WO2016002758A1 - 酢酸セルロース系逆浸透膜の洗浄剤及び洗浄液 - Google Patents

酢酸セルロース系逆浸透膜の洗浄剤及び洗浄液 Download PDF

Info

Publication number
WO2016002758A1
WO2016002758A1 PCT/JP2015/068786 JP2015068786W WO2016002758A1 WO 2016002758 A1 WO2016002758 A1 WO 2016002758A1 JP 2015068786 W JP2015068786 W JP 2015068786W WO 2016002758 A1 WO2016002758 A1 WO 2016002758A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
reverse osmosis
cellulose acetate
membrane
osmosis membrane
Prior art date
Application number
PCT/JP2015/068786
Other languages
English (en)
French (fr)
Inventor
藤井 昭宏
孝博 川勝
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2016002758A1 publication Critical patent/WO2016002758A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention is effective when the cellulose acetate reverse osmosis (RO) membrane used in the water treatment field is contaminated with organic matter and inorganic matter, and the performance such as the amount of permeated water and the desalination rate is reduced.
  • the present invention relates to a cleaning agent and a cleaning liquid to be recovered.
  • Separation and purification by RO membrane system is an energy-saving process for systems using evaporation and electrodialysis, and is widely used for desalination of seawater and brine, production of industrial water and ultrapure water, wastewater recovery, etc. Yes. Since the performance deteriorates when the RO membrane is contaminated, the performance is restored by periodically cleaning. Therefore, the development of more effective cleaning agents and cleaning processes is desired.
  • RO membrane cleaning agents include acids (oxalic acid, citric acid, etc.), alkalis (sodium hydroxide, etc.), surfactants, chelating agents (EDTA, etc.), chlorine agents, enzymes, depending on the nature of the membrane contaminants. Containing detergent etc. are mentioned (nonpatent literature 1).
  • the materials of RO membranes currently used are roughly classified into aromatic polyamides and cellulose acetates. Since the aromatic polyamide RO membrane has low resistance to chlorine, the membrane cannot be cleaned with a chlorine agent. The cellulose acetate RO membrane is more resistant to chlorine than the aromatic polyamide RO membrane. The RO membrane made of cellulose triacetate has resistance even under conditions of a chlorine concentration of 5 mg / L for a short time (Non-patent Document 2).
  • cellulose acetate RO membrane Since cellulose acetate RO membrane has low resistance to alkali, it cannot be washed under alkaline conditions of pH 9 or higher. For cleaning cellulose acetate RO membranes, an alkaline agent that causes membrane degradation cannot be used. Therefore, an effective cleaning agent is available for membrane contamination due to silica scale, etc., which cannot be sufficiently removed unless cleaning is performed under alkaline conditions. Not found.
  • Patent Document 1 discloses a membrane separation slime inhibitor and a membrane separation method comprising hypochlorite and sulfamic acid.
  • the anti-slime agent of Patent Document 1 is stable at a pH of 12 or more, and in the examples, the pH is adjusted using sulfuric acid and applied at a pH of 5.5.
  • Patent Document 2 describes that hypochlorite and sulfamic acid are added as a slime control agent for a film.
  • Patent Documents 1 and 2 the material of the target reverse osmosis membrane is a polyamide membrane, and there is no description about application to a cellulose acetate RO membrane.
  • Patent Documents 1 and 2 describe the peeling effect on slime, which is an organic contaminant, but do not describe the cleaning effect on silica adhering to the film surface.
  • An object of the present invention is to provide a cleaning agent and a cleaning liquid capable of effectively peeling and removing a substance, particularly silica, while preventing film deterioration and recovering its performance.
  • the present inventor diluted an alkaline cleaning agent composed of a combined chlorine agent obtained by mixing an NH 2 compound such as sulfamic acid, hypochlorite, and an alkaline agent to an aqueous solution having a pH of 8.5 or less.
  • an alkaline cleaning agent composed of a combined chlorine agent obtained by mixing an NH 2 compound such as sulfamic acid, hypochlorite, and an alkaline agent to an aqueous solution having a pH of 8.5 or less.
  • the gist of the present invention is as follows.
  • NH 2 compound a compound having a primary amino group, ammonia and an ammonium salt
  • hypochlorous acid a compound having a primary amino group, ammonia and an ammonium salt
  • hypochlorous acid a compound having a primary amino group, ammonia and an ammonium salt
  • hypochlorous acid a compound having a primary amino group, ammonia and an ammonium salt
  • hypochlorous acid a compound having a primary amino group, ammonia and an ammonium salt
  • hypochlorous acid a cellulose acetate reverse osmosis membrane comprising an aqueous solution having a pH of 11 or more obtained by mixing a chlorate (hereinafter referred to as “hypochlorous acid (salt)”) and an alkaline agent. Washing soap.
  • the NH 2 -based compound and hypochlorous acid (salt) are mixed so that the Cl 2 / N molar ratio is 0.1 to 0.9, and the NH 2 -based compound is mixed.
  • a cellulose acetate reverse osmosis membrane cleaning agent comprising an alkaline agent mixed in a molar ratio of 1 to 2 times.
  • a cellulose acetate RO membrane used in the field of water treatment is contaminated with organic matter or inorganic matter and performance such as the amount of permeated water or the desalination rate is reduced, it is sufficiently removed by conventional cleaning agents. It is possible to effectively remove the contaminants that cannot be removed while preventing the film from deteriorating and restore the performance.
  • FIG. 6 is a graph showing the results of Experimental Example 1. 6 is a graph showing the results of Examples I-1 to I-3 and Comparative Examples I-1 and I-2.
  • FIG. 3 a is a schematic diagram showing the configuration of the flat membrane test apparatus used in the cleaning experiment II.
  • FIG. 3b is a cross-sectional view showing the structure of the closed container of the flat membrane test apparatus.
  • the cellulose acetate RO membrane cleaning agent of the present invention is one or more selected from the group consisting of a compound having a primary amino group, ammonia and an ammonium salt (hereinafter referred to as “NH 2 compound”). Hypochlorous acid and / or hypochlorite (hereinafter referred to as “hypochlorous acid (salt)”) and an alkaline agent are mixed to form an aqueous solution having a pH of 11 or more. .
  • the cleaning liquid for the cellulose acetate RO membrane of the present invention is prepared by diluting this cleaning agent with water and mixing an acid to obtain an aqueous solution having a pH of 3 or more and 8.5 or less. A distinction is made between “cleaning agent” and “cleaning liquid”.
  • the RO membrane to be cleaned in the present invention is a cellulose acetate RO membrane in which silica cannot be removed by alkali cleaning because alkali resistance is low.
  • Seawater and river water contain components as shown in Table 1 below.
  • Cellulose acetate RO membranes used for such water treatment are not only organic contaminants but also inorganic contaminants such as silica adhere to them and their performance deteriorates.
  • the present invention is effective for cleaning such organic pollutants and inorganic pollutants, in particular, cellulose acetate RO membranes with advanced silica contamination.
  • a chloramine compound produced by a reaction between an NH 2 -based compound and hypochlorous acid (salt) exhibits a cleaning effect as an active ingredient.
  • compounds having a primary amino group include aliphatic amines, aromatic amines, sulfamic acids, sulfanilic acids, sulfamoylbenzoic acids, amino acids, and the like.
  • ammonium salts include ammonium chloride and ammonium sulfate. These may be used alone or in combination of two or more.
  • sulfamic acid (NH 2 SO 2 OH) is preferable.
  • monochlororosulfamine is produced using sulfamic acid, it becomes a stable chloramine compound. Since sulfamic acid does not contain carbon, it does not increase the TOC value of the cleaning agent.
  • Hypochlorite of hypochlorous acid (salt) to be reacted with NH 2 -based compounds includes alkali metal salts of hypochlorous acid such as sodium hypochlorite and hypochlorous acid such as calcium hypochlorite.
  • alkali metal salts of hypochlorous acid such as sodium hypochlorite
  • hypochlorous acid such as calcium hypochlorite.
