to JP2017500901A priority patent/JP6676611B2/ja
Priority to EP15818381.4A priority patent/EP3168188B1/en
Priority to US15/325,293 priority patent/US10189021B2/en
Publication of WO2016006842A1 publication Critical patent/WO2016006842A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/048Function or devices integrated in the closure enabling gas exchange, e.g. vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/051Micromixers, microreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples

Definitions

  • the present invention relates to a microfluidic chip, a method for manufacturing the same, and an analysis apparatus using the same, and more particularly, to a microfluidic chip having a fluid channel formed on a surface of a substrate, a method for manufacturing the same, and an analysis apparatus using the same.
  • the present invention is derived from a study carried out with the support of the Industrial Convergence Source Technology Development Project of the Ministry of Trade, Industry and Energy. Development of prototype of ultra-fast automatic screening system for optimal culture conditions.
  • Microfluidic chips have the ability to carry out various experimental conditions simultaneously by flowing fluid through the microfluidic channel. Specifically, a microchannel is made using a substrate (or chip material) such as plastic, glass, silicon, and the like, and the fluid (eg, a liquid sample) is moved through these channels, and then, for example, in a chamber in the microfluidic chip. For example, sample separation, cell mixing, synthesis, quantitative analysis, cell proliferation observation, and the like can be performed. As such, microfluidic chips are sometimes referred to as "lab-on-a-chip" in that they are performed in small chips.
  • Microfluidic chips can generate cost, time savings in pharmaceutical, biotechnology, medicine, biomedical, food, environment and fine chemicals, as well as increase accuracy, efficiency and reliability.
  • the use of microfluidic chips can significantly reduce the amount of expensive reagents used for cell culture, proliferation, and differentiation, which can significantly reduce costs.
  • biological samples such as proteins, DNA, cells, neurons, enzymes, antibodies, etc.
  • much smaller amounts are used than conventional methods, and images are also used. Analysis is possible, which reduces the amount and consumption of samples and analysis time.
  • FIG. 1 shows an exploded view of some of the conventional exemplary microfluidic chips.
  • the conventional exemplary microfluidic chip 100 may include a plurality of first channels 110 and a plurality of second channels 120 through which fluid flows. Each fluid flowing in the plurality of first channels 110 in the microfluidic chip 100 is mixed with respective fluids flowing in the plurality of second channels 120, and the channel for facilitating the flow and mixing of the fluids. Silver may be formed by varying layers.
  • a microfluidic chip was manufactured by bonding at least two substrates (or layers) on which channels are formed, respectively.
  • this manufacturing method after forming channels on a plurality of substrates, they have to be bonded to each other, so that an alignment problem between substrates occurs. That is, considerable time and cost were incurred in the bonding process between the substrates during chip manufacturing.
  • time and costs have arisen from the manufacture of two layers of substrates (ie, two substrates) themselves (eg, via an injection process, etc.). That is, the conventional microfluidic chip has a problem in manufacturing process in terms of time and cost, and also has a problem of decreasing the precision of the chip.
  • An object of the present invention is to provide a microfluidic chip, a manufacturing method thereof, and an analysis apparatus using the same, which can solve a bonding and alignment problem between substrates by implementing a fluid channel formed on a surface of a substrate. .
  • a microfluidic chip may include a substrate including an inlet portion through which fluid is introduced, a fluid channel through which the fluid moves, and an outlet portion through which the fluid is discharged; And a film attached to the substrate to protect at least one of the inlet, the outlet, and the fluid channel from the outside, wherein the inlet and the outlet are implemented through a surface of the substrate, and the fluid channel May be implemented by being recessed from the surface of the substrate.
  • an analysis device comprises the microfluidic chip; And to measure the reaction product in the microfluidic chip, by irradiating light to the microfluidic chip, it may include a light detection module implemented to detect an optical signal emitted from the light measuring region of the microfluidic chip.
  • a method of manufacturing a microfluidic chip includes forming a substrate including an inlet through which fluid is introduced, a fluid channel through which the fluid moves, and an outlet through which the fluid is discharged; And attaching a film to a surface of the substrate so as to protect at least one of the inlet, the outlet and the fluid channel from the outside, wherein the forming of the substrate comprises: forming an upper surface and a lower surface of the substrate. One region may be performed by recessing from the surface of the substrate to implement the fluid channel and penetrating the surface of the substrate to implement the inlet and the outlet.
  • the present invention unlike the conventional technique of joining a plurality of substrates, by preventing a process error related to alignment, etc., it is possible to improve the precision of the microfluidic chip and reduce the defective rate.
  • the manufacturing process is simple and cost-effective.
  • bubbles formed in the microfluidic chip can be effectively removed out of the light measuring region without any additional chemical treatment or additional equipment such as a pump driving device, an ultrasonic device, a membrane, and the like. .
  • FIG. 1 shows an exploded view of some of the conventional exemplary microfluidic chips.
  • FIG. 2 illustrates a microfluidic chip according to an embodiment of the present invention.
  • FIG. 3 illustrates a microfluidic chip according to another embodiment of the present invention.
  • FIG. 4 illustrates a microfluidic chip according to an embodiment of the present invention.
  • FIG. 5 shows a method of manufacturing a microfluidic chip according to an embodiment of the present invention.
  • 6 and 7 illustrate a method for manufacturing a microfluidic chip according to an embodiment of the present invention for each process.
  • FIG. 2 illustrates a microfluidic chip according to an embodiment of the present invention. Specifically, the top of FIG. 2 shows a plan view of the microfluidic chip 200, and the bottom of FIG. 2 shows a cross-sectional view of the microfluidic chip 200 in the A-A 'direction.
  • the microfluidic chip 200 may include a substrate 210 and a film 220 bonded to the substrate 210.
  • the substrate 210 may include an inlet 230 through which fluid is introduced, a fluid channel 240 through which the fluid moves, and an outlet 250 through which the fluid is discharged.
