WO2016006565A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2016006565A1
WO2016006565A1 PCT/JP2015/069396 JP2015069396W WO2016006565A1 WO 2016006565 A1 WO2016006565 A1 WO 2016006565A1 JP 2015069396 W JP2015069396 W JP 2015069396W WO 2016006565 A1 WO2016006565 A1 WO 2016006565A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
compression chamber
injection
pressing member
Prior art date
Application number
PCT/JP2015/069396
Other languages
English (en)
French (fr)
Inventor
康夫 水嶋
泰弘 村上
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580036726.3A priority Critical patent/CN106536938B/zh
Priority to EP15819712.9A priority patent/EP3168478B1/en
Priority to ES15819712T priority patent/ES2756474T3/es
Priority to US15/323,009 priority patent/US10190588B2/en
Publication of WO2016006565A1 publication Critical patent/WO2016006565A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring

Definitions

  • the present invention relates to a compressor in which intermediate injection is performed.
  • intermediate injection may be performed for the purpose of improving the efficiency of a compressor used in a refrigeration apparatus, and in order to guide the refrigerant injected into the compression chamber of the compressor, the injection is made into a housing member such as a fixed scroll member of the compressor A passage may be formed.
  • a refrigerant having a pressure (intermediate pressure) between a low pressure in the refrigeration cycle and a high pressure in the refrigeration cycle is injected into the compression chamber.
  • the pressure of the compression chamber in which the refrigerant is to be injected becomes higher than the pressure of the refrigerant to be injected, and the refrigerant may flow backward from the compression chamber to the injection pipe side.
  • the space outside the compression chamber where the refrigerant flows backward is a space that does not contribute to the compression of the refrigerant, and the volume of this space is a so-called dead volume (a volume that does not function as a compression chamber). Since it is desirable that the dead volume be as small as possible, a check valve may be provided in the injection passage formed in the housing member close to the compression chamber to prevent the refrigerant from flowing back.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-107950 discloses a compressor in which a check valve chamber in which a cylindrical valve body moves is provided in an injection passage formed in a fixed scroll member. Yes.
  • the valve body has a notch formed in an outer peripheral surface that is in sliding contact with an inner peripheral surface of the check valve chamber and an end surface on the injection port side that is connected to the compression chamber.
  • the refrigerant to be injected passes through the passage between the outer peripheral surface of the valve body and the inner peripheral surface of the check valve chamber (that is, a notch formed in the outer peripheral surface of the valve body) and the injection port side of the valve body.
  • the fluid passes through a fluid passage composed of a passage between the end surface and a facing surface in contact with the end surface (that is, a notch portion formed in the end surface of the valve body), and is supplied to the compression chamber.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-107950
  • the injected refrigerant passes through a notch formed on the outer peripheral surface of the valve body, Furthermore, since it passes through the notch formed in the end surface of the valve body and flows into the compression chamber, the pressure loss of the injected refrigerant tends to increase.
  • An object of the present invention is to provide a compressor in which a check valve is provided in an injection passage formed in a housing member, and capable of suppressing a pressure loss of refrigerant to be injected.
  • the compressor according to the first aspect of the present invention includes a housing member, a check valve, and an injection pipe.
  • the housing member is formed with an injection passage communicating with a compression chamber in which the refrigerant is compressed.
  • the check valve is provided in the injection passage.
  • the injection pipe supplies a refrigerant to the injection passage.
  • the check valve has a valve main body and a valve pressing member.
  • the valve body is slidably disposed in the injection passage.
  • the valve pressing member is disposed closer to the injection pipe than the valve body, and restricts the movement of the valve body toward the injection pipe when the check valve prevents the refrigerant flow from the compression chamber to the injection pipe.
  • a central hole is formed in the central portion of the valve body.
  • the valve pressing member is formed with a peripheral hole that faces the peripheral edge on the peripheral side of the central hole of the valve body.
  • the check valve has a valve body with a central hole formed in the center, and the refrigerant supplied from the injection pipe to the compression chamber through the injection passage passes through the central hole of the valve body and enters the compression chamber. Supplied. Therefore, compared with the case where the refrigerant passes through the notch formed on the outer peripheral surface of the valve body and further passes through the notch formed on the end surface of the valve body, the refrigerant is injected into the compression chamber. Pressure loss can be suppressed.
  • the compressor according to the second aspect of the present invention is the compressor according to the first aspect, and the housing member has a valve seating surface.
  • the valve seating surface is disposed on the side opposite to the valve pressing member with respect to the valve main body, and restricts the movement of the valve main body in the flow direction of the refrigerant when the refrigerant is supplied from the injection pipe to the compression chamber.
  • the injection passage includes an injection port that is disposed on the downstream side of the valve seating surface in the flow direction of the refrigerant when the refrigerant is supplied from the injection pipe to the compression chamber and communicates directly with the compression chamber.
  • the flow passage areas of the central hole and the peripheral hole are respectively larger than the flow passage area of the injection port.
  • the check valve since the flow passage area of the central hole formed in the valve body and the flow passage area of the peripheral hole formed in the valve holding member are both larger than the flow passage area of the injection port, the check valve is The refrigerant pressure loss is less likely to occur due to the provision. Therefore, the pressure loss of the injected refrigerant can be suppressed, and the capacity of the compressor can be easily improved by the injection.
  • the compressor according to the third aspect of the present invention is the compressor according to the second aspect, further comprising an elastic body disposed between the valve seating surface and the valve body. The elastic body presses the valve body toward the valve pressing member.
  • valve body is pressed toward the valve pressing member by the elastic body, chattering of the valve body is easily suppressed.
  • the valve body since the valve body is pressed toward the valve pressing member by the elastic body, it is easy to suppress the refrigerant from flowing backward from the compression chamber to the injection pipe side than the valve pressing member. Therefore, an increase in dead volume is easily suppressed, and an efficient compressor can be realized.
  • a compressor according to a fourth aspect of the present invention is the compressor according to any one of the first aspect to the third aspect, wherein the valve pressing member is located at the center of the valve pressing member when viewed from the valve body side.
  • a plurality of peripheral holes are formed so as to be arranged symmetrically with respect to the point.
  • the inclination of the valve body hinders the smooth movement of the valve body, and quick switching of the check valve (the state in which the refrigerant to be injected is introduced into the compression chamber and the flow of the refrigerant that flows back from the compression chamber are non-returned) May be adversely affected.
  • the plurality of peripheral holes are formed in the valve pressing member so as to be point-symmetric with respect to the center of the valve pressing member when viewed from the valve main body side.
  • the valve body is easily pushed evenly by the flow of the refrigerant, and the valve body is difficult to tilt.
  • the refrigerant is supplied from a peripheral hole arranged so as to be point-symmetric with respect to the center of the valve pressing member. Compared to, the inclination of the valve body is easily corrected.
  • a compressor according to a fifth aspect of the present invention is the compressor according to any one of the first to fourth aspects, and the housing member is a fixed scroll member.
  • a scroll compressor capable of suppressing the pressure loss of the injected refrigerant can be provided.
  • the check valve has a valve body in which a central hole is formed in the central portion, and the refrigerant supplied from the injection pipe to the compression chamber through the injection passage passes through the central hole of the valve body. And supplied to the compression chamber. Therefore, compared with the case where the refrigerant passes through the notch formed on the outer peripheral surface of the valve body and further passes through the notch formed on the end surface of the valve body, the refrigerant is injected into the compression chamber. Pressure loss can be suppressed.
  • FIG. 2 is an enlarged view of the vicinity of an injection passage formed in a fixed scroll of the scroll compressor of FIG. 1.
  • FIG. 4 is a plan view of a valve pressing member taken along line IV-IV in FIG. 3.
  • FIG. 5 is a plan view of the valve body as viewed from the direction of arrows VV in FIG.
  • FIG. 10 is an enlarged view of the vicinity of an injection passage formed in a fixed scroll of a scroll compressor according to Modification A.
  • 10 is a plan view of a valve pressing member of a scroll compressor according to Modification C.
  • FIG. It is the top view which looked at the valve pressing member of the scroll compressor concerning modification C from the same viewpoint as Drawing 4.
  • a scroll compressor 10 according to an embodiment of the compressor of the present invention will be described with reference to the drawings.
  • the scroll compressor 10 which concerns on the following embodiment is only an example of the compressor of this invention, and can be suitably changed in the range which does not deviate from the meaning of this invention.
  • FIG. 1 is a schematic diagram of an air conditioner 1 in which a scroll compressor 10 is employed.
  • the air conditioner 1 is a dedicated air conditioner for cooling operation.
  • the present invention is not limited to this, and the air conditioner in which the scroll compressor 10 is employed may be a dedicated air conditioner for heating operation, and is an air conditioner capable of performing both the cooling operation and the heating operation. It may be a device.
  • the air conditioner 1 mainly includes an outdoor unit 2 having a scroll compressor 10, an indoor unit 3, a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5 that connect the outdoor unit 2 and the indoor unit 3.
  • the air conditioner 1 is a pair type as shown in FIG. 1, and the air conditioner 1 has one outdoor unit 2 and one indoor unit 3.
  • the air conditioning apparatus 1 may be a multi-type having a plurality of indoor units 3.
  • the refrigerant circuit 100 is configured by connecting constituent devices such as the scroll compressor 10, an indoor heat exchanger 3a, an outdoor heat exchanger 7, and an expansion valve 8 described later by piping. (See FIG. 1).
  • the indoor unit 3 mainly has an indoor heat exchanger 3a as shown in FIG.
  • the indoor heat exchanger 3a is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins.
  • the indoor heat exchanger 3 a has a liquid side connected to the liquid refrigerant communication pipe 4 and a gas side connected to the gas refrigerant communication pipe 5.
  • the indoor heat exchanger 3a functions as a refrigerant evaporator. In other words, the indoor heat exchanger 3a receives supply of low-temperature liquid refrigerant from the outdoor unit 2 via the liquid refrigerant communication pipe 4, and cools indoor air.
  • the refrigerant that has passed through the indoor heat exchanger 3 a returns to the outdoor unit 2 through the gas refrigerant communication pipe 5.
  • the outdoor unit 2 mainly has an accumulator 6, a scroll compressor 10, an outdoor heat exchanger 7, an expansion valve 8, an economizer heat exchanger 9, and an injection valve 26 as shown in FIG. These devices are connected as shown in FIG. 1 by refrigerant piping.
  • the accumulator 6 is provided in a pipe connecting the gas refrigerant communication pipe 5 and the suction pipe 23 of the scroll compressor 10.
  • the accumulator 6 converts the refrigerant that has flowed into the suction pipe 23 from the indoor heat exchanger 3 a through the gas refrigerant communication pipe 5 into a gas phase and a liquid phase.
  • the scroll compressor 10 is supplied with a gas-phase refrigerant that collects in the upper space of the accumulator 6.
  • the scroll compressor 10 compresses the refrigerant sucked through the suction pipe 23 in a compression chamber Sc described later, and discharges the compressed refrigerant from the discharge pipe 24.
  • so-called intermediate injection is performed in which a part of the refrigerant flowing from the outdoor heat exchanger 7 toward the expansion valve 8 is supplied to the compression chamber Sc that is being compressed.
  • the scroll compressor 10 will be described later.
  • the outdoor heat exchanger 7 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins.
  • One of the outdoor heat exchangers 7 is connected to the discharge pipe 24 side through which the refrigerant discharged from the scroll compressor 10 flows, and the other is connected to the liquid refrigerant communication pipe 4 side.
  • the outdoor heat exchanger 7 functions as a condenser for gas refrigerant supplied from the scroll compressor 10 via the discharge pipe 24.
  • the expansion valve 8 is provided in a pipe connecting the outdoor heat exchanger 7 and the liquid refrigerant communication pipe 4.
  • the expansion valve 8 is an electric valve whose opening degree can be adjusted for adjusting the pressure and flow rate of the refrigerant flowing through the pipe.
  • the economizer heat exchanger 9 is disposed between the outdoor heat exchanger 7 and the expansion valve 8 as shown in FIG.
  • the economizer heat exchanger 9 is a heat exchanger that performs heat exchange between the refrigerant flowing from the outdoor heat exchanger 7 toward the expansion valve 8 and the refrigerant flowing through the injection refrigerant supply pipe 27 and decompressed by the injection valve 26. .
  • the injection valve 26 is an electric valve with an adjustable opening for adjusting the pressure and flow rate of refrigerant injected into the scroll compressor 10.
  • the injection valve 26 is provided in an injection refrigerant supply pipe 27 that branches off from a pipe that connects the outdoor heat exchanger 7 and the expansion valve 8.
  • the injection refrigerant supply pipe 27 is a pipe that supplies a refrigerant to the injection pipe 25 of the scroll compressor 10.
  • the scroll compressor 10 includes a casing 20, a scroll compression mechanism 60 including a fixed scroll 30, a drive motor 70, a crankshaft 80, and a lower bearing. 90. As shown in FIG. 2, the scroll compressor 10 includes a check valve 50 provided in an injection passage 31 formed in the fixed scroll 30, and an injection pipe 25 that supplies a refrigerant to the injection passage 31. .
  • the scroll compressor 10 has a vertically long cylindrical casing 20.
