WO2016002955A1 - ビークルおよび単気筒4ストロークエンジンユニット - Google Patents

ビークルおよび単気筒4ストロークエンジンユニット Download PDF

Info

Publication number
WO2016002955A1
WO2016002955A1 PCT/JP2015/069354 JP2015069354W WO2016002955A1 WO 2016002955 A1 WO2016002955 A1 WO 2016002955A1 JP 2015069354 W JP2015069354 W JP 2015069354W WO 2016002955 A1 WO2016002955 A1 WO 2016002955A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
single combustion
upstream
catalyst
main catalyst
Prior art date
Application number
PCT/JP2015/069354
Other languages
English (en)
French (fr)
Inventor
昌登 西垣
裕次 荒木
一裕 石澤
誠 脇村
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014138372A external-priority patent/JP2017150308A/ja
Priority claimed from JP2014138367A external-priority patent/JP2017150307A/ja
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP15815441.9A priority Critical patent/EP3165730B1/en
Priority to BR112016031006-3A priority patent/BR112016031006B1/pt
Priority to CN201580036523.4A priority patent/CN106661981B/zh
Priority to TW104121940A priority patent/TWI611098B/zh
Publication of WO2016002955A1 publication Critical patent/WO2016002955A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles

Definitions

  • the present invention relates to a vehicle and a single cylinder four-stroke engine unit.
  • Patent Document 1 discloses a vehicle equipped with a single-cylinder four-stroke engine unit.
  • This single-cylinder four-stroke engine unit has a configuration in which a catalyst is disposed in a silencer.
  • the catalyst purifies the exhaust gas discharged from the engine body.
  • the silencer reduces the sound produced by the exhaust gas.
  • a vehicle equipped with a single-cylinder four-stroke engine unit is desired to have an improved exhaust gas purification performance. Therefore, it is conceivable to arrange the catalyst more upstream. That is, it is conceivable to arrange at least a part of the catalyst upstream of the silencer.
  • An object of the present invention is to provide a single-cylinder four-stroke engine unit capable of improving the exhaust gas purification performance by the catalyst while simplifying the support structure and maintaining the initial performance of the exhaust gas purification of the vehicle for a long time.
  • Vehicle and a single-cylinder four-stroke engine unit are provided.
  • the degree of catalyst deterioration varies depending on the usage conditions of the vehicle. That is, there is a case where the deterioration of the catalyst proceeds depending on the usage state of the vehicle. Even when the deterioration of the catalyst progresses, the catalyst purification capacity is usually given a margin so that the initial performance of the vehicle exhaust purification can be maintained for a longer period of time. As described above, the catalyst is enlarged by providing a sufficient purification capacity of the catalyst.
  • One is a technical idea of controlling the engine so as to delay the progress of catalyst deterioration. By delaying the progress of the catalyst deterioration, it is possible to reduce the frequency of occurrence of the catalyst deterioration.
  • the other is a technical idea that makes it possible to promote the replacement of the catalyst before the deterioration of the catalyst reaches a predetermined level.
  • the inventors have come up with the idea that an oxygen detection member is disposed upstream and downstream of the catalyst, and a control device for processing signals from the two oxygen detection members is provided.
  • the initial performance of the exhaust gas purification of the vehicle can be maintained for a longer period while maintaining the size of the catalyst. Furthermore, by suppressing the increase in size of the catalyst, vibration of the exhaust pipe can be suppressed even if the catalyst is arranged in the exhaust pipe. Thereby, it was considered that the support structure of the single-cylinder four-stroke engine unit can be simplified while improving the purification performance of the catalyst.
  • the vehicle according to the present invention is a vehicle on which a single-cylinder four-stroke engine unit is mounted, and the single-cylinder four-stroke engine unit has a single combustion chamber and a single exhaust gas discharged from the one combustion chamber.
  • An engine main body having a cylinder portion in which a cylinder exhaust passage portion for one combustion chamber is formed; an exhaust pipe for a single combustion chamber connected to a downstream end of the cylinder exhaust passage portion for the single combustion chamber of the engine main body;
  • a discharge port facing the atmosphere is connected to the exhaust pipe for the single combustion chamber, and the exhaust gas flowing in from the downstream end of the exhaust pipe for the single combustion chamber flows to the discharge port to reduce the sound generated by the exhaust gas.
  • a main catalyst for a single combustion chamber that is disposed upstream of the end in the flow direction of the exhaust gas and that most purifies the exhaust gas discharged from the one combustion chamber in the exhaust path from the one combustion chamber to the discharge port;
  • the single combustion chamber cylinder exhaust passage section or the single combustion chamber exhaust pipe is disposed upstream of the single combustion chamber main catalyst in the flow direction of the exhaust gas and detects the oxygen concentration in the exhaust gas.
  • the single combustion chamber upstream oxygen detection member, the single combustion chamber cylinder exhaust passage, the single combustion chamber exhaust pipe, or the single combustion chamber silencer the exhaust gas is more exhausted than the single combustion chamber main catalyst.
  • a downstream oxygen detection member for a single combustion chamber which is arranged downstream of the flow direction of the exhaust gas to detect the oxygen concentration in the exhaust gas, a signal from the upstream oxygen detection member for the single combustion chamber, and a downstream oxygen detection for the single combustion chamber Member trust Characterized in that it comprises a control unit for processing.
  • the single-cylinder four-stroke engine unit included in the vehicle includes an engine body, a single combustion chamber exhaust pipe, a single combustion chamber silencer, a single combustion chamber main catalyst, and a single combustion. It has a chamber upstream oxygen detection member, a single combustion chamber downstream oxygen detection member, and a control device.
  • the engine body has a cylinder part in which one combustion chamber and a cylinder exhaust passage part for a single combustion chamber are formed. The exhaust gas discharged from one combustion chamber flows through the cylinder exhaust passage for the single combustion chamber.
  • the single combustion chamber exhaust pipe is connected to the downstream end of the single combustion chamber cylinder exhaust passage portion of the engine body.
  • the single combustion chamber silencer has an outlet facing the atmosphere.
  • the single combustion chamber silencer is connected to the single combustion chamber exhaust pipe and flows the exhaust gas flowing in from the downstream end of the single combustion chamber exhaust pipe to the discharge port.
  • the single combustion chamber silencer reduces the noise produced by the exhaust gas.
  • the single combustion chamber main catalyst is disposed in the single combustion chamber cylinder exhaust passage or the single combustion chamber exhaust pipe.
  • the main catalyst for a single combustion chamber purifies the exhaust gas discharged from one combustion chamber most in the exhaust path from one combustion chamber to the discharge port.
  • the upstream end of the single combustion chamber main catalyst is disposed upstream of the upstream end of the single combustion chamber silencer. That is, the single combustion chamber main catalyst is disposed at a position relatively close to the combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be improved.
  • a single combustion chamber upstream oxygen detection member is disposed in the single combustion chamber cylinder exhaust passage or the single combustion chamber exhaust pipe.
  • the single combustion chamber upstream oxygen detection member is disposed upstream of the single combustion chamber main catalyst.
  • the single combustion chamber downstream oxygen detection member is disposed in the single combustion chamber cylinder exhaust passage, the single combustion chamber exhaust pipe, or the single combustion chamber silencer.
  • the single combustion chamber downstream oxygen detection member is disposed downstream of the single combustion chamber main catalyst.
  • the controller processes the signal of the single combustion chamber upstream oxygen detection member and the signal of the single combustion chamber downstream oxygen detection member.
  • Deterioration of the single combustion chamber main catalyst can be detected by a signal from the single combustion chamber downstream oxygen detection member disposed downstream of the single combustion chamber main catalyst. Therefore, it is possible to notify before the deterioration of the main catalyst for the single combustion chamber reaches a predetermined level, and to promote the replacement of the main catalyst for the single combustion chamber. As a result, the initial performance of exhaust purification of the vehicle can be maintained for a longer period by using a plurality of single combustion chamber main catalysts.
  • the deterioration of the single combustion chamber main catalyst may be detected without using the signal from the single combustion chamber upstream oxygen detection member.
  • the deterioration of the main catalyst for the single combustion chamber may be detected based on the signal from the downstream oxygen detection member for the single combustion chamber and the signal from the upstream oxygen detection member for the single combustion chamber.
  • the signals of the two oxygen detection members it is possible to detect the degree of deterioration of the single combustion chamber main catalyst more accurately. Therefore, it is urged to replace the main catalyst for the single combustion chamber at a more appropriate timing as compared with the case where the deterioration of the main catalyst for the single combustion chamber is detected using only the signal of the downstream oxygen detection member for the single combustion chamber. be able to. Therefore, it is possible to use one single combustion chamber main catalyst for a longer period of time.
  • the actual state of purification by the single catalyst for the single combustion chamber can be grasped from the signal of the upstream oxygen detection member for the single combustion chamber and the signal of the downstream oxygen detection member for the single combustion chamber. Therefore, when the control of the amount of fuel supplied to the combustion chamber (hereinafter referred to as combustion control) is performed based on the signals of the two oxygen detection members, the accuracy of the combustion control can be improved. Thereby, progress of deterioration of the main catalyst for single combustion chambers can be delayed. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period. In this manner, the initial performance of the vehicle exhaust purification can be maintained for a longer period without increasing the size of the single combustion chamber main catalyst. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a long time while simplifying the support structure.
  • the vehicle including the single-cylinder four-stroke engine unit of the present invention improves the exhaust gas purification performance by the catalyst while simplifying the support structure, and maintains the initial performance of the vehicle exhaust purification for a long time. Can do.
  • the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the vehicle, and at least a part of the one combustion chamber of the cylinder portion is a center line of the crankshaft. Is disposed further forward in the front-rear direction of the vehicle, and the discharge port of the single combustion chamber silencer is disposed rearward in the front-rear direction of the vehicle than the center line of the crankshaft, It is preferable that at least a part of the main catalyst for the single combustion chamber is disposed in front of the center line of the crankshaft in the front-rear direction of the vehicle.
  • the combustion chamber of the cylinder portion is disposed in front of the center line of the crankshaft.
  • the discharge port of the single combustion chamber silencer is disposed behind the center line of the crankshaft.
  • the single combustion chamber main catalyst is provided between the combustion chamber and the discharge port. At least a portion of the single combustion chamber main catalyst is disposed in front of the center line of the crankshaft. Therefore, the main catalyst for a single combustion chamber is disposed at a position closer to the combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
  • the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the vehicle, and at least a part of the one combustion chamber of the cylinder portion is a center line of the crankshaft. Is disposed further forward in the front-rear direction of the vehicle, and the discharge port of the single combustion chamber silencer is disposed rearward in the front-rear direction of the vehicle than the center line of the crankshaft, At least a part of the single combustion chamber main catalyst may be arranged behind the center line of the crankshaft in the front-rear direction of the vehicle.
  • the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the vehicle, the cylinder portion of the engine body has a cylinder hole in which a piston is disposed, At least a part of the one combustion chamber of the cylinder portion is disposed in front of the front and rear direction of the vehicle with respect to the center line of the crankshaft, and the discharge port of the silencer for the single combustion chamber is It is arranged behind the center line of the crankshaft in the front-rear direction of the vehicle, and when viewed from the left-right direction, at least a part of the single combustion chamber main catalyst is located at the center line of the cylinder hole. It is preferable that the vehicle is positioned in front of the vehicle in the front-rear direction of a straight line that is perpendicular to the center line of the crankshaft.
  • At least a part of the combustion chamber of the cylinder portion is disposed in front of the center line of the crankshaft.
  • the discharge port of the single combustion chamber silencer is disposed behind the center line of the crankshaft.
  • the single combustion chamber main catalyst is provided between the combustion chamber and the discharge port.
  • the center line of the cylinder hole passes through the center line of the crankshaft and the combustion chamber. Therefore, the center line of the cylinder hole extends from the crankshaft in any of the upper direction, the front upper direction, and the front direction.
  • a straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft is assumed to be a straight line L.
  • the straight line L extends from the crankshaft in any of the forward, front lower and lower directions. At least a part of the single combustion chamber main catalyst is located in front of the straight line L when viewed from the left-right direction. Therefore, the main catalyst for a single combustion chamber is disposed at a position closer to the combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
  • the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the vehicle, the cylinder portion of the engine body has a cylinder hole in which a piston is disposed, At least a part of the one combustion chamber of the cylinder portion is disposed in front of the front and rear direction of the vehicle with respect to the center line of the crankshaft, and the discharge port of the silencer for the single combustion chamber is It is arranged behind the center line of the crankshaft in the front-rear direction of the vehicle, and when viewed from the left-right direction, at least a part of the single combustion chamber main catalyst is located at the center line of the cylinder hole.
  • a straight line that is orthogonal and orthogonal to the center line of the crankshaft may be located behind the vehicle in the front-rear direction.
  • the main catalyst for the single combustion chamber has a path length from the one combustion chamber to the upstream end of the single catalyst for the single combustion chamber, and the downstream end of the main catalyst for the single combustion chamber. It is preferable that it is arrange
  • the path length from one combustion chamber to the upstream end of the single catalyst for the single combustion chamber is shorter than the path length from the downstream end of the main catalyst for the single combustion chamber to the discharge port. Therefore, the single combustion chamber main catalyst can be arranged at a position closer to the combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
  • the main catalyst for the single combustion chamber has a path length from the one combustion chamber to the upstream end of the single catalyst for the single combustion chamber, and the downstream end of the main catalyst for the single combustion chamber.
  • exhaust pipe is preferably disposed at a position shorter than the path length.
  • the path length from one combustion chamber to the upstream end of the single combustion chamber main catalyst is the path length from the downstream end of the single combustion chamber main catalyst to the downstream end of the single combustion chamber exhaust pipe. Shorter than the length. Therefore, the single combustion chamber main catalyst can be arranged at a position closer to the combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
  • the main catalyst for the single combustion chamber has a path length from the one combustion chamber to the upstream end of the single catalyst for the single combustion chamber, and the downstream end of the main catalyst for the single combustion chamber. To a downstream end of the single combustion chamber exhaust pipe.
  • the upstream oxygen detection member for the single combustion chamber has an upstream path length from the one combustion chamber to the upstream end of the upstream oxygen detection member for the single combustion chamber. You may arrange
  • the path length from one combustion chamber to the upstream end of the single combustion chamber upstream oxygen detection member is from the single combustion chamber upstream oxygen detection member to the upstream end of the single combustion chamber main catalyst. Shorter than the path length. Therefore, the upstream combustion oxygen detection member for the single combustion chamber is disposed at a position closer to the combustion chamber. Therefore, at the time of engine start-up, the single combustion chamber upstream oxygen detection member can be raised to the activation temperature earlier. Therefore, the detection accuracy of the upstream oxygen detection member for a single combustion chamber can be improved. Thereby, the combustion control based on the signal of the upstream oxygen detection member for the single combustion chamber can be performed with higher accuracy. As a result, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved. Moreover, the progress of deterioration of the single combustion chamber main catalyst can be delayed by improving the accuracy of combustion control. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the upstream oxygen detection member for the single combustion chamber has an upstream path length from the one combustion chamber to the upstream end of the upstream oxygen detection member for the single combustion chamber. You may arrange
  • the path length from one combustion chamber to the upstream end of the single combustion chamber upstream oxygen detection member is from the single combustion chamber upstream oxygen detection member to the upstream end of the single combustion chamber main catalyst. It is longer than the path length. Therefore, the single combustion chamber upstream oxygen detection member is disposed at a position close to the single combustion chamber main catalyst. Therefore, it is possible to detect the oxygen concentration of the exhaust gas flowing into the single combustion chamber main catalyst more accurately. Thereby, the combustion control based on the signal of the upstream oxygen detection member for the single combustion chamber can be performed with higher accuracy. As a result, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved. Moreover, the progress of deterioration of the single combustion chamber main catalyst can be delayed by improving the accuracy of combustion control. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the exhaust pipe for the single combustion chamber includes a catalyst arrangement passage portion in which the main catalyst for the single combustion chamber is arranged, and an upstream passage portion connected to an upstream end of the catalyst arrangement passage portion.
  • the area of the cross section perpendicular to the flow direction of the exhaust gas in at least a part of the upstream passage portion is smaller than the area of the cross section perpendicular to the flow direction of the exhaust gas in the catalyst arrangement passage portion.
  • the single combustion chamber exhaust pipe has the catalyst arrangement passage portion and the upstream passage portion.
  • the main catalyst for a single combustion chamber is arranged in the catalyst arrangement passage part.
  • the upstream passage portion is connected to the upstream end of the catalyst arrangement passage portion.
  • Sa be the area of the cross section orthogonal to the flow direction of the exhaust gas in the catalyst arrangement passage portion.
  • the area of the cross section perpendicular to the flow direction of the exhaust gas in at least a part of the upstream passage portion is smaller than Sa. Therefore, a catalyst having a large cross-sectional area can be used as the main catalyst for the single combustion chamber. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be improved.
  • the exhaust pipe for the single combustion chamber may include at least a part of the outer pipe that covers at least a part of the exhaust pipe in the flow direction of the exhaust gas from the main catalyst for the single combustion chamber. It is preferable to be composed of multiple tubes with tubes.
  • the single combustion chamber exhaust pipe upstream of the single combustion chamber main catalyst is formed of multiple pipes.
  • the multiple tube includes an inner tube and at least one outer tube covering the inner tube.
  • the exhaust pipe for the single combustion chamber has a catalyst arrangement passage portion in which the main catalyst for the single combustion chamber is arranged, and the single cylinder four-stroke engine unit has the catalyst arrangement passage portion. It is preferable to provide a catalyst protector that covers at least a part of the outer surface of the battery.
  • the single combustion chamber exhaust pipe has the catalyst arrangement passage portion.
  • the main catalyst for a single combustion chamber is arranged in the catalyst arrangement passage part. At least a part of the outer surface of the catalyst arrangement passage portion is covered with a catalyst protector.
  • the single-cylinder four-stroke engine unit has a more exhaust gas flow direction than the single combustion chamber main catalyst in the single combustion chamber exhaust passage section or the single combustion chamber exhaust pipe. It is preferable to provide an upstream sub-catalyst for a single combustion chamber provided upstream and purifying exhaust gas.
  • the single combustion chamber upstream sub-catalyst is provided in the single combustion chamber cylinder exhaust passage or the single combustion chamber exhaust pipe.
  • the single combustion chamber upstream sub-catalyst is provided upstream of the single combustion chamber main catalyst. Therefore, the upstream sub-catalyst for the single combustion chamber is more rapidly deteriorated than the main catalyst for the single combustion chamber.
  • the exhaust gas purification performance can be maintained by the main catalyst for the single combustion chamber. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer time.
  • the single combustion chamber upstream oxygen detection member may be disposed upstream of the single combustion chamber upstream sub-catalyst in the exhaust gas flow direction.
  • the single combustion chamber upstream oxygen detection member is disposed upstream of the single combustion chamber upstream sub-catalyst. Therefore, the single combustion chamber upstream oxygen detection member can detect the oxygen concentration of the exhaust gas flowing into the single combustion chamber upstream sub-catalyst. Therefore, the exhaust gas purification performance of the single combustion chamber upstream sub-catalyst can be enhanced by performing combustion control based on the signal of the single combustion chamber upstream oxygen detection member.
  • the single-cylinder four-stroke engine unit is disposed downstream of the single combustion chamber main catalyst in the exhaust gas flow direction in the single combustion chamber exhaust pipe or in the single combustion chamber silencer. It is preferable to provide a downstream sub-catalyst for a single combustion chamber provided in
  • the single combustion chamber downstream sub-catalyst is provided in the single combustion chamber exhaust pipe or the single combustion chamber silencer.
  • the single combustion chamber downstream sub-catalyst is provided downstream of the single combustion chamber main catalyst. Therefore, the deterioration of the single combustion chamber main catalyst is faster than that of the single combustion chamber downstream sub-catalyst.
  • the exhaust gas purification performance can be maintained by the single combustion chamber downstream sub-catalyst. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer time.
  • the downstream oxygen detection member for the single combustion chamber is downstream of the single combustion chamber main catalyst in the flow direction of the exhaust gas, and is more exhausted than the downstream sub-catalyst for the single combustion chamber. It may be arranged upstream in the flow direction.
  • the single combustion chamber downstream oxygen detection member may be disposed downstream of the single combustion chamber downstream sub-catalyst in the exhaust gas flow direction.
  • the control device determines a purification capability of the single combustion chamber main catalyst based on a signal from the single combustion chamber downstream oxygen detection member, and It is preferable to provide notifying means for informing when the control device determines that the purification capacity has decreased to a predetermined level.
  • the control device determines the purification ability of the single combustion chamber main catalyst based on the signal of the single combustion chamber downstream oxygen detection member.
  • the notification means notifies. Thereby, before the deterioration of the main catalyst for single combustion chambers reaches a predetermined level, replacement of the main catalyst for single combustion chambers can be promoted. As a result, the initial performance of exhaust purification of the vehicle can be maintained for a longer period by using a plurality of single combustion chamber main catalysts.
  • the single-cylinder four-stroke engine unit includes a fuel supply device that supplies fuel to the one combustion chamber, and the control device includes a signal from the upstream oxygen detection member for the single combustion chamber, It is preferable to control the amount of fuel supplied to the one combustion chamber by the combustion supply device based on the signal of the downstream oxygen detection member for a single combustion chamber.
  • the actual state of purification by the single combustion chamber main catalyst can be grasped. Therefore, the accuracy of combustion control can be improved by performing combustion control based on the signals of the two oxygen detection members. Thereby, progress of deterioration of the main catalyst for single combustion chambers can be delayed. As a result, the initial performance of the vehicle exhaust purification performance can be maintained for a longer period.
  • the single-cylinder four-stroke engine unit of the present invention is the single-cylinder four-stroke engine unit mounted on the vehicle, and includes a single combustion chamber and a single combustion in which exhaust gas discharged from the one combustion chamber flows.
  • An engine body having a cylinder portion in which a chamber cylinder exhaust passage portion is formed; a single combustion chamber exhaust pipe connected to a downstream end of the single combustion chamber cylinder exhaust passage portion of the engine body; A discharge port that faces the exhaust port, and is connected to the exhaust pipe for the single combustion chamber and flows the exhaust gas flowing in from the downstream end of the exhaust pipe for the single combustion chamber to the discharge port, and reduces the noise generated by the exhaust gas.
  • a single combustion chamber silencer, and the single combustion chamber cylinder exhaust passage or the single combustion chamber exhaust pipe, and an upstream end thereof from an upstream end of the single combustion chamber silencer A single combustion chamber main catalyst that is disposed upstream of the exhaust gas flow direction and that most purifies the exhaust gas discharged from the one combustion chamber in the exhaust path from the one combustion chamber to the discharge port; A single combustion chamber that is disposed upstream of the single combustion chamber main catalyst in the flow direction of the exhaust gas in the cylinder exhaust passage for the single combustion chamber or the exhaust pipe for the single combustion chamber and detects the oxygen concentration in the exhaust gas
  • the upstream oxygen detection member, and the single combustion chamber cylinder exhaust passage, the single combustion chamber exhaust pipe, or the single combustion chamber silencer, the flow direction of exhaust gas from the single combustion chamber main catalyst The downstream oxygen detection member for a single combustion chamber that is disposed downstream of the exhaust gas and detects the oxygen concentration in the exhaust gas, the signal of the upstream oxygen detection member for the single combustion chamber, and the signal of the downstream oxygen detection member for the single combustion chamber Process A control
  • the initial performance of the vehicle exhaust purification is maintained for a long time. Can do.
  • FIG. 1 is a side view of a motorcycle according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the motorcycle of FIG. 1 with a vehicle body cover and the like removed.
  • FIG. 3 is a bottom view of FIG. 2.
  • FIG. 2 is a control block diagram of the motorcycle of FIG. 1.
  • FIG. 2 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 1.
  • FIG. 6 is a side view of a motorcycle according to Modification 1-1 of Embodiment 1 with a body cover and the like removed.
  • FIG. 7 is a bottom view of FIG. 6.
  • Fig. 7 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in Fig. 6.
  • FIG. 6 is a side view of a motorcycle according to Modification 1-2 of Embodiment 1 with a body cover and the like removed.
  • Fig. 10 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in Fig. 9. It is a side view of the motorcycle of Embodiment 2 of the present invention.
  • FIG. 12 is a bottom view of FIG. 11.
  • FIG. 12 is a side view of the motorcycle shown in FIG. 11 with a vehicle body cover and the like removed.
  • FIG. 14 is a bottom view of FIG. 13.
  • FIG. 12 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 11.
  • FIG. 6 is a side view of a motorcycle according to Modification 2-1 of Embodiment 2 with a body cover and the like removed.
  • FIG. 17 is a bottom view of FIG. 16.
  • FIG. 17 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 16. It is a side view of the motorcycle of Embodiment 3 of the present invention.
  • FIG. 20 is a bottom view of FIG. 19.
  • FIG. 20 is a side view of the motorcycle shown in FIG. 19 with a vehicle body cover and the like removed. It is a bottom view of FIG.
  • FIG. 20 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 19.
  • FIG. 10 is a side view of a motorcycle according to Modification 3-1 of Embodiment 3 with a body cover and the like removed. It is a bottom view of FIG. Fig.
  • FIG. 25 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in Fig. 24. It is a side view of the motorcycle of Embodiment 4 of the present invention. It is a bottom view of FIG. FIG. 28 is a side view of the motorcycle of FIG. 27 with a vehicle body cover and the like removed. FIG. 30 is a bottom view of FIG. 29. FIG. 28 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 27.
  • FIG. 10 is a side view of a motorcycle according to Modification 4-1 of Embodiment 4 with a body cover and the like removed. It is a bottom view of FIG. Fig. 33 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in Fig. 32.
  • FIG. 6 is a schematic diagram showing an engine body and an exhaust system of a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a schematic view of an engine body of a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view of an exhaust pipe applied to a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a partially enlarged view of a side view of a motorcycle according to another embodiment of the present invention.
  • front, rear, left, and right mean front, rear, left, and right, respectively, as viewed from a motorcycle occupant. However, it is assumed that the motorcycle is placed on a horizontal ground.
  • Reference numerals F, Re, L, and R attached to the drawings represent front, rear, left, and right, respectively.
  • FIG. 1 is a side view of a motorcycle according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the motorcycle according to the first embodiment with a vehicle body cover and the like removed.
  • FIG. 3 is a bottom view of the motorcycle according to the first embodiment with a vehicle body cover and the like removed.
  • FIG. 5 is a schematic diagram showing an engine and an exhaust system of the motorcycle according to the first embodiment.
  • the vehicle of the first embodiment is a so-called underbone type motorcycle 1.
  • the motorcycle 1 includes a body frame 2.
  • the vehicle body frame 2 includes a head pipe 3, a main frame 4, and a seat rail 5.
  • the main frame 4 extends rearward and downward from the head pipe 3.
  • the seat rail 5 extends rearward and upward from the middle part of the main frame 4.
  • a steering shaft is rotatably inserted into the head pipe 3.
  • a handle 7 (see FIG. 1) is provided on the upper portion of the steering shaft.
  • a display device (not shown) is disposed in the vicinity of the handle 7. The display device displays vehicle speed, engine speed, various warnings, and the like.
  • a pair of left and right front forks 6 are supported at the bottom of the steering shaft.
  • An axle 8 a is fixed to the lower end portion of the front fork 6.
  • a front wheel 8 is rotatably attached to the axle 8a.
  • a fender 10 is provided above and behind the front wheel 8.
  • a seat 9 (see FIG. 1) is supported on the seat rail 5.
  • the seat rail 5 is connected to upper ends of a pair of left and right rear cushion units 13.
  • the lower end portion of the rear cushion unit 13 is supported by the rear portions of the pair of left and right rear arms 14.
  • the front portion of the rear arm 14 is connected to the vehicle body frame 2 via a pivot shaft 14a.
  • the rear arm 14 can swing up and down around the pivot shaft 14a.
  • a rear wheel 15 is supported at the rear portion of the rear arm 14.
  • an engine body 20 is disposed below the main frame 4.
  • the engine body 20 is supported by the body frame 2.
  • the upper part of the engine body 20 is fixed to the bracket 4a provided on the main frame 4 by bolts 4b.
  • an upper front portion of a crankcase portion 21 described later of the engine body 20 is fixed to the bracket 4a.
  • the rear portion of the engine body 20 is also fixed to another bracket provided on the vehicle body frame 2.
  • An air cleaner 32 is disposed below the main frame 4 and above the engine body 20.
  • the motorcycle 1 has a vehicle body cover 11 that covers the vehicle body frame 2 and the like.
  • the vehicle body cover 11 includes a main cover 16 and a front cover 17.
  • the front cover 17 is disposed in front of the head pipe 3.
  • the main cover 16 is disposed behind the head pipe 3.
  • the main cover 16 covers the main frame 4 and the seat rail 5.
  • the main cover 16 and the front cover 17 cover the left and right sides of the front portion of the engine body 20.
  • the front cover 17 covers the left and right sides of the air cleaner 32.
  • the main frame 4 and the vehicle body cover 11 have a low portion between the seat 9 and the head pipe 3.
  • the underbone type motorcycle 1 has a recess 12 formed behind the head pipe 3, ahead of the seat 9 and above the main frame 4 when viewed from the left-right direction of the vehicle.
  • the recess 12 makes it easier for the occupant to straddle the vehicle body.
  • the motorcycle 1 has a single-cylinder four-stroke engine unit 19.
  • the single-cylinder four-stroke engine unit 19 includes an engine body 20, an air cleaner 32, an intake pipe 33, an exhaust pipe 34, a silencer 35, a main catalyst 39 (single combustion chamber main catalyst), and upstream oxygen detection.
  • a member 36 upstream oxygen detecting member for a single combustion chamber
  • a downstream oxygen detecting member 37 downstream oxygen detecting member for a single combustion chamber
  • the main catalyst 39 is disposed in the exhaust pipe 34.
  • the main catalyst 39 purifies the exhaust gas flowing through the exhaust pipe 34.
  • the upstream oxygen detection member 36 is disposed upstream of the main catalyst 39 in the exhaust pipe 34.
  • the downstream oxygen detection member 37 is disposed downstream of the main catalyst 39 in the exhaust pipe 34.
  • the upstream oxygen detection member 36 and the downstream oxygen detection member 37 detect the amount of oxygen or the oxygen concentration in the exhaust gas flowing through the exhaust pipe 34.
  • the engine body 20 is a single-cylinder four-stroke engine. As shown in FIGS. 2 and 3, the engine main body 20 includes a crankcase portion 21 and a cylinder portion 22. The cylinder part 22 extends forward from the crankcase part 21.
  • the crankcase portion 21 includes a crankcase body 23, a crankshaft 27 accommodated in the crankcase body 23, a transmission mechanism, and the like.
  • the center line Cr1 of the crankshaft 27 is referred to as a crankshaft line Cr1.
  • the crank axis Cr1 extends in the left-right direction.
  • Lubricating oil is stored in the crankcase body 23. Such oil is conveyed by an oil pump (not shown) and circulates in the engine body 20.
  • the cylinder part 22 has a cylinder body 24, a cylinder head 25, a head cover 26, and components housed therein. As shown in FIG. 2, the cylinder body 24 is connected to the front portion of the crankcase body 23. The cylinder head 25 is connected to the front part of the cylinder body 24. The head cover 26 is connected to the front part of the cylinder head 25.
  • a cylinder hole 24 a is formed in the cylinder body 24.
  • a piston 28 is accommodated in the cylinder hole 24a so as to be able to reciprocate.
  • the piston 28 is connected to the crankshaft 27 via a connecting rod.
  • the center line Cy1 of the cylinder hole 24a is referred to as a cylinder axis Cy1.
  • the engine body 20 is arranged such that the cylinder axis Cy ⁇ b> 1 extends in the front-rear direction (horizontal direction). More specifically, the direction of the cylinder axis Cy1 from the crankcase portion 21 toward the cylinder portion 22 is front-upward.
  • the inclination angle of the cylinder axis Cy1 with respect to the horizontal direction is not less than 0 degrees and not more than 45 degrees.
  • one combustion chamber 29 is formed inside the cylinder portion 22.
  • the combustion chamber 29 is formed by the inner surface of the cylinder hole 24 a of the cylinder body 24, the cylinder head 25, and the piston 28. That is, a part of the combustion chamber 29 is partitioned by the inner surface of the cylinder hole 24a.
  • a tip end portion of a spark plug (not shown) is arranged in the combustion chamber 29.
  • the spark plug ignites a mixed gas of fuel and air in the combustion chamber 29.
  • the combustion chamber 29 is located in front of the crank axis Cr1. This is paraphrased as follows. A straight line passing through the crank axis Cr1 and extending in parallel with the vertical direction is defined as L1. When viewed from the left-right direction, the combustion chamber 29 is disposed in front of the straight line L1.
  • the cylinder head 25 is formed with a cylinder intake passage portion 30 and a cylinder exhaust passage portion 31 (a cylinder exhaust passage portion for a single combustion chamber).
  • the “passage part” is a structure that forms a space (path) through which gas or the like passes.
  • an intake port 30 a and an exhaust port 31 a are formed in a wall portion that forms the combustion chamber 29.
  • the cylinder intake passage portion 30 extends from the intake port 30 a to an intake port formed on the outer surface (upper surface) of the cylinder head 25.
  • the cylinder exhaust passage 31 extends from the exhaust port 31 a to a discharge port formed on the outer surface (lower surface) of the cylinder head 25.
  • Air supplied to the combustion chamber 29 passes through the cylinder intake passage portion 30.
  • the exhaust gas discharged from the combustion chamber 29 passes through the cylinder exhaust passage portion 31.
  • the cylinder intake passage 30 is provided with an intake valve V1.
  • An exhaust valve V ⁇ b> 2 is disposed in the cylinder exhaust passage portion 31.
  • the intake valve V ⁇ b> 1 and the exhaust valve V ⁇ b> 2 are operated by a valve operating mechanism (not shown) that is linked to the crankshaft 27.
  • the intake port 30a is opened and closed by the movement of the intake valve V1.
  • the exhaust port 31a is opened and closed by the movement of the exhaust valve V2.
  • An intake pipe 33 is connected to an end (suction port) of the cylinder intake passage portion 30.
  • An exhaust pipe 34 is connected to an end portion (discharge port) of the cylinder exhaust passage portion 31.
  • the path length of the cylinder exhaust passage portion 31 is a1.
  • an injector 48 (see FIG. 4) is arranged in the cylinder intake passage 30 or the intake pipe 33.
  • the injector 48 is for supplying fuel to the combustion chamber 29. More specifically, the injector 48 injects fuel in the cylinder intake passage portion 30 or the intake pipe 33.
  • the injector 48 may be disposed so as to inject fuel into the combustion chamber 29.
  • a throttle valve (not shown) is disposed in the intake pipe 33.
  • the intake pipe 33 extends upward from the upper surface of the cylinder head 25 when viewed from the left-right direction.
  • the intake pipe 33 is connected to the air cleaner 32.
  • the air cleaner 32 purifies the air supplied to the engine body 20. Air purified by passing through the air cleaner 32 is supplied to the engine body 20 through the intake pipe 33.
  • FIG. 4 is a control block diagram of the motorcycle according to the first embodiment.
  • the single-cylinder four-stroke engine unit 19 includes an engine speed sensor 46a, a throttle opening sensor 46b (throttle position sensor), an engine temperature sensor 46c, an intake pressure sensor 46d, and an intake temperature sensor 46e.
  • the engine rotation speed sensor 46a detects the rotation speed of the crankshaft 27, that is, the engine rotation speed.
  • the throttle opening sensor 46b detects the opening of the throttle valve (hereinafter referred to as the throttle opening) by detecting the position of a throttle valve (not shown).
  • the engine temperature sensor 46c detects the temperature of the engine body.
  • the intake pressure sensor 46d detects the pressure (intake pressure) in the intake pipe 33.
  • the intake air temperature sensor 46e detects the temperature of air in the intake pipe 33 (intake air temperature).
  • the single-cylinder four-stroke engine unit 19 includes an electronic control unit (ECU: Electronic Control Unit) 45 that controls the engine body 20.
  • the electronic control unit 45 corresponds to the control device of the present invention.
  • the electronic control unit 45 is connected to various sensors such as an engine speed sensor 46a, an engine temperature sensor 46c, a throttle opening sensor 46b, an intake pressure sensor 46d, an intake air temperature sensor 46e, and a vehicle speed sensor.
  • the electronic control unit 45 is connected to an ignition coil 47, an injector 48, a fuel pump 49, a display device (not shown), and the like.
  • the electronic control unit 45 includes a control unit 45a and an operation instruction unit 45b.
  • the operation instructing unit 45b includes an ignition drive circuit 45c, an injector drive circuit 45d, and a pump drive circuit 45e.
  • the ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e drive the ignition coil 47, the injector 48, and the fuel pump 49, respectively, in response to a signal from the control unit 45a.