  • the inlet 230, fluid channel 240, and outlet 250 of the substrate 210 may be recessed from, or formed through, the surface of the substrate 210 (ie, top and bottom). .
  • the substrate 210 may be made of polydimethylsiloxane (PDMS), cycloolefin copolymer (COC), polymethylmethacrylate (PMMA), polycarbonate (PC), polypropylene carbonate ( polypropylene carbonate (PPC), polyether sulfone (PES), polyethylene terephthalate (PET), polyamide (PA), polyethylene (PE), polypropylene (PP), Polyphenylene ether (PPE), polystyrene (PS), polyoxymethylene (POM), polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyvinyl Chloride (polyvinylchloride, PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), fluorination Alkylene propylene can be selected from (fluorinated ethylenepropylene, FEP), and the group consisting of a combination thereof.
  • PDMS polydimethylsi
  • the substrate 210 may be formed of a light transmissive material, for example, perfluoroalkoxyalkane (PFA).
  • PFA perfluoroalkoxyalkane
  • the material of the substrate 210 is an example, and various materials may be used according to the embodiment to which the present invention is applied.
  • the film 220 may be bonded to the surface of the substrate 210.
  • the film 220 may include a first film 222 bonded to the upper surface of the substrate 210 and a second film 224 bonded to the lower surface of the substrate 210.
  • the film 222 and the second film 224 are bonded to the upper surface and the lower surface of the substrate 210, thereby providing at least one of the inlet 230, the outlet 250 and the fluid channel 230 of the substrate 210.
  • the microfluidic chip 200 may be protected from contamination, damage, etc. by an external material, and at the same time, the microfluidic chip 200 may perform a function of fluid flow and maintenance.
  • a relatively thin film 220 is attached to the surface of the substrate 210, rather than another substrate of the same or similar material as the substrate 210, thereby simplifying bonding and miniaturizing the microfluidic chip 200. And it can help to reduce the weight.
  • At least a portion of the film 220 may be a transparent or opaque material.
  • the film 220 may be a gas permeable film for a gas such as oxygen, carbon dioxide, and the like.
  • the configuration of the film 220 is an example, and the embodiment of the present invention is applied, that is, the configuration of the film 200 can be diversified according to the contents or research purpose of the sample used in the microfluidic chip 200. have.
  • fluid such as a sample reagent, a sample, and the like are injected through the inlet portion 230 to flow through the fluid channel 240.
  • the fluid channel 240 may include the lower fluid channels 242 and 242 ′ formed on the lower surface of the substrate 210, the upper fluid channel 246 formed on the upper surface of the substrate 210, and the lower fluid channel 242. It may include via holes 244 and 244 ′ connecting the upper fluid channel 246. More specifically, the fluid injected through the inlet 230 sequentially passes through the lower fluid channel 242, the via hole 244, the upper fluid channel 246, the via hole 244 ′, and the lower fluid channel 242 ′. Will flow.
  • the via hole 244 connects the lower fluid channel 242 and the upper fluid channel 246, as well as function as a predetermined reaction channel or reaction chamber. That is, unlike the via hole 244 ′ for the flow of fluid, the reaction hole or reaction chamber implemented through the via hole 244 in that the via hole 244 has sufficient space to function as the reaction channel or reaction chamber.
  • the use of the via hole 244 is exemplary, and according to the embodiment to which the present invention is applied, the fluid channel 240 may not include the via hole functioning as the reaction channel or the reaction chamber.
  • the fluid passing through the fluid channel 240 may be discharged to the outside of the microfluidic chip 200 through the outlet 250.
  • the fluid channel 240 which may require a complicated fluid flow path and a relatively large area, with a different surface of the substrate 210, it is possible to achieve miniaturization and process simplification of the microfluidic chip 200. Can be. In particular, bonding and alignment problems between the substrates generated by joining a plurality of substrates can be solved.
  • fluid channel 240 may include a branch channel and / or a coupling channel.
  • the branch channel is any channel is separated into a plurality of other channels, the fluid flowing in any channel can be separated into a plurality of fluids having the same properties.
  • a plurality of channels merge into one channel, and a plurality of fluids respectively flowing in the plurality of channels may be combined into one fluid.
  • the branch channel and / or coupling channel may be implemented by an upper fluid channel and / or a lower fluid channel of the fluid channel 240.
  • fluid channel 240 may comprise a concentration gradient channel implemented by a combination of branching channels and binding channels, as described in more detail below.
  • the concentration gradient channel is one or more channels are branched back to one or more channels, some of the branched channels are combined with each other to form a new channel, while the fluid passing through the channel can be combined and branched Various pathways can be formed to provide concentration gradients of the fluid.
  • the fluid channel 240 may include a bubble remover (310 of FIG. 3 and FIG. 4 of FIG. 3) to prevent bubbles contained in the fluid from being located within a predetermined region, as described in more detail below. 410).
  • the bubble remover can be used for various purposes at various locations within the fluid channel 240.
  • the fluid channel 240 may include a light measuring area for measuring a product of various reactions (eg, a PCR reaction) performed in the fluid channel 240, and in this case, the bubble removing unit It can be formed to prevent bubbles contained in the fluid from being located in the light measuring area.
  • surface treatment may be performed on a portion of the surface of the substrate 210 (preferably, at least one of the inlet 230, the fluid channel 240, and the outlet 250).
  • a material such as silane series, Bovine Serum Albumin (BSA) to prevent DNA and protein adsorption on the surface, such surface treatment is It can be performed according to various techniques known in the art.
  • BSA Bovine Serum Albumin
  • the inlet 230 and the outlet 250 is provided with a separate cover means (not shown), the microfluidic chip (through the inlet 230 and outlet 250) ( 200 may prevent contamination of the inside or leak of fluid injected into the microfluidic chip 200.
  • cover means may be embodied in various shapes, sizes or materials.
  • microfluidic chip 200 shown in FIG. 2 is exemplary, and microfluidic chips of various shapes or structures may be used according to the embodiment to which the present invention is applied.