  • the casing 20 includes a substantially cylindrical cylindrical member 21 that is open at the top and bottom, and an upper lid 22 a and a lower lid 22 b provided at the upper end and the lower end of the cylindrical member 21, respectively.
  • the cylindrical member 21, and the upper lid 22a and the lower lid 22b are fixed by welding so as to keep airtightness.
  • the casing 20 accommodates the components of the scroll compressor 10 including the scroll compression mechanism 60, the drive motor 70, the crankshaft 80, and the lower bearing 90.
  • An oil sump space So is formed in the lower part of the casing 20.
  • Refrigerating machine oil O for lubricating the scroll compression mechanism 60 and the like is stored in the oil reservoir space So.
  • a suction pipe 23 that sucks the gas refrigerant and supplies the gas refrigerant to the scroll compression mechanism 60 is provided through the upper lid 22a.
  • the lower end of the suction pipe 23 is connected to the fixed scroll 30 of the scroll compression mechanism 60 (see FIG. 2).
  • the suction pipe 23 communicates with a compression chamber Sc of a scroll compression mechanism 60 described later.
  • the low-pressure refrigerant in the refrigeration cycle before compression by the scroll compressor 10 flows through the suction pipe 23.
  • a discharge pipe 24 through which the refrigerant discharged outside the casing 20 passes is provided in the middle part of the cylindrical member 21 of the casing 20, a discharge pipe 24 through which the refrigerant discharged outside the casing 20 passes is provided. More specifically, the discharge pipe 24 is disposed so that the end of the discharge pipe 24 inside the casing 20 protrudes into a high-pressure space S ⁇ b> 1 formed below the housing 61 of the scroll compression mechanism 60. The high-pressure refrigerant in the refrigeration cycle after compression by the scroll compression mechanism 60 flows through the discharge pipe 24.
  • the injection pipe 25 is provided on the side surface of the upper lid 22a of the casing 20 so as to penetrate the side surface of the upper lid 22a.
  • the end of the injection pipe 25 outside the casing 20 is connected to an injection refrigerant supply pipe 27 as shown in FIG.
  • the end of the injection pipe 25 in the casing 20 is connected to a valve pressing member 52 included in a check valve 50 described later.
  • the injection pipe 25 supplies a refrigerant to an injection passage 31 formed in the fixed scroll 30 (see FIG. 3).
  • the injection passage 31 communicates with the compression chamber Sc of the scroll compression mechanism 60, and the refrigerant supplied from the injection pipe 25 is supplied to the compression chamber Sc via the injection passage 31.
  • a refrigerant having a pressure (intermediate pressure) between the low pressure and the high pressure in the refrigeration cycle is supplied.
  • the scroll compression mechanism 60 is mainly compressed in combination with the housing 61, the fixed scroll 30 disposed above the housing 61, and the fixed scroll 30. And a movable scroll 40 that forms the chamber Sc.
  • the fixed scroll 30 is an example of a housing member. As shown in FIG. 2, the fixed scroll 30 includes a flat fixed side end plate 32, a spiral fixed side wrap 33 protruding from the front surface (the lower surface in FIG. 2) of the fixed side end plate 32, and a fixed side wrap 33. And an outer edge portion 34 surrounding the.
  • a non-circular discharge port 32a communicating with the compression chamber Sc of the scroll compression mechanism 60 is formed in the center of the fixed side end plate 32 so as to penetrate the fixed side end plate 32 in the thickness direction.
  • the refrigerant compressed in the compression chamber Sc is discharged from the discharge port 32a, passes through a refrigerant passage (not shown) formed in the fixed scroll 30 and the housing 61, and flows into the high-pressure space S1.
  • the fixed side end plate 32 is formed with an injection passage 31 that opens on the side surface of the fixed side end plate 32 and communicates with the compression chamber Sc.
  • the injection passage 31 includes a horizontal passage portion 31b extending in the horizontal direction from the opening on the side surface of the fixed side end plate 32 toward the center side of the fixed side end plate 32 (see FIG. 3).
  • a valve pressing member 52 of a check valve 50 to be described later is inserted into the horizontal passage portion 31b from an opening on the side surface of the fixed side end plate 32 (see FIG. 3).
  • the valve pressing member 52 is fixed to the fixed scroll 30 by being press-fitted into the horizontal passage portion 31b.
  • the horizontal passage portion 31b is a circular hole having an inner diameter that varies depending on the location.
  • the horizontal passage portion 31b has the largest inner diameter in the vicinity of the opening on the side surface of the fixed side end plate 32 (see FIG. 3).
  • an area in which a valve main body 51 of a check valve 50, which will be described later, is slid between a valve pressing member 52 press-fitted into the horizontal passage portion 31b and a valve seating surface 30a of the fixed scroll 30. Z is included (see FIG. 3).
  • the inner diameter of the zone Z in which the valve body 51 slides in the horizontal passage portion 31b is smaller than the inner diameter in the vicinity of the opening on the side surface of the fixed side end plate 32 of the horizontal passage portion 31b (see FIG. 3).
  • the horizontal passage 31b is formed such that the inner diameter of the zone Z and the outer diameter of the disc-shaped valve body 51 are substantially the same. More specifically, the inner diameter of the zone Z of the horizontal passage portion 31b is formed to be slightly larger than the outer diameter of the valve body 51 so that the valve body 51 can slide on the zone Z. Further, the inner diameter of the horizontal passage portion 31b at the center side of the fixed side end plate 32 from the zone Z (the inner diameter of the portion at the center side of the fixed side end plate 32 from the valve seating surface 30a) is formed smaller than the inner diameter of the zone Z. Has been.
  • the injection passage 31 has a compression chamber Sc from a portion of the horizontal passage portion 31b closer to the center of the fixed side end plate 32 than the valve seating surface 30a (near the end of the horizontal passage portion 31b on the center side of the fixed side end plate 32).
  • An injection port 31a that extends toward the compression chamber and communicates directly with the compression chamber Sc (see FIG. 3).
  • the injection port 31a is disposed downstream of the valve seating surface 30a in the flow direction of the refrigerant when the refrigerant is supplied from the injection pipe 25 to the compression chamber Sc.
  • the injection port 31a is a circular hole.
  • the crankshaft 80 rotates, and the movable scroll 40 revolves with respect to the fixed scroll 30, the volume of the compression chamber Sc changes, and the compression chamber Sc with which the injection port 31a communicates The pressure changes.
  • the pressure of the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 is higher than the pressure in the compression chamber Sc where the injection port 31a opens, the refrigerant passes through the injection pipe 25, the horizontal passage portion 31b, and the injection port 31a. , In this order, and supplied to the compression chamber Sc.
  • the check valve 50 is provided in the injection passage 31.
  • the check valve 50 is used when the pressure of the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 is higher than the pressure of the compression chamber Sc where the injection port 31a opens, in other words, the refrigerant flows from the injection pipe 25 to the compression chamber. When flowing to Sc, the refrigerant flow is not blocked.
  • the pressure of the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 is lower than the pressure of the compression chamber Sc where the injection port 31a opens, in other words, the refrigerant flows from the compression chamber Sc to the injection pipe 25. When trying to do so, the flow is reversed (blocked).
  • the check valve 50 mainly has a valve main body 51 and a valve pressing member 52 as shown in FIG.
  • valve body 51 is a thin circular plate.
  • a circular central hole 51a is formed in the central portion of the valve body 51 (see FIG. 5).
  • the valve main body 51 mainly has an annular peripheral portion 51b that is disposed on the peripheral side of the central hole 51a.
  • the central hole 51a formed in the valve body 51 is a hole through which the refrigerant passes when the refrigerant is supplied from the injection passage 31 to the compression chamber Sc.
  • the flow path area of the central hole 51a is larger than the flow path area of the injection port 31a (see FIG. 3).
  • both the center hole 51a and the injection port 31a are circular holes, in other words, the inner diameter of the center hole 51a is larger than the inner diameter of the injection port 31a.
  • the valve body 51 is slidably disposed in the horizontal passage portion 31 b of the injection passage 31. Specifically, the valve main body 51 is disposed in a zone Z of the horizontal passage portion 31b sandwiched between the valve pressing member 52 press-fitted into the horizontal passage portion 31b and the valve seating surface 30a of the fixed scroll 30. (See FIG. 3).
  • the inner diameter of the zone Z of the horizontal passage portion 31b is formed to be slightly larger than the outer diameter of the valve body 51, and the valve body 51 can slide in the zone Z of the horizontal passage portion 31b.
  • the distance between the valve seating surface 30a and the valve pressing member 52 is more than the diameter of the valve main body 51, the valve main body 51 falls down in the zone Z of the horizontal passage portion 31b where the valve main body 51 is disposed, and the valve main body 51 may not function as a valve body. Therefore, the distance between the valve seating surface 30a and the valve pressing member 52 is such that the refrigerant flowing from the injection pipe 25 toward the compression chamber Sc has a large pressure loss so that the valve body 51 does not fall in the zone Z of the horizontal passage portion 31b. It is designed to be as small as possible without causing any problems.
  • valve body 51 The movement of the valve body 51 according to the relationship between the pressure of the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 and the pressure of the compression chamber Sc where the injection port 31a opens, and the center formed in the valve body 51
  • the flow of the refrigerant passing through the hole 51a (including the blocking of the flow of the refrigerant passing through the central hole 51a) will be described below.
  • valve body 51 When the pressure of the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 is higher than the pressure in the compression chamber Sc in which the injection port 31 a is opened, the valve body 51 is different from the valve body 51 with the valve pressing member 52. It will be in the state pressed against the valve seating surface 30a arrange
  • the valve seating surface 30a is formed with a circular passage hole 30b that faces the central hole 51a of the valve body 51 when the valve body 51 is pressed.
  • the diameter of the passage hole 30 b is larger than the diameter of the central hole 51 a and smaller than the outer diameter of the valve body 51.
  • the valve pressing member 52 has a closing portion 52b facing the central hole 51a that closes the central hole 51a when the valve body 51 is pressed. That is, when the check valve 50 checks the flow of the refrigerant, the central hole 51a is closed by the closing portion 52b of the valve pressing member 52, so that the refrigerant flowing in from the compression chamber Sc passes through the central hole 51a. Passing through and flowing to the injection pipe 25 side is restricted.
  • valve pressing member 52 is a hollow cylindrical member, and at one end thereof, as described above, the check valve 50 checks the flow of the refrigerant.
  • the closing part 52b which closes the center hole 51a formed in the valve main body 51 is arrange
  • a peripheral hole 52a is formed around the closing portion 52b of the valve pressing member 52 as described later (see FIG. 3).
  • the valve pressing member 52 When viewed from the valve body 51 side, the valve pressing member 52 is formed in a circular shape as shown in FIG.
  • a plurality of peripheral holes 52a are formed around the closing portion 52b (see FIG. 4).
  • Each peripheral hole 52a is formed in a substantially rectangular shape.
  • the peripheral holes 52a are formed at four locations so as to be arranged point-symmetrically with respect to the center C of the valve pressing member 52 when the valve pressing member 52 is viewed from the valve body 51 side.
  • the peripheral hole 52 a faces the peripheral edge 51 b of the valve body 51.
  • the total flow area of the four peripheral holes 52a is larger than the flow area of the injection port 31a.
  • the valve pressing member 52 is press-fitted into the horizontal passage portion 31b with the end portion on the closed portion 52b side facing the fixed scroll 30 (see FIG. 3).
  • a valve main body 51 is disposed between the valve pressing member 52 inserted into the horizontal passage portion 31b and the valve seating surface 30a of the fixed scroll 30 (see FIG. 3).
  • the valve pressing member 52 restricts the movement of the valve body 51 toward the injection pipe 25 when the check valve 50 checks the flow of the refrigerant from the compression chamber Sc to the injection pipe 25.
  • the injection piping 25 is inserted into the hollow portion of the valve pressing member 52 from the opening at the end opposite to the closing portion 52b.
  • the injection pipe 25 and the valve pressing member 52 are separated from the upper space of the casing 20 by an O-ring 25a attached to the injection pipe 25. As shown in FIG. 3, the valve pressing member 52 is disposed closer to the injection pipe 25 than the valve main body 51.
  • the refrigerant supplied from the injection refrigerant supply pipe 27 to the injection pipe 25 becomes higher than the pressure of the compression chamber Sc where the injection port 31a opens, the refrigerant is supplied from the injection pipe 25 to the compression chamber Sc via the injection passage 31.
  • the refrigerant passes through the four peripheral holes 52a and is supplied to the peripheral side of the zone Z where the valve body 51 slides in the horizontal passage portion 31b. .
  • the refrigerant passing through the peripheral hole 52a pushes the peripheral portion 51b of the valve main body 51 facing the peripheral hole 52a, whereby the valve main body 51 is moved toward the valve seating surface 30a.
  • valve main body 51 comes into contact with the valve seating surface 30a, the movement of the valve main body 51 is restricted by the valve seating surface 30a, so that the valve main body 51 is pressed against the valve seating surface 30a by the refrigerant that has passed through the peripheral hole 52a.
  • the refrigerant that has passed through the peripheral hole 52a passes through the central hole 51a of the valve body 51, the passage hole 30b of the valve seating surface 30a, and the injection port 31a, and flows into the compression chamber Sc.
  • the valve body 51 moves from the compression chamber Sc toward the injection pipe 25.
  • the refrigerant flows to the valve pressing member 52 and is pressed against the valve pressing member 52 as described above.
  • the peripheral hole 52a is closed by the peripheral edge portion 51b of the valve body 51 facing the peripheral hole 52a. That is, when the check valve 50 checks the refrigerant flow, the peripheral hole 52a is closed by the peripheral edge portion 51b, so that the refrigerant flowing from the compression chamber Sc passes through the peripheral hole 52a and is injected into the injection pipe. Flow to the 25 side is restricted.