  • the fuel pump 49 is connected to the injector 48 via a fuel hose.
  • fuel in a fuel tank (not shown) is pumped to the injector 48.
  • the control unit 45a is, for example, a microcomputer.
  • the controller 45a controls the ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e based on the signal from the upstream oxygen detection member 36 and the signal from the engine rotation speed sensor 46a.
  • the controller 45a controls the ignition timing by controlling the ignition drive circuit 45c.
  • the controller 45a controls the fuel injection amount by controlling the injector drive circuit 45d and the pump drive circuit 45e.
  • the air-fuel ratio of the air-fuel mixture in the combustion chamber 29 is preferably the stoichiometric air-fuel ratio (stoichiometry).
  • the controller 45a increases or decreases the fuel injection amount as necessary.
  • the controller 45a calculates the basic fuel injection amount based on signals from the engine speed sensor 46a, the throttle opening sensor 46b, the engine temperature sensor 46c, and the intake pressure sensor 46d. Specifically, the intake air amount is calculated using a map in which the intake air amount is associated with the throttle opening and the engine rotational speed, and a map in which the intake air amount is associated with the intake pressure and the engine rotational speed. Ask. Then, based on the intake air amount obtained from the map, the basic fuel injection amount that can achieve the target air-fuel ratio is determined. When the throttle opening is small, a map in which the intake air amount is associated with the intake pressure and the engine speed is used. On the other hand, when the throttle opening is large, a map in which the intake air amount is associated with the throttle opening and the engine speed is used.
  • control unit 45a calculates a feedback correction value for correcting the basic fuel injection amount based on the signal of the upstream oxygen detection member 36. Specifically, first, based on the signal from the upstream oxygen detection member 36, it is determined whether the air-fuel mixture is lean or rich. Note that rich means that the fuel is excessive with respect to the stoichiometric air-fuel ratio. Lean means a state where air is excessive with respect to the stoichiometric air-fuel ratio. When determining that the air-fuel mixture is lean, the control unit 45a calculates a feedback correction value so that the next fuel injection amount increases. On the other hand, when determining that the air-fuel mixture is rich, the control unit 45a obtains a feedback correction value so that the next fuel injection amount is reduced.
  • control unit 45a calculates a correction value for correcting the basic fuel injection amount based on the engine temperature, the outside air temperature, the outside air pressure, and the like. Furthermore, the control unit 45a calculates a correction value according to the transient characteristics during acceleration and deceleration.
  • the control unit 45a calculates the fuel injection amount based on the basic fuel injection amount and a correction value such as a feedback correction value. Based on the fuel injection amount thus determined, the fuel pump 49 and the injector 48 are driven. In this way, the electronic control unit 45 (control device) processes the signal of the upstream oxygen detection member 36. The electronic control unit 45 (control device) performs combustion control based on the signal from the upstream oxygen detection member 36.
  • the electronic control unit 45 processes the signal of the downstream oxygen detection member 37.
  • the electronic control unit 45 determines the purification capacity of the main catalyst 39 based on the signal from the downstream oxygen detection member 37.
  • an example of a specific method for determining the purification ability of the main catalyst 39 based on the signal from the downstream oxygen detection member 37 will be described.
  • the fuel injection amount is controlled so that the mixed gas repeats rich and lean for a certain period (several seconds). And the delay of the change of the signal of the downstream oxygen detection member 37 with respect to the change of the fuel injection amount is detected.
  • the delay of the signal change of the downstream oxygen detection member 37 is large, it is determined that the purification capacity of the main catalyst 39 has decreased from a predetermined level.
  • a signal is sent from the electronic control unit 45 to the display device. Then, a warning light (not shown) of the display device is turned on. Thereby, it is possible to prompt the passenger to replace the main catalyst 39.
  • the purification ability of the main catalyst 39 can be determined by using the signal of the downstream oxygen detection member 37 disposed downstream of the main catalyst 39. Therefore, notification can be made before the deterioration of the main catalyst 39 reaches a predetermined level, and the replacement of the main catalyst 39 can be urged. As a result, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period using a plurality of main catalysts.
  • upstream means upstream in the flow direction of exhaust gas.
  • downstream means downstream in the flow direction of the exhaust gas.
  • the path direction is the direction in which exhaust gas flows.
  • the single cylinder four-stroke engine unit 19 includes the engine body 20, the exhaust pipe 34, the silencer 35, the main catalyst 39, the upstream oxygen detection member 36, and the downstream oxygen detection member 37. Yes.
  • the silencer 35 has a discharge port 35e facing the atmosphere.
  • a path from the combustion chamber 29 to the discharge port 35e is an exhaust path 41 (see FIG. 5).
  • the exhaust path 41 is formed by the cylinder exhaust passage portion 31, the exhaust pipe 34, and the silencer 35.
  • the exhaust path 41 is a space through which exhaust gas passes.
  • the upstream end portion of the exhaust pipe 34 is connected to the cylinder exhaust passage portion 31.
  • the downstream end of the exhaust pipe 34 is connected to a silencer 35.
  • a catalyst unit 38 is provided in the middle of the exhaust pipe 34.
  • a portion of the exhaust pipe 34 upstream from the catalyst unit 38 is referred to as an upstream exhaust pipe 34a.
  • a portion of the exhaust pipe 34 downstream from the catalyst unit 38 is referred to as a downstream exhaust pipe 34b.
  • the exhaust pipe 34 is drawn in a straight line for simplification, but the exhaust pipe 34 is not straight.
  • the exhaust pipe 34 is provided in the right part of the motorcycle 1. As shown in FIG. 2, a part of the exhaust pipe 34 is positioned below the crank axis Cr1.
  • the exhaust pipe 34 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion.
  • the upstream bent portion changes the flow direction of the exhaust gas from the direction extending in the vertical direction to the direction extending in the front-rear direction when viewed from the left-right direction. More specifically, the bent portion changes the flow direction of the exhaust gas from downward to rearward as viewed from the left-right direction.
  • the downstream bent portion changes the flow direction of the exhaust gas from the rear upward direction to the rear direction when viewed from the left-right direction.
  • a portion slightly downstream from the downstream bent portion is positioned below the crank axis Cr1.
  • the main catalyst 39 is disposed between the two bent portions.
  • the silencer 35 is connected to the exhaust pipe 34.
  • the silencer 35 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 35 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 35.
  • the downstream end of the exhaust pipe 34 is disposed in the expansion chamber of the silencer 35.
  • a discharge port 35e facing the atmosphere is provided at the downstream end of the silencer 35. As shown in FIG. 5, the path length of the exhaust path from the downstream end of the exhaust pipe 34 to the discharge port 35e is defined as e1.
  • the path length of the expansion chamber in the silencer 35 is the length of the path connecting the center of the expansion chamber inlet to the center of the expansion chamber outlet at the shortest distance.
  • the exhaust gas that has passed through the silencer 35 is discharged to the atmosphere from the discharge port 35e. As shown in FIG. 2, the discharge port 35e is located behind the crank axis Cr1.
  • the main catalyst 39 is disposed in the exhaust pipe 34.
  • the upstream end of the main catalyst 39 is disposed upstream of the upstream end 35 a of the silencer 35.
  • the catalyst unit 38 includes a cylindrical casing 40 and a main catalyst 39.
  • the upstream end of the casing 40 is connected to the upstream exhaust pipe 34a.
  • the downstream end of the casing 40 is connected to the downstream exhaust pipe 34b.
  • the casing 40 constitutes a part of the exhaust pipe 34.
  • the main catalyst 39 is fixed inside the casing 40.
  • the exhaust gas is purified by passing through the main catalyst 39. All exhaust gas discharged from the exhaust port 31 a of the combustion chamber 29 passes through the main catalyst 39.
  • the main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 most in the exhaust path 41.
  • the main catalyst 39 is a so-called three-way catalyst.
  • the three-way catalyst is removed by oxidizing or reducing three substances of hydrocarbon, carbon monoxide, and nitrogen oxide contained in the exhaust gas.
  • the three-way catalyst is one type of redox catalyst.
  • the main catalyst 39 has a base material and a catalytic material attached to the surface of the base material.
  • the catalytic material has a support and a noble metal.
  • the carrier is provided between the noble metal and the substrate.
  • the carrier carries a noble metal. This noble metal purifies the exhaust gas. Examples of the noble metal include platinum, palladium, and rhodium that remove hydrocarbons, carbon monoxide, and nitrogen oxides, respectively.
  • the main catalyst 39 has a porous structure.
  • the porous structure refers to a structure in which a hole is formed in a cross section perpendicular to the path direction of the exhaust path 41.
  • An example of the porous structure is a honeycomb structure.
  • the main catalyst 39 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 34a.
  • the main catalyst 39 may be a metal base catalyst or a ceramic base catalyst.
  • the metal base catalyst is a catalyst whose base is made of metal.
  • the ceramic base catalyst is a catalyst whose base is made of ceramic.
  • the base material of the metal base catalyst is formed, for example, by alternately stacking and winding metal corrugated plates and metal flat plates.
  • the base material of the ceramic base catalyst is, for example, a honeycomb structure.
  • the length of the main catalyst 39 in the path direction is c1.
  • the maximum width in the direction perpendicular to the path direction of the main catalyst 39 is w1.
  • the length c1 of the main catalyst 39 is longer than the maximum width w1 of the main catalyst 39.
  • the cross-sectional shape orthogonal to the path direction of the main catalyst 39 is, for example, a circular shape.
  • the cross-sectional shape may be a shape in which the horizontal length is longer than the vertical length.
  • the casing 40 includes a catalyst arrangement passage portion 40b, an upstream passage portion 40a, and a downstream passage portion 40c.
  • the main catalyst 39 is arranged in the catalyst arrangement passage portion 40b.
  • the upstream end and the downstream end of the catalyst arrangement passage portion 40 b are at the same positions as the upstream end and the downstream end of the main catalyst 39, respectively.
  • the area of the cross section perpendicular to the path direction of the catalyst arrangement passage portion 40b is substantially constant in the path direction.
  • the upstream passage portion 40a is connected to the upstream end of the catalyst arrangement passage portion 40b.
  • the downstream passage portion 40c is connected to the upstream end of the catalyst arrangement passage portion 40b.
  • the upstream passage portion 40a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • the downstream passage portion 40c is at least partially tapered.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • the area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 40b is S1.
  • the area of the cross section orthogonal to the route direction of at least a part of the upstream passage portion 40a is smaller than the area S1.
  • at least a part of the upstream passage portion 40a includes the upstream end of the upstream passage portion 40a.
  • the area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 40c is smaller than the area S1.
  • at least a part of the downstream passage portion 40c includes the downstream end of the downstream passage portion 40c.
  • the main catalyst 39 is disposed in front of the crank axis Cr1. That is, the main catalyst 39 is disposed in front of the straight line L1 when viewed from the left-right direction. As described above, the straight line L1 is a straight line that passes through the crank axis Cr1 and extends parallel to the vertical direction. Further, the main catalyst 39 is located in front (downward) of the cylinder axis Cy1 when viewed from the left-right direction.
  • L2 be a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the main catalyst 39 is located in front of the straight line L2.
  • the path length from the upstream end of the exhaust pipe 34 to the upstream end of the main catalyst 39 is b1.
  • the path length b ⁇ b> 1 is the path length of the passage portion including the upstream exhaust pipe 34 a and the upstream passage portion 40 a of the catalyst unit 38.
  • the path length b1 is the path length from the downstream end of the cylinder exhaust passage portion 31 to the upstream end of the main catalyst 39.
  • the path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34 is defined as d1.
  • the path length d1 is the path length of the passage portion including the downstream passage portion 40c and the downstream exhaust pipe 34b of the catalyst unit 38.
  • the path length from the combustion chamber 29 to the upstream end of the main catalyst 39 is a1 + b1.
  • the path length from the downstream end of the main catalyst 39 to the discharge port 35e is d1 + e1.
  • the main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1.
  • the main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1. Further, the main catalyst 39 is disposed at a position where the path length b1 is shorter than the path length d1.
  • the upstream oxygen detection member 36 is disposed in the exhaust pipe 34.
  • the upstream oxygen detection member 36 is disposed upstream of the main catalyst 39.
  • the upstream oxygen detection member 36 is disposed in the upstream exhaust pipe 34a (see FIG. 5).
  • the upstream oxygen detection member 36 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the upstream oxygen detection member 36 may be an oxygen sensor that detects whether the oxygen concentration is higher or lower than a predetermined value.
  • the upstream oxygen detection member 36 may be a sensor (for example, an A / F sensor: Air Fuel ratio sensor) that outputs a detection signal representing the oxygen concentration in a plurality of stages or linearly.
  • the upstream oxygen detection member 36 has one end (detection unit) disposed in the exhaust pipe 34 and the other end disposed outside the exhaust pipe 34.
  • the detection unit of the upstream oxygen detection member 36 can detect the oxygen concentration when the detection unit is heated to a high temperature and activated.
  • the detection result of the upstream oxygen detection member 36 is output to the electronic control unit 45.
  • the path length from the combustion chamber 29 to the upstream oxygen detection member 36 is h1.
  • the path length from the upstream oxygen detection member 36 to the upstream end of the main catalyst 39 is h2.
  • the upstream oxygen detection member 36 is disposed at a position where the path length h1 is shorter than the path length h2.
  • the downstream oxygen detection member 37 is disposed in the exhaust pipe 34.
  • the downstream oxygen detection member 37 is disposed downstream of the main catalyst 39.
  • the downstream oxygen detection member 37 is disposed in the downstream exhaust pipe 34b (see FIG. 5).
  • the downstream oxygen detection member 37 is disposed upstream of the silencer 35.
  • the downstream oxygen detection member 37 is a sensor that detects the oxygen concentration contained in the exhaust gas.
  • the downstream oxygen detection member 37 may be an oxygen sensor that detects whether the oxygen concentration is higher or lower than a predetermined value.
  • the downstream oxygen detection member 37 may be a sensor (for example, an A / F sensor: Air Fuel ratio sensor) that outputs a detection signal representing the oxygen concentration in a plurality of steps or linearly.
  • the downstream oxygen detection member 37 has one end (detection unit) disposed in the exhaust pipe 34 and the other end disposed outside the exhaust pipe 34. The detection result of the downstream oxygen detection member 37 is output to the electronic control unit 45.
  • the configuration of the motorcycle 1 according to the first embodiment has been described above.
  • the motorcycle 1 of the first embodiment has the following characteristics.
  • At least a part of the combustion chamber 29 is disposed in front of the crank axis Cr1.
  • the discharge port 35e of the silencer 35 is disposed behind the crank axis Cr1.
  • the main catalyst 39 is at least partially disposed in front of the crank axis Cr1.
  • the upstream end of the main catalyst 39 is disposed upstream of the upstream end 35 a of the silencer 35. That is, the main catalyst 39 is disposed at a position relatively close to the combustion chamber 29. Therefore, the exhaust gas purification performance of the main catalyst 39 can be improved.
  • the downstream oxygen detection member 37 is disposed downstream from the main catalyst 39. Deterioration of the main catalyst 39 can be detected based on the signal from the downstream oxygen detection member 37. Accordingly, it is possible to notify the user before the deterioration of the main catalyst 39 reaches a predetermined level and prompt the user to replace the main catalyst 39. As a result, the initial performance of the exhaust purification of the motorcycle 1 can be maintained for a longer period by using the plurality of main catalysts 39. Further, the deterioration of the main catalyst 39 may be detected based on the signal of the downstream oxygen detection member 37 and the signal of the upstream oxygen detection member 36 disposed upstream of the main catalyst 39.
  • the degree of deterioration of the main catalyst 39 can be detected with higher accuracy. Therefore, as compared with the case where the deterioration of the main catalyst 39 is detected using only the signal of the downstream oxygen detection member 37, one main catalyst 39 is maintained for a longer period of time while maintaining the initial performance of exhaust purification of the motorcycle 1. Can be used.
  • the actual purification capacity of the main catalyst 39 can be detected from the signal of the upstream oxygen detection member 36 disposed upstream of the main catalyst 39 and the signal of the downstream oxygen detection member 37 disposed downstream of the main catalyst 39. Therefore, when the combustion control is performed based on the signals of the two oxygen detection members 36 and 37, the accuracy of the combustion control can be improved. Thereby, the progress of deterioration of the main catalyst 39 can be delayed. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period. As described above, the initial performance of the exhaust purification of the motorcycle 1 can be maintained for a longer period without increasing the size of the main catalyst 39. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a long time while simplifying the support structure.
  • the motorcycle 1 including the single-cylinder four-stroke engine unit 19 of the present embodiment improves the exhaust gas purification performance by the catalyst while simplifying the support structure, and the initial performance of the motorcycle 1 for exhaust gas purification. Can be maintained for a long time.
  • the main catalyst 39 is at least partially disposed in front of the crank axis Cr1. Therefore, the main catalyst 39 is disposed at a position closer to the combustion chamber 29. Therefore, the exhaust gas purification performance by the main catalyst 39 can be further improved.
  • the straight line L2 is a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the straight line L2 extends downward from the crankshaft 27.
  • at least a part of the main catalyst 39 is located in front of the straight line L2. Therefore, the main catalyst 39 is disposed at a position closer to the combustion chamber 29. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1 + e1) from the downstream end of the main catalyst 39 to the discharge port 35e. Therefore, the main catalyst 39 can be disposed at a position closer to the combustion chamber 29. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1) from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34. Therefore, the main catalyst 39 can be disposed at a position closer to the combustion chamber 29. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the path length (h1) from one combustion chamber 29 to the upstream end of the upstream oxygen detection member 36 is shorter than the path length (h2) from the upstream oxygen detection member 36 to the upstream end of the main catalyst 39. Therefore, the upstream oxygen detection member is disposed at a position closer to the combustion chamber 29. Therefore, the upstream oxygen detection member 36 can be raised to the activation temperature earlier when the engine is started. Therefore, the detection accuracy of the upstream oxygen detection member 36 can be improved. Thereby, the combustion control based on the signal of the upstream oxygen detection member 36 can be performed with higher accuracy. As a result, the exhaust gas purification performance of the main catalyst 39 can be further improved. Further, the progress of deterioration of the main catalyst 39 can be delayed by improving the accuracy of the combustion control. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • the area of the cross section orthogonal to the flow direction of at least a part of the exhaust gas in the upstream passage 40a is smaller than the area S1.
  • the area S1 is an area of a cross section orthogonal to the flow direction of the exhaust gas in the catalyst arrangement passage portion 40b. Therefore, a catalyst having a large cross-sectional area can be used as the main catalyst 39. Therefore, the exhaust gas purification performance of the main catalyst 39 can be improved.
  • FIG. 6 is a side view of the motorcycle according to the modified example 1-1 of the first embodiment with the vehicle body cover and the like removed.
  • FIG. 7 is a bottom view of the motorcycle according to the modified example 1-1 of the first embodiment with the vehicle body cover and the like removed.
  • FIG. 8 is a schematic diagram showing an engine body and an exhaust system of Modification 1-1 of Embodiment 1.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main catalyst 39 is arranged downstream of the first embodiment.
  • the specific configuration of the main catalyst 39 is the same as that of the first embodiment.
  • the main catalyst 39 of Modification 1-1 is disposed in the exhaust pipe 234.
  • the upstream end of the main catalyst 39 is disposed upstream of the upstream end 35 a of the silencer 35.
  • the exhaust pipe 234 is connected to the cylinder exhaust passage portion 31 (see FIG. 8) and the silencer 35 in the same manner as the exhaust pipe 34 of the first embodiment.
  • a catalyst unit 38 is provided in the middle of the exhaust pipe 234.
  • a portion of the exhaust pipe 234 upstream from the catalyst unit 38 is referred to as an upstream exhaust pipe 234a.
  • a portion of the exhaust pipe 234 downstream from the catalyst unit 38 is referred to as a downstream exhaust pipe 234b.
  • the downstream exhaust pipe 234 b is disposed in the silencer 35.
  • the exhaust pipe 234 is drawn in a straight line for simplification, but the exhaust pipe 234 is not in a straight line.
  • the main catalyst 39 is disposed behind the crank axis Cr1. That is, the main catalyst 39 is disposed behind the straight line L1 when viewed from the left-right direction. As described above, the straight line L1 is a straight line that passes through the crank axis Cr1 and extends parallel to the vertical direction. Further, the main catalyst 39 is located in front (downward) of the cylinder axis Cy1 when viewed from the left-right direction.
  • the main catalyst 39 is located in front of the straight line L2 when viewed from the left-right direction.
  • the straight line L2 is a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the path length from the upstream end of the exhaust pipe 234 to the upstream end of the main catalyst 39 is b11.
  • the path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 234 is defined as d11.
  • the path length from the combustion chamber 29 to the upstream end of the main catalyst 39 is a1 + b11.
  • the path length from the downstream end of the main catalyst 39 to the discharge port 35e is d11 + e1.
  • the main catalyst 39 of the modified example 1-1 is disposed at a position where the path length a1 + b11 is shorter than the path length d11 + e1. Further, unlike the first embodiment, the main catalyst 39 of Modification 1-1 is disposed at a position where the path length a1 + b11 is longer than the path length d11. Further, unlike the first embodiment, the main catalyst 39 of the modified example 1-1 is disposed at a position where the path length b11 is longer than the path length d11.
  • the upstream oxygen detection member 36 is disposed in the exhaust pipe 234.
  • the upstream oxygen detection member 36 is disposed upstream of the main catalyst 39.
  • the upstream oxygen detection member 36 is disposed in the upstream exhaust pipe 234a (see FIG. 8).
  • the path length from the combustion chamber 29 to the upstream oxygen detection member 36 is h11.
  • the path length from the upstream oxygen detection member 36 to the upstream end of the main catalyst 39 is h12.
  • the upstream oxygen detection member 36 is disposed at a position where the path length h11 is shorter than the path length h12.
  • the downstream oxygen detection member 37 is disposed in the exhaust pipe 234.
  • the downstream oxygen detection member 37 is disposed downstream of the main catalyst 39.
  • the downstream oxygen detection member 37 is disposed in the downstream exhaust pipe 234a (see FIG. 8).
  • the downstream oxygen detection member 37 passes through the side wall portion of the silencer 35.
  • One end (detection unit) of the downstream oxygen detection member 37 is disposed in the downstream exhaust pipe 234a.
  • the other end of the downstream oxygen detection member 37 is disposed outside the silencer 35.
  • FIG. 9 is a side view of the motorcycle according to the modified example 1-2 of the first embodiment.
  • FIG. 10 is a schematic diagram showing an engine body and an exhaust system of a modified example 1-2 of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the upstream sub catalyst 300 upstream sub catalyst for the single combustion chamber
  • the main catalyst 39 the upstream oxygen detection member 36
  • the downstream oxygen detection member 37 are arranged in the exhaust pipe 334.
  • the exhaust pipe 334 is connected to the cylinder exhaust passage portion 31 (see FIG. 10) and the silencer 35 in the same manner as the exhaust pipe 34 of the first embodiment.
  • a catalyst unit 38 is provided in the middle of the exhaust pipe 334.
  • a portion of the exhaust pipe 334 upstream of the catalyst unit 38 is referred to as an upstream exhaust pipe 334a.
  • a portion of the exhaust pipe 334 downstream from the catalyst unit 38 is referred to as a downstream exhaust pipe 334b.
  • the exhaust pipe 334 is drawn in a straight line for simplification, but the exhaust pipe 334 is not in a straight line.
  • the upstream sub-catalyst 300 is provided upstream from the main catalyst 39.
  • the upstream sub-catalyst 300 is provided in the upstream exhaust pipe 334a (exhaust pipe 334).
  • the upstream sub-catalyst 300 may be composed of only the catalyst material attached to the inner wall of the exhaust pipe 334.
  • the base material to which the catalytic material of the upstream sub-catalyst 300 is attached is the inner wall of the exhaust pipe 334.
  • the upstream sub-catalyst 300 may have a base material arranged inside the exhaust pipe 334.
  • the upstream sub-catalyst 300 includes a base material and a catalyst material.
  • the base material of the upstream sub-catalyst 300 is, for example, a plate shape.
  • the shape of the cross section orthogonal to the path direction of the plate-like substrate may be S-shaped, circular, or C-shaped. Regardless of whether the upstream sub-catalyst 300 has a base material or not, the upstream sub-catalyst 300 does not have a porous structure. Therefore, the upstream sub-catalyst 300 has a smaller action that causes reflection of pressure pulsation due to exhaust gas than the main catalyst 39. Further, the upstream sub-catalyst 200 has a lower resistance to the flow of exhaust gas than the main catalyst 39.
  • the main catalyst 39 most purifies the exhaust gas discharged from the combustion chamber 29 in the exhaust passage 41. That is, the main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 in the exhaust path 41 rather than the upstream sub catalyst 300. In other words, the upstream sub-catalyst 300 has a lower contribution to purify the exhaust gas than the main catalyst 39.
  • the respective contributions of purification of the main catalyst 39 and the upstream sub-catalyst 300 can be measured by the following method.
  • a catalyst disposed upstream is referred to as a front catalyst
  • a catalyst disposed downstream is referred to as a rear catalyst.
  • the upstream sub-catalyst 300 is a front catalyst
  • the main catalyst 39 is a rear catalyst.
  • the engine unit of the first modification is operated, and the concentration of harmful substances contained in the exhaust gas discharged from the discharge port 35e in the warm-up state is measured.
  • the exhaust gas measurement method shall be in accordance with European regulations.
  • the main catalyst 39 and the upstream sub-catalyst 200 are activated at a high temperature. Therefore, the main catalyst 39 and the upstream sub-catalyst 200 can sufficiently exhibit purification performance when in the warm-up state.
  • the engine unit in this state is referred to as a measurement engine unit A.
  • emitted from the discharge port 35e at the time of a warm-up state is measured.
  • the front catalyst of this measurement engine unit A is removed, and only the base material of the front catalyst is arranged instead.
  • the engine unit in this state is referred to as a measurement engine unit B.
  • emitted from the discharge port 35e at the time of a warm-up state is measured.
  • the upstream sub-catalyst 200 front catalyst
  • the exhaust pipe 234 corresponds to the base material.
  • the arrangement of only the base material of the upstream sub-catalyst 200 in place of the upstream sub-catalyst 200 is to prevent the catalyst material from adhering to the inner wall of the exhaust pipe 234.
  • the measurement engine unit A has a front catalyst and does not have a rear catalyst.
  • the measurement engine unit B does not have a front catalyst and a rear catalyst. Therefore, the degree of contribution of the purification of the front catalyst (upstream sub-catalyst 300) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B. Further, the degree of contribution of the purification of the rear catalyst (main catalyst 39) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the engine unit of Modification 1-2.
  • the purification capacity of the upstream sub-catalyst 200 may be smaller or larger than the purification capacity of the main catalyst 39.
  • the purification capacity of the upstream sub catalyst 200 is smaller than the purification capacity of the main catalyst 39.
  • the exhaust gas purification rate when only the upstream sub catalyst 200 is provided is the purification of exhaust gas when only the main catalyst 39 is provided. That is less than the rate.
  • the main catalyst 39 is disposed in front of the crank axis Cr1. Further, the main catalyst 39 is located in front of the straight line L2 when viewed from the left-right direction.
  • the definition of the straight line L2 is the same as that in the first embodiment. That is, the straight line L2 is a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the path length from the upstream end of the exhaust pipe 334 to the upstream end of the main catalyst 39 is b21.
  • the path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 334 is defined as d21.
  • the path length from the combustion chamber 29 to the upstream end of the main catalyst 39 is a1 + b21.
  • the path length from the downstream end of the main catalyst 39 to the discharge port 35e is d21 + e1.
  • the main catalyst 39 is disposed at a position where the path length a1 + b21 is shorter than the path length d21 + e1. Similarly to the first embodiment, the main catalyst 39 is disposed at a position where the path length a1 + b21 is shorter than the path length d21. Further, as in the first embodiment, the main catalyst 39 is disposed at a position where the path length b21 is shorter than the path length d21.
  • the upstream oxygen detection member 36 is disposed in the exhaust pipe 334.
  • the upstream oxygen detection member 36 is disposed upstream of the upstream sub catalyst 300.
  • the upstream oxygen detection member 36 is disposed in the upstream exhaust pipe 334a (see FIG. 13).
  • the path length from the combustion chamber 29 to the upstream oxygen detection member 36 is h21.
  • the path length from the upstream oxygen detection member 36 to the upstream end of the main catalyst 39 is h22. Similar to the first embodiment, the upstream oxygen detection member 36 is disposed at a position where the path length h21 is shorter than the path length h22.
  • the downstream oxygen detection member 37 is disposed in the exhaust pipe 334.
  • the downstream oxygen detection member 37 is disposed downstream of the main catalyst 39.
  • the downstream oxygen detection member 37 is disposed in the downstream exhaust pipe 334b (see FIG. 13).
  • the downstream oxygen detection member 37 is disposed upstream of the silencer 35.
  • the upstream sub-catalyst 300 is provided upstream from the main catalyst 39.
  • the upstream sub-catalyst 300 progresses faster than the main catalyst 39.
  • the main catalyst 39 can maintain the exhaust gas purification performance. Therefore, it is possible to maintain the initial performance of exhaust purification of the motorcycle for a longer time.
  • the upstream oxygen detection member 36 is disposed upstream of the upstream sub-catalyst 300. Therefore, the upstream oxygen detection member 36 can detect the oxygen concentration of the exhaust gas flowing into the upstream sub catalyst 300. Therefore, the exhaust gas purification performance by the upstream sub-catalyst 300 can be enhanced by performing combustion control based on the signal of the upstream oxygen detection member 36.
  • FIG. 11 is a side view of the motorcycle according to the second embodiment of the present invention.
  • FIG. 12 is a bottom view of the motorcycle according to the second embodiment.
  • FIG. 13 is a side view of the motorcycle according to the second embodiment with a body cover and the like removed.
  • FIG. 14 is a bottom view of the motorcycle according to the second embodiment with a body cover and the like removed.
  • FIG. 15 is a schematic diagram showing an engine and an exhaust system of the motorcycle according to the second embodiment.
  • the vehicle according to the second embodiment is a so-called street type motorcycle 50.
  • the motorcycle 50 includes a vehicle body frame 53.
  • the vehicle body frame 53 includes a head pipe 53a, an upper main frame 53b, a lower main frame 53c, and a seat frame 53d.
  • the upper main frame 53b extends rearward and downward from the head pipe 53a, and then curves downward and extends downward.
  • the lower main frame 53c is located below the upper main frame 53b.
  • the lower main frame 53c extends rearward and downward from the head pipe 53a.
  • the seat frame 53d extends rearward from the middle part of the upper main frame 53b.
  • a steering shaft is rotatably inserted into the head pipe 53a.
  • a handle 55 is provided on the upper portion of the steering shaft.
  • a display device (not shown) is disposed in the vicinity of the handle 55. The display device displays vehicle speed, engine speed, various warnings, and the like.
  • the upper and lower ends of the steering shaft are connected to a pair of left and right front forks 56 via brackets.
  • a front wheel 57 is rotatably supported at the lower end of the front fork 56.
  • the front end of a pair of left and right rear arms 58 is swingably supported at the rear of the vehicle body frame 53.
  • a rear wheel 59 is rotatably supported at the rear end portion of the rear arm 58.
  • a fuel tank 51 (see FIG. 11) is supported on the upper main frame 53b.
  • a seat 52 (see FIG. 11) is supported on the seat frame 53d.
  • An engine body 61 is supported on the body frame 53.
  • An air cleaner 73 (see FIG. 13) is supported on the body frame 53. As shown in FIG. 13, when viewed from the left-right direction, the upper portion of the engine body 61 is disposed between the upper main frame 53b and the lower main frame 53c. The air cleaner 73 is disposed behind the engine body 61.
  • the motorcycle 50 has a vehicle body cover 54 that covers the vehicle body frame 53 and the like.
  • the vehicle body cover 54 covers the upper portion of the engine body 61 and the air cleaner 73.
  • the motorcycle 50 has a single cylinder four-stroke engine unit 60.
  • the single-cylinder four-stroke engine unit 60 includes an engine body 61, an air cleaner 73 (see FIG. 13), an intake pipe 74, an exhaust pipe 75, a silencer 76, a main catalyst 180 (a single combustion chamber main catalyst). ), An upstream oxygen detection member 77 (upstream oxygen detection member for a single combustion chamber), and a downstream oxygen detection member 78 (downstream oxygen detection member for a single combustion chamber).
  • the single-cylinder four-stroke engine unit 60 has an electronic control unit similar to the electronic control unit 45 of the first embodiment. The electronic control unit controls the engine body 61.
  • the engine body 61 is a single-cylinder four-stroke engine. As shown in FIG. 13, the engine main body 61 includes a crankcase portion 62 and a cylinder portion 63. The cylinder part 63 extends forward and upward from the crankcase part 62.
  • the crankcase portion 62 includes a crankcase body 64, a crankshaft 68 accommodated in the crankcase body 64, a transmission mechanism, and the like.
  • a center line (crank axis) Cr2 of the crankshaft 68 extends in the left-right direction.
  • Lubricating oil is stored in the crankcase body 64. Such oil is conveyed by an oil pump (not shown) and circulates in the engine body 61.
  • the cylinder part 63 has a cylinder body 65, a cylinder head 66, a head cover 67, and components housed therein. As shown in FIG. 13, the cylinder body 65 is connected to the upper part of the crankcase body 64. The cylinder head 66 is connected to the upper part of the cylinder body 65. The head cover 67 is connected to the upper part of the cylinder head 66.
  • a cylinder hole 65a is formed in the cylinder body 65.
  • a piston 69 is accommodated in the cylinder hole 65a so as to be able to reciprocate.
  • the piston 69 is connected to the crankshaft 68 via a connecting rod.
  • the center line Cy2 of the cylinder hole 65a is referred to as a cylinder axis Cy2.
  • the engine main body 61 is arranged such that the cylinder axis Cy ⁇ b> 2 extends in the vertical direction. More specifically, the direction from the crankcase 62 to the cylinder 63 on the cylinder axis Cy2 is front-up.
  • the inclination angle of the cylinder axis Cy2 with respect to the horizontal direction is not less than 45 degrees and not more than 90 degrees.
  • one combustion chamber 70 is formed inside the cylinder portion 63.
  • the combustion chamber 70 is formed by the inner surface of the cylinder hole 65 a of the cylinder body 65, the cylinder head 66, and the piston 69.
  • the combustion chamber 70 is located in front of the crank axis Cr2. This is paraphrased as follows. A straight line passing through the crank axis Cr2 and extending in parallel with the vertical direction is defined as L3. When viewed from the left-right direction, the combustion chamber 70 is disposed in front of the straight line L3.
  • the cylinder head 66 is formed with a cylinder intake passage portion 71 and a cylinder exhaust passage portion 72 (a cylinder exhaust passage portion for a single combustion chamber).
  • an intake port 71 a and an exhaust port 72 a are formed in a wall portion that forms the combustion chamber 70.
  • the cylinder intake passage portion 71 extends from the intake port 71a to an intake port formed on the outer surface (rear surface) of the cylinder head 66.
  • the cylinder exhaust passage 72 extends from the exhaust port 72 a to a discharge port formed on the outer surface (front surface) of the cylinder head 66.
  • Air supplied to the combustion chamber 70 passes through the cylinder intake passage portion 71.
  • Exhaust gas discharged from the combustion chamber 70 passes through the cylinder exhaust passage portion 72.
  • an intake valve V3 is disposed in the cylinder intake passage portion 71.
  • An exhaust valve V ⁇ b> 4 is disposed in the cylinder exhaust passage portion 72.
  • the intake port 71a is opened and closed by the movement of the intake valve V3.
  • the exhaust port 72a is opened and closed by the movement of the exhaust valve V4.
  • An intake pipe 74 is connected to an end portion (suction port) of the cylinder intake passage portion 71.
  • An exhaust pipe 75 is connected to an end portion (discharge port) of the cylinder exhaust passage portion 72.
  • the path length of the cylinder exhaust passage portion 72 is a2.
  • the single-cylinder four-stroke engine unit 60 includes an ignition plug, a valve mechanism, an injector, and a throttle valve, like the engine body 20 of the first embodiment.
  • the single-cylinder four-stroke engine unit 60 includes various sensors such as an engine rotation speed sensor and a throttle opening sensor as in the first embodiment.
  • the single cylinder four-stroke engine unit 60 includes the engine body 61, the exhaust pipe 75, the silencer 76, the main catalyst 180, the upstream oxygen detection member 77, and the downstream oxygen detection member 78. Yes.
  • the silencer 76 has a discharge port 76e facing the atmosphere.
  • a path from the combustion chamber 70 to the discharge port 76e is an exhaust path 182 (see FIG. 15).
  • the exhaust passage 182 is formed by the cylinder exhaust passage portion 72, the exhaust pipe 75, and the silencer 76.
  • the exhaust path 182 is a space through which exhaust gas passes.
  • the upstream end of the exhaust pipe 75 is connected to the cylinder exhaust passage 72.
  • the downstream end of the exhaust pipe 75 is connected to a silencer 76.
  • a catalyst unit 79 is provided in the middle of the exhaust pipe 75.
  • a portion of the exhaust pipe 75 upstream from the catalyst unit 79 is referred to as an upstream exhaust pipe 75a.
  • a portion of the exhaust pipe 75 downstream from the catalyst unit 79 is a downstream exhaust pipe 75b.
  • the exhaust pipe 75 is drawn in a straight line for simplification, but the exhaust pipe 75 is not straight.
  • the exhaust pipe 75 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion.
  • the upstream bent portion changes the flow direction of the exhaust gas from the direction extending in the front-rear direction to the direction extending in the vertical direction when viewed from the left-right direction. More specifically, the upstream bent portion changes the flow direction of the exhaust gas from the front downward direction to the rear downward direction as viewed from the left-right direction.
  • the downstream bent portion changes the flow direction of the exhaust gas from the direction extending in the up-down direction to the direction extending in the front-rear direction when viewed from the left-right direction. More specifically, the downstream bent portion changes the flow direction of the exhaust gas from the rear downward direction to the rearward direction when viewed from the left-right direction.
  • a portion downstream of the downstream bent portion is located below the crank axis Cr2.
  • the main catalyst 180 is disposed between the two bent portions.
  • the silencer 76 is connected to the exhaust pipe 75.
  • the silencer 76 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 76 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 76.
  • the downstream end of the exhaust pipe 75 is disposed in the expansion chamber of the silencer 76.
  • a discharge port 76e facing the atmosphere is provided at the downstream end of the silencer 76. As shown in FIG.
  • the path length of the exhaust path from the downstream end of the exhaust pipe 75 to the discharge port 76e is assumed to be e2.