  • FIG. 3 illustrates a microfluidic chip according to another embodiment of the present invention.
  • FIG. 3 shows a plan view of the microfluidic chip 300
  • the lower end of FIG. 3A shows a cross-sectional view of the microfluidic chip 300 in the A-A 'direction.
  • the fluid channel 240 of the microfluidic chip 300 may include a bubble remover 310.
  • the bubble removing unit 310 is for preventing bubbles contained in the fluid from being located within a predetermined region in the fluid channel 240. As shown, the bubble removing unit 310 protrudes downward from the upper inner surface of the substrate 210. Can be.
  • Fluid channel 240 may include a light measurement region for measuring the product of any reaction performed within fluid channel 240 (ie, the region on fluid channel 240 where an optical signal emitted from the reaction product is detected).
  • the bubble removing unit 310 may be formed to prevent bubbles contained in the fluid from being located in the light measuring area.
  • the bubble removing unit 260 may remove the optical signal sensing disturbance element detected in the optical measuring area.
  • the bubble remover 310 protrudes into the fluid channel 240 from the upper inner surface of the substrate 210, bubbles included in the fluid are buoyant due to buoyancy. That is, it is pushed to the peripheral area (flat area of the protruding portion of the bubble removing unit 310) to be disposed in the peripheral space.
  • the bubbles deviate from the light measurement region to the outside, thereby not affecting the optical signal sensitivity emitted from the reaction product present in the light measurement region.
  • the substrate 210 ie, the bubble removing unit 310
  • the bubble removing unit 310 may be made of a light transmissive material and at least a portion of the substrate 210 may be included in the light measuring region, and thus may be generated from a reaction product in the light measuring region.
  • the optical signal may pass through the bubble removing unit 310 and may be emitted to the outside of the microfluidic chip without degrading the sensitivity.
  • the bubble removing unit 310 may be utilized for various purposes.
  • the bubble remover 310 may be used to remove bubbles contained in the fluid from the flow of the fluid during the movement of the fluid through the fluid channel 240.
  • the shape of the bubble removing unit 310 shown in FIG. 3 is an example, and is not limited thereto, and may be variously modified and applied according to an embodiment of the present invention.
  • a cylindrical bubble removing unit 310 is illustrated in FIG. 3
  • a bubble removing unit having another shape such as a square pillar may be used.
  • FIG. 4 illustrates a microfluidic chip according to an embodiment of the present invention.
  • FIG. 4 illustrates a plan view of the microfluidic chip 400
  • the lower end of FIG. 4A illustrates a cross-sectional view of the microfluidic chip 300 in the A-A 'direction.
  • the bubble removing unit 410 extends from the circumference of the flat surface 412 and the flat surface 412 provided in the center of the bubble removing unit 410 and the inner surface of the upper portion of the microfluidic chip 400. It may be made of a slope 414 is connected. As described above, when the side surface of the bubble removing unit 410 is formed of the inclined surface 414, since the bubble is movable above the fluid channel 240 along the inclined surface 414, the bubble is formed in the bubble removing unit 410. It can be made easier to move to the surrounding space.
  • the bubble removing parts 310 and 410 are formed by recessing the upper inner surface of the substrate 210 upward along the circumference of the bubble removing parts 310 and 410. It may further comprise a bubble collecting portion. Since the bubble collecting part is located above the fluid channel 240 relative to a region other than the bubble collecting part, bubbles pushed out of the bubble removing parts 310 and 410 may be collected in the bubble collecting part.
  • an analysis device may be provided.
  • the analyzing apparatus may include microfluidic chips 200, 300, 400, and 500 according to an embodiment of the present invention described above with reference to FIGS. 2 to 5; And an optical measuring module.
  • the optical measuring module irradiates light to the microfluidic chips 200, 300, 400, and 500 in order to measure (eg, in real time) reaction products in the microfluidic chips 200, 300, 400, and 500.
  • various optical measuring modules applicable to the art to which the present invention pertains may be used as an apparatus for detecting an optical signal emitted from the optical measuring region.
  • the light measuring module may include a light source disposed to provide light to the fluid channels of the microfluidic chips 200, 300, 400, and 500, and a light detector disposed to receive light emitted from the fluid channel.
  • the light source and the light detector may be disposed with the fluid channel interposed (transmissive type) or may be disposed in one direction of the fluid channel 240 (reflective type).
  • FIGS. 6 and 7 illustrate a method of manufacturing a microfluidic chip according to an embodiment of the present invention.
  • the method of FIG. 5 is for manufacturing the microfluidic chips 200, 300, and 400 illustrated in FIGS. 2 to 4, and the manufacturing processes of FIGS. 6 and 7 based on the method of FIG. 5 will be described below. .
  • FIG. 6A illustrates a perspective view of a substrate 210 including an inlet 230, a fluid channel 240, and an outlet 250
  • FIG. 6B illustrates FIG. 7.
  • substrate 210 shown to (a) of the AA 'direction is shown.
  • the inlet 230, fluid channel 240 and outlet 250 of the substrate 210 are recessed or penetrated from the surface (ie, top and bottom) of the substrate 210. Can be formed.
  • Step S510 may be performed using various manufacturing techniques applicable in the art.
  • the step S510 may be performed by etching the surface of the substrate 210, and various etching techniques such as mechanical and chemical methods may be used for the etching.
  • step S510 may be performed by various molding techniques, such as injection molding, compression molding.
  • FIG. 7A shows a perspective view of the substrate 210 and the film 220 attached to the substrate 210
  • FIG. 7B shows the substrate shown in FIG. 8A. (210) and sectional drawing of the film 220 in the AA 'direction is shown.
  • an operation S520 may be performed by attaching a film 222 to an upper surface of a substrate 210 and attaching a film 224 to a lower surface of the substrate 210.
  • at least some of the inlet part 230, the fluid channel 240, and the outlet part 250 formed on the substrate 210 may be closed from the outside in step S510.
  • Step S520 may be performed by various bonding methods applicable in the art, such as thermal bonding, ultrasonic bonding, ultraviolet bonding, solvent bonding, tape bonding, and the like.
  • microfluidic chip shown in FIGS. 6 and 7 are exemplary, and microfluidic chips of various shapes and structures may be used according to the embodiment to which the present invention is applied.