  • the movable scroll 40 includes a flat movable side end plate 41 and a spiral movable end that protrudes from the front surface (upper surface in FIG. 2) of the movable side end plate 41. It has a side wrap 42 and a boss portion 43 formed in a cylindrical shape protruding from the back surface (the lower surface in FIG. 2) of the movable side end plate 41.
  • the fixed side wrap 33 of the fixed scroll 30 and the movable side wrap 42 of the movable scroll 40 are combined in a state where the lower surface of the fixed side end plate 32 and the upper surface of the movable side end plate 41 face each other.
  • a compression chamber Sc is formed between the adjacent fixed wrap 33 and the movable wrap 42.
  • the boss portion 43 is a cylindrical portion whose upper end is blocked.
  • the movable scroll 40 and the crankshaft 80 are connected by inserting an eccentric portion 81 of the crankshaft 80 to be described later into the hollow portion of the boss portion 43.
  • the boss portion 43 is disposed in an eccentric portion space 62 formed between the movable scroll 40 and the housing 61.
  • the eccentric portion space 62 communicates with the high-pressure space S1 via an oil supply path 83 of the crankshaft 80 described later, and high pressure acts on the eccentric portion space 62. With this pressure, the lower surface of the movable side end plate 41 in the eccentric portion space 62 is pushed upward toward the fixed scroll 30. Due to this force, the movable scroll 40 comes into close contact with the fixed scroll 30.
  • the movable scroll 40 is supported by the housing 61 via an Oldham ring (not shown).
  • the Oldham ring is a member that prevents the orbiting scroll 40 from rotating and revolves.
  • the housing 61 is press-fitted into the cylindrical member 21, and is fixed to the cylindrical member 21 on the entire outer circumferential surface thereof in the circumferential direction. Further, the housing 61 and the fixed scroll 30 are fixed by a bolt or the like (not shown) so that the upper end surface of the housing 61 is in close contact with the lower surface of the outer edge portion 34 of the fixed scroll 30.
  • the housing 61 is formed with a recessed portion 61a disposed so as to be recessed in the central portion of the upper surface, and a bearing portion 61b disposed below the recessed portion 61a.
  • the concave portion 61a surrounds the side surface of the eccentric portion space 62 in which the boss portion 43 of the movable scroll 40 is disposed.
  • a bearing 63 that supports the main shaft 82 of the crankshaft 80 is disposed in the bearing portion 61b.
  • the bearing 63 rotatably supports the main shaft 82 inserted into the bearing 63.
  • the drive motor 70 is accommodated in an annular stator 71 fixed to the inner wall surface of the cylindrical member 21 and rotatably inside the stator 71 with a slight gap (air gap passage). And a rotor 72.
  • the rotor 72 is connected to the movable scroll 40 via a crankshaft 80 disposed so as to extend in the vertical direction along the axial center of the cylindrical member 21. As the rotor 72 rotates, the movable scroll 40 revolves with respect to the fixed scroll 30.
  • crankshaft 80 transmits the driving force of the drive motor 70 to the movable scroll 40.
  • the crankshaft 80 is disposed so as to extend in the vertical direction along the axial center of the cylindrical member 21, and connects the rotor 72 of the drive motor 70 and the movable scroll 40 of the scroll compression mechanism 60.
  • the crankshaft 80 has a main shaft 82 whose center axis coincides with the axis of the cylindrical member 21, and an eccentric portion 81 that is eccentric with respect to the axis of the cylindrical member 21.
  • the eccentric portion 81 is inserted into the boss portion 43 of the movable scroll 40 as described above.
  • the main shaft 82 is rotatably supported by a bearing 63 of the bearing portion 61b of the housing 61 and a lower bearing 90 described later.
  • the main shaft 82 is connected to the rotor 72 of the drive motor 70 between the bearing portion 61 b and the lower bearing 90.
  • an oil supply path 83 for supplying the refrigerator oil O to the scroll compression mechanism 60 and the like is formed in the crankshaft 80.
  • the lower end of the main shaft 82 is located in an oil sump space So formed in the lower part of the casing 20, and the refrigerating machine oil O in the oil sump space So is supplied to the scroll compression mechanism 60 and the like through the oil supply path 83.
  • the lower bearing 90 is disposed below the drive motor 70.
  • the lower bearing 90 is fixed to the cylindrical member 21.
  • the lower bearing 90 constitutes a bearing on the lower end side of the crankshaft 80 and rotatably supports the main shaft 82 of the crankshaft 80.
  • the refrigerant is injected from the injection port 31a into the compression chamber Sc in the middle of compression.
  • the injection passage 31 passes through the injection passage 31. Then, the refrigerant is supplied to the compression chamber Sc.
  • the check valve 50 functions and the compression pipe Sc is injected into the injection pipe. The refrigerant flow to 25 is reversed (blocked).
  • the compression chamber Sc does not communicate with the injection port 31a as the refrigerant is compressed.
  • the refrigerant in the compression chamber Sc is compressed as the volume of the compression chamber Sc decreases, and finally becomes a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is discharged from a discharge port 32 a located near the center of the fixed side end plate 32. Thereafter, the high-pressure gas refrigerant passes through a refrigerant passage (not shown) formed in the fixed scroll 30 and the housing 61 and flows into the high-pressure space S1.
  • the high-pressure gas refrigerant in the refrigeration cycle that has flowed into the high-pressure space S ⁇ b> 1 and compressed by the scroll compression mechanism 60 is discharged from the discharge pipe 24.
  • the scroll compressor 10 of this embodiment includes a fixed scroll 30 as a housing member, a check valve 50, and an injection pipe 25.
  • the fixed scroll 30 is formed with an injection passage 31 communicating with the compression chamber Sc in which the refrigerant is compressed.
  • the check valve 50 is provided in the injection passage 31.
  • the injection pipe 25 supplies a refrigerant to the injection passage 31.
  • the check valve 50 includes a valve main body 51 and a valve pressing member 52.
  • the valve body 51 is slidably disposed in the injection passage 31.
  • the valve pressing member 52 is disposed closer to the injection pipe 25 than the valve main body 51, and when the check valve 50 prevents the refrigerant flow from the compression chamber Sc to the injection pipe 25, the injection pipe 25 of the valve main body 51. Restrict movement to the side.
  • a central hole 51 a is formed in the central portion of the valve body 51.
  • the valve holding member 52 is formed with a peripheral hole 52a that faces the peripheral edge portion 51b on the peripheral edge side with respect to the central hole 51a of the valve body 51.
  • the check valve 50 has a valve main body 51 having a central hole 51 a formed in the central portion, and the refrigerant supplied from the injection pipe 25 to the compression chamber Sc via the injection passage 31 is the central hole of the valve main body 51. It passes through 51a and is supplied to the compression chamber Sc. Therefore, compared with the case where the refrigerant passes through the notch formed on the outer peripheral surface of the valve body 51 and further passes through the notch formed on the end surface of the valve body, the refrigerant is injected into the compression chamber.
  • the pressure loss can be suppressed. That is, here, the scroll compressor 10 capable of suppressing the pressure loss of the injected refrigerant can be provided.
  • the fixed scroll 30 has a valve seating surface 30a.
  • the valve seating surface 30a is disposed on the side opposite to the valve pressing member 52 with respect to the valve main body 51.
  • the injection passage 31 includes an injection port 31a that is arranged on the downstream side of the valve seating surface 30a in the flow direction of the refrigerant when the refrigerant is supplied from the injection pipe 25 to the compression chamber Sc and communicates directly with the compression chamber Sc.
  • the flow passage areas of the central hole 51a and the peripheral hole 52a are respectively larger than the flow passage area of the injection port 31a.
  • the flow area of the central hole 51a formed in the valve body 51 and the flow area of the peripheral hole 52a formed in the valve pressing member 52 are both. Since it is larger than the flow path area of the injection port 31a, the refrigerant pressure loss due to the provision of the check valve 50 hardly occurs. Therefore, the pressure loss of the injected refrigerant can be suppressed, and the capacity of the scroll compressor 10 can be easily improved by the injection.
  • valve pressing member 52 has a plurality of peripheral holes 52a so as to be arranged point-symmetrically with respect to the center C of the valve pressing member 52 when viewed from the valve body 51 side. Is formed.
  • valve main body 51 If the central part of the valve main body 51 is pushed by the refrigerant and the valve main body 51 moves in the injection passage 31, when the valve main body 51 is inclined due to the flow state of the refrigerant, the inclination is difficult to be corrected. Therefore, the inclination of the valve body 51 inhibits the smooth movement of the valve body 51, and the check valve 50 is quickly switched (the state in which the injected refrigerant is introduced into the compression chamber Sc and the refrigerant that flows back from the compression chamber Sc). May be adversely affected.
  • the valve pressing member 52 since the several surrounding hole 52a is formed in the valve pressing member 52 so that it may become point-symmetric with respect to the center C of the valve pressing member 52 when it sees from the valve main body 51 side here,
  • the valve body 51 When the refrigerant is supplied from the injection pipe 25 to the compression chamber Sc, the valve body 51 is easily pushed evenly by the flow of the refrigerant, and the valve body 51 is not easily tilted. Further, even if the valve body 51 is inclined due to the flow state of the refrigerant, the refrigerant is supplied from the peripheral hole 52a arranged so as to be symmetric with respect to the center C of the valve pressing member 52. The inclination of the valve body 51 is more easily corrected than when the center portion is pushed.
  • an elastic body that presses the valve body 51 toward the valve pressing member 52 may be disposed between the valve seating surface 30a and the valve body 51.
  • a spring 53 that presses the valve body 51 toward the valve pressing member 52 may be disposed between the valve seating surface 30 a and the valve body 51.
  • the spring 53 is configured to press the valve body 51 against the valve pressing member 52 until the pressure on the injection pipe 25 side becomes larger by a predetermined value than the pressure in the compression chamber Sc with which the injection port 31a communicates.
  • the spring seat 54 that supports the spring 53 is disposed between the spring 53 and the valve seating surface 30a.
  • the valve main body 51 is slidable in a section Z ′ sandwiched between the spring seat 54 and the valve pressing member 52 in the horizontal passage portion 31b. Further, in the scroll compressor according to Modification A, the valve main body 51 does not directly contact the valve seating surface 30a.
  • the valve seating surface 30a allows the valve main body 51 to move in the refrigerant flow direction via the spring seat 54 fixed to the valve seating surface 30a. regulate.
  • the spring seat 54 is formed with a circular passage hole 54b that faces the central hole 51a of the valve body 51 when the valve body 51 is pressed.
  • valve main body 51 is pressed toward the valve pressing member 52 by the spring 53, chattering of the valve main body 51 is easily suppressed. Further, since the valve body 51 is pressed toward the valve pressing member 52 by the spring 53, a check is also made when the pressure in the compression chamber Sc with which the injection port 31a communicates is slightly larger than the pressure on the injection pipe 25 side.
  • the valve 50 can function. That is, even when there is almost no pressure difference between the injection pipe 25 side and the compression chamber Sc with which the injection port 31 a communicates, the refrigerant flows backward from the compression chamber Sc to the injection pipe 25 side rather than the valve pressing member 52. It is easy to suppress this. Therefore, an increase in dead volume is easily suppressed, and an efficient scroll compressor 10 can be realized.
  • valve main body 51 and the valve pressing member 52 in the above embodiment are merely examples, and are not limited thereto.
  • the valve main body 51 is a circular flat plate arranged in the injection passage 31 having a circular cross section, but the valve main body is a flat plate having a shape such as an ellipse or a polygon.
  • the cross section of the injection passage may be formed in a shape corresponding to the shape of the valve body. The same applies to the shape of the valve pressing member 52.
  • cross-sectional shape of the central hole 51a of the valve body 51 and the shape of the peripheral hole 52a of the valve pressing member 52 are not limited to the shapes shown in the above embodiment.
  • valve main body 51 is a thin flat plate, it is not limited to this.
  • the valve body 51 may be a thick cylindrical member so that it is difficult to tilt in the horizontal passage portion 31b.
  • the thickness of the valve body 51 Is desirable to be thin.
  • valve pressing member 52 has the peripheral holes 52a formed at four locations.
  • the present invention is not limited to this, and the valve pressing member 52 is arranged symmetrically with respect to the center C of the valve pressing member 52. Two or six or more peripheral holes 52a may be formed.
  • the peripheral hole 152 a of the valve pressing member 152 may be an annular hole extending in the circumferential direction so as to surround the center C of the valve pressing member 152.
  • the valve pressing member 152 and the valve pressing member 52 are the same except for the peripheral hole 152a.
  • the peripheral hole 52a is formed in the valve pressing member 52 so as to be arranged symmetrically with respect to the center C of the valve pressing member 52, but the present invention is not limited to this.
  • the valve pressing member 52 may be formed with peripheral holes 52a around the center C at odd places.
  • the peripheral hole 52a is disposed so as to be able to push the peripheral edge portion 51b of the valve body 51 without deviation, and the peripheral hole 52a is disposed point-symmetrically at the center C of the valve pressing member 52. It is desirable.
  • the valve pressing member 52 is fixed to the fixed scroll 30 by being press-fitted into the horizontal passage portion 31b.
  • the fixing method is an example, and the present invention is not limited thereto. Absent.
  • the fixed scroll 30 and the valve pressing member 52 may be fixed by screwing a male screw formed on the valve pressing member 52 into a female screw formed on the fixed scroll 30.
  • the shape of the hole of the injection port 31a is circular, but is not limited to this, and the shape of the hole of the injection port 31a may be other than circular. Also in this case, it is desirable that the flow path area of the central hole 51a of the valve body 51 is larger than the flow path area of the injection port 31a. Further, it is desirable that the flow passage area of the peripheral hole 52a of the valve pressing member 52 (the total flow passage area of the peripheral hole 52a) is larger than the flow passage area of the injection port 31a.
  • the compressor according to the present invention is useful as a compressor capable of suppressing the pressure loss of the injected refrigerant when a check valve is provided in the injection passage formed in the housing member.