  • Alkaline earth metal salts can be used. These may be used alone or in combination of two or more.
  • Cl 2 / N which is the molar ratio between the NH 2 -based compound-derived nitrogen atom N, is a Cl 2 / N molar ratio of 0.1 to 0.9, particularly 0.2 to 0.7, especially 0.3 to It is preferable to use it so that it may become 0.5 from the point of the production
  • the amount of chloramine compound in the cleaning agent that is, the amount of bound chlorine is based on the amount of hypochlorous acid (salt).
  • the alkaline agent used in the cleaning agent of the present invention is for maintaining the solubility of the chloramine compound in an aqueous solution.
  • alkali agent alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used. These may be used alone or in combination of two or more.
  • the alkaline agent is preferably used in a molar ratio of 1 to 2 times with respect to the NH 2 -based compound so that the pH of the cleaning solution is 11 or more, preferably 12 to 13. .
  • the cleaning agent of the present invention may contain a surfactant.
  • a surfactant By including the surfactant, the effect of washing and removing organic substances can be enhanced.
  • the surfactant those having a molecular weight of 1000 or less are preferable from the viewpoint of cleaning effect.
  • a surfactant having an excessively high molecular weight may not only provide a cleaning effect, but may contaminate the membrane.
  • Surfactants include alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, anionic surfactants such as alkyl sulfates such as sodium dodecyl sulfate and sodium lauryl sulfate, and polyalkylene glycol monoalkyl ethers such as diethylene glycol monomethyl ether. 1 type, or 2 or more types, such as a nonionic surfactant, can be used. Among these, an anionic surfactant is particularly preferable in terms of dispersion effect.
  • surfactants that can be mixed with a high-concentration NH 2 -based compound to form a single agent and those that precipitate in the presence of a high-concentration NH 2 -based compound.
  • sodium dodecyl sulfate can be mixed with a relatively high concentration of NH 2 -based compound, and thus is particularly preferable as a surfactant used in the cleaning agent of the present invention.
  • the concentration of NH 2 compound and hypochlorous acid in the cleaning agent (salt), combined chlorine concentration of the cleaning liquid below obtained by diluting the cleaning agent may be a concentration such that the preferred concentration described later .
  • the concentration of NH 2 -based compound and hypochlorous acid (salt) in the cleaning agent is 0.1 to 0.00 as the concentration of bound chlorine generated by the reaction of the NH 2 -based compound and hypochlorous acid (salt). It is prepared to be 9M, particularly 0.2 to 0.7M.
  • the concentration of the surfactant in the cleaning agent is appropriately determined depending on the type and contaminants of the cellulose acetate RO membrane to be cleaned.
  • the surfactant is used in an amount of about 0.03 to 0.3% by weight, particularly about 0.1 to 0.2% by weight, based on organic contaminants such as oil.
  • the cellulose acetate RO membrane cleaning solution of the present invention is prepared by diluting the above-mentioned cleaning agent with water and adding an acid to adjust the pH to 3 to 8.5.
  • one or more inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid can be used.
  • the pH of the cleaning liquid of the present invention is higher than 8.5, the cellulose acetate RO membrane having low alkali resistance may be deteriorated. If the pH of the cleaning liquid is too low, bound chlorine is likely to be decomposed and the cleaning effect may be reduced.
  • the preferred pH of the cleaning liquid is 4.0 to 7.0.
  • the cleaning liquid of the present invention has a combined chlorine concentration of 0.01 to 0.14 M, particularly 0.02 generated by the reaction of NH 2 -based compound and hypochlorous acid (salt) by diluting the cleaning agent. It is preferable to adjust so as to be ⁇ 0.07M. When the combined chlorine concentration is less than 0.01M, it is not possible to obtain a sufficient cleaning effect, particularly silica cleaning and removing effect. If the combined chlorine concentration exceeds 0.14M, the cellulose acetate RO membrane may be deteriorated.
  • the cleaning agent of the present invention is prepared by adding an NH 2 compound such as sulfamic acid to the aqueous solution of the alkali agent described above and dissolving it, and adding hypochlorous acid (salt) to the resulting NH 2 compound aqueous solution. And mixing.
  • the amount of water in the aqueous alkali agent solution is preferably 50 to 90% by weight.
  • the surfactant may be added in any of the cleaning agent preparation steps.
  • the surfactant may be previously contained in the aqueous solution of the alkali agent.
  • the surfactant may be added when hypochlorous acid (salt) is added to the NH 2 -based compound aqueous solution, or may be added before or after the addition of hypochlorous acid (salt). Preferably, the surfactant is added after the addition of hypochlorous acid (salt).
  • a compound having a primary amino group such as sulfamic acid may be added in the form of a salt.
  • the salt include those that are soluble in an alkaline aqueous solution, and sodium sulfamate, potassium sulfamate, ammonium sulfamate, and the like can be used.
  • the NH 2 -based compound can be added in a powder state or in an aqueous solution state. When using a sulfamate as the NH 2 -based compound, the amount of alkali metal contained in the sulfamate is added as an alkali. When an aqueous solution of NH 2 -based compound is used, the amount of water contained in the aqueous solution is added as the amount of water in the alkaline aqueous solution.
  • Hypochlorous acid (salt) is preferably added as an aqueous solution having an effective chlorine (Cl 2 ) concentration of 5 to 20 wt%, preferably 10 to 15 wt%. Hypochlorous acid (salt) is added so that the ratio of the NH 2 -based compound and hypochlorous acid (salt) is the aforementioned Cl 2 / N molar ratio. Thereby, there is no generation
  • the cleaning liquid of the present invention is manufactured by diluting the cleaning agent of the present invention thus manufactured with water, preferably pure water, and adding an acid to adjust to a predetermined pH.
  • chelating agents such as EDTA (ethylenediaminetetraacetic acid), EGTA (ethyleneglycolbis (aminoethylether) tetraacetic acid), IDA (iminodiacetic acid), etc. in order to enhance the peeling effect of membrane contaminants
  • chelating agents such as EDTA (ethylenediaminetetraacetic acid), EGTA (ethyleneglycolbis (aminoethylether) tetraacetic acid), IDA (iminodiacetic acid), etc.
  • EDTA ethylenediaminetetraacetic acid
  • EGTA ethyleneglycolbis (aminoethylether) tetraacetic acid
  • IDA iminodiacetic acid
  • a polyol compound having a molecular weight of 1000 or less preferably a molecular weight of 60 to 1000
  • the cleaning effect can be further enhanced by the action of penetration into the RO membrane and dissolution of contaminants.
  • the molecular weight of the polyol compound exceeds 1000, there is a possibility that it contributes to permeable membrane contamination such as RO membrane.
  • the polyol compound having a molecular weight of 1000 or less for example, ethylene glycol, propylene glycol, polyethylene glycol (degree of polymerization 2 to 22) and the like can be used. These polyol compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • Such a polyol compound may be added to the cleaning agent or cleaning liquid of the present invention, or may be added to the following acid aqueous solution.
  • the membrane may be cleaned with another cleaning solution before and after the cellulose acetate RO membrane is cleaned with the cleaning solution of the present invention.
  • the cleaning effect can be further enhanced by combining film cleaning with other cleaning liquids.
  • an aqueous solution containing one or more acids such as hydrochloric acid, nitric acid, citric acid and oxalic acid can be used.
  • the pH of the aqueous acid solution is preferably pH 4 or less, particularly pH 1 to 3 from the viewpoint of cleaning effect and handleability.
  • organic contaminants may be previously cleaned and removed with a surfactant or the like.
  • the method for cleaning the cellulose acetate RO membrane using the cleaning liquid of the present invention is not particularly limited as long as the cellulose acetate RO membrane is brought into contact with the cleaning liquid.
