WO2016002597A1 - 保冷部材 - Google Patents

保冷部材 Download PDF

Info

Publication number
WO2016002597A1
WO2016002597A1 PCT/JP2015/068175 JP2015068175W WO2016002597A1 WO 2016002597 A1 WO2016002597 A1 WO 2016002597A1 JP 2015068175 W JP2015068175 W JP 2015068175W WO 2016002597 A1 WO2016002597 A1 WO 2016002597A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
storage material
heat storage
cold
cooled
Prior art date
Application number
PCT/JP2015/068175
Other languages
English (en)
French (fr)
Inventor
大治 澤田
夕香 内海
雄一 上村
別所 久徳
輝心 黄
山下 隆
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/322,469 priority Critical patent/US20170153054A1/en
Priority to JP2016531295A priority patent/JP6594870B2/ja
Publication of WO2016002597A1 publication Critical patent/WO2016002597A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • A45C11/20Lunch or picnic boxes or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G23/00Other table equipment
    • A47G23/02Glass or bottle holders
    • A47G23/0241Glass or bottle holders for bottles; Decanters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3876Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation insulating sleeves or jackets for cans, bottles, barrels, etc.
    • B65D81/3883Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation insulating sleeves or jackets for cans, bottles, barrels, etc. provided with liquid material between double walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3876Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation insulating sleeves or jackets for cans, bottles, barrels, etc.
    • B65D81/3886Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation insulating sleeves or jackets for cans, bottles, barrels, etc. formed of different materials, e.g. laminated or foam filling between walls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G23/00Other table equipment
    • A47G23/02Glass or bottle holders
    • A47G2023/0275Glass or bottle holders with means for keeping food cool or hot
    • A47G2023/0283Glass or bottle holders with means for keeping food cool or hot for one glass or cup
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08222Shape of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/083Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled
    • F25D2303/0831Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled the liquid is disposed in the space between the walls of the container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0843Position of the cold storage material in relationship to a product to be cooled on the side of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0846Position of the cold storage material in relationship to a product to be cooled around the neck of a bottle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/809Holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Definitions

  • the present invention relates to a cold insulation member, and more particularly, to a cold insulation member using a heat storage material. Furthermore, the present invention relates to a wine cooler that rapidly cools wine or the like to a desired temperature range and holds it in the desired temperature range.
  • a wine cooler is used to keep a beverage such as wine provided at a meal at a desired temperature.
  • a wine cooler is also used to maintain a desired temperature even when a beverage such as wine is sold over the counter.
  • Patent Document 1 since a conventional general wine cooler has water droplets attached to a wine bottle, it is necessary to remove the water droplets by wiping the bottle with a towel each time the bottle is taken out of the wine cooler to pour wine into a glass.
  • a technique aiming to provide a wine cooler having a simple structure, in which water droplets are less likely to adhere to a wine bottle, and the label of the wine bottle can be visually recognized.
  • a fixing means is provided on the inner wall of a cold insulation member composed of a cylindrical portion and a bottom surface portion, or a cold insulation member imitating bamboo, so that the cold insulation material can be detachably attached to the inside of the cold insulation member.
  • the wine is kept at an optimum temperature by being filled with cold air of a cold insulation material
  • the fixing means is a magnet, a hook-and-loop fastener, a step (rib) provided on the inner wall of the container, etc. It is described as a feature.
  • Patent Document 1 is intended to provide a wine cooler in which water droplets are less likely to adhere to a bottle and the bottle label can be visually recognized, and the wine bottle is brought to a desired temperature range within a desired time. No specific means for rapidly cooling and maintaining at a desired temperature range over a desired temperature is disclosed.
  • An object of the present invention is to provide a cold insulating member that can cool an object to be cooled to a desired temperature range.
  • a heat storage material for rapid cooling that rapidly cools the object to be cooled to a desired temperature range within a desired time; and a heat storage material storage part for rapid cooling that stores the heat storage material for rapid cooling, and is disposed in the periphery of the object to be cooled Quenching layer, A temperature holding heat storage material that holds the object to be cooled in the desired temperature zone for the desired time or more; and a temperature holding heat storage material containing portion that contains the temperature holding heat storage material, the quenching It may be a cold insulation member having a temperature holding layer disposed outside the layer.
  • the cold insulation member of the present invention may be a cold insulation member having a phase change temperature higher than the phase change temperature of the rapid cooling heat storage material.
  • the cold insulation member of the present invention may be a cold insulation member having a phase change temperature lower than the desired temperature range.
  • the cold insulation member of the present invention may be a cold holding member having a phase change temperature lower than the desired temperature range.
  • the cold insulation member of the present invention may be a cold insulation member in which a part is in a solid phase state and the other part is in a liquid phase state in a temperature zone where the cold object is rapidly cooled.
  • the temperature-retaining heat storage material may be a cold-retaining member in which a part is in a solid phase state and the other part is in a liquid-phase state in a temperature zone where the temperature-controlled object is kept at a desired temperature.
  • the cold insulation member of the present invention which has the heat insulation layer arrange
  • the cold insulation member of the present invention The total value of the latent heat amount and the sensible heat amount of the rapid cooling heat storage material is larger than the cooling amount necessary for cooling the cold object to the desired temperature zone,
  • the temperature holding heat storage material may be a cold holding member having a latent heat amount necessary for holding the object to be cooled in the desired temperature zone for the desired time or longer.
  • the cold insulation member of the present invention may be a cold insulation member having flexibility at the phase change temperature of the quenching heat storage material.
  • the cold insulation member of the present invention A plurality of the quenching layers, The plurality of quench layers may be cold-retaining members connected to each other.
  • FIGS. 1 and 2 show a cross-sectional shape of the cold insulation member 10 according to the present embodiment.
  • 1 (a) and 2 (a) show cross sections cut along a plane including the central axis of the cylindrical cold insulation member 10, and FIG. 1 (b) and FIG. 2 (b) respectively show FIG. 1 (a).
  • 2 shows a cross section of the cold insulation member 10 taken along line AA perpendicular to the central axis of the cold insulation member 10 shown in FIG.
  • the cold insulation member 10 rapidly cools the cold object B including a container G such as a glass bottle containing the liquid L to a desired temperature zone within a desired time, and the cold object B is desired for a desired time or more. Used to keep in temperature range.
  • FIGS. 1A and 1B show a state in which the object to be cooled B is kept cold by the cold insulation member 10, and FIGS. 2A and 2B show that the object to be kept cold B from the cold insulation member 10. It shows the removed state.
  • the cold insulation member 10 has a hollow cylindrical shape with an open top and bottom surface, and has a quenching layer 1 and a temperature holding layer 2 in order from the inside toward the outside. As shown in FIG.
  • the rapid cooling layer 1 is disposed in the periphery of the object to be cooled B when the cold insulating member 10 is used.
  • the rapid cooling layer 1 is arranged so as to cover the outer periphery of the cold object B. Yes.
  • the temperature holding layer 2 is disposed outside the quenching layer 1 so as to cover the outer peripheral portion of the quenching layer 1.
  • the quenching layer 1 has a quenching heat storage material 1a and a quenching heat storage material housing portion 1b for housing the quenching heat storage material 1a.
  • the temperature holding layer 2 includes a temperature holding heat storage material 2a and a temperature holding heat storage material housing portion 2b for housing the temperature holding heat storage material 2a.
  • the rapid cooling heat storage material 1a and the temperature holding heat storage material 2a have a phase change temperature lower than the desired temperature range in order to cool the object B to be cooled to the desired temperature range.
  • the heat storage material 2a for temperature maintenance has a phase change temperature higher than the phase change temperature of the heat storage material 1a for rapid cooling.
  • the phase change temperature is a temperature at which the rapid cooling heat storage material 1a and the temperature holding heat storage material 2a change phase between the solid phase and the liquid phase.
  • the rapid thermal storage material 1a reversibly changes between a solid phase and a liquid phase at a predetermined phase change temperature.
  • the temperature maintaining heat storage material 2a reversibly changes between a solid phase and a liquid phase at a predetermined phase change temperature.
  • the rapid cooling heat storage material 1a and the temperature maintaining heat storage material 2a are solid-phased.
  • the phase can be changed to a state.
  • the rapid cooling heat storage material 1a and the temperature holding heat storage material 2a are in a solid phase, the cold insulating member 10 is arranged so that the rapid cooling layer 1 is positioned around the object to be cooled B.
  • the rapid cooling heat storage material 1a is used for rapidly cooling the liquid L in the container G of the object to be cooled B having the same temperature (room temperature) as room temperature (for example, 25 ° C.) to a desired temperature range within a desired time.
  • the heat storage material 1b for cold insulation is used for keeping the liquid L in the container G of the object to be kept B in the desired temperature zone for a desired time or more. For this reason, the rapid cooling heat storage material 1a and the temperature maintaining heat storage material 2a have a phase change temperature lower than room temperature (normal temperature).
  • the cold insulation member 10 is installed in the cold object B so that the cold object B is inserted into a cylindrical opening, and is used at room temperature (for example, 25 ° C.). Is done.
  • the liquid L of the object B to be kept cold by the cold-retaining member 10 include various beverages, and in particular, a beverage having a temperature lower than room temperature at the drinking temperature is suitable.
  • sparkling wine having a drinking temperature of about 4 ° C. to 6 ° C.
  • white wine having a drinking temperature of about 9 ° C. to 11 ° C.
  • red wine having a drinking temperature of about 16 ° C. to 18 ° C. It is preferable to use the cold insulation member 10 according to the form for cold insulation.
  • the liquid L may be a liquid having a higher viscosity than water or a liquid mixed with a solid substance. Furthermore, instead of the liquid L, the solid may be kept cold.
  • the container G include glass or ceramic bottles, iron or aluminum cans, plastic bottles, and the like.
  • heat storage refers to a technology for temporarily storing heat and extracting the heat as necessary.
  • Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like.
  • latent heat storage and sensible heat storage are used.
  • Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance.
  • the latent heat storage has a high heat storage density and a constant output temperature.
  • Sensible heat storage uses the sensible heat of a substance to store thermal energy corresponding to the temperature change of the substance.
  • the rapid cooling heat storage material 1a has a lower phase change temperature than the temperature maintaining heat storage material 2a. For this reason, at the time of use of the cold insulating member 10, the rapid cooling heat storage material 1a reaches the phase change temperature earlier than the temperature holding heat storage material 2a. For this reason, the cold insulation member 10 performs the cold insulation using the latent heat of the rapid thermal storage material 1a before the cooling using the latent heat of the temperature retention thermal storage material 2a.
  • the temperature of the rapid thermal storage material 1a is substantially constant during cooling using latent heat. Further, the rapid cooling heat storage material 1a has a phase change temperature that is sufficiently lower (for example, 15 ° C. to 30 ° C. lower) than the desired temperature range of the object to be cooled B.
  • the to-be-cooled material B is rapidly cooled to a desired temperature zone in a relatively short time.
  • the temperature holding heat storage material 2a is also cooled to about the phase change temperature of the rapid cooling heat storage material 1a.
  • the rapid cooling heat storage material 1a finishes cooling using latent heat and starts cooling using sensible heat.
  • the to-be-cooled material B is cooled to a desired temperature range.
  • the temperature of the whole cold insulation member 10 rises, and the temperature-retaining heat storage material 2a reaches the phase change temperature.
  • the cold insulation member 10 starts the cooling using the latent heat of the temperature holding heat storage material 2a.
  • the temperature of the heat retaining material for temperature maintenance 2a is substantially constant during cooling using latent heat. Since the rapid cooling layer 1 is in contact with the temperature holding layer 2, the rapid cooling heat storage material 1a is cooled to about the phase change temperature of the temperature holding heat storage material 2a.
  • the phase change temperature of the temperature maintaining heat storage material 2a is lower by several degrees C. (for example, 2 to 6 degrees C.) than the desired temperature range of the object to be cooled B. For this reason, since the cold insulator 10 cools the object B to be cooled by the temperature-retaining heat storage material 2a through the rapid cooling layer 1, the object to be kept cool at a desired temperature higher than the phase change temperature of the temperature-holding heat storage material 2a. The temperature of B can be maintained.
  • the quenching layer 1 after cooling using latent heat has a function as a buffer layer that prevents the object B from being cooled too much below a desired temperature by cooling the temperature holding layer 2.
  • the cold insulation member 10 keeps the cold object B in a desired temperature range until the phase change temperature from the solid phase to the liquid phase of the temperature holding heat storage material 2a is completed. Thereby, the cold insulation member 10 can hold
  • the role of the rapid cooling heat storage material 1a provided in the rapid cooling layer 1 is to quickly absorb the heat of the cold object B using latent heat and sensible heat.
  • the role of the temperature holding heat storage material 2a provided in the temperature holding layer 2 is to keep the object B to be kept in a desired temperature zone using latent heat and sensible heat.
  • the cold insulation member 10 is characterized in that the functions of the quenching layer 1 and the temperature holding layer 2 are separated.
  • paraffin a general term for saturated chain hydrocarbons represented by the general formula C n H 2n + 2
  • water an aqueous inorganic salt solution, or the like
  • the inorganic salt of the inorganic salt aqueous solution include potassium chloride (KCl), sodium chloride (NaCl), ammonium chloride (NH 4 Cl), potassium hydrogen carbonate (KHCO 3 ), and the like in this embodiment.
  • the inorganic salt that can be used for the rapid cooling heat storage material 1a and the cold insulation heat storage material 2a is not limited to these.
  • clathrate hydrate and inorganic salt hydrate are used for the rapid cooling heat storage material 1a and the cold storage heat storage material 2a.
  • a quaternary ammonium salt molecule such as tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) is used as a guest molecule And hydrated hydrates.