Abstract

ハウジング部材に形成されるインジェクション通路に逆止弁を設けた圧縮機であって、インジェクションされる冷媒の圧力損失を抑制可能な圧縮機を提供する。圧縮機は、圧縮室(Sc)と連通するインジェクション通路(31)が形成された固定スクロール(30)と、通路(31)に設けられた逆止弁(50)と、通路(31)に冷媒を供給するインジェクション配管(25)とを備える。逆止弁は、通路(31)にスライド可能に配置された弁本体(51)と、圧縮室から配管(25)への冷媒の流れの逆止時に、弁本体の配管(25)側への移動を規制する弁押さえ部材(52)とを有する。弁本体に中央孔(51a)が、弁押さえ部材に弁本体の周縁部(51b)と対向する周囲孔(52a)が、形成されている。配管(25)から圧縮室への冷媒供給時には、孔(52a)と孔(51a)とを通過して圧縮室に冷媒が供給され、逆止弁による逆止時には、孔(51a)は弁押さえ部材により、孔(52a)は弁本体により閉鎖される。

Description

圧縮機
 本発明は、中間インジェクションが行われる圧縮機に関する。
 従来、冷凍装置に用いられる圧縮機の効率向上を目的として中間インジェクションが行われる場合があり、圧縮機の圧縮室にインジェクションされる冷媒を導くため、圧縮機の固定スクロール部材等のハウジング部材にインジェクション通路が形成される場合がある。中間インジェクションでは、圧縮室に、冷凍サイクルにおける低圧と冷凍サイクルにおける高圧との間の圧力(中間圧)の冷媒がインジェクションされる。
 中間インジェクションを行う場合、冷媒をインジェクションしようとする圧縮室の圧力が、インジェクションする冷媒の圧力よりも高くなり、圧縮室からインジェクション配管側に冷媒が逆流する場合がある。冷媒が逆流する圧縮室外の空間は、冷媒の圧縮に寄与しない空間であり、この空間の容積はいわゆる死容積(圧縮室として機能しない容積)となる。死容積はなるべく小さいことが望ましいことから、圧縮室に近い、ハウジング部材に形成されたインジェクション通路に、冷媒の逆流を防止するため逆止弁が設けられる場合がある。
 例えば、特許文献1(特開平11-107950号公報)には、固定スクロール部材に形成されたインジェクション通路に、円柱状の弁体が移動する逆止弁室が設けられた圧縮機が開示されている。弁体には、逆止弁室の内周面と摺接する外周面と、圧縮室と繋がるインジェクションポート側の端面と、に切り欠きが形成されている。インジェクションされる冷媒は、弁体の外周面と逆止弁室の内周面との間の通路(つまり、弁体の外周面に形成された切り欠き部分)と、弁体のインジェクションポート側の端面と当該端面に当接する対向面との間の通路(つまり、弁体の端面に形成された切り欠き部分)と、からなる流体通路を通過し、圧縮室に供給される。
 しかし、特許文献1(特開平11-107950号公報)に開示された構造の逆止弁を用いる場合には、インジェクションされる冷媒が、弁本体の外周面に形成された切り欠きを通過し、さらに、弁本体の端面に形成された切り欠きを通過して圧縮室に流入するため、インジェクションされる冷媒の圧力損失が大きくなりやすい。
 本発明の課題は、ハウジング部材に形成されるインジェクション通路に逆止弁が設けられる圧縮機であって、インジェクションされる冷媒の圧力損失を抑制可能な圧縮機を提供することにある。
 本発明の第1観点に係る圧縮機は、ハウジング部材と、逆止弁と、インジェクション配管と、を備える。ハウジング部材には、冷媒が圧縮される圧縮室と連通するインジェクション通路が形成されている。逆止弁は、インジェクション通路に設けられる。インジェクション配管は、インジェクション通路に冷媒を供給する。逆止弁は、弁本体と、弁押さえ部材と、を有する。弁本体は、インジェクション通路にスライド可能に配置されている。弁押さえ部材は、弁本体よりもインジェクション配管側に配置され、逆止弁が圧縮室からインジェクション配管への冷媒の流れを逆止する際に、弁本体のインジェクション配管側への移動を規制する。弁本体には、中央部に中央孔が形成されている。弁押さえ部材には、弁本体の中央孔よりも周縁側の周縁部と対向する周囲孔が形成されている。インジェクション配管から圧縮室に冷媒が供給される際には、周囲孔および中央孔を通過して圧縮室に冷媒が供給される。逆止弁が圧縮室からインジェクション配管への冷媒の流れを逆止する際には、中央孔は弁押さえ部材により、周囲孔は弁本体の周縁部により、それぞれ閉鎖される。
 ここでは、逆止弁が中央部に中央孔が形成された弁本体を有し、インジェクション配管からインジェクション通路を経て圧縮室に供給される冷媒は、弁本体の中央孔を通過して圧縮室に供給される。そのため、冷媒が、弁本体の外周面に形成された切り欠きを通過し、さらに弁本体の端面に形成された切り欠きを通過して圧縮室に供給される場合に比べ、インジェクションされる冷媒の圧力損失を抑制できる。
 本発明の第2観点に係る圧縮機は、第1観点に係る圧縮機であって、ハウジング部材は、弁着座面を有する。弁着座面は、弁本体に対して弁押さえ部材とは反対側に配置され、インジェクション配管から圧縮室に冷媒が供給される際に、冷媒の流れ方向に弁本体が移動することを規制する。インジェクション通路は、インジェクション配管から圧縮室に冷媒が供給される際の冷媒の流れ方向において弁着座面よりも下流側に配置される、圧縮室と直接連通するインジェクションポートを含む。中央孔および周囲孔の流路面積は、それぞれインジェクションポートの流路面積よりも大きい。
 ここでは、弁本体に形成された中央孔の流路面積、および、弁押さえ部材に形成された周囲孔の流路面積が、いずれもインジェクションポートの流路面積よりも大きいため、逆止弁を設けたことを原因とした冷媒の圧力損失が発生しにくい。そのため、インジェクションされる冷媒の圧力損失を抑制可能で、インジェクションによる圧縮機の能力向上が図られやすい。
 本発明の第3観点に係る圧縮機は、第2観点に係る圧縮機であって、弁着座面と弁本体との間に配される弾性体をさらに備える。弾性体は、弁本体を弁押さえ部材に向かって押圧する。
 ここでは、弾性体により、弁本体が弁押さえ部材に向かって押圧されるため、弁本体のチャタリングが抑制されやすい。また、弾性体により、弁本体が弁押さえ部材に向かって押圧されるため、圧縮室から、弁押さえ部材よりもインジェクション配管側に、冷媒が逆流することを抑制することが容易である。そのため、死容積の増加が抑制されやすく、効率のよい圧縮機が実現可能である。
 本発明の第4観点に係る圧縮機は、第1観点から第3観点のいずれかに係る圧縮機であって、弁押さえ部材には、弁本体側から見た時に、弁押さえ部材の中心に対して点対称に配置されるように複数の周囲孔が形成されている。
 弁本体の中央部が冷媒により押され、弁本体がインジェクション通路内を移動するとすれば、冷媒の流れ状態によって弁本体が傾いた場合に、その傾きが修正されにくい。そのため、弁本体の傾きが、弁本体のスムーズな移動を阻害し、逆止弁の迅速な切換(インジェクションされる冷媒を圧縮室に導入する状態と、圧縮室から逆流する冷媒の流れを逆止する状態との切換)に悪影響を与える可能性がある。
 これに対し、ここでは、弁押さえ部材に、弁本体側から見た時に、弁押さえ部材の中心に対して点対称になるように複数の周囲孔が形成されているため、インジェクション配管から圧縮室に冷媒が供給される際に、弁本体が冷媒の流れにより均等に押されやすく、弁本体が傾きにくい。また、冷媒の流れ状態によって弁本体が傾いたとしても、弁押さえ部材の中心に対して点対称になるように配置された周囲孔から冷媒が供給されるため、弁本体の中央部を押す場合に比べ、弁本体の傾きが修正されやすい。
 本発明の第5観点に係る圧縮機は、第1観点から第4観点のいずれかに係る圧縮機であって、ハウジング部材は固定スクロール部材である。
 ここでは、インジェクションされる冷媒の圧力損失を抑制することが可能なスクロール圧縮機を提供できる。
 本発明に係る圧縮機は、逆止弁が中央部に中央孔が形成された弁本体を有し、インジェクション配管からインジェクション通路を経て圧縮室に供給される冷媒は、弁本体の中央孔を通過して圧縮室に供給される。そのため、冷媒が、弁本体の外周面に形成された切り欠きを通過し、さらに弁本体の端面に形成された切り欠きを通過して圧縮室に供給される場合に比べ、インジェクションされる冷媒の圧力損失を抑制できる。
本発明の一実施形態に係るスクロール圧縮機が利用される空気調和装置の冷媒回路図である。 本発明の一実施形態に係るスクロール圧縮機の縦断面図である。 図1のスクロール圧縮機の固定スクロールに形成されたインジェクション通路付近の拡大図である。 図3のIV-IV矢視の弁押さえ部材の平面図である。 図3のV-V矢視の弁本体の平面図である。 変形例Aに係るスクロール圧縮機の固定スクロールに形成されたインジェクション通路付近の拡大図である。 変形例Cに係るスクロール圧縮機の弁押さえ部材の平面図である。変形例Cに係るスクロール圧縮機の弁押さえ部材を、図4と同一の視点から見た平面図である
 本発明の圧縮機の一実施形態に係るスクロール圧縮機10を、図面を参照しながら説明する。なお、下記の実施形態に係るスクロール圧縮機10は、本発明の圧縮機の一例にすぎず、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 (1)スクロール圧縮機が使用される空気調和装置の概要
 本発明の一実施形態に係るスクロール圧縮機10は、各種の冷凍装置に使用される圧縮機である。ここでは、スクロール圧縮機10は、空気調和装置1に用いられる。図1は、スクロール圧縮機10が採用された空気調和装置1の概要図である。空気調和装置1は、冷房運転専用の空気調和装置である。ただし、これに限定されるものではなく、スクロール圧縮機10が採用される空気調和装置は、暖房運転専用の空気調和装置であってもよく、冷房運転および暖房運転の両方を実施可能な空気調和装置であってもよい。
 空気調和装置1は、主として、スクロール圧縮機10を有する室外ユニット2と、室内ユニット3と、室外ユニット2と室内ユニット3とを接続する液冷媒連絡配管4およびガス冷媒連絡配管5とを有する。なお、空気調和装置1は、図1のようにペア式であり、空気調和装置1は、室外ユニット2と室内ユニット3とを各々1つ有する。ただし、これに限定されるものではなく、空気調和装置1は、室内ユニット3を複数の有するマルチ式であってもよい。空気調和装置1では、スクロール圧縮機10や、後述する室内熱交換器3a、室外熱交換器7、膨張弁8等の構成機器が配管により接続されることで、冷媒回路100が構成されている(図1参照)。
 室内ユニット3は、図1のように、主に室内熱交換器3aを有する。
 室内熱交換器3aは、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器3aは、液側が液冷媒連絡配管4に接続され、ガス側がガス冷媒連絡配管5に接続される。室内熱交換器3aは、冷媒の蒸発器として機能する。言い換えれば、室内熱交換器3aは、室外ユニット2から、液冷媒連絡配管4を介して低温の液冷媒の供給を受け、室内空気を冷却する。室内熱交換器3aを通過した冷媒は、ガス冷媒連絡配管5を経て室外ユニット2に戻る。
 室外ユニット2は、図1のように、アキュムレータ6、スクロール圧縮機10、室外熱交換器7、膨張弁8、エコノマイザ熱交換器9、およびインジェクション弁26を主に有する。これらの機器は、冷媒配管により図1のように接続される。
 アキュムレータ6は、ガス冷媒連絡配管5とスクロール圧縮機10の吸入管23とを接続する配管に設けられる。アキュムレータ6は、スクロール圧縮機10に液冷媒が供給されることを防止するため、室内熱交換器3aからガス冷媒連絡配管5を経て吸入管23に流入した冷媒を、気相と液相とに分離する。スクロール圧縮機10には、アキュムレータ6の上部空間に集まる気相の冷媒が供給される。