  • the exhaust gas that has passed through the silencer 76 is discharged to the atmosphere from the discharge port 76e.
  • the discharge port 76e is located behind the crank axis Cr2.
  • the main catalyst 180 is disposed in the exhaust pipe 75.
  • the upstream end of the main catalyst 180 is disposed upstream of the upstream end 76 a of the silencer 76.
  • the catalyst unit 79 includes a cylindrical casing 181 and a main catalyst 180.
  • the upstream end of the casing 181 is connected to the upstream exhaust pipe 75a.
  • the downstream end of the casing 181 is connected to the downstream exhaust pipe 75b.
  • the casing 181 constitutes a part of the exhaust pipe 75.
  • the main catalyst 180 is fixed inside the casing 181.
  • the exhaust gas is purified by passing through the main catalyst 180. All exhaust gas discharged from the exhaust port 72a of the combustion chamber 70 passes through the main catalyst 180.
  • the main catalyst 180 most purifies the exhaust gas discharged from the combustion chamber 70 in the exhaust path 182.
  • the material of the main catalyst 180 is the same as that of the main catalyst 39 of the first embodiment.
  • the main catalyst 180 has a porous structure.
  • the main catalyst 180 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 75a.
  • the length of the main catalyst 180 in the path direction is c2.
  • the maximum width in the direction perpendicular to the path direction of the main catalyst 180 is defined as w2.
  • the length c2 of the main catalyst 180 is longer than the maximum width w2 of the main catalyst 180.
  • the casing 181 includes a catalyst arrangement passage portion 181b, an upstream passage portion 181a, and a downstream passage portion 181c.
  • the main catalyst 180 is arranged in the catalyst arrangement passage portion 181b. In the path direction, the upstream end and the downstream end of the catalyst arrangement passage portion 181b are at the same positions as the upstream end and the downstream end of the main catalyst 180, respectively.
  • the area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 181b is substantially constant.
  • the upstream passage portion 181a is connected to the upstream end of the catalyst arrangement passage portion 181b.
  • the downstream passage portion 181c is connected to the upstream end of the catalyst arrangement passage portion 181b.
  • the upstream passage 181a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • the downstream passage portion 181c is at least partially tapered.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • S2 be the area of a cross section perpendicular to the path direction of the catalyst arrangement passage portion 181b.
  • the area of the cross section orthogonal to the route direction of at least a part of the upstream passage portion 181a is smaller than the area S2.
  • at least a part of the upstream passage portion 181a includes the upstream end of the upstream passage portion 181a.
  • the area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 181c is smaller than the area S2.
  • the downstream end of the downstream passage portion 181c is included in at least a part of the downstream passage portion 181c.
  • the main catalyst 180 is disposed in front of the crank axis Cr2. That is, the main catalyst 180 is disposed in front of the straight line L3 when viewed from the left-right direction.
  • the straight line L3 is a straight line that passes through the crank axis Cr2 and extends parallel to the vertical direction. Further, the main catalyst 180 is located in front of the cylinder axis Cy2 when viewed from the left-right direction.
  • a straight line orthogonal to the cylinder axis Cy2 and orthogonal to the crank axis Cr2 is L4.
  • the main catalyst 180 is located in front of the straight line L4.
  • the path length from the upstream end of the exhaust pipe 75 to the upstream end of the main catalyst 180 is b2.
  • the path length b ⁇ b> 2 is the path length of the passage portion composed of the upstream exhaust pipe 75 a and the upstream passage portion 181 a of the catalyst unit 79.
  • the path length b ⁇ b> 2 is a path length from the downstream end of the cylinder exhaust passage portion 72 to the upstream end of the main catalyst 180.
  • the path length from the downstream end of the main catalyst 180 to the downstream end of the exhaust pipe 75 is d2.
  • the path length d2 is the path length of the passage portion formed by the downstream passage portion 181c and the downstream exhaust pipe 75b of the catalyst unit 79.
  • the path length from the combustion chamber 70 to the upstream end of the main catalyst 180 is a2 + b2.
  • the path length from the downstream end of the main catalyst 180 to the discharge port 76e is d2 + e2.
  • the main catalyst 180 is disposed at a position where the path length a2 + b2 is shorter than the path length d2 + e2. As in the first embodiment, the main catalyst 180 is disposed at a position where the path length a2 + b2 is shorter than the path length d2. Further, as in the first embodiment, the main catalyst 180 is disposed at a position where the path length b2 is shorter than the path length d2.
  • the upstream oxygen detection member 77 is disposed in the exhaust pipe 75.
  • the upstream oxygen detection member 77 is disposed upstream of the main catalyst 180.
  • the upstream oxygen detection member 77 is disposed in the upstream exhaust pipe 75a (see FIG. 15).
  • the upstream oxygen detection member 77 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the structure of the upstream oxygen detection member 77 is the same as that of the upstream oxygen detection member 37 of the first embodiment.
  • the path length from the combustion chamber 70 to the upstream oxygen detection member 77 is h3.
  • the path length from the upstream oxygen detection member 77 to the upstream end of the main catalyst 180 is h4.
  • the upstream oxygen detection member 77 is disposed at a position where the path length h3 is shorter than the path length h4.
  • the downstream oxygen detection member 78 is disposed in the exhaust pipe 75.
  • the downstream oxygen detection member 78 is disposed downstream of the main catalyst 180.
  • the downstream oxygen detection member 78 is disposed in the downstream exhaust pipe 75b (see FIG. 15).
  • the downstream oxygen detection member 78 is disposed upstream of the silencer 76.
  • the downstream oxygen detection member 78 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the structure of the downstream oxygen detection member 78 is the same as that of the upstream oxygen detection member 37 of the first embodiment.
  • the motorcycle 50 of the second embodiment has the upstream oxygen detection member 77 and the downstream oxygen detection member 78 upstream and downstream of the main catalyst 180. Other than that, it has the same arrangement relationship as the motorcycle 1 of the first embodiment. About the same arrangement
  • FIG. 1 is a diagrammatic representation of the motorcycle 50 of the second embodiment.
  • the configuration of the exhaust system of the modified example 1-2 described above can also be applied to the motorcycle 50 of the second embodiment. In this case, the same operation as that of Modification 1-2 is obtained.
  • FIG. 16 is a side view of the motorcycle according to the modified example 2-1 of the second embodiment with the vehicle body cover and the like removed.
  • FIG. 17 is a bottom view of the motorcycle according to the modified example 2-1 of the second embodiment with the vehicle body cover and the like removed.
  • FIG. 18 is a schematic diagram showing an engine body and an exhaust system of Modification 2-1 of Embodiment 2.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main catalyst 180 is arranged downstream of the second embodiment.
  • the specific configuration of the main catalyst 180 is the same as that of the second embodiment.
  • the main catalyst 180 of Modification 2-1 is disposed in the exhaust pipe 275.
  • the upstream end of the main catalyst 180 is disposed upstream of the upstream end 76 a of the silencer 76.
  • the exhaust pipe 275 is connected to the cylinder exhaust passage portion 72 (see FIG. 18) and the silencer 76 in the same manner as the exhaust pipe 75 of the second embodiment.
  • a catalyst unit 79 is provided in the middle of the exhaust pipe 275.
  • the exhaust pipe 275 a is upstream from the catalyst unit 79 of the exhaust pipe 275.
  • a portion of the exhaust pipe 275 downstream from the catalyst unit 79 is defined as a downstream exhaust pipe 275b.
  • the downstream exhaust pipe 275 b is disposed in the silencer 76.
  • the exhaust pipe 275 is drawn in a straight line for simplification, but the exhaust pipe 275 is not in a straight line.
  • the main catalyst 180 is disposed behind the crank axis Cr2. That is, the main catalyst 180 is disposed behind the straight line L3 when viewed from the left-right direction. As described above, the straight line L3 is a straight line that passes through the crank axis Cr2 and extends parallel to the vertical direction. Further, the main catalyst 180 is located in front of the cylinder axis Cy2 when viewed from the left-right direction.
  • the main catalyst 180 is located behind the straight line L4 when viewed from the left-right direction.
  • the straight line L4 is a straight line that is orthogonal to the cylinder axis Cy2 and orthogonal to the crank axis Cr2.
  • the path length from the upstream end of the exhaust pipe 275 to the upstream end of the main catalyst 180 is b12.
  • the path length from the downstream end of the main catalyst 180 to the downstream end of the exhaust pipe 275 is d12.
  • the path length from the combustion chamber 70 to the upstream end of the main catalyst 180 is a2 + b12.
  • the path length from the downstream end of the main catalyst 180 to the discharge port 76e is d12 + e2.
  • the main catalyst 180 of the modified example 2-1 is disposed at a position where the path length a2 + b12 is shorter than the path length d12 + e2. Further, unlike the second embodiment, the main catalyst 180 of the modified example 2-1 is disposed at a position where the path length a2 + b12 is longer than the path length d12. Further, unlike the second embodiment, the main catalyst 180 of the modified example 2-1 is disposed at a position where the path length b12 is longer than the path length d12.
  • the upstream oxygen detection member 77 is disposed in the exhaust pipe 275.
  • the upstream oxygen detection member 77 is disposed upstream of the main catalyst 180.
  • the upstream oxygen detection member 77 is disposed in the upstream exhaust pipe 275a (see FIG. 18).
  • the path length from the combustion chamber 70 to the upstream oxygen detection member 77 is h13.
  • the path length from the upstream oxygen detection member 77 to the upstream end of the main catalyst 180 is h14.
  • the upstream oxygen detection member 77 is disposed at a position where the path length h13 is shorter than the path length h14.
  • the downstream oxygen detection member 78 is disposed in the exhaust pipe 275.
  • the downstream oxygen detection member 78 is disposed downstream from the main catalyst 180.
  • the downstream oxygen detection member 78 is disposed in the downstream exhaust pipe 275a (see FIG. 18).
  • the downstream oxygen detection member 78 is disposed upstream of the silencer 76.
  • FIG. 19 is a side view of the motorcycle according to the third embodiment of the present invention.
  • FIG. 20 is a bottom view of the motorcycle according to the third embodiment.
  • FIG. 21 is a side view of the motorcycle according to the third embodiment with a vehicle body cover and the like removed.
  • FIG. 22 is a bottom view of the motorcycle according to the third embodiment with a body cover and the like removed.
  • FIG. 23 is a schematic diagram showing an engine and an exhaust system of the motorcycle of the third embodiment.
  • the vehicle of the third embodiment is a so-called scooter type motorcycle 80.
  • the motorcycle 80 includes a body frame 81.
  • the vehicle body frame 81 includes a head pipe 81a, a main frame 81b, a pair of left and right side frames 81c, a pair of left and right rear frames 81d, and a pair of left and right seat frames 81e.
  • the main frame 81b extends rearward and downward from the head pipe 81a.
  • the pair of left and right side frames 81c extend substantially horizontally rearward from the lower end of the main frame 81b.
  • the pair of left and right rear frames 81d extend rearward and upward from the rear end portion of the side frame 81c.
  • the pair of left and right seat frames 81e extend substantially horizontally from the rear end of the rear frame 81d to the rear.
  • a steering shaft is rotatably inserted into the head pipe 81a.
  • a handle 82 is provided on the upper portion of the steering shaft.
  • a display device (not shown) is disposed in the vicinity of the handle 82. The display device displays vehicle speed, engine speed, various warnings, and the like.
  • a pair of left and right front forks 83 are supported at the bottom of the steering shaft.
  • a front wheel 84 is rotatably supported at the lower end of the front fork 83.
  • a footrest plate 85 (see FIG. 19) is attached to the pair of left and right side frames 81c.
  • the footrest plate 85 is a place where an occupant sitting on a seat 86 described later places his / her foot.
  • a seat 86 (see FIG. 19) is supported on the seat frame 81e.
  • the seat 86 extends from the middle part to the rear end part of the body frame 81 in the vehicle front-rear direction.
  • a space G1 (see FIG. 21) is formed below the sheet 86.
  • a storage box (not shown) is disposed in the space G1.
  • the storage box is formed in a box shape with an open top.
  • the sheet 86 also has a function as a lid for opening and closing the opening on the upper surface of the storage box.
  • the storage box is disposed between the left and right seat frames 81e. The storage box is supported by the rear frame 81d and the seat frame 81e.
  • the motorcycle 80 has a vehicle body cover 87 that covers the vehicle body frame 81 and the like.
  • the vehicle body cover 87 includes a front cover 87a, a leg shield 87b, a main cover 87c, and an under cover 87d.
  • the front cover 87a is disposed in front of the head pipe 81a.
  • the leg shield 87b is disposed behind the head pipe 81a.
  • the front cover 87a and the leg shield 87b cover the head pipe 81a and the main frame 81b.
  • the main cover 87c has a form that rises upward from the rear portion of the footrest plate 85.
  • the main cover 87c covers substantially the entire storage box.
  • the under cover 87d is disposed below the front cover 87a, the leg shield 87b, and the main cover 87c.
  • the under cover 87d covers the front upper part of the engine main body 94 to be described later from both the front and the left and right.
  • a unit swing type single-cylinder four-stroke engine unit 93 is attached to the body frame 81.
  • the single-cylinder four-stroke engine unit 93 has an engine body 94 and a power transmission unit 95 (see FIGS. 20 and 22).
  • the power transmission unit 95 is connected to the rear part of the engine body 94.
  • the power transmission unit 95 is disposed on the left side of the engine body 94.
  • the power transmission unit 95 houses a transmission.
  • the power transmission unit 95 supports the rear wheel 88 to be rotatable.
  • the engine main body 94 and the power transmission unit 95 are swingable with respect to the vehicle body frame 81 integrally.
  • a right link member 90 ⁇ / b> R and a left link member 90 ⁇ / b> L are connected to the left and right ends of the lower portion of the engine body 94.
  • the right link member 90R and the left link member 90L extend forward from the engine body 94.
  • the distal ends of the right link member 90R and the left link member 90L are connected to the vehicle body frame 81 via a pivot shaft 89 so as to be rotatable.
  • the right link member 90R and the left link member 90L are rotatably connected to the engine body 94 via pivot shafts 91 (see FIG. 21), respectively.
  • FIG. 20 shows a display in which a right link member 90R and a shroud 96, which will be described later, of the engine body 94 are partially removed.
  • the single-cylinder four-stroke engine unit 93 includes an engine main body 94, a power transmission unit 95, an air cleaner (not shown), an intake pipe 110 (see FIG. 23), an exhaust pipe 111, a silencer 112, a main A catalyst 116 (main combustion chamber main catalyst), an upstream oxygen detection member 113 (single combustion chamber upstream oxygen detection member), and a downstream oxygen detection member 114 (single combustion chamber upstream oxygen detection member) are provided. ing.
  • the single-cylinder four-stroke engine unit 93 includes an electronic control unit similar to the electronic control unit 45 of the first embodiment. The electronic control unit controls the engine body 94.
  • the engine body 94 is a single cylinder four-stroke engine.
  • the engine body 94 is a forced air-cooled engine.
  • the engine main body 94 includes a shroud 96, a fan 97, a crankcase part 98, and a cylinder part 99.
  • the cylinder part 99 extends forward from the crankcase part 98.
  • the shroud 96 covers the rear part of the cylinder part 99 over the entire circumference. Specifically, the shroud 96 covers the entire cylinder body 101 and the entire cylinder head 102, which will be described later, over the entire circumference. However, the periphery of the exhaust pipe 111 connected to the cylinder head 102 is not covered. The shroud 96 covers the right side portion of the crankcase portion 98.
  • the fan 97 is disposed between the shroud 96 and the crankcase part 98.
  • An inlet for taking in air is formed in a portion of the shroud 96 facing the fan 97.
  • the fan 97 generates an air flow for cooling the engine main body 94. More specifically, air is introduced into the shroud 96 by the rotation of the fan 97. When this air flow strikes the engine body 94, the crankcase portion 98 and the cylinder portion 99 are cooled.
  • the crankcase portion 98 includes a crankcase body 100, a crankshaft 104 accommodated in the crankcase body 100, and the like.
  • a center line (crank axis) Cr3 of the crankshaft 104 extends in the left-right direction.
  • a fan 97 is connected to the right end portion of the crankshaft 104 so as to be integrally rotatable. The fan 97 is driven by the rotation of the crankshaft 104.
  • Lubricating oil is stored in the crankcase body 100. Such oil is conveyed by an oil pump (not shown) and circulates in the engine body 94.
  • the cylinder part 99 includes a cylinder body 101, a cylinder head 102, a head cover 103, and components housed therein. As shown in FIG. 20, the cylinder body 101 is connected to the front portion of the crankcase body 100. The cylinder head 102 is connected to the front portion of the cylinder body 101. The head cover 103 is connected to the front part of the cylinder head 102.
  • a cylinder hole 101a is formed in the cylinder body 101.
  • a piston 105 is accommodated in the cylinder hole 101a so as to be capable of reciprocating.
  • the piston 105 is connected to the crankshaft 104 via a connecting rod.
  • the center line Cy3 of the cylinder hole 101a is referred to as a cylinder axis Cy3.
  • the engine body 94 is arranged such that the cylinder axis Cy3 extends in the front-rear direction. More specifically, the direction from the crankcase portion 98 to the cylinder portion 99 on the cylinder axis Cy3 is forward-upward.
  • the inclination angle of the cylinder axis Cy3 with respect to the horizontal direction is not less than 0 degrees and not more than 45 degrees.
  • one combustion chamber 106 is formed inside the cylinder portion 99.
  • the combustion chamber 106 is formed by the inner surface of the cylinder hole 101 a of the cylinder body 101, the cylinder head 102, and the piston 105.
  • the combustion chamber 106 is located in front of the crank axis Cr3. This is paraphrased as follows. A straight line passing through the crank axis Cr3 and extending in parallel with the vertical direction is defined as L5. When viewed from the left-right direction, the combustion chamber 106 is disposed in front of the straight line L5.
  • the cylinder head 102 is formed with a cylinder intake passage portion 107 and a cylinder exhaust passage portion 108 (a single combustion chamber cylinder exhaust passage portion).
  • an intake port 107a and an exhaust port 108a are formed in a wall portion forming the combustion chamber 106.
  • the cylinder intake passage 107 extends from the intake port 107a to an intake port formed on the outer surface (upper surface) of the cylinder head 102.
  • the cylinder exhaust passage portion 108 extends from the exhaust port 108 a to a discharge port formed on the outer surface (lower surface) of the cylinder head 102.
  • Air supplied to the combustion chamber 106 passes through the cylinder intake passage 107.
  • the exhaust gas discharged from the combustion chamber 106 passes through the cylinder exhaust passage portion 108.
  • the cylinder intake passage 107 is provided with an intake valve V5.
  • An exhaust valve V6 is disposed in the cylinder exhaust passage portion.
  • the intake port 107a is opened and closed by the movement of the intake valve V5.
  • the exhaust port 108a is opened and closed by the movement of the exhaust valve V6.
  • An intake pipe 110 is connected to an end portion (suction port) of the cylinder intake passage portion 107.
  • An exhaust pipe 111 is connected to an end (exhaust port) of the cylinder exhaust passage portion 108.
  • the path length of the cylinder exhaust passage 108 is a3.
  • FIG. 20 shows a display in which the right link member 90R and the shroud 96 are partially removed. Thereby, the connection part of the lower surface of the cylinder head 102 and the exhaust pipe 111 is made visible.
  • the upstream end portion of the exhaust pipe 111 is located between the right link member 90 ⁇ / b> R and the left link member 90 ⁇ / b> L when viewed from below.
  • the exhaust pipe 111 passes above the right link member 90R and the left link member 90L. Therefore, the exhaust pipe 111 does not pass between the right link member 90R and the left link member 90L.
  • the single-cylinder four-stroke engine unit 93 includes an ignition plug, a valve mechanism, an injector, and a throttle valve, like the engine body 20 of the first embodiment.
  • the single-cylinder four-stroke engine unit 93 includes various sensors such as an engine rotation speed sensor and a throttle opening sensor as in the first embodiment.
  • the single-cylinder four-stroke engine unit 93 includes the engine body 94, the exhaust pipe 111, the silencer 112, the main catalyst 116, the upstream oxygen detection member 113, and the downstream oxygen detection member 114. Yes.
  • the silencer 112 has a discharge port 112e facing the atmosphere.
  • a path from the combustion chamber 106 to the discharge port 112e is an exhaust path 118 (see FIG. 23).
  • the exhaust passage 118 is formed by the cylinder exhaust passage portion 108, the exhaust pipe 111, and the silencer 112.
  • the exhaust path 118 is a space through which exhaust gas passes.
  • the upstream end portion of the exhaust pipe 111 is connected to the cylinder exhaust passage portion 108.
  • the downstream end of the exhaust pipe 111 is connected to the silencer 112.
  • a catalyst unit 115 is provided in the middle of the exhaust pipe 111.
  • a portion of the exhaust pipe 111 upstream from the catalyst unit 115 is referred to as an upstream exhaust pipe 111a.
  • a portion of the exhaust pipe 111 downstream from the catalyst unit 115 is referred to as a downstream exhaust pipe 111b.
  • the exhaust pipe 111 is drawn in a straight line for simplification, but the exhaust pipe 111 is not straight.
  • the exhaust pipe 111 is provided on the right part of the motorcycle 80. As shown in FIG. 21, a part of the exhaust pipe 111 is located below the crank axis Cr3.
  • the exhaust pipe 111 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion.
  • the upstream bent portion changes the flow direction of the exhaust gas from downward to rearward downward when viewed from the left-right direction.
  • the downstream bent portion changes the flow direction of the exhaust gas from the rear downward direction to the rear upward direction as seen from the left-right direction.
  • a portion downstream of the downstream bent portion is located below the crank axis Cr3.
  • the downstream end of the main catalyst 116 is disposed at the downstream bent portion.
  • the silencer 112 is connected to the exhaust pipe 111.
  • the silencer 112 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 112 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 112.
  • the downstream end of the exhaust pipe 111 is disposed in the expansion chamber of the silencer 112.
  • a discharge port 112e facing the atmosphere is provided at the downstream end of the silencer 112.
  • let e3 be the path length of the exhaust path from the downstream end of the exhaust pipe 111 to the discharge port 112e.
  • the exhaust gas that has passed through the silencer 112 is released from the discharge port 112e to the atmosphere.
  • the discharge port 112e is located behind the crank axis Cr3.
  • the main catalyst 116 is disposed in the exhaust pipe 111.
  • the upstream end of the main catalyst 116 is disposed upstream of the upstream end 112 a of the silencer 112.
  • the catalyst unit 115 includes a cylindrical casing 117 and a main catalyst 116.
  • the upstream end of the casing 117 is connected to the upstream exhaust pipe 111a.
  • the downstream end of the casing 117 is connected to the downstream exhaust pipe 111b.
  • the casing 117 constitutes a part of the exhaust pipe 111.
  • the main catalyst 116 is fixed inside the casing 117.
  • the exhaust gas is purified by passing through the main catalyst 116. All exhaust gas discharged from the exhaust port 108a of the combustion chamber 106 passes through the main catalyst 116.
  • the main catalyst 116 most purifies the exhaust gas discharged from the combustion chamber 106 in the exhaust path 118.
  • the material of the main catalyst 116 is the same as that of the main catalyst 39 of the first embodiment.
  • the main catalyst 116 has a porous structure.
  • the main catalyst 116 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 111a.
  • the length of the main catalyst 116 in the path direction is c3.
  • the length c3 of the main catalyst 116 is longer than the maximum width w3 of the main catalyst 116.
  • the casing 117 includes a catalyst arrangement passage portion 117b, an upstream passage portion 117a, and a downstream passage portion 117c.
  • the main catalyst 116 is arranged in the catalyst arrangement passage portion 117b.
  • the upstream end and the downstream end of the catalyst arrangement passage portion 117b are at the same positions as the upstream end and the downstream end of the main catalyst 116, respectively.
  • the area of the cross section perpendicular to the path direction of the catalyst arrangement passage portion 117b is substantially constant.
  • the upstream passage portion 117a is connected to the upstream end of the catalyst arrangement passage portion 117b.
  • the downstream passage portion 117c is connected to the upstream end of the catalyst arrangement passage portion 117b.
  • the upstream passage 117a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • At least a part of the downstream passage portion 117c is formed in a tapered shape.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • the area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 117b is S3.
  • the area of the cross section orthogonal to the path direction of the upstream end (at least part) of the upstream passage portion 117a is smaller than the area S3.
  • the area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 117c is smaller than the area S3.
  • at least a part of the downstream passage portion 117c includes the downstream end of the downstream passage portion 117c.
  • the main catalyst 116 is disposed in front of the crank axis Cr3. That is, the main catalyst 116 is disposed in front of the straight line L5 when viewed from the left-right direction.
  • the straight line L5 is a straight line that passes through the crank axis Cr3 and extends parallel to the vertical direction. Further, the main catalyst 116 is located in front (downward) of the cylinder axis Cy3 when viewed from the left-right direction.
  • a straight line orthogonal to the cylinder axis Cy3 and orthogonal to the crank axis Cr3 is denoted by L6.
  • the main catalyst 116 is located in front of the straight line L6 when viewed from the left-right direction.
  • a path length from the upstream end of the exhaust pipe 111 to the upstream end of the main catalyst 116 is b3.
  • the path length b ⁇ b> 3 is the path length of the passage portion including the upstream exhaust pipe 111 a and the upstream passage portion 117 a of the catalyst unit 115.
  • the path length b ⁇ b> 3 is a path length from the downstream end of the cylinder exhaust passage portion 108 to the upstream end of the main catalyst 116.
  • the path length from the downstream end of the main catalyst 116 to the downstream end of the exhaust pipe 111 is d3.
  • the path length d3 is the path length of the path portion including the downstream path portion 117c and the downstream exhaust pipe 111b of the catalyst unit 115.
  • the path length from the combustion chamber 106 to the upstream end of the main catalyst 116 is a3 + b3.
  • the path length from the downstream end of the main catalyst 116 to the discharge port 112e is d3 + e3.
  • the main catalyst 116 is disposed at a position where the path length a3 + b3 is shorter than the path length d3 + e3. As in the first embodiment, the main catalyst 116 is disposed at a position where the path length a3 + b3 is shorter than the path length d3. Further, as in the first embodiment, the main catalyst 116 is disposed at a position where the path length b3 is shorter than the path length d3.
  • the upstream oxygen detection member 113 is disposed in the exhaust pipe 111.
  • the upstream oxygen detection member 113 is disposed upstream of the main catalyst 116.
  • the upstream oxygen detection member 113 is disposed in the upstream exhaust pipe 111a (see FIG. 23).
  • the upstream oxygen detection member 113 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the structure of the upstream oxygen detection member 113 is the same as that of the upstream oxygen detection member of the first embodiment.
  • the path length from the combustion chamber 106 to the upstream oxygen detection member 113 is h5.
  • the path length from the upstream oxygen detection member 113 to the upstream end of the main catalyst 116 is h6.
  • the upstream oxygen detection member 113 is disposed at a position where the path length h5 is longer than the path length h6.
  • the downstream oxygen detection member 114 is disposed in the exhaust pipe 111.
  • the downstream oxygen detection member 114 is disposed downstream of the main catalyst 116.
  • the downstream oxygen detection member 114 is disposed in the casing 117 of the catalyst unit 115. More specifically, the downstream oxygen detection member 114 is disposed in the downstream passage portion 117c (see FIG. 23).
  • the downstream oxygen detection member 114 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the structure of the downstream oxygen detection member 114 is the same as that of the upstream oxygen detection member 37 of the first embodiment.
  • the motorcycle 80 of the third embodiment includes the upstream oxygen detection member 113 and the downstream oxygen detection member 114 upstream and downstream of the main catalyst 116. Other than that, it has the same arrangement relationship as the motorcycle 1 of the first embodiment. About the same arrangement
  • FIG. 1 is a diagrammatic representation of the motorcycle 80 of the third embodiment.
  • the path length (h5) from one combustion chamber 106 to the upstream end of the upstream oxygen detection member 113 is longer than the path length (h6) from the upstream oxygen detection member 113 to the upstream end of the main catalyst 116. Therefore, the upstream oxygen detection member 113 is disposed at a position close to the main catalyst 116. Therefore, the oxygen concentration of the exhaust gas flowing into the main catalyst 116 can be detected with higher accuracy. Thereby, the combustion control based on the signal of the upstream oxygen detection member 113 can be performed with higher accuracy. As a result, the exhaust gas purification performance of the main catalyst 116 can be further improved. Moreover, the progress of deterioration of the main catalyst 116 can be delayed by improving the accuracy of combustion control. Therefore, the initial performance of exhaust purification of the motorcycle 80 can be maintained for a longer period.
  • the configuration of the exhaust system of the modified example 1-2 described above can also be applied to the motorcycle 80 of the third embodiment. In this case, the same operation as that of Modification 1-2 is obtained.
  • FIG. 24 is a side view of a motorcycle according to Modification 3-1 of Embodiment 3 with a body cover and the like removed.
  • FIG. 25 is a bottom view of the motorcycle according to the modified example 3-1 of the third embodiment with the vehicle body cover and the like removed.
  • FIG. 26 is a schematic diagram showing an engine body and an exhaust system of a modification 3-1 of the third embodiment.
  • the same components as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the modified catalyst 3-1 has a main catalyst 116 disposed downstream as compared with the third embodiment.
  • the specific configuration of the main catalyst 116 is the same as that of the third embodiment.
  • the main catalyst 116 of Modification 3-1 is disposed in the exhaust pipe 2111.
  • the upstream end of the main catalyst 116 is disposed upstream of the upstream end 112 a of the silencer 112.
  • the exhaust pipe 2111 is connected to the cylinder exhaust passage portion 108 (see FIG. 26) and the silencer 112 in the same manner as the exhaust pipe 111 of the third embodiment.
  • a catalyst unit 2115 is provided in the middle of the exhaust pipe 2111.
  • the exhaust pipe 2111 a is upstream of the catalyst unit 2115 of the exhaust pipe 2111.
  • a portion of the exhaust pipe 2111 downstream from the catalyst unit 2115 is referred to as a downstream exhaust pipe 2111b.
  • the downstream exhaust pipe 2111 b is disposed in the silencer 112.
  • the exhaust pipe 2111 is drawn in a straight line for simplification, but the exhaust pipe 2111 is not in a straight line.
  • the catalyst unit 2115 has a main catalyst 116 and a casing 2117.
  • the casing 2117 includes an upstream passage portion 2117a, a catalyst arrangement passage portion 2117b, and a downstream passage portion 2117c. In the path direction, the upstream end and the downstream end of the catalyst arrangement passage portion 2117b are at the same positions as the upstream end and the downstream end of the main catalyst 116, respectively.
  • the main catalyst 116 is disposed behind the crank axis Cr3. That is, the main catalyst 116 is disposed behind the straight line L5 when viewed from the left-right direction. As described above, the straight line L5 is a straight line that passes through the crank axis Cr3 and extends parallel to the vertical direction. Further, the main catalyst 116 is located in front (downward) of the cylinder axis Cy3 when viewed from the left-right direction.
  • the main catalyst 116 is located behind the straight line L6 when viewed from the left-right direction.
  • the straight line L6 is a straight line that is orthogonal to the cylinder axis Cy3 and orthogonal to the crank axis Cr3.
  • the path length from the upstream end of the exhaust pipe 2111 to the upstream end of the main catalyst 116 is b13.
  • the path length from the downstream end of the main catalyst 116 to the downstream end of the exhaust pipe 2111 is defined as d13.
  • the path length from the combustion chamber 106 to the upstream end of the main catalyst 116 is a3 + b13.
  • the path length from the downstream end of the main catalyst 116 to the discharge port 112e is d13 + e3.
  • the main catalyst 116 of the modified example 3-1 is disposed at a position where the path length a3 + b13 is shorter than the path length d13 + e3. Further, unlike the third embodiment, the main catalyst 116 of Modification 3-1 is disposed at a position where the path length a3 + b13 is longer than the path length d13. Further, unlike the third embodiment, the main catalyst 116 of Modification 3-1 is disposed at a position where the path length b13 is longer than the path length d13.
  • the upstream oxygen detection member 113 is disposed in the exhaust pipe 2111.
  • the upstream oxygen detection member 113 is disposed upstream of the main catalyst 116.
  • the upstream oxygen detection member 113 is disposed in the upstream exhaust pipe 2111a (see FIG. 26).
  • the path length from the combustion chamber 106 to the upstream oxygen detection member 113 is h15.
  • the path length from the upstream oxygen detection member 113 to the upstream end of the main catalyst 116 is h16.
  • the upstream oxygen detection member 113 is disposed at a position where the path length h15 is shorter than the path length h16. This configuration is the same as in the first embodiment.
  • the downstream oxygen detection member 114 is disposed in the exhaust pipe 2111.
  • the downstream oxygen detection member 114 is disposed downstream from the main catalyst 116.
  • the downstream oxygen detection member 114 is disposed in the downstream exhaust pipe 2111a (see FIG. 26).
  • the downstream oxygen detection member 114 passes through the side wall portion of the silencer 112.
  • One end (detection unit) of the downstream oxygen detection member 114 is disposed in the downstream exhaust pipe 2111a.
  • the other end of the downstream oxygen detection member 114 is disposed outside the silencer 112.
  • FIG. 27 is a side view of the motorcycle according to the fourth embodiment of the present invention.
  • FIG. 28 is a bottom view of the motorcycle according to the fourth embodiment.
  • FIG. 29 is a side view of the motorcycle according to the fourth embodiment with the vehicle body cover and the like removed.
  • FIG. 30 is a bottom view of the motorcycle according to the fourth embodiment with the vehicle body cover and the like removed.
  • FIG. 31 is a schematic diagram showing an engine and an exhaust system of the motorcycle of the fourth embodiment.
  • the vehicle of the fourth embodiment is a so-called sports scooter type motorcycle 120.
  • the motorcycle 120 has a body frame 121.
  • the vehicle body frame 121 includes a head pipe 121a, a main frame 121b, a right seat rail 122R, a left seat rail 122L, a pair of left and right under frames 121c, and a cross member 121d (see FIG. 30).
  • the main frame 121b extends rearward and downward from the head pipe 121a.
  • the under frame 121c extends rearward and downward from a middle portion of the main frame 121b, and then curves rearward and extends substantially horizontally rearward.
  • the cross member 121d is connected to the left and right under frames 121c.
  • the cross member 121d extends in the left-right direction. As shown in FIG. 29, the left seat rail 122L extends rearward and upward from a midway portion of the main frame 121b. As shown in FIG. 30, the right seat rail 122R is connected to the right end of the cross member 121d. As shown in FIG. 29, the right seat rail 122R extends upward from the cross member 121d and then curves backward. The rear portion of the right seat rail 122R extends substantially parallel to the left seat rail 122L.
  • a steering shaft is rotatably inserted into the head pipe 121a.
  • a handle 123 is provided on the upper portion of the steering shaft.
  • a display device (not shown) is disposed in the vicinity of the handle 123. The display device displays vehicle speed, engine speed, various warnings, and the like.
  • a pair of left and right front forks 124 are supported at the bottom of the steering shaft.
  • a front wheel 125 is rotatably supported at the lower end of the front fork 124.
  • a seat 126 (see FIG. 27) is supported on the left and right seat rails 122L and 122R.
  • the motorcycle 120 has a vehicle body cover 127 that covers the vehicle body frame 121 and the like.
  • the vehicle body cover 127 includes a front cowl 127a, a main cover 127b, and an under cover 127c.
  • the front cowl 127a covers the head pipe 121a and the upper part of the main frame 121b.
  • the lower part of the main frame 121b is covered with a main cover 127b and an under cover 127c.
  • the main cover 127b covers the right seat rail 122R and the left seat rail 122L.
  • the under cover 127c covers the under frame 121c and the cross member 121d.
  • the main cover 127b covers a front portion of an engine main body 133, which will be described later, and an air cleaner 147 (see FIG. 29).
  • the air cleaner 147 is disposed in front of the engine body 133.
  • a unit swing type single cylinder four-stroke engine unit 132 is attached to the body frame 121.
  • the single-cylinder four-stroke engine unit 132 includes an engine main body 133 and a power transmission unit 134 (see FIGS. 28 and 30).
  • the power transmission unit 134 is connected to the rear part of the engine body 133.
  • the power transmission unit 134 is disposed on the left side of the engine body 133.
  • the power transmission unit 134 accommodates a transmission.
  • the power transmission unit 134 rotatably supports the rear wheel 128.
  • the engine main body 133 and the power transmission unit 134 can swing integrally with the vehicle body frame 121.
  • a right link member 130 ⁇ / b> R and a left link member 130 ⁇ / b> L are connected to the left and right ends of the lower part of the engine body 133.
  • the right link member 130R and the left link member 130L extend forward from the engine body 133.
  • the respective distal end portions of the right link member 130R and the left link member 130L are rotatably connected to the vehicle body frame 121 (under frame 121c) via a pivot shaft 129.
  • the right link member 130R and the left link member 130L are pivotally connected to the engine main body 133 via pivot shafts 131, respectively.
  • the single cylinder four-stroke engine unit 132 is a water-cooled engine.
  • the single-cylinder four-stroke engine unit 132 includes an engine main body 133, a water cooling device 135, a power transmission unit 134, an air cleaner 147 (see FIGS. 29 and 30), an intake pipe 148 (see FIG. 29), Exhaust pipe 149, silencer 150, main catalyst 154 (main combustion chamber main catalyst), upstream oxygen detection member 151 (single combustion chamber upstream oxygen detection member), and downstream oxygen detection member 152 (single Combustion chamber upstream oxygen detection member).
  • the single-cylinder four-stroke engine unit 132 has an electronic control unit similar to the electronic control unit 45 of the first embodiment. The electronic control unit controls the engine body 133.
  • the water cooling device 135 includes a radiator (not shown), a water pump (not shown), a fan (not shown), and a cover portion 135a.
  • the fan is disposed on the right of the rear part of the engine main body 133.
  • the radiator is arranged on the right side of the fan.
  • the cover part 135a covers the radiator from the right side. Furthermore, the cover part 135a covers the radiator and the fan from above and below and from the front and rear.
  • the engine main body 133 is a single cylinder four-stroke engine. As shown in FIG. 29, the engine main body 133 includes a crankcase portion 136 and a cylinder portion 137. The cylinder part 137 extends forward from the crankcase part 136.
  • the crankcase part 136 includes a crankcase main body 138, a crankshaft 142 accommodated in the crankcase main body 138, and the like.
  • a center line (crank axis) Cr4 of the crankshaft 142 extends in the left-right direction.
  • Lubricating oil is stored in the crankcase body 138. Such oil is conveyed by an oil pump (not shown) and circulates in the engine main body 133.
  • the fan of the water cooling device 135 is connected to the right end portion of the crankshaft 142 so as to be integrally rotatable.
  • the fan is driven by the rotation of the crankshaft 142.
  • the fan generates an air flow for cooling the engine main body 133. More specifically, air is sucked into the cover part 135a by the rotation of the fan.
  • the cooling water is cooled by heat exchange between the sucked air and the cooling water of the radiator. Then, the engine body 133 is cooled by the cooled cooling water.
  • the cylinder part 137 includes a cylinder body 139, a cylinder head 140, a head cover 141, and components housed therein. As shown in FIGS. 29 and 30, the cylinder body 139 is connected to the front portion of the crankcase body 138. The cylinder head 140 is connected to the front portion of the cylinder body 139. As shown in FIG. 29, the head cover 141 is connected to the front portion of the cylinder head 140.
  • the cylinder body 139 has a cylinder hole 139a.
  • a piston 143 is accommodated in the cylinder hole 139a so as to be able to reciprocate.
  • the piston 143 is connected to the crankshaft 142 via a connecting rod.
  • the center line Cy4 of the cylinder hole 139a is referred to as a cylinder axis Cy4.
  • the engine body 133 is arranged such that the cylinder axis Cy4 extends in the front-rear direction. More specifically, the direction of the cylinder axis Cy4 from the crankcase part 136 toward the cylinder part 137 is front-upward.