  • immersion cleaning is performed by introducing a cleaning liquid into the raw water side of the cellulose acetate RO membrane module and allowing it to stand.
  • the immersion cleaning time with the cleaning liquid of the present invention and other cleaning liquids is not particularly limited as long as the desired film performance recovery rate can be obtained, but is usually about 2 to 24 hours.
  • hypochlorite sodium hypochlorite (NaClO, effective chlorine concentration 10%, manufactured by Sigma-Aldrich) was used.
  • a cleaning agent was prepared by mixing sulfamic acid, sodium hypochlorite, 48% sodium hydroxide and water in a weight ratio of 18: 50: 23: 9. This cleaning agent has a Cl 2 / N molar ratio of 0.46, sodium hydroxide is 1.5 molar times that of sulfamic acid, and pH is 13.
  • This cleaning agent was diluted 12.5 times with water and the pH was adjusted to 6.5 with hydrochloric acid to prepare a cleaning solution having a combined chlorine concentration of 0.07M.
  • the pH 6.5 cleaning solution is somewhat stable for the first 5 days as compared with the cleaning agent stock solution. I understand. This shows that it is desirable to store in the state of a cleaning agent (stock solution) rather than a diluted cleaning solution.
  • washing experiment I As the contaminated cellulose acetate RO membrane, the cellulose triacetate (CTA) -RO hollow fiber membrane (hereinafter referred to as “contaminated CTA-RO membrane”) manufactured by Toyobo used for seawater desalination treatment. .) was used.
  • CTA-RO membrane the cellulose triacetate (CTA) -RO hollow fiber membrane
  • Example I-1 25 g of the finely cut contaminated CTA-RO membrane was immersed in a beaker filled with 500 mL of pure water and stirred with a stirrer for 16 hours to perform washing with pure water. Thereafter, the CTA-RO membrane taken out from the beaker was immersed in a beaker filled with 500 mL of 0.01 M hydrochloric acid aqueous solution (pH 2), and stirred for 16 hours with a stirrer to perform acid cleaning. Subsequently, the cleaning agent prepared in Experimental Example 1 was diluted with pure water so that the combined chlorine concentration was 0.01 M, and the cleaning solution prepared to have a pH of 5.5 to 6.5 with concentrated hydrochloric acid (hereinafter “cleaning solution”). The CTA-RO membrane after acid cleaning was immersed in a beaker filled with 500 mL of “I”.) And stirred with a stirrer for 16 hours to perform cleaning with the cleaning liquid of the present invention.
  • cleaning solution the cleaning solution prepared to have a pH of 5.5
  • Example I-2 A washing experiment was conducted in the same manner as in Example I-1 except that the washing agent prepared in Experimental Example 1 was diluted to have a combined chlorine concentration of 0.03 M as the washing solution. I investigated. About this washing
  • Example I-3 A washing experiment was carried out in the same manner as in Example I-1, except that the washing agent prepared in Experimental Example 1 was diluted to have a combined chlorine concentration of 0.07M. The elution concentration of the inorganic component was analyzed.
  • Example I-1 A washing experiment was conducted in the same manner as in Example I-1 except that pure water was used in place of the washing liquid I, and the elution TOC concentration and inorganic components were similarly analyzed.
  • Example I-2 A cleaning experiment was performed in the same manner as in Example I-1 except that a NaClO aqueous solution (pH 7.0) having a free chlorine concentration of 5 mg / L was used in place of the cleaning liquid I, and the TOC value and inorganic components were similarly analyzed. It was. The pH of the NaClO aqueous solution was adjusted with concentrated hydrochloric acid, and the free chlorine concentration was measured by the DPD method.
  • the organic contaminants in the CTA-RO membrane can be efficiently decomposed and removed when the concentration of combined chlorine contained in the cleaning liquid is 0.01 M or more, particularly 0.03 M or more. It can be seen that even though cleaning with NaClO is effective for organic substances, silica and inorganic components are almost the same as cleaning with pure water and are not effective. When the combined chlorine concentration is 0.01M, the effect of removing organic pollutants is almost the same as in the case of pure water, but an extraordinary effect is obtained that the cleaning effect on silica is excellent.
  • RO membrane supply water is supplied from the pipe 11 to the raw water chamber 1A below the flat membrane cell 2 in which the RO membrane (membrane area 8 cm 2 ) of the sealed container 1 is set by the high pressure pump 4.
  • the sealed container 1 is composed of a lower case 1a on the raw water chamber 1A side and an upper case 1b on the permeate water chamber 1B side, and a flat membrane is interposed between the lower case 1a and the upper case 1b.
  • the cell 2 is fixed via an O-ring 8.
  • the flat membrane cell 2 is configured such that the permeate side of the RO membrane 2A is supported by the porous support plate 2B.
  • the raw water chamber 1 ⁇ / b> A below the flat membrane cell 2 is stirred by rotating the stirring bar 5 with a stirrer 3.
  • the RO membrane permeated water is taken out from the pipe 12 through the permeated water chamber 1B on the upper side of the flat membrane cell 2.
  • the concentrated water is taken out from the pipe 13.
  • the pressure in the sealed container 1 is adjusted by a pressure gauge 6 provided in the water supply pipe 11 and a pressure adjustment valve 7 provided in the concentrated water outlet pipe 13.
  • sodium dodecyl sulfate SDS, manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium dodecylbenzene sulfate SDBS, manufactured by Wako Pure Chemical Industries, Ltd.
  • the pure water flux measurement conditions were a supply water flow rate of 1 mL / min, a pressure of 0.75 MPa, a water temperature of 25 ° C., and the recovery rate, flux, and flux ratio were determined by the following equations.
  • guar gum 1 mg / L and fulvic acid 1 mg / L are mixed in an aqueous solution containing 10 mg / L calcium, 30 mg / L silica and 0.05 mg / L aluminum.
  • the prepared simulated contaminated water was passed through the flat membrane test apparatus.
  • the water flow conditions were a supply water flow rate of 0.7 mL / min, a recovery rate of 80%, a water temperature of 25 ° C., a pH of 6.5, and a water flow time of 250 hours.
  • the RO membrane was rinsed by passing pure water at 2.5 mL / min for 2 hours under pressure release conditions, and the pure water flux after contamination was measured.
  • washing was performed according to the following procedure. First, a surfactant aqueous solution containing 0.15% by weight SDBS as a cleaning solution was passed for 1 hour at 2.5 mL / min under pressure release conditions. Thereafter, the water pump was stopped and the RO membrane was immersed in the cleaning solution for 16 hours. After immersion, the RO membrane was rinsed by passing pure water at 2.5 mL / min for 2 hours under pressure release conditions, and the pure water flux after washing was measured.
  • Comparative Example II-3 Cleaning was performed in the same manner as in Comparative Example II-1 except that a surfactant aqueous solution containing 0.15 wt% SDS was used as the cleaning liquid, and the pure water flux after the cleaning was measured.
  • Example II-1 Cleaning was performed in the same manner as in Comparative Example II-1 except that the cleaning liquid having a combined chlorine concentration of 0.07M prepared by the method described in Example I-3 was used as the cleaning liquid, and the pure water flux after cleaning was measured. did.
  • Example II-2 As a cleaning solution, after the cleaning agent is diluted by the method described in Example I-3, an aqueous surfactant solution containing SDS is added, so that the combined chlorine concentration is 0.01 M and the SDS concentration is 0.15 wt%. Cleaning was performed in the same manner as in Comparative Example II-1 except that the cleaning liquid adjusted as described above was used, and the pure water flux after cleaning was measured.
  • Table 2 shows the cleaning results of Comparative Examples II-1 to II-3 and Examples II-1 and II-2.
  • the flux ratio is recovered when the cleaning liquid of the present invention is used, or when the cleaning liquid of the present invention further containing a surfactant is used, rather than the case of cleaning with a surfactant aqueous solution or NaClO aqueous solution. It can be seen that the cellulose acetate RO membrane can be effectively cleaned according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Detergent Compositions (AREA)