 スクロール圧縮機10は、吸入管23を介して吸入した冷媒を、後述する圧縮室Scで圧縮し、圧縮後の冷媒を吐出管24から吐出する。スクロール圧縮機10では、室外熱交換器7から膨張弁8に向かって流れる冷媒の一部を圧縮途中の圧縮室Scに供給する、いわゆる中間インジェクションが行われる。スクロール圧縮機10については後述する。
 室外熱交換器7は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器7は、その一方がスクロール圧縮機10から吐出された冷媒が流れる吐出管24側に接続され、他方が液冷媒連絡配管4側に接続されている。室外熱交換器7は、スクロール圧縮機10から吐出管24を介して供給されるガス冷媒の凝縮器として機能する。
 膨張弁8は、室外熱交換器7と液冷媒連絡配管4とを接続する配管に設けられている。膨張弁8は、配管を流れる冷媒の圧力や流量の調節を行うための開度調整可能な電動弁である。
 エコノマイザ熱交換器9は、図1のように、室外熱交換器7と膨張弁8との間に配置される。エコノマイザ熱交換器9は、室外熱交換器7から膨張弁8に向かって流れる冷媒と、インジェクション冷媒供給管27を流れる、インジェクション弁26により減圧された冷媒との熱交換を行う熱交換器である。
 インジェクション弁26は、スクロール圧縮機10にインジェクションされる冷媒の圧力や流量の調節を行うための、開度調整可能な電動弁である。インジェクション弁26は、室外熱交換器7と膨張弁8とを接続する配管から枝分かれするインジェクション冷媒供給管27に設けられる。インジェクション冷媒供給管27は、スクロール圧縮機10のインジェクション配管25に冷媒を供給する配管である。
 (2)スクロール圧縮機の詳細説明
 スクロール圧縮機10は、図2に示されるように、ケーシング20と、固定スクロール30を含むスクロール圧縮機構60と、駆動モータ70と、クランクシャフト80と、下部軸受90と、を備える。また、スクロール圧縮機10は、図2に示されるように、固定スクロール30に形成されたインジェクション通路31に設けられる逆止弁50と、インジェクション通路31に冷媒を供給するインジェクション配管25と、を備える。
 スクロール圧縮機10について以下に詳述する。なお、以下の説明では、構成部材の位置関係等を説明するため、「上」、「下」等の表現を用いる場合があるが、ここでは図2の矢印Uの方向を上、矢印Uと逆方向を下と呼ぶ。また、以下の説明では、「垂直」、「水平」、「縦」、「横」等の表現を用いる場合があるが、上下方向を垂直方向かつ縦方向とする。
 (2-1)ケーシング
 スクロール圧縮機10は、縦長円筒状のケーシング20を有する。ケーシング20は、上下が開口した略円筒状の円筒部材21と、円筒部材21の上端および下端にそれぞれ設けられた上蓋22aおよび下蓋22bとを有する。円筒部材21と、上蓋22aおよび下蓋22bとは、気密を保つように溶接により固定されている。
 ケーシング20には、スクロール圧縮機構60、駆動モータ70、クランクシャフト80、および下部軸受90を含むスクロール圧縮機10の構成機器が収容される。また、ケーシング20の下部には油溜まり空間Soが形成される。油溜まり空間Soには、スクロール圧縮機構60等を潤滑するための冷凍機油Oが溜められる。
 ケーシング20の上部には、ガス冷媒を吸入し、スクロール圧縮機構60にガス冷媒を供給する吸入管23が、上蓋22aを貫通して設けられる。吸入管23の下端は、スクロール圧縮機構60の固定スクロール30に接続される(図2参照)。吸入管23は、後述するスクロール圧縮機構60の圧縮室Scと連通する。吸入管23には、スクロール圧縮機10による圧縮前の、冷凍サイクルにおける低圧の冷媒が流れる。
 ケーシング20の円筒部材21の中間部には、ケーシング20外に吐出される冷媒が通過する吐出管24が設けられる。より具体的には、吐出管24は、ケーシング20の内部の吐出管24の端部が、スクロール圧縮機構60のハウジング61の下方に形成された高圧空間S1に突き出すように配置される。吐出管24には、スクロール圧縮機構60による圧縮後の、冷凍サイクルにおける高圧の冷媒が流れる。
 ケーシング20の上蓋22aの側面には、インジェクション配管25が、上蓋22aの側面を貫通して設けられる。インジェクション配管25のケーシング20外の端部は、図1のように、インジェクション冷媒供給管27と接続される。インジェクション配管25のケーシング20内の端部は、図3のように、後述する逆止弁50が有する弁押さえ部材52と接続されている。インジェクション配管25は、固定スクロール30に形成されたインジェクション通路31に冷媒を供給する(図3参照)。インジェクション通路31は、スクロール圧縮機構60の圧縮室Scと連通しており、インジェクション配管25から供給された冷媒は、インジェクション通路31を経て圧縮室Scに供給される。インジェクション配管25からインジェクション通路31には、冷凍サイクルにおける低圧と高圧との中間の圧力(中間圧)の冷媒が供給される。
 (2-2)スクロール圧縮機構
 スクロール圧縮機構60は、図2に示されるように、主に、ハウジング61と、ハウジング61の上方に配置される固定スクロール30と、固定スクロール30と組み合わされて圧縮室Scを形成する可動スクロール40と、を有する。
 (2-2-1)固定スクロール
 固定スクロール30は、ハウジング部材の一例である。図2に示されるように、固定スクロール30は、平板状の固定側鏡板32と、固定側鏡板32の前面(図2における下面)から突出する渦巻状の固定側ラップ33と、固定側ラップ33を囲む外縁部34とを有する。
 固定側鏡板32の中央部には、スクロール圧縮機構60の圧縮室Scに連通する非円形形状の吐出口32aが、固定側鏡板32を厚さ方向に貫通して形成される。圧縮室Scで圧縮された冷媒は、吐出口32aから吐出され、固定スクロール30およびハウジング61に形成された図示しない冷媒通路を通過して、高圧空間S1へ流入する。
 また、固定側鏡板32には、固定側鏡板32の側面において開口し、圧縮室Scと連通するインジェクション通路31が形成されている。
 インジェクション通路31は、固定側鏡板32の側面の開口から固定側鏡板32の中央側に向けて水平方向に延びる水平通路部31bを含む(図3参照)。水平通路部31bには、固定側鏡板32の側面の開口から、後述する逆止弁50の弁押さえ部材52が挿入されている(図3参照)。弁押さえ部材52は、水平通路部31bに圧入されることで、固定スクロール30と固定されている。
 水平通路部31bは、場所によって内径が異なる円形の孔である。水平通路部31bは、固定側鏡板32の側面の開口付近において最も大きな内径を有する(図3参照)。水平通路部31bには、水平通路部31bに圧入された弁押さえ部材52と、固定スクロール30の有する弁着座面30aとに挟まれた、後述する逆止弁50の弁本体51がスライドする区域Zが含まれる(図3参照)。水平通路部31bの、弁本体51がスライドする区域Zの内径は、水平通路部31bの固定側鏡板32の側面の開口付近の内径より小さい(図3参照)。具体的には、水平通路部31bは、区域Zの内径と、円板状の弁本体51の外径とがほぼ同じ径になるように形成されている。より具体的には、水平通路部31bの区域Zの内径は、弁本体51が区域Zをスライド可能なように、弁本体51の外径よりやや大きく形成されている。また、水平通路部31bの、区域Zより固定側鏡板32の中央側の部分の内径(弁着座面30aより固定側鏡板32の中央側の部分の内径)は、区域Zの内径よりも小さく形成されている。
 インジェクション通路31には、水平通路部31bの、弁着座面30aよりも固定側鏡板32の中央側の部分(水平通路部31bの、固定側鏡板32の中央側の端部近傍)から圧縮室Scに向かって延び、圧縮室Scと直接連通するインジェクションポート31aを含む(図3参照)。インジェクションポート31aは、インジェクション配管25から圧縮室Scに冷媒が供給される際の冷媒の流れ方向において、弁着座面30aよりも下流側に配置される。インジェクションポート31aは、円形の孔である。
 後述するように、駆動モータ70が起動され、クランクシャフト80が回転し、可動スクロール40が固定スクロール30に対して公転すると、圧縮室Scの容積が変化し、インジェクションポート31aが連通する圧縮室Scの圧力が変化する。インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より高い場合、冷媒は、インジェクション配管25、水平通路部31b、およびインジェクションポート31aを、この順番で通過し、圧縮室Scに供給される。一方、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より低い場合、圧縮室Scからインジェクション配管25に向かう冷媒の流れは、インジェクション通路31に設けられた逆止弁50により逆止される(遮断される)。逆止弁50について、以下に詳述する。
 (2-2-1-1)逆止弁
 逆止弁50は、インジェクション通路31に設けられている。逆止弁50は、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より高い場合、言い換えれば、冷媒がインジェクション配管25から圧縮室Scへと流れる時には、冷媒の流れを遮らない。一方、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より低い場合、言い換えれば、冷媒が圧縮室Scからインジェクション配管25へと流れようとする時には、その流れを逆止する(遮断する)。
 逆止弁50は、図3のように、弁本体51と、弁押さえ部材52と、を主に有する。
 (2-2-1-1-1)弁本体
 弁本体51は、図3および図5のように、厚みの薄い円形平板である。弁本体51の中央部には、円形の中央孔51aが形成されている(図5参照)。弁本体51は、中央孔51aよりも周縁側に配置される、環状に形成された周縁部51bを主に有する。
 弁本体51に形成された中央孔51aは、インジェクション通路31から圧縮室Scに冷媒が供給される際に、冷媒が通過する孔である。中央孔51aの流路面積は、インジェクションポート31a(図3参照)の流路面積よりも大きい。ここでは、中央孔51aおよびインジェクションポート31aはいずれも円形の孔なので、言い換えれば、中央孔51aの内径は、インジェクションポート31aの内径よりも大きい。
 弁本体51は、インジェクション通路31の水平通路部31bに、スライド可能に配置されている。具体的には、弁本体51は、水平通路部31bの、水平通路部31bに圧入された弁押さえ部材52と、固定スクロール30の有する弁着座面30aとに挟まれた区域Zに配置される(図3参照)。水平通路部31bの区域Zの内径は、弁本体51の外径より僅かに大きく形成されており、弁本体51は、水平通路部31bの区域Zをスライド可能である。
 弁着座面30aと弁押さえ部材52との距離が弁本体51の直径以上離れているとすれば、弁本体51が配置された水平通路部31bの区域Zにおいて、弁本体51が倒れ、弁本体51が弁体として機能しなくなる可能性がある。そのため、水平通路部31bの区域Zで弁本体51が倒れることがないよう、弁着座面30aと弁押さえ部材52との距離は、インジェクション配管25から圧縮室Scに向かって流れる冷媒に大きな圧力損失を生じさせない範囲で、できるだけ小さな寸法に設計されている。
 インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力と、インジェクションポート31aが開口する圧縮室Scの圧力との関係に応じた弁本体51の動きと、弁本体51に形成された中央孔51aを通過する冷媒の流れについて(中央孔51aを通過する冷媒の流れの遮断についても含む)、以下に説明する。
 インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より高い場合、弁本体51は、弁本体51に対して弁押さえ部材52とは反対側に配置された弁着座面30aに押し付けられた状態となる。言い換えれば、インジェクション配管25から圧縮室Scに冷媒が供給される際には、弁着座面30aは、冷媒の流れ方向に弁本体51が移動することを規制する。
 弁着座面30aには、弁本体51が押し付けられた際に、弁本体51の中央孔51aと対向する円形の通路孔30bが形成されている。通路孔30bの径は、中央孔51aの径よりも大きく、弁本体51の外径より小さい。インジェクション配管25から供給された冷媒は、弁本体51の中央孔51aと、弁着座面30aに形成された通路孔30bと、インジェクションポート31aと、を通過して、圧縮室Scへ供給される。
 インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より高い状態から、低い状態へと変化すると、弁着座面30aに押し付けられていた弁本体51は、弁押さえ部材52に向かって移動し、弁押さえ部材52に押し付けられた状態となる。言い換えれば、逆止弁50が圧縮室Scからインジェクション配管25への冷媒の流れを逆止する際に、弁押さえ部材52は、弁本体51のインジェクション配管25側への移動を規制する。
 後述するように、弁押さえ部材52は、弁本体51が押し付けられた際に中央孔51aを閉鎖する、中央孔51aと対向する閉鎖部52bを有する。つまり、逆止弁50が冷媒の流れを逆止する際には、弁押さえ部材52の閉鎖部52bにより中央孔51aが閉鎖されることで、圧縮室Scから流入した冷媒が、中央孔51aを通過してインジェクション配管25側へと流れることが規制される。
 インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より低い状態から、高い状態へと変化すると、弁押さえ部材52に押し付けられていた弁本体51は、弁着座面30aに向かって移動し、再び弁着座面30aに押し付けられた状態となる。
 (2-2-1-1-2)弁押さえ部材
 弁押さえ部材52は、中空の円筒状の部材であり、その一端には、上記のように、逆止弁50が冷媒の流れを逆止する際に、弁本体51に形成された中央孔51aを閉鎖する閉鎖部52bが配置されている(図3参照)。弁押さえ部材52の閉鎖部52bの周囲には、後述するように周囲孔52aが形成されている(図3参照)。
 弁押さえ部材52は、弁本体51側から見ると、図4のように円形に形成されている。弁押さえ部材52を弁本体51側から見ると、閉鎖部52bの周囲に、周囲孔52aが複数形成されている(図4参照)。各周囲孔52aは、概ね矩形状に形成されている。周囲孔52aは、弁本体51側から弁押さえ部材52を見た時に、弁押さえ部材52の中心Cに対して点対称に配置されるように、4箇所形成されている。周囲孔52aは、弁本体51の周縁部51bと対向する。4つの周囲孔52aの流路面積の合計は、インジェクションポート31aの流路面積よりも大きい。
 弁押さえ部材52は、閉鎖部52b側の端部を、固定スクロール30側に向けた状態で、水平通路部31bに圧入されている(図3参照)。水平通路部31bに挿入された弁押さえ部材52と、固定スクロール30の弁着座面30aとの間に、弁本体51が配置されている(図3参照)。弁押さえ部材52は、逆止弁50が圧縮室Scからインジェクション配管25への冷媒の流れを逆止する際に、弁本体51のインジェクション配管25側への移動を規制する。弁押さえ部材52の中空部には、閉鎖部52bとは反対側の端部の開口からインジェクション配管25が挿入されている。インジェクション配管25と弁押さえ部材52とは、インジェクション配管25に取り付けられたOリング25aによりケーシング20の上部空間とは隔てられている。弁押さえ部材52は、図3のように、弁本体51よりもインジェクション配管25側に配置されている。
 インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より高くなると、インジェクション配管25からインジェクション通路31を経て圧縮室Scに冷媒が供給される。インジェクション配管25から圧縮室Scに冷媒が供給される際には、冷媒は、4つの周囲孔52aを通過し、水平通路部31bの、弁本体51がスライドする区域Zの周縁側に供給される。そして、周囲孔52aを通った冷媒が、周囲孔52aと対向する弁本体51の周縁部51bを押すことで、弁本体51が弁着座面30aに向かって動かされる。弁本体51が弁着座面30aに接触すると、弁本体51の移動が弁着座面30aにより規制されため、周囲孔52aを通過した冷媒により、弁本体51は弁着座面30aに押しつけられる。そして、周囲孔52aを通過した冷媒は、弁本体51の中央孔51aと、弁着座面30aの通路孔30bと、インジェクションポート31aと、を通過して、圧縮室Scへと流入する。
 一方、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力より低い状態では、弁本体51は、圧縮室Scからインジェクション配管25に向かって流れる冷媒の流れにより、上記のように、弁押さえ部材52に向かって動かされ、弁押さえ部材52に押し付けられた状態となる。この状態では、周囲孔52aは、周囲孔52aと対向する弁本体51の周縁部51bにより閉鎖される。つまり、逆止弁50が冷媒の流れを逆止する際には、周縁部51bにより周囲孔52aが閉鎖されることで、圧縮室Scから流入した冷媒が、周囲孔52aを通過してインジェクション配管25側へと流れることが規制される。
 (2-2-2)可動スクロール
 可動スクロール40は、図2に示されるように、平板状の可動側鏡板41と、可動側鏡板41の前面(図2における上面)から突出する渦巻状の可動側ラップ42と、可動側鏡板41の背面(図2における下面)から突出する、円筒状に形成されたボス部43とを有する。
 固定スクロール30の固定側ラップ33と、可動スクロール40の可動側ラップ42とは、固定側鏡板32の下面と可動側鏡板41の上面とが対向する状態で組み合わされる。隣接する固定側ラップ33と可動側ラップ42との間には、圧縮室Scが形成される。可動スクロール40が後述するように固定スクロール30に対して公転することで、圧縮室Scの体積が周期的に変化し、スクロール圧縮機構60において、冷媒の吸入、圧縮、吐出が行われる。
 ボス部43は、上端の塞がれた円筒状部分である。ボス部43の中空部に、後述するクランクシャフト80の偏心部81が挿入されることで、可動スクロール40とクランクシャフト80とは連結されている。ボス部43は、可動スクロール40とハウジング61との間に形成される偏心部空間62に配置される。偏心部空間62は、後述するクランクシャフト80の給油経路83等を介して高圧空間S1と連通しており、偏心部空間62には高い圧力が作用する。この圧力により、偏心部空間62内の可動側鏡板41の下面は、固定スクロール30に向かって上方に押される。この力により、可動スクロール40は、固定スクロール30に密着する。
 可動スクロール40は、図示しないオルダムリングを介してハウジング61に支持される。オルダムリングは、可動スクロール40の自転を防止し、公転させる部材である。オルダムリングを用いることで、クランクシャフト80が回転すると、ボス部43においてクランクシャフト80と連結された可動スクロール40が、固定スクロール30に対して自転することなく公転し、圧縮室Sc内の冷媒が圧縮される。
 (2-2-3)ハウジング
 ハウジング61は、円筒部材21に圧入され、その外周面において周方向の全体に亘って円筒部材21と固定されている。また、ハウジング61と固定スクロール30とは、ハウジング61の上端面が、固定スクロール30の外縁部34の下面と密着するように、図示しないボルト等により固定されている。
 ハウジング61には、上面中央部に凹むように配置される凹部61aと、凹部61aの下方に配置される軸受部61bとが形成される。
 凹部61aは、可動スクロール40のボス部43が配置される偏心部空間62の側面を囲む。
 軸受部61bには、クランクシャフト80の主軸82を軸支する軸受63が配置される。軸受63は、軸受63に挿入された主軸82を回転自在に支持する。
 (2-3)駆動モータ
 駆動モータ70は、円筒部材21の内壁面に固定された環状のステータ71と、ステータ71の内側に、僅かな隙間(エアギャップ通路)を空けて回転自在に収容されたロータ72とを有する。
 ロータ72は、円筒部材21の軸心に沿って上下方向に延びるように配置されたクランクシャフト80を介して可動スクロール40と連結される。ロータ72が回転することで、可動スクロール40は、固定スクロール30に対して公転する。
 (2-4)クランクシャフト
 クランクシャフト80は、駆動モータ70の駆動力を可動スクロール40に伝達する。クランクシャフト80は、円筒部材21の軸心に沿って上下方向に延びるように配置され、駆動モータ70のロータ72と、スクロール圧縮機構60の可動スクロール40とを連結する。
 クランクシャフト80は、円筒部材21の軸心と中心軸が一致する主軸82と、円筒部材21の軸心に対して偏心した偏心部81とを有する。
 偏心部81は、前述のように可動スクロール40のボス部43に挿入される。
 主軸82は、ハウジング61の軸受部61bの軸受63、および、後述する下部軸受90により、回転自在に支持される。主軸82は、軸受部61bと下部軸受90との間で、駆動モータ70のロータ72と連結される。
 クランクシャフト80の内部には、スクロール圧縮機構60等に冷凍機油Oを供給するための給油経路83が形成されている。主軸82の下端は、ケーシング20の下部に形成された油溜まり空間So内に位置し、油溜まり空間Soの冷凍機油Oは、給油経路83を通じてスクロール圧縮機構60等に供給される。
 (2-5)下部軸受
 下部軸受90は、駆動モータ70の下方に配置される。下部軸受90は、円筒部材21と固定されている。下部軸受90は、クランクシャフト80の下端側の軸受を構成し、クランクシャフト80の主軸82を回転自在に支持する。
 (3)スクロール圧縮機の動作
 スクロール圧縮機10の動作について説明する。
 駆動モータ70が起動すると、ロータ72がステータ71に対して回転し、ロータ72と固定されたクランクシャフト80が回転する。クランクシャフト80が回転すると、クランクシャフト80と連結された可動スクロール40が固定スクロール30に対して公転する。そして、冷凍サイクルにおける低圧のガス冷媒が、吸入管23を通って、圧縮室Scの周縁側から、圧縮室Scに吸引される。可動スクロール40が公転するのに従い、吸入管23と圧縮室Scとは連通しなくなり、圧縮室Scの容積が減少するのに伴って、圧縮室Scの圧力が上昇し始める。
 圧縮途中の圧縮室Scには、インジェクションポート31aから冷媒がインジェクションされる。なお、上記のように、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力よりも高い場合に、インジェクション配管25からインジェクション通路31を経て圧縮室Scへと冷媒が供給される。一方、インジェクション冷媒供給管27からインジェクション配管25に供給される冷媒の圧力が、インジェクションポート31aが開口する圧縮室Scの圧力よりも低くなると、逆止弁50が機能し、圧縮室Scからインジェクション配管25への冷媒の流れが逆止される(遮断される)。