  • the inclination angle of the cylinder axis Cy4 with respect to the horizontal direction is not less than 0 degrees and not more than 45 degrees.
  • one combustion chamber 144 is formed inside the cylinder portion 137.
  • the combustion chamber 144 is formed by the inner surface of the cylinder hole 139a of the cylinder body 139, the cylinder head 140, and the piston 143.
  • the combustion chamber 144 is located in front of the crank axis Cr4. This is paraphrased as follows. A straight line passing through the crank axis Cr4 and extending in parallel with the vertical direction is defined as L7. When viewed from the left-right direction, the combustion chamber 144 is disposed in front of the straight line L7.
  • the cylinder head 140 is formed with a cylinder intake passage portion 145 and a cylinder exhaust passage portion 146 (a cylinder exhaust passage portion for a single combustion chamber).
  • an intake port 145a and an exhaust port 146a are formed in a wall portion forming the combustion chamber 144.
  • the cylinder intake passage portion 145 extends from the intake port 145 a to an intake port formed on the outer surface (upper surface) of the cylinder head 140.
  • the cylinder exhaust passage portion 146 extends from the exhaust port 146a to a discharge port formed on the outer surface (lower surface) of the cylinder head 140.
  • the air supplied to the combustion chamber 144 passes through the cylinder intake passage portion 145. Exhaust gas discharged from the combustion chamber 144 passes through the cylinder exhaust passage 146.
  • An intake valve V7 is disposed in the cylinder intake passage portion 145.
  • An exhaust valve V8 is disposed in the cylinder exhaust passage portion 146.
  • the intake port 145a is opened and closed by the movement of the intake valve V7.
  • the exhaust port 146a is opened and closed by the movement of the exhaust valve V8.
  • An intake pipe 148 is connected to an end portion (suction port) of the cylinder intake passage portion 145.
  • An exhaust pipe 149 is connected to an end portion (discharge port) of the cylinder exhaust passage portion 146.
  • the path length of the cylinder exhaust passage 146 is a4.
  • the exhaust pipe 149 is connected to the lower surface of the cylinder head 140.
  • the upstream end of the exhaust pipe 149 is located between the right link member 130R and the left link member 130L. Furthermore, as shown in FIG. 29, when viewed from the left-right direction, a part of the exhaust pipe 149 overlaps with the right link member 130R and the left link member 130L. Therefore, the exhaust pipe 149 passes between the right link member 130R and the left link member 130L.
  • the single-cylinder four-stroke engine unit 132 includes an ignition plug, a valve mechanism, an injector, and a throttle valve, as in the first embodiment.
  • the single-cylinder four-stroke engine unit 132 includes various sensors such as an engine rotation speed sensor and a throttle opening sensor as in the first embodiment.
  • the single-cylinder four-stroke engine unit 132 includes the engine body 133, the exhaust pipe 149, the silencer 150, the main catalyst 154, the upstream oxygen detection member 151, and the downstream oxygen detection member 152. Yes.
  • the silencer 150 has a discharge port 150e facing the atmosphere.
  • a path from the combustion chamber 144 to the discharge port 150e is an exhaust path 156 (see FIG. 31).
  • the exhaust passage 156 is formed by the cylinder exhaust passage portion 146, the exhaust pipe 149, and the silencer 150.
  • the exhaust path 156 is a space through which exhaust gas passes.
  • the upstream end of the exhaust pipe 149 is connected to the cylinder exhaust passage 146.
  • the downstream end of the exhaust pipe 149 is connected to the silencer 150.
  • a catalyst unit 153 is provided in the middle of the exhaust pipe 149.
  • a portion upstream of the catalyst unit 153 of the exhaust pipe 149 is referred to as an upstream exhaust pipe 149a.
  • a portion of the exhaust pipe 149 downstream from the catalyst unit 153 is defined as a downstream exhaust pipe 149b.
  • the exhaust pipe 149 is drawn in a straight line for simplification, but the exhaust pipe 149 is not in a straight line.
  • the exhaust pipe 149 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion.
  • the upstream bent portion changes the flow direction of the exhaust gas from the direction extending in the vertical direction to the direction extending in the front-rear direction when viewed from the left-right direction.
  • the upstream bent portion changes the flow direction of the exhaust gas from downward to rearward downward when viewed from the left-right direction.
  • the downstream bent portion changes the flow direction of the exhaust gas from the rear downward direction to the rear direction when viewed from the left-right direction.
  • a portion downstream of the downstream bent portion is located below the crank axis Cr4.
  • the main catalyst 154 is disposed between the two bent portions.
  • the silencer 150 is connected to the exhaust pipe 149.
  • the silencer 150 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 150 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 150.
  • the downstream end of the exhaust pipe 149 is disposed in the expansion chamber of the silencer 150.
  • a discharge port 150e facing the atmosphere is provided.
  • the path length of the exhaust path from the downstream end of the exhaust pipe 149 to the discharge port 150e is assumed to be e4.
  • the exhaust gas that has passed through the silencer 150 is discharged to the atmosphere from the discharge port 150e.
  • the discharge port 150e is located behind the crank axis Cr4.
  • the main catalyst 154 is disposed in the exhaust pipe 149.
  • the upstream end of the main catalyst 154 is disposed upstream of the upstream end 150 a of the silencer 150.
  • the catalyst unit 153 includes a cylindrical casing 155 and a catalyst unit 153.
  • the upstream end of the casing 155 is connected to the upstream exhaust pipe 149a.
  • the downstream end of the casing 155 is connected to the downstream exhaust pipe 149b.
  • the casing 155 constitutes a part of the exhaust pipe 149.
  • the main catalyst 154 is fixed inside the casing 155.
  • the exhaust gas is purified by passing through the main catalyst 154. All exhaust gas discharged from the exhaust port 146a of the combustion chamber 144 passes through the main catalyst 154.
  • the main catalyst 154 purifies the exhaust gas discharged from the combustion chamber 144 most in the exhaust path 156.
  • the material of the main catalyst 154 is the same as that of the main catalyst 39 of the first embodiment.
  • the main catalyst 154 has a porous structure.
  • the main catalyst 154 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 149a.
  • the length of the main catalyst 154 in the path direction is c4.
  • the length c4 of the main catalyst 154 is longer than the maximum width w4 of the main catalyst 154.
  • the casing 155 has a catalyst arrangement passage portion 155b, an upstream passage portion 155a, and a downstream passage portion 155c.
  • the main catalyst 154 is arranged in the catalyst arrangement passage portion 155b.
  • the upstream end and the downstream end of the catalyst arrangement passage portion 155b are at the same positions as the upstream end and the downstream end of the main catalyst 154, respectively.
  • the area of the cross section perpendicular to the path direction of the catalyst arrangement passage portion 155b is substantially constant.
  • the upstream passage portion 155a is connected to the upstream end of the catalyst arrangement passage portion 155b.
  • the downstream passage portion 155c is connected to the upstream end of the catalyst arrangement passage portion 155b.
  • the upstream passage portion 155a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • the downstream passage portion 155c is at least partially tapered.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • the area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 155b is S4.
  • the area of the cross section perpendicular to the route direction of at least a part of the upstream passage portion 155a is smaller than the area S4.
  • at least a part of the upstream passage portion 155a includes an upstream end of the upstream passage portion 155a.
  • the area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 155c is smaller than the area S4.
  • At least a part of the downstream passage portion 155c here includes the downstream end of the downstream passage portion 155c.
  • the main catalyst 154 is disposed in front of the crank axis Cr4. That is, the main catalyst 154 is disposed in front of the straight line L7 when viewed from the left-right direction.
  • the straight line L7 is a straight line that passes through the crank axis Cr4 and extends parallel to the vertical direction.
  • the upstream end of the main catalyst 154 is also arranged in front of the crank axis Cr4.
  • the main catalyst 154 is located in front (downward) of the cylinder axis Cy4 when viewed from the left-right direction.
  • L8 be a straight line that is orthogonal to the cylinder axis Cy4 and orthogonal to the crank axis Cr4.
  • the main catalyst 154 is located in front of the straight line L8.
  • the path length from the upstream end of the exhaust pipe 149 to the upstream end of the main catalyst 154 is b4.
  • the path length b ⁇ b> 4 is the path length of the passage portion including the upstream exhaust pipe 149 a and the upstream passage portion 155 a of the catalyst unit 153.
  • the path length b4 is the path length from the downstream end of the cylinder exhaust passage portion 146 to the upstream end of the main catalyst 154.
  • the path length from the downstream end of the main catalyst 154 to the downstream end of the exhaust pipe 149 is d4.
  • the path length d4 is the path length of the path portion including the downstream path portion 155c and the downstream exhaust pipe 149b of the catalyst unit 153.
  • the path length from the combustion chamber 144 to the upstream end of the main catalyst 154 is a4 + b4.
  • the path length from the downstream end of the main catalyst 154 to the discharge port 150e is d4 + e4.
  • the main catalyst 154 is disposed at a position where the path length a4 + b4 is shorter than the path length d4 + e4. As in the first embodiment, the main catalyst 154 is disposed at a position where the path length a4 + b4 is shorter than the path length d4. Further, as in the first embodiment, the main catalyst 154 is disposed at a position where the path length b4 is shorter than the path length d4.
  • the upstream oxygen detection member 151 is disposed in the exhaust pipe 149.
  • the upstream oxygen detection member 151 is disposed upstream of the main catalyst 154.
  • the upstream oxygen detection member 151 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the structure of the upstream oxygen detection member 151 is the same as that of the upstream oxygen detection member of the first embodiment.
  • the path length from the combustion chamber 144 to the upstream oxygen detection member 151 is h7.
  • the path length from the upstream oxygen detection member 151 to the upstream end of the main catalyst 154 is h8.
  • the upstream oxygen detection member 151 is disposed at a position where the path length h7 is shorter than the path length h8.
  • the motorcycle 120 of the fourth embodiment includes the upstream oxygen detection member 151 and the downstream oxygen detection member 152 upstream and downstream of the main catalyst 154. Other than that, it has the same arrangement relationship as the motorcycle 1 of the first embodiment. About the same arrangement
  • FIG. 1 is a diagrammatic representation of the motorcycle 120 of the fourth embodiment.
  • FIG. 32 is a side view of the motorcycle according to Modification 4-1 of Embodiment 4 with the vehicle body cover and the like removed.
  • FIG. 33 is a bottom view of the motorcycle according to the modification 4-1 of the fourth embodiment with the vehicle body cover and the like removed.
  • FIG. 34 is a schematic diagram showing an engine body and an exhaust system of Modification 4-1 of Embodiment 4.
  • the same components as those in the fourth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the modification 4-1 has a main catalyst 154 disposed downstream as compared with the fourth embodiment.
  • the specific configuration of the main catalyst 154 is the same as that of the fourth embodiment.
  • the main catalyst 154 of Modification 4-1 is disposed in the exhaust pipe 2149.
  • the upstream end of the main catalyst 154 is disposed upstream of the upstream end 150 a of the silencer 150.
  • the exhaust pipe 2149 is connected to the cylinder exhaust passage portion 146 (see FIG. 34) and the silencer 150 in the same manner as the exhaust pipe 149 of the fourth embodiment.
  • a catalyst unit 153 is provided in the middle of the exhaust pipe 2149.
  • the exhaust pipe 2149a is upstream of the catalyst unit 153 of the exhaust pipe 2149.
  • a portion of the exhaust pipe 2149 downstream from the catalyst unit 153 is referred to as a downstream exhaust pipe 2149b.
  • the downstream exhaust pipe 2149b is disposed in the silencer 150.
  • the exhaust pipe 2149 is drawn in a straight line for simplification, but the exhaust pipe 2149 is not in a straight line.
  • the main catalyst 154 is disposed behind the crank axis Cr4. That is, the main catalyst 154 is disposed behind the straight line L7 when viewed from the left-right direction. As described above, the straight line L7 is a straight line that passes through the crank axis Cr4 and extends parallel to the vertical direction. Further, the main catalyst 154 is located in front (downward) of the cylinder axis Cy4 when viewed from the left-right direction.
  • the main catalyst 154 is located behind the straight line L8 when viewed from the left-right direction.
  • the straight line L8 is a straight line that is orthogonal to the cylinder axis Cy4 and orthogonal to the crank axis Cr4.
  • the path length from the upstream end of the exhaust pipe 2149 to the upstream end of the main catalyst 154 is b14.
  • a path length from the downstream end of the main catalyst 154 to the downstream end of the exhaust pipe 2149 is defined as d14.
  • the path length from the combustion chamber 144 to the upstream end of the main catalyst 154 is a4 + b14.
  • the path length from the downstream end of the main catalyst 154 to the discharge port 150e is d14 + e4.
  • the main catalyst 154 of the modified example 4-1 is disposed at a position where the path length a4 + b14 is shorter than the path length d14 + e4. Further, unlike the fourth embodiment, the main catalyst 154 of the modified example 4-1 is disposed at a position where the path length a4 + b14 is longer than the path length d14. Furthermore, unlike the fourth embodiment, the main catalyst 154 of the modified example 4-1 is disposed at a position where the path length b14 is longer than the path length d14.
  • the upstream oxygen detection member 151 is disposed in the exhaust pipe 2149.
  • the upstream oxygen detection member 151 is disposed upstream of the main catalyst 154.
  • the upstream oxygen detection member 151 is disposed in the upstream exhaust pipe 2149a (see FIG. 34).
  • the path length from the combustion chamber 144 to the upstream oxygen detection member 151 is h17.
  • the path length from the upstream oxygen detection member 151 to the upstream end of the main catalyst 154 is h18.
  • the upstream oxygen detection member 151 is disposed at a position where the path length h17 is shorter than the path length h18.
  • the downstream oxygen detection member 152 is disposed in the exhaust pipe 2149.
  • the downstream oxygen detection member 152 is disposed downstream from the main catalyst 154.
  • the downstream oxygen detection member 152 is disposed in the downstream exhaust pipe 2149a (see FIG. 34).
  • the downstream oxygen detection member 152 passes through the side wall portion of the silencer 150.
  • One end portion (detection portion) of the downstream oxygen detection member 152 is disposed in the downstream exhaust pipe 2149a.
  • the other end of the downstream oxygen detection member 152 is disposed outside the silencer 150.
  • the casings 40, 181, 117, and 155 of the catalyst units 38, 79, 115, and 153 and the upstream exhaust pipes 34a, 75a, 111a, and 149a are joined after being formed separately. Yes.
  • the casings 40, 181, 117, and 155 of the catalyst units 38, 79, 115, and 153 and the upstream exhaust pipes 34a, 75a, 111a, and 149a may be integrally formed.
  • the casings 40, 181, 117, and 155 of the catalyst units 38, 79, 115, and 153 and the downstream exhaust pipes 34b, 75b, 111b, and 149b are joined separately after being formed separately. Yes.
  • the casings 40, 181, 117, and 155 of the catalyst units 38, 79, 115, and 153 and the downstream exhaust pipes 34b, 75b, 111b, and 149b may be integrally formed.
  • the shape of the exhaust pipe 34 of the first embodiment is not limited to the shape shown in FIGS.
  • the internal structure of the silencer 35 is not limited to the structure shown in the schematic diagram of FIG. The same applies to the exhaust pipes 75, 111, 149 and the silencers 76, 112, 150 of the second to fourth embodiments.
  • the main catalysts 39, 116, 180, 154 and the silencers 35, 76, 112, 150 are arranged to the right of the center in the left-right direction of the motorcycles 1, 50, 80, 120. .
  • the main catalyst and the silencer may be arranged on the left side of the motorcycle in the left-right direction center.
  • the center in the left-right direction of the motorcycle is a position of a straight line passing through the center in the left-right direction of the front wheel and the center in the left-right direction of the rear wheel as viewed from the top and bottom.
  • the exhaust pipes 34, 75, 111, and 149 are partially located below the crank axes Cr1 to Cr4. However, a portion of the exhaust pipe (single combustion chamber exhaust pipe) may be located above the crank axis.
  • the main catalysts 39, 180, 116, and 154 are three-way catalysts.
  • the main catalyst for a single combustion chamber of the present invention may not be a three-way catalyst.
  • the main catalyst for the single combustion chamber may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide.
  • the main catalyst for the single combustion chamber may not be a redox catalyst.
  • the main catalyst may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction.
  • An example of a reduction catalyst is a catalyst that removes nitrogen oxides by a reduction reaction. This modification may be applied to the upstream sub-catalyst 300.
  • the main catalyst 39 has a length c1 in the path direction larger than the maximum width w1.
  • the length in the path direction may be shorter than the maximum width in the direction perpendicular to the path direction.
  • the main catalyst for a single combustion chamber of the present invention is configured to purify the exhaust gas most in the exhaust path.
  • the exhaust path here is a path from the combustion chamber to the discharge port facing the atmosphere.
  • the main catalyst for a single combustion chamber of the present invention may have a configuration in which a plurality of pieces of catalyst are arranged close to each other. Each piece has a substrate and a catalytic material.
  • proximity means a state in which the distance between pieces is shorter than the length of each piece in the path direction.
  • the composition of the multi-piece substrate may be one type or plural types.
  • the precious metal of the catalyst material of the multi-piece catalyst may be one kind or plural kinds.
  • the composition of the support of the catalyst substance may be one type or a plurality of types. This modification may be applied to the upstream sub-catalyst 200.
  • the upstream sub-catalyst 300 does not have a porous structure.
  • the upstream sub-catalyst 300 may have a porous structure.
  • the arrangement positions of the main catalysts 39, 180, 116, 154 are not limited to the positions shown in the drawings. However, the upstream end of the main catalyst is disposed upstream of the upstream end of the silencer. Hereinafter, a specific example of changing the arrangement position of the main catalyst will be described.
  • the main catalysts 39, 180, 116, 154 are disposed in the exhaust pipes 34, 75, 111, 149.
  • the main catalyst may be disposed in the cylinder exhaust passage portions 31, 72, 108, and 146 of the cylinder portions 22, 63, 99, and 137.
  • the downstream ends of the main catalysts 39, 180, 116, 154 are silencers 35, 76. , 112 and 150 are located upstream from the upstream ends.
  • the downstream end of the main catalyst 39 and the upstream end 435a of the silencer 435 may be in substantially the same position in the path direction.
  • the downstream end of the main catalyst 39 may be located downstream of the upstream end 535 a of the silencer 535.
  • the main catalysts 39, 180, 116, and 154 may be disposed at least partially in front of the crank axes Cr1 to Cr4. Further, at least a part of the main catalysts 39, 180, 116, 154 may be arranged behind the crank axes Cr1 to Cr4.
  • At least a part of the main catalysts 39, 180, 116, 154 may be arranged in front of the straight lines L2, L4, L6, L8. Further, at least a part of the main catalysts 39, 180, 116, 154 may be arranged behind the straight lines L2, L4, L6, L8 when viewed from the left-right direction.
  • the main catalyst 39 of the first embodiment is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1. However, the main catalyst 39 may be disposed at a position where the path length a1 + b1 is longer than the path length d1 + e1.
  • the path length a1 + b1 is a path length from the combustion chamber 29 to the upstream end of the main catalyst 39.
  • the path length d1 + e1 is a path length from the downstream end of the main catalyst 39 to the discharge port 35e. This modification may be applied to the main catalysts 180, 116, and 154 of Embodiments 2 to 4.
  • the upstream sub-catalyst 300 of Modification 1-2 of the above embodiment is provided upstream of the main catalyst 39.
  • the upstream sub-catalyst 300 is provided in the upstream exhaust pipe 34a.
  • the arrangement position of the upstream sub catalyst (upstream sub catalyst for the single combustion chamber) provided upstream from the main catalyst 39 is not limited to the upstream exhaust pipe 34a.
  • the upstream sub-catalyst may be provided in the cylinder exhaust passage portion 31. Further, the upstream sub-catalyst may be provided in the upstream passage portion 40 a of the catalyst unit 38. This modification may be applied to the second to fourth embodiments.
  • a downstream sub-catalyst (downstream sub-catalyst for a single combustion chamber) may be provided downstream of the main catalyst.
  • the downstream sub-catalyst may have the same configuration as the upstream sub-catalyst 300 of Modification 1-2 of the above embodiment. Further, the downstream sub-catalyst may have a porous structure.
  • the downstream sub catalyst 301 may be provided in the exhaust pipe 34. Further, the downstream sub-catalyst may be provided in the silencer 35. Further, the downstream sub-catalyst may be provided downstream from the downstream end of the exhaust pipe 34.
  • the downstream sub-catalyst may be provided in the cylinder exhaust passage portion. These modifications may be applied to the second to fourth embodiments. Further, when the downstream sub-catalyst is provided, the upstream sub-catalyst 300 may be provided upstream of the main catalyst. The downstream sub-catalyst is provided downstream of the main catalyst. For this reason, the main catalyst progresses faster than the downstream sub-catalyst. However, even if the deterioration of the main catalyst reaches a predetermined level, the exhaust gas purification performance can be maintained by the downstream sub-catalyst. Therefore, it is possible to maintain the initial performance of exhaust purification of the motorcycle for a longer time.
  • the main catalyst When the downstream sub-catalyst is provided downstream of the main catalyst, the main catalyst most purifies the exhaust gas discharged from the combustion chamber in the exhaust path.
  • the contributions of purification of the main catalyst and the downstream sub-catalyst can be measured by the measurement method described in Modification 1-2.
  • the “front catalyst” is the main catalyst
  • the “rear catalyst” is the “downstream sub-catalyst”.
  • the purification capacity of the downstream sub-catalyst may be smaller or larger than the purification capacity of the main catalyst. That is, the exhaust gas purification rate when only the downstream sub-catalyst is provided may be smaller or larger than the exhaust gas purification rate when only the main catalyst is provided.
  • the main catalyst deteriorates faster than the downstream sub-catalyst. Therefore, when the cumulative travel distance becomes long, the magnitude relationship between the contributions of purification of the main catalyst and the downstream sub-catalyst may be reversed.
  • the main catalyst for a single combustion chamber of the present invention purifies the exhaust gas discharged from the combustion chamber most in the exhaust path. This is a state before the reverse phenomenon as described above occurs. That is, the cumulative travel distance has not reached a predetermined distance (for example, 1000 km).
  • the number of catalysts provided in the single cylinder four-stroke engine unit may be one or plural.
  • the catalyst that most purifies the exhaust gas discharged from the combustion chamber in the exhaust path corresponds to the main catalyst for a single combustion chamber of the present invention.
  • this one catalyst is the main catalyst for a single combustion chamber of the present invention.
  • An upstream sub catalyst and a downstream sub catalyst may be provided upstream and downstream of the main catalyst.
  • Two or more upstream sub-catalysts may be provided upstream of the main catalyst.
  • Two or more downstream sub-catalysts may be provided downstream of the main catalyst.
  • the arrangement positions of the upstream oxygen detection members 36, 77, 113, 151 are not limited to the positions shown in the drawings. However, the upstream oxygen detection members 36, 77, 113, 151 are arranged upstream of the main catalysts 39, 180, 116, 154. Hereinafter, a specific modification example of the arrangement position of the upstream oxygen detection member will be described.
  • the upstream oxygen detection members 36, 77, 113, 151 are disposed in the exhaust pipes 34, 75, 111, 149, 334.
  • the upstream oxygen detection member 36 may be disposed in the cylinder exhaust passage portion 31.
  • the path length (h5) from the combustion chamber 106 to the upstream oxygen detection member 113 is longer than the path length (h6) from the upstream oxygen detection member 113 to the upstream end of the main catalyst 116.
  • the third embodiment has this arrangement. However, this arrangement may be applied to the first, second, and fourth embodiments.
  • the upstream oxygen detection member 36 of Modification 1-2 is disposed upstream of the upstream sub-catalyst 300.
  • the upstream oxygen detection member 36 may be disposed at the following position.
  • the upstream oxygen detection member 36 may be provided downstream from the upstream sub-catalyst 300.
  • two upstream oxygen detection members 36A and 36B may be provided upstream and downstream of the upstream sub-catalyst 300.
  • the upstream oxygen detection member 36 ⁇ / b> A is provided upstream of the upstream sub-catalyst 300.
  • the upstream oxygen detection member 36 ⁇ / b> B is provided downstream from the upstream sub-catalyst 300 and upstream from the main catalyst 39.
  • the upstream oxygen detection member can detect the oxygen concentration of the exhaust gas flowing into the upstream sub catalyst. Therefore, the exhaust gas purification performance by the upstream sub-catalyst can be enhanced by performing combustion control based on the signal of the upstream oxygen detection member.
  • the upstream oxygen detection members 36, 77, 113, 151 include the main catalysts 39, 180, Only one is disposed upstream of 116 and 154.
  • the number of single combustion chamber upstream oxygen detection members provided in the vehicle of the present invention may be two or more.
  • the arrangement positions of the downstream oxygen detection members 37, 78, 114, 152 are not limited to the positions shown in the drawings. However, the downstream oxygen detection members 37, 78, 114, and 152 are disposed downstream of the main catalysts 39, 180, 116, and 154. Hereinafter, a specific example of changing the arrangement position of the downstream oxygen detection member will be described.
  • the downstream oxygen detection members 37, 78, 114, and 152 are disposed in the exhaust pipes 34, 75, 111, 149, and 334, respectively.
  • FIG. 35, FIG. 36, FIG. 37, and FIG. May be.
  • the arrangement position of the downstream oxygen detection member 37 in FIGS. 35, 36, 37, and 38 will be described in detail.
  • the silencer 435 in FIG. 35 includes three expansion chambers 400, 401, and 402 and three pipes 403, 404, and 405.
  • a third expansion chamber 402 is formed between the first expansion chamber 400 and the second expansion chamber 401.
  • the downstream end of the catalyst unit 38 is disposed in the first expansion chamber 400.
  • the first expansion chamber 400 and the second expansion chamber 401 communicate with each other through the first pipe 403.
  • the second expansion chamber 401 and the third expansion chamber 402 communicate with each other through the second pipe 404.
  • the upstream end of the third pipe 405 is disposed in the third expansion chamber 402.
  • the third pipe 405 passes through the side wall portion of the silencer 435.
  • the third pipe 405 has a discharge port 435e facing the atmosphere.
  • the first pipe 403 is disposed near the side wall portion of the silencer 435.
  • the detection portion (tip portion) of the downstream oxygen detection member 37 is disposed in the vicinity of the downstream end of the first pipe 403.
  • the exhaust gas discharged from the first pipe 403 is blown to the detection unit of the downstream oxygen detection member 37.
  • the silencer 535 of FIG. 36 has three expansion chambers 500, 501, and 502 and three pipes 503, 504, and 505.
  • a first expansion chamber 500 is formed between the second expansion chamber 501 and the third expansion chamber 502.
  • the downstream end of the downstream exhaust pipe 534 b is disposed in the first expansion chamber 500.
  • the first expansion chamber 500 and the second expansion chamber 501 communicate with each other via the first pipe 503.
  • the second expansion chamber 501 and the third expansion chamber 502 communicate with each other via the second pipe 504.
  • the upstream end of the third pipe 505 is disposed in the third expansion chamber 502.
  • the third pipe 505 passes through the side wall portion of the silencer 535.
  • the third pipe 505 has a discharge port 535e facing the atmosphere.
  • the main catalyst 39 is disposed substantially at the center of the silencer 535.
  • the downstream exhaust pipe 534b extends in a direction inclined with respect to the L direction.
  • the downstream end of the downstream exhaust pipe 534 b is disposed near the side wall portion of the silencer 535.
  • the detection portion (tip portion) of the downstream oxygen detection member 37 is disposed in the vicinity of the downstream end of the downstream exhaust pipe 534b.
  • the exhaust gas discharged from the downstream exhaust pipe 534 b is blown to the detection unit of the downstream oxygen detection member 37.
  • FIG. 37 will be described.
  • the same components as those in FIG. 36 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the downstream end of the downstream exhaust pipe 1534 b is disposed in the first expansion chamber 500.
  • the main catalyst 39 is disposed near the side wall portion of the silencer 535.
  • the downstream end of the downstream exhaust pipe 1534b is also disposed near the side wall portion of the silencer 535.
  • the detection portion (tip portion) of the downstream oxygen detection member 37 is disposed in the vicinity of the downstream end of the downstream exhaust pipe 1534b.
  • the exhaust gas discharged from the downstream exhaust pipe 1534b is blown to the detection unit of the downstream oxygen detection member 37.
  • FIG. 38 will be described.
  • the same components as those in FIG. 36 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the downstream end of the downstream exhaust pipe 2534 b is disposed in the first expansion chamber 500.
  • the downstream oxygen detection member 37 is disposed in the third pipe 505.
  • the downstream oxygen detection member may be disposed at any of the following two positions.
  • the downstream oxygen detection member 37 may be provided downstream from the main catalyst 39 and upstream from the downstream sub-catalyst 301.
  • the downstream oxygen detection member 37 may be provided downstream of the downstream sub-catalyst 301.
  • downstream oxygen detection members may be provided upstream and downstream of the downstream sub-catalyst 301, respectively.
  • only one downstream oxygen detection member 37, 78, 114, 152 is disposed upstream of the main catalysts 39, 180, 116, 154.
  • the number of single combustion chamber downstream oxygen detection members provided in the vehicle of the present invention may be two or more.
  • the purification ability of the main catalyst is determined based on the signal from the downstream oxygen detection member.
  • the electronic control unit may determine the purification capacity of the main catalyst based on signals from the upstream oxygen detection member and the downstream oxygen detection member.
  • the electronic control unit may perform combustion control based on signals from the upstream oxygen detection member and the downstream oxygen detection member.
  • the purification capability of the main catalyst may be determined by comparing the change in the signal of the upstream oxygen detection member and the change in the signal of the downstream oxygen detection member.
  • the degree of deterioration of the main catalyst can be detected with higher accuracy. Therefore, the replacement of the main catalyst for the single combustion chamber can be promoted at a more appropriate timing as compared with the case where the deterioration of the main catalyst is determined using only the signal of the downstream oxygen detection member. Therefore, it is possible to use one main catalyst for a longer period while maintaining the initial performance related to the exhaust gas purification performance of the vehicle.
  • the basic fuel injection amount is corrected based on the signal from the upstream oxygen detection member 37 and fuel is injected from the injector 48.
  • the exhaust gas generated by the combustion of the fuel is detected by the downstream oxygen detection member.
  • the fuel injection amount is corrected based on the signal from the downstream oxygen detection member.
  • the actual purification status by the main catalyst can be grasped by using the signals of the two oxygen detection members arranged upstream and downstream of the main catalyst. Therefore, the accuracy of combustion control can be improved by performing combustion control based on the signals of the two oxygen detection members. Thereby, the progress of deterioration of the main catalyst can be delayed. As a result, the initial performance of the exhaust gas purification performance of the motorcycle can be maintained for a longer period.
  • the ignition timing and the fuel injection amount are controlled based on the signal from the upstream oxygen detection member 36.
  • This configuration is the same for the second to fourth embodiments.
  • the control process based on the signal of the upstream oxygen detection member 36 is not particularly limited, and may be only one of the ignition timing and the fuel injection amount. Further, the control process based on the signal from the upstream oxygen detection member 36 may include a control process other than the above.
  • the downstream oxygen detection members 37, 78, 114, and 152 may incorporate a heater.
  • the detection units of the downstream oxygen detection members 37, 78, 114, and 152 can detect the oxygen concentration when heated to a high temperature and activated. Therefore, when the downstream oxygen detection members 37, 78, 114, and 152 have a built-in heater, the start of oxygen detection can be accelerated by heating the detection unit with the heater simultaneously with the start of operation.
  • the upstream oxygen detection members 36, 77, 113, 151 may include a heater.
  • At least a part of the exhaust pipe upstream from the main catalyst may be composed of multiple pipes.
  • the multiple tube has an inner tube and at least one outer tube covering the inner tube.
  • FIG. 41 shows an example in which at least a part of the exhaust pipe 634 upstream from the main catalyst is constituted by a double pipe 600.
  • the double tube 600 includes an inner tube 601 and an outer tube 602 that covers the inner tube 601.
  • the inner tube 601 and the outer tube 602 are in contact with each other only at both ends.
  • the inner tube and the outer tube of the multiple tube may be in contact with each other at both ends.
  • the inner tube and the outer tube may be in contact with each other at the bent portion.
  • the contact area is preferably smaller than the non-contact area.
  • the inner tube and the outer tube may be in contact with each other.
  • At least a part of the outer surface of the catalyst arrangement passage portion 40b may be covered with a catalyst protector 700.
  • the catalyst protector 700 is formed in a substantially cylindrical shape. By providing the catalyst protector, the temperature of the main catalyst 39 can be raised earlier. Therefore, the exhaust gas purification performance of the main catalyst 39 can be improved. This modification may be applied to the second to fourth embodiments.
  • the single-cylinder four-stroke engine unit of the present invention may include a secondary air supply mechanism that supplies air to the exhaust path.
  • a known configuration is adopted as a specific configuration of the secondary air supply mechanism.
  • the secondary air supply mechanism may be configured to forcibly supply air to the exhaust path using an air pump. Further, the secondary air supply mechanism may be configured to draw air into the exhaust path by the negative pressure of the exhaust path.
  • the secondary air supply mechanism includes a reed valve that opens and closes in response to pressure pulsation caused by exhaust gas.
  • the upstream oxygen detection member may be disposed upstream or downstream of the position where air flows.
  • an injector is used to supply fuel to the combustion chambers 29, 70, 106, and 144.
  • the fuel supply device that supplies fuel to the combustion chamber is not limited to the injector.
  • a fuel supply device that supplies fuel to the combustion chamber by negative pressure may be provided.
  • only one exhaust port 31a, 72a, 108a, 146a is provided for one combustion chamber 29, 70, 106, 144.
  • a plurality of exhaust ports may be provided for one combustion chamber.
  • the case where a variable valve mechanism is provided corresponds to this modification.
  • the exhaust paths extending from the plurality of exhaust ports gather upstream from the main catalyst.
  • the exhaust paths extending from the plurality of exhaust ports are preferably gathered at the cylinder portion.
  • the combustion chamber of the present invention may have a configuration having a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
  • the combustion chambers 29, 70, 106, and 144 are entirely located in front of the crank axes Cr1, Cr2, Cr3, and Cr4. However, it is only necessary that at least a part of the combustion chamber of the present invention is located in front of the crank axis. That is, a part of the combustion chamber may be located behind the crank axis. This modification can be realized when the cylinder axis extends in the vertical direction.
  • the crankcase bodies 23, 64, 100, and 138 and the cylinder bodies 24, 65, 101, and 139 are separate bodies. However, the crankcase body and the cylinder body may be integrally formed.
  • the cylinder bodies 24, 65, 101, 139, the cylinder heads 25, 66, 102, 140, and the head covers 26, 67, 103, 141 are: It is a separate body. However, any two or three of the cylinder body, the cylinder head, and the head cover may be integrally formed.
  • a motorcycle is exemplified as a vehicle including a single cylinder four-stroke engine unit.
  • the vehicle of the present invention may be any vehicle as long as the vehicle moves with the power of the single-cylinder four-stroke engine unit.
  • the vehicle of the present invention may be a straddle-type vehicle other than a motorcycle.
  • Saddle-type vehicles refer to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • the vehicle of the present invention may not be a straddle type vehicle. Further, the vehicle of the present invention may be one that the driver does not get on. Further, the vehicle of the present invention may be capable of traveling without a person. In these cases, the forward direction of the vehicle is the forward direction of the vehicle.
  • the single-cylinder four-stroke engine units 93 and 132 of Embodiments 3 and 4 are unit swing types.
  • the engine bodies 94 and 133 are installed so as to be swingable with respect to the vehicle body frames 81 and 121. Therefore, the positions of the crank axes Cr3 and Cr4 with respect to the main catalysts 116 and 154 change depending on the traveling state.
  • the fact that the main catalyst is located in front of the crankshaft means that the main catalyst is located in front of the crankshaft when the engine body is at any position within the movable range.
  • Other positional relationships may be realized in any one of the movable ranges of the engine body.
  • the upstream end of the main catalyst means the end of the main catalyst that has the shortest path length from the combustion chamber.
  • the downstream end of the main catalyst means the end where the path length from the combustion chamber is the longest in the main catalyst. Similar definitions apply to upstream and downstream ends of elements other than the main catalyst.
  • the passage means a wall body or the like that surrounds the route to form the route, and the route means a space through which the object passes.
  • the exhaust passage portion means a wall body that surrounds the exhaust path and forms the exhaust path.
  • the exhaust path means a space through which exhaust passes.
  • the length of the exhaust path refers to the length of the line in the middle of the exhaust path.
  • the path length of the expansion chamber of the silencer means the length of the path connecting the middle of the inlet of the expansion chamber to the middle of the outlet of the expansion chamber in the shortest distance.
  • the route direction means the direction of the route passing through the middle of the exhaust route and the direction in which the exhaust gas flows.
  • the expression of the area of a cross section perpendicular to the path direction of the passage portion is used.
  • path part is used.
  • the area of the cross section of the passage portion here may be the area of the inner peripheral surface of the passage portion or the area of the outer peripheral surface of the passage portion.
  • a member or a straight line extends in the A direction does not indicate only a case where the member or the straight line is arranged in parallel with the A direction.
  • the member or straight line extending in the A direction includes the case where the member or straight line is inclined within a range of ⁇ 45 ° with respect to the A direction.
  • the A direction does not indicate a specific direction.
  • the A direction can be replaced with a horizontal direction or a front-rear direction.
  • crankcase bodies 23, 64, 100, and 138 in the present specification correspond to the crankcase portions 18, 61, 95, and 135 in the specification of the basic application of the present application, respectively.
  • the cylinder bodies 24, 65, 101, and 139 in the present specification correspond to the cylinder portions 24, 62, 96, and 136 in the specification of the basic application described above, respectively.
  • the engine main bodies 20, 61, 94, 133 in the present specification correspond to the engines 20, 60, 93, 131 in the specification of the basic application described above, respectively.
  • the cylinder exhaust passage portion 31 of the present specification corresponds to a passage portion that forms the exhaust gas passage P2 in the specification of the basic application described above.
  • the present invention is any implementation including equivalent elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements, and / or changes that may be recognized by one of ordinary skill in the art based on the disclosure herein. It includes forms. Claim limitations should be construed broadly based on the terms used in the claims. Claim limitations should not be limited to the embodiments described herein or in the process of this application. Such an embodiment should be construed as non-exclusive. For example, in the present specification, the terms “preferably” and “good” are non-exclusive, and “preferably but not limited to” or “good but not limited thereto”. It means "not.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