  • TBAB tetrabutylammonium bromide
  • TBAC tetrabutylammonium chloride
  • clathrate hydrate having a quaternary ammonium salt molecule as a guest molecule at a phase change temperature, and a quaternary ammonium salt. It reversibly changes to an aqueous solution containing it.
  • the rapid cooling heat storage material 1a and the cold storage heat storage material 2a are in a solid phase in the state of clathrate hydrate and in a liquid phase in the state of an aqueous solution.
  • clathrate hydrates that can be used for the rapid cooling heat storage material 1a and the cold insulation heat storage material 2a are not limited to these.
  • the inorganic salt hydrate used in the rapid cooling heat storage material 1a and the cold storage heat storage material 2a sodium sulfate decahydrate, sodium acetate trihydrate, sodium thiosulfate pentahydrate, disodium hydrogen phosphate Binary composition of dihydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C.), lithium nitrate trihydrate mainly composed of lithium nitrate trihydrate and magnesium chloride hexahydrate Binary composition with Japanese hydrate (melting point 8-12 ° C.) or ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting point 5. 8 to 9.7 ° C.), and the like, but the present embodiment is not limited to these inorganic salt hydrates.
  • the rapid cooling layer 1 can change shape in accordance with the shape of the object B to be cooled.
  • a part of the heat storage material 1a for rapid cooling of the rapid cooling layer 1 is used in the temperature zone in which the object to be cooled B is rapidly cooled. It may be in a solid phase state and the other part may be in a liquid phase state.
  • the rapid cooling layer 1 can have the softness
  • FIG. For example, when a potassium chloride aqueous solution having a phase change temperature of ⁇ 11 ° C. is used as the main component of the rapid cooling heat storage material 1a, a sodium chloride aqueous solution having a phase change temperature of ⁇ 21 ° C. is mixed with the potassium chloride aqueous solution. At this time, the concentration of sodium chloride in the rapid cooling heat storage material 1a is made smaller than the eutectic concentration. As a result, the rapid cooling heat storage material 1a has phase change temperatures around -11 ° C and -21 ° C.
  • the quenching heat storage material 1a performs cooling using the latent heat of the potassium chloride aqueous solution as the main agent, so that the potassium chloride aqueous solution is in a solid phase and the sodium chloride aqueous solution is in a liquid phase.
  • the cold insulation member 10 can be in a state in which the solid phase portion and the liquid phase portion coexist in the rapid cooling layer 1 when the rapid thermal storage material 1a of the rapid cooling layer 1 performs cooling using latent heat. Therefore, the contact area between the rapid cooling layer 1 and the object to be cooled B can be increased. Thereby, the cold insulating member 10 can enhance the cooling effect of the quenching layer 1.
  • the temperature maintaining layer 2 can be changed in shape in accordance with the shape of the object to be cooled B.
  • the temperature-retaining heat storage material 2a of the temperature-retaining layer 2 is partly in the solid phase in the temperature zone for cooling the object to be kept B, and the other part is in the liquid phase. You may make it be in a state.
  • the temperature holding layer 2 can have a flexibility that can change the shape in accordance with the shape of the object B to be cooled. For example, when water having a phase change temperature of 0 ° C.
  • the temperature maintaining heat storage material 2a is used as the main component of the temperature maintaining heat storage material 2a, a sodium chloride aqueous solution having a phase change temperature of ⁇ 21 ° C. is mixed with the water. At this time, the concentration of sodium chloride in the temperature holding heat storage material 2a is made smaller than the eutectic concentration. As a result, the temperature maintaining heat storage material 2a has phase change temperatures around 0 ° C. and around ⁇ 21 ° C. The temperature maintaining heat storage material 2a performs cooling using the latent heat of water, which is the main agent, so that the water is in a solid phase and the sodium chloride aqueous solution is in a liquid phase.
  • the cold holding member 10 When the temperature holding heat storage material 2a of the temperature holding layer 2 performs cooling using latent heat, the cold holding member 10 has both a solid phase portion and a liquid phase portion in the temperature holding layer 2. Since it can be in a state, the contact area between the temperature holding layer 2 and the quenching layer 1 can be increased, and the cooling effect of the temperature holding layer 2 can be enhanced.
  • the rapid cooling heat storage material 1a and the temperature maintaining heat storage material 2a may be gelled.
  • the gelled rapid thermal storage material 1a and the temperature-maintaining thermal storage material 2a contain a gelling agent.
  • a gel is a gel in which molecules are partially cross-linked to form a three-dimensional network structure that absorbs a solvent and swells therein. The composition of the gel is almost in the liquid phase, but mechanically it is in the solid phase.
  • the gelled rapid thermal storage material 1a and the temperature-maintaining thermal storage material 2a maintain a solid state as a whole even if they reversibly change between a solid phase and a liquid phase, and do not have fluidity.
  • the gel heat storage material is easy to handle because it can maintain a solid state as a whole before and after the phase change.
  • Examples of the gelling agent include synthetic polymers, natural polysaccharides, gelatin, and the like using molecules having one or more hydroxyl groups or carboxyl groups, sulfonic acid groups, amino groups, and amide groups.
  • Examples of the synthetic polymer include polyacrylamide derivatives, polyvinyl alcohol, polyacrylic acid derivatives, and the like.
  • Examples of natural polysaccharides include agar, alginic acid, fercellan, pectin, starch, a mixture of xanthan gum and locust bean gum, tamarind seed gum, julan gum, carrageenan and the like. Although these are mentioned as an example of a gelling agent, in this Embodiment, a gelling agent is not limited to these.
  • examples of the gelling agent include acrylamide monomer, N, N′-methylenebisacrylamide monomer, 2-ketoglutaric acid and the like, but the gelling agent is not limited to these in the present embodiment.
  • the rapid cooling heat storage material accommodating portion 1b and the temperature maintaining heat storage material accommodating portion 2b are formed of, for example, a resin material.
  • the resin material used for the rapid cooling heat storage material accommodating portion 1b and the temperature maintaining heat storage material accommodating portion 2b include polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, acrylic resin (PMMA), polycarbonate ( PC) and the like.
  • the rapid cooling heat storage material container 1b and the temperature maintaining heat storage material container 2b include a hard packaging material made of a plastic container formed by injection molding, blow molding or the like, or a solution method, a melting method, a calendar. A soft packaging material made of a plastic film formed by a method or the like is used.
  • the rapid cooling heat storage material accommodating portion 1b and the temperature maintaining heat storage material accommodating portion 2b are not limited to resin, and may be formed using an inorganic material such as glass, ceramic, or metal.
  • the quenching heat storage material container 1b and the temperature maintaining heat storage material container 2b are made of fiber (glass wool, cotton, cellulose, nylon, carbon nanotube, carbon fiber, etc.), powder (alumina powder, metal powder, microcapsule, etc.) ) And other modifiers.
  • FIG. 3A shows the cooling amount necessary for cooling the object to be cooled B containing 750 g of the liquid L from 25 ° C. to a desired temperature.
  • the desired temperature range of the sparkling wine is 4 to 6 ° C., which is the temperature when drinking.
  • the desired temperature of the sparkling wine is 5 ° C., which is the center value of the desired temperature range.
  • the desired temperature range of white wine is 9 to 11 ° C., which is the temperature when drinking.
  • the desired temperature of white wine shall be 10 degreeC of the center value of a desired temperature range.
  • the desired temperature range of red wine is set to 16 ° C. to 18 ° C., which is a drinking temperature.
  • the desired temperature of red wine shall be 17 degreeC of the center value of a desired temperature range.
  • the specific heat of water (4.2 J / (g ⁇ ° C.)) is simply used as the specific heat value of sparkling wine, white wine and red wine.
  • the cooling temperature is a value obtained by subtracting a desired temperature (° C.) from 25 ° C. From the above formula (1), the cooling amount necessary to cool the sparkling wine to the desired temperature of 5 ° C. is 63.0 kJ, which is necessary to cool the white wine to the desired temperature of 10 ° C.
  • the amount of cooling required is 47.3 kJ, and the amount of cooling required to cool red wine to the desired temperature of 17 ° C. is 25.2 kJ.
  • FIG. 3B is a table for explaining the design amount of the rapid thermal storage material 1a when the liquid L of the object B to be cooled is sparkling wine.
  • water, an aqueous potassium hydrogen carbonate solution, or an aqueous potassium chloride solution is used for the rapid thermal storage material 1a.
  • the rapid thermal storage material 1a using water has a phase change temperature at 0 ° C.
  • the rapid thermal storage material 1a using a potassium hydrogen carbonate aqueous solution having a potassium hydrogen carbonate concentration of 20 wt% has a phase change temperature of about ⁇ 6 ° C.
  • the rapid thermal storage material 1a using a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% has a phase change temperature of about ⁇ 11 ° C.
  • FIG. 3B shows the latent heat amount (kJ), the sensible heat amount (kJ), the cooling amount (kJ), the actual cooling amount (kJ), and the design amount in 100 g of the rapid cooling heat storage material 1a using each material.
  • G is shown.
  • the amount of latent heat here indicates an actual measured value.
  • the amount of latent heat is measured by, for example, a temperature history method.
  • the temperature history method is a method of monitoring the temperature change of an object and calculating the amount of latent heat in comparison with a reference material whose amount of latent heat is specified.
  • the amount of sensible heat here is the amount of heat used when the heat storage material 1a for rapid cooling, which has been in a liquid phase after the phase change is completed, cools the object B to be cooled to a desired temperature.
  • the amount of sensible heat is obtained by multiplying the value obtained by subtracting the phase change temperature of the rapid thermal storage material 1a from the desired temperature by the specific heat of water.
  • the amount of sensible heat in the solid phase state of the rapid cooling heat storage material 1a is smaller than the amount of latent heat and the amount of sensible heat in the liquid phase state of the rapid cooling heat storage material 1a, it is considered as the cooling amount of the rapid cooling heat storage material 1a. Absent.
  • the cooling amount is a total value of the latent heat amount and the sensible heat amount. The actual cooling amount and design amount will be described later.
  • the latent heat amount of the rapid cooling heat storage material 1a using water is 30.5 kJ
  • the sensible heat amount is 2.1 kJ
  • the cooling amount is 32.6 kJ
  • the latent heat amount of the rapid thermal storage material 1a using the potassium hydrogen carbonate aqueous solution is 25.9 kJ
  • the sensible heat amount is 4.6 kJ
  • the cooling amount is 30.5 kJ
  • the latent heat amount of the rapid cooling heat storage material 1a using the potassium chloride aqueous solution is 27.9 kJ
  • the sensible heat amount is 6.7 kJ
  • the cooling amount is 34.6 kJ.
  • the area where the quenching layer 1 and the object to be cooled B are in contact is half of the surface area of the quenching layer 1.
  • half of the surface area of the rapid cooling layer 1 is a heat radiating surface to the cold object B
  • half of the cooling amount of the rapid thermal storage material 1a is actually used for cooling the cold object B.
  • the actual cooling amount of the rapid cooling heat storage material 1a is half the cooling amount
  • the actual cooling amount of the rapid cooling heat storage material 1a using water is 16.3 kJ
  • an aqueous potassium hydrogen carbonate solution is used.
  • the actual cooling amount of the rapid cooling heat storage material 1a is 15.3 kJ
  • the actual cooling amount of the rapid cooling heat storage material 1a using the potassium chloride aqueous solution is 17.3 kJ.
  • the design amount of the rapid cooling heat storage material 1a is obtained by multiplying the value obtained by dividing the required cooling amount shown in FIG. 3A by the actual cooling amount by the mass (100 g) of the rapid cooling heat storage material 1a used as a premise of calculation. Desired. Therefore, the design amount of the rapid thermal storage material 1a using water is 387 g, the design amount of the rapid thermal storage material 1a using the potassium hydrogen carbonate aqueous solution is 412 g, and the design of the rapid thermal storage material 1a using the aqueous potassium chloride solution is performed. The amount is 364 g.
  • FIG. 3C is a table for explaining the design amount of the rapid cooling heat storage material 1a when the liquid L of the object B to be cooled is white wine.
  • water, potassium hydrogencarbonate aqueous solution, or potassium chloride aqueous solution is used for the rapid thermal storage material 1a similarly to the example shown in FIG.3 (b).
  • FIG. 3C shows the latent heat amount (kJ), the sensible heat amount (kJ), the cooling amount (kJ), the actual cooling amount (kJ), and the design amount in 100 g of the rapid cooling heat storage material 1a using each material. (G) is shown.
  • the amount of sensible heat, the actual cooling amount, and the design amount are obtained by the same method as the example shown in FIG.
  • the latent heat amount of the rapid cooling heat storage material 1a using water is 30.5 kJ
  • the sensible heat amount is 4.2 kJ
  • the cooling amount is 34.7 kJ.
  • the amount is 17.4 kJ and the design amount is 272 g.
  • the latent heat amount of the rapid thermal storage material 1a using the potassium hydrogen carbonate aqueous solution is 25.9 kJ
  • the sensible heat amount is 6.7 kJ
  • the cooling amount is 32.6 kJ
  • the actual cooling amount is 16.3 kJ.
  • the design amount is 290 g.
  • the latent heat amount of the rapid thermal storage material 1a using the potassium chloride aqueous solution is 27.9 kJ
  • the sensible heat amount is 8.8 kJ
  • the cooling amount is 36.7 kJ
  • the actual cooling amount is 18.4 kJ. Yes
  • the design amount is 257 g.
  • FIG. 3D is a table for explaining the design amount of the rapid cooling heat storage material 1a when the liquid L of the object B to be cooled is red wine.
  • water, potassium hydrogencarbonate aqueous solution, or potassium chloride aqueous solution is used for the rapid thermal storage material 1a similarly to the example shown in FIG.3 (b).