 圧縮室Scは、冷媒の圧縮が進むにつれ、インジェクションポート31aと連通しなくなる。圧縮室Sc内の冷媒は、圧縮室Scの容積が減少するのに伴って圧縮され、最終的に高圧のガス冷媒となる。高圧のガス冷媒は、固定側鏡板32の中心付近に位置する吐出口32aから吐出される。その後、高圧のガス冷媒は、固定スクロール30およびハウジング61に形成された図示しない冷媒通路を通過して、高圧空間S1へ流入する。高圧空間S1に流入した、スクロール圧縮機構60による圧縮後の、冷凍サイクルにおける高圧のガス冷媒は、吐出管24から吐出される。
 (4)特徴
 (4-1)
 本実施形態のスクロール圧縮機10は、ハウジング部材としての固定スクロール30と、逆止弁50と、インジェクション配管25とを備える。固定スクロール30には、冷媒が圧縮される圧縮室Scと連通するインジェクション通路31が形成されている。逆止弁50は、インジェクション通路31に設けられる。インジェクション配管25は、インジェクション通路31に冷媒を供給する。逆止弁50は、弁本体51と、弁押さえ部材52と、を有する。弁本体51は、インジェクション通路31にスライド可能に配置されている。弁押さえ部材52は、弁本体51よりもインジェクション配管25側に配置され、逆止弁50が圧縮室Scからインジェクション配管25への冷媒の流れを逆止する際に、弁本体51のインジェクション配管25側への移動を規制する。弁本体51には、中央部に中央孔51aが形成されている。弁押さえ部材52には、弁本体51の中央孔51aよりも周縁側の周縁部51bと対向する周囲孔52aが形成されている。インジェクション配管25から圧縮室Scに冷媒が供給される際には、周囲孔52aおよび中央孔51aを通過して圧縮室Scに冷媒が供給される。逆止弁50が圧縮室Scからインジェクション配管25への冷媒の流れを逆止する際には、中央孔51aは弁押さえ部材52により、周囲孔52aは弁本体51の周縁部51bにより、それぞれ閉鎖される。
 ここでは、逆止弁50が中央部に中央孔51aが形成された弁本体51を有し、インジェクション配管25からインジェクション通路31を経て圧縮室Scに供給される冷媒は、弁本体51の中央孔51aを通過して圧縮室Scに供給される。そのため、冷媒が、弁本体51の外周面に形成された切り欠きを通過し、さらに弁本体の端面に形成された切り欠きを通過して圧縮室に供給される場合に比べ、インジェクションされる冷媒の圧力損失を抑制できる。つまり、ここでは、インジェクションされる冷媒の圧力損失を抑制することが可能なスクロール圧縮機10を提供できる。
 また、ここでは、上記のような逆止弁50をインジェクション通路31に設けることで、インジェクションされる冷媒の圧力損失を抑制すると共に、インジェクション配管25内の脈動を抑制可能で、インジェクション配管25の振動を抑制することができる。
 (4―2)
 本実施形態のスクロール圧縮機10では、固定スクロール30は、弁着座面30aを有する。弁着座面30aは、弁本体51に対して弁押さえ部材52とは反対側に配置され、インジェクション配管25から圧縮室Scに冷媒が供給される際に、冷媒の流れ方向に弁本体51が移動することを規制する。インジェクション通路31は、インジェクション配管25から圧縮室Scに冷媒が供給される際の冷媒の流れ方向において弁着座面30aよりも下流側に配置される、圧縮室Scと直接連通するインジェクションポート31aを含む。中央孔51aおよび周囲孔52aの流路面積は、それぞれインジェクションポート31aの流路面積よりも大きい。
 ここでは、弁本体51に形成された中央孔51aの流路面積、および、弁押さえ部材52に形成された周囲孔52aの流路面積(周囲孔52aの流路面積の合計)が、いずれもインジェクションポート31aの流路面積よりも大きいため、逆止弁50を設けたことを原因とした冷媒の圧力損失が発生しにくい。そのため、インジェクションされる冷媒の圧力損失を抑制可能で、インジェクションによるスクロール圧縮機10の能力向上が図られやすい。
 (4-3)
 本実施形態のスクロール圧縮機10では、弁押さえ部材52には、弁本体51側から見た時に、弁押さえ部材52の中心Cに対して点対称に配置されるように複数の周囲孔52aが形成されている。
 弁本体51の中央部が冷媒により押され、弁本体51がインジェクション通路31内を移動するとすれば、冷媒の流れ状態により弁本体51が傾いた場合に、その傾きが修正されにくい。そのため、弁本体51の傾きが、弁本体51のスムーズな移動を阻害し、逆止弁50の迅速な切換(インジェクションされる冷媒を圧縮室Scに導入する状態と、圧縮室Scから逆流する冷媒の流れを逆止する状態との切換)に悪影響を与える可能性がある。
 これに対し、ここでは、弁押さえ部材52に、弁本体51側から見た時に、弁押さえ部材52の中心Cに対して点対称になるように複数の周囲孔52aが形成されているため、インジェクション配管25から圧縮室Scに冷媒が供給される際に、弁本体51が冷媒の流れにより均等に押されやすく、弁本体51が傾きにくい。また、冷媒の流れ状態によって弁本体51が傾いたとしても、弁押さえ部材52の中心Cに対して点対称になるように配置された周囲孔52aから冷媒が供給されるため、弁本体51の中央部を押す場合に比べ、弁本体51の傾きが修正されやすい。
 (5)変形例
 以下に上記実施形態の変形例を示す。変形例は、互いに矛盾のない範囲で複数組み合わされてもよい。
 (5-1)変形例A
 上記実施形態のスクロール圧縮機10の構成に加え、弁着座面30aと弁本体51との間に、弁本体51を弁押さえ部材52に向かって押圧する、弾性体が配置されてもよい。例えば、弁着座面30aと弁本体51との間に、弁本体51を弁押さえ部材52に向かって押圧するバネ53が配置されてもよい。バネ53は、インジェクション配管25側の圧力が、インジェクションポート31aが連通する圧縮室Scの圧力よりも所定の値だけ大きくなるまで、弁本体51を弁押さえ部材52に押し付けるように構成される。なお、ここでは、バネ53を支持するバネ座54が、バネ53と弁着座面30aとの間に配置される。変形例Aに係るスクロール圧縮機では、水平通路部31bの、バネ座54と弁押さえ部材52とに挟まれた区間Z’を弁本体51がスライド可能である。また、変形例Aに係るスクロール圧縮機では、弁本体51は弁着座面30aと直接接触しない。弁着座面30aは、インジェクション配管25から圧縮室Scに冷媒が供給される際に、弁着座面30aに固定されたバネ座54を介して、冷媒の流れ方向に弁本体51が移動することを規制する。なお、バネ座54には、弁本体51が押し付けられた際に、弁本体51の中央孔51aと対向する円形の通路孔54bが形成されている。
 ここでは、バネ53により弁本体51が弁押さえ部材52に向かって押圧されるため、弁本体51のチャタリングが抑制されやすい。また、バネ53により弁本体51が弁押さえ部材52に向かって押圧されるため、インジェクションポート31aが連通する圧縮室Scの圧力が、インジェクション配管25側の圧力よりわずかだけ大きい場合にも、逆止弁50を機能させることができる。つまり、インジェクション配管25側と、インジェクションポート31aが連通する圧縮室Scと、の圧力差がほとんどない場合にも、圧縮室Scから、弁押さえ部材52よりもインジェクション配管25側に、冷媒が逆流することを抑制することが容易である。そのため、死容積の増加が抑制されやすく、効率のよいスクロール圧縮機10が実現可能である。
 (5-2)変形例B
 上記実施形態では、圧縮機はスクロール圧縮機10であるが、これに限定されるものではなく、圧縮機構が有するハウジング部材に形成されたインジェクション通路に逆止弁が設けられる他の形式の圧縮機にも適用可能である。
 (5-3)変形例C
 上記実施形態における弁本体51および弁押さえ部材52の形状は、例示であって、これに限定されるものではない。
 例えば、上記実施形態では、弁本体51は、断面が円形に形成されたインジェクション通路31に配置される円形の平板であるが、弁本体は、楕円形や多角形等の形状の平板であってもよく、インジェクション通路の断面は、弁本体の形状に対応する形状に形成されてもよい。弁押さえ部材52の形状についても同様である。
 また、弁本体51の中央孔51aの断面形状および弁押さえ部材52の周囲孔52aの形状も、上記実施形態に示した形状に限定されるものではない。
 (5-4)変形例D
 上記実施形態では、弁本体51は厚みの薄い平板であるが、これに限定されるものではない。弁本体51は、水平通路部31bにおいて傾きにくいよう、厚みのある円筒状の部材であってもよい。ただし、逆止弁50を迅速に切り換える(インジェクションされる冷媒を圧縮室に導入する状態と、圧縮室から逆流する冷媒の流れを逆止する状態とを切り換える)ためには、弁本体51の厚みは薄い方が望ましい。
 (5-5)変形例E
 上記実施形態では、弁押さえ部材52には、4箇所に周囲孔52aが形成されているが、これに限定されるものではなく、弁押さえ部材52の中心Cに点対称に配置されるように2箇所、あるいは6箇所以上の周囲孔52aが形成されてもよい。
 また、例えば図7のように、弁押さえ部材152の周囲孔152aは、弁押さえ部材152の中心Cを取り囲むように周方向に延びる、環状の孔であってもよい。なお、周囲孔152a以外は、弁押さえ部材152と弁押さえ部材52とは同様である。
 また、弁押さえ部材52には、弁押さえ部材52の中心Cに点対称に配置されるように周囲孔52aが形成されているが、これに限定されるものではない。例えば、弁押さえ部材52には、中心Cの周囲に、奇数箇所に周囲孔52aが形成されてもよい。ただし、周囲孔52aは、弁本体51の周縁部51bを偏りなく押すことが可能となるように配置されることが望ましく、周囲孔52aは弁押さえ部材52の中心Cに点対称に配置されることが望ましい。
 (5-6)変形例F
 上記実施形態のスクロール圧縮機10では、弁押さえ部材52は、水平通路部31bに圧入されることで固定スクロール30と固定されているが、固定方法は例示であり、これに限定されるものではない。例えば、固定スクロール30に形成された雌ネジに、弁押さえ部材52に形成された雄ネジをねじ込むことで、固定スクロール30と弁押さえ部材52とが固定されるように構成されてもよい。
 (5-7)変形例G
 上記実施形態のスクロール圧縮機10では、インジェクションポート31aの孔の形状は円形であるが、これに限定されるものではなく、インジェクションポート31aの孔の形状は円形以外であってもよい。この場合にも、弁本体51の中央孔51aの流路面積は、インジェクションポート31aの流路面積よりも大きいことが望ましい。また、弁押さえ部材52の周囲孔52aの流路面積(周囲孔52aの流路面積の合計)は、インジェクションポート31aの流路面積よりも大きいことが望ましい。
 本発明に係る圧縮機は、ハウジング部材に形成されるインジェクション通路に逆止弁を設ける場合に、インジェクションされる冷媒の圧力損失を抑制することが可能な圧縮機として有用である。
10 スクロール圧縮機(圧縮機)
25 インジェクション配管
30 固定スクロール(ハウジング部材)
30a 弁着座面
31 インジェクション通路
31a インジェクションポート
50 逆止弁
51 弁本体
51a 中央孔
51b 周縁部
52,152 弁押さえ部材
52a,152a 周囲孔
53 バネ(弾性体)
C 弁押さえ部材を弁本体側から見た時の弁押さえ部材の中心
Sc 圧縮室
特開平11-107950号公報