Abstract

 水処理分野で使用された酢酸セルロース系RO膜が、有機物や無機物で汚染され、透過水量や脱塩率などの性能が低下した際に、従来の洗浄剤では十分に除去できない汚染物質を、膜劣化を防止して効果的に剥離除去し、その性能を回復させることができる洗浄液を提供する。1級アミノ基を有する化合物、アンモニア及びアンモニウム塩よりなる群から選ばれる1種又は2種以上と、次亜塩素酸及び/又は次亜塩素酸塩と、アルカリ剤とを混合することにより得られた、pH11以上の水溶液よりなる酢酸セルロース系逆浸透膜の洗浄剤。この洗浄剤を、水で希釈し、酸を混合して、pH3以上8.5以下の水溶液に調整して酢酸セルロース系逆浸透膜の洗浄に用いる。

Description

酢酸セルロース系逆浸透膜の洗浄剤及び洗浄液
 本発明は、水処理分野で使用される酢酸セルロース系逆浸透(RO)膜が、有機物や無機物で汚染され、透過水量や脱塩率などの性能が低下した際に、その性能を効果的に回復させる洗浄剤及び洗浄液に関する。
 RO膜システムによる分離、精製は、蒸発や電気透析を用いたシステムに対して省エネルギープロセスであり、海水、かん水の淡水化や、工業用水及び超純水の製造、排水回収などに広く用いられている。RO膜が汚染されると性能が低下するため、定期的に洗浄を行って性能を回復させる。そのためのより有効な洗浄剤、洗浄プロセスの開発が望まれている。
 RO膜の洗浄剤としては、膜汚染物質の性質に応じて、酸(シュウ酸、クエン酸など)、アルカリ(水酸化ナトリウムなど)、界面活性剤、キレート剤(EDTAなど)、塩素剤、酵素含有洗剤などが挙げられる(非特許文献1)。
 現在用いられているRO膜の材質は、芳香族ポリアミド系と酢酸セルロース系に大別される。芳香族ポリアミド系RO膜は、塩素に対する耐性が低いため、塩素剤による膜洗浄が行えない。酢酸セルロース系RO膜は、芳香族ポリアミド系RO膜よりも塩素に対する耐性が高い。三酢酸セルロース製のRO膜は、短時間であれば塩素濃度5mg/Lの条件でも耐性を有する(非特許文献2)。
 酢酸セルロース系RO膜はアルカリに対する耐性が低いため、pH9以上のアルカリ条件での洗浄が行えない。酢酸セルロース系RO膜の洗浄には、膜劣化を引き起こすアルカリ剤を使用することができないため、アルカリ性条件による洗浄でないと十分に除去できないシリカスケールなどによる膜汚染に対しては、有効な洗浄剤が見出されていない。
 特許文献1には、次亜塩素酸塩とスルファミン酸からなる膜分離用スライム防止剤及び膜分離方法が開示されている。特許文献1のスライム防止剤はpH12以上で安定であり、実施例では硫酸を用いてpH調整し、pH5.5で適用される。特許文献2には、次亜塩素酸塩とスルファミン酸を膜のスライムコントロール剤として添加することが記載されている。
 特許文献1,2では、主として対象とする逆浸透膜の素材はポリアミド膜であり、酢酸セルロース系RO膜に適用することについての記載はない。特許文献1,2には、有機汚染物質であるスライムに対する剥離効果については記載があるが、膜面に付着したシリカに対する洗浄効果については記載がない。
特開2006-263510号公報 特開2010-201312号公報
「膜処理技術大系 (上巻)」(フジ・テクノシステム発行、1991)p836 http://www.toyobo.co.jp/seihin/h2/mb/tokucho.htm
 本発明は、水処理分野で使用された酢酸セルロース系RO膜が、有機物や無機物で汚染され、透過水量や脱塩率などの性能が低下した際に、従来の洗浄剤では十分に除去できない汚染物質、特にシリカを、膜劣化を防止して効果的に剥離除去し、その性能を回復させることができる洗浄剤及び洗浄液を提供することを目的とする。
 本発明者は、スルファミン酸等のNH系化合物と次亜塩素酸塩とアルカリ剤を混合して得られた、結合塩素剤からなるアルカリ性の洗浄剤を、希釈してpH8.5以下の水溶液とすることで、アルカリ剤による洗浄が行えない酢酸セルロース系RO膜であっても、有機物や無機物を効果的に除去することができ、洗浄液として良好な洗浄効果が得られることを見出した。本発明者はまた、こうした洗浄効果は、次亜塩素酸塩のみを用いた洗浄では得ることができず、本発明の洗浄液によれば、酢酸セルロース系RO膜の劣化を引き起こすことなくシリカを効果的に洗浄除去することができ、洗浄後も十分な脱塩率を維持することができることを見出した。
 本発明は、以下を要旨とする。
[1] 1級アミノ基を有する化合物、アンモニア及びアンモニウム塩よりなる群から選ばれる1種又は2種以上(以下「NH系化合物」と称す。)と、次亜塩素酸及び/又は次亜塩素酸塩(以下「次亜塩素酸(塩)」と称す。)と、アルカリ剤とを混合することにより得られた、pH11以上の水溶液よりなることを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
[2] [1]において、前記NH系化合物と次亜塩素酸(塩)とを、Cl/Nモル比が0.1~0.9となるように混合し、NH系化合物に対しアルカリ剤をモル比で1~2倍混合してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
[3] [1]又は[2]において、更に界面活性剤を含むことを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
[4] [1]ないし[3]のいずれかに記載の洗浄剤を水で希釈し、酸を混合して、pH3以上8.5以下の水溶液に調整してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
[5] [4]において、前記洗浄液の結合塩素濃度が0.01~0.14Mであることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
[6] [4]又は[5]において、前記洗浄剤に、更に界面活性剤を添加してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
[7] [4]ないし[6]のいずれかにおいて、前記酢酸セルロース系逆浸透膜に付着したシリカを除去するための洗浄液であることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
[8] [7]において、前記酢酸セルロース系逆浸透膜が、海水又はかん水を処理することによりシリカが付着した酢酸セルロース系逆浸透膜であることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
 本発明によれば、水処理分野で使用された酢酸セルロース系RO膜が、有機物や無機物で汚染され、透過水量や脱塩率などの性能が低下した際に、従来の洗浄剤では十分に除去できない汚染物質を、膜劣化を防止して効果的に剥離除去し、その性能を回復させることができる。本発明は特に、海水又はかん水を処理することによりシリカが付着した酢酸セルロース系RO膜からシリカを除去するための洗浄に好適に適用される。