  • FIG. 3D shows the amount of latent heat (kJ), the amount of sensible heat (kJ), the amount of cooling (kJ), the actual amount of cooling (kJ), and the design amount in 100 g of the rapid thermal storage material 1a using each material. (G) is shown.
  • the amount of sensible heat, the actual cooling amount, and the design amount are obtained by the same method as the example shown in FIG.
  • the latent heat amount of the rapid thermal storage material 1a using water is 30.5 kJ
  • the sensible heat amount is 7.1 kJ
  • the cooling amount is 37.6 kJ.
  • the amount is 18.8 kJ
  • the design amount is 134 g.
  • the latent heat amount of the rapid thermal storage material 1a using the potassium hydrogen carbonate aqueous solution is 25.9 kJ
  • the sensible heat amount is 9.7 kJ
  • the cooling amount is 35.6 kJ
  • the actual cooling amount is 17.8 kJ.
  • the design amount is 142 g.
  • the latent heat amount of the rapid cooling heat storage material 1a using the potassium chloride aqueous solution is 27.9 kJ
  • the sensible heat amount is 11.8 kJ
  • the cooling amount is 39.7 kJ
  • the actual cooling amount is 19.9 kJ. Yes
  • the design amount is 127 g.
  • the total value of the latent heat amount and the sensible heat amount of the rapid thermal storage material 1 is larger than the cooling amount necessary for cooling the object to be kept B to a desired temperature zone. For this reason, the cold insulation member 10 can cool the to-be-cooled object B to a desired temperature range using the rapid thermal storage material 1a.
  • Example 1 the cold insulation member 10 according to Example 1 of the present embodiment will be described with reference to FIGS.
  • the object to be cooled B containing 750 g of sparkling wine as the liquid L was cooled by the cold insulation member 10 shown in FIGS.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for sparkling wine is 4-6 ° C.
  • 200 g of a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% and 200 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% were mixed as a main agent.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is a phase change temperature of an aqueous potassium chloride solution, and about ⁇ 21 ° C., which is a phase change temperature of an aqueous sodium chloride solution.
  • the rapid cooling heat storage material 1a of the present embodiment is produced by mixing eutectic potassium chloride aqueous solution and eutectic sodium chloride aqueous solution 1: 1.
  • the heat storage material 1a for quenching prepared by mixing an eutectic potassium chloride aqueous solution and an eutectic sodium chloride aqueous solution in a ratio of 1: 1 is 50% at a phase change temperature of about ⁇ 11 ° C.
  • the heat storage material 1a for quenching prepared by mixing the eutectic potassium chloride aqueous solution and the eutectic sodium chloride aqueous solution in a ratio of 3: 1 has a phase change temperature of about ⁇ 11 ° C. of the potassium chloride aqueous solution. 75% is frozen (solid phase), and the remaining 25% is unfrozen (liquid phase).
  • the rapid thermal storage material 1a of the quenching layer 1 is in a state where a solid phase potassium chloride aqueous solution portion and a liquid phase sodium chloride aqueous solution portion coexist. I am doing so.
  • the quenching layer 1 can change its shape in accordance with the shape of the object B to be kept cold.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the rapid thermal storage material 1a For 400 g of the rapid thermal storage material 1a, the acrylamide monomer was 5%, the N, N'-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12%.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the temperature-retaining heat storage material 2a of the present embodiment has a phase change temperature at 0 ° C.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N'-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 100 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 4 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis of FIG. 4 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 4 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the curve shown with the dashed-dotted line in FIG. 4 has shown the temperature change between the rapid cooling layer 1 and the temperature holding layer 2 of the cold insulating member 10.
  • the indoor temperature is measured at the time of starting the temperature measurement.
  • the temperature between the quenching layer 1 and the temperature holding layer 2 is measured as ⁇ 18 ° C. about 3 minutes after the start of the temperature measurement.
  • the object B to be cooled is cooled to 6 ° C., the upper limit of the desired temperature zone, after about 20 minutes. Further, after about 40 minutes, the temperature between the quenching layer 1 and the temperature holding layer 2 has reached 0 ° C., which is the phase change temperature of the temperature holding heat storage material 2a, and the latent heat of the temperature holding heat storage material 2a is used. The cold insulation that has been started.
  • the cold-retaining member 10 can keep the cold-retained object B at 6 ° C. within a desired temperature zone until about 120 minutes have elapsed by cold-retaining using the latent heat of the temperature-retaining heat storage material 2a.
  • the object B to be cooled is cooled to a temperature that is about 1 ° C. lower than the desired temperature range (4 ° C. to 6 ° C.), but this is acceptable.
  • the cold insulation member 10 according to the present example was able to rapidly cool the object B to be cooled to a desired temperature range in about 20 minutes. It is desirable that the wine as the object B to be cooled is cooled within about 20 minutes from room temperature to the temperature when drinking.
  • the cold insulation member 10 according to this example was able to hold the object B to be kept in a desired temperature zone for about 100 minutes by using the latent heat of the temperature holding heat storage material 2a. This is because the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for sparkling wine.
  • the cold insulation member according to Comparative Example 1 has a rapid cooling layer, but does not have a temperature holding layer.
  • the quenching layer of the cold insulation member according to Comparative Example 1 has the same configuration as the quenching layer 1 of the cold insulation member 10 according to Example 1 described above.
  • the to-be-cooled object B containing 750 g of sparkling wine was used as the liquid L.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the other conditions are the same as in the first embodiment.
  • FIG. 5 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulation member according to Comparative Example 1.
  • the horizontal axis in FIG. 5 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 5 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the object to be cooled B reaches about 13 ° C. after about 60 minutes, and the temperature of the object to be cooled B starts to rise again after about 70 minutes.
  • the cold insulation member according to Comparative Example 1 could not cool the object B to be cooled to a desired temperature zone.
  • the cold insulation member according to Comparative Example 2 does not have a quenching layer, but has a temperature holding layer.
  • the temperature retention layer of the cold insulation member according to Comparative Example 1 has the same configuration as the temperature retention layer 2 of the cold insulation member 10 according to Example 1 described above.
  • the to-be-cooled object B containing 750 g of sparkling wine was used as the liquid L.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the other conditions are the same as in the first embodiment.
  • FIG. 6 is a graph showing a temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulation member according to Comparative Example 2.
  • the horizontal axis in FIG. 6 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 6 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the object to be cooled B reaches about 19 ° C. after about 50 minutes, and the temperature of the object to be cooled B starts to rise again after about 60 minutes.
  • the cold insulation member according to Comparative Example 2 could not cool the object B to be cooled to a desired temperature zone.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • Example 2 Next, the cold insulation member 10 according to Example 2 of the present embodiment will be described with reference to FIG.
  • the object to be cooled B containing 750 g of white wine as the liquid L was cooled by the cold insulating member 10 shown in FIGS.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for white wine is 9 ° C to 11 ° C.
  • 200 g of an aqueous potassium chloride solution having a potassium chloride concentration of 20 wt% was used as a main agent.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is the phase change temperature of the aqueous potassium chloride solution.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N′-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 200 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • TBAB was used for the heat storage material 2a for temperature maintenance.
  • the temperature maintaining heat storage material 2a was prepared using 100 g of a TBAB aqueous solution having a TBAB concentration of 25 wt%.
  • the temperature-maintaining heat storage material 2a using the TBAB aqueous solution having a TBAB concentration of 25 wt% has a phase change temperature of about 8 ° C. to 10 ° C.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N'-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 100 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 7 is a graph showing a temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis in FIG. 7 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 7 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the curve shown with the dashed-dotted line in FIG. 7 has shown the temperature change between the rapid cooling layer 1 and the temperature holding layer 2 of the cold insulating member 10.
  • the indoor temperature is measured at the time of starting the temperature measurement.
  • the temperature between the quenching layer 1 and the temperature holding layer 2 is measured to be about ⁇ 8 ° C. about 3 minutes after the start of the temperature measurement.
  • the object to be cooled B is cooled to 11 ° C., which is the upper limit of the desired temperature zone, after about 20 minutes. Further, after about 70 minutes, the temperature between the quenching layer 1 and the temperature holding layer 2 has reached about 8 ° C., which is the phase change temperature of the temperature holding heat storage material 2a, and the latent heat of the temperature holding heat storage material 2a is reduced. Use of cold storage has started.
  • the cold-retaining member 10 can keep the object B to be kept at 11 ° C. within a desired temperature range until about 150 minutes have passed by cold-retention using the latent heat of the temperature-retaining heat storage material 2a.
  • the cold insulation member 10 according to the present example was able to rapidly cool the object B to be cooled to a desired temperature range in about 18 minutes.
  • the cold insulation member 10 according to the present example was able to hold the object B to be kept in a desired temperature zone for about 130 minutes using the latent heat of the temperature holding heat storage material 2a. This is because the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for white wine.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • Example 3 the cold insulation member 10 according to Example 3 of the present embodiment will be described with reference to FIG.
  • the object B to be cooled containing 750 g of red wine as the liquid L was cooled by the cold insulation member 10 shown in FIGS.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for red wine is between 16 ° C and 18 ° C.
  • 150 g of a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% was used as a main agent.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is the phase change temperature of the aqueous potassium chloride solution.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N′-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12%.
  • the rapid cooling heat storage material 1a may not be gelled.
  • TBAB was used for the heat storage material 2a for temperature maintenance.
  • the temperature-retaining heat storage material 2a was prepared using 200 g of a TBAB aqueous solution having a TBAB concentration of 35 wt%.
  • the temperature-maintaining heat storage material 2a using the TBAB aqueous solution having a TBAB concentration of 35 wt% has a phase change temperature of about 11.5 ° C.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N'-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 200 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 8 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis in FIG. 8 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 8 has shown the temperature change of the to-be-cooled material B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the curve shown with the dashed-dotted line in FIG. 8 has shown the temperature change between the rapid cooling layer 1 and the temperature holding layer 2 of the cold insulating member 10.
  • the indoor temperature is measured at the time of starting the temperature measurement.
  • the temperature between the quenching layer 1 and the temperature holding layer 2 is measured to be about ⁇ 12 ° C. about 3 minutes after the start of temperature measurement.
  • the to-be-cooled object B is cooled to 18 ° C., which is the upper limit of the desired temperature zone, after about 14 minutes. Further, after about 130 minutes, the temperature between the quenching layer 1 and the temperature holding layer 2 has reached about 11.5 ° C., which is the phase change temperature of the temperature holding heat storage material 2a, and the temperature holding heat storage material 2a Cold storage using latent heat has started.
  • the cold insulation member 10 can keep the cold-reserved object B at 18 ° C. within a desired temperature zone until after about 180 minutes by cold insulation using the latent heat of the temperature-maintaining heat storage material 2a. During the period from about 24 minutes to about 160 minutes, the object B to be cooled is cooled to a temperature that is about 1 ° C. lower than the desired temperature range (16 ° C. to 18 ° C.), but this is acceptable.
  • the cold insulation member 10 according to the present example was able to rapidly cool the object B to be cooled to a desired temperature range in about 14 minutes.
  • the cold insulation member 10 according to the present example was able to hold the object B to be kept in a desired temperature zone for about 165 minutes using the latent heat of the temperature holding heat storage material 2a. This is because the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for red wine.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • FIGS. 9 and 10 show the cross-sectional shape of the cold insulation member 10 according to the present embodiment.
  • 9 (a) and 10 (a) show cross sections cut along a plane including the central axis of the cylindrical cold insulation member 10, and FIG. 9 (b) and FIG. 10 (b) respectively show FIG. 9 (a).
  • 10 shows a cross section of the cold insulation member 10 taken along line AA perpendicular to the central axis of the cold insulation member 10 shown in FIG.
  • FIGS. 9A and 9B show a state in which the object to be cooled B is kept cold by the cold insulation member 10, and FIGS. 10A and 10B show that the object to be kept cold B from the cold insulation member 10. It shows the removed state.
  • the cold insulating member 10 according to the present embodiment is characterized in that the upper portion in the use state has the same tapered shape as the container G of the cold object B. Specifically, the upper part of the quenching layer 1 has the same shape as the tapered shape of the container G.
  • the temperature holding layer 2 has the same shape as the quenching layer 1 and is disposed in contact with the quenching layer 1 so as to cover the quenching layer 1. Thereby, the cold insulation member 10 by this Embodiment can enlarge a contact area with the to-be-cooled material B, and can improve a cold insulation effect.
  • Example 4 the cold insulation member 10 according to Example 4 of the present embodiment will be described with reference to FIGS.
  • the cold object B containing 750 g of sparkling wine as the liquid L was cooled by the cold insulating member 10 shown in FIGS. 9 and 10.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for sparkling wine is 4-6 ° C.
  • the heat storage material 1a for rapid cooling a mixture of 200 g of a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% and 100 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% as a main agent was used.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is a phase change temperature of an aqueous potassium chloride solution, and about ⁇ 21 ° C., which is a phase change temperature of an aqueous sodium chloride solution.
  • the rapid cooling heat storage material 1a of the present embodiment is produced by mixing eutectic potassium chloride aqueous solution and eutectic sodium chloride aqueous solution 1: 1.
  • the heat storage material 1a for quenching prepared by mixing an eutectic potassium chloride aqueous solution and an eutectic sodium chloride aqueous solution in a ratio of 1: 1 is 50% at a phase change temperature of about ⁇ 11 ° C.
  • the rapid thermal storage material 1a of the rapid cooling layer 1 is in a state where the solid phase potassium chloride aqueous solution portion and the liquid phase sodium chloride aqueous solution portion coexist. For this reason, the rapid cooling layer 1 can change the shape in accordance with the shape of the object to be cooled B.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 300 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the heat storage material 2b for maintaining temperature a mixture of 100 g of sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% in 100 g of water as a main agent was used.