Abstract

본 발명의 실시예에 따라, 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치가 제공된다. 상기 미세유체 칩은 유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판; 및 상기 기판에 부착되어, 상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하는 필름을 포함하며, 상기 유입부 및 상기 유출부는 기판의 표면을 관통하여 구현되고, 상기 유체 채널은 상기 기판의 표면으로부터 함몰되어 구현될 수 있다.

Description

미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치
본 발명은 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치에 관한 것으로서, 구체적으로는 기판의 표면에 형성된 유체 채널을 갖는 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치에 관한 것이다.
본 발명은 산업통상자원부의 산업융합원천기술개발사업의 지원을 받아 수행한 연구로부터 도출된 것이다[과제고유번호: 10042924, 연구과제명: 복합구배(나노구조구배-농도구배) 기술을 이용한 줄기세포 최적 배양조건 초고속 자동 스크리닝 시스템 시제품 개발].
미세유체 칩은 미세유체 채널을 통해 유체를 흘려 보내 여러 가지 실험 조건을 동시에 수행할 수 있는 기능을 가진다. 구체적으로, 플라스틱, 유리, 실리콘 등의 기판(또는 칩 재료)을 이용하여 미세 채널을 만들고, 이러한 채널을 통해 유체(예를 들어, 액체 시료)를 이동시킨 후, 미세유체 칩 내의 챔버에서 예를 들어, 시료 분리, 세포의 혼합, 합성, 정량분석, 세포 증식 관찰 등을 할 수 있다. 이와 같이, 종래에 실험실에서 행해지던 실험들을 작은 칩 내에서 수행한다는 점에서, 미세유체 칩은 "랩-온-어-칩"(lab-on-a-chip)이라 불리기도 한다.
미세유체 칩은 제약, 생물공학, 의학, 생명의료, 식품, 환경, 정밀화학 등의 분야에서 비용과 시간절감의 효과를 창출해낸 것은 물론, 정확도와 효율성, 신뢰성을 높일 수 있다. 예를 들어, 미세유체 칩을 사용함으로 세포 배양과 증식 및 분화 등에 사용되는 값비싼 시약들의 사용량을 기존의 방법보다 현저히 줄일 수 있어 상당한 비용을 절감할 수 있다. 뿐만 아니라, 단백질(protein), 유전자(DNA), 세포(cell), 뉴런(neuron), 효소, 항체 등과 같은 생체 시료 분석을 진행함에 있어, 기존의 방법보다 훨씬 적은 양이 사용되고 또한 이를 이용하여 영상 분석이 가능하므로, 샘플의 사용량이나 소모량 및 분석시간을 줄일 수 있다.
이와 관련하여, 도 1은 종래의 예시적인 미세유체 칩 중 일부의 분해도를 도시한다.
도시되는 바와 같이, 종래의 예시적인 미세유체 칩(100)은 유체가 흐르는 복수의 제 1 채널(110)과 복수의 제 2 채널(120)을 포함할 수 있다. 미세유체 칩(100)에서 복수의 제 1 채널(110)에 흐르는 각각의 유체는 복수의 제 2 채널(120)에 흐르는 각각의 유체와 혼합되며, 이러한 유체의 흐름 및 혼합을 용이하게 위해 상기 채널은 층(layer)을 달리하여 형성될 수 있다.
이를 위해 종래의 미세유체 칩은 각각 채널이 형성되는 적어도 2 개의 기판(또는 층)을 접합하여 미세유체 칩을 제조하였다. 그러나 이러한 제조 방식에 의하면, 복수의 기판 상에 채널을 형성한 후, 이들을 서로 접합해야 한다는 점에서, 기판 간의 정렬 문제가 발생하였다. 즉, 칩 제조 시 기판 간의 접합 공정에 상당한 시간 및 비용이 발생하였다. 뿐만 아니라, 2층의 기판(즉, 2개의 기판) 자체의 (예를 들어, 사출 공정 등을 통한) 제조로 인한 시간 및 비용 또한 발생하였다. 즉, 종래의 미세유체 칩은 시간과 비용이 측면에서 제조 공정 상의 문제점이 있으며, 칩의 정밀도 또한 감소하는 문제점이 있었다.
따라서 이러한 문제점을 해결하기 위한 미세유체 칩, 이의 이용한 제조 방법 및 이를 이용한 영상 분석 장치가 요구된다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 기판의 표면에 형성된 유체 채널을 구현함으로써 기판 간의 접합 및 정렬 문제를 해결할 수 있는 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따라, 미세유체 칩이 제공된다. 상기 미세유체 칩은 유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판; 및 상기 기판에 부착되어, 상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하는 필름을 포함하며, 상기 유입부 및 상기 유출부는 기판의 표면을 관통하여 구현되고, 상기 유체 채널은 상기 기판의 표면으로부터 함몰되어 구현될 수 있다.
본 발명의 일 실시예에 따라, 분석 장치가 제공된다. 상기 분석 장치는 상기 미세유체 칩; 및 상기 미세유체 칩 내의 반응 산물을 측정하기 위해, 상기 미세유체 칩에 광을 조사하여, 상기 미세유체 칩의 광 측정 영역으로부터 방출되는 광신호를 검출하도록 구현된 광 검출 모듈을 포함할 수 있다.
본 발명의 일 실시예에 따라, 미세유체 칩의 제조 방법이 제공된다. 상기 방법은 유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판을 형성하는 단계; 및 상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하도록, 상기 기판의 표면에 필름을 부착하는 단계를 포함하고, 상기 기판을 형성하는 단계는, 상기 기판의 상면 및 하면 중 일 영역이 상기 기판의 표면으로부터 함몰하여 상기 유체 채널을 구현하고, 상기 기판의 표면을 관통하여 상기 유입부 및 상기 유출부를 구현함으로써 수행될 수 있다.
본 발명에 따르면, 복수의 기판을 접합하는 종래의 기술과 달리, 정렬 등에 관한 공정 상의 오차를 방지함으로써, 미세유체 칩의 정밀도를 향상시키고, 불량률을 감소시킬 수 있다.
또한, 본 발명에 따르면, 기판과 필름의 접합만으로 미세유체 칩을 제조함으로써, 제조 공정이 간편하고, 비용 경제적이다.
또한, 본 발명에 따르면, 미세유체 칩의 전체적인 크기 및 무게를 감소시킬 수 있으며, 이를 통해 사용자 편의성 및 경제성 제고할 수 있다.
또한, 본 발명에 따르면, 추가적인 화학적 처리나, 펌프 구동장치, 초음파 장치, 멤브레인(membrane) 등의 부가적인 장비 없이도, 미세유체 칩 내에 형성된 구조물만으로 유체 내의 기포를 광 측정 영역 밖으로 효과적으로 제거할 수 있다.
또한, 본 발명에 따르면, 미세유체 칩의 극-소형화에도 불구하고, 광신호 감도의 감소 및 불균일에 따른 문제없이, 다수의 소량의 반응 산물을 동시에 신속하며 정확하게 측정할 수 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 종래의 예시적인 미세유체 칩 중 일부의 분해도를 도시한다.
도 2는 본 발명의 일 실시예에 따른 미세유체 칩을 도시한다.
도 3은 본 발명의 다른 실시예에 따른 미세유체 칩을 도시한다.
도 4는 본 발명의 일 실시예에 따른 미세유체 칩을 도시한다.
도 5는 본 발명의 일 실시예에 따른 미세유체 칩의 제조 방법을 도시한다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 미세유체 칩의 제조 방법을 공정 별로 도시한다.
이하, 본 발명에 따른 실시예들은 첨부된 도면들을 참조하여 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 실시예들을 설명할 것이나, 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있다.