Claims (5)

  1.  冷媒が圧縮される圧縮室(Sc)と連通するインジェクション通路(31)が形成されたハウジング部材(30)と、
     前記インジェクション通路に設けられる逆止弁(50)と、
     前記インジェクション通路に冷媒を供給するインジェクション配管(25)と、
    を有する圧縮機であって、
     前記逆止弁は、前記インジェクション通路にスライド可能に配置された弁本体(51)と、前記弁本体よりも前記インジェクション配管側に配置され、前記逆止弁が前記圧縮室から前記インジェクション配管への冷媒の流れを逆止する際に、前記弁本体の前記インジェクション配管側への移動を規制する弁押さえ部材(52,152)と、を有し、
     前記弁本体には、中央部に中央孔(51a)が形成され、
     前記弁押さえ部材には、前記弁本体の前記中央孔よりも周縁側の周縁部(51b)と対向する周囲孔(52a,152a)が形成され、
     前記インジェクション配管から前記圧縮室に冷媒が供給される際には、前記周囲孔および前記中央孔を通過して前記圧縮室に冷媒が供給され、
     前記逆止弁が前記圧縮室から前記インジェクション配管への冷媒の流れを逆止する際には、前記中央孔は前記弁押さえ部材により、前記周囲孔は前記弁本体の前記周縁部により、それぞれ閉鎖される、
    圧縮機(10)。
  2.  前記ハウジング部材は、前記弁本体に対して前記弁押さえ部材とは反対側に配置され、前記インジェクション配管から前記圧縮室に冷媒が供給される際に、冷媒の流れ方向に前記弁本体が移動することを規制する弁着座面(30a)を有し、
     前記インジェクション通路は、前記インジェクション配管から前記圧縮室に冷媒が供給される際の冷媒の流れ方向において前記弁着座面よりも下流側に配置される、前記圧縮室と直接連通するインジェクションポート(31a)を含み、
     前記中央孔および前記周囲孔の流路面積は、それぞれ前記インジェクションポートの流路面積よりも大きい、
    請求項1に記載の圧縮機。
  3.  前記弁着座面と前記弁本体との間に配される弾性体(53)をさらに備え、
     前記弾性体は、前記弁本体を前記弁押さえ部材に向かって押圧する、
    請求項2に記載の圧縮機。
  4.  前記弁押さえ部材(52)には、前記弁本体側から見た時に、前記弁押さえ部材の中心(C)に対して点対称に配置されるように複数の前記周囲孔(52a)が形成されている、
    請求項1から3のいずれか1項に記載の圧縮機。
  5.  前記ハウジング部材は固定スクロール部材である、
    請求項1から4のいずれか1項に記載の圧縮機。
     
PCT/JP2015/069396 2014-07-08 2015-07-06 圧縮機 WO2016006565A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580036726.3A CN106536938B (zh) 2014-07-08 2015-07-06 压缩机
EP15819712.9A EP3168478B1 (en) 2014-07-08 2015-07-06 Compressor
ES15819712T ES2756474T3 (es) 2014-07-08 2015-07-06 Compresor
US15/323,009 US10190588B2 (en) 2014-07-08 2015-07-06 Compressor having a check valve in the injection passage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140851A JP6090248B2 (ja) 2014-07-08 2014-07-08 圧縮機
JP2014-140851 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016006565A1 true WO2016006565A1 (ja) 2016-01-14

Family

ID=55064200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069396 WO2016006565A1 (ja) 2014-07-08 2015-07-06 圧縮機

Country Status (6)

Country Link
US (1) US10190588B2 (ja)
EP (1) EP3168478B1 (ja)
JP (1) JP6090248B2 (ja)
CN (1) CN106536938B (ja)
ES (1) ES2756474T3 (ja)
WO (1) WO2016006565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141342A1 (ja) * 2016-02-16 2017-08-24 三菱電機株式会社 スクロール圧縮機
JPWO2021039080A1 (ja) * 2019-08-30 2021-03-04

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926044B1 (ko) 2017-08-11 2018-12-06 한국에너지기술연구원 단일 스테이지 압축기 및 이를 이용한 에너지 시스템
JP6865861B2 (ja) * 2018-01-30 2021-04-28 三菱電機株式会社 スクロール圧縮機
CN115053068A (zh) * 2020-02-03 2022-09-13 松下知识产权经营株式会社 带注入机构的压缩机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178010A (ja) * 1995-12-26 1997-07-11 Tsudakoma Corp ウォータージェットルームの逆止弁
JPH11107950A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd 圧縮機のインジェクション装置
JP2013019442A (ja) * 2011-07-08 2013-01-31 Kitz Corp 逆止め弁

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531543A (en) * 1983-06-20 1985-07-30 Ingersoll-Rand Company Uni-directional flow, fluid valve
JP2782858B2 (ja) 1989-10-31 1998-08-06 松下電器産業株式会社 スクロール気体圧縮機
JPH04350377A (ja) * 1991-05-29 1992-12-04 Daikin Ind Ltd スクロール形圧縮機
JP2501182B2 (ja) * 1995-03-13 1996-05-29 株式会社日立製作所 冷凍装置
US5722257A (en) * 1995-10-11 1998-03-03 Denso Corporation Compressor having refrigerant injection ports
KR100547322B1 (ko) * 2003-07-26 2006-01-26 엘지전자 주식회사 용량 조절식 스크롤 압축기
JP2010150946A (ja) * 2008-12-24 2010-07-08 Daikin Ind Ltd スクロール圧縮機
US8303279B2 (en) * 2009-09-08 2012-11-06 Danfoss Scroll Technologies, Llc Injection tubes for injection of fluid into a scroll compressor
JP5745450B2 (ja) * 2012-03-30 2015-07-08 株式会社日本自動車部品総合研究所 圧縮機のインジェクション装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178010A (ja) * 1995-12-26 1997-07-11 Tsudakoma Corp ウォータージェットルームの逆止弁
JPH11107950A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd 圧縮機のインジェクション装置
JP2013019442A (ja) * 2011-07-08 2013-01-31 Kitz Corp 逆止め弁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141342A1 (ja) * 2016-02-16 2017-08-24 三菱電機株式会社 スクロール圧縮機
JPWO2017141342A1 (ja) * 2016-02-16 2018-09-13 三菱電機株式会社 スクロール圧縮機
JPWO2021039080A1 (ja) * 2019-08-30 2021-03-04
WO2021039080A1 (ja) * 2019-08-30 2021-03-04 ダイキン工業株式会社 回転式圧縮機
JP7332942B2 (ja) 2019-08-30 2023-08-24 ダイキン工業株式会社 回転式圧縮機
US11906060B2 (en) 2019-08-30 2024-02-20 Daikin Industries, Ltd. Rotary compressor with backflow suppresion mechanism for an introduction path

Also Published As

Publication number Publication date
CN106536938A (zh) 2017-03-22
EP3168478A1 (en) 2017-05-17
EP3168478A4 (en) 2018-03-28
US20170138361A1 (en) 2017-05-18
ES2756474T3 (es) 2020-04-27
CN106536938B (zh) 2019-07-30
US10190588B2 (en) 2019-01-29
EP3168478B1 (en) 2019-08-21
JP6090248B2 (ja) 2017-03-08
JP2016017464A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
US10962008B2 (en) Variable volume ratio compressor
WO2016006565A1 (ja) 圧縮機
US8998596B2 (en) Scroll compressor
JP5228905B2 (ja) 冷凍装置
US20170058900A1 (en) Lubrication system of electric compressor
JP2017101592A (ja) スクロール圧縮機
JP6568841B2 (ja) 密閉形回転圧縮機及び冷凍空調装置
JP6682810B2 (ja) 圧縮機
JP5338314B2 (ja) 圧縮機および冷凍装置
JP5515289B2 (ja) 冷凍装置
CN103582762A (zh) 密闭型压缩机和制冷循环装置
JP2017120048A (ja) スクロール圧縮機
JP2017186924A (ja) 圧縮機
WO2023084722A1 (ja) 圧縮機及び冷凍サイクル装置
JP2012145307A (ja) 密閉型圧縮機
JP2013136957A (ja) スクリュー圧縮機
JP2016161211A (ja) 冷凍装置
WO2018043329A1 (ja) スクロール圧縮機
JP6728988B2 (ja) スクリュー圧縮機
JP2014125914A (ja) スクロール圧縮機
JP6749183B2 (ja) スクロール圧縮機
CN101782070B (zh) 涡旋式压缩机
JP2009002223A (ja) スクロール圧縮機
JP2016109095A (ja) スクリュー圧縮機
WO2021038738A1 (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819712

Country of ref document: EP