  • the temperature maintaining heat storage material 2a of the present embodiment has a phase change temperature of 0 ° C., which is the phase change temperature of water, and about ⁇ 21 ° C., which is the phase change temperature of the aqueous sodium chloride solution.
  • the temperature-retaining heat storage material 2a of this example is prepared by mixing water and a sodium chloride aqueous solution having a eutectic concentration in a ratio of 1: 1.
  • the temperature-maintaining heat storage material 2a prepared by mixing water and an eutectic sodium chloride aqueous solution in a ratio of 1: 1 is 50% frozen (solid state) at 0 ° C, which is the phase change temperature of water. The remaining 50% is in an unfrozen state (liquid phase state).
  • the temperature-retaining heat storage material 2a of the temperature-retaining layer 2 is in a state in which the solid-phase water portion and the liquid-phase sodium chloride aqueous solution portion coexist. Thereby, the shape of the temperature holding layer 2 can be changed in accordance with the shape of the object B to be cooled.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • acrylamide monomer As the gelling agent, acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N'-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 200 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 11 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis in FIG. 11 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 11 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the to-be-cooled object B is cooled to a desired temperature zone upper limit of 6 ° C. after about 24 minutes.
  • the cold-retaining member 10 can hold the object to be kept B in a desired temperature zone until after about 140 minutes by cold-retaining using the latent heat of the temperature-retaining heat storage material 2a.
  • the object B to be cooled is cooled to a temperature lower by about 1 to 3 ° C. than the desired temperature range (4 ° C. to 6 ° C.), but this is acceptable.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for sparkling wine.
  • the cold insulation member according to Comparative Example 3 has a rapid cooling layer but does not have a temperature holding layer.
  • the quenching layer of the cold insulation member according to Comparative Example 3 has the same configuration as the quenching layer 1 of the cold insulation member 10 according to Example 4 described above.
  • the to-be-cooled object B containing 750 g of sparkling wine was used as the liquid L.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the other conditions are the same as in Example 4 above.
  • FIG. 12 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulation member according to Comparative Example 3.
  • the horizontal axis in FIG. 12 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 12 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the object to be cooled B reaches about 13 ° C. after about 60 minutes, and the temperature of the object to be cooled B starts to rise again after about 70 minutes.
  • the cold insulation member according to Comparative Example 3 could not cool the cold object B to a desired temperature zone.
  • the cold insulation member according to Comparative Example 4 does not have a quenching layer, but has a temperature holding layer.
  • the temperature retention layer of the cold insulation member according to Comparative Example 4 has the same configuration as the temperature retention layer 2 of the cold insulation member 10 according to Example 4 described above.
  • the to-be-cooled object B containing 750 g of sparkling wine was used as the liquid L.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the other conditions are the same as in Example 4 above.
  • FIG. 13 is a graph showing a temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulation member according to Comparative Example 4.
  • the horizontal axis in FIG. 13 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 13 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the object to be cooled B reaches about 18 ° C. after about 20 minutes, but the temperature of the object to be cooled B starts to rise again after about 40 minutes.
  • the cold insulation member according to Comparative Example 4 could not cool the object B to be cooled to a desired temperature zone.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • Example 5 the cold insulation member 10 according to Example 5 of the present embodiment will be described with reference to FIG.
  • the object B to be cooled containing 750 g of white wine as the liquid L was cooled by the cold insulation member 10 shown in FIGS.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for white wine is 9 ° C to 11 ° C.
  • the heat storage material 1a for rapid cooling a mixture of 100 g of a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% and 50 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% as a main agent was used.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is a phase change temperature of an aqueous potassium chloride solution, and about ⁇ 21 ° C., which is a phase change temperature of an aqueous sodium chloride solution.
  • the rapid cooling heat storage material 1a of the present embodiment is prepared by mixing an eutectic potassium chloride aqueous solution and an eutectic sodium chloride aqueous solution 2: 1.
  • the heat storage material 1a for quenching prepared by mixing the eutectic potassium chloride aqueous solution and the eutectic sodium chloride aqueous solution in a ratio of 2: 1 has a phase change temperature of about ⁇ 11 ° C., which is the phase change temperature of the potassium chloride aqueous solution, and about 66 % Is in a frozen state (solid phase state) and the remaining 33% is in an unfrozen state (liquid phase state).
  • the quenching heat storage material 1a of the quenching layer 1 is set so that the solid phase potassium chloride aqueous solution portion and the liquid phase sodium chloride aqueous solution portion coexist.
  • the quenching layer 1 can change its shape in accordance with the shape of the object B to be kept cold.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the rapid thermal storage material 1a the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12%.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the temperature maintaining heat storage material 2a a mixture of 100 g of a TBAB aqueous solution having a TBAB concentration of 35 wt% and 100 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% as a main agent was used.
  • the temperature-retaining heat storage material 2a of this example has a phase change temperature of TBAB clathrate hydrate (a temperature at which it is decomposed into water and TBAB) of about 11.5 ° C., and a phase change temperature of a sodium chloride aqueous solution.
  • the phase change temperature is about -21 ° C.
  • the temperature-retaining heat storage material 2a is in a state where a liquid phase sodium chloride aqueous solution part and a solid phase TBAB clathrate hydrate part coexist.
  • the shape of the heat storage material 2a for temperature maintenance can be changed in accordance with the shape of the object B to be cooled.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N'-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 200 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 14 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis in FIG. 14 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 14 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the object B to be cooled is cooled to 11 ° C., which is the upper limit of the desired temperature zone, after about 15 minutes.
  • the cold-retaining member 10 can keep the object B to be kept at 11 ° C. within a desired temperature range until about 80 minutes have passed by cold-retaining using the latent heat of the temperature-retaining heat storage material 2a.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for white wine.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • Example 6 the cold insulation member 10 according to Example 6 of the present embodiment will be described with reference to FIG.
  • the object B to be cooled containing 750 g of red wine as the liquid L was cooled by the cold insulation member 10 shown in FIGS.
  • the cold insulation member 10 used was cooled to about ⁇ 20 ° C. in a freezer compartment.
  • the desired temperature range for red wine is between 16 ° C and 18 ° C.
  • As the heat storage material 1a for rapid cooling a mixture of 75 g of a potassium chloride aqueous solution having a potassium chloride concentration of 20 wt% and 25 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% as a main agent was used.
  • the rapid cooling heat storage material 1a of the present embodiment has a phase change temperature of about ⁇ 11 ° C., which is a phase change temperature of an aqueous potassium chloride solution, and about ⁇ 21 ° C., which is a phase change temperature of an aqueous sodium chloride solution.
  • the rapid cooling heat storage material 1a of the present embodiment is prepared by mixing an eutectic potassium chloride aqueous solution and an eutectic sodium chloride aqueous solution 3: 1.
  • the heat storage material 1a for quenching prepared by mixing an eutectic potassium chloride aqueous solution and an eutectic sodium chloride aqueous solution in a ratio of 3: 1 is 75% at about ⁇ 11 ° C., which is the phase change temperature of the potassium chloride aqueous solution. Becomes a frozen state (solid phase state), and the remaining 25% becomes an unfrozen state (liquid phase state). Moreover, the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized. As the gelling agent, acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and 2-ketoglutaric acid was 0.12% with respect to 100 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • TBAB was used for the heat storage material 2a for temperature maintenance.
  • the temperature maintaining heat storage material 2a was prepared using 100 g of an aqueous TBAB solution having a TBAB concentration of 35 wt%.
  • the temperature-maintaining heat storage material 2a using the TBAB aqueous solution having a TBAB concentration of 35 wt% has a phase change temperature of about 11.5 ° C.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N'-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 100 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • FIG. 15 is a graph showing the temperature change of the cold object B when the cold object B at room temperature is cooled using the cold insulator 10 according to the present embodiment.
  • the horizontal axis in FIG. 15 represents time (min), and the vertical axis represents temperature (° C.).
  • the curve shown with the continuous line in FIG. 15 has shown the temperature change of the to-be-cooled object B.
  • the temperature of the liquid L at the center of the container G of the object to be cooled B was measured as the temperature of the object to be cooled B.
  • the object B to be cooled is cooled to 18 ° C., which is the upper limit of the desired temperature zone, after about 12 minutes.
  • the cold insulation member 10 is capable of holding the object B to be kept at a desired temperature range of 16 ° C. to 18 ° C. until about 120 minutes have passed due to cold preservation using the latent heat of the temperature holding heat storage material 2a.
  • the cold insulation member 10 according to the present example was able to rapidly cool the object B to be cooled to a desired temperature range in about 12 minutes.
  • the cold insulation member 10 according to this example was able to keep the cold object B in a desired temperature zone for about 110 minutes using the latent heat of the temperature-maintaining heat storage material 2a. This is because the temperature holding heat storage material 2a has a latent heat amount necessary to hold the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for red wine.
  • the cold insulation member 10 includes the rapid cooling layer 1 including the rapid thermal storage material 1a that rapidly cools the cold object B to a desired temperature range within a desired time, and the cold object B over the desired time. And a temperature holding layer 2 provided with a temperature holding heat storage material 2a for holding in a desired temperature zone.
  • the cooling amount of the rapid cooling heat storage material 1a is larger than the cooling amount necessary for cooling the object B to be cooled to a desired temperature zone.
  • the temperature holding heat storage material 2a has a latent heat amount necessary for holding the object B to be kept in a desired temperature zone for a desired time or more.
  • the cold insulation member 10 rapidly cools the object B to be cooled to a desired temperature zone within a desired time in the rapid cooling layer 1 and holds the object B to be kept in a desired temperature zone for a desired time or longer with the temperature holding layer 2. can do.
  • Example 7 the cold insulation member 10 according to Example 7 of the present embodiment will be described with reference to FIGS.
  • 16 (a) and 17 (a) show a cross section cut along a plane including the central axis of the cylindrical cold-retaining member 10, and FIGS. 16 (b) and 17 (b) respectively show FIG. 16 (a).
  • the cold insulating member 10 according to the present embodiment is characterized in that it has a heat insulating layer 3 that is disposed outside the temperature holding layer 2 and includes a heat insulating material.
  • the heat insulating layer 3 is disposed along the outer periphery of the temperature holding layer 2.
  • the heat insulating material of the heat insulating layer 3 insulates the quenching layer 1 and the temperature holding layer 2 so that heat is not transmitted from the outside.
  • the heat insulating material of the heat insulating layer 3 is formed using a fiber heat insulating material (glass wool or the like), a foamed resin heat insulating material (foamed polystyrene or foamed urethane), a vacuum heat insulating material, a cloth, or the like.
  • the cold insulation member 10 Since the cold insulation member 10 according to the present embodiment has the heat insulating layer 3 arranged outside the temperature holding layer 2, the cold heat of the quenching layer 1 and the temperature holding layer 2 is prevented from being released to the outside, and the cooling effect is improved. be able to.
  • Example 8 A cold insulation member 10 according to Example 8 of the present embodiment will be described with reference to FIG.
  • the cold insulating member 10 of the present embodiment is characterized in that it has a quenching layer 1 and a temperature holding layer 2 divided into a plurality of parts.
  • the cold insulation member 10 can arrange
  • the cold insulation member 10 by a present Example can cool a to-be-cooled material to a desired temperature range for a short time efficiently, and can hold
  • FIG. 18 (a) shows the cross-sectional shape of the cold insulation member 10 in the same manner as the state shown in FIG. 16 (b) and FIG. 17 (b).
  • FIG. 18B shows a state in which the cold insulating member 10 is observed from the temperature holding layer 2 side.
  • the cold insulation member 10 includes a quenching layer 1 and a temperature holding layer 2 divided into six.
  • One quenching layer 1 and temperature holding layer 2 are integrally formed and have a rectangular shape.
  • connection part 4 has contractibility, and the installation to the to-be-cooled object B of the cold insulating member 10 becomes easy.
  • silicon rubber, elastomer resin, sponge, or the like can be used as a material for forming the connection portion 4, but in the present embodiment, the material is not limited thereto.
  • FIG. 18C shows a cross-sectional shape of the cold insulating member 10 having the quenching layer 1 and the temperature holding layer 2 divided into three parts.
  • a cold insulating member 10 shown in FIG. 18C includes three independent quenching layers 1 and a temperature holding layer 2.
  • One quenching layer 1 and temperature holding layer 2 are integrally formed and have a curved surface shape having the same curvature as the container G of the object B to be cooled.
  • the cold insulating member 10 of this example has a plurality of quench layers 1 and temperature holding layers 2.
  • the plurality of quenching layers 1 and the temperature holding layer 2 are independently formed, and the cold insulation member 10 is used by being fixed to the cold object B by a string, a rubber string, or the like (not shown).
  • the cold insulating member 10 of this example can improve the cooling effect by increasing the adhesion to the cold object B.
  • FIG. 18 (d) shows the cold insulating member 10 in which the plurality of quenching layers 1 and temperature holding layers 2 shown in FIG. 18 (c) are connected to each other.
  • the cold insulating member 10 of the present example has a connection portion 5 that connects a plurality of quenching layers 1 and temperature holding layers 2.
  • silicon rubber, elastomer resin, or sponge can be used as a material for forming the connection portion 5, but in the present embodiment, the material is not limited thereto.
  • the cold insulating member 10 of this example is easy to install on the cold object B.
  • the cold insulating member 10 according to the present embodiment has a plurality of quench layers 1 and temperature holding layers 2.
  • One quenching layer 1 and temperature holding layer 2 are integrally formed. Further, the adjacent quenching layer 1 and the temperature holding layer 2 are connected to each other through connection portions 4 and 5.
  • the cold insulating member 10 according to the present embodiment can be easily installed on the cold object B.