実験例1の結果を示すグラフである。 実施例I-1~3及び比較例I-1,2の結果を示すグラフである。 図3aは、洗浄実験IIで用いた平膜試験装置の構成を示す模式図である。図3bは、この平膜試験装置の密閉容器の構造を示す断面図である。
 以下に本発明の実施の形態を詳細に説明する。
 本発明の酢酸セルロース系RO膜の洗浄剤は、1級アミノ基を有する化合物、アンモニア及びアンモニウム塩よりなる群から選ばれる1種又は2種以上(以下「NH系化合物」と称す。)と、次亜塩素酸及び/又は次亜塩素酸塩(以下「次亜塩素酸(塩)」と称す。)と、アルカリ剤とを混合することにより得られたpH11以上の水溶液よりなるものである。本発明の酢酸セルロース系RO膜の洗浄液は、この洗浄剤を水で希釈し、酸を混合して、pH3以上8.5以下の水溶液に調整してなるものである。「洗浄剤」と「洗浄液」とは区別される。
[酢酸セルロース系RO膜]
 本発明で洗浄対象とするRO膜は、アルカリ耐性が低いために、アルカリ洗浄でシリカを除去することができない酢酸セルロース系RO膜である。海水、河川水は、下記表1に示すような成分を含む。このような水の処理に使用された酢酸セルロース系RO膜は、有機汚染物質のみならず、シリカ等の無機汚染物質が付着してその性能が低下する。本発明はこのような有機汚染物質及び無機汚染物質、特にシリカ汚染の進行した酢酸セルロース系RO膜の洗浄に有効である。
Figure JPOXMLDOC01-appb-T000001
[酢酸セルロース系RO膜の洗浄剤]
 本発明の洗浄剤では、NH系化合物と次亜塩素酸(塩)との反応で生成するクロラミン化合物が有効成分として洗浄効果を発揮する。クロラミン化合物を生成させるためのNH系化合物のうち、1級アミノ基を有する化合物としては、脂肪族アミン、芳香族アミン、スルファミン酸、スルファニル酸、スルファモイル安息香酸、アミノ酸などが挙げられる。アンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのNH系化合物の中でもスルファミン酸(NHSOOH)が好ましい。スルファミン酸を用いてモノクロロスルファミンを生成させると安定なクロラミン化合物となる。スルファミン酸は、炭素を含まないため洗浄剤のTOC値を増加させない。
 NH系化合物と反応させる次亜塩素酸(塩)の次亜塩素酸塩としては、次亜塩素酸ナトリウム等の次亜塩素酸のアルカリ金属塩、次亜塩素酸カルシウム等の次亜塩素酸のアルカリ土類金属塩等を用いることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 NH系化合物と次亜塩素酸(塩)を混合してクロラミン化合物を生成させる場合、NH系化合物と次亜塩素酸(塩)とは、次亜塩素酸(塩)由来の有効塩素(Cl)と、NH系化合物由来の窒素原子Nとのモル比であるCl/Nモル比が、0.1~0.9、特に0.2~0.7、とりわけ0.3~0.5となるように用いることが、クロラミン化合物の生成効率と安定性の点において好ましい。
 Cl/Nモル比が上記上限よりも大きいと遊離塩素が生成する可能性がある。Cl/Nモル比が上記下限よりも小さいと使用したNH系化合物に対してクロラミンの生成効率が低くなる。
 洗浄剤中のクロラミン化合物量、即ち、結合塩素量は、次亜塩素酸(塩)の量が基準となる。
 本発明の洗浄剤に用いるアルカリ剤は、クロラミン化合物の水溶液中における可溶性を維持するためのものである。アルカリ剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物を用いることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 アルカリ剤は、クロラミン化合物の可溶性を維持するために、洗浄剤水溶液のpHが11以上、好ましくは12~13となるように、NH系化合物に対しモル比で1~2倍用いることが好ましい。
 本発明の洗浄剤は界面活性剤を含むものであってもよい。界面活性剤を含むことにより、有機物の洗浄除去効果を高めることができる。界面活性剤としては、洗浄効果の面から、分子量1000以下のものが好ましい。分子量が過度に大きい界面活性剤では洗浄効果が得られないだけでなく、膜を汚染する場合がある。
 界面活性剤としては、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等のアルキル硫酸塩といったアニオン系界面活性剤、ジエチレングリコールモノメチルエーテルなどのポリアルキレングリコールモノアルキルエーテルのようなノニオン系界面活性剤などの1種又は2種以上を用いることができる。これらのうち、特に分散効果の面でアニオン系界面活性剤が好ましい。
 界面活性剤の中には、高濃度NH系化合物と混合して一剤化しても問題のないものと、高濃度NH系化合物の存在下では析出してしまうものとがある。NH系化合物として、スルファミン酸を用いる場合、ドデシル硫酸ナトリウムは比較的高濃度のNH系化合物と混在できるため、本発明の洗浄剤に用いられる界面活性剤として特に好ましい。
 洗浄剤中のNH系化合物及び次亜塩素酸(塩)の濃度については、洗浄剤を希釈して得られる後述の洗浄液の結合塩素濃度が後述の好適濃度となるような濃度であればよい。通常、洗浄剤中のNH系化合物及び次亜塩素酸(塩)の濃度は、NH系化合物と次亜塩素酸(塩)との反応で生成した結合塩素濃度として0.1~0.9M、特に0.2~0.7Mとなるように調製される。
 洗浄剤中の界面活性剤の濃度は、その種類や洗浄対象の酢酸セルロース系RO膜の汚染物質等により適宜決定される。特に制限はないが、界面活性剤は、油分などの有機汚染物質に対して0.03~0.3重量%、特に0.1~0.2重量%程度用いられる。
[洗浄液]
 本発明の酢酸セルロース系RO膜の洗浄液は、上記の洗浄剤を水で希釈すると共に、酸を添加してpH3~8.5に調整してなるものである。
 酸としては、塩酸、硫酸、硝酸等の無機酸の1種又は2種以上を用いることができる。
 本発明の洗浄液のpHが8.5より高いとアルカリ耐性の低い酢酸セルロース系RO膜を劣化させるおそれがある。洗浄液のpHが低過ぎると、結合塩素が分解されやすくなり、洗浄効果が低下するおそれがある。洗浄液の好ましいpHは4.0~7.0である。
 本発明の洗浄液は、上記の洗浄剤を希釈することにより、NH系化合物と次亜塩素酸(塩)との反応で生成した結合塩素濃度が0.01~0.14M、特に0.02~0.07Mとなるように調整することが好ましい。この結合塩素濃度が0.01M未満では、十分な洗浄効果、特にシリカの洗浄除去効果を得ることができない。結合塩素濃度が0.14Mを超えると酢酸セルロース系RO膜の劣化を引き起こす可能性がある。
<洗浄剤及び洗浄液の製造方法>
 本発明の洗浄剤は、例えば、前述のアルカリ剤の水溶液にスルファミン酸等のNH系化合物を添加して溶解し、得られたNH系化合物水溶液に、次亜塩素酸(塩)を添加して混合することにより調製する。上記アルカリ剤の水溶液は、水の量を50~90重量%とすることが好ましい。洗浄剤に界面活性剤を混合使用する場合、界面活性剤は、洗浄剤の調製工程のうち、いずれの工程で添加してもよい。界面活性剤は、アルカリ剤の水溶液に予め含まれていてもよい。界面活性剤は、NH系化合物水溶液に次亜塩素酸(塩)を添加する際に添加してもよく、次亜塩素酸(塩)の添加の前後で添加してもよい。好ましくは、界面活性剤は次亜塩素酸(塩)の添加の後に添加される。