본 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명의 일 실시예에 따른 미세유체 칩을 도시한다. 구체적으로, 도 2의 상단은 미세유체 칩(200)의 평면도를 도시하고, 도 2의 하단은 미세유체 칩(200)의 A-A' 방향의 단면도를 도시한다.
도 2를 참조하면, 미세유체 칩(200)은 기판(210) 및 기판(210)에 접합하는 필름(220)을 포함할 수 있다.
기판(210)은 미세유체 칩(200)의 베이스로서, 유체가 유입되는 유입부(230), 유체가 이동하는 유체 채널(240) 및 유체가 배출되는 유출부(250)를 포함할 수 있다. 기판(210)의 유입부(230), 유체 채널(240) 및 유출부(250)는 기판(210)의 표면(즉, 상면 및 하면)으로부터 함몰되거나 기판(210)을 관통하여 형성될 수 있다.
기판(210)은 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene,POM), 폴리에테르에테르케톤 (polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP) 및 그의 조합물로 구성된 군으로부터 선택될 수 있다. 또한, 실시예에 따라 기판(210)은 적어도 일부가 광 투과성 재질, 예를 들어, 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA) 등으로 구현될 수 있다. 그러나 이와 같은 기판(210)의 재질은 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 다양한 재질이 이용될 수 있다.
필름(220)은 기판(210)의 표면에 접합될 수 있다. 구체적으로 필름(220)은 기판(210)의 상부 표면에 접합하는 제 1 필름(222) 및 기판(210)의 하부 표면에 접합하는 제 2 필름(224)으로 구성될 수 있으며, 이와 같은 제 1 필름(222) 및 제 2 필름(224)이 기판(210)의 상부 표면 및 하부 표면에 접합함으로써, 기판(210)의 유입부(230), 유출부(250) 및 유체 채널(230) 중 적어도 일부를 외부로부터 폐쇄함으로써, 외부 물질에 의한 오염, 손상 등으로부터 미세유체 칩(200)을 보호하고, 이와 동시에 미세유체 칩(200)이 유체의 흐름, 유지 등의 기능을 수행하게 할 수 있다.
기판(210)과 동일하거나 유사한 재질의 다른 기판이 아닌, 상대적으로 얇은 필름(220)이 기판(210)의 표면에 부착됨으로써, 접착 작업(bonding)을 간소화하고, 미세유체 칩(200)의 소형화 및 경량화에 도움을 줄 수 있다. 필름(220)은 적어도 일부가 투명 또는 불투명한 재질일 수 있다. 또한, 필름(220)은 산소, 이산화탄소 등과 같은 기체에 대한 기체 투과성 필름일 수 있다. 이러한 필름(220)의 구성은 예시적인 것으로서, 본 발명이 적용되는 실시예, 즉, 미세유체 칩(200)에 사용되는 시료의 내용물이나 연구목적 등에 따라 필름(200)의 구성을 다양화 할 수 있다.
이와 같은 미세유체 칩(200)에 의하면, 샘플 시약, 시료 등의 유체가 유입부(230)를 통해 주입되어, 유체 채널(240)을 흐르게 된다. 여기서 유체 채널(240)은 기판(210)의 하면에 형성되는 하부 유체 채널(242, 242'), 기판(210)의 상면에 형성되는 상부 유체 채널(246), 및 하부 유체 채널(242)과 상부 유체 채널(246)을 연결하는 비아홀(244, 244')을 포함할 수 있다. 더 구체적으로, 유입부(230)를 통해 주입된 유체가 하부 유체 채널(242), 비아홀(244), 상부 유체 채널(246), 비아홀(244'), 하부 유체 채널(242')을 순차적으로 흐르게 된다. 유체 채널(240)에서는 유체의 이동 및 유지뿐만 아니라 유체에 대한 다양한 동작이 이루어질 수 있다. 예를 들어, 비아홀(244)은 하부 유체 채널(242) 및 상부 유체 채널(246)을 연결할 뿐만 아니라, 소정의 반응 채널 또는 반응 챔버로서 기능할 수 있다. 즉, 유체의 흐름을 위한 비아홀(244')과 달리, 비아홀(244)은 반응 채널 또는 반응 챔버로서 기능할 만큼 충분한 공간이 확보된다는 점에서, 비아홀(244)을 통해 구현되는 반응 채널 또는 반응 챔버를 통해, 시료 분리, 혼합, 합성, 정량분석, 세포 증식 관찰 등 소정의 반응이나 반응의 분석, 관찰이 이루어질 수 있다. 다만 이러한 비아홀(244)의 활용은 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라, 유체 채널(240)은 반응 채널 또는 반응 챔버로 기능하는 비아홀을 포함하지 않을 수도 있다. 유체 채널(240)을 통과한 유체는 유출부(250)를 통해 미세유체 칩(200) 외부로 배출될 수 있다.
이와 같이, 복잡한 유체 흐름 경로 및 상대적으로 넓은 면적이 요구될 수 있는 유체 채널(240)을, 기판(210) 표면을 상이하게 하여 형성함으로써, 미세유체 칩(200)의 소형화 및 공정 간소화를 달성할 수 있다. 특히, 복수의 기판을 접합함으로써 발생하는 기판 간의 접합 및 정렬 문제를 해결할 수 있다.
일 실시예에서, 유체 채널(240)은 분기 채널 및/또는 결합 채널을 포함할 수 있다. 분기 채널은 임의의 채널이 복수의 다른 채널로 분리되는 것으로서, 임의의 채널에 흐르는 유체가 동일한 성질을 갖는 복수의 유체로 분리될 수 있다. 결합 채널은 복수의 채널이 하나의 채널로 합류하는 것으로서, 복수의 채널에 각각 흐르는 복수의 유체가 하나의 유체로 합쳐질 수 있다. 분기 채널 및/또는 결합 채널은 유체 채널(240) 중 상부 유체 채널 및/또는 하부 유체 채널에 의해 구현될 수 있다. 특히, 유체 채널(240)은 하기 더 상세히 설명할 바와 같이, 분기 채널 및 결합 채널의 조합에 의해 구현되는 농도구배 채널을 포함할 수 있다. 여기서 농도구배 채널은 하나 이상의 채널들이 다시 하나 이상의 채널들로 분기되고, 분기된 채널들 중 일부가 서로 결합하여 새로운 채널을 형성하는 과정을 반복하면서, 채널을 통과하는 유체가 결합 및 분기할 수 있는 다양한 경로를 형성하여 유체의 농도구배를 제공할 수 있다.
또한, 실시예에 따라, 유체 채널(240)은, 하기 더 상세히 설명할 바와 같이, 유체에 포함된 기포가 소정의 영역 내에 위치하는 것을 방지하기 위한 기포 제거부(도 3의 310 및 도 4의 410 참조)를 더 포함할 수 있다. 기포 제거부는 유체 채널(240) 내의 다양한 위치에서 다양한 용도로 이용될 수 있다. 예를 들어, 유체 채널(240)은 유체 채널(240) 내에 수행되는 각종 반응(예를 들어, PCR 반응 등)의 산물을 측정하기 위한 광 측정 영역을 포함할 수 있으며, 이 경우, 기포 제거부는 유체에 포함된 기포가 광 측정 영역 내에 위치하는 것을 방지하도록 형성될 수 있다.
또한, 실시예에 따라, 기판(210)의 표면 중 일부(바람직하게는, 유입부(230), 유체 채널(240) 및 유출부(250) 중 적어도 하나)에 표면 처리가 수행될 수 있다. 예를 들어, 표면 상에 DNA, 단백질(protein) 흡착을 방지하기 위해 실란(silane) 계열, 보바인 시럼 알부민(Bovine Serum Albumin, BSA) 등의 물질로 코팅될 수 있으며, 이러한 표면 처리는 당해 기술 분야에 공지된 다양한 기술에 따라 수행될 수 있다.
또한, 실시예에 따라, 유입부(230) 및 유출부(250)에는, 별도의 커버 수단(도시되지 않음)이 구비되어, 유입부(230) 및 유출부(250)를 통한 미세유체 칩(200) 내부의 오염을 방지하거나, 미세유체 칩(200)에 주입된 유체의 누출 등을 방지할 수 있다. 이러한 커버 수단은 다양한 형상, 크기 또는 재질로서 구현될 수 있다.
도 2에서 도시되는 미세유체 칩(200)의 형상이나 구조는 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 다양한 형상이나 구조의 미세유체 칩이 이용될 수 있다.
도 3은 본 발명의 다른 실시예에 따른 미세유체 칩을 도시한다.