  • the cold insulation member 10 according to Example 9 of the present embodiment has the same configuration as the cold insulation member 10 shown in FIGS. 16 and 17. 250 g of aqueous sodium chloride solution having a sodium chloride concentration of 10 wt% was used as the rapid thermal storage material 1a.
  • the rapid thermal storage material 1a of the present embodiment has a phase change temperature of about -7 ° C.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 250 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the temperature maintaining heat storage material 2a 153 g of sodium chloride aqueous solution having a sodium chloride concentration of 10 wt% was used for the temperature maintaining heat storage material 2a.
  • the temperature heat storage material 2a of the present embodiment has a phase change temperature of about ⁇ 7 ° C.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N'-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 153 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • the heat insulating layer 3 a heat insulating sheet having a thickness of about 1 mm in which aluminum was deposited on one surface of a rectangular polyethylene (PE) was
  • FIG. 19A shows an object to be cooled B when the object to be cooled B is cooled by assuming the actual use situation by using the cold insulating member 10 according to the present embodiment cooled to about ⁇ 18 ° C. in the freezer. It is a graph which shows the temperature change of the sparkling wine contained.
  • the horizontal axis represents time (min), and the vertical axis represents temperature (° C.).
  • a glass wine bottle having a height of 30 cm was used as the container G, and the temperature of the sparkling wine in the wine bottle was measured at three locations in the wine bottle: an upper part, a middle part, and a lower part.
  • the upper temperature measurement location in the wine bottle is 13 cm vertically from the top of the wine bottle, and the middle temperature measurement location in the wine bottle is 17 cm vertically from the top of the wine bottle.
  • the lower temperature measurement location was 22 cm vertically downward from the upper end of the wine bottle.
  • the curve indicated by the dotted line in FIG. 19A indicates the temperature change of the sparkling wine in the upper part of the wine bottle, the curve indicated by the alternate long and short dash line indicates the temperature change of the sparkling wine in the inner part of the wine bottle, and the curve indicated by the solid line is the wine It shows the temperature change of the sparkling wine at the bottom of the bottle.
  • the temperature inside the wine bottle 30 minutes after the start of cooling is not measured.
  • a total of 400 ml of sparkling wine is poured from the container G into the glass, so that the liquid level of the sparkling wine in the wine bottle is lower than the temperature measurement point in the middle of the wine bottle. Became. For this reason, the temperature inside the wine bottle 60 minutes after the start of cooling is not measured.
  • FIG.19 (b) is the table
  • the target temperature shown in the table of FIG. 19B indicates the target temperature of the sparkling wine when cooling the sparkling wine by using the cold insulation member 10 of the present embodiment, and the target temperature is 4 of the drinking temperature of the sparkling wine. -6 ° C.
  • the target arrival time shown in the table of FIG. 19B indicates the target time required for cooling the sparkling wine at room temperature to the target temperature using the cold insulation member 10 of the present embodiment. 30 minutes.
  • the arrival time shown in the table of FIG. 19B is the temperature change of the sparkling wine shown in FIG. 19A, and the temperature of the sparkling wine in the wine bottle in the middle is from room temperature to the target temperature upper limit of 6 ° C. The time required to reach was shown, and the arrival time was 27 minutes.
  • the target holding time shown in the table of FIG. 19 (b) shows the target time for holding the sparkling wine at room temperature at the target temperature using the cold insulating member 10 of this embodiment, and the target holding time is 60 minutes. did.
  • the holding time shown in the table of FIG. 19B is the temperature of the sparkling wine shown in FIG. 19A, and the temperature of the sparkling wine in the lower part of the wine bottle is held at the target temperature of 4 to 6 ° C.
  • the holding time was 59 minutes.
  • the cold insulation member 10 according to the present embodiment rapidly cools the sparkling wine contained in the object B to be cooled from the normal temperature to 6 ° C., which is the upper limit of the target temperature, in 27 minutes within the target arrival time, and then reaches the target holding time. It was possible to maintain at the target temperature of 4-6 ° C. for a corresponding 59 minutes.
  • the temperature of 200 ml of sparkling wine poured into the glass 30 minutes after the start of cooling of the object to be cooled B is 8.7 ° C.
  • the sparkling wine poured into the glass 45 minutes after the start of cooling of the object to be cooled B The temperature of 100 ml was 6.5 ° C.
  • the temperature of 100 ml of sparkling wine poured into the glass 30 minutes after the start of cooling of the object to be kept B was 6.6 ° C.
  • the cold insulating member 10 according to the present embodiment has a heat insulating layer 3 disposed outside the temperature holding layer 2. For this reason, the cold insulating member 10 according to the present embodiment can improve the cooling effect of the quenching layer 1 by reducing the heat transfer with the outside, and the rapid thermal storage material than the cold insulating member 10 according to the first and fourth embodiments. The amount of 1a can be reduced.
  • the same heat storage material is used for the rapid cooling heat storage material 1a and the temperature holding heat storage material 2a.
  • the rapid cooling layer 1 having the rapid cooling heat storage material 1a is disposed in the periphery of the object to be cooled B, and the temperature retaining layer 2 having the temperature retaining heat storage material 2a is disposed outside the rapid cooling layer 1.
  • the temperature of the material 2a is moderate as compared with the rapid cooling heat storage material 1a. For this reason, even after the rapid cooling heat storage material 1a becomes substantially the same temperature as the temperature of the object to be cooled B, the temperature holding layer 2 is covered by the temperature difference between the rapid cooling heat storage material 1a and the temperature holding heat storage material 2a.
  • maintain a to-be-cooled object at target temperature can be lengthened.
  • the cold insulation member 10 rapidly cools the sparkling wine contained in the object to be kept B from the normal temperature to 6 ° C., which is the upper limit of the target temperature, in 27 minutes within the target arrival time, It was possible to maintain at the target temperature of 4-6 ° C. over the same 59 minutes.
  • the cold insulation member 10 by a present Example can reduce the expense of material by reducing the quantity of the rapid thermal storage material.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for sparkling wine.
  • the cold insulation member 10 according to Example 10 of the present embodiment has the same configuration as the cold insulation member 10 shown in FIGS. 16 and 17. 165 g of sodium chloride aqueous solution having a sodium chloride concentration of 10 wt% was used for the rapid thermal storage material 1a.
  • the rapid thermal storage material 1a of the present embodiment has a phase change temperature of about -7 ° C.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 250 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the temperature maintaining heat storage material 2a was prepared by mixing 75 g of a TBAB aqueous solution having a TBAB concentration of 25 wt% as a main agent and 75 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt%.
  • 75 g of a TBAB aqueous solution having a TBAB concentration of 25 wt% is mixed with 75 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt%
  • the TBAB concentration is 12.5 wt% and the sodium chloride concentration is 10 wt%.
  • % Of the temperature-retaining heat storage material 2a is produced.
  • the temperature-retaining heat storage material 2a of this example has a phase change temperature of TBAB clathrate hydrate (a temperature at which it is decomposed into water and TBAB) of about 11.5 ° C., and a phase change temperature of a sodium chloride aqueous solution.
  • the phase change temperature is about -21 ° C.
  • the liquid phase sodium chloride aqueous solution portion and the solid phase TBAB clathrate hydrate portion coexist.
  • the shape of the heat storage material 2a for temperature maintenance can be changed in accordance with the shape of the object B to be cooled.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N′-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 150 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • the heat insulating layer 3 a heat insulating sheet having a thickness of about 1 mm in which aluminum was deposited on one surface of a rectangular polyethylene (PE) was used.
  • FIG. 20 (a) shows an object B to be cooled when the object to be cooled B is cooled by assuming the actual use situation by using the cold insulator 10 according to the present embodiment cooled to about ⁇ 18 ° C. in the freezer. It is a graph which shows the temperature change of the white wine contained in.
  • the horizontal axis represents time (min), and the vertical axis represents temperature (° C.).
  • a glass wine bottle having a height of 30 cm was used as the container G, and the temperature of white wine in the wine bottle was measured at three locations, an upper portion, a middle portion, and a lower portion in the wine bottle.
  • the upper temperature measurement location in the wine bottle is 13 cm vertically from the top of the wine bottle
  • the middle temperature measurement location in the wine bottle is 17 cm vertically from the top of the wine bottle.
  • the lower temperature measurement location was 22 cm vertically downward from the upper end of the wine bottle.
  • the curve indicated by the dotted line in FIG. 20A indicates the temperature change of the white wine in the upper part of the wine bottle
  • the curve indicated by the alternate long and short dash line indicates the temperature change of the white wine in the middle part of the wine bottle
  • the curve indicated by the solid line is the wine The temperature change of the white wine at the bottom of the bottle is shown.
  • FIG. 20B is a table summarizing experimental results of the cold insulation performance of the heat storage member 10 according to this example.
  • the target temperature shown in the table of FIG. 20B indicates the target temperature of white wine when the white wine is cooled using the cold insulation member 10 of the present embodiment, and the target temperature is 9 times the temperature of drinking white wine. ⁇ 11 ° C.
  • the target arrival time shown in the table of FIG. 20B indicates the target time required to cool the white wine at room temperature to the target temperature using the cold insulation member 10 of the present embodiment. 30 minutes.
  • the target holding time shown in the table of FIG. 20B indicates the target time for holding white wine at room temperature at the target temperature using the cold insulating member 10 of the present embodiment, and the target holding time is 90 minutes. did.
  • the retention time shown in the table of FIG. 20B is the temperature of the white wine shown in FIG. 20A, and the temperature of the white wine in the lower part of the wine bottle is maintained at the target temperature of 9 to 11 ° C. The holding time was 88 minutes.
  • the cold insulation member 10 rapidly cools the white wine contained in the object to be kept B from the normal temperature to 11 ° C., which is the upper limit of the target temperature, in 22 minutes within the target arrival time, and then the target holding time.
  • the target temperature of 9 to 11 ° C. could be maintained for a corresponding 88 minutes.
  • the temperature of 200 ml of white wine poured into the glass 30 minutes after the start of cooling of the object to be cooled B is 12.6 ° C.
  • the white wine poured into the glass 45 minutes after the start of cooling of the object to be cooled B The temperature of 100 ml was 10.8 ° C.
  • the temperature of 100 ml of white wine poured into the glass 60 minutes after the start of cooling of the object to be cooled B was 10.5 ° C.
  • the cold insulating member 10 according to the present embodiment has a heat insulating layer 3 disposed outside the temperature holding layer 2. For this reason, the cold insulation member 10 according to the present embodiment can reduce the heat transfer with the outside and improve the cooling effect of the quenching layer 1, and the rapid thermal storage material than the cold insulation member 10 according to the second and fifth embodiments. The amount of 1a can be reduced.
  • the cold insulation member 10 rapidly cools the white wine contained in the object to be kept B from the normal temperature to 11 ° C. which is the upper limit of the target temperature in 22 minutes within the target arrival time, and then the target holding time and The target temperature of 9 to 11 ° C. could be maintained over the same 88 minutes.
  • the cold insulation member 10 by a present Example can reduce the cost of material by reducing the quantity of the rapid thermal storage material 1a.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for white wine.
  • the cold insulation member 10 according to Example 11 of the present embodiment has the configuration shown in FIGS. 16 and 17.
  • 75 g of sodium chloride aqueous solution having a sodium chloride concentration of 10 wt% was used for the rapid thermal storage material 1a.
  • the rapid thermal storage material 1a of the present embodiment has a phase change temperature of about -7 ° C.
  • the gelling agent was added to the heat storage material 1a for rapid cooling, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%, the N, N′-methylenebisacrylamide monomer was 0.1%, and the 2-ketoglutaric acid was 0.12% with respect to 250 g of the rapid thermal storage material 1a.
  • the rapid cooling heat storage material 1a may not be gelled.
  • the heat storage material 2a for maintaining temperature was prepared by mixing 60 g of a TBAB aqueous solution having a TBAB concentration of 25 wt% as a main ingredient with 60 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt%.
  • a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% By mixing 60 g of a sodium chloride aqueous solution having a sodium chloride concentration of 20 wt% with a 60 g TBAB aqueous solution having a TBAB concentration of 25 wt%, the TBAB concentration is 12.5 wt% and the sodium chloride concentration is 10 wt%.
  • % Of the temperature-retaining heat storage material 2a is produced.
  • the temperature-retaining heat storage material 2a of this example has a phase change temperature of TBAB clathrate hydrate (a temperature at which it is decomposed into water and TBAB) of about 11.5 ° C., and a phase change temperature of a sodium chloride aqueous solution.
  • the phase change temperature is about -21 ° C.
  • the liquid phase sodium chloride aqueous solution portion and the solid phase TBAB clathrate hydrate portion coexist.
  • the shape of the heat storage material 2a for temperature maintenance can be changed in accordance with the shape of the object B to be cooled.
  • the gelatinizer was added to the heat storage material 2a for temperature maintenance, and it gelatinized.
  • the gelling agent acrylamide monomer, N, N′-methylenebisacrylamide monomer, and 2-ketoglutaric acid were used.
  • the acrylamide monomer was 5%
  • the N, N′-methylenebisacrylamide monomer was 0.1%
  • the 2-ketoglutaric acid was 0.12% with respect to 150 g of the temperature maintaining heat storage material 2a.
  • the temperature maintaining heat storage material 2a may not be gelled.
  • the heat insulating layer 3 a heat insulating sheet having a thickness of about 1 mm in which aluminum was deposited on one surface of a rectangular polyethylene (PE) was used.
  • FIG. 21 (a) shows an object B to be cooled when the object to be cooled B is cooled by using the cold insulating member 10 according to the present embodiment cooled to about ⁇ 18 ° C. in the freezer. It is a graph which shows the temperature change of the red wine contained in.
  • the horizontal axis represents time (min), and the vertical axis represents temperature (° C.).