 スルファミン酸等の1級アミノ基を有する化合物は、塩の形で添加してもよい。この塩としては、アルカリ水溶液としたときに可溶性のものが挙げられ、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸アンモニウム等を用いることができる。NH系化合物は、粉末状態で、あるいは水溶液の状態で添加することができる。NH系化合物としてスルファミン酸塩を用いる場合、スルファミン酸塩に含まれるアルカリ金属の量は、アルカリとして加算される。NH系化合物の水溶液を用いる場合は、水溶液に含まれる水の量は、前記アルカリ水溶液の水の量として加算される。
 次亜塩素酸(塩)は、有効塩素(Cl)濃度として5~20重量%、好ましくは10~15重量%の水溶液として添加するのが好ましい。次亜塩素酸(塩)は、NH系化合物と次亜塩素酸(塩)との割合が、前述のCl/Nモル比となるように添加される。これにより発泡や塩素臭の発生はなく、反応性、安定性、取扱性、無塩素臭等に優れた水溶液製剤からなる本発明の洗浄剤を効率よく製造することができる。次亜塩素酸(塩)は徐々に添加して混合するのが好ましい。
 本発明の洗浄液は、このようにして製造された本発明の洗浄剤を水、好ましくは純水で希釈すると共に、酸を添加して所定のpHとなるように調整することで製造される。
<その他の洗浄剤成分>
 本発明で用いる洗浄剤又は洗浄液には、その洗浄効果を損なわない範囲において、他の洗浄剤成分を添加してもよい。
 例えば、膜汚染物質の剥離効果を高めるために、EDTA(エチレンジアミン四酢酸)、EGTA(エチレングリコールビス(アミノエチルエーテル)四酢酸)、IDA(イミノ二酢酸)等のキレート剤などの他の洗浄剤成分の1種又は2種以上を添加してもよい。
 分子量1000以下、好ましくは分子量60~1000のポリオール化合物を併用することにより、RO膜への浸透と汚染物質の溶解の作用で更に洗浄効果を高めることができる。ポリオール化合物の分子量が1000を超えるとRO膜等の透過膜汚染に寄与する可能性がある。分子量1000以下のポリオール化合物としては、例えばエチレングリコール、プロピレングリコール、ポリエチレングリコール(重合度2~22)等を用いることができる。これらのポリオール化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 このようなポリオール化合物は、本発明の洗浄剤又は洗浄液に添加してもよく、以下の酸水溶液に添加して用いてもよい。
 本発明の洗浄液による酢酸セルロース系RO膜の洗浄に前後して、他の洗浄液による膜洗浄を行ってもよい。他の洗浄液による膜洗浄を組み合わせることにより洗浄効果をより一層高めることができる。
 本発明の洗浄液による洗浄に先立ち、炭酸カルシウム等のスケールや鉄等の金属コロイド除去に有効な酸洗浄を行うことが好ましい。酸洗浄には、塩酸、硝酸、クエン酸、シュウ酸などの酸の1種又は2種以上を含む水溶液を用いることができる。酸水溶液のpHは、洗浄効果と取り扱い性の面から、pH4以下、特にpH1~3であることが好ましい。本発明の洗浄液による洗浄に先立ち、界面活性剤等で、予め有機汚染物質を洗浄除去してもよい。このような酸洗浄等でスケール成分や有機汚染物質等を除去した後に本発明の洗浄液により洗浄を行うと、膜劣化をより確実に防止して効果的な洗浄を行える。
<洗浄方法>
 本発明の洗浄液を用いて酢酸セルロース系RO膜を洗浄する方法としては、この洗浄液に酢酸セルロース系RO膜を接触させればよく、特に制限はない。通常、酢酸セルロース系RO膜モジュールの原水側に洗浄液を導入して静置する浸漬洗浄が行われる。
 本発明の洗浄液による洗浄の前後で、前述の酸水溶液等の他の洗浄液を用いて洗浄を行う場合も、通常の場合、上記と同様の浸漬洗浄が採用される。
 本発明の洗浄液、その他の洗浄液による浸漬洗浄時間には特に制限はなく、目的とする膜性能の回復率が得られる程度であればよいが、通常2~24時間程度である。
 上記の洗浄液による洗浄後は、通常、純水等の高純度水を通水して仕上げ洗浄を行う。その後、酢酸セルロース系RO膜システムの運転を再開する。
 以下に、実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。
 以下において、NH系化合物としてはスルファミン酸(和光純薬製)を用いた。次亜塩素酸塩としては次亜塩素酸ナトリウム(NaClO、有効塩素濃度10%、シグマアルドリッチ社製)を用いた。
[実験例1]
 スルファミン酸、次亜塩素酸ナトリウム、48%水酸化ナトリウム、水を重量比で18:50:23:9の割合で混合して、洗浄剤を調製した。この洗浄剤のCl/Nモル比は0.46で、水酸化ナトリウムはスルファミン酸に対して1.5モル倍であり、pHは13である。
 この洗浄剤を水で12.5倍に希釈し、塩酸でpHを6.5に調整して、結合塩素濃度0.07Mの洗浄液を調製した。
 上記の洗浄剤と洗浄液をそれぞれ60℃に保管して、全残留塩素濃度をDPD法で測定し、全残留塩素の残存率の経時変化を調べ、加速条件下での安定性を比較した。
 結果を図1に示す。
 図1より明らかなように、洗浄剤原液と比較して、pH6.5の洗浄液は、最初の5日間はある程度安定であるが、以降急激に全残留塩素の残存率が低下していることが分かる。このことから、希釈後の洗浄液ではなく、洗浄剤(原液)の状態で保管を行うことが望ましいことが分かる。
[洗浄実験I]
 洗浄実験Iにおいて、汚染酢酸セルロース系RO膜としては、海水の淡水化処理に使用した東洋紡製海淡用三酢酸セルロース(CTA)-RO中空糸膜(以下、「汚染CTA-RO膜」と称す。)を用いた。
<実施例I-1>
 汚染CTA-RO膜を細かく裁断したもの25gを500mLの純水を満たしたビーカーに浸漬させ、スターラーで16時間撹拌することで、純水による洗浄を行った。その後、ビーカーから取り出したCTA-RO膜を500mLの0.01M塩酸水溶液(pH2)を満たしたビーカーに浸漬し、スターラーで16時間撹拌することで、酸洗浄を行った。続いて、実験例1で調製した洗浄剤を結合塩素濃度が0.01Mになるよう純水で希釈し、濃塩酸でpHが5.5~6.5になるよう調製した洗浄液(以下「洗浄液I」と称す。)を500mL満たしたビーカーに、酸洗浄後のCTA-RO膜を浸漬し、スターラーで16時間撹拌することで、本発明の洗浄液による洗浄を行った。
 その後、洗浄液からCTA-RO膜を取り出し、DPD法により、洗浄に使用した洗浄液に含まれる全残留塩素量を求め、必要量の35%重亜流酸ナトリウム水溶液を加えることで、残留塩素を中和した。また、水酸化ナトリウム水溶液を加えて、洗浄液のpHを中性に合わせた。その後、この洗浄液をNo.5Aの濾紙、次いで、孔径0.45μmの親水性PTFE膜で濾過した。採取した濾液について、全有機炭素計(TOC)計で、溶出TOC濃度を測定し、その結果から洗浄効果を調べた。このTOC値が大きいほど、洗浄による溶出TOC濃度が高く、有機汚染物質の洗浄効果に優れることを示す。