 支持構造を簡素化しながら、触媒による排ガスの浄化性能を向上させると共に、ビークルの排気浄化についての初期性能を長時間維持することが可能な、単気筒4ストロークエンジンユニットを備えたビークルを提供することを目的とする。単一燃焼室用メイン触媒39の上流端は、単一燃焼室用消音器35の上流端よりも排ガスの流れ方向の上流に配置される。単一燃焼室用メイン触媒39は、1つの燃焼室29から放出口35eまでの排気経路において、1つの燃焼室29から排出された排ガスを最も浄化する。単一燃焼室用メイン触媒39よりも上流には、単一燃焼室用上流酸素検出部材36が配置される。単一燃焼室用メイン触媒39よりも下流には、単一燃焼室用下流酸素検出部材37が配置される。

Description

ビークルおよび単気筒4ストロークエンジンユニット
 本発明は、ビークルおよび単気筒4ストロークエンジンユニットに関する。
 特許文献1には、単気筒4ストロークエンジンユニットが搭載されたビークルが開示されている。この単気筒4ストロークエンジンユニットは、消音器内に触媒が配置された構成となっている。触媒は、エンジン本体から排出された排ガスを浄化する。消音器は、排ガスによって生じる音を低減する。
特開2007―85234号公報
 単気筒4ストロークエンジンユニットを搭載したビークルは、排ガスの浄化性能の向上が望まれている。そのために、触媒をより上流に配置することが考えられる。つまり、触媒の少なくとも一部を消音器の上流に配置することが考えられる。
 また、浄化性能を長時間維持するために、触媒を大型化することが考えられる。ところが、大型化した触媒を消音器より上流に配置した場合、耐振性を確保するために支持構造を増やす必要がある。消音器とエンジン本体は、車体フレームに支持されている。しかし、通常、エンジン本体と消音器とを接続する排気管は、車体フレームに支持されていない。そのため、大型化した触媒を排気管内に配置すると、排気管が振動しやすくなる。そのため、耐振性を確保するために支持構造を増やす必要がある。
 本発明の目的は、支持構造を簡素化しながら、触媒による排ガスの浄化性能を向上させると共に、ビークルの排気浄化についての初期性能を長時間維持することが可能な、単気筒4ストロークエンジンユニットを備えたビークル、および、単気筒4ストロークエンジンユニットを提供することである。
 従来、ビークルの排気浄化についての初期性能をより長い期間維持させる手段として、触媒の大型化が考えられていた。本願発明者は、触媒が大型化される理由について改めて検討した。
 ビークルの使用状況によって触媒の劣化の程度にはばらつきがある。つまり、ビークルの使用状況によって触媒の劣化が進むケースがある。触媒の劣化が進んだ場合でも、より長い期間、ビークルの排気浄化についての初期性能を維持できるように、通常は、触媒の浄化能力に余裕を持たせている。このように触媒の浄化能力に余裕を持たせたことで、触媒が大型化されている。
 ところが、本願発明者が研究した結果、劣化が進むケースの発生頻度は少ないことがわかった。そこで、本願発明者は、頻度の少ない触媒の劣化が進むケースを想定して触媒の浄化能力に余裕をもたせるのではなく、以下のような異なる2つの技術思想で、ビークルの排気浄化についての初期性能をより長期間維持させることを考えた。
 1つは、触媒の劣化の進行を遅らせるようにエンジンを制御する技術思想である。触媒の劣化の進行を遅らせることで、触媒の劣化が進むケースの発生頻度を減らすことが可能となる。もう1つは、触媒の劣化が所定のレベルに達する前に、触媒の交換を促すことを可能にする技術思想である。
 このような技術思想を達成するための工夫として、以下の構成を採用することを思い付いた。つまり、触媒の上流と下流にそれぞれ酸素検出部材を配置すると共に、2つの酸素検出部材の信号を処理する制御装置を設けることを思い付いた。
 このような技術思想によれば、触媒の大きさを維持しつつ、ビークルの排気浄化についての初期性能をより長期間維持させることができると考えた。さらに、触媒の大型化を抑制することで、触媒を排気管に配置しても、排気管の振動を抑えることができる。それにより、触媒の浄化性能を向上させつつ、単気筒4ストロークエンジンユニットの支持構造を簡素化できると考えた。
 本発明のビークルは、単気筒4ストロークエンジンユニットが搭載されたビークルであって、前記単気筒4ストロークエンジンユニットは、1つの燃焼室、および、前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成されたシリンダ部を有するエンジン本体と、前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管内に配置され、且つ、その上流端が前記単一燃焼室用消音器の上流端よりも排ガスの流れ方向の上流に配置され、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用上流酸素検出部材と、前記単一燃焼室用シリンダ排気通路部、前記単一燃焼室用排気管または前記単一燃焼室用消音器において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用下流酸素検出部材と、前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号を処理する制御装置と、を備えることを特徴とする。
 この構成によると、ビークルが備える単気筒4ストロークエンジンユニットは、エンジン本体と、単一燃焼室用排気管と、単一燃焼室用消音器と、単一燃焼室用メイン触媒と、単一燃焼室用上流酸素検出部材と、単一燃焼室用下流酸素検出部材と、制御装置とを有する。エンジン本体は、1つの燃焼室と単一燃焼室用シリンダ排気通路部が形成されたシリンダ部を有する。単一燃焼室用シリンダ排気通路部は、1つの燃焼室から排出される排ガスが流れる。単一燃焼室用排気管は、エンジン本体の単一燃焼室用シリンダ排気通路部の下流端に接続される。単一燃焼室用消音器は、大気に面する放出口を有する。単一燃焼室用消音器は、単一燃焼室用排気管に接続されて単一燃焼室用排気管の下流端から流入した排ガスを放出口まで流す。単一燃焼室用消音器は、排ガスにより生じる音を低減する。単一燃焼室用メイン触媒は、単一燃焼室用シリンダ排気通路部または単一燃焼室用排気管内に配置される。単一燃焼室用メイン触媒は、1つの燃焼室から放出口までの排気経路において、1つの燃焼室から排出された排ガスを最も浄化する。単一燃焼室用メイン触媒の上流端は、単一燃焼室用消音器の上流端よりも上流に配置される。つまり、単一燃焼室用メイン触媒は、燃焼室に比較的近い位置に配置される。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能を向上できる。
 また、単一燃焼室用シリンダ排気通路部または単一燃焼室用排気管には、単一燃焼室用上流酸素検出部材が配置される。単一燃焼室用上流酸素検出部材は、単一燃焼室用メイン触媒よりも上流に配置される。また、単一燃焼室用シリンダ排気通路部、単一燃焼室用排気管または単一燃焼室用消音器には、単一燃焼室用下流酸素検出部材が配置される。単一燃焼室用下流酸素検出部材は、単一燃焼室用メイン触媒よりも下流に配置される。制御装置は、単一燃焼室用上流酸素検出部材の信号と単一燃焼室用下流酸素検出部材の信号を処理する。
 単一燃焼室用メイン触媒よりも下流に配置した単一燃焼室用下流酸素検出部材の信号により、単一燃焼室用メイン触媒の劣化を検出することができる。したがって、単一燃焼室用メイン触媒の劣化が所定のレベルに達する前に報知して、単一燃焼室用メイン触媒の交換を促すことができる。それにより、複数の単一燃焼室用メイン触媒を使って、ビークルの排気浄化についての初期性能をより長期間維持することができる。単一燃焼室用メイン触媒の劣化の検出は、単一燃焼室用上流酸素検出部材の信号を使わずに行ってもよい。また、単一燃焼室用下流酸素検出部材の信号と、単一燃焼室用上流酸素検出部材の信号とに基づいて、単一燃焼室用メイン触媒の劣化を検出してもよい。2つの酸素検出部材の信号を使うことで、単一燃焼室用メイン触媒の劣化の程度をより精度よく検出できる。そのため、単一燃焼室用下流酸素検出部材の信号だけを使って単一燃焼室用メイン触媒の劣化を検出する場合に比べて、より適切なタイミングで単一燃焼室用メイン触媒の交換を促すことができる。よって、1つの単一燃焼室用メイン触媒をより長期間使用することが可能となる。
 また、単一燃焼室用上流酸素検出部材の信号と、単一燃焼室用下流酸素検出部材の信号により、単一燃焼室用メイン触媒による実際の浄化の状況を把握できる。そのため、2つの酸素検出部材の信号に基づいて、燃焼室に供給する燃料の量の制御(以下、燃焼制御という)を行った場合には、燃焼制御の精度を向上できる。それにより、単一燃焼室用メイン触媒の劣化の進行を遅らせることができる。したがって、ビークルの排気浄化についての初期性能をより長期間維持することができる。
 このように、単一燃焼室用メイン触媒を大型化することなく、ビークルの排気浄化についての初期性能をより長期間維持することができる。よって、支持構造を簡素化しながら、ビークルの排気浄化についての初期性能を長時間維持することができる。
 以上により、本発明の単気筒4ストロークエンジンユニットを備えたビークルは、支持構造を簡素化しながら、触媒による排ガスの浄化性能を向上させると共に、ビークルの排気浄化についての初期性能を長時間維持することができる。
 本発明のビークルにおいて、前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、前記単一燃焼室用メイン触媒は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されていることが好ましい。
 この構成によると、シリンダ部の燃焼室の少なくとも一部は、クランク軸の中心線よりも前方に配置される。単一燃焼室用消音器の放出口は、クランク軸の中心線よりも後方に配置される。単一燃焼室用メイン触媒は、燃焼室と放出口の間に設けられる。単一燃焼室用メイン触媒は、少なくとも一部がクランク軸の中心線よりも前方に配置される。したがって、単一燃焼室用メイン触媒は、燃焼室により近い位置に配置される。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。
 本発明のビークルにおいて、前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、前記単一燃焼室用メイン触媒は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されていてもよい。
 本発明のビークルにおいて、前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、前記エンジン本体の前記シリンダ部は、ピストンが配置されるシリンダ孔を有し、前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、前記ビークルを左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記ビークルの前後方向の前方に位置していることが好ましい。
 この構成によると、シリンダ部の燃焼室の少なくとも一部は、クランク軸の中心線よりも前方に配置される。単一燃焼室用消音器の放出口は、クランク軸の中心線よりも後方に配置される。単一燃焼室用メイン触媒は、燃焼室と放出口の間に設けられる。また、シリンダ孔の中心線は、クランク軸の中心線と燃焼室を通る。そのため、シリンダ孔の中心線は、クランク軸から上方、前上方、前方のいずれかの方向に延びる。ここで、シリンダ孔の中心線に直交し且つクランク軸の中心線に直交する直線を、仮に直線Lとする。直線Lは、クランク軸から前方、前下方、下方のいずれかの方向に延びる。左右方向から見て、単一燃焼室用メイン触媒の少なくとも一部は、直線Lの前方に位置する。したがって、単一燃焼室用メイン触媒は、燃焼室により近い位置に配置される。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。
 本発明のビークルにおいて、前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、前記エンジン本体の前記シリンダ部は、ピストンが配置されるシリンダ孔を有し、前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、前記ビークルを左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記ビークルの前後方向の後方に位置していてもよい。
 本発明のビークルにおいて、前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記放出口までの経路長よりも短くなる位置に配置されていることが好ましい。
 この構成によると、1つの燃焼室から単一燃焼室用メイン触媒の上流端までの経路長は、単一燃焼室用メイン触媒の下流端から放出口までの経路長よりも短い。したがって、単一燃焼室用メイン触媒を、燃焼室により近い位置に配置することができる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。
 本発明のビークルにおいて、前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも短くなる位置に配置されていることが好ましい。
 この構成によると、1つの燃焼室から単一燃焼室用メイン触媒の上流端までの経路長は、単一燃焼室用メイン触媒の下流端から単一燃焼室用排気管の下流端までの経路長よりも短い。したがって、単一燃焼室用メイン触媒を、燃焼室により近い位置に配置することができる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。
 本発明のビークルにおいて、前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも長くなる位置に配置されていてもよい。
 本発明のビークルにおいて、前記単一燃焼室用上流酸素検出部材は、前記1つの燃焼室から前記単一燃焼室用上流酸素検出部材の上流端までの経路長が、前記単一燃焼室用上流酸素検出部材から前記単一燃焼室用メイン触媒の上流端までの経路長よりも短くなる位置に配置されていてもよい。
 この構成によると、1つの燃焼室から単一燃焼室用上流酸素検出部材の上流端までの経路長は、単一燃焼室用上流酸素検出部材から単一燃焼室用メイン触媒の上流端までの経路長よりも短い。したがって、単一燃焼室用上流酸素検出部材は、燃焼室により近い位置に配置される。そのため、エンジン始動時に、単一燃焼室用上流酸素検出部材をより早期に活性化温度まで上昇させることができる。したがって、単一燃焼室用上流酸素検出部材の検出精度を向上できる。それにより、単一燃焼室用上流酸素検出部材の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、単一燃焼室用メイン触媒の劣化の進行を遅らせることができる。したがって、ビークルの排気浄化についての初期性能をより長期間維持することができる。
 本発明のビークルにおいて、前記単一燃焼室用上流酸素検出部材は、前記1つの燃焼室から前記単一燃焼室用上流酸素検出部材の上流端までの経路長が、前記単一燃焼室用上流酸素検出部材から前記単一燃焼室用メイン触媒の上流端までの経路長よりも長くなる位置に配置されていてもよい。
 この構成によると、1つの燃焼室から単一燃焼室用上流酸素検出部材の上流端までの経路長は、単一燃焼室用上流酸素検出部材から単一燃焼室用メイン触媒の上流端までの経路長よりも長い。したがって、単一燃焼室用上流酸素検出部材は、単一燃焼室用メイン触媒に近い位置に配置される。そのため、単一燃焼室用メイン触媒に流入する排ガスの酸素濃度をより精度よく検出できる。それにより、単一燃焼室用上流酸素検出部材の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、単一燃焼室用メイン触媒の劣化の進行を遅らせることができる。したがって、ビークルの排気浄化についての初期性能をより長期間維持することができる。
 本発明のビークルにおいて、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部と、前記触媒配置通路部の上流端に接続される上流通路部とを有しており、前記上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積は、前記触媒配置通路部の排ガスの流れ方向に直交する断面の面積よりも小さいことが好ましい。
 この構成によると、単一燃焼室用排気管は、触媒配置通路部と上流通路部とを有する。触媒配置通路部は、単一燃焼室用メイン触媒が配置される。上流通路部は、触媒配置通路部の上流端に接続される。触媒配置通路部の排ガスの流れ方向に直交する断面の面積を仮にSaとする。上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積は、Saよりも小さい。したがって、単一燃焼室用メイン触媒として、断面積の大きい触媒を用いることができる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能を向上できる。
 本発明のビークルにおいて、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流の少なくとも一部が、内管と前記内管を覆う少なくとも1つの外管を備えた多重管で構成されることが好ましい。
 この構成によると、単一燃焼室用排気管は、単一燃焼室用メイン触媒よりも上流の少なくとも一部が、多重管で構成されている。多重管は、内管と、内管を覆う少なくとも1つの外管とを備えている。多重管を設けることで、排ガスの温度が低下するのを抑制できる。それにより、エンジン始動時に、単一燃焼室用上流酸素検出部材をより早期に活性化温度まで上昇させることができる。したがって、単一燃焼室用上流酸素検出部材の検出精度を向上できる。それにより、単一燃焼室用上流酸素検出部材の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、単一燃焼室用メイン触媒の劣化の進行を遅らせることができる。したがって、ビークルの排気浄化についての初期性能をより長期間維持することができる。
 本発明のビークルにおいて、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部を有し、前記単気筒4ストロークエンジンユニットは、前記触媒配置通路部の外面の少なくとも一部を覆う触媒プロテクターを備えることが好ましい。
 この構成によると、単一燃焼室用排気管は、触媒配置通路部を有する。触媒配置通路部は、単一燃焼室用メイン触媒が配置される。触媒配置通路部の外面の少なくとも一部は、触媒プロテクターで覆われる。触媒プロテクターを設けることで、単一燃焼室用メイン触媒の温度をより早期に上昇させることができる。したがって、単一燃焼室用メイン触媒による排ガスの浄化性能を向上できる。
 本発明のビークルにおいて、前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ排気通路部内または前記単一燃焼室用排気管内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に設けられ、排ガスを浄化する単一燃焼室用上流サブ触媒を備えることが好ましい。
 この構成によると、単一燃焼室用シリンダ排気通路部内または単一燃焼室用排気管内に、単一燃焼室用上流サブ触媒が設けられる。単一燃焼室用上流サブ触媒は、単一燃焼室用メイン触媒よりも上流に設けられる。そのため、単一燃焼室用上流サブ触媒は、単一燃焼室用メイン触媒よりも劣化の進行が速い。しかし、単一燃焼室用上流サブ触媒の劣化が所定のレベルに達しても、単一燃焼室用メイン触媒によって排ガスの浄化性能を維持することができる。したがって、ビークルの排気浄化についての初期性能をより長時間維持することができる。
 本発明のビークルにおいて、前記単一燃焼室用上流酸素検出部材は、前記単一燃焼室用上流サブ触媒よりも排ガスの流れ方向の上流に配置されていてもよい。
 この構成によると、単一燃焼室用上流酸素検出部材は、単一燃焼室用上流サブ触媒よりも上流に配置される。したがって、単一燃焼室用上流酸素検出部材は、単一燃焼室用上流サブ触媒に流入する排ガスの酸素濃度を検出できる。そのため、単一燃焼室用上流酸素検出部材の信号に基づいた燃焼制御を行うことにより、単一燃焼室用上流サブ触媒による排ガスの浄化性能を高めることができる。
 本発明のビークルにおいて、前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用排気管内または前記単一燃焼室用消音器内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に設けられ、排ガスを浄化する単一燃焼室用下流サブ触媒を備えることが好ましい。
 この構成によると、単一燃焼室用排気管内または単一燃焼室用消音器内に、単一燃焼室用下流サブ触媒が設けられる。単一燃焼室用下流サブ触媒は、単一燃焼室用メイン触媒よりも下流に設けられる。そのため、単一燃焼室用メイン触媒は、単一燃焼室用下流サブ触媒よりも劣化の進行が速い。しかし、単一燃焼室用メイン触媒の劣化が所定のレベルに達しても、単一燃焼室用下流サブ触媒によって排ガスの浄化性能を維持することができる。したがって、ビークルの排気浄化についての初期性能をより長時間維持することができる。
 本発明のビークルにおいて、前記単一燃焼室用下流酸素検出部材は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流であって、前記単一燃焼室用下流サブ触媒よりも排ガスの流れ方向の上流に配置されていてもよい。
 本発明のビークルにおいて、前記単一燃焼室下流酸素検出部材は、前記単一燃焼室用下流サブ触媒よりも排ガスの流れ方向の下流に配置されていてもよい。
 本発明のビークルにおいて、前記制御装置は、前記単一燃焼室用下流酸素検出部材の信号に基づいて前記単一燃焼室用メイン触媒の浄化能力を判定し、前記単一燃焼室用メイン触媒の浄化能力が所定のレベルまで低下したと前記制御装置によって判定されたときに報知を行う報知手段を備えることが好ましい。
 この構成によると、制御装置は、単一燃焼室用下流酸素検出部材の信号に基づいて、単一燃焼室用メイン触媒の浄化能力を判定する。そして、制御装置によって、エンジン下方触媒の浄化能力が所定のレベルまで低下したと判定された場合には、報知手段が報知する。これにより、単一燃焼室用メイン触媒の劣化が所定のレベルに達する前に、単一燃焼室用メイン触媒の交換を促すことができる。それにより、複数の単一燃焼室用メイン触媒を使って、ビークルの排気浄化についての初期性能をより長期間維持することができる。
 本発明のビークルにおいて、前記単気筒4ストロークエンジンユニットは、前記1つの燃焼室に燃料を供給する燃料供給装置を備え、前記制御装置は、前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号に基づいて前記燃焼供給装置により前記1つの燃焼室に供給される燃料の量を制御することが好ましい。
 単一燃焼室用上流酸素検出部材の信号と単一燃焼室用下流酸素検出部材の信号を用いることで、単一燃焼室用メイン触媒による実際の浄化の状況を把握できる。そのため、2つの酸素検出部材の信号に基づいて燃焼制御を行うことにより、燃焼制御の精度を向上できる。それにより、単一燃焼室用メイン触媒の劣化の進行を遅らせることができる。その結果、ビークルの排気浄化性能についての初期性能をより長期間維持することができる。
 本発明の単気筒4ストロークエンジンユニットは、前記ビークルに搭載された前記単気筒4ストロークエンジンユニットであって、1つの燃焼室、および、前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成されたシリンダ部を有するエンジン本体と、前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管内に配置され、且つ、その上流端が前記単一燃焼室用消音器の上流端よりも排ガスの流れ方向の上流に配置され、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用上流酸素検出部材と、前記単一燃焼室用シリンダ排気通路部、前記単一燃焼室用排気管または前記単一燃焼室用消音器において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用下流酸素検出部材と、前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号を処理する制御装置と、を備えることを特徴とする。
 この構成によると、上述した本発明のビークルと同様の効果が得られる。
 本発明によれば、単気筒4ストロークエンジンユニットを備えたビークルにおいて、支持構造を簡素化しながら、触媒による排ガスの浄化性能を向上させると共に、ビークルの排気浄化についての初期性能を長時間維持することができる。
本発明の実施形態1の自動二輪車の側面図である。 図1の自動二輪車から車体カバー等を外した状態の側面図である。 図2の底面図である。 図1の自動二輪車の制御ブロック図である。 図1の自動二輪車のエンジン本体と排気系を示す模式図である。 実施形態1の変形例1-1の自動二輪車の車体カバー等を外した状態の側面図である。 図6の底面図である。 図6の自動二輪車のエンジン本体と排気系を示す模式図である。 実施形態1の変形例1-2の自動二輪車の車体カバー等を外した状態の側面図である。 図9の自動二輪車のエンジン本体と排気系を示す模式図である。 本発明の実施形態2の自動二輪車の側面図である。 図11の底面図である。 図11の自動二輪車から車体カバー等を外した状態の側面図である。 図13の底面図である。 図11の自動二輪車のエンジン本体と排気系を示す模式図である。 実施形態2の変形例2-1の自動二輪車の車体カバー等を外した状態の側面図である。 図16の底面図である。 図16の自動二輪車のエンジン本体と排気系を示す模式図である。 本発明の実施形態3の自動二輪車の側面図である。 図19の底面図である。 図19の自動二輪車から車体カバー等を外した状態の側面図である。 図21の底面図である。 図19の自動二輪車のエンジン本体と排気系を示す模式図である。 実施形態3の変形例3-1の自動二輪車の車体カバー等を外した状態の側面図である。 図24の底面図である。 図24の自動二輪車のエンジン本体と排気系を示す模式図である。 本発明の実施形態4の自動二輪車の側面図である。 図27の底面図である。 図27の自動二輪車から車体カバー等を外した状態の側面図である。 図29の底面図である。 図27の自動二輪車のエンジン本体と排気系を示す模式図である。 実施形態4の変形例4-1の自動二輪車の車体カバー等を外した状態の側面図である。 図32の底面図である。 図32の自動二輪車のエンジン本体と排気系を示す模式図である。 本発明の他の実施形態の自動二輪車の消音器の周辺の模式図である。 本発明の他の実施形態の自動二輪車の消音器の断面図である。 本発明の他の実施形態の自動二輪車の消音器の断面図である。 本発明の他の実施形態の自動二輪車の消音器の断面図である。 本発明の他の実施形態の自動二輪車のエンジン本体と排気系を示す模式図である。 本発明の他の実施形態の自動二輪車のエンジン本体の模式図である。 本発明の他の実施形態の自動二輪車に適用される排気管の部分断面図である。 本発明の他の実施形態の自動二輪車の側面図の部分拡大図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。本発明のビークルを自動二輪車に適用した例について説明する。以下の説明において、前、後、左、右は、それぞれ自動二輪車の乗員から見た前、後、左、右を意味するものとする。但し、自動二輪車は、水平な地面に配置されたものとする。各図面に付した符号F、Re、L、Rは、それぞれ前、後、左、右を表す。
 (実施形態1)
 [全体構成]
 図1は、本発明の実施形態1の自動二輪車の側面図である。図2は、実施形態1の自動二輪車の車体カバー等を外した状態の側面図である。図3は、実施形態1の自動二輪車の車体カバー等を外した状態の底面図である。図5は、実施形態1の自動二輪車のエンジンと排気系を示す模式図である。
 実施形態1のビークルは、いわゆるアンダーボーン型の自動二輪車1である。図2に示すように、自動二輪車1は、車体フレーム2を備えている。車体フレーム2は、ヘッドパイプ3と、メインフレーム4と、シートレール5とを備えている。メインフレーム4は、ヘッドパイプ3から後下向きに延びている。シートレール5は、メインフレーム4の中途部から後上向きに延びている。
 ヘッドパイプ3にはステアリングシャフトが回転可能に挿入されている。ステアリングシャフトの上部には、ハンドル7(図1を参照)が設けられている。ハンドル7の近傍には、表示装置(図示せず)が配置されている。表示装置には、車速、エンジン回転速度、各種の警告などが表示される。
 ステアリングシャフトの下部には、左右一対のフロントフォーク6が支持されている。フロントフォーク6の下端部には、車軸8aが固定されている。この車軸8aには、前輪8が回転可能に取り付けられている。前輪8の上方および後方にはフェンダ10が設けられている。
 シートレール5には、シート9(図1を参照)が支持されている。図2に示すように、シートレール5には、左右一対のリアクッションユニット13の上端部が連結されている。リアクッションユニット13の下端部は、左右一対のリアアーム14の後部に支持されている。リアアーム14の前部は、ピボット軸14aを介して車体フレーム2に連結されている。リアアーム14は、ピボット軸14aを中心として上下に揺動可能である。リアアーム14の後部には、後輪15が支持されている。
 図2に示すように、メインフレーム4の下方には、エンジン本体20が配置されている。エンジン本体20は、車体フレーム2に支持されている。具体的には、メインフレーム4に設けられたブラケット4aに対して、エンジン本体20の上部が、ボルト4bによって固定されている。より詳細には、エンジン本体20の後述するクランクケース部21の上前部がブラケット4aに固定されている。また、エンジン本体20の後部も、車体フレーム2に設けられた他のブラケットに固定されている。メインフレーム4の下方で且つエンジン本体20の上方には、エアクリーナ32が配置されている。
 図1に示すように、自動二輪車1は、車体フレーム2等を覆う車体カバー11を有する。車体カバー11は、メインカバー16と、フロントカバー17とを有する。フロントカバー17は、ヘッドパイプ3の前方に配置される。メインカバー16は、ヘッドパイプ3の後方に配置される。メインカバー16は、メインフレーム4とシートレール5を覆っている。メインカバー16とフロントカバー17は、エンジン本体20の前部の左方および右方を覆っている。フロントカバー17は、エアクリーナ32の左方および右方を覆っている。
 メインフレーム4および車体カバー11は、シート9とヘッドパイプ3との間の部分が低くなっている。これにより、アンダーボーン型の自動二輪車1は、車両左右方向から見て、ヘッドパイプ3の後方かつシート9の前方かつメインフレーム4の上方に、凹部12が形成されている。この凹部12によって、乗員は車体を跨ぎやすくなっている。
 自動二輪車1は、単気筒4ストロークエンジンユニット19を有している。単気筒4ストロークエンジンユニット19は、エンジン本体20と、エアクリーナ32と、吸気管33と、排気管34と、消音器35と、メイン触媒39(単一燃焼室用メイン触媒)と、上流酸素検出部材36(単一燃焼室用上流酸素検出部材)と、下流酸素検出部材37(単一燃焼室用下流酸素検出部材)とを備えている。詳細は後述するが、メイン触媒39は、排気管34内に配置されている。メイン触媒39は、排気管34を流れる排ガスを浄化する。上流酸素検出部材36は、排気管34のメイン触媒39より上流に配置されている。下流酸素検出部材37は、排気管34のメイン触媒39より下流に配置されている。上流酸素検出部材36および下流酸素検出部材37は、排気管34を流れる排ガス中の酸素量または酸素濃度を検出する。
 エンジン本体20は、単気筒の4ストロークエンジンである。図2および図3に示すように、エンジン本体20は、クランクケース部21と、シリンダ部22とを備えている。シリンダ部22は、クランクケース部21から前方に延びている。
 クランクケース部21は、クランクケース本体23と、クランクケース本体23に収容されたクランク軸27および変速機構等を有する。以下、クランク軸27の中心線Cr1を、クランク軸線Cr1と称する。クランク軸線Cr1は、左右方向に延びている。クランクケース本体23内には潤滑用のオイルが貯蔵されている。かかるオイルはオイルポンプ(図示せず)によって搬送され、エンジン本体20内を循環している。
 シリンダ部22は、シリンダボディ24と、シリンダヘッド25と、ヘッドカバー26と、これらの内部に収容された部品とを有する。図2に示すように、シリンダボディ24は、クランクケース本体23の前部に接続されている。シリンダヘッド25は、シリンダボディ24の前部に接続されている。ヘッドカバー26は、シリンダヘッド25の前部に接続されている。
 図5に示すように、シリンダボディ24には、シリンダ孔24aが形成されている。シリンダ孔24a内には、ピストン28が往復移動可能に収容されている。ピストン28はコンロッドを介してクランク軸27に連結されている。以下、シリンダ孔24aの中心線Cy1を、シリンダ軸線Cy1と称する。図2に示すように、エンジン本体20は、シリンダ軸線Cy1が、前後方向(水平方向)に延びるように配置されている。より詳細には、シリンダ軸線Cy1のクランクケース部21からシリンダ部22に向かう方向は、前上向きである。シリンダ軸線Cy1の水平方向に対する傾斜角度は、0度以上45度以下である。
 図5に示すように、シリンダ部22の内部には、1つの燃焼室29が形成されている。燃焼室29は、シリンダボディ24のシリンダ孔24aの内面と、シリンダヘッド25と、ピストン28とによって形成されている。つまり、燃焼室29の一部は、シリンダ孔24aの内面によって区画されている。燃焼室29には、点火プラグ(図示せず)の先端部が配置されている。点火プラグは、燃焼室29内で燃料と空気との混合ガスに点火する。図2に示すように、燃焼室29は、クランク軸線Cr1よりも前方に位置する。これは、以下のように言い換えられる。クランク軸線Cr1を通り、上下方向と平行に延びる直線をL1とする。左右方向から見て、燃焼室29は直線L1の前方に配置されている。
 図5に示すように、シリンダヘッド25には、シリンダ吸気通路部30と、シリンダ排気通路部31(単一燃焼室用シリンダ排気通路部)が形成されている。本明細書において、「通路部」とは、ガスなどが通過する空間(経路)を形成する構造物のことである。シリンダヘッド25において、燃焼室29を形成する壁部には、吸気ポート30aおよび排気ポート31aが形成されている。シリンダ吸気通路部30は、吸気ポート30aからシリンダヘッド25の外面(上面)に形成された吸入口まで延びている。シリンダ排気通路部31は、排気ポート31aからシリンダヘッド25の外面(下面)に形成された排出口まで延びている。燃焼室29に供給される空気は、シリンダ吸気通路部30内を通過する。燃焼室29から排出される排ガスは、シリンダ排気通路部31を通過する。
 シリンダ吸気通路部30には吸気弁V1が配置されている。シリンダ排気通路部31には排気弁V2が配置されている。吸気弁V1および排気弁V2は、クランク軸27と連動する動弁機構(図示せず)によって作動する。吸気ポート30aは、吸気弁V1の運動により開閉される。排気ポート31aは、排気弁V2の運動により開閉される。シリンダ吸気通路部30の端部(吸入口)には吸気管33が接続されている。シリンダ排気通路部31の端部(排出口)には排気管34が接続されている。シリンダ排気通路部31の経路長をa1とする。
 シリンダ吸気通路部30または吸気管33には、インジェクタ48(図4を参照)が配置されている。インジェクタ48は、燃焼室29に燃料を供給するためのものである。より具体的には、インジェクタ48は、シリンダ吸気通路部30または吸気管33内で燃料を噴射する。なお、インジェクタ48は、燃焼室29内に燃料を噴射するように配置されていてもよい。また、吸気管33内には、スロットルバルブ(図示せず)が配置されている。
 図2に示すように、左右方向から見て、吸気管33は、シリンダヘッド25の上面から上方に延びている。吸気管33は、エアクリーナ32に接続されている。エアクリーナ32は、エンジン本体20に供給される空気を浄化する。エアクリーナ32を通過することによって浄化された空気が、吸気管33を通じてエンジン本体20に供給される。
 排気系の構成の詳細は後述する。
 次に、単気筒4ストロークエンジンユニット19の制御について説明する。図4は、実施形態1の自動二輪車の制御ブロック図である。
 単気筒4ストロークエンジンユニット19は、図4に示すように、エンジン回転速度センサ46a、スロットル開度センサ46b(スロットルポジションセンサ)、エンジン温度センサ46c、吸気圧センサ46d、吸気温センサ46eを有する。エンジン回転速度センサ46aは、クランク軸27の回転速度、即ち、エンジン回転速度を検出する。スロットル開度センサ46bは、スロットルバルブ(図示せず)の位置を検出することにより、スロットルバルブの開度(以下、スロットル開度という)を検出する。エンジン温度センサ46cは、エンジン本体の温度を検出する。吸気圧センサ46dは、吸気管33内の圧力(吸気圧)を検出する。吸気温センサ46eは、吸気管33内の空気の温度(吸気温)を検出する。
 単気筒4ストロークエンジンユニット19は、エンジン本体20の制御を行う電子制御ユニット(ECU:Electronic Control Unit)45を備えている。電子制御ユニット45は、本発明の制御装置に相当する。電子制御ユニット45は、エンジン回転速度センサ46a、エンジン温度センサ46c、スロットル開度センサ46b、吸気圧センサ46d、吸気温センサ46e、車速センサ等の各種センサと接続されている。また、電子制御ユニット45は、イグニッションコイル47、インジェクタ48、燃料ポンプ49、表示装置(図示せず)等と接続されている。電子制御ユニット45は、制御部45aと、作動指示部45bとを有する。作動指示部45bは、イグニッション駆動回路45cと、インジェクタ駆動回路45dと、ポンプ駆動回路45eとを備えている。
 イグニッション駆動回路45c、インジェクタ駆動回路45d、および、ポンプ駆動回路45eは、制御部45aからの信号を受けて、イグニッションコイル47、インジェクタ48、燃料ポンプ49をそれぞれ駆動する。イグニッションコイル47が駆動されると、点火プラグで火花放電が生じて混合ガスが点火される。燃料ポンプ49は、燃料ホースを介してインジェクタ48に接続されている。燃料ポンプ49が駆動されると、燃料タンク(図示せず)内の燃料がインジェクタ48へ圧送される。
 制御部45aは、例えばマイクロコンピュータである。制御部45aは、上流酸素検出部材36の信号、エンジン回転速度センサ46a等の信号に基づいて、イグニッション駆動回路45c、インジェクタ駆動回路45d、および、ポンプ駆動回路45eを制御する。制御部45aは、イグニッション駆動回路45cを制御することで、点火のタイミングを制御する。制御部45aは、インジェクタ駆動回路45dおよびポンプ駆動回路45eを制御することで、燃料噴射量を制御する。
 燃焼効率と、メイン触媒39の浄化効率を高めるには、燃焼室29内の混合気の空燃比は、理論空燃比(ストイキオメトリ)であることが好ましい。制御部45aは、必要に応じて、燃料噴射量を増減させる。
 以下、制御部45aによる燃料噴射量の制御の一例について説明する。
 制御部45aは、まず、エンジン回転速度センサ46a、スロットル開度センサ46b、エンジン温度センサ46c、吸気圧センサ46dの信号に基づいて、基本燃料噴射量を算出する。具体的には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップと、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを用いて、吸入空気量を求める。そして、マップから求められた吸入空気量に基づいて、目標空燃比を達成できる基本燃料噴射量を決定する。スロットル開度が小さい場合には、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。一方、スロットル開度が大きい場合には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。
 また、制御部45aは、上流酸素検出部材36の信号に基づいて、基本燃料噴射量を補正するためのフィードバック補正値を算出する。具体的には、まず、上流酸素検出部材36の信号に基づいて、混合気がリーンであるかリッチであるかを判定する。なお、リッチとは、理論空燃比に対して燃料が過剰な状態をいう。リーンとは、理論空燃比に対して空気が過剰な状態をいう。制御部45aは、混合気がリーンであると判定すると、次回の燃料噴射量が増えるようにフィードバック補正値を算出する。一方、制御部45aは、混合気がリッチであると判定すると、次回の燃料噴射量が減るようにフィードバック補正値を求める。
 また、制御部45aは、エンジン温度、外気温度、外気圧等に基づいて、基本燃料噴射量を補正するための補正値を算出する。さらに、制御部45aは、加速及び減速時の過渡特性に応じた補正値を算出する。
 制御部45aは、基本燃料噴射量と、フィードバック補正値などの補正値に基づいて、燃料噴射量を算出する。こうして求められた燃料噴射量に基づいて、燃料ポンプ49およびインジェクタ48が駆動される。このように、電子制御ユニット45(制御装置)は、上流酸素検出部材36の信号を処理する。また、電子制御ユニット45(制御装置)は、上流酸素検出部材36の信号に基づいて、燃焼制御を行う。
 また、電子制御ユニット45(制御装置)は、下流酸素検出部材37の信号を処理する。電子制御ユニット45(制御装置)は、下流酸素検出部材37の信号に基づいて、メイン触媒39の浄化能力を判定する。以下、下流酸素検出部材37の信号に基づいてメイン触媒39の浄化能力を判定する具体的な方法の一例を説明する。
 まず、一定期間(数秒間)、混合ガスがリッチとリーンを繰り返すように燃料噴射量を制御する。そして、燃料噴射量の変化に対する、下流酸素検出部材37の信号の変化の遅れを検出する。下流酸素検出部材37の信号の変化の遅れが大きい場合に、メイン触媒39の浄化能力が所定のレベルより低下したと判定する。この場合、電子制御ユニット45から表示装置に信号が送られる。そして、表示装置の警告灯(図示せず)が点灯される。これにより、乗員にメイン触媒39の交換を促すことができる。
 このように、メイン触媒39の下流に配置された下流酸素検出部材37の信号を用いることで、メイン触媒39の浄化能力を判定できる。そのため、メイン触媒39の劣化が所定のレベルに達する前に報知して、メイン触媒39の交換を促すことができる。それにより、複数のメイン触媒を使って、自動二輪車1の排気浄化についての初期性能をより長期間維持することができる。
 [排気系の構成]
 以下、実施形態1の自動二輪車1の排気系について説明する。本明細書の排気系の説明において、上流とは、排ガスの流れ方向の上流のことである。また、下流とは、排ガスの流れ方向の下流のことである。また、本明細書の排気系の説明において、経路方向とは、排ガスの流れる方向のことである。
 上述したように、単気筒4ストロークエンジンユニット19は、エンジン本体20と、排気管34と、消音器35と、メイン触媒39と、上流酸素検出部材36と、下流酸素検出部材37とを備えている。消音器35は、大気に面する放出口35eを有する。燃焼室29から放出口35eに至る経路を、排気経路41(図5を参照)とする。排気経路41は、シリンダ排気通路部31と排気管34と消音器35とによって形成される。排気経路41は、排ガスが通過する空間である。
 図5に示すように、排気管34の上流端部は、シリンダ排気通路部31に接続される。排気管34の下流端部は、消音器35に接続される。排気管34の途中には、触媒ユニット38が設けられている。排気管34の触媒ユニット38より上流の部分を上流排気管34aとする。排気管34の触媒ユニット38より下流の部分を下流排気管34bとする。なお、図5では、簡略化のために排気管34を一直線状に描いているが、排気管34は一直線状ではない。
 図3に示すように、排気管34は、自動二輪車1の右部に設けられている。図2に示すように、排気管34の一部は、クランク軸線Cr1の下方に位置する。排気管34は、2つの屈曲部を有する。2つの屈曲部のうち上流の屈曲部を、単に、上流の屈曲部という。2つの屈曲部のうち下流の屈曲部を、単に、下流の屈曲部という。上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、上下方向に延びる方向から前後方向に延びる方向に変化させる。より具体的には、屈曲部は、左右方向から見て、排ガスの流れ方向を、下向きから後上向きに変化させる。下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、後上向きから後向きに変化させる。下流の屈曲部より若干下流の部分が、クランク軸線Cr1の下方に位置する。メイン触媒39は2つの屈曲部の間に配置されている。
 消音器35には、排気管34の下流端から排出された排ガスが流入する。消音器35は、排気管34に接続されている。消音器35は、排ガスの脈動波を抑制するように構成されている。それにより、消音器35は、排ガスによって生じる音(排気音)の音量を低減できる。消音器35内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。排気管34の下流端部は、消音器35の膨張室内に配置されている。消音器35の下流端には、大気に面する放出口35eが設けられている。図5に示すように、排気管34の下流端から放出口35eに至る排気経路の経路長をe1とする。なお、消音器35内の膨張室の経路長は、膨張室の流入口の真ん中から膨張室の流出口の真ん中を最短で結んだ経路の長さである。消音器35を通過した排ガスは、放出口35eから大気へ放出される。図2に示すように、放出口35eは、クランク軸線Cr1よりも後方に位置する。
 メイン触媒39は、排気管34内に配置されている。メイン触媒39の上流端は、消音器35の上流端35aよりも上流に配置されている。触媒ユニット38は、筒状のケーシング40と、メイン触媒39とを有する。ケーシング40の上流端は、上流排気管34aに接続されている。ケーシング40の下流端は、下流排気管34bに接続されている。ケーシング40は、排気管34の一部を構成する。メイン触媒39は、ケーシング40の内部に固定されている。排ガスは、メイン触媒39を通過することで浄化される。メイン触媒39には、燃焼室29の排気ポート31aから排出された全ての排ガスが通過する。メイン触媒39は、排気経路41において、燃焼室29から排出された排ガスを最も浄化する。
 メイン触媒39は、いわゆる三元触媒である。三元触媒とは、排ガスに含まれる炭化水素、一酸化炭素、および窒素酸化物の3物質を酸化または還元することで除去する。三元触媒は、酸化還元触媒の1種である。メイン触媒39は、基材と、この基材の表面に付着された触媒物質とを有する。触媒物質は、担体と貴金属を有する。担体は、貴金属と基材の間に設けられる。担体は貴金属を担持する。この貴金属が、排ガスを浄化する。貴金属としては、例えば、炭化水素、一酸化炭素、および窒素酸化物をそれぞれ除去する、プラチナ、パラジウム、ロジウムなどが挙げられる。
 メイン触媒39は、多孔構造を有している。多孔構造とは、排気経路41の経路方向に垂直な断面に多孔が形成されている構造を言う。多孔構造の一例は、ハニカム構造である。メイン触媒39には、上流排気管34aの経路幅より十分に細い複数の孔が形成されている。
 メイン触媒39は、メタル基材触媒であっても、セラミック基材触媒であってもよい。メタル基材触媒とは、基材が金属製の触媒である。セラミック基材触媒とは、基材がセラミック製の触媒である。メタル基材触媒の基材は、例えば、金属製の波板と金属製の平板を交互に重ねて巻回することで形成される。セラミック基材触媒の基材は、例えば、ハニカム構造体である。
 図5に示すように、メイン触媒39の経路方向の長さをc1とする。メイン触媒39の経路方向に垂直な方向の最大幅をw1とする。メイン触媒39の長さc1は、メイン触媒39の最大幅w1より長い。メイン触媒39の経路方向に直交する断面形状は、例えば円形状である。断面形状は、上下方向長さよりも左右方向長さが長い形状であってもよい。
 図5に示すように、ケーシング40は、触媒配置通路部40bと、上流通路部40aと、下流通路部40cとを有する。触媒配置通路部40bには、メイン触媒39が配置される。経路方向において、触媒配置通路部40bの上流端および下流端は、メイン触媒39の上流端および下流端とそれぞれ同じ位置である。触媒配置通路部40bの経路方向に直交する断面の面積は、経路方向においてほぼ一定である。上流通路部40aは、触媒配置通路部40bの上流端に接続されている。下流通路部40cは、触媒配置通路部40bの上流端に接続されている。
 上流通路部40aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部40cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部40bの経路方向に直交する断面の面積をS1とする。上流通路部40aの少なくとも一部の経路方向に直交する断面の面積は面積S1よりも小さい。ここでの上流通路部40aの少なくとも一部には、上流通路部40aの上流端が含まれる。下流通路部40cの少なくとも一部の経路方向に直交する断面の面積は面積S1よりも小さい。ここでの下流通路部40cの少なくとも一部には、下流通路部40cの下流端が含まれる。
 図2および図3に示すように、メイン触媒39は、クランク軸線Cr1よりも前方に配置されている。つまり、左右方向から見て、メイン触媒39は、直線L1の前方に配置されている。上述したように、直線L1は、クランク軸線Cr1を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒39は、シリンダ軸線Cy1の前方(下方)に位置する。
 図2に示すように、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線をL2とする。左右方向から見て、メイン触媒39は、直線L2の前方に位置する。
 図5に示すように、排気管34の上流端からメイン触媒39の上流端までの経路長をb1とする。経路長b1は、上流排気管34aと触媒ユニット38の上流通路部40aからなる通路部の経路長である。言い換えると、経路長b1は、シリンダ排気通路部31の下流端からメイン触媒39の上流端までの経路長である。また、メイン触媒39の下流端から排気管34の下流端までの経路長をd1とする。経路長d1は、触媒ユニット38の下流通路部40cと下流排気管34bからなる通路部の経路長である。燃焼室29からメイン触媒39の上流端までの経路長は、a1+b1である。メイン触媒39の下流端から放出口35eまでの経路長は、d1+e1である。
 メイン触媒39は、経路長a1+b1が、経路長d1+e1よりも短くなる位置に配置される。また、メイン触媒39は、経路長a1+b1が、経路長d1よりも短くなる位置に配置される。さらに、メイン触媒39は、経路長b1が、経路長d1よりも短くなる位置に配置される。
 上流酸素検出部材36は、排気管34に配置されている。上流酸素検出部材36は、メイン触媒39よりも上流に配置される。上流酸素検出部材36は、上流排気管34a(図5を参照)に配置されている。上流酸素検出部材36は、排ガスに含まれる酸素濃度を検出するセンサである。上流酸素検出部材36は、酸素濃度が所定値より高いか低いかを検出する酸素センサであってもよい。また、上流酸素検出部材36は、酸素濃度を複数段階またはリニアに表わす検出信号を出力するセンサ(例えばA/Fセンサ: Air Fuel ratio sensor)であってもよい。上流酸素検出部材36は、一端部(検出部)が排気管34内に配置され、他端部が排気管34の外に配置される。上流酸素検出部材36の検出部は、高温に加熱されて活性化状態となったときに、酸素濃度を検出できる。上流酸素検出部材36の検出結果は、電子制御ユニット45に出力される。
 図5に示すように、燃焼室29から上流酸素検出部材36までの経路長をh1とする。上流酸素検出部材36からメイン触媒39の上流端までの経路長をh2とする。上流酸素検出部材36は、経路長h1が経路長h2よりも短くなる位置に配置されている。
 下流酸素検出部材37は、排気管34に配置されている。下流酸素検出部材37は、メイン触媒39よりも下流に配置される。下流酸素検出部材37は、下流排気管34b(図5を参照)に配置されている。下流酸素検出部材37は、消音器35より上流に配置されている。下流酸素検出部材37は、排ガスに含まれる酸素濃度を検出するセンサである。下流酸素検出部材37は、酸素濃度が所定値より高いか低いかを検出する酸素センサであってもよい。また、下流酸素検出部材37は、酸素濃度を複数段階またはリニアに表わす検出信号を出力するセンサ(例えばA/Fセンサ: Air Fuel ratio sensor)であってもよい。下流酸素検出部材37は、一端部(検出部)が排気管34内に配置され、他端部が排気管34の外に配置される。下流酸素検出部材37の検出結果は、電子制御ユニット45に出力される。
 以上、実施形態1の自動二輪車1の構成について説明した。実施形態1の自動二輪車1は以下の特徴を有する。
 燃焼室29の少なくとも一部は、クランク軸線Cr1よりも前方に配置される。消音器35の放出口35eは、クランク軸線Cr1よりも後方に配置される。メイン触媒39は、少なくとも一部がクランク軸線Cr1よりも前方に配置される。メイン触媒39の上流端は、消音器35の上流端35aよりも上流に配置される。つまり、メイン触媒39は、燃焼室29に比較的近い位置に配置される。そのため、メイン触媒39による排ガスの浄化性能を向上できる。
 下流酸素検出部材37は、メイン触媒39より下流に配置される。下流酸素検出部材37の信号により、メイン触媒39の劣化を検出することができる。したがって、メイン触媒39の劣化が所定のレベルに達する前に報知して、メイン触媒39の交換を促すことができる。それにより、複数のメイン触媒39を使って、自動二輪車1の排気浄化についての初期性能をより長期間維持することができる。また、下流酸素検出部材37の信号と、メイン触媒39よりも上流に配置された上流酸素検出部材36の信号に基づいて、メイン触媒39の劣化を検出してもよい。2つの酸素検出部材36、37の信号を使うことで、メイン触媒39の劣化の程度をより精度よく検出できる。そのため、下流酸素検出部材37の信号だけを使ってメイン触媒39の劣化を検出する場合に比べて、自動二輪車1の排気浄化についての初期性能を維持しつつ、1つのメイン触媒39をより長期間使用することが可能となる。
 メイン触媒39よりも上流に配置される上流酸素検出部材36の信号と、メイン触媒39よりも下流に配置される下流酸素検出部材37の信号により、メイン触媒39の実際の浄化能力を検知できる。そのため、2つの酸素検出部材36、37の信号に基づいて燃焼制御を行った場合には、燃焼制御の精度を向上できる。それにより、メイン触媒39の劣化の進行を遅らせることができる。したがって、自動二輪車1の排気浄化についての初期性能をより長期間維持することができる。