구체적으로, 도 3의 상단은 미세유체 칩(300)의 평면도를 도시하고, 도 3의 (a)의 하단은 미세유체 칩(300)의 A-A' 방향의 단면도를 도시한다.
도 3을 참조하면, 미세유체 칩(300)의 유체 채널(240)은 기포 제거부(310)를 포함할 수 있다. 기포 제거부(310)는 유체에 포함된 기포가 유체 채널(240) 내의 소정의 영역 내에 위치하는 것을 방지하기 위한 것으로서, 도시되는 바와 같이, 기판(210)의 상부 내면으로부터 하부 방향으로 돌출되어 형성될 수 있다.
유체 채널(240)은 유체 채널(240) 내에 수행되는 임의의 반응의 산물을 측정하기 위한 광 측정 영역(즉, 반응 산물로부터 방출되는 광신호가 검출되는 유체 채널(240) 상의 영역)을 포함할 수 있으며, 이때 기포 제거부(310)는 유체에 포함된 기포가 광 측정 영역 내에 위치하는 것을 방지하도록 형성될 수 있다. 이를 통해 기포 제거부(260)는 광 측정 영역에서 감지되는 광신호 감지 방해 요소를 제거할 수 있다. 구체적으로, 기포 제거부(310)가 기판(210)의 상부 내면으로부터 유체 채널(240) 내측으로 돌출되기 때문에, 유체 내에 포함된 기포는 부력으로 인해, 기포 제거부(310)에서 광 측정 영역(즉, 기포 제거부(310)의 돌출부 중 평탄 영역) 주변 영역으로 밀려서 주변 공간에 배치되게 된다. 즉, 기포는 광 측정 영역으로부터 외부로 이탈하게 됨으로써, 광 측정 영역에 존재하는 반응 산물로부터 방출되는 광신호 감도에 영향을 미치지 않게 된다. 특히, 기판(210)의 적어도 일부, 즉 기포 제거부(310)는 광 투과성 재질로 구성되고, 적어도 일부가 광 측정 영역 내에 포함되도록 구성될 수 있으며, 따라서, 광 측정 영역 내의 반응 산물로부터 발생하는 광신호는 기포 제거부(310)를 통과하여, 감도 저하 없이 미세유체 칩의 외부로 방출될 수 있다. 이와 같이, 미세유체 칩을 이용하여 유체 채널(240) 내의 반응 산물을 측정하는 경우, 미세유체 칩의 극-소형화에도 불구하고, 유체 채널(240) 내에 발생한 기포의 영향을 받지 않게 되어 광신호 감도가 상당하게 증가됨으로써, 다수의 소량의 반응 산물을 동시에 신속하며 정확하게 측정할 수 있게 된다. 이러한 기포 제거부(310)의 이용은 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 기포 제거부(310)는 다양한 용도로 활용될 수 있다. 예를 들어, 기포 제거부(310)는 유체 채널(240)을 통한 유체의 이동 중 유체에 포함된 기포를 유체의 흐름으로부터 제거하기 위해 이용될 수 있다.
도 3에 도시되는 기포 제거부(310)의 형상은 예시적인 것으로서, 이에 한정되는 것은 아니며, 본 발명의 실시예에 따라, 다양하게 변형되어 적용될 수 있다. 예를 들어, 도 3에서는 원기둥 형상의 기포 제거부(310)가 도시되어 있으나, 사각 기둥 등의 다른 형상의 기포 제거부가 이용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 미세유체 칩을 도시한다.
구체적으로, 도 4의 상단은 미세유체 칩(400)의 평면도를 도시하고, 도 4의 (a)의 하단은 미세유체 칩(300)의 A-A' 방향의 단면도를 도시한다.
도 4를 참조하면, 기포 제거부(410)는 기포 제거부(410)의 중앙에 구비되는 평탄면(412)과 평탄면(412)의 둘레로부터 연장되어 미세유체 칩(400) 상부의 내면과 연결되는 경사면(414)으로 이루어질 수 있다. 이와 같이, 기포 제거부(410)의 측면이 경사면(414)으로 이루어지는 경우, 기포가 경사면(414)을 따라 유체 채널(240)의 상측으로 이동 가능하기 때문에, 기포가 기포 제거부(410)의 주변 공간으로 보다 용이하게 이동 배치되게 할 수 있다.
도 3 및 도 4에서 도시되지는 않으나, 실시예에 따라, 기포 제거부(310, 410)는 기포 제거부(310, 410)의 둘레를 따라 기판(210)의 상부 내면이 상측으로 함몰되어 형성되는 기포 포집부를 더 포함할 수 있다. 기포 포집부는, 기포 포집부 이외의 영역에 비해, 상대적으로 유체 채널(240)의 상측에 위치하기 때문에, 기포 제거부(310, 410)에서 밀려난 기포는 기포 포집부에 포집될 수 있다.
본 발명의 일 실시예에 따라, 분석 장치가 제공될 수 있다. 분석 장치는, 도 2 내지 도 5를 참조하여 상술한 본 발명의 일 실시예에 따른 미세유체 칩(200, 300, 400, 500); 및 광 측정 모듈을 포함할 수 있다. 광 측정 모듈은, 미세유체 칩(200, 300, 400, 500) 내의 반응 산물 등을 (예를 들어, 실시간으로) 측정하기 위해, 미세유체 칩(200, 300, 400, 500)에 광을 조사하고, 광 측정 영역으로부터 방출되는 광신호를 검출하는 장치로서, 본 발명이 속하는 기술분야에서 적용 가능한 다양한 광 측정 모듈이 이용될 수 있다. 예를 들어, 광 측정 모듈은 미세유체 칩(200, 300, 400, 500)의 유체 채널에 광을 제공하도록 배치된 광원, 및 유체 채널로부터 방출되는 광을 수용하도록 배치된 광 검출부를 포함할 수 있고, 광원과 광 검출부는 유체 채널을 사이에 두고 배치되거나(투과형 방식), 유체 채널(240)의 일 방향에 모두 배치될 수 있다(반사형 방식).
도 5는 본 발명의 일 실시예에 따른 미세유체 칩의 제조 방법을 도시하며, 도 6 및 도 7은 본 발명의 일 실시예에 따른 미세유체 칩의 제조 방법을 공정 별로 도시한다.
도 5의 방법은 도 2 내지 도 4에서 도시되는 미세유체 칩(200, 300, 400)을 제조하기 위한 것으로서, 도 5의 방법을 기반으로 도 6 및 도 7의 제조 공정을 설명하면 다음과 같다.
먼저, 도 5를 참조하면, 유입부(230), 유체 채널(240) 및 유출부(250)를 포함하는 기판(210)을 형성할 수 있다(S510 단계). 이와 관련하여, 도 6의 (a)는 유입부(230), 유체 채널(240) 및 유출부(250)를 포함하는 기판(210)의 사시도를 도시하고, 도 6의 (b)는 도 7의 (a)에서 도시되는 기판(210)의 A-A' 방향의 단면도를 도시한다. 도시되는 바와 같이, 기판(210)의 유입부(230), 유체 채널(240) 및 유출부(250)는 기판(210)의 표면(즉, 상면 및 하면)으로부터 함몰되거나 기판(210)을 관통하여 형성될 수 있다.
S510 단계는 당해 기술분야에서 적용 가능한 다양한 제조 기법을 이용하여 수행될 수 있다. 일 예시에서, S510 단계는, 기판(210)의 표면을 식각함으로써 수행될 수 있으며, 이러한 식각에는 기계적, 화학적 방식 등 다양한 식각 기술이 이용될 수 있다. 일 예시에서, S510 단계는 사출 성형, 압축 성형 등 다양한 성형 기법에 의해 수행될 수 있다.
계속해서, 기판(210)의 표면에 필름(220)을 부착할 수 있다(S520 단계). 이와 관련하여, 도 7의 (a)는 기판(210) 및 기판(210)에 부착된 필름(220)의 사시도를 도시하고, 도 7의 (b)는 도 8의 (a)에서 도시되는 기판(210) 및 필름(220)의 A-A' 방향의 단면도를 도시한다. 도 7의 (a) 및 (b)를 참조하면, S520 단계는 기판(210)의 상부 표면에 필름(222)을 부착하고, 기판(210)의 하부 표면에 필름(224)을 부착함으로써 수행될 수 있으며, 이를 통해 S510 단계에서 기판(210) 상에 형성된 유입부(230), 유체 채널(240) 및 유출부(250) 중 적어도 일부가 외부로부터 폐쇄될 수 있다. S520 단계는 예를 들어, 열 접합, 초음파 접합, 자외선 접합, 용매 접합, 테이프 접합 등의 당해 분야에서 적용 가능한 다양한 접합 방법에 의해 수행될 수 있다.
도 6 및 도 7에서 도시되는 미세유체 칩의 형상 및 구조는 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 다양한 형상 및 구조의 미세유체 칩이 이용될 수 있다.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (19)