  • a glass wine bottle having a height of 30 cm was used as the container G, and the temperature of red wine in the wine bottle was measured at three locations, the upper part, the middle part, and the lower part in the wine bottle.
  • the upper temperature measurement location in the wine bottle is 13 cm vertically from the top of the wine bottle
  • the middle temperature measurement location in the wine bottle is 17 cm vertically from the top of the wine bottle.
  • the lower temperature measurement location was 22 cm vertically downward from the upper end of the wine bottle.
  • the curve indicated by the dotted line in FIG. 21A shows the temperature change of the red wine in the upper portion of the wine bottle
  • the curve indicated by the alternate long and short dash line indicates the temperature change of the red wine in the middle portion of the wine bottle
  • the curve indicated by the solid line is in the wine bottle It shows the temperature change of the lower red wine.
  • the temperature of the upper part in the wine bottle after 30 minutes after the start of cooling is not measured.
  • a total of 400 ml of red wine is poured from the container G into the glass, so that the liquid level of the red wine in the wine bottle is lower than the temperature measurement portion in the middle of the wine bottle. It was. For this reason, the temperature inside the wine bottle 60 minutes after the start of cooling is not measured.
  • FIG. 21B is a table summarizing experimental results of the cold insulation performance of the heat storage member 10 according to this example.
  • the target temperature shown in the table of FIG. 21 (b) indicates the target temperature of red wine when the red wine is cooled using the cold insulation member 10 of the present embodiment, and the target temperature is 16-18 ° C., which is the drinking temperature of red wine. It was.
  • the target arrival time shown in the table of FIG. 21B is the temperature change of the red wine shown in FIG. 21A, and the temperature of the red wine in the wine bottle reaches the target temperature upper limit of 18 ° C. from the normal temperature. The time required for this was shown, and the arrival time was 13 minutes.
  • the target holding time shown in the table of FIG. 21B shows the target time for holding the red wine at room temperature at the target temperature using the cold insulating member 10 of this embodiment, and the target holding time is 120 minutes. .
  • 21 (b) shows that the temperature of the red wine in the lower part of the wine bottle is maintained at the target temperature of 16 to 18 ° C. in the graph of the temperature change of the red wine shown in FIG. 21 (a).
  • Time, and the retention time was 127 minutes.
  • the cold insulation member 10 according to the present embodiment rapidly cools the red wine contained in the object to be kept B from the normal temperature to 18 ° C., which is the upper limit of the target temperature, in 13 minutes within the target arrival time, and then the target holding time.
  • the target temperature of 16-18 ° C. could be maintained for a long 127 minutes.
  • the temperature of 200 ml of red wine poured into the glass 30 minutes after the start of cooling of the object B is 17.5 ° C.
  • 100 ml of red wine poured into the glass 45 minutes after the start of cooling of the object B to be cooled The temperature was 16.6 ° C.
  • the temperature of 100 ml of red wine poured into the glass 60 minutes after the start of cooling of the object to be cooled B was 16.7 ° C.
  • the cold insulation member 10 according to the present embodiment has the heat insulating layer 3 disposed outside the temperature holding layer 2. For this reason, since the cold insulating member 10 according to the present embodiment improves the cooling effect of the rapid cooling layer 1, the amount of the rapid thermal storage material 1a is reduced as compared with the cold insulating member 10 according to the third and sixth embodiments. be able to.
  • the cold insulation member 10 of the present embodiment rapidly cools the red wine contained in the object to be kept B from the normal temperature to 18 ° C., which is the upper limit of the target temperature, in 13 minutes within the target arrival time, and then the target holding time.
  • the target temperature of 16-18 ° C. could be maintained for a long 127 minutes.
  • the cold insulation member 10 of a present Example can reduce the cost of material by reducing the quantity of the rapid thermal storage material.
  • the cold insulation member 10 by a present Example can be used suitably as a wine cooler for red wine.
  • the cold insulation member 10 has a cylindrical shape by which the upper surface and the bottom face were opened, this invention is not limited to this.
  • the bottom of the cold insulating member 10 may be closed by the rapid cooling layer 1 and the temperature holding layer 2.
  • the cold insulation member 10 may have a hollow prismatic shape.
  • shaft of the cold insulating member 10 is not restricted circularly, An elliptical shape or a polygonal shape more than a triangle may be sufficient.
  • the cold insulation member 10 is used as a wine cooler, but the present invention is not limited thereto.
  • the cold insulation member according to the present invention may be used for cooling fresh food products such as vegetables, fish, meat, fruits, processed foods, organs used for organ transplantation, and the like.
  • the cold insulation member according to the present invention may be installed in a cold insulation container such as a cooler box.
  • the cold insulation container provided with the cold insulation member according to the present invention can be used in a wine cooler, a fresh food product, a processed food, a cooler box that keeps an organ or the like cold.
  • the present invention can be widely used for a cold insulation member provided with a heat storage material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Table Equipment (AREA)
  • Packages (AREA)

Abstract

 本発明は、被保冷物を所望の温度帯に冷却できる保冷部材を提供することを目的とする。 保冷部材10は、被保冷物を所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aと、急冷用蓄熱材1aを収容する急冷用蓄熱材収容部1bとを備え、被保冷物の周辺部に配置される急冷層1と、被保冷物を所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aと、温度保持用蓄熱材2aを収容する温度保持用蓄熱材収容部2bとを備え、急冷層1の外側に配置される温度保持層2とを有している。

Description

保冷部材
 本発明は保冷部材に関し、特に、蓄熱材を用いた保冷部材に関する。さらに、ワイン等を所望の温度帯に急冷し、所望の温度帯で保持するワインクーラーに関する。
 従来、食事の際に供されるワイン等の飲料を所望の温度に保持させるためにワインクーラーが用いられている。また、ワイン等の飲料を店頭販売する際にも所望の温度に維持しておくためにワインクーラーが用いられている。
 特許文献1には、従来の一般的なワインクーラーは、ワインボトルに水滴が付着するため、ワインをグラスに注ぐためにボトルをワインクーラーから取り出す毎に、ボトルをタオルで拭いて水滴を取り除く必要があったことを課題として、簡単な構造で、ワインボトルに水滴が付着しにくく、ワインボトルのラベルを視認できるワインクーラーを提供することを目的とする技術が開示されている。特許文献1に記載された技術では、円筒部及び底面部からなる保冷部材、または竹を模した保冷部材の内壁に、保冷材を着脱自在に取り付け可能とする固定手段を設け、保冷部材の内側に保冷材の冷気を充満させることにより、ワインを最適な温度に保つことを特徴とし、また、固定手段は、磁石、面ファスナー、容器の内壁に設けた段部(リブ)等であることを特徴とすることが記載されている。
特開2010-047313号公報
 しかしながら、特許文献1に開示された技術は、ボトルに水滴が付着しにくく、ボトルのラベルを視認できるワインクーラーを提供することを目的としており、ワインボトルを所望の時間内に所望の温度帯に急冷し、所望の温度以上に亘って所望の温度帯で保持するための具体的手段は開示されていない。
 本発明の目的は、被保冷物を所望の温度帯に冷却できる保冷部材を提供することにある。
 上記目的を達成するための本発明の一態様によれば、
 被保冷物を所望の時間内で所望の温度帯に急冷する急冷用蓄熱材と、前記急冷用蓄熱材を収容する急冷用蓄熱材収容部とを備え、前記被保冷物の周辺部に配置される急冷層と、
 前記被保冷物を前記所望の時間以上に亘って前記所望の温度帯に保持する温度保持用蓄熱材と、前記温度保持用蓄熱材を収容する温度保持用蓄熱材収容部とを備え、前記急冷層の外側に配置される温度保持層と
を有する保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記温度保持用蓄熱材は、前記急冷用蓄熱材の相変化温度より高い相変化温度を有する保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記急冷用蓄熱材は、前記所望の温度帯より低い相変化温度を有する
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記温度保持用蓄熱材は、前記所望の温度帯より低い相変化温度を有する
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記急冷用蓄熱材は、前記被保冷物を急冷する温度帯では一部が固相状態であり、他の一部が液相状態である
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記温度保持用蓄熱材は、前記被保冷物の所望の温度に保持する温度帯では一部が固相状態であり、他の一部が液相状態である
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記温度保持層の外側に配置され、断熱材を備えた断熱層を有する
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記急冷用蓄熱材の潜熱量と顕熱量との合計値は、前記被保冷物を前記所望の温度帯に冷却するために必要な冷却量より大きく、
 前記温度保持用蓄熱材は、前記被保冷物を前記所望の時間以上に亘って前記所望の温度帯に保持するために必要な潜熱量を有する
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記急冷層は、前記急冷用蓄熱材の前記相変化温度で柔軟性を有する
保冷部材であってもよい。
 上記本発明の保冷部材であって、
 前記急冷層を複数有し、
 前記複数の急冷層は、互に接続されている
保冷部材であってもよい。
 本発明によれば、被保冷物を所望の温度帯に冷却できる保冷部材を実現できる。