 このように、メイン触媒39を大型化することなく、自動二輪車1の排気浄化についての初期性能をより長期間維持することができる。よって、支持構造を簡素化しながら、自動二輪車1の排気浄化についての初期性能を長時間維持することができる。
 以上により、本実施形態の単気筒4ストロークエンジンユニット19を備えた自動二輪車1は、支持構造を簡素化しながら、触媒による排ガスの浄化性能を向上させると共に、自動二輪車1の排気浄化についての初期性能を長時間維持することができる。
 メイン触媒39は、少なくとも一部がクランク軸線Cr1よりも前方に配置される。そのため、メイン触媒39は、燃焼室29により近い位置に配置される。したがって、メイン触媒39による排ガスの浄化性能をより向上できる。
 直線L2は、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線である。この直線L2は、クランク軸27から下方に延びている。左右方向から見て、メイン触媒39の少なくとも一部は、直線L2の前方に位置する。したがって、メイン触媒39は、燃焼室29により近い位置に配置される。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。
 1つの燃焼室29からメイン触媒39の上流端までの経路長(a1+b1)は、メイン触媒39の下流端から放出口35eまでの経路長(d1+e1)よりも短い。したがって、メイン触媒39を、燃焼室29により近い位置に配置することができる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。
 1つの燃焼室29からメイン触媒39の上流端までの経路長(a1+b1)は、メイン触媒39の下流端から排気管34の下流端までの経路長(d1)よりも短い。したがって、メイン触媒39を、燃焼室29により近い位置に配置することができる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。
 1つの燃焼室29から上流酸素検出部材36の上流端までの経路長(h1)は、上流酸素検出部材36からメイン触媒39の上流端までの経路長(h2)よりも短い。したがって、上流酸素検出部材は、燃焼室29により近い位置に配置される。そのため、エンジン始動時に、上流酸素検出部材36をより早期に活性化温度まで上昇させることができる。したがって、上流酸素検出部材36の検出精度を向上できる。それにより、上流酸素検出部材36の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、メイン触媒39による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、メイン触媒39の劣化の進行を遅らせることができる。したがって、自動二輪車1の排気浄化についての初期性能をより長期間維持することができる。
 上流通路部40aの少なくとも一部の排ガスの流れ方向に直交する断面の面積は、面積S1よりも小さい。面積S1は、触媒配置通路部40bの排ガスの流れ方向に直交する断面の面積である。したがって、メイン触媒39として、断面積の大きい触媒を用いることができる。そのため、メイン触媒39による排ガスの浄化性能を向上できる。
 (実施形態1の変形例1-1)
 図6は、実施形態1の変形例1-1の自動二輪車の車体カバー等を外した状態の側面図である。図7は、実施形態1の変形例1-1の自動二輪車の車体カバー等を外した状態の底面図である。図8は、実施形態1の変形例1-1のエンジン本体および排気系を示す模式図である。変形例1-1において、実施形態1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図6に示すように、変形例1-1は上記実施形態1に比べて、メイン触媒39が下流に配置されている。メイン触媒39の具体的な構成は、上記実施形態1と同様である。変形例1-1のメイン触媒39は、排気管234内に配置されている。上記実施形態1と同じく、メイン触媒39の上流端は、消音器35の上流端35aよりも上流に配置されている。
 排気管234は、実施形態1の排気管34と同様に、シリンダ排気通路部31(図8を参照)と消音器35に接続されている。排気管234の途中には、触媒ユニット38が設けられている。図8に示すように、排気管234の触媒ユニット38より上流の部分を、上流排気管234aとする。排気管234の触媒ユニット38より下流の部分を下流排気管234bとする。下流排気管234bは、消音器35内に配置されている。なお、図8では、簡略化のために排気管234を一直線状に描いているが、排気管234は一直線状ではない。
 図6に示すように、メイン触媒39は、クランク軸線Cr1よりも後方に配置されている。つまり、左右方向から見て、メイン触媒39は、直線L1の後方に配置されている。上述したように、直線L1は、クランク軸線Cr1を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒39は、シリンダ軸線Cy1の前方(下方)に位置する。
 図6に示すように、左右方向から見て、メイン触媒39は、直線L2の前方に位置する。なお、直線L2は、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線である。
 図8に示すように、排気管234の上流端からメイン触媒39の上流端までの経路長をb11とする。メイン触媒39の下流端から排気管234の下流端までの経路長をd11とする。燃焼室29からメイン触媒39の上流端までの経路長は、a1+b11である。メイン触媒39の下流端から放出口35eまでの経路長は、d11+e1である。
 上記実施形態1と同じく、変形例1-1のメイン触媒39は、経路長a1+b11が、経路長d11+e1よりも短くなる位置に配置される。また、上記実施形態1と異なり、変形例1-1のメイン触媒39は、経路長a1+b11が、経路長d11よりも長くなる位置に配置される。さらに、上記実施形態1と異なり、変形例1-1のメイン触媒39は、経路長b11が、経路長d11よりも長くなる位置に配置される。
 上流酸素検出部材36は、排気管234に配置されている。上流酸素検出部材36は、メイン触媒39より上流に配置されている。上流酸素検出部材36は、上流排気管234a(図8を参照)に配置されている。
 図8に示すように、燃焼室29から上流酸素検出部材36までの経路長をh11とする。上流酸素検出部材36からメイン触媒39の上流端までの経路長をh12とする。上記実施形態1と同じく、上流酸素検出部材36は、経路長h11が経路長h12よりも短くなる位置に配置されている。
 下流酸素検出部材37は、排気管234に配置されている。下流酸素検出部材37は、メイン触媒39より下流に配置されている。下流酸素検出部材37は、下流排気管234a(図8を参照)に配置されている。下流酸素検出部材37は、消音器35の側壁部を貫通している。下流酸素検出部材37の一端部(検出部)は、下流排気管234a内に配置されている。下流酸素検出部材37の他端部は、消音器35の外に配置されている。
 変更例1-1において、上記実施形態1と同様の構成については、上記実施形態1で述べた効果を奏する。
 (実施形態1の変形例1-2)
 図9は、実施形態1の変形例1-2の自動二輪車の側面図である。図10は、実施形態1の変形例1-2のエンジン本体および排気系を示す模式図である。変形例1-2において、実施形態1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図9および図10に示すように、上流サブ触媒300(単一燃焼室用上流サブ触媒)とメイン触媒39と上流酸素検出部材36と下流酸素検出部材37は、排気管334に配置されている。排気管334は、実施形態1の排気管34と同様に、シリンダ排気通路部31(図10を参照)と消音器35に接続されている。排気管334の途中には、触媒ユニット38が設けられている。図10に示すように、排気管334の触媒ユニット38より上流の部分を、上流排気管334aとする。排気管334の触媒ユニット38より下流の部分を下流排気管334bとする。なお、図10では、簡略化のために排気管334を一直線状に描いているが、排気管334は一直線状ではない。
 上流サブ触媒300は、メイン触媒39より上流に設けられている。上流サブ触媒300は、上流排気管334a(排気管334)に設けられている。上流サブ触媒300は、排気管334の内壁に付着された触媒物質だけで構成されていてもよい。この場合、上流サブ触媒300の触媒物質が付着される基材は、排気管334の内壁である。また、上流サブ触媒300は、排気管334の内側に配置される基材を有していてもよい。この場合、上流サブ触媒300は、基材と触媒物質で構成される。上流サブ触媒300の基材は、例えば、板状である。板状の基材の経路方向に直交する断面の形状は、S字状であっても、円形状であっても、C字状であってもよい。上流サブ触媒300が基材を有する場合と有さない場合のいずれにおいても、上流サブ触媒300は多孔構造を有さない。そのため、上流サブ触媒300は、メイン触媒39と比較して排ガスによる圧力脈動の反射を生じさせる作用が小さい。また、上流サブ触媒200は、メイン触媒39に比べて、排ガスの流れの抵抗が小さい。
 メイン触媒39は、排気経路41において、燃焼室29から排出された排ガスを最も浄化する。つまり、メイン触媒39は、排気経路41において、燃焼室29から排出された排ガスを上流サブ触媒300よりも浄化する。言い換えると、上流サブ触媒300は、メイン触媒39に比べて、排ガスを浄化する寄与度が低い。
 メイン触媒39と上流サブ触媒300のそれぞれの浄化の寄与度は、以下の方法で測定できる。測定方法の設明において、メイン触媒39と上流サブ触媒300のうち、上流に配置される触媒をフロント触媒と称し、下流に配置される触媒をリア触媒と称する。変形例1-2では、上流サブ触媒300がフロント触媒であって、メイン触媒39がリア触媒である。
 変形例1のエンジンユニットを運転して、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。排ガスの測定方法は、欧州規制に従った測定方法とする。暖機状態では、メイン触媒39と上流サブ触媒200は、高温となって活性化される。そのため、メイン触媒39と上流サブ触媒200は、暖機状態のときに、浄化性能を十分に発揮できる。
 次に、試験で用いたエンジンユニットのリア触媒を取り外して、その代わりにリア触媒の基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットAとする。そして、同様に、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。
 また、この測定用エンジンユニットAのフロント触媒を取り外して、その代わりにフロント触媒の基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットBとする。そして、同様に、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。なお、上流サブ触媒200(フロント触媒)が排気管234の内壁に触媒物質を直接付着させた構成の場合、排気管234が基材に相当する。このような上流サブ触媒200の代わりに、上流サブ触媒200の基材のみを配置するとは、排気管234の内壁に触媒物質を付着させないことである。
 測定用エンジンユニットAは、フロント触媒を有し、リア触媒を有しない。測定用エンジンユニットBは、フロント触媒とリア触媒を有しない。そのため、測定用エンジンユニットAの測定結果と、測定用エンジンユニットBの測定結果の差から、フロント触媒(上流サブ触媒300)の浄化の寄与度が算出される。また、測定用エンジンユニットAの測定結果と、変形例1-2のエンジンユニットの測定結果の差から、リア触媒(メイン触媒39)の浄化の寄与度が算出される。
 上流サブ触媒200の浄化能力は、メイン触媒39の浄化能力より小さくても大きくてもよい。なお、上流サブ触媒200の浄化能力が、メイン触媒39の浄化能力より小さいとは、上流サブ触媒200だけを設けた場合の排ガスの浄化率が、メイン触媒39だけを設けた場合の排ガスの浄化率より小さいことをいう。
 図9に示すように、メイン触媒39は、クランク軸線Cr1よりも前方に配置されている。また、左右方向から見て、メイン触媒39は、直線L2の前方に位置する。なお、直線L2の定義は実施形態1と同じである。つまり、直線L2は、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線である。
 図10に示すように、排気管334の上流端からメイン触媒39の上流端までの経路長をb21とする。メイン触媒39の下流端から排気管334の下流端までの経路長をd21とする。燃焼室29からメイン触媒39の上流端までの経路長は、a1+b21である。メイン触媒39の下流端から放出口35eまでの経路長は、d21+e1である。
 実施形態1と同様に、メイン触媒39は、経路長a1+b21が、経路長d21+e1よりも短くなる位置に配置される。また、実施形態1と同様に、メイン触媒39は、経路長a1+b21が、経路長d21よりも短くなる位置に配置される。さらに、実施形態1と同様に、メイン触媒39は、経路長b21が、経路長d21よりも短くなる位置に配置される。
 上流酸素検出部材36は、排気管334に配置されている。上流酸素検出部材36は、上流サブ触媒300より上流に配置されている。上流酸素検出部材36は、上流排気管334a(図13を参照)に配置されている。
 燃焼室29から上流酸素検出部材36までの経路長をh21とする。上流酸素検出部材36からメイン触媒39の上流端までの経路長をh22とする。実施形態1と同様に、上流酸素検出部材36は、経路長h21が、経路長h22よりも短くなる位置に配置されている。
 下流酸素検出部材37は、排気管334に配置されている。下流酸素検出部材37は、メイン触媒39より下流に配置されている。下流酸素検出部材37は、下流排気管334b(図13を参照)に配置されている。下流酸素検出部材37は、消音器35より上流に配置されている。
 変形例1-2において、上記実施形態1と同様の構成については、上記実施形態1で述べた効果を奏する。
 また、変形例1-2では、メイン触媒39より上流に、上流サブ触媒300が設けられる。上流サブ触媒300は、メイン触媒39よりも劣化の進行が速い。しかし、上流サブ触媒300の劣化が所定のレベルに達しても、メイン触媒39によって排ガスの浄化性能を維持することができる。したがって、自動二輪車の排気浄化についての初期性能をより長時間維持することができる。
 また、上流酸素検出部材36は、上流サブ触媒300よりも上流に配置される。したがって、上流酸素検出部材36は、上流サブ触媒300に流入する排ガスの酸素濃度を検出できる。そのため、上流酸素検出部材36の信号に基づいた燃焼制御を行うことにより、上流サブ触媒300による排ガスの浄化性能を高めることができる。
 (実施形態2)
 図11は、本発明の実施形態2の自動二輪車の側面図である。図12は、実施形態2の自動二輪車の底面図である。図13は、実施形態2の自動二輪車の車体カバー等を外した状態の側面図である。図14は、実施形態2の自動二輪車の車体カバー等を外した状態の底面図である。図15は、実施形態2の自動二輪車のエンジンと排気系を示す模式図である。
 実施形態2のビークルは、いわゆるストリート型の自動二輪車50である。図13に示すように、自動二輪車50は、車体フレーム53を備えている。車体フレーム53は、ヘッドパイプ53aと、上メインフレーム53bと、下メインフレーム53cと、シートフレーム53dとを有する。上メインフレーム53bは、ヘッドパイプ53aから後下向きに延びた後、下方に湾曲して下向きに延びている。下メインフレーム53cは、上メインフレーム53bの下方に位置する。下メインフレーム53cは、ヘッドパイプ53aから後下向きに延びている。シートフレーム53dは、上メインフレーム53bの中途部から後方に延びている。
 ヘッドパイプ53aにはステアリングシャフトが回転自在に挿入されている。ステアリングシャフトの上部にはハンドル55が設けられている。ハンドル55の近傍には、表示装置(図示せず)が配置されている。表示装置には、車速、エンジン回転速度、各種の警告などが表示される。
 ステアリングシャフトの上下両端部は、ブラケットを介して、左右一対のフロントフォーク56に連結されている。フロントフォーク56の下端部には、前輪57が回転自在に支持されている。
 車体フレーム53の後部には、左右一対のリアアーム58の前端部が揺動自在に支持されている。リアアーム58の後端部には後輪59が回転自在に支持されている。
 上メインフレーム53bには、燃料タンク51(図11を参照)が支持されている。また、シートフレーム53dには、シート52(図11を参照)が支持されている。車体フレーム53には、エンジン本体61が支持されている。車体フレーム53には、エアクリーナ73(図13を参照)が支持されている。図13に示すように、左右方向から見て、エンジン本体61の上部は、上メインフレーム53bと下メインフレーム53cの間に配置されている。エアクリーナ73は、エンジン本体61の後方に配置されている。
 図11に示すように、自動二輪車50は、車体フレーム53等を覆う車体カバー54を有する。車体カバー54は、エンジン本体61の上部とエアクリーナ73を覆っている。
 自動二輪車50は、単気筒4ストロークエンジンユニット60を有している。単気筒4ストロークエンジンユニット60は、エンジン本体61と、エアクリーナ73(図13を参照)と、吸気管74と、排気管75と、消音器76と、メイン触媒180(単一燃焼室用メイン触媒)と、上流酸素検出部材77(単一燃焼室用上流酸素検出部材)と、下流酸素検出部材78(単一燃焼室用下流酸素検出部材)とを備えている。また、単気筒4ストロークエンジンユニット60は、実施形態1の電子制御ユニット45と同様の電子制御ユニットを有する。電子制御ユニットは、エンジン本体61を制御する。
 エンジン本体61は、単気筒の4ストロークエンジンである。図13に示すように、エンジン本体61は、クランクケース部62と、シリンダ部63とを備えている。シリンダ部63は、クランクケース部62から前上向きに延びている。
 クランクケース部62は、クランクケース本体64と、クランクケース本体64に収容されたクランク軸68および変速機構等を有する。クランク軸68の中心線(クランク軸線)Cr2は、左右方向に延びている。クランクケース本体64内には潤滑用のオイルが貯蔵されている。かかるオイルはオイルポンプ(図示せず)によって搬送され、エンジン本体61内を循環している。
 シリンダ部63は、シリンダボディ65と、シリンダヘッド66と、ヘッドカバー67と、これらの内部に収容された部品とを有する。図13に示すように、シリンダボディ65は、クランクケース本体64の上部に接続されている。シリンダヘッド66は、シリンダボディ65の上部に接続されている。ヘッドカバー67は、シリンダヘッド66の上部に接続されている。
 図15に示すように、シリンダボディ65には、シリンダ孔65aが形成されている。シリンダ孔65a内には、ピストン69が往復移動可能に収容されている。ピストン69はコンロッドを介してクランク軸68に連結されている。以下、シリンダ孔65aの中心線Cy2を、シリンダ軸線Cy2と称する。図13に示すように、エンジン本体61は、シリンダ軸線Cy2が、上下方向に延びるように配置されている。より詳細には、シリンダ軸線Cy2のクランクケース部62からシリンダ部63に向かう方向は、前上向きである。シリンダ軸線Cy2の水平方向に対する傾斜角度は、45度以上90度以下である。
 図15に示すように、シリンダ部63の内部には、1つの燃焼室70が形成されている。燃焼室70は、シリンダボディ65のシリンダ孔65aの内面と、シリンダヘッド66と、ピストン69とによって形成されている。図13に示すように、燃焼室70は、クランク軸線Cr2よりも前方に位置する。これは、以下のように言い換えられる。クランク軸線Cr2を通り、上下方向と平行に延びる直線をL3とする。左右方向から見て、燃焼室70は直線L3の前方に配置されている。
 図15に示すように、シリンダヘッド66には、シリンダ吸気通路部71と、シリンダ排気通路部72(単一燃焼室用シリンダ排気通路部)が形成されている。シリンダヘッド66において、燃焼室70を形成する壁部には、吸気ポート71aおよび排気ポート72aが形成されている。シリンダ吸気通路部71は、吸気ポート71aからシリンダヘッド66の外面(後面)に形成された吸入口まで延びている。シリンダ排気通路部72は、排気ポート72aからシリンダヘッド66の外面(前面)に形成された排出口まで延びている。燃焼室70に供給される空気は、シリンダ吸気通路部71内を通過する。燃焼室70から排出される排ガスは、シリンダ排気通路部72を通過する。
 シリンダ吸気通路部71には吸気弁V3が配置されている。シリンダ排気通路部72には排気弁V4が配置されている。吸気ポート71aは、吸気弁V3の運動により開閉される。排気ポート72aは、排気弁V4の運動により開閉される。シリンダ吸気通路部71の端部(吸入口)には吸気管74が接続されている。シリンダ排気通路部72の端部(排出口)には排気管75が接続されている。シリンダ排気通路部72の経路長をa2とする。
 単気筒4ストロークエンジンユニット60は、実施形態1のエンジン本体20と同様に、点火プラグ、動弁機構、インジェクタ、スロットルバルブを備えている。また、単気筒4ストロークエンジンユニット60は、実施形態1と同様に、エンジン回転速度センサ、スロットル開度センサ等の各種センサを備えている。
 上述したように、単気筒4ストロークエンジンユニット60は、エンジン本体61と、排気管75と、消音器76と、メイン触媒180と、上流酸素検出部材77と、下流酸素検出部材78とを備えている。消音器76は、大気に面する放出口76eを有する。燃焼室70から放出口76eに至る経路を、排気経路182(図15を参照)とする。排気経路182は、シリンダ排気通路部72と排気管75と消音器76とによって形成される。排気経路182は、排ガスが通過する空間である。
 図15に示すように、排気管75の上流端部は、シリンダ排気通路部72に接続される。排気管75の下流端部は、消音器76に接続される。排気管75の途中には、触媒ユニット79が設けられている。排気管75の触媒ユニット79より上流の部分を上流排気管75aとする。排気管75の触媒ユニット79より下流の部分を下流排気管75bとする。なお、図15では、簡略化のために排気管75を一直線状に描いているが、排気管75は一直線状ではない。
 図12および図14に示すように、排気管75の大部分は、自動二輪車50の右部に設けられている。図13に示すように、排気管75の一部は、クランク軸線Cr2の下方に位置する。排気管75は、2つの屈曲部を有する。2つの屈曲部のうち上流の屈曲部を、単に、上流の屈曲部という。2つの屈曲部のうち下流の屈曲部を、単に、下流の屈曲部という。上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、前後方向に延びる方向から上下方向に延びる方向に変化させる。より具体的には、上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、前下向きから後下向きに変化させる。下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、上下方向に延びる方向から前後方向に延びる方向に変化させる。より具体的には、下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、後下向きから後向きに変化させる。下流の屈曲部より下流の部分が、クランク軸線Cr2の下方に位置する。メイン触媒180はこの2つの屈曲部の間に配置されている。
 消音器76には、排気管75の下流端から排出された排ガスが流入する。消音器76は、排気管75に接続されている。消音器76は、排ガスの脈動波を抑制するように構成されている。それにより、消音器76は、排ガスによって生じる音(排気音)の音量を低減できる。消音器76内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。排気管75の下流端部は、消音器76の膨張室内に配置されている。消音器76の下流端には、大気に面する放出口76eが設けられている。図15に示すように、排気管75の下流端から放出口76eに至る排気経路の経路長をe2とする。消音器76を通過した排ガスは、放出口76eから大気へ放出される。図13に示すように、放出口76eは、クランク軸線Cr2よりも後方に位置する。
 メイン触媒180は、排気管75内に配置されている。メイン触媒180の上流端は、消音器76の上流端76aよりも上流に配置されている。触媒ユニット79は、筒状のケーシング181と、メイン触媒180とを有する。ケーシング181の上流端は、上流排気管75aに接続されている。ケーシング181の下流端は、下流排気管75bに接続されている。ケーシング181は、排気管75の一部を構成する。メイン触媒180は、ケーシング181の内部に固定されている。排ガスは、メイン触媒180を通過することで浄化される。メイン触媒180には、燃焼室70の排気ポート72aから排出された全ての排ガスが通過する。メイン触媒180は、排気経路182において、燃焼室70から排出された排ガスを最も浄化する。
 メイン触媒180の材質は、実施形態1のメイン触媒39と同様である。メイン触媒180は、多孔構造を有している。メイン触媒180には、上流排気管75aの経路幅より十分に細い複数の孔が形成されている。図15に示すように、メイン触媒180の経路方向の長さをc2とする。メイン触媒180の経路方向に垂直な方向の最大幅をw2とする。メイン触媒180の長さc2は、メイン触媒180の最大幅w2より長い。
 図15に示すように、ケーシング181は、触媒配置通路部181bと、上流通路部181aと、下流通路部181cとを有する。触媒配置通路部181bには、メイン触媒180が配置される。経路方向において、触媒配置通路部181bの上流端および下流端は、メイン触媒180の上流端および下流端とそれぞれ同じ位置である。触媒配置通路部181bの経路方向に直交する断面の面積はほぼ一定である。上流通路部181aは、触媒配置通路部181bの上流端に接続されている。下流通路部181cは、触媒配置通路部181bの上流端に接続されている。
 上流通路部181aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部181cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部181bの経路方向に直交する断面の面積をS2とする。上流通路部181aの少なくとも一部の経路方向に直交する断面の面積は面積S2よりも小さい。ここでの上流通路部181aの少なくとも一部には、上流通路部181aの上流端が含まれる。下流通路部181cの少なくとも一部の経路方向に直交する断面の面積は面積S2よりも小さい。ここでの下流通路部181cの少なくとも一部には、下流通路部181cの下流端が含まれる。
 図13に示すように、メイン触媒180は、クランク軸線Cr2よりも前方に配置されている。つまり、左右方向から見て、メイン触媒180は、直線L3の前方に配置されている。上述したように、直線L3は、クランク軸線Cr2を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒180は、シリンダ軸線Cy2の前方に位置する。
 図13に示すように、シリンダ軸線Cy2に直交し且つクランク軸線Cr2に直交する直線をL4とする。左右方向から見て、メイン触媒180は、直線L4の前方に位置する。
 図15に示すように、排気管75の上流端からメイン触媒180の上流端までの経路長をb2とする。経路長b2は、上流排気管75aと触媒ユニット79の上流通路部181aからなる通路部の経路長である。言い換えると、経路長b2は、シリンダ排気通路部72の下流端からメイン触媒180の上流端までの経路長である。また、メイン触媒180の下流端から排気管75の下流端までの経路長をd2とする。経路長d2は、触媒ユニット79の下流通路部181cと下流排気管75bからなる通路部の経路長である。燃焼室70からメイン触媒180の上流端までの経路長は、a2+b2である。メイン触媒180の下流端から放出口76eまでの経路長は、d2+e2である。
 上記実施形態1と同じく、メイン触媒180は、経路長a2+b2が、経路長d2+e2よりも短くなる位置に配置される。また、上記実施形態1と同じく、メイン触媒180は、経路長a2+b2が、経路長d2よりも短くなる位置に配置される。さらに、上記実施形態1と同じく、メイン触媒180は、経路長b2が、経路長d2よりも短くなる位置に配置される。
 上流酸素検出部材77は、排気管75に配置されている。上流酸素検出部材77は、メイン触媒180よりも上流に配置される。上流酸素検出部材77は、上流排気管75a(図15を参照)に配置されている。上流酸素検出部材77は、排ガスに含まれる酸素濃度を検出するセンサである。上流酸素検出部材77の構造は、実施形態1の上流酸素検出部材37と同様である。
 図15に示すように、燃焼室70から上流酸素検出部材77までの経路長をh3とする。上流酸素検出部材77からメイン触媒180の上流端までの経路長をh4とする。上記実施形態1と同じく、上流酸素検出部材77は、経路長h3が経路長h4よりも短くなる位置に配置されている。
 下流酸素検出部材78は、排気管75に配置されている。下流酸素検出部材78は、メイン触媒180よりも下流に配置される。下流酸素検出部材78は、下流排気管75b(図15を参照)に配置されている。下流酸素検出部材78は、消音器76より上流に配置されている。下流酸素検出部材78は、排ガスに含まれる酸素濃度を検出するセンサである。下流酸素検出部材78の構造は、実施形態1の上流酸素検出部材37と同様である。
 以上説明したように、実施形態2の自動二輪車50は、メイン触媒180の上流と下流に上流酸素検出部材77と下流酸素検出部材78を有する。それ以外にも実施形態1の自動二輪車1と同様の配置関係を有する。実施形態1と同様の配置関係については、実施形態1で述べた効果と同様の効果を奏する。
 また、実施形態2の自動二輪車50においても、上述した変形例1-2の排気系の構成を適用することが可能である。この場合、変形例1-2と同様の作用が得られる。
 (実施形態2の変形例2-1)
 図16は、実施形態2の変形例2-1の自動二輪車の車体カバー等を外した状態の側面図である。図17は、実施形態2の変形例2-1の自動二輪車の車体カバー等を外した状態の底面図である。図18は、実施形態2の変形例2-1のエンジン本体および排気系を示す模式図である。変形例2-1において、実施形態2と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図16に示すように、変形例2-1は上記実施形態2に比べて、メイン触媒180が下流に配置されている。メイン触媒180の具体的な構成は、上記実施形態2と同様である。変形例2-1のメイン触媒180は、排気管275内に配置されている。実施形態2と同じく、メイン触媒180の上流端は、消音器76の上流端76aよりも上流に配置されている。
 排気管275は、実施形態2の排気管75と同様に、シリンダ排気通路部72(図18を参照)と消音器76に接続されている。排気管275の途中には、触媒ユニット79が設けられている。図18に示すように、排気管275の触媒ユニット79より上流排気管275aとする。排気管275の触媒ユニット79より下流の部分を下流排気管275bとする。下流排気管275bは、消音器76内に配置されている。なお、図18では、簡略化のために排気管275を一直線状に描いているが、排気管275は一直線状ではない。
 図16に示すように、メイン触媒180は、クランク軸線Cr2よりも後方に配置されている。つまり、左右方向から見て、メイン触媒180は、直線L3の後方に配置されている。上述したように、直線L3は、クランク軸線Cr2を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒180は、シリンダ軸線Cy2の前方に位置する。
 図16に示すように、左右方向から見て、メイン触媒180は、直線L4の後方に位置する。なお、直線L4は、シリンダ軸線Cy2に直交し且つクランク軸線Cr2に直交する直線である。
 図18に示すように、排気管275の上流端からメイン触媒180の上流端までの経路長をb12とする。メイン触媒180の下流端から排気管275の下流端までの経路長をd12とする。燃焼室70からメイン触媒180の上流端までの経路長は、a2+b12である。メイン触媒180の下流端から放出口76eまでの経路長は、d12+e2である。
 上記実施形態2と同じく、変形例2-1のメイン触媒180は、経路長a2+b12が、経路長d12+e2よりも短くなる位置に配置される。また、上記実施形態2と異なり、変形例2-1のメイン触媒180は、経路長a2+b12が、経路長d12よりも長くなる位置に配置される。さらに、上記実施形態2と異なり、変形例2-1のメイン触媒180は、経路長b12が、経路長d12よりも長くなる位置に配置される。
 上流酸素検出部材77は、排気管275に配置されている。上流酸素検出部材77は、メイン触媒180より上流に配置されている。上流酸素検出部材77は、上流排気管275a(図18を参照)に配置されている。
 図18に示すように、燃焼室70から上流酸素検出部材77までの経路長をh13とする。上流酸素検出部材77からメイン触媒180の上流端までの経路長をh14とする。実施形態2と同じく、上流酸素検出部材77は、経路長h13が経路長h14よりも短くなる位置に配置されている。
 下流酸素検出部材78は、排気管275に配置されている。下流酸素検出部材78は、メイン触媒180より下流に配置されている。下流酸素検出部材78は、下流排気管275a(図18を参照)に配置されている。下流酸素検出部材78は、消音器76より上流に配置されている。
 変形例2-1において、上記実施形態1と同様の構成については、上記実施形態1で述べた効果を奏する。
 (実施形態3)
 図19は、本発明の実施形態3の自動二輪車の側面図である。図20は、実施形態3の自動二輪車の底面図である。図21は、実施形態3の自動二輪車の車体カバー等を外した状態の側面図である。図22は、実施形態3の自動二輪車の車体カバー等を外した状態の底面図である。図23は、実施形態3の自動二輪車のエンジンと排気系を示す模式図である。
 実施形態3のビークルは、いわゆるスクータ型の自動二輪車80である。図21に示すように、自動二輪車80は、車体フレーム81を備えている。車体フレーム81は、ヘッドパイプ81aと、メインフレーム81bと、左右一対のサイドフレーム81cと、左右一対のリアフレーム81dと、左右一対のシートフレーム81eとを備えている。メインフレーム81bは、ヘッドパイプ81aから後下向きに延びている。左右一対のサイドフレーム81cは、メインフレーム81bの下端部から後方へ略水平に延びている。左右一対のリアフレーム81dは、サイドフレーム81cの後端部から後上向き延びている。左右一対のシートフレーム81eは、リアフレーム81dの後端部から後方へ略水平に延びている。
 ヘッドパイプ81aには、ステアリングシャフトが回転自在に挿入されている。ステアリングシャフトの上部にはハンドル82が設けられている。ハンドル82の近傍には、表示装置(図示せず)が配置されている。表示装置には、車速、エンジン回転速度、各種の警告などが表示される。
 ステアリングシャフトの下部には、左右一対のフロントフォーク83が支持されている。フロントフォーク83の下端部には前輪84が回転自在に支持されている。
 左右一対のサイドフレーム81cには足載せ板85(図19を参照)が取り付けられている。この足載せ板85は、後述するシート86に着座した乗員が足を置く場所である。
 シートフレーム81eには、シート86(図19を参照)が支持されている。シート86は、車両前後方向において車体フレーム81の中間部から後端部にかけて延びている。
 シート86の下方には、空間G1(図21を参照)が形成されている。この空間G1には収納ボックス(図示せず)が配置されている。収納ボックスは、上部が開放された箱型に形成されている。シート86は、収納ボックスの上面の開口を開閉するための蓋としての機能を兼ね備えている。収納ボックスは、左右両シートフレーム81eの間に配置される。収納ボックスは、リアフレーム81dおよびシートフレーム81eに支持される。
 図19に示すように、自動二輪車80は、車体フレーム81等を覆う車体カバー87を有する。車体カバー87は、フロントカバー87aと、レッグシールド87bと、メインカバー87cと、アンダーカバー87dを有する。フロントカバー87aは、ヘッドパイプ81aの前方に配置される。レッグシールド87bは、ヘッドパイプ81aの後方に配置される。フロントカバー87aとレッグシールド87bは、ヘッドパイプ81aとメインフレーム81bを覆っている。メインカバー87cは、足載せ板85の後部から上方に立ち上がった形態である。メインカバー87cは、収納ボックスの略全体を覆っている。アンダーカバー87dは、フロントカバー87a、レッグシールド87b、およびメインカバー87cの下方に配置される。アンダーカバー87dは、後述するエンジン本体94の前上部を、前方および左右両方から覆っている。
 車体フレーム81には、ユニットスイングタイプの単気筒4ストロークエンジンユニット93が取り付けられている。単気筒4ストロークエンジンユニット93は、エンジン本体94と、動力伝達部95(図20および図22参照)を有する。動力伝達部95は、エンジン本体94の後部に接続されている。動力伝達部95は、エンジン本体94の左方に配置されている。動力伝達部95には変速機が収容されている。動力伝達部95は、後輪88を回転可能に支持している。
 エンジン本体94と動力伝達部95は、一体的に、車体フレーム81に対して揺動可能となっている。具体的には、図21および図22に示すように、エンジン本体94の下部の左右両端部には、右リンク部材90Rと左リンク部材90Lが接続されている。右リンク部材90Rと左リンク部材90Lは、エンジン本体94から前方に延びている。右リンク部材90Rと左リンク部材90Lのそれぞれの先端部は、ピボット軸89を介して車体フレーム81に回動可能に接続されている。また、右リンク部材90Rと左リンク部材90Lは、それぞれピボット軸91(図21を参照)を介してエンジン本体94に回動可能に接続されている。なお、図20は、右リンク部材90Rおよびエンジン本体94の後述するシュラウド96などを部分的に除いた表示となっている。
 単気筒4ストロークエンジンユニット93は、エンジン本体94と、動力伝達部95と、エアクリーナ(図示せず)と、吸気管110(図23を参照)と、排気管111と、消音器112と、メイン触媒116(単一燃焼室用メイン触媒)と、上流酸素検出部材113(単一燃焼室用上流酸素検出部材)と、下流酸素検出部材114(単一燃焼室用上流酸素検出部材)とを備えている。また、単気筒4ストロークエンジンユニット93は、実施形態1の電子制御ユニット45と同様の電子制御ユニットを有する。電子制御ユニットは、エンジン本体94を制御する。
 エンジン本体94は、単気筒4ストロークエンジンである。エンジン本体94は、強制空冷式のエンジンである。エンジン本体94は、シュラウド96と、ファン97と、クランクケース部98と、シリンダ部99とを備えている。
 シリンダ部99は、クランクケース部98から前方に延びている。シュラウド96は、シリンダ部99の後部を全周にわたって覆っている。詳細には、シュラウド96は、後述するシリンダボディ101全体とシリンダヘッド102全体を全周にわたって覆っている。但し、シリンダヘッド102に接続される排気管111の周囲は覆われていない。シュラウド96は、クランクケース部98の右側部分を覆っている。
 ファン97は、シュラウド96とクランクケース部98との間に配置されている。シュラウド96のファン97と対向する部分には、空気を取り入れるための流入口が形成されている。ファン97は、エンジン本体94を冷却するための空気流を発生させる。より具体的には、ファン97の回転により、シュラウド96内に空気が導入される。この空気流がエンジン本体94に当たることでクランクケース部98およびシリンダ部99が冷却される。
 クランクケース部98は、クランクケース本体100と、クランクケース本体100に収容されたクランク軸104等を有する。クランク軸104の中心線(クランク軸線)Cr3は、左右方向に延びている。クランク軸104の右端部には、ファン97が一体に回転可能に連結されている。ファン97は、クランク軸104の回転によって駆動される。クランクケース本体100内には潤滑用のオイルが貯蔵されている。かかるオイルはオイルポンプ(図示せず)によって搬送され、エンジン本体94内を循環している。
 シリンダ部99は、シリンダボディ101と、シリンダヘッド102と、ヘッドカバー103と、これらの内部に収容された部品とを有する。図20に示すように、シリンダボディ101は、クランクケース本体100の前部に接続されている。シリンダヘッド102は、シリンダボディ101の前部に接続されている。ヘッドカバー103は、シリンダヘッド102の前部に接続されている。
 図23に示すように、シリンダボディ101には、シリンダ孔101aが形成されている。シリンダ孔101a内には、ピストン105が往復移動可能に収容されている。ピストン105はコンロッドを介してクランク軸104に連結されている。以下、シリンダ孔101aの中心線Cy3を、シリンダ軸線Cy3と称する。図21に示すように、エンジン本体94は、シリンダ軸線Cy3が、前後方向に延びるように配置されている。より詳細には、シリンダ軸線Cy3のクランクケース部98からシリンダ部99に向かう方向は、前上向きである。シリンダ軸線Cy3の水平方向に対する傾斜角度は、0度以上45度以下である。
 図23に示すように、シリンダ部99の内部には、1つの燃焼室106が形成されている。燃焼室106は、シリンダボディ101のシリンダ孔101aの内面と、シリンダヘッド102と、ピストン105とによって形成されている。図21に示すように、燃焼室106は、クランク軸線Cr3よりも前方に位置する。これは、以下のように言い換えられる。クランク軸線Cr3を通り、上下方向と平行に延びる直線をL5とする。左右方向から見て、燃焼室106は直線L5の前方に配置されている。
 図23に示すように、シリンダヘッド102には、シリンダ吸気通路部107と、シリンダ排気通路部108(単一燃焼室用シリンダ排気通路部)が形成されている。シリンダヘッド102において、燃焼室106を形成する壁部には、吸気ポート107aおよび排気ポート108aが形成されている。シリンダ吸気通路部107は、吸気ポート107aからシリンダヘッド102の外面(上面)に形成された吸入口まで延びている。シリンダ排気通路部108は、排気ポート108aからシリンダヘッド102の外面(下面)に形成された排出口まで延びている。燃焼室106に供給される空気は、シリンダ吸気通路部107内を通過する。燃焼室106から排出される排ガスは、シリンダ排気通路部108を通過する。
 シリンダ吸気通路部107には吸気弁V5が配置されている。シリンダ排気通路部108には排気弁V6が配置されている。吸気ポート107aは、吸気弁V5の運動により開閉される。排気ポート108aは、排気弁V6の運動により開閉される。シリンダ吸気通路部107の端部(吸入口)には吸気管110が接続されている。シリンダ排気通路部108の端部(排出口)には排気管111が接続されている。シリンダ排気通路部108の経路長をa3とする。
 上述したように、図20は、右リンク部材90Rおよびシュラウド96などを部分的に除いた表示となっている。これにより、シリンダヘッド102の下面と排気管111との接続部を見えるようにしている。図20および図22に示すように、下方から見て、排気管111の上流端部は、右リンク部材90Rと左リンク部材90Lの間に位置している。しかし、図21に示すように、左右方向から見て、排気管111は、右リンク部材90Rおよび左リンク部材90Lの上方を通っている。したがって、排気管111は、右リンク部材90Rと左リンク部材90Lの間を通っていない。
 単気筒4ストロークエンジンユニット93は、実施形態1のエンジン本体20と同様に、点火プラグ、動弁機構、インジェクタ、スロットルバルブを備えている。また、単気筒4ストロークエンジンユニット93は、実施形態1と同様に、エンジン回転速度センサ、スロットル開度センサ等の各種センサを備えている。
 上述したように、単気筒4ストロークエンジンユニット93は、エンジン本体94と、排気管111と、消音器112と、メイン触媒116と、上流酸素検出部材113と、下流酸素検出部材114とを備えている。消音器112は、大気に面する放出口112eを有する。燃焼室106から放出口112eに至る経路を、排気経路118(図23を参照)とする。排気経路118は、シリンダ排気通路部108と排気管111と消音器112とによって形成される。排気経路118は、排ガスが通過する空間である。
 図23に示すように、排気管111の上流端部は、シリンダ排気通路部108に接続される。排気管111の下流端部は、消音器112に接続される。排気管111の途中には、触媒ユニット115が設けられている。排気管111の触媒ユニット115より上流の部分を、上流排気管111aとする。排気管111の触媒ユニット115より下流の部分を下流排気管111bとする。なお、図23では、簡略化のために排気管111を一直線状に描いているが、排気管111は一直線状ではない。
 図20に示すように、排気管111は、自動二輪車80の右部に設けられている。図21に示すように、排気管111の一部は、クランク軸線Cr3の下方に位置する。排気管111は、2つの屈曲部を有する。2つの屈曲部のうち上流の屈曲部を、単に、上流の屈曲部という。2つの屈曲部のうち下流の屈曲部を、単に、下流の屈曲部という。上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、下向きから後下向きに変化させる。下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、後下向きから後上向きに変化させる。下流の屈曲部より下流の部分が、クランク軸線Cr3の下方に位置する。メイン触媒116の下流端は、下流の屈曲部に配置されている。
 消音器112には、排気管111の下流端から排出された排ガスが流入する。消音器112は、排気管111に接続されている。消音器112は、排ガスの脈動波を抑制するように構成されている。それにより、消音器112は、排ガスによって生じる音(排気音)の音量を低減できる。消音器112内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。排気管111の下流端部は、消音器112の膨張室内に配置されている。消音器112の下流端には、大気に面する放出口112eが設けられている。図23に示すように、排気管111の下流端から放出口112eに至る排気経路の経路長をe3とする。消音器112を通過した排ガスは、放出口112eから大気へ放出される。図21に示すように、放出口112eは、クランク軸線Cr3よりも後方に位置する。
 メイン触媒116は、排気管111内に配置されている。メイン触媒116の上流端は、消音器112の上流端112aよりも上流に配置されている。触媒ユニット115は、筒状のケーシング117と、メイン触媒116とを有する。ケーシング117の上流端は、上流排気管111aに接続される。ケーシング117の下流端は、下流排気管111bに接続されている。ケーシング117は、排気管111の一部を構成する。メイン触媒116は、ケーシング117の内部に固定されている。排ガスは、メイン触媒116を通過することで浄化される。メイン触媒116には、燃焼室106の排気ポート108aから排出された全ての排ガスが通過する。メイン触媒116は、排気経路118において、燃焼室106から排出された排ガスを最も浄化する。
 メイン触媒116の材質は、実施形態1のメイン触媒39と同様である。メイン触媒116は、多孔構造を有している。メイン触媒116には、上流排気管111aの経路幅より十分に細い複数の孔が形成されている。図23に示すように、メイン触媒116の経路方向の長さをc3とする。メイン触媒116の経路方向に垂直な方向の最大幅をw3とする。メイン触媒116の長さc3は、メイン触媒116の最大幅w3より長い。
 図23に示すように、ケーシング117は、触媒配置通路部117bと、上流通路部117aと、下流通路部117cとを有する。触媒配置通路部117bには、メイン触媒116が配置される。経路方向において、触媒配置通路部117bの上流端および下流端は、メイン触媒116の上流端および下流端とそれぞれ同じ位置である。触媒配置通路部117bの経路方向に直交する断面の面積はほぼ一定である。上流通路部117aは、触媒配置通路部117bの上流端に接続されている。下流通路部117cは、触媒配置通路部117bの上流端に接続されている。
 上流通路部117aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部117cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部117bの経路方向に直交する断面の面積をS3とする。上流通路部117aの上流端(少なくとも一部)の経路方向に直交する断面の面積は面積S3よりも小さい。下流通路部117cの少なくとも一部の経路方向に直交する断面の面積は面積S3よりも小さい。ここでの下流通路部117cの少なくとも一部には、下流通路部117cの下流端が含まれる。
 図21に示すように、メイン触媒116は、クランク軸線Cr3よりも前方に配置されている。つまり、左右方向から見て、メイン触媒116は、直線L5の前方に配置されている。上述したように、直線L5は、クランク軸線Cr3を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒116は、シリンダ軸線Cy3の前方(下方)に位置する。
 図21に示すように、シリンダ軸線Cy3に直交し且つクランク軸線Cr3に直交する直線をL6とする。左右方向から見て、メイン触媒116は、直線L6の前方に位置する。
 図23に示すように、排気管111の上流端からメイン触媒116の上流端までの経路長をb3とする。経路長b3は、上流排気管111aと触媒ユニット115の上流通路部117aからなる通路部の経路長である。言い換えると、経路長b3は、シリンダ排気通路部108の下流端からメイン触媒116の上流端までの経路長である。また、メイン触媒116の下流端から排気管111の下流端までの経路長をd3とする。経路長d3は、触媒ユニット115の下流通路部117cと下流排気管111bからなる通路部の経路長である。燃焼室106からメイン触媒116の上流端までの経路長は、a3+b3である。メイン触媒116の下流端から放出口112eまでの経路長は、d3+e3である。
 上記実施形態1と同じく、メイン触媒116は、経路長a3+b3が、経路長d3+e3よりも短くなる位置に配置される。また、上記実施形態1と同じく、メイン触媒116は、経路長a3+b3が、経路長d3よりも短くなる位置に配置される。さらに、上記実施形態1と同じく、メイン触媒116は、経路長b3が、経路長d3よりも短くなる位置に配置される。
 上流酸素検出部材113は、排気管111に配置されている。上流酸素検出部材113は、メイン触媒116よりも上流に配置される。上流酸素検出部材113は、上流排気管111a(図23を参照)に配置されている。上流酸素検出部材113は、排ガスに含まれる酸素濃度を検出するセンサである。上流酸素検出部材113の構造は、実施形態1の上流酸素検出部材と同様である。
 図23に示すように、燃焼室106から上流酸素検出部材113までの経路長をh5とする。上流酸素検出部材113からメイン触媒116の上流端までの経路長をh6とする。実施形態1と異なり、上流酸素検出部材113は、経路長h5が経路長h6よりも長くなる位置に配置されている。
 下流酸素検出部材114は、排気管111に配置されている。下流酸素検出部材114は、メイン触媒116よりも下流に配置される。下流酸素検出部材114は、触媒ユニット115のケーシング117に配置されている。より具体的には、下流酸素検出部材114は、下流通路部117c(図23を参照)に配置されている。下流酸素検出部材114は、排ガスに含まれる酸素濃度を検出するセンサである。下流酸素検出部材114の構造は、実施形態1の上流酸素検出部材37と同様である。
 以上説明したように、実施形態3の自動二輪車80は、メイン触媒116の上流と下流に上流酸素検出部材113と下流酸素検出部材114を有する。それ以外にも実施形態1の自動二輪車1と同様の配置関係を有する。実施形態1と同様の配置関係については、実施形態1で述べた効果と同様の効果を奏する。
 1つの燃焼室106から上流酸素検出部材113の上流端までの経路長(h5)は、上流酸素検出部材113からメイン触媒116の上流端までの経路長(h6)よりも長い。したがって、上流酸素検出部材113は、メイン触媒116に近い位置に配置される。そのため、メイン触媒116に流入する排ガスの酸素濃度をより精度よく検出できる。それにより、上流酸素検出部材113の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、メイン触媒116による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、メイン触媒116の劣化の進行を遅らせることができる。したがって、自動二輪車80の排気浄化についての初期性能をより長期間維持することができる。
 また、実施形態3の自動二輪車80においても、上述した変形例1-2の排気系の構成を適用することが可能である。この場合、変形例1-2と同様の作用が得られる。
 (実施形態3の変形例3-1)
 図24は、実施形態3の変形例3-1の自動二輪車の車体カバー等を外した状態の側面図である。図25は、実施形態3の変形例3-1の自動二輪車の車体カバー等を外した状態の底面図である。図26は、実施形態3の変形例3-1のエンジン本体および排気系を示す模式図である。変形例3-1において、実施形態3と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図24に示すように、変形例3-1は上記実施形態3に比べて、メイン触媒116が下流に配置されている。メイン触媒116の具体的な構成は、上記実施形態3と同様である。変形例3-1のメイン触媒116は、排気管2111内に配置されている。実施形態3と同じく、メイン触媒116の上流端は、消音器112の上流端112aよりも上流に配置されている。
 排気管2111は、実施形態3の排気管111と同様に、シリンダ排気通路部108(図26を参照)と消音器112に接続されている。排気管2111の途中には、触媒ユニット2115が設けられている。図26に示すように、排気管2111の触媒ユニット2115より上流排気管2111aとする。排気管2111の触媒ユニット2115より下流の部分を下流排気管2111bとする。下流排気管2111bは、消音器112内に配置されている。なお、図26では、簡略化のために排気管2111を一直線状に描いているが、排気管2111は一直線状ではない。