  1. 미세유체 칩으로서,
    유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판; 및
    상기 기판에 부착되어, 상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하는 필름을 포함하며,
    상기 유입부 및 상기 유출부는 기판의 표면을 관통하여 구현되고, 상기 유체 채널은 상기 기판의 표면으로부터 함몰되어 구현되는, 미세유체 칩.
  2. 제 1 항에 있어서,
    상기 유체 채널은 상기 기판의 상면에 형성되는 상부 유체 채널, 상기 기판의 하면에 형성되는 하부 유체 채널 및 상기 상부 유체 채널과 상기 하부 유체 채널을 연결하는 비아홀(via-hole)을 포함하는, 미세유체 칩.
  3. 제 2 항에 있어서,
    상기 비아홀은 챔버(chamber)로서 기능하는, 미세유체 칩.
  4. 제 2 항에 있어서,
    상기 유체 채널은, 상기 유체 채널의 상기 상부 유체 채널 및 상기 하부 유체 채널 중 적어도 하나에 의해 구현되는 분기 채널 및 결합 채널 중 적어도 하나를 포함하는, 미세유체 칩.
  5. 제 4 항에 있어서,
    상기 유체 채널은 상기 분기 채널 및 상기 결합 채널에 의해 구현되는 농도구배 채널을 포함하는, 미세유체 칩.
  6. 제 1 항에 있어서,
    상기 유체 채널은 상기 유체에 포함된 기포가 상기 유체 채널 내의 소정의 영역에 위치하는 것을 방지하기 위해 상기 기판의 상부 내면으로부터 하부 방향으로 돌출되어 형성되는 광 투과성 재질의 기포 제거부를 포함하는, 미세유체 칩.
  7. 제 6 항에 있어서,
    상기 기포 제거부는, 상기 기포 제거부의 중앙에 구비되는 평탄면과 상기 평탄면의 둘레로부터 연장되어 상기 미세유체 칩 상부의 내면과 연결되는 경사면으로 이루어지는, 미세유체 칩.
  8. 제 6 항에 있어서,
    상기 기포 제거부는 상기 기포 제거부의 하단 면 중 적어도 일 영역으로부터 함몰되어 형성되는 기포 포집부를 포함하는, 미세유체 칩.
  9. 제 1 항에 있어서,
    상기 필름의 적어도 일부는 기체 투과성 필름인, 미세유체 칩.
  10. 제 1 항에 따른 미세유체 칩; 및
    상기 미세유체 칩 내의 반응 산물을 측정하기 위해, 상기 미세유체 칩에 광을 조사하여, 상기 미세유체 칩의 광 측정 영역으로부터 방출되는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는 분석 장치.
  11. 미세유체 칩의 제조 방법으로서,
    유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판을 형성하는 단계; 및
    상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하도록, 상기 기판의 표면에 필름을 부착하는 단계를 포함하고,
    상기 기판을 형성하는 단계는, 상기 기판의 상면 및 하면 중 일 영역이 상기 기판의 표면으로부터 함몰하여 상기 유체 채널을 구현하고, 상기 기판의 표면을 관통하여 상기 유입부 및 상기 유출부를 구현함으로써 수행되는, 제조 방법.
  12. 제 11 항에 있어서,
    상기 유체 채널은 상기 기판의 상면에 형성되는 상부 유체 채널, 상기 기판의 하면에 형성되는 하부 유체 채널 및 상기 상부 유체 채널과 상기 하부 유체 채널을 연결하는 비아홀(via-hole)을 포함하는, 제조 방법.
  13. 제 12 항에 있어서,
    상기 비아홀은 챔버(chamber)로서 기능하는, 제조 방법.
  14. 제 11 항에 있어서,
    상기 유체 채널은 상기 유체에 포함된 기포가 상기 유체 채널 내의 소정의 영역 영역 내에 위치하는 것을 방지하기 위해 상기 기판의 상부 내면으로부터 하부 방향으로 돌출되어 형성되는 광 투과성 재질의 기포 제거부를 포함하는, 제조 방법.
  15. 제 14 항에 있어서,
    상기 기포 제거부는, 상기 기포 제거부의 중앙에 구비되는 평탄면과 상기 평탄면의 둘레로부터 연장되어 상기 미세유체 칩 상부의 내면과 연결되는 경사면으로 이루어지는, 제조 방법.
  16. 제 14 항에 있어서,
    상기 기포 제거부는 상기 기포 제거부의 하단 면 중 적어도 일 영역으로부터 함몰되어 형성되는 기포 포집부를 포함하는, 제조 방법.
  17. 제 11 항에 있어서,
    상기 필름의 적어도 일부는 기체 투과성 필름인, 제조 방법.
  18. 제 12 항에 있어서,
    상기 유체 채널은, 상기 유체 채널의 상기 상부 유체 채널 및 상기 하부 유체 채널 중 적어도 하나에 의해 구현되는 분기 채널 및 결합 채널 중 적어도 하나를 포함하는, 제조 방법.
  19. 제 18 항에 있어서,
    상기 유체 채널은 상기 분기 채널 및 상기 결합 채널에 의해 구현되는 농도구배 채널을 포함하는, 제조 방법.
PCT/KR2015/006320 2014-07-10 2015-06-22 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치 WO2016006842A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580037239.9A CN106470937B (zh) 2014-07-10 2015-06-22 微流控芯片及其制备方法以及利用其的分析装置
ES15818381T ES2881221T3 (es) 2014-07-10 2015-06-22 Chip microfluídico, método de fabricación del mismo y dispositivo de análisis que usa el mismo
JP2017500901A JP6676611B2 (ja) 2014-07-10 2015-06-22 マイクロ流体チップ、その製造方法及びそれを用いた分析装置
EP15818381.4A EP3168188B1 (en) 2014-07-10 2015-06-22 Microfluidic chip, manufacturing method therefor and analysis device using same
US15/325,293 US10189021B2 (en) 2014-07-10 2015-06-22 Microfluidic chip, manufacturing method therefor and analysis device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140086758A KR102195769B1 (ko) 2014-07-10 2014-07-10 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치
KR10-2014-0086758 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006842A1 true WO2016006842A1 (ko) 2016-01-14