本発明の一実施の形態による保冷部材10の断面形状を示す図である。 本発明の一実施の形態による保冷部材10の断面形状を示す図である。 本発明の一実施の形態による保冷部材10の急冷用蓄熱材1aの設計量を説明する図である。 本発明の一実施の形態の実施例1による保冷部材10の保冷性能の実験結果を示すグラフである。 比較例1による保冷部材の保冷性能の実験結果を示すグラフである。 比較例2による保冷部材の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例2による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例3による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態による保冷部材10の断面形状を示す図である。 本発明の一実施の形態による保冷部材10の断面形状を示す図である。 本発明の一実施の形態の実施例4による保冷部材10の保冷性能の実験結果を示すグラフである。 比較例3による保冷部材の保冷性能の実験結果を示すグラフである。 比較例4による保冷部材の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例5による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例6による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例7による保冷部材10の断面形状を示す図である。 本発明の一実施の形態の実施例7による保冷部材10の断面形状を示す図である。 本発明の一実施の形態の実施例8による保冷部材10を示す図である。 本発明の一実施の形態の実施例9による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例10による保冷部材10の保冷性能の実験結果を示すグラフである。 本発明の一実施の形態の実施例11による保冷部材10の保冷性能の実験結果を示すグラフである。
 本発明の一実施の形態による保冷部材10について、図1~図21を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示している。図1および図2は、本実施の形態による保冷部材10の断面形状を示している。図1(a)および図2(a)は、円筒形状の保冷部材10の中心軸を含む平面で切断した断面を示し、図1(b)および図2(b)はそれぞれ図1(a)、図2(a)に示す保冷部材10の中心軸に直交するA-A線で保冷部材10を切断した断面を示している。保冷部材10は、例えば液体Lが入ったガラス瓶等の容器Gを含む被保冷物Bを所望の時間内で所望の温度帯に急冷し、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために用いられる。図1(a)、(b)は、保冷部材10で被保冷物Bを保冷している状態を示しており、図2(a)、(b)は、保冷部材10から被保冷物Bを取り去った状態を示している。保冷部材10は、上面および底面が開口した中空円筒形状を備え、内側から外側に向かって順に急冷層1と温度保持層2とを有している。図1に示すように、急冷層1は、保冷部材10の使用時において、被保冷物Bの周辺部に配置される。本実施の形態では、保冷部材10はガラス瓶等の容器Gを含む被保冷物Bを保冷するために用いられているので、急冷層1は被保冷物Bの外周部を覆うように配置されている。また、温度保持層2は、急冷層1の外周部を覆うように急冷層1の外側に配置されている。
 急冷層1は、急冷用蓄熱材1aと、急冷用蓄熱材1aを収容する急冷用蓄熱材収容部1bとを有している。また、温度保持層2は、温度保持用蓄熱材2aと、温度保持用蓄熱材2aを収容する温度保持用蓄熱材収容部2bとを有している。急冷用蓄熱材1aおよび温度保持用蓄熱材2aは、被保冷物Bを所望の温度帯に冷却するために、所望の温度帯より低い相変化温度を有している。また、温度保持用蓄熱材2aは、急冷用蓄熱材1aの相変化温度より高い相変化温度を有している。相変化温度は、急冷用蓄熱材1aおよび温度保持用蓄熱材2aが固相と液相間で相変化する温度である。急冷用蓄熱材1aは、所定の相変化温度で固相と液相との間で可逆的に相変化する。同様に、温度保持用蓄熱材2aは、所定の相変化温度で固相と液相との間で可逆的に相変化する。
 保冷部材10を不図示の冷却機構を用いて急冷用蓄熱材1aの相変化温度より低い温度で所定時間に亘って冷却することにより、急冷用蓄熱材1aおよび温度保持用蓄熱材2aを固相状態に相変化させることができる。急冷用蓄熱材1aおよび温度保持用蓄熱材2aが固相状態になったら、急冷層1が被保冷物Bの周囲に位置するように保冷部材10を配置する。急冷用蓄熱材1aは、室温(例えば、25℃)と同じ温度(常温)である被保冷物Bの容器G内の液体Lを所望の時間内で所望の温度帯に急冷するために用いられる。保冷用蓄熱材1bは、被保冷物Bの容器G内の液体Lを所望の時間以上に亘って前記所望の温度帯に保持するために用いられる。このため、急冷用蓄熱材1aおよび温度保持用蓄熱材2aは、室温(常温)よりも低い相変化温度を有している。
 保冷部材10は、より具体的には図1に示すように、円筒状の開口部内に被保冷物Bを挿し込むようにして被保冷物Bに設置されて、室温(例えば、25℃)中で使用される。保冷部材10により保冷される被保冷物Bの液体Lとしては、各種の飲料が挙げられ、特に室温より低い温度が飲み頃温度となる飲料が好適である。例えば、4℃~6℃程度が飲み頃温度であるスパークリングワイン、9℃~11℃程度が飲み頃温度である白ワインおよび16℃~18℃程度が飲み頃温度である赤ワインは、本実施の形態による保冷部材10を保冷に用いることが好ましい。また、液体Lは、水より粘性が高い液体や固形物が混入された液体でもよい。さらには、液体Lに代えて固体を保冷してもよい。容器Gとしては、ガラス製やセラミック製のビン、鉄製やアルミニウム製の缶、ペットボトル等が挙げられる。
 ここで、蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施の形態では、潜熱蓄熱および顕熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相変化の熱エネルギーを蓄える。潜熱蓄熱は、蓄熱密度が高く、出力温度が一定である。顕熱蓄熱は、物質の顕熱を利用して、物質の温度変化分の熱エネルギーを蓄える。
 急冷用蓄熱材1aは、温度保持用蓄熱材2aよりも低い相変化温度を有している。このため、保冷部材10の使用時において、急冷用蓄熱材1aは温度保持用蓄熱材2aよりも早く相変化温度に到達する。このため、保冷部材10は、急冷用蓄熱材1aの潜熱を利用した保冷を温度保持用蓄熱材2aの潜熱を利用した冷却よりも先に行う。急冷用蓄熱材1aは、潜熱を利用した冷却を行っている間、温度がほぼ一定になる。また、急冷用蓄熱材1aは、被保冷物Bの所望の温度帯よりも十分に低い(例えば、15℃~30℃低い)相変化温度を有している。このため、急冷用蓄熱材1aが潜熱を利用した冷却を行っている状態では、被保冷物Bが相対的に短時間で所望の温度帯に急冷される。また、温度保持用蓄熱材2aも急冷用蓄熱材1aの相変化温度程度に冷却される。
 急冷用蓄熱材1aは、固相から液相への相変化が完了すると、潜熱を利用した冷却を終了し、顕熱を利用した冷却を開始する。これにより、被保冷物Bは、所望の温度帯に冷却される。また、保冷部材10の全体の温度が上昇し、温度保持用蓄熱材2aは相変化温度に到達する。これにより、保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した冷却を開始する。温度保持用蓄熱材2aは、潜熱を利用した冷却を行っている間、温度がほぼ一定になる。急冷層1は、温度保持層2と接するため、急冷用蓄熱材1aは温度保持用蓄熱材2aの相変化温度程度に冷却される。また、温度保持用蓄熱材2aの相変化温度は、被保冷物Bの所望の温度帯よりも数℃(例えば、2℃~6℃)低くなっている。このため、保冷部材10は、急冷層1を介して被保冷物Bを温度保持用蓄熱材2aにより冷却するので、温度保持用蓄熱材2aの相変化温度よりも高い所望の温度で被保冷物Bの温度を保持することができる。このように、潜熱を利用した冷却を行った後の急冷層1は、温度保持層2の冷却により被保冷物Bが所望の温度よりも冷えすぎないようにする緩衝層としての機能を有する。また、保冷部材10は、温度保持用蓄熱材2aの固相から液相への相変化温度が完了するまで、被保冷物Bを所望の温度帯に保冷する。これにより、保冷部材10は、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
 急冷層1に備えられる急冷用蓄熱材1aの役割は、潜熱と顕熱を利用して速やかに被保冷物Bの熱を吸収することである。また、温度保持層2に備えられる温度保持用蓄熱材2aの役割は、潜熱と顕熱を利用して被保冷物Bを所望の温度帯に保つことである。このように、保冷部材10は、急冷層1と温度保持層2の機能を分離させていることに特徴を有している。
 急冷用蓄熱材1aおよび保冷用蓄熱材2aには、例えば、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、水、無機塩水溶液等が用いられる。無機塩水溶液の無機塩には、例えば、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アンモニウム(NHCl)、炭酸水素カリウム(KHCO)等が挙げられるが、本実施の形態においては急冷用蓄熱材1aおよび保冷用蓄熱材2aに用いることができる無機塩はこれらに限定されない。
 また、急冷用蓄熱材1aおよび保冷用蓄熱材2aには、例えば、包接水和物や無機塩水和物等が用いられる。急冷用蓄熱材1aおよび保冷用蓄熱材2aに用いられる包接水和物として、テトラブチルアンモニウムブロミド(TBAB)、テトラブチルアンモニウムクロリド(TBAC)等の四級アンモニウム塩の分子をゲスト分子とする包接水和物等が挙げられる。包接水和物等が用いられた急冷用蓄熱材1aおよび保冷用蓄熱材2aは、相変化温度で四級アンモニウム塩の分子をゲスト分子とする包接水和物と、四級アンモニウム塩を含む水溶液とに可逆的に変化する。急冷用蓄熱材1aおよび保冷用蓄熱材2aは、包接水和物の状態で固相状態となり、水溶液の状態で液相状態となる。なお、本実施の形態においては急冷用蓄熱材1aおよび保冷用蓄熱材2aに用いることができる包接水和物はこれらに限定されない。
 また、急冷用蓄熱材1aおよび保冷用蓄熱材2aに用いられる無機塩水和物として、硫酸ナトリウム十水和物、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム十二水和物とリン酸水素二カリウム六水和物との二元系組成物(融解点5℃)、硝酸リチウム三水和物を主成分とする硝酸リチウム三水和物と塩化マグネシウム六水和物との二元系組成物(融解点8~12℃)又は硝酸リチウム三水和物-塩化マグネシウム六水和物-臭化マグネシウム六水和物の三元系組成物(融解点5.8~9.7℃)等が挙げられるが、本実施の形態においてはこれらの無機塩水和物に限定されない。
 急冷用蓄熱材1aによる被保冷物Bの冷却効果を向上させるためには、急冷層1と被保冷物Bとの接触面積が大きくすることが好ましい。このため、急冷層1は被保冷物Bの形状に併せて形状変化できることが好ましい。急冷層1と被保冷物Bとの接触面積を大きくするために、保冷部材10の使用状態において、急冷層1の急冷用蓄熱材1aは、被保冷物Bを急冷する温度帯では一部が固相状態であり、他の一部が液相状態になるようにしてもよい。これにより、急冷層1は被保冷物Bの形状に併せて形状変化できる柔軟性を有することができる。例えば、急冷用蓄熱材1aの主剤に相変化温度が-11℃である塩化カリウム水溶液を用いる場合には、相変化温度が-21℃である塩化ナトリウム水溶液を塩化カリウム水溶液に混合する。この際、急冷用蓄熱材1aにおける塩化ナトリウムの濃度を共晶濃度よりも小さくする。これにより、急冷用蓄熱材1aは、-11℃付近と-21℃付近とに相変化温度を備えることになる。急冷用蓄熱材1aは、主剤である塩化カリウム水溶液の潜熱を利用した冷却を行うので、塩化カリウム水溶液が固相状態であり、塩化ナトリウム水溶液が液相状態である状態で使用される。保冷部材10は、急冷層1の急冷用蓄熱材1aが潜熱を利用した冷却を行っている場合に、急冷層1内に固相状態の部分と液相状態の部分とが共存する状態にできるので、急冷層1と被保冷物Bとの接触面積を大きくすることができる。これにより、保冷部材10は、急冷層1の冷却効果を高めることができる。
 また、温度保持用蓄熱材2aによる被保冷物Bの冷却効果を向上させるためには、温度保持層2が被保冷物Bの形状に併せて形状変化できることが好ましい。このため、保冷部材10の使用状態において、温度保持層2の温度保持用蓄熱材2aは、被保冷物Bを冷却する温度帯では一部が固相状態であり、他の一部が液相状態になるようにしてもよい。これにより、温度保持層2は被保冷物Bの形状に併せて形状変化できる柔軟性を有することができる。例えば、温度保持用蓄熱材2aの主剤に相変化温度が0℃である水を用いる場合には、相変化温度が-21℃である塩化ナトリウム水溶液を当該水に混合する。この際、温度保持用蓄熱材2aにおける塩化ナトリウムの濃度を共晶濃度よりも小さくする。これにより、温度保持用蓄熱材2aは、0℃付近と-21℃付近とに相変化温度を備えることになる。温度保持用蓄熱材2aは、主剤である水の潜熱を利用した冷却を行うので、水が固相状態であり、塩化ナトリウム水溶液が液相状態である状態で使用される。保冷部材10は、温度保持層2の温度保持用蓄熱材2aが潜熱を利用した冷却を行っている場合に、温度保持層2内に固相状態の部分と液相状態の部分とが共存する状態にできるので、温度保持層2と急冷層1との接触面積を大きくし、温度保持層2の冷却効果を高めることができる。
 また、急冷用蓄熱材1aと温度保持用蓄熱材2aとはゲル化されていてもよい。ゲル化された急冷用蓄熱材1aと温度保持用蓄熱材2aにはゲル化剤が含有されている。ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には固相状態となる。ゲル化した急冷用蓄熱材1aと温度保持用蓄熱材2aは、固相と液相との間で可逆的に相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
 ゲル化剤としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガムとローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化剤の一例として挙げられるが、本実施の形態においてゲル化剤はこれらに限定されない。
 また、ゲル化剤として、アクリルアミドモノマー、N,N’-メチレンビスアクリルアミドモノマー、2-ケトグルタル酸等が挙げられるが、本実施の形態においてゲル化剤はこれらに限定されない。
 また、急冷用蓄熱材収容部1bおよび温度保持用蓄熱材収容部2bは、例えば、樹脂材料で形成されている。急冷用蓄熱材収容部1bおよび温度保持用蓄熱材収容部2bに用いられる樹脂材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチック材料が挙げられる。急冷用蓄熱材収容部1bおよび温度保持用蓄熱材収容部2bには、こられのプラスチック材料を射出成形やブロー成形等によって成形したプラスチック容器からなる硬質包装材、または溶液法、溶融法、カレンダー法等によって成膜されたプラスチックフィルムからなる軟質包装材が用いられる。急冷用蓄熱材収容部1bおよび温度保持用蓄熱材収容部2bは、樹脂に限らずガラス、セラミック、金属等の無機材料を用いて形成されていてもよい。また、急冷用蓄熱材収容部1bおよび温度保持用蓄熱材収容部2bは、繊維質(グラスウール、綿、セルロース、ナイロン、カーボンナノチューブ、炭素繊維等)、粉末(アルミナ粉末、金属粉末、マイクロカプセル等)及びその他改質剤が含まれていてもよい。
 次に、図3を用いて、急冷用蓄熱材1aに水、炭酸水素カリウム水溶液または塩化カリウム水溶液を用いた場合の急冷用蓄熱材1aの設計量の計算方法について説明する。本例では、被保冷物Bの液体Lがスパークリングワイン、白ワインまたは赤ワインである場合の急冷用蓄熱材1aの設計量の計算方法について説明する。図3(a)は、750gの液体Lを含む被保冷物Bを25℃から所望の温度に冷却するために必要な冷却量を示している。スパークリングワインの所望の温度帯は、飲み頃温度である4℃~6℃とする。また、スパークリングワインの所望の温度は、所望の温度帯の中心値の5℃とする。また、白ワインの所望の温度帯は、飲み頃温度である9℃~11℃とする。また、白ワインの所望の温度は、所望の温度帯の中心値の10℃とする。また、赤ワインの所望の温度帯は、飲み頃温度である16℃~18℃とする。また、赤ワインの所望の温度は、所望の温度帯の中心値の17℃とする。また、スパークリングワイン、白ワインおよび赤ワインの比熱の値には、水の比熱(4.2J/(g・℃))を簡易的に用いている。
 750gのワインを25℃から所望の温度に冷却するために必要な冷却量は、次の式(1)で求めることができる。
 必要冷却量=0.75(kg)×冷却温度(℃)×4.2J/(g・℃)・・・(1)
 ここで、冷却温度は、25℃から所望の温度(℃)を減算した値である。
 上記の式(1)より、スパークリングワインを所望の温度である5℃に冷却するために必要な冷却量は63.0kJになり、白ワインを所望の温度である10℃に冷却するために必要な冷却量は47.3kJになり、赤ワインを所望の温度である17℃に冷却するために必要な冷却量は25.2kJになる。
 図3(b)は、被保冷物Bの液体Lがスパークリングワインである場合の急冷用蓄熱材1aの設計量について説明する表である。本例では、急冷用蓄熱材1aに、水、炭酸水素カリウム水溶液または塩化カリウム水溶液が用いられている。水を用いた急冷用蓄熱材1aは0℃に相変化温度を有する。また、炭酸水素カリウムの濃度が20wt%である炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aは約-6℃に相変化温度を有する。また、塩化カリウムの濃度が20wt%である塩化カリウム水溶液を用いた急冷用蓄熱材1aは約-11℃に相変化温度を有する。
 図3(b)には、各材料が用いられた急冷用蓄熱材1aの100gにおける潜熱量(kJ)、顕熱量(kJ)、冷却量(kJ)、実際の冷却量(kJ)および設計量(g)を示している。ここでの潜熱量は、実際の測定値を示している。潜熱量は、例えば、温度履歴法等により測定される。温度履歴法は、対象物の温度変化をモニタリングし、潜熱量が特定されている参照物質と比較して潜熱量を算出する手法である。また、ここでの顕熱量は、相変化が終了して液相状態になった急冷用蓄熱材1aが被保冷物Bを所望の温度に冷却する際に用いる熱量とする。この顕熱量は、所望の温度から急冷用蓄熱材1aの相変化温度を引いた値に水の比熱を掛けて求められる。なお、急冷用蓄熱材1aが固相状態での顕熱量は、潜熱量および急冷用蓄熱材1aが液相状態での顕熱量よりも小さいため、急冷用蓄熱材1aの冷却量として考慮していない。また、冷却量は、潜熱量と顕熱量との合計値である。また、実際の冷却量および設計量については後述する。
 図3(b)に示すように、水を用いた急冷用蓄熱材1aの潜熱量は30.5kJであり、顕熱量は2.1kJであり、冷却量は32.6kJである。また、炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は25.9kJであり、顕熱量は4.6kJであり、冷却量は30.5kJである。また、塩化カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は27.9kJであり、顕熱量は6.7kJであり、冷却量は34.6kJである。