 触媒ユニット2115は、メイン触媒116と、ケーシング2117を有する。ケーシング2117は、上流通路部2117aと、触媒配置通路部2117bと、下流通路部2117cとを有する。経路方向において、触媒配置通路部2117bの上流端および下流端は、メイン触媒116の上流端および下流端とそれぞれ同じ位置である。
 図24に示すように、メイン触媒116は、クランク軸線Cr3よりも後方に配置されている。つまり、左右方向から見て、メイン触媒116は、直線L5の後方に配置されている。上述したように、直線L5は、クランク軸線Cr3を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒116は、シリンダ軸線Cy3の前方(下方)に位置する。
 図24に示すように、左右方向から見て、メイン触媒116は、直線L6の後方に位置する。なお、直線L6は、シリンダ軸線Cy3に直交し且つクランク軸線Cr3に直交する直線である。
 図26に示すように、排気管2111の上流端からメイン触媒116の上流端までの経路長をb13とする。メイン触媒116の下流端から排気管2111の下流端までの経路長をd13とする。燃焼室106からメイン触媒116の上流端までの経路長は、a3+b13である。メイン触媒116の下流端から放出口112eまでの経路長は、d13+e3である。
 上記実施形態3と同じく、変形例3-1のメイン触媒116は、経路長a3+b13が、経路長d13+e3よりも短くなる位置に配置される。また、上記実施形態3と異なり、変形例3-1のメイン触媒116は、経路長a3+b13が、経路長d13よりも長くなる位置に配置される。さらに、上記実施形態3と異なり、変形例3-1のメイン触媒116は、経路長b13が、経路長d13よりも長くなる位置に配置される。
 上流酸素検出部材113は、排気管2111に配置されている。上流酸素検出部材113は、メイン触媒116より上流に配置されている。上流酸素検出部材113は、上流排気管2111a(図26を参照)に配置されている。
 図26に示すように、燃焼室106から上流酸素検出部材113までの経路長をh15とする。上流酸素検出部材113からメイン触媒116の上流端までの経路長をh16とする。上記実施形態3と異なり、上流酸素検出部材113は、経路長h15が経路長h16よりも短くなる位置に配置されている。この構成は、上記実施形態1と同じである。
 下流酸素検出部材114は、排気管2111に配置されている。下流酸素検出部材114は、メイン触媒116より下流に配置されている。下流酸素検出部材114は、下流排気管2111a(図26を参照)に配置されている。下流酸素検出部材114は、消音器112の側壁部を貫通している。下流酸素検出部材114の一端部(検出部)は、下流排気管2111a内に配置されている。下流酸素検出部材114の他端部は、消音器112の外に配置されている。
 変形例3-1において、上記実施形態1と同様の構成については、上記実施形態1で述べた効果を奏する。
 (実施形態4)
 図27は、本発明の実施形態4の自動二輪車の側面図である。図28は、実施形態4の自動二輪車の底面図である。図29は、実施形態4の自動二輪車の車体カバー等を外した状態の側面図である。図30は、実施形態4の自動二輪車の車体カバー等を外した状態の底面図である。図31は、実施形態4の自動二輪車のエンジンと排気系を示す模式図である。
 実施形態4のビークルは、いわゆるスポーツスクータ型の自動二輪車120である。図29に示すように、自動二輪車120は、車体フレーム121を有する。車体フレーム121は、ヘッドパイプ121aと、メインフレーム121bと、右シートレール122Rと、左シートレール122Lと、左右一対のアンダーフレーム121cと、クロスメンバ121d(図30を参照)を有する。メインフレーム121bは、ヘッドパイプ121aから後下向きに延びている。アンダーフレーム121cは、メインフレーム121bの中途部から後下向きに延びた後、後方に湾曲して後向きに略水平に延びている。図30に示すように、クロスメンバ121dは、左右のアンダーフレーム121cに連結されている。クロスメンバ121dは、左右方向に延びている。図29に示すように、左シートレール122Lは、メインフレーム121bの中途部から後上向きに延びている。図30に示すように、右シートレール122Rは、クロスメンバ121dの右端部に接続されている。図29に示すように、右シートレール122Rは、クロスメンバ121dから上向きに延びた後、後方に湾曲している。右シートレール122Rの後部は、左シートレール122Lと略平行に延びている。
 ヘッドパイプ121aには、ステアリングシャフトが回転自在に挿入されている。ステアリングシャフトの上部にはハンドル123が設けられている。ハンドル123の近傍には、表示装置(図示せず)が配置されている。表示装置には、車速、エンジン回転速度、各種の警告などが表示される。
 ステアリングシャフトの下部には、左右一対のフロントフォーク124が支持されている。フロントフォーク124の下端部には、前輪125が回転自在に支持されている。
 左右のシートレール122L、122Rには、シート126(図27を参照)が支持されている。
 図27に示すように、自動二輪車120は、車体フレーム121等を覆う車体カバー127を有する。車体カバー127は、フロントカウル127aと、メインカバー127bと、アンダーカバー127cとを有する。フロントカウル127aは、ヘッドパイプ121aと、メインフレーム121bの上部を覆っている。メインフレーム121bの下部は、メインカバー127bとアンダーカバー127cによって覆われている。メインカバー127bは、右シートレール122Rと、左シートレール122Lを覆っている。アンダーカバー127cは、アンダーフレーム121cと、クロスメンバ121dを覆っている。メインカバー127bは、後述するエンジン本体133の前部と、エアクリーナ147(図29を参照)を覆っている。エアクリーナ147は、エンジン本体133の前方に配置されている。
 車体フレーム121には、ユニットスイングタイプの単気筒4ストロークエンジンユニット132が取り付けられている。単気筒4ストロークエンジンユニット132は、エンジン本体133と、動力伝達部134(図28および図30を参照)を有する。動力伝達部134は、エンジン本体133の後部に接続されている。動力伝達部134は、エンジン本体133の左方に配置されている。動力伝達部134には変速機が収容されている。動力伝達部134は、後輪128を回転可能に支持している。
 エンジン本体133と動力伝達部134は、一体的に、車体フレーム121に対して揺動可能となっている。具体的には、図29および図30に示すように、エンジン本体133の下部の左右両端部には、右リンク部材130Rと左リンク部材130Lが接続されている。右リンク部材130Rと左リンク部材130Lは、エンジン本体133から前方に延びている。右リンク部材130Rと左リンク部材130Lのそれぞれの先端部は、ピボット軸129を介して車体フレーム121(アンダーフレーム121c)に回動可能に接続されている。また、右リンク部材130Rと左リンク部材130Lは、それぞれピボット軸131を介してエンジン本体133に回動可能に接続されている。
 単気筒4ストロークエンジンユニット132は、水冷式のエンジンである。単気筒4ストロークエンジンユニット132は、エンジン本体133と、水冷却装置135と、動力伝達部134と、エアクリーナ147(図29および図30を参照)と、吸気管148(図29を参照)と、排気管149と、消音器150と、メイン触媒154(単一燃焼室用メイン触媒)と、上流酸素検出部材151(単一燃焼室用上流酸素検出部材)と、下流酸素検出部材152(単一燃焼室用上流酸素検出部材)とを備えている。また、単気筒4ストロークエンジンユニット132は、実施形態1の電子制御ユニット45と同様の電子制御ユニットを有する。電子制御ユニットは、エンジン本体133を制御する。
 水冷却装置135は、ラジエータ(図示せず)と、水ポンプ(図示せず)と、ファン(図示せず)と、カバー部135aとを有する。ファンは、エンジン本体133の後部の右に配置される。ラジエータは、ファンの右方に配置される。カバー部135aは、ラジエータを右方から覆う。さらに、カバー部135aは、ラジエータとファンを上下および前後から覆う。
 エンジン本体133は、単気筒4ストロークエンジンである。図29に示すように、エンジン本体133は、クランクケース部136と、シリンダ部137とを備えている。シリンダ部137は、クランクケース部136から前方に延びている。
 クランクケース部136は、クランクケース本体138と、クランクケース本体138に収容されたクランク軸142等を有する。クランク軸142の中心線(クランク軸線)Cr4は、左右方向に延びている。クランクケース本体138内には潤滑用のオイルが貯蔵されている。かかるオイルはオイルポンプ(図示せず)によって搬送され、エンジン本体133内を循環している。
 クランク軸142の右端部には、水冷却装置135のファンが一体に回転可能に連結されている。ファンは、クランク軸142の回転によって駆動される。ファンは、エンジン本体133を冷却するための空気流を発生させる。より具体的には、ファンの回転により、カバー部135a内に空気が吸い込まれる。吸い込まれた空気とラジエータの冷却水とが熱交換することで、冷却水が冷却される。そして、冷却された冷却水によってエンジン本体133が冷却される。
 シリンダ部137は、シリンダボディ139と、シリンダヘッド140と、ヘッドカバー141と、これらの内部に収容された部品とを有する。図29および図30に示すように、シリンダボディ139は、クランクケース本体138の前部に接続されている。シリンダヘッド140は、シリンダボディ139の前部に接続されている。図29に示すように、ヘッドカバー141は、シリンダヘッド140の前部に接続されている。
 図31に示すように、シリンダボディ139には、シリンダ孔139aが形成されている。シリンダ孔139a内には、ピストン143が往復移動可能に収容されている。ピストン143はコンロッドを介してクランク軸142に連結されている。以下、シリンダ孔139aの中心線Cy4を、シリンダ軸線Cy4と称する。図29に示すように、エンジン本体133は、シリンダ軸線Cy4が、前後方向に延びるように配置されている。より詳細には、シリンダ軸線Cy4のクランクケース部136からシリンダ部137に向かう方向は、前上向きである。シリンダ軸線Cy4の水平方向に対する傾斜角度は、0度以上45度以下である。
 図31に示すように、シリンダ部137の内部には、1つの燃焼室144が形成されている。燃焼室144は、シリンダボディ139のシリンダ孔139aの内面と、シリンダヘッド140と、ピストン143とによって形成されている。図29に示すように、燃焼室144は、クランク軸線Cr4よりも前方に位置する。これは、以下のように言い換えられる。クランク軸線Cr4を通り、上下方向と平行に延びる直線をL7とする。左右方向から見て、燃焼室144は直線L7の前方に配置されている。
 図31に示すように、シリンダヘッド140には、シリンダ吸気通路部145と、シリンダ排気通路部146(単一燃焼室用シリンダ排気通路部)が形成されている。シリンダヘッド140において、燃焼室144を形成する壁部には、吸気ポート145aおよび排気ポート146aが形成されている。シリンダ吸気通路部145は、吸気ポート145aからシリンダヘッド140の外面(上面)に形成された吸入口まで延びている。シリンダ排気通路部146は、排気ポート146aからシリンダヘッド140の外面(下面)に形成された排出口まで延びている。燃焼室144に供給される空気は、シリンダ吸気通路部145内を通過する。燃焼室144から排出される排ガスは、シリンダ排気通路部146を通過する。
 シリンダ吸気通路部145には吸気弁V7が配置されている。シリンダ排気通路部146には排気弁V8が配置されている。吸気ポート145aは、吸気弁V7の運動により開閉される。排気ポート146aは、排気弁V8の運動により開閉される。シリンダ吸気通路部145の端部(吸入口)には吸気管148が接続されている。シリンダ排気通路部146の端部(排出口)には排気管149が接続されている。シリンダ排気通路部146の経路長をa4とする。
 図30に示すように、排気管149は、シリンダヘッド140の下面に接続されている。下方から見て、排気管149の上流端部は、右リンク部材130Rと左リンク部材130Lの間に位置している。さらに、図29に示すように、左右方向から見て、排気管149の一部は、右リンク部材130Rおよび左リンク部材130Lと重なっている。したがって、排気管149は、右リンク部材130Rおよび左リンク部材130Lの間を通っている。
 単気筒4ストロークエンジンユニット132は、実施形態1と同様に、点火プラグ、動弁機構、インジェクタ、スロットルバルブを備えている。また、単気筒4ストロークエンジンユニット132は、実施形態1と同様に、エンジン回転速度センサ、スロットル開度センサ等の各種センサを備えている。
 上述したように、単気筒4ストロークエンジンユニット132は、エンジン本体133と、排気管149と、消音器150と、メイン触媒154と、上流酸素検出部材151と、下流酸素検出部材152とを備えている。消音器150は、大気に面する放出口150eを有する。燃焼室144から放出口150eに至る経路を、排気経路156(図31を参照)とする。排気経路156は、シリンダ排気通路部146と排気管149と消音器150とによって形成される。排気経路156は、排ガスが通過する空間である。
 図31に示すように、排気管149の上流端部は、シリンダ排気通路部146に接続される。排気管149の下流端部は、消音器150に接続される。排気管149の途中には、触媒ユニット153が設けられている。排気管149の触媒ユニット153より上流の部分を、上流排気管149aとする。排気管149の触媒ユニット153より下流の部分を下流排気管149bとする。なお、図31では、簡略化のために排気管149を一直線状に描いているが、排気管149は一直線状ではない。
 図28および図30に示すように、排気管149の大部分は、自動二輪車120の右部に設けられている。排気管149の上流端部は、自動二輪車120の左右方向の略中央部に位置している。図29に示すように、排気管149の一部は、クランク軸線Cr4の下方に位置する。排気管149は、2つの屈曲部を有する。2つの屈曲部のうち上流の屈曲部を、単に、上流の屈曲部という。2つの屈曲部のうち下流の屈曲部を、単に、下流の屈曲部という。上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、上下方向に延びる方向から前後方向に延びる方向に変化させる。より具体的には、上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、下向きから後下向きに変化させる。下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、後下向きから後向きに変化させる。下流の屈曲部より下流の部分が、クランク軸線Cr4の下方に位置する。メイン触媒154はこの2つの屈曲部の間に配置されている。
 消音器150には、排気管149の下流端から排出された排ガスが流入する。消音器150は、排気管149に接続されている。消音器150は、排ガスの脈動波を抑制するように構成されている。それにより、消音器150は、排ガスによって生じる音(排気音)の音量を低減できる。消音器150内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。排気管149の下流端部は、消音器150の膨張室内に配置されている。消音器150の下流端には、大気に面する放出口150eが設けられている。図31に示すように、排気管149の下流端から放出口150eに至る排気経路の経路長をe4とする。消音器150を通過した排ガスは、放出口150eから大気へ放出される。図29に示すように、放出口150eは、クランク軸線Cr4よりも後方に位置する。
 メイン触媒154は、排気管149内に配置されている。メイン触媒154の上流端は、消音器150の上流端150aよりも上流に配置されている。触媒ユニット153は、筒状のケーシング155と、触媒ユニット153とを有する。ケーシング155の上流端は、上流排気管149aに接続されている。ケーシング155の下流端は、下流排気管149bに接続されている。ケーシング155は、排気管149の一部を構成する。メイン触媒154は、ケーシング155の内部に固定されている。排ガスは、メイン触媒154を通過することで浄化される。メイン触媒154には、燃焼室144の排気ポート146aから排出された全ての排ガスが通過する。メイン触媒154は、排気経路156において、燃焼室144から排出された排ガスを最も浄化する。
 メイン触媒154の材質は、実施形態1のメイン触媒39と同様である。メイン触媒154は、多孔構造を有している。メイン触媒154には、上流排気管149aの経路幅より十分に細い複数の孔が形成されている。図31に示すように、メイン触媒154の経路方向の長さをc4とする。メイン触媒154の経路方向に垂直な方向の最大幅をw4とする。メイン触媒154の長さc4は、メイン触媒154の最大幅w4より長い。
 図31に示すように、ケーシング155は、触媒配置通路部155bと、上流通路部155aと、下流通路部155cとを有する。触媒配置通路部155bには、メイン触媒154が配置される。経路方向において、触媒配置通路部155bの上流端および下流端は、メイン触媒154の上流端および下流端とそれぞれ同じ位置である。触媒配置通路部155bの経路方向に直交する断面の面積はほぼ一定である。上流通路部155aは、触媒配置通路部155bの上流端に接続されている。下流通路部155cは、触媒配置通路部155bの上流端に接続されている。
 上流通路部155aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部155cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部155bの経路方向に直交する断面の面積をS4とする。上流通路部155aの少なくとも一部の経路方向に直交する断面の面積を面積S4よりも小さい。ここでの上流通路部155aの少なくとも一部には、上流通路部155aの上流端が含まれる。下流通路部155cの少なくとも一部の経路方向に直交する断面の面積は面積S4よりも小さい。ここでの下流通路部155cの少なくとも一部には、下流通路部155cの下流端が含まれる。
 図29に示すように、メイン触媒154は、クランク軸線Cr4よりも前方に配置されている。つまり、左右方向から見て、メイン触媒154は、直線L7の前方に配置されている。上述したように、直線L7は、クランク軸線Cr4を通り、上下方向と平行に延びる直線である。当然ながら、メイン触媒154の上流端も、クランク軸線Cr4よりも前方に配置されている。また、左右方向から見て、メイン触媒154は、シリンダ軸線Cy4の前方(下方)に位置する。
 図29に示すように、シリンダ軸線Cy4に直交し且つクランク軸線Cr4に直交する直線をL8とする。左右方向から見て、メイン触媒154は、直線L8の前方に位置する。
 図31に示すように、排気管149の上流端からメイン触媒154の上流端までの経路長をb4とする。経路長b4は、上流排気管149aと触媒ユニット153の上流通路部155aからなる通路部の経路長である。言い換えると、経路長b4は、シリンダ排気通路部146の下流端からメイン触媒154の上流端までの経路長である。また、メイン触媒154の下流端から排気管149の下流端までの経路長をd4とする。経路長d4は、触媒ユニット153の下流通路部155cと下流排気管149bからなる通路部の経路長である。燃焼室144からメイン触媒154の上流端までの経路長は、a4+b4である。メイン触媒154の下流端から放出口150eまでの経路長は、d4+e4である。
 上記実施形態1と同じく、メイン触媒154は、経路長a4+b4が、経路長d4+e4よりも短くなる位置に配置される。また、上記実施形態1と同じく、メイン触媒154は、経路長a4+b4が、経路長d4よりも短くなる位置に配置される。さらに、上記実施形態1と同じく、メイン触媒154は、経路長b4が、経路長d4よりも短くなる位置に配置される。
 上流酸素検出部材151は、排気管149に配置されている。上流酸素検出部材151は、メイン触媒154よりも上流に配置される。上流酸素検出部材151は、排ガスに含まれる酸素濃度を検出するセンサである。上流酸素検出部材151の構造は、実施形態1の上流酸素検出部材と同様である。
 図31に示すように、燃焼室144から上流酸素検出部材151までの経路長をh7とする。上流酸素検出部材151からメイン触媒154の上流端までの経路長をh8とする。上記実施形態1と同じく、上流酸素検出部材151は、経路長h7が経路長h8よりも短くなる位置に配置されている。
 以上説明したように、実施形態4の自動二輪車120は、メイン触媒154の上流と下流に上流酸素検出部材151と下流酸素検出部材152を有する。それ以外にも実施形態1の自動二輪車1と同様の配置関係を有する。実施形態1と同様の配置関係については、実施形態1で述べた効果と同様の効果を奏する。
 また、実施形態4の自動二輪車120においても、上述した変形例1-2の排気系の構成を適用することが可能である。この場合、変形例1-2と同様の作用が得られる。
 (実施形態4の変形例4-1)
 図32は、実施形態4の変形例4-1の自動二輪車の車体カバー等を外した状態の側面図である。図33は、実施形態4の変形例4-1の自動二輪車の車体カバー等を外した状態の底面図である。図34は、実施形態4の変形例4-1のエンジン本体および排気系を示す模式図である。変形例4-1において、実施形態4と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図32に示すように、変形例4-1は上記実施形態4に比べて、メイン触媒154が下流に配置されている。メイン触媒154の具体的な構成は、上記実施形態4と同様である。変形例4-1のメイン触媒154は、排気管2149内に配置されている。実施形態4と同じく、メイン触媒154の上流端は、消音器150の上流端150aよりも上流に配置されている。
 排気管2149は、実施形態4の排気管149と同様に、シリンダ排気通路部146(図34を参照)と消音器150に接続されている。排気管2149の途中には、触媒ユニット153が設けられている。図34に示すように、排気管2149の触媒ユニット153より上流排気管2149aとする。排気管2149の触媒ユニット153より下流の部分を下流排気管2149bとする。下流排気管2149bは、消音器150内に配置されている。なお、図34では、簡略化のために排気管2149を一直線状に描いているが、排気管2149は一直線状ではない。
 図32に示すように、メイン触媒154は、クランク軸線Cr4よりも後方に配置されている。つまり、左右方向から見て、メイン触媒154は、直線L7の後方に配置されている。上述したように、直線L7は、クランク軸線Cr4を通り、上下方向と平行に延びる直線である。また、左右方向から見て、メイン触媒154は、シリンダ軸線Cy4の前方(下方)に位置する。
 図32に示すように、左右方向から見て、メイン触媒154は、直線L8の後方に位置する。なお、直線L8は、シリンダ軸線Cy4に直交し且つクランク軸線Cr4に直交する直線である。
 図34に示すように、排気管2149の上流端からメイン触媒154の上流端までの経路長をb14とする。メイン触媒154の下流端から排気管2149の下流端までの経路長をd14とする。燃焼室144からメイン触媒154の上流端までの経路長は、a4+b14である。メイン触媒154の下流端から放出口150eまでの経路長は、d14+e4である。
 上記実施形態4と同じく、変形例4-1のメイン触媒154は、経路長a4+b14が、経路長d14+e4よりも短くなる位置に配置される。また、上記実施形態4と異なり、変形例4-1のメイン触媒154は、経路長a4+b14が、経路長d14よりも長くなる位置に配置される。さらに、上記実施形態4と異なり、変形例4-1のメイン触媒154は、経路長b14が、経路長d14よりも長くなる位置に配置される。
 上流酸素検出部材151は、排気管2149に配置されている。上流酸素検出部材151は、メイン触媒154より上流に配置されている。上流酸素検出部材151は、上流排気管2149a(図34を参照)に配置されている。
 図34に示すように、燃焼室144から上流酸素検出部材151までの経路長をh17とする。上流酸素検出部材151からメイン触媒154の上流端までの経路長をh18とする。上記実施形態4と同じく、上流酸素検出部材151は、経路長h17が経路長h18よりも短くなる位置に配置されている。
 下流酸素検出部材152は、排気管2149に配置されている。下流酸素検出部材152は、メイン触媒154より下流に配置されている。下流酸素検出部材152は、下流排気管2149a(図34を参照)に配置されている。下流酸素検出部材152は、消音器150の側壁部を貫通している。下流酸素検出部材152の一端部(検出部)は、下流排気管2149a内に配置されている。下流酸素検出部材152の他端部は、消音器150の外に配置されている。
 変形例4-1において、上記実施形態1と同様の構成については、上記実施形態1で述べた効果を奏する。
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。
 上記実施形態1~4において、触媒ユニット38、79、115、153のケーシング40、181、117、155と、上流排気管34a、75a、111a、149aとは、別々に形成された後に接合されている。しかし、触媒ユニット38、79、115、153のケーシング40、181、117、155と、上流排気管34a、75a、111a、149aとは、一体成形されていてもよい。
 上記実施形態1~4において、触媒ユニット38、79、115、153のケーシング40、181、117、155と、下流排気管34b、75b、111b、149bとは、別々に形成された後に接合されている。しかし、触媒ユニット38、79、115、153のケーシング40、181、117、155と、下流排気管34b、75b、111b、149bとは、一体成形されていてもよい。
 上記実施形態1の排気管34の形状は、図1~図3に示した形状に限定されない。また、消音器35の内部構造は、図5の模式図に示す構造に限定されない。上記実施形態2~4の排気管75、111、149および消音器76、112、150についても同様である。
 上記実施形態1~4において、メイン触媒39、116、180、154及び消音器35、76、112、150は、自動二輪車1、50、80、120の左右方向中央より右方に配置されている。しかし、メイン触媒及び消音器は、自動二輪車の左右方向中央より左方に配置されていてもよい。なお、自動二輪車の左右方向中央とは、上下方向から見て、前輪の左右方向中央と後輪の左右方向中央を通る直線の位置である。
 上記実施形態1~4において、排気管34、75、111、149は、その一部が、クランク軸線Cr1~Cr4の下方に位置している。しかし、排気管(単一燃焼室用排気管)は、その一部が、クランク軸線の上方に位置していてもよい。
 上記実施形態1~4において、メイン触媒39、180、116、154は、三元触媒である。しかし、本発明の単一燃焼室用メイン触媒は、三元触媒でなくてもよい。単一燃焼室用メイン触媒は、炭化水素、一酸化炭素、および窒素酸化物のいずれか1つまたは2つを除去する触媒であってもよい。また、単一燃焼室用メイン触媒は、酸化還元触媒でなくてもよい。メイン触媒は、酸化または還元のいずれか一方だけで有害物質を除去する酸化触媒または還元触媒であってもよい。還元触媒の一例として、窒素酸化物を還元反応によって除去する触媒がある。この変形例は、上流サブ触媒300に適用してもよい。
 上記実施形態1において、メイン触媒39は、経路方向の長さc1が、最大幅w1よりも大きい。上記実施形態2~4のメイン触媒180、116、154についても同様である。しかし、本発明の単一燃焼室用メイン触媒は、経路方向の長さが、経路方向に垂直な方向の最大幅より短くてもよい。但し、本発明の単一燃焼室用メイン触媒は、排気経路において、排ガスを最も浄化するように構成される。ここでの排気経路とは、燃焼室から、大気に面する放出口に至る経路である。
 本発明の単一燃焼室用メイン触媒は、複数ピースの触媒が近接して配置された構成としてもよい。各ピースは、基材と触媒物質を有する。ここで、近接とは、各ピースの経路方向の長さよりも、ピース同士の離間距離が短い状態のことである。複数ピースの基材の組成は、一種類でも、複数種類でもよい。複数ピースの触媒の触媒物質の貴金属は、一種類でも、複数種類でもよい。触媒物質の担体の組成は、一種類でも、複数種類でもよい。この変形例は、上流サブ触媒200に適用してもよい。
 上記実施形態1の変形例1-2では、上流サブ触媒300は、多孔構造を有しない。しかし、上流サブ触媒300は、多孔構造を有していてもよい。
 メイン触媒39、180、116、154の配置位置は、各図に示された位置に限定されない。但し、メイン触媒の上流端は、消音器の上流端より上流に配置される。以下、メイン触媒の配置位置の具体的な変更例を説明する。
 上記実施形態1~4において、メイン触媒39、180、116、154は、排気管34、75、111、149に配置されている。しかし、メイン触媒は、シリンダ部22、63、99、137のシリンダ排気通路部31、72、108、146に配置されていてもよい。
 上記実施形態1~4および上記変形例1-1、1-2、2-1、3-1、4-1において、メイン触媒39、180、116、154の下流端は、消音器35、76、112、150の上流端より上流に位置している。しかし、例えば図35に示すように、経路方向において、メイン触媒39の下流端と消音器435の上流端435aがほぼ同じ位置であってもよい。また、例えば図36、図37、図38に示すように、メイン触媒39の下流端が、消音器535の上流端535aより下流に位置していてもよい。
 メイン触媒39、180、116、154は、少なくとも一部がクランク軸線Cr1~Cr4より前方に配置されていてもよい。また、メイン触媒39、180、116、154は、少なくとも一部がクランク軸線Cr1~Cr4より後方に配置されていてもよい。
 左右方向から見て、メイン触媒39、180、116、154の少なくとも一部が、直線L2、L4、L6、L8の前方に配置されていてもよい。また、左右方向から見て、メイン触媒39、180、116、154の少なくとも一部が、直線L2、L4、L6、L8の後方に配置されていてもよい。
 上記実施形態1のメイン触媒39は、経路長a1+b1が、経路長d1+e1よりも短くなる位置に配置される。しかし、メイン触媒39は、経路長a1+b1が、経路長d1+e1よりも長くなる位置に配置されてもよい。なお、経路長a1+b1は、燃焼室29からメイン触媒39の上流端までの経路長である。経路長d1+e1は、メイン触媒39の下流端から放出口35eまでの経路長である。この変形例は、上記実施形態2~4のメイン触媒180、116、154に適用してもよい。
 上記実施形態の変形例1-2の上流サブ触媒300は、メイン触媒39より上流に設けられている。具体的には、上流サブ触媒300は、上流排気管34aに設けられている。しかし、メイン触媒39より上流に設けられる上流サブ触媒(単一燃焼室用上流サブ触媒)の配置位置は、上流排気管34aに限定されない。上流サブ触媒は、シリンダ排気通路部31に設けられていてもよい。また、上流サブ触媒は、触媒ユニット38の上流通路部40aに設けられていてもよい。この変形例は、上記実施形態2~4に適用してもよい。
 メイン触媒の下流に、下流サブ触媒(単一燃焼室用下流サブ触媒)が設けられていてもよい。下流サブ触媒は、上記実施形態の変形例1-2の上流サブ触媒300と同様の構成であってもよい。また、下流サブ触媒は、多孔構造であってもよい。例えば図39(c)および図39(d)に示すように、排気管34に、下流サブ触媒301が設けられていてもよい。また、下流サブ触媒は、消音器35内に設けられてもよい。また、下流サブ触媒は、排気管34の下流端より下流に設けられてもよい。また、メイン触媒がシリンダ排気通路部に設けられる場合、下流サブ触媒はシリンダ排気通路部に設けられてもよい。これら変形例は、上記実施形態2~4に適用してもよい。また、下流サブ触媒を設ける場合、メイン触媒の上流に上流サブ触媒300を設けてもよい。下流サブ触媒は、メイン触媒よりも下流に設けられる。そのため、メイン触媒は、下流サブ触媒よりも劣化の進行が速い。しかし、メイン触媒の劣化が所定のレベルに達しても、下流サブ触媒によって排ガスの浄化性能を維持することができる。したがって、自動二輪車の排気浄化についての初期性能をより長時間維持することができる。
 メイン触媒の下流に下流サブ触媒が設けられる場合、メイン触媒は、排気経路において、燃焼室から排出された排ガスを最も浄化する。メイン触媒と下流サブ触媒のそれぞれの浄化の寄与度は、変形例1-2で述べた測定方法で測定できる。変形例1-2で述べた測定方法における「フロント触媒」をメイン触媒とし、「リア触媒」を「下流サブ触媒」とする。
 メイン触媒の下流に下流サブ触媒が設けられる場合、下流サブ触媒の浄化能力は、メイン触媒の浄化能力より小さくても大きくてもよい。つまり、下流サブ触媒だけを設けた場合の排ガスの浄化率は、メイン触媒だけを設けた場合の排ガスの浄化率より小さくても大きくてもよい。
 メイン触媒の下流に下流サブ触媒が設けられる場合、メイン触媒は下流サブ触媒よりも劣化の進行が速い。そのため、累積走行距離が長くなると、メイン触媒と下流サブ触媒の浄化の寄与度の大小関係が逆転する場合がある。本発明の単一燃焼室用メイン触媒は、排気経路において、燃焼室から排出された排ガスを最も浄化する。これは、上述したような逆転現象が生じる前の状態のことである。つまり、累積走行距離が所定距離(例えば1000km)に到達していない状態のことである。
 本発明において、単気筒4ストロークエンジンユニットに設けられる触媒の数は、1つであっても複数であってもよい。触媒が複数の場合には、排気経路において、燃焼室から排出された排ガスを最も浄化する触媒が、本発明の単一燃焼室用メイン触媒に相当する。触媒が1つの場合は、この1つの触媒が、本発明の単一燃焼室用メイン触媒である。メイン触媒の上流と下流に上流サブ触媒と下流サブ触媒を設けてもよい。メイン触媒より上流に2つ以上の上流サブ触媒を設けてもよい。また、メイン触媒より下流に2つ以上の下流サブ触媒を設けてもよい。
 上流酸素検出部材36、77、113、151(単一燃焼室用上流酸素検出部材)の配置位置は、各図に示された位置に限定されない。但し、上流酸素検出部材36、77、113、151は、メイン触媒39、180、116、154より上流に配置される。以下、上流酸素検出部材の配置位置の具体的な変更例を説明する。
 上記実施形態1~4において、上流酸素検出部材36、77、113、151は、排気管34、75、111、149、334に配置されている。しかし、例えば図40に示すように、上流酸素検出部材36がシリンダ排気通路部31に配置されてもよい。
 上記実施形態3では、燃焼室106から上流酸素検出部材113までの経路長(h5)が、上流酸素検出部材113からメイン触媒116の上流端までの経路長(h6)よりも長い。上記実施形態1~4およびその変形例のうち、上記実施形態3だけがこの配置となっている。しかし、この配置は、上記実施形態1、2、4に適用してもよい。
 上記変形例1-2の上流酸素検出部材36は、上流サブ触媒300の上流に配置されている。しかし、メイン触媒39の上流に上流サブ触媒300を設けた場合、上流酸素検出部材36の配置位置は、以下の位置であってもよい。例えば図39(a)に示すように、上流酸素検出部材36は、上流サブ触媒300より下流に設けられてもよい。また、例えば図39(b)に示すように、上流サブ触媒300の上流と下流に2つの上流酸素検出部材36A、36Bを設けてもよい。上流酸素検出部材36Aは、上流サブ触媒300の上流に設けられる。上流酸素検出部材36Bは、上流サブ触媒300より下流でメイン触媒39より上流に設けられる。
 上流サブ触媒よりも上流に上流酸素検出部材を配置することにより、以下の効果が得られる。上流酸素検出部材は、上流サブ触媒に流入する排ガスの酸素濃度を検出できる。したがって、上流酸素検出部材の信号に基づいた燃焼制御を行うことにより、上流サブ触媒による排ガスの浄化性能を高めることができる。
 上記実施形態1~4および上記変形例1-1、1-2、2-1、3-1、4-1において、上流酸素検出部材36、77、113、151は、メイン触媒39、180、116、154の上流に1つだけ配置されている。しかし、本発明のビークルに設けられる単一燃焼室用上流酸素検出部材の数は、2つ以上であってもよい。
 下流酸素検出部材37、78、114、152(単一燃焼室用下流酸素検出部材)の配置位置は、各図に示された位置に限定されない。但し、下流酸素検出部材37、78、114、152は、メイン触媒39、180、116、154より下流に配置される。以下、下流酸素検出部材の配置位置の具体的な変更例を説明する。
 上記実施形態1~4において、下流酸素検出部材37、78、114、152は、排気管34、75、111、149、334に配置されている。しかし、例えば図35、図36、図37、図38に示すように、下流酸素検出部材37は、排気管434、534、1534、2534の下流端より下流の排ガスを検出対象とするように配置されていてもよい。以下、図35、図36、図37、図38の下流酸素検出部材37の配置位置について詳しく説明する。
 まず、図35について説明する。図35の消音器435は、3つの膨張室400、401、402と、3つのパイプ403、404、405を有する。第1膨張室400と第2膨張室401の間に第3膨張室402が形成されている。触媒ユニット38の下流端は、第1膨張室400内に配置されている。第1膨張室400と第2膨張室401は、第1パイプ403を介して連通している。第2膨張室401と第3膨張室402は、第2パイプ404を介して連通している。第3パイプ405の上流端は、第3膨張室402に配置されている。第3パイプ405は、消音器435の側壁部を貫通している。第3パイプ405は、大気に面する放出口435eを有する。第1パイプ403は、消音器435の側壁部の近くに配置されている。下流酸素検出部材37の検出部(先端部)は、第1パイプ403の下流端の近傍に配置されている。第1パイプ403から排出された排ガスは、下流酸素検出部材37の検出部に吹き付けられる。
 次に、図36について説明する。図36の消音器535は、3つの膨張室500、501、502と、3つのパイプ503、504、505を有する。第2膨張室501と第3膨張室502の間に第1膨張室500が形成されている。下流排気管534bの下流端は、第1膨張室500に配置されている。第1膨張室500と第2膨張室501は、第1パイプ503を介して連通している。第2膨張室501と第3膨張室502は、第2パイプ504を介して連通している。第3パイプ505の上流端は、第3膨張室502に配置されている。第3パイプ505は、消音器535の側壁部を貫通している。第3パイプ505は、大気に面する放出口535eを有する。メイン触媒39の経路方向に直交する断面において、メイン触媒39は消音器535のほぼ中央に配置されている。メイン触媒39を通過する排ガスの流れ方向をL方向とする。下流排気管534bは、L方向に対して傾斜する方向に延びている。下流排気管534bの下流端は、消音器535の側壁部の近くに配置されている。下流酸素検出部材37の検出部(先端部)は、下流排気管534bの下流端の近傍に配置されている。下流排気管534bから排出された排ガスは、下流酸素検出部材37の検出部に吹き付けられる。
 次に、図37について説明する。図36とほぼ同一の構成要素については、同一符号を付して、詳細な説明を省略する。下流排気管1534bの下流端は、第1膨張室500に配置されている。メイン触媒39は、消音器535の側壁部の近くに配置されている。下流排気管1534bの下流端も、消音器535の側壁部の近くに配置されている。下流酸素検出部材37の検出部(先端部)は、下流排気管1534bの下流端の近傍に配置されている。下流排気管1534bから排出された排ガスは、下流酸素検出部材37の検出部に吹き付けられる。
 次に、図38について説明する。図36とほぼ同一の構成要素については、同一符号を付して、詳細な説明を省略する。下流排気管2534bの下流端は、第1膨張室500に配置されている。下流酸素検出部材37は、第3パイプ505に配置されている。
 メイン触媒39の下流に下流サブ触媒301を設けた場合、下流酸素検出部材の配置位置は、以下の2つの位置のいずれであってもよい。例えば図39(c)に示すように、下流酸素検出部材37は、メイン触媒39より下流で下流サブ触媒301より上流に設けられてもよい。また、例えば図39(d)に示すように、下流酸素検出部材37は、下流サブ触媒301より下流に設けられてもよい。また、下流サブ触媒301の上流と下流にそれぞれ下流酸素検出部材を設けてもよい。
 上記実施形態1~4において、下流酸素検出部材37、78、114、152は、メイン触媒39、180、116、154の上流に1つだけ配置されている。しかし、本発明のビークルに設けられる単一燃焼室用下流酸素検出部材の数は、2つ以上であってもよい。
 上記実施形態1~4では、下流酸素検出部材の信号に基づいて、メイン触媒の浄化能力を判定している。しかし、下流酸素検出部材の信号の使用方法はこれに限定されるものではない。電子制御ユニット(制御装置)は、上流酸素検出部材と下流酸素検出部材の信号に基づいて、メイン触媒の浄化能力を判定してもよい。また、電子制御ユニット(制御装置)は、上流酸素検出部材と下流酸素検出部材の信号に基づいて、燃焼制御を行ってもよい。
 上流酸素検出部材と下流酸素検出部材の信号に基づいてメイン触媒の浄化能力を判定する具体的な方法の一例を説明する。例えば、上流酸素検出部材の信号の変化と下流酸素検出部材の信号の変化を比較して、メイン触媒の浄化能力を判定してもよい。メイン触媒の上流と下流に配置された2つの酸素検出部材の信号を使うことで、メイン触媒の劣化の程度をより精度よく検出できる。そのため、下流酸素検出部材の信号だけを使ってメイン触媒の劣化を判定する場合に比べて、より適切なタイミングで単一燃焼室用メイン触媒の交換を促すことができる。よって、車両の排気浄化性能に関する初期性能を維持しつつ、1つのメイン触媒をより長期間使用することが可能となる。
 上流酸素検出部材と下流酸素検出部材の信号に基づいて燃焼制御を行う具体的な方法の一例を説明する。まず、上記実施形態1と同様に、上流酸素検出部材37の信号に基づいて基本燃料噴射量を補正して、インジェクタ48から燃料を噴射させる。この燃料の燃焼によって発生する排ガスを下流酸素検出部材で検知する。そして、下流酸素検出部材の信号に基づいて燃料噴射量を補正する。これにより、目標空燃比に対する混合ガスの空燃比のずれをより低減できる。
 メイン触媒の上流と下流に配置された2つの酸素検出部材の信号を用いることで、メイン触媒による実際の浄化の状況を把握できる。そのため、2つの酸素検出部材の信号に基づいて燃焼制御を行うことにより、燃焼制御の精度を向上できる。それにより、メイン触媒の劣化の進行を遅らせることができる。その結果、自動二輪車の排気浄化性能についての初期性能をより長期間維持することができる。
 上記実施形態1では、上流酸素検出部材36の信号に基づいて、点火タイミングおよび燃料噴射量を制御する。この構成は、上記実施形態2~4についても同様である。しかし、上流酸素検出部材36の信号に基づく制御処理は、特に制限されるものではなく、点火タイミングおよび燃料噴射量のうちの一方のみであってもよい。また、上流酸素検出部材36の信号に基づく制御処理は、上記以外の制御処理を含んでいてもよい。
 下流酸素検出部材37、78、114、152は、ヒータを内蔵していてもよい。下流酸素検出部材37、78、114、152の検出部は、高温に加熱されて活性化状態となったときに、酸素濃度を検知できる。そのため、下流酸素検出部材37、78、114、152がヒータを内蔵していると、運転開始と同時にヒータにより検出部を加熱することで、酸素検出の開始を早めることができる。また、上流酸素検出部材36、77、113、151が、ヒータを内蔵していてもよい。
 排気管のメイン触媒より上流の少なくとも一部は、多重管で構成されていてもよい。多重管は、内管と、内管を覆う少なくとも1つの外管とを有する。図41は、排気管634のメイン触媒より上流の少なくとも一部が、二重管600で構成された一例を示す。二重管600は、内管601と、内管601を覆う外管602とを含む。図41では、内管601と外管602は、両端部のみ互いに接触している。多重管の内管と外管は、両端部以外の部分で接触していてもよい。例えば、屈曲部において、内管と外管が接触していてもよい。接触している面積は、接触していない面積より小さいことが好ましい。また、内管と外管は全体的に接触していてもよい。多重管を設けることで、排ガスの温度が低下するのを抑制できる。それにより、エンジン始動時に、上流酸素検出部材をより早期に活性化温度まで上昇させることができる。したがって、上流酸素検出部材の検出精度を向上できる。それにより、上流酸素検出部材の信号に基づいた燃焼制御をより精度よく行うことができる。その結果、メイン触媒による排ガスの浄化性能をより向上できる。また、燃焼制御の精度が向上することにより、メイン触媒の劣化の進行を遅らせることができる。したがって、自動二輪車の排気浄化についての初期性能をより長期間維持することができる。
 例えば図42に示すように、触媒配置通路部40bの外面の少なくとも一部は、触媒プロテクター700で覆われていてもよい。触媒プロテクター700は、略円筒状に形成されている。触媒プロテクターを設けることで、メイン触媒39の温度をより早期に上昇させることができる。したがって、メイン触媒39による排ガスの浄化性能を向上できる。この変形例は、上記実施形態2~4に適用してもよい。
 上記実施形態1~4において、エンジン駆動時に排気経路41、182、118、156を流れるガスは、燃焼室29、70、106、144から排出された排ガスだけである。しかし、本発明の単気筒4ストロークエンジンユニットは、排気経路に空気を供給する二次空気供給機構を備えていてもよい。二次空気供給機構の具体的な構成は、公知の構成が採用される。二次空気供給機構は、エアポンプによって強制的に排気経路に空気を供給する構成であってもよい。また、二次空気供給機構は、排気経路の負圧によって空気を排気経路に引き込む構成であってもよい。この場合、二次空気供給機構は、排ガスによる圧力脈動に応じて開閉するリード弁を備える。二次空気供給機構を設ける場合、上流酸素検出部材の配置位置は、空気が流入する位置よりも上流に設けても下流に設けてもよい。
 上記実施形態1~4において、燃焼室29、70、106、144に燃料を供給するために、インジェクタが用いられている。燃焼室に燃料を供給する燃料供給装置は、インジェクタに限らない。例えば、負圧により燃焼室に燃料を供給する燃料供給装置を設けてもよい。
 上記実施形態1~4において、1つの燃焼室29、70、106、144に対して、排気ポート31a、72a、108a、146aは1つだけ設けられている。しかし、1つの燃焼室に対して複数の排気ポートが設けられていてもよい。例えば、可変バルブ機構を備える場合がこの変形例に該当する。ただし、複数の排気ポートから延びる排気経路は、メイン触媒よりも上流で集合する。複数の排気ポートから延びる排気経路は、シリンダ部において集合することが好ましい。
 本発明の燃焼室は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。この場合、主燃焼室と副燃焼室とによって、1つの燃焼室が形成される。
 上記実施形態1~4および上記変形例1-2において、燃焼室29、70、106、144は、全体が、クランク軸線Cr1、Cr2、Cr3、Cr4より前方に位置している。しかし、本発明の燃焼室は、少なくとも一部が、クランク軸線より前方に位置していればよい。つまり、燃焼室の一部が、クランク軸線より後方に位置していてもよい。この変形例は、シリンダ軸線が上下方向に延びる場合に実現可能である。
 上記実施形態1~4および上記変形例1-2において、クランクケース本体23、64、100、138と、シリンダボディ24、65、101、139とは、別体である。しかし、クランクケース本体とシリンダボディとは、一体成形されていてもよい。また、上記実施形態1~4および上記変形例1-2において、シリンダボディ24、65、101、139と、シリンダヘッド25、66、102、140と、ヘッドカバー26、67、103、141とは、別体である。しかし、シリンダボディと、シリンダヘッドと、ヘッドカバーのいずれか2つまたは3つが一体成形されていてもよい。
 上記実施形態1~4および上記変形例1-2では、単気筒4ストロークエンジンユニットを備えたビークルとして、自動二輪車を例示した。しかし、本発明のビークルは、単気筒4ストロークエンジンユニットの動力で移動するビークルであれば、どのようなビークルであってもよい。本発明のビークルは、自動二輪車以外の鞍乗型車両であってもよい。鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。本発明のビークルは、鞍乗型車両でなくてもよい。また、本発明のビークルは、運転者が乗車しないものであってもよい。また、本発明のビークルは、人を乗せずに走行可能なものであってもよい。これらの場合、ビークルの前方向とは、ビークルの前進方向のことである。
 上記実施形態3、4の単気筒4ストロークエンジンユニット93、132は、ユニットスイングタイプである。エンジン本体94、133は車体フレーム81、121に対して揺動可能に設置されている。そのため、走行状況によって、メイン触媒116、154に対するクランク軸線Cr3、Cr4の位置は変化する。本明細書および本発明において、メイン触媒がクランク軸線の前方に位置するとは、エンジン本体が可動範囲内のいずれかの位置のときにメイン触媒がクランク軸の前方に位置することをいう。これ以外の位置関係についても、エンジン本体の可動範囲内のいずれかにおいて実現すればよい。
 本明細書および本発明において、メイン触媒の上流端とは、メイン触媒において燃焼室からの経路長が最も短くなる端を意味する。メイン触媒の下流端とは、メイン触媒において燃焼室からの経路長が最も長くなる端を意味する。メイン触媒以外の要素の上流端および下流端についても同様の定義が適用される。
 本明細書および本発明において、通路部とは、経路を囲んで経路を形成する壁体等を意味し、経路とは対象が通過する空間を意味する。排気通路部とは、排気経路を囲んで排気経路を形成する壁体等を意味する。なお、排気経路とは、排気が通過する空間を意味する。
 本明細書および本発明において、排気経路の経路長とは、排気経路の真ん中のラインの経路長を言う。また、消音器の膨張室の経路長は、膨張室の流入口の真ん中から膨張室の流出口の真ん中を最短で結んだ経路の長さを意味する。
 本明細書において、経路方向とは、排気経路の真ん中を通る経路の方向で、且つ、排ガスが流れる方向を意味する。
 本明細書において、通路部の経路方向に直交する断面の面積という表現が用いられている。また、本明細書および本発明において、通路部の排ガスの流れる方向に直交する断面の面積という表現が用いられている。ここでの通路部の断面の面積は、通路部の内周面の面積であってもよく、通路部の外周面の面積であってもよい。
 また、本明細書および本発明において、部材または直線がA方向に延びるとは、部材または直線がA方向と平行に配置されている場合だけを示すのではない。部材または直線がA方向に延びるとは、部材または直線が、A方向に対して±45°の範囲で傾斜している場合を含む。なお、A方向は、特定の方向を指すものではない。A方向を、水平方向や前後方向に置き換えることができる。
 本明細書のクランクケース本体23、64、100、138は、本願の基礎出願の明細書中のクランクケース部18、61、95、135にそれぞれ相当する。本明細書のシリンダボディ24、65、101、139は、上述の基礎出願の明細書中のシリンダ部24、62、96、136にそれぞれ相当する。本明細書のエンジン本体20、61、94、133は、上述の基礎出願の明細書中のエンジン20、60、93、131にそれぞれ相当する。本明細書のシリンダ排気通路部31は、上述の基礎出願の明細書中の排ガスの通路P2を形成する通路部に相当する。
本発明は、本明細書の開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良および/または変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきである。クレームの限定事項は、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。そのような実施形態は非排他的であると解釈されるべきである。例えば、本明細書において、「好ましくは」や「よい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」や「よいがこれに限定されるものではない」ということを意味するものである。
 1、50、80、120 自動二輪車(ビークル)
 2、53、81、121 車体フレーム
 19、60、93、132 単気筒4ストロークエンジンユニット
 20、61、94、133 エンジン本体
 21、62、98、136 クランクケース部
 22、63、99、137 シリンダ部
 24a、65a、101a、139a シリンダ孔
 27、68、104、142 クランク軸
 28、69、105、143 ピストン
 29、70、106、144 燃焼室
 31、72、108、146 シリンダ排気通路部(単一燃焼室用シリンダ排気通路部)
 34、75、111、149、234、275、334、434、534、634、1534、2534、2111、2149 排気管(単一燃焼室用排気管)
 35、76、112、150、435、535 消音器(単一燃焼室用消音器)
 35e、76e、112e、150e、435e、535e 放出口
 36、77、113、151 上流酸素検出部材(単一燃焼室用上流酸素検出部材)
 37、78、114、152 下流酸素検出部材(単一燃焼室用下流酸素検出部材)
 38、79、115、153、2115 触媒ユニット
 39、116、154、180 メイン触媒(単一燃焼室用メイン触媒)
 40a、117a、155a、181a、2117a 上流通路部
 40b、117b、155b、181b、2117b 触媒配置通路部
 40c、117c、155c、181c、2117c 下流通路部
 41、118、156、182 排気経路
 300 上流サブ触媒(単一燃焼室用上流サブ触媒)
 301 下流サブ触媒(単一燃焼室用下流サブ触媒)
 600 二重管
 601 内管
 602 外管
 700 触媒プロテクター
 Cr1、Cr2、Cr3、Cr4 クランク軸線(クランク軸の中心線)
 Cy1、Cy2、Cy3、Cy4 シリンダ軸線(シリンダ孔の中心線)
 L2、L4、L6、L8 クランク軸線とシリンダ軸線に直交する直線