 この濾液について、モリブデンブルー法(シリカ)、ペルオキソ二硫酸カリウム分解法(全リン、JIS-K-0101.43.3.1)、電気加熱原子吸光法(鉄、JIS-K-0101.60.3)、フレーム原子吸光法(カルシウム、JIS-K-0101.49.2)により無機成分の溶出濃度の分析を行った。
<実施例I-2>
 洗浄液として、実験例1で調製した洗浄剤を結合塩素濃度が0.03Mとなるように希釈したものを使用した他は、実施例I-1と同様に洗浄実験を行い、同様に溶出TOC濃度を調べた。この洗浄液について、シリンガルダジン法試験紙(アクアチェック3、日産化学社製)で測定した遊離塩素濃度は5mg/Lであった。
<実施例I-3>
 洗浄液として、実験例1で調製した洗浄剤を結合塩素濃度が0.07Mとなるよう希釈したものを使用した他は、実施例I-1と同様に洗浄実験を行い、同様に溶出TOC濃度と無機成分の溶出濃度の分析を行った。
<比較例I-1>
 洗浄液Iの代わりに純水を用いて洗浄した他は、実施例I-1と同様に洗浄実験を行い、同様に溶出TOC濃度と無機成分の分析を行った。
<比較例I-2>
 洗浄液Iの代わりに、遊離塩素濃度5mg/LのNaClO水溶液(pH7.0)を用いた他は、実施例I-1と同様に洗浄実験を行い、同様にTOC値と無機成分の分析を行った。NaClO水溶液のpHは濃塩酸で調整し、遊離塩素濃度はDPD法で測定した。
 実施例I-1~3及び比較例I-1,2の溶出TOC濃度の測定結果を図2aに示す。実施例I-1,3、比較例I-1,2の無機成分溶出濃度の測定結果を図2bに示す。
 図2a,2bより、洗浄液に含まれる結合塩素濃度が0.01M以上、特に0.03M以上であれば、CTA-RO膜の有機汚染物質を効率良く分解除去できることが分かる。NaClOによる洗浄は、有機物に対しては有効であっても、シリカや無機成分に対しては純水による洗浄と殆ど変わらず、効果的でないことが分かる。結合塩素濃度が0.01Mでは、有機汚染物質の除去効果は純水の場合と殆ど変わらないにも関わらず、シリカに対する洗浄効果には優れたものとなるという異質な効果が得られている。
 図2bより、本発明の洗浄液を用いれば、膜に付着したシリカを除去することができ、結合塩素の濃度をさらに増やせば、シリカの除去効果が高くなるだけでなく、リン、カルシウムといったその他の無機汚染物質も除去できることが分かる。NaClOによる洗浄は、シリカをわずかに除去できたのみで、純水による洗浄とほぼ変わらず、効果的でないことが分かる。
[洗浄実験II]
 洗浄実験IIでは、RO膜として、東レ社製酢酸セルロース系RO膜「SC-3200」を用い、図3a,3bに示す平膜試験装置を用いて洗浄効果を調べた。
 この平膜試験装置において、RO膜供給水は、配管11より高圧ポンプ4で、密閉容器1のRO膜(膜面積8cm)をセットした平膜セル2の下側の原水室1Aに供給される。図3bに示すように、密閉容器1は、原水室1A側の下ケース1aと、透過水室1B側の上ケース1bとで構成され、下ケース1aと上ケース1bとの間に、平膜セル2がOリング8を介して固定されている。平膜セル2はRO膜2Aの透過水側が多孔質支持板2Bで支持された構成とされている。平膜セル2の下側の原水室1A内はスターラー3で攪拌子5を回転させることにより攪拌される。RO膜透過水は平膜セル2の上側の透過水室1Bを経て配管12より取り出される。濃縮水は配管13より取り出される。密閉容器1内の圧力は、給水配管11に設けた圧力計6と、濃縮水取出配管13に設けた圧力調整バルブ7により調整される。
 界面活性剤として、ドデシル硫酸ナトリウム(SDS、和光純薬社製)、又はドデシルベンゼン硫酸ナトリウム(SDBS、和光純薬社製)を用いた。
 純水フラックス測定条件は、供給水流量1mL/min、圧力0.75MPa、水温25℃とし、回収率、フラックス、フラックス比は以下の式で求めた。
 回収率[%]=(透過水流量[mL/min]/供給水流量[mL/min])×100
 フラックス[m/(m・d)]=透過水流量[m/d]/膜面積[m]×温度換算係数[-]
 フラックス比[-]=汚染及び洗浄後の純水フラックス[m/(m・d)]/初期純水フラックス[m/(m・d)]
<比較例II-1>
 まず、RO膜の初期純水フラックスを測定した。その後、RO膜を有機物質と無機物質で汚染させるため、グアガム1mg/Lとフルボ酸1mg/Lをカルシウム10mg/L、シリカ30mg/L、アルミニウム0.05mg/Lの無機物を含む水溶液に混合して調製した模擬汚染水を平膜試験装置に通水した。通水条件は、供給水流量0.7mL/min、回収率80%、水温25℃、pH6.5、通水時間250時間とした。その後、圧力開放条件で純水を2.5mL/minで2時間通水することによりRO膜をリンスし、汚染後の純水フラックスを測定した。
 その後、以下の手順で洗浄を行った。
 まず、洗浄液として0.15重量%SDBSを含んだ界面活性剤水溶液を、圧力開放条件で2.5mL/minで1時間通水した。その後、通水ポンプを停止して、RO膜を洗浄液に16時間浸漬させた。浸漬後、圧力開放条件で純水を2.5mL/minで2時間通水することによりRO膜をリンスし、洗浄後の純水フラックスを測定した。
<比較例II-2>
 洗浄液として、遊離塩素濃度1mg/LのNaClO水溶液(pH6.5)を使用したこと以外は比較例II-1と同様に洗浄を行い、洗浄後の純水フラックスを測定した。
<比較例II-3>
 洗浄液として、0.15重量%SDSを含んだ界面活性剤水溶液を使用したこと以外は比較例II-1と同様に洗浄を行い、洗浄後の純水フラックスを測定した。
<実施例II-1>
 洗浄液として、実施例I-3に記載の方法で調製した結合塩素濃度が0.07Mの洗浄液を使用したこと以外は比較例II-1と同様に洗浄を行い、洗浄後の純水フラックスを測定した。
<実施例II-2>
 洗浄液として、実施例I-3に記載の方法で、洗浄剤を希釈した後、SDSを含んだ界面活性剤水溶液を加え、結合塩素濃度が0.01M、SDS濃度が0.15重量%となるように調整した洗浄液を用いたこと以外は比較例II-1と同様に洗浄を行い、洗浄後の純水フラックスを測定した。
 比較例II-1~3及び実施例II-1,2の洗浄結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、界面活性剤水溶液やNaClO水溶液で洗浄した場合よりも、本発明の洗浄液を使用した場合、あるいは更に界面活性剤を含む本発明の洗浄液で洗浄した場合の方が、フラックス比の回復率が大きく、本発明によれば効果的に酢酸セルロースRO膜を洗浄できることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年7月3日付で出願された日本特許出願2014-137735に基づいており、その全体が引用により援用される。
 1 容器
 2 平膜セル
 2A RO膜
 2B 多孔質支持板
 3 スターラー
 4 高圧ポンプ
 5 攪拌子
 6 圧力計
 7 圧力調整バルブ
 8 Oリング