Family

ID=55064419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006320 WO2016006842A1 (ko) 2014-07-10 2015-06-22 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치

Country Status (7)

Country Link
US (1) US10189021B2 (ko)
EP (1) EP3168188B1 (ko)
JP (1) JP6676611B2 (ko)
KR (1) KR102195769B1 (ko)
CN (1) CN106470937B (ko)
ES (1) ES2881221T3 (ko)
WO (1) WO2016006842A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115689A1 (en) * 2017-12-15 2019-06-20 Ams International Ag Integrated particulate matter sensor systems

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201716961D0 (en) * 2017-10-16 2017-11-29 Quantumdx Group Ltd Microfluidic devices with bubble diversion
WO2019079399A1 (en) * 2017-10-20 2019-04-25 Duke University DEVICES, SYSTEMS AND METHODS FOR HIGH SPEED SINGLE CELL ANALYSIS
KR102030254B1 (ko) * 2017-11-28 2019-10-08 인제대학교 산학협력단 다공성 박막을 이용하여 채널 내 미세 버블의 제거가 가능한 마이크로 플루이딕 디바이스
US20200400544A1 (en) * 2017-12-15 2020-12-24 Ams International Ag Integrated filter-based particulate matter sensors
US20200049658A1 (en) * 2018-08-08 2020-02-13 Arkray, Inc. Analysis Chip Device
WO2020055152A1 (ko) * 2018-09-13 2020-03-19 인제대학교 산학협력단 다양한 종류의 박막을 이용하여 압력의 변화에 일정한 민감도를 갖는 일회용 유속측정장치와 다공성 박막에 돌출된 서포트 패턴을 이용하여 채널 내 미세 버블의 제거가 가능한 마이크로 플루이딕 디바이스 및 그 제조방법
KR102030284B1 (ko) * 2018-09-13 2019-10-08 인제대학교 산학협력단 다공성 박막에 돌출된 서포트 패턴을 이용하여 채널 내 미세 버블의 제거가 가능한 마이크로 플루이딕 디바이스 및 그 제조방법
KR102451829B1 (ko) * 2020-06-23 2022-10-06 인제대학교 산학협력단 채널 내 미세버블의 제거가 가능한 일회용 마이크로 플루이딕 디바이스
KR102263837B1 (ko) 2020-11-05 2021-06-11 주식회사 미코바이오메드 현장진단용 다중 초고속 핵산 추출 및 증폭이 가능한 통합칩
EP4330658A1 (en) * 2021-04-29 2024-03-06 Prognomics Ltd Biosensors
KR102534432B1 (ko) * 2022-09-13 2023-05-26 텐드바이오 주식회사 생체 모사 장기 칩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445744B1 (ko) * 2000-12-30 2004-08-25 한국전자통신연구원 실리콘 기판에 매립된 마이크로채널 어레이 구조체 및이의 제조방법
KR20080085898A (ko) * 2006-01-19 2008-09-24 키오닉스, 인크. 미세유체 칩 및 분석 시스템
KR101244285B1 (ko) * 2011-12-21 2013-03-18 충남대학교산학협력단 액적 발생용 마이크로 유체칩, 액적 반응용 마이크로 유체칩 및 다중 액적반응 분석장치
US20130140181A1 (en) * 2000-11-16 2013-06-06 California Institute Of Technology Apparatus and Methods for Conducting Assays and High Throughput Screening
KR20130066138A (ko) * 2011-12-12 2013-06-20 한국과학기술원 나노채널 구조체를 구비하는 센서 및 그 제조방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601613B2 (en) * 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
DE10054484A1 (de) * 2000-11-03 2002-05-08 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
FR2817604B1 (fr) * 2000-12-01 2004-04-23 Biomerieux Sa Vannes activees par des polymeres electro-actifs ou par des materiaux a memoire de forme, dispositif contenant de telles vannes et procede de mise en oeuvre
WO2003008981A1 (fr) * 2001-07-10 2003-01-30 Kanagawa Academy Of Science And Technology Structure integree a microcanaux d'ecoulement multicouche et procede de fonctionnement d'un ecoulement multicouche a l'aide de cette derniere
GR1004106B (el) * 2002-01-24 2003-01-13 Εκεφε "Δημοκριτος" Ινστιτουτο Μικροηλεκτρονικης Ολοκληρωμενοι θερμικοι αισθητηρες πυριτιου χαμηλης ισχυος και διαταξεις μικρο-ροης βασισμενοι στην χρηση τεχνολογιας κοιλοτητας αερα σφραγισμενης με μεμβρανη πορωδους πυριτιου ή τεχνολογιας μικρο-καναλιων
US6878271B2 (en) * 2002-09-09 2005-04-12 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
JP2004202613A (ja) * 2002-12-25 2004-07-22 Fuji Electric Systems Co Ltd マイクロチャンネルチップ
JP4259188B2 (ja) * 2003-06-04 2009-04-30 株式会社島津製作所 マイクロ反応装置
JP4683538B2 (ja) * 2004-05-06 2011-05-18 セイコーインスツル株式会社 分析用マイクロチップを含む分析システムと分析方法
JP2006255584A (ja) * 2005-03-17 2006-09-28 Dainippon Screen Mfg Co Ltd マイクロリアクタ
JP2007064742A (ja) * 2005-08-30 2007-03-15 Nec Corp 化学チップおよび接続装置
JP2007136379A (ja) * 2005-11-21 2007-06-07 Konica Minolta Medical & Graphic Inc マイクロリアクタおよびその製造方法
US8317168B2 (en) * 2006-04-05 2012-11-27 Nikkiso Co., Ltd. Mixer, mixing device and unit for measuring medical component
JP2008008880A (ja) * 2006-06-02 2008-01-17 Sumitomo Bakelite Co Ltd プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
JP2008232939A (ja) * 2007-03-22 2008-10-02 Aisin Seiki Co Ltd マイクロチップ及びその製造方法
JP5052996B2 (ja) * 2007-08-22 2012-10-17 アイダエンジニアリング株式会社 電気泳動用マイクロ流路チップ及び電気泳動方法
JP5013424B2 (ja) 2007-10-26 2012-08-29 独立行政法人産業技術総合研究所 マイクロチップ、マスターチップ
JP2009236555A (ja) 2008-03-26 2009-10-15 Shimadzu Corp 流体デバイス及びその製造方法
KR100988931B1 (ko) 2008-04-02 2010-10-20 포항공과대학교 산학협력단 미세 유체 칩 및 이를 제조하기 위한 사출 성형 몰드
CN102171576A (zh) * 2008-10-05 2011-08-31 爱科来株式会社 分析用具及其制造方法
AU2010223849A1 (en) * 2009-03-10 2011-10-27 Monash University Platelet aggregation using a microfluidics device
EP2618932A1 (en) * 2010-09-22 2013-07-31 Corning Incorporated Microporous microfluidic device
JP2013007592A (ja) 2011-06-23 2013-01-10 Konica Minolta Advanced Layers Inc フローセル及び流路チップ
CN102614948B (zh) 2012-04-05 2014-03-19 北京金智捷生物科技有限公司 一种微流控芯片及其制备方法
CN203663854U (zh) * 2013-07-01 2014-06-25 香港大学深圳医院 新型的微流控芯片
KR20150106493A (ko) * 2014-03-11 2015-09-22 포항공과대학교 산학협력단 표준물첨가법을 이용한 흐름셀을 갖는 미세유체칩과 이를 포함하는 흡광 검출 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140181A1 (en) * 2000-11-16 2013-06-06 California Institute Of Technology Apparatus and Methods for Conducting Assays and High Throughput Screening
KR100445744B1 (ko) * 2000-12-30 2004-08-25 한국전자통신연구원 실리콘 기판에 매립된 마이크로채널 어레이 구조체 및이의 제조방법
KR20080085898A (ko) * 2006-01-19 2008-09-24 키오닉스, 인크. 미세유체 칩 및 분석 시스템
KR20130066138A (ko) * 2011-12-12 2013-06-20 한국과학기술원 나노채널 구조체를 구비하는 센서 및 그 제조방법
KR101244285B1 (ko) * 2011-12-21 2013-03-18 충남대학교산학협력단 액적 발생용 마이크로 유체칩, 액적 반응용 마이크로 유체칩 및 다중 액적반응 분석장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168188A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115689A1 (en) * 2017-12-15 2019-06-20 Ams International Ag Integrated particulate matter sensor systems
US11536640B2 (en) 2017-12-15 2022-12-27 Ams International Ag Integrated particulate matter sensor systems

Also Published As

Publication number Publication date
JP6676611B2 (ja) 2020-04-08
CN106470937B (zh) 2019-03-15
KR20160007934A (ko) 2016-01-21
JP2017519996A (ja) 2017-07-20
ES2881221T3 (es) 2021-11-29
US10189021B2 (en) 2019-01-29
EP3168188A4 (en) 2018-01-24
KR102195769B1 (ko) 2020-12-30
CN106470937A (zh) 2017-03-01
US20170157606A1 (en) 2017-06-08
EP3168188A1 (en) 2017-05-17
EP3168188B1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2016006842A1 (ko) 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치
WO2015119471A1 (ko) 미세유체 칩 및 이를 이용한 실시간 분석 장치
EP2684607B1 (en) Fluid analysis cartridge
WO2016011134A1 (en) Microfluidics cartridge with pipetting guide
JP5137012B2 (ja) マイクロチップ
JP2007017354A (ja) 化学反応検出システム
US9417178B2 (en) Microchip
US20120275971A1 (en) Microchip
US20090291025A1 (en) Microchip And Method Of Using The Same
KR102431519B1 (ko) 나노구조물을 포함하는 농도구배 세포칩, 이의 제조 방법 및 이를 이용한 영상 분석 장치
JP6017793B2 (ja) マイクロチップ
US9527079B2 (en) Fluid analysis cartridge
JP2009156682A (ja) 封止用フィルム付きマイクロチップ
JP2009162517A (ja) マイクロチップ
JP2009281869A (ja) マイクロチップ
KR20150101316A (ko) 유체 분석 카트리지
JP2009281779A (ja) マイクロチップおよびその使用方法
JP6049463B2 (ja) マイクロチップ
KR20150100323A (ko) 미세유체 혼합장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15325293

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015818381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818381

Country of ref document: EP