Claims (21)

  1.  単気筒4ストロークエンジンユニットが搭載されたビークルであって、
     前記単気筒4ストロークエンジンユニットは、
     1つの燃焼室、および、前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成されたシリンダ部を有するエンジン本体と、
     前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、
     大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、
     前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管内に配置され、且つ、その上流端が前記単一燃焼室用消音器の上流端よりも排ガスの流れ方向の上流に配置され、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、
     前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用上流酸素検出部材と、
     前記単一燃焼室用シリンダ排気通路部、前記単一燃焼室用排気管または前記単一燃焼室用消音器において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用下流酸素検出部材と、
     前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号を処理する制御装置と、
    を備えることを特徴とするビークル。
  2.  前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、
     前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、
     前記単一燃焼室用メイン触媒は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されることを特徴とする請求項1に記載のビークル。
  3.  前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、
     前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、
     前記単一燃焼室用メイン触媒は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されることを特徴とする請求項1または2に記載のビークル。
  4.  前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記エンジン本体の前記シリンダ部は、ピストンが配置されるシリンダ孔を有し、
     前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、
     前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、
     前記ビークルを左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記ビークルの前後方向の前方に位置することを特徴とする請求項1~3のいずれか1項に記載のビークル。
  5.  前記エンジン本体は、前記ビークルの左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記エンジン本体の前記シリンダ部は、ピストンが配置されるシリンダ孔を有し、
     前記シリンダ部の前記1つの燃焼室は、少なくとも一部が前記クランク軸の中心線よりも前記ビークルの前後方向の前方に配置されており、
     前記単一燃焼室用消音器の前記放出口は、前記クランク軸の中心線よりも前記ビークルの前後方向の後方に配置されており、
     前記ビークルを左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記ビークルの前後方向の後方に位置することを特徴とする請求項1~3のいずれか1項に記載のビークル。
  6.  前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記放出口までの経路長よりも短くなる位置に配置されることを特徴とする請求項1~5のいずれか1項に記載のビークル。
  7.  前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも短くなる位置に配置されることを特徴とする請求項1~6のいずれか1項に記載のビークル。
  8.  前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも長くなる位置に配置されることを特徴とする請求項1~6のいずれか1項に記載のビークル。
  9.  前記単一燃焼室用上流酸素検出部材は、前記1つの燃焼室から前記単一燃焼室用上流酸素検出部材の上流端までの経路長が、前記単一燃焼室用上流酸素検出部材から前記単一燃焼室用メイン触媒の上流端までの経路長よりも短くなる位置に配置されることを特徴とする請求項1~8のいずれか1項に記載のビークル。
  10.  前記単一燃焼室用上流酸素検出部材は、前記1つの燃焼室から前記単一燃焼室用上流酸素検出部材の上流端までの経路長が、前記単一燃焼室用上流酸素検出部材から前記単一燃焼室用メイン触媒の上流端までの経路長よりも長くなる位置に配置されることを特徴とする請求項1~8のいずれか1項に記載のビークル。
  11.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部と、前記触媒配置通路部の上流端に接続される上流通路部とを有しており、
     前記上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積は、前記触媒配置通路部の排ガスの流れ方向に直交する断面の面積よりも小さいことを特徴とする請求項1~10のいずれか1項に記載のビークル。
  12.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流の少なくとも一部が、内管と前記内管を覆う少なくとも1つの外管を備えた多重管で構成されることを特徴とする請求項1~11のいずれか1項に記載のビークル。
  13.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部を有し、
     前記単気筒4ストロークエンジンユニットは、
     前記触媒配置通路部の外面の少なくとも一部を覆う触媒プロテクターを備えることを特徴とする請求項1~12のいずれか1項に記載のビークル。
  14.  前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ排気通路部内または前記単一燃焼室用排気管内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に設けられ、排ガスを浄化する単一燃焼室用上流サブ触媒を備えることを特徴とする請求項1~13のいずれか1項に記載のビークル。
  15.  前記単一燃焼室用上流酸素検出部材は、前記単一燃焼室用上流サブ触媒よりも排ガスの流れ方向の上流に配置されることを特徴とする請求項14に記載のビークル。
  16.  前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用排気管内または前記単一燃焼室用消音器内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に設けられ、排ガスを浄化する単一燃焼室用下流サブ触媒を備えることを特徴とする請求項1~15のいずれか1項に記載のビークル。
  17.  前記単一燃焼室用下流酸素検出部材は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流であって、前記単一燃焼室用下流サブ触媒よりも排ガスの流れ方向の上流に配置されることを特徴とする請求項16に記載のビークル。
  18.  前記単一燃焼室下流酸素検出部材は、前記単一燃焼室用下流サブ触媒よりも排ガスの流れ方向の下流に配置されることを特徴とする請求項16に記載のビークル。
  19.  前記制御装置は、前記単一燃焼室用下流酸素検出部材の信号に基づいて前記単一燃焼室用メイン触媒の浄化能力を判定し、
     前記単一燃焼室用メイン触媒の浄化能力が所定のレベルまで低下したと前記制御装置によって判定されたときに報知を行う報知手段を備えることを特徴とする請求項1~18のいずれか1項に記載のビークル。
  20.  前記単気筒4ストロークエンジンユニットは、前記1つの燃焼室に燃料を供給する燃料供給装置を備え、
     前記制御装置は、
     前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号に基づいて前記燃焼供給装置により前記1つの燃焼室に供給される燃料の量を制御することを特徴とする請求項1~19のいずれか1項に記載のビークル。
  21.  請求項1に記載の前記ビークルに搭載された前記単気筒4ストロークエンジンユニットであって、
     1つの燃焼室、および、前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成されたシリンダ部を有するエンジン本体と、
     前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、
     大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、
     前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管内に配置され、且つ、その上流端が前記単一燃焼室用消音器の上流端よりも排ガスの流れ方向の上流に配置され、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、
     前記単一燃焼室用シリンダ排気通路部または前記単一燃焼室用排気管において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用上流酸素検出部材と、
     前記単一燃焼室用シリンダ排気通路部、前記単一燃焼室用排気管または前記単一燃焼室用消音器において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に配置され、排ガス中の酸素濃度を検出する単一燃焼室用下流酸素検出部材と、
     前記単一燃焼室用上流酸素検出部材の信号と前記単一燃焼室用下流酸素検出部材の信号を処理する制御装置と、
    を備えることを特徴とする単気筒4ストロークエンジンユニット。
PCT/JP2015/069354 2014-07-04 2015-07-03 ビークルおよび単気筒4ストロークエンジンユニット WO2016002955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15815441.9A EP3165730B1 (en) 2014-07-04 2015-07-03 Vehicle and single-cylinder four-stroke engine unit
BR112016031006-3A BR112016031006B1 (pt) 2014-07-04 2015-07-03 Veículo e unidade de motor de cilindro único de quatro tempos
CN201580036523.4A CN106661981B (zh) 2014-07-04 2015-07-03 车辆和单缸四冲程发动机单元
TW104121940A TWI611098B (zh) 2014-07-04 2015-07-06 車輛及單缸四衝程引擎單元

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-138372 2014-07-04
JP2014138372A JP2017150308A (ja) 2014-07-04 2014-07-04 エンジンユニットおよび乗り物
JP2014138367A JP2017150307A (ja) 2014-07-04 2014-07-04 エンジンユニットおよび乗り物
JP2014-138367 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002955A1 true WO2016002955A1 (ja) 2016-01-07

Family

ID=55019480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069354 WO2016002955A1 (ja) 2014-07-04 2015-07-03 ビークルおよび単気筒4ストロークエンジンユニット

Country Status (5)

Country Link
EP (1) EP3165730B1 (ja)
CN (1) CN106661981B (ja)
BR (1) BR112016031006B1 (ja)
TW (1) TWI611098B (ja)
WO (1) WO2016002955A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206998A (ja) * 2016-05-18 2017-11-24 スズキ株式会社 排気ガスセンサの配置構造
JP2017206999A (ja) * 2016-05-18 2017-11-24 スズキ株式会社 排気ガスセンサの配置構造
JP2017214904A (ja) * 2016-06-01 2017-12-07 スズキ株式会社 排気ガスセンサの配置構造
JP2017214903A (ja) * 2016-06-01 2017-12-07 スズキ株式会社 排気ガスセンサの配置構造
JP2017227128A (ja) * 2016-06-20 2017-12-28 スズキ株式会社 排気ガスセンサの配置構造
JP2017227157A (ja) * 2016-06-22 2017-12-28 スズキ株式会社 排気ガスセンサの配置構造
JP2018003718A (ja) * 2016-07-04 2018-01-11 スズキ株式会社 排気ガスセンサの配置構造
JP2019015277A (ja) * 2017-07-11 2019-01-31 スズキ株式会社 排気ガスセンサの配置構造及び自動二輪車
EP3524785A1 (en) 2018-02-09 2019-08-14 Honda Motor Co., Ltd. Saddle riding vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098900A1 (ja) * 2014-12-19 2016-06-23 ヤマハ発動機株式会社 鞍乗型車両
JP2019039406A (ja) * 2017-08-28 2019-03-14 ヤマハ発動機株式会社 鞍乗型車両
JP6639536B2 (ja) * 2018-02-09 2020-02-05 本田技研工業株式会社 鞍乗型車両
JP6599492B2 (ja) * 2018-02-09 2019-10-30 本田技研工業株式会社 鞍乗型車両
JP2019190355A (ja) * 2018-04-24 2019-10-31 ヤマハ発動機株式会社 鞍乗型車両
CN113574254A (zh) * 2019-03-25 2021-10-29 Tvs电机股份有限公司 用于机动车辆的动力单元
JPWO2023189494A1 (ja) * 2022-03-31 2023-10-05

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530181A (ja) * 1998-07-24 2002-09-17 リテックス インコーポレイテッド 気相反応の速度及び効率を高める方法及び装置
JP2006152806A (ja) * 2004-11-25 2006-06-15 Aisan Ind Co Ltd 自動二輪車の排気管構造
JP2006250129A (ja) * 2005-03-14 2006-09-21 Honda Motor Co Ltd エンジンの排気装置
JP2007187004A (ja) * 2006-01-11 2007-07-26 Honda Motor Co Ltd 内燃機関
JP2008223641A (ja) * 2007-03-13 2008-09-25 Yamaha Motor Co Ltd 内燃機関の排気浄化装置
JP2011052605A (ja) * 2009-09-02 2011-03-17 Yamaha Motor Co Ltd 排気装置と、これを備えた鞍乗型車両と、排気管の製造、及び、取り付け方法
WO2011111156A1 (ja) * 2010-03-09 2011-09-15 トヨタ自動車 株式会社 触媒劣化検出装置
JP2013173498A (ja) * 2012-02-27 2013-09-05 Honda Motor Co Ltd 小型車両
JP2014137001A (ja) * 2013-01-16 2014-07-28 Honda Motor Co Ltd 鞍乗型車両の排気装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097605A (ja) * 2004-09-30 2006-04-13 Honda Motor Co Ltd 自動二輪車における空燃比センサの配置構造
CN100449124C (zh) * 2004-12-28 2009-01-07 本田技研工业株式会社 车辆的排气装置
JP4538380B2 (ja) * 2004-12-28 2010-09-08 本田技研工業株式会社 自動二輪車の排気装置
JP4468861B2 (ja) * 2005-01-24 2010-05-26 本田技研工業株式会社 車両の排気装置
JP5969328B2 (ja) * 2012-09-04 2016-08-17 川崎重工業株式会社 自動二輪車

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530181A (ja) * 1998-07-24 2002-09-17 リテックス インコーポレイテッド 気相反応の速度及び効率を高める方法及び装置
JP2006152806A (ja) * 2004-11-25 2006-06-15 Aisan Ind Co Ltd 自動二輪車の排気管構造
JP2006250129A (ja) * 2005-03-14 2006-09-21 Honda Motor Co Ltd エンジンの排気装置
JP2007187004A (ja) * 2006-01-11 2007-07-26 Honda Motor Co Ltd 内燃機関
JP2008223641A (ja) * 2007-03-13 2008-09-25 Yamaha Motor Co Ltd 内燃機関の排気浄化装置
JP2011052605A (ja) * 2009-09-02 2011-03-17 Yamaha Motor Co Ltd 排気装置と、これを備えた鞍乗型車両と、排気管の製造、及び、取り付け方法
WO2011111156A1 (ja) * 2010-03-09 2011-09-15 トヨタ自動車 株式会社 触媒劣化検出装置
JP2013173498A (ja) * 2012-02-27 2013-09-05 Honda Motor Co Ltd 小型車両
JP2014137001A (ja) * 2013-01-16 2014-07-28 Honda Motor Co Ltd 鞍乗型車両の排気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165730A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206998A (ja) * 2016-05-18 2017-11-24 スズキ株式会社 排気ガスセンサの配置構造
JP2017206999A (ja) * 2016-05-18 2017-11-24 スズキ株式会社 排気ガスセンサの配置構造
JP2017214904A (ja) * 2016-06-01 2017-12-07 スズキ株式会社 排気ガスセンサの配置構造
JP2017214903A (ja) * 2016-06-01 2017-12-07 スズキ株式会社 排気ガスセンサの配置構造
DE102017004376B4 (de) 2016-06-01 2023-03-23 Suzuki Motor Corporation Abgassensor-Anordnungsstruktur
JP2017227128A (ja) * 2016-06-20 2017-12-28 スズキ株式会社 排気ガスセンサの配置構造
JP2017227157A (ja) * 2016-06-22 2017-12-28 スズキ株式会社 排気ガスセンサの配置構造
JP2018003718A (ja) * 2016-07-04 2018-01-11 スズキ株式会社 排気ガスセンサの配置構造
JP2019015277A (ja) * 2017-07-11 2019-01-31 スズキ株式会社 排気ガスセンサの配置構造及び自動二輪車
EP3524785A1 (en) 2018-02-09 2019-08-14 Honda Motor Co., Ltd. Saddle riding vehicle

Also Published As

Publication number Publication date
CN106661981A (zh) 2017-05-10
BR112016031006B1 (pt) 2023-04-18
BR112016031006A2 (ja) 2017-08-22
EP3165730A4 (en) 2017-10-04
EP3165730A1 (en) 2017-05-10
TWI611098B (zh) 2018-01-11
BR112016031006A8 (pt) 2021-09-28
EP3165730B1 (en) 2020-04-29
TW201606188A (zh) 2016-02-16
CN106661981B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2016002955A1 (ja) ビークルおよび単気筒4ストロークエンジンユニット
JP6208353B2 (ja) ビークルおよび単気筒4ストロークエンジンユニット
WO2016002952A1 (ja) 鞍乗型車両および単気筒4ストロークエンジンユニット
WO2016002962A1 (ja) ビークルおよび単気筒4ストロークエンジンユニット
WO2016098902A1 (ja) 鞍乗型車両
WO2016002958A1 (ja) 鞍乗型車両
WO2016002959A1 (ja) 鞍乗型車両および単気筒4ストロークエンジンユニット
WO2016002951A1 (ja) ビークルおよび単気筒4ストロークエンジンユニット
WO2016002957A1 (ja) 鞍乗型車両、及び、単気筒4ストロークエンジンユニット
WO2016002953A1 (ja) 鞍乗型車両
WO2016002954A1 (ja) 鞍乗型車両
JP2017150308A (ja) エンジンユニットおよび乗り物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015815441

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815441

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016031006

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112016031006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161230

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016031006

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2433 DE 22/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016031006

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES JP 2014-138367 DE 04/07/2014 E JP 2014-138372 DE 04/07/2014 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTAS (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DAS CITADAS PRIORIDADES, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112016031006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161230