Claims (8)

  1.  1級アミノ基を有する化合物、アンモニア及びアンモニウム塩よりなる群から選ばれる1種又は2種以上(以下「NH系化合物」と称す。)と、次亜塩素酸及び/又は次亜塩素酸塩(以下「次亜塩素酸(塩)」と称す。)と、アルカリ剤とを混合することにより得られた、pH11以上の水溶液よりなることを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
  2.  請求項1において、前記NH系化合物と次亜塩素酸(塩)とを、Cl/Nモル比が0.1~0.9となるように混合し、NH系化合物に対しアルカリ剤をモル比で1~2倍混合してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
  3.  請求項1又は2において、更に界面活性剤を含むことを特徴とする酢酸セルロース系逆浸透膜の洗浄剤。
  4.  請求項1ないし3のいずれか1項に記載の洗浄剤を水で希釈し、酸を混合して、pH3以上8.5以下の水溶液に調整してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
  5.  請求項4において、前記洗浄液の結合塩素濃度が0.01~0.14Mであることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
  6.  請求項4又は5において、前記洗浄剤に、更に界面活性剤を添加してなることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
  7.  請求項4ないし6のいずれか1項において、前記酢酸セルロース系逆浸透膜に付着したシリカを除去するための洗浄液であることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
  8.  請求項7において、前記酢酸セルロース系逆浸透膜が、海水又はかん水を処理することによりシリカが付着した酢酸セルロース系逆浸透膜であることを特徴とする酢酸セルロース系逆浸透膜の洗浄液。
PCT/JP2015/068786 2014-07-03 2015-06-30 酢酸セルロース系逆浸透膜の洗浄剤及び洗浄液 WO2016002758A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137735 2014-07-03
JP2014137735A JP5839087B1 (ja) 2014-07-03 2014-07-03 酢酸セルロース系逆浸透膜の洗浄液及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016002758A1 true WO2016002758A1 (ja) 2016-01-07

Family

ID=55019290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068786 WO2016002758A1 (ja) 2014-07-03 2015-06-30 酢酸セルロース系逆浸透膜の洗浄剤及び洗浄液

Country Status (2)

Country Link
JP (1) JP5839087B1 (ja)
WO (1) WO2016002758A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263510A (ja) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd 膜分離用スライム防止剤及び膜分離方法
JP2010063998A (ja) * 2008-09-10 2010-03-25 Japan Organo Co Ltd 分離膜用スライム防止剤組成物および膜分離方法
WO2011125762A1 (ja) * 2010-03-31 2011-10-13 栗田工業株式会社 結合塩素剤、その製造および使用方法
WO2012057188A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 造水方法および造水装置
WO2013179775A1 (ja) * 2012-05-30 2013-12-05 栗田工業株式会社 透過膜の洗浄剤及び洗浄方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263510A (ja) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd 膜分離用スライム防止剤及び膜分離方法
JP2010063998A (ja) * 2008-09-10 2010-03-25 Japan Organo Co Ltd 分離膜用スライム防止剤組成物および膜分離方法
WO2011125762A1 (ja) * 2010-03-31 2011-10-13 栗田工業株式会社 結合塩素剤、その製造および使用方法
WO2012057188A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 造水方法および造水装置
WO2013179775A1 (ja) * 2012-05-30 2013-12-05 栗田工業株式会社 透過膜の洗浄剤及び洗浄方法

Also Published As

Publication number Publication date
JP5839087B1 (ja) 2016-01-06
JP2016013528A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
TWI532525B (zh) 結合氯劑、其製造方法及使用方法
JP6090362B2 (ja) ポリアミド系逆浸透膜の洗浄液、および洗浄方法
JP6459512B2 (ja) 透過膜の洗浄方法
JP6364751B2 (ja) 芳香族ポリアミド系逆浸透膜の洗浄剤及び洗浄方法
JP5910696B1 (ja) 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
JP2012187468A (ja) 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜
JP2016128142A (ja) 半透膜の阻止率向上方法
JP6090378B2 (ja) 逆浸透膜用洗浄液、および洗浄方法
JP5772083B2 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP5839087B1 (ja) 酢酸セルロース系逆浸透膜の洗浄液及びその製造方法
WO2017017993A1 (ja) 逆浸透膜用洗浄剤、洗浄液、および洗浄方法
WO2023053504A1 (ja) 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法
JP7136385B1 (ja) 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814583

Country of ref document: EP

Kind code of ref document: A1