 急冷層1の厚さを無視すると、急冷層1と被保冷物Bとが接触する面積は、急冷層1の表面積のうちの半分となる。急冷層1の表面積のうちの半分が被保冷物Bへの放熱面であるとし、急冷用蓄熱材1aの冷却量の半分が実際に被保冷物Bの冷却に用いられることと仮定する。したがって、急冷用蓄熱材1aの実際の冷却量は冷却量の半分の値になるので、水を用いた急冷用蓄熱材1aの実際の冷却量は16.3kJとなり、炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aの実際の冷却量は15.3kJとなり、塩化カリウム水溶液を用いた急冷用蓄熱材1aの実際の冷却量は17.3kJとなる。
 急冷用蓄熱材1aの設計量は、図3(a)に示す必要冷却量を実際の冷却量で割った値に計算の前提として用いた急冷用蓄熱材1aの質量(100g)を掛けることで求められる。したがって、水を用いた急冷用蓄熱材1aの設計量は387gとなり、炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aの設計量は412gとなり、塩化カリウム水溶液を用いた急冷用蓄熱材1aの設計量は364gとなる。
 図3(c)は、被保冷物Bの液体Lが白ワインである場合の急冷用蓄熱材1aの設計量について説明する表である。本例においても、図3(b)に示す例と同様に、水、炭酸水素カリウム水溶液または塩化カリウム水溶液が急冷用蓄熱材1aに用いられている。図3(c)には、各材料が用いられた急冷用蓄熱材1aの100gにおける潜熱量(kJ)、顕熱量(kJ)、冷却量(kJ)、実際の冷却量(kJ)および設計量(g)を示している。顕熱量、実際の冷却量および設計量は、図3(b)に示す例と同様の方法で求められる。
 図3(c)に示すように、水を用いた急冷用蓄熱材1aの潜熱量は30.5kJであり、顕熱量は4.2kJであり、冷却量は34.7kJであり、実際の冷却量は17.4kJであり、設計量は272gである。また、炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は25.9kJであり、顕熱量は6.7kJであり、冷却量は32.6kJであり、実際の冷却量は16.3kJであり、設計量は290gである。また、塩化カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は27.9kJであり、顕熱量は8.8kJであり、冷却量は36.7kJであり、実際の冷却量は18.4kJであり、設計量は257gである。
 図3(d)は、被保冷物Bの液体Lが赤ワインである場合の急冷用蓄熱材1aの設計量について説明する表である。本例においても、図3(b)に示す例と同様に、水、炭酸水素カリウム水溶液または塩化カリウム水溶液が急冷用蓄熱材1aに用いられている。図3(d)には、各材料が用いられた急冷用蓄熱材1aの100gにおける潜熱量(kJ)、顕熱量(kJ)、冷却量(kJ)、実際の冷却量(kJ)および設計量(g)を示している。顕熱量、実際の冷却量および設計量は、図3(b)に示す例と同様の方法で求められる。
 図3(d)に示すように、水を用いた急冷用蓄熱材1aの潜熱量は30.5kJであり、顕熱量は7.1kJであり、冷却量は37.6kJであり、実際の冷却量は18.8kJであり、設計量は134gである。また、炭酸水素カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は25.9kJであり、顕熱量は9.7kJであり、冷却量は35.6kJであり、実際の冷却量は17.8kJであり、設計量は142gである。また、塩化カリウム水溶液を用いた急冷用蓄熱材1aの潜熱量は27.9kJであり、顕熱量は11.8kJであり、冷却量は39.7kJであり、実際の冷却量は19.9kJであり、設計量は127gである。
 このように、急冷用蓄熱材1の潜熱量と顕熱量との合計値は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量より大きくなっている。このため、保冷部材10は、急冷用蓄熱材1aを用いて被保冷物Bを所望の温度帯に冷却することができる。
(実施例1)
 次に、本実施の形態の実施例1による保冷部材10について図4~図6を用いて説明する。本実施例では、液体Lとして750gのスパークリングワインを含む被保冷物Bを図1および図2に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。スパークリングワインの所望の温度帯は4℃~6℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である塩化カリウム水溶液を200gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を200g混合したものを用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。本実施例の急冷用蓄熱材1aは、共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を1:1で混合して作製される。共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を1:1の割合で混合して作製した急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃で50%が凍結状態(固相状態)となり、残りの50%が未凍結状態(液相状態)となる。また、共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を3:1の割合で混合して作製した急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃で75%が凍結状態(固相状態)となり、残りの25%が未凍結状態(液相状態)となる。本実施例では、保冷部材10の使用状態において、急冷層1の急冷用蓄熱材1aは、固相状態の塩化カリウム水溶液の部分と液相状態の塩化ナトリウム水溶液の部分とが共存する状態になるようにしている。これにより、急冷層1は被保冷物Bの形状に併せて形状変化できるようになる。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。400gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aには、100gの水を用いた。本実施例の温度保持用蓄熱材2aは、0℃に相変化温度を備える。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。100gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。
 図4は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図4の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図4中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。また、図4中の一点鎖線で示す曲線は、保冷部材10の急冷層1と温度保持層2の間の温度変化を示している。温度測定開始後に温度センサを被保冷物Bと、急冷層1と温度保持層2との間に設置したので、温度測定開始時点では室内の温度が測定されている。急冷層1と温度保持層2との間の温度は、温度測定開始の約3分後に-18℃と計測されている。
 図4に示すように、被保冷物Bは約20分経過後に所望の温度帯上限の6℃に冷却されている。また、約40分経過後に急冷層1と温度保持層2の間の温度が温度保持用蓄熱材2aの相変化温度である0℃に到達しており、温度保持用蓄熱材2aの潜熱を利用した保冷が開始されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約120分経過後まで被保冷物Bを所望の温度帯内の6℃に保持できている。なお、約23分~約90分の間では、被保冷物Bが所望の温度帯(4℃~6℃)よりも1℃程度低い温度に冷却されているが許容範囲とする。
 このように、本実施例による保冷部材10は、被保冷物Bを約20分で所望の温度帯に急冷することができた。被保冷物Bであるワインは、常温から飲み頃温度まで約20分以内に冷却されるのが望ましい。また、本実施例による保冷部材10は、温度保持用蓄熱材2aの潜熱を利用して、被保冷物Bを約100分間、所望の温度帯に保持することができた。これは、温度保持用蓄熱材2aが被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有しているからである。このように、本実施例による保冷部材10は、スパークリングワイン用のワインクーラーとして好適に用いることができる。
 次に、比較例1による保冷部材について説明する。比較例1による保冷部材は、急冷層を有しているが、温度保持層を有していない。比較例1による保冷部材の急冷層は、上記実施例1による保冷部材10の急冷層1と同じ構成を備えている。また、上記実施例1と同様に、液体Lとして750gのスパークリングワインを含む被保冷物Bを用いた。また、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。なお、その他の条件は、上記実施例1と同様である。
 図5は、比較例1による保冷部材を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図5の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図5中の実線で示す曲線は、被保冷物Bの温度変化を示している。図5に示すように、約60分経過後に被保冷物Bの温度は約13℃になり、約70分経過後に被保冷物Bの温度が再び上昇し始めている。このように、比較例1による保冷部材は、被保冷物Bを所望の温度帯に冷却することができなかった。これは、比較例1による保冷部材は、温度保持層を有していないので、急冷層の外周側が外気に晒されてしまい、急冷層の冷熱が外気に奪われてしまったためであると考えられる。
 次に、比較例2による保冷部材について説明する。比較例2による保冷部材は、急冷層を有していないが、温度保持層を有している。比較例1による保冷部材の温度保持層は、上記実施例1による保冷部材10の温度保持層2と同じ構成を備えている。また、上記実施例1と同様に、液体Lとして750gのスパークリングワインを含む被保冷物Bを用いた。また、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。なお、その他の条件は、上記実施例1と同様である。
 図6は、比較例2による保冷部材を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図6の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図6中の実線で示す曲線は、被保冷物Bの温度変化を示している。図6に示すように、約50分経過後に被保冷物Bの温度は約19℃になり、約60分経過後に被保冷物Bの温度が再び上昇し始めている。このように、比較例2による保冷部材は、被保冷物Bを所望の温度帯に冷却することができなかった。これは、比較例2による保冷部材は、急冷層を有しておらず、被保冷物Bを所望の温度帯に冷却するために必要な冷却量を温度保持層の温度保持用蓄熱材が備えていないためであると考えられる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
(実施例2)
 次に、本実施の形態の実施例2による保冷部材10について図7を用いて説明する。本実施例では、液体Lとして750gの白ワインを含む被保冷物Bを図1および図2に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。白ワインの所望の温度帯は9℃~11℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である塩化カリウム水溶液を200g用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃に相変化温度を備える。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。200gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aには、TBABを用いた。温度保持用蓄熱材2aは、TBABの濃度が25wt%であるTBAB水溶液を100g用いて作製した。TBABの濃度が25wt%であるTBAB水溶液を用いた温度保持用蓄熱材2aは、約8℃~10℃に相変化温度を備える。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。100gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。
 図7は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図7の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図7中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。また、図7中の一点鎖線で示す曲線は、保冷部材10の急冷層1と温度保持層2の間の温度変化を示している。温度測定開始後に温度センサを被保冷物Bと、急冷層1と温度保持層2との間に設置したので、温度測定開始時点では室内の温度が測定されている。急冷層1と温度保持層2との間の温度は、温度測定開始の約3分後に約-8℃と計測されている。
 図7に示すように、被保冷物Bは約20分経過後に所望の温度帯上限の11℃に冷却されている。また、約70分経過後に急冷層1と温度保持層2の間の温度が温度保持用蓄熱材2aの相変化温度である約8℃に到達しており、温度保持用蓄熱材2aの潜熱を利用した保冷が開始されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約150分経過後まで被保冷物Bを所望の温度帯内の11℃に保持できている。
 このように、本実施例による保冷部材10は、被保冷物Bを約18分で所望の温度帯に急冷することができた。また、本実施例による保冷部材10は、温度保持用蓄熱材2aの潜熱を利用して、被保冷物Bを約130分間、所望の温度帯に保持することができた。これは、温度保持用蓄熱材2aが被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有しているからである。このように、本実施例による保冷部材10は、白ワイン用のワインクーラーとして好適に用いることができる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
(実施例3)
 次に、本実施の形態の実施例3による保冷部材10について図8を用いて説明する。本実施例では、液体Lとして750gの赤ワインを含む被保冷物Bを図1および図2に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。赤ワインの所望の温度帯は16℃~18℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である塩化カリウム水溶液を150g用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃に相変化温度を備える。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。150gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aには、TBABを用いた。温度保持用蓄熱材2aは、TBABの濃度が35wt%であるTBAB水溶液を200g用いて作製した。TBABの濃度が35wt%であるTBAB水溶液を用いた温度保持用蓄熱材2aは約11.5℃に相変化温度を備える。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。200gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。
 図8は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図8の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図8中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。また、図8中の一点鎖線で示す曲線は、保冷部材10の急冷層1と温度保持層2の間の温度変化を示している。温度測定開始後に温度センサを被保冷物Bと、急冷層1と温度保持層2との間に設置したので、温度測定開始時点では室内の温度が測定されている。急冷層1と温度保持層2との間の温度は、温度測定開始の約3分後に約-12℃と計測されている。
 図8に示すように、被保冷物Bは約14分経過後に所望の温度帯上限の18℃に冷却されている。また、約130分経過後に急冷層1と温度保持層2の間の温度が温度保持用蓄熱材2aの相変化温度である約11.5℃に到達しており、温度保持用蓄熱材2aの潜熱を利用した保冷が開始されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約180分経過後まで被保冷物Bを所望の温度帯内の18℃に保持できている。なお、約24分~約160分の間では、被保冷物Bが所望の温度帯(16℃~18℃)よりも1℃程度低い温度に冷却されているが許容範囲とする。
 このように、本実施例による保冷部材10は、被保冷物Bを約14分で所望の温度帯に急冷することができた。また、本実施例による保冷部材10は、温度保持用蓄熱材2aの潜熱を利用して、被保冷物Bを約165分間、所望の温度帯に保持することができた。これは、温度保持用蓄熱材2aが被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有しているからである。このように、本実施例による保冷部材10は、赤ワイン用のワインクーラーとして好適に用いることができる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
 次に、本実施の形態による保冷部材10の他の例について図9~図15を用いて説明する。なお、図1等に示す保冷部材10と同一の作用効果を奏する同一の構成要素には同一の符号を付してその説明を省略する説明を省略する。図9および図10は、本実施の形態による保冷部材10の断面形状を示している。図9(a)および図10(a)は、円筒形状の保冷部材10の中心軸を含む平面で切断した断面を示し、図9(b)および図10(b)はそれぞれ図9(a)、図10(a)に示す保冷部材10の中心軸に直交するA-A線で保冷部材10を切断した断面を示している。図9(a)、(b)は、保冷部材10で被保冷物Bを保冷している状態を示しており、図10(a)、(b)は、保冷部材10から被保冷物Bを取り去った状態を示している。
 本実施の形態による保冷部材10は、使用状態での上方部分が被保冷物Bの容器Gと同じテーパー形状を有することに特徴を有している。具体的には、急冷層1の上方部分が容器Gのテーパー形状と同じ形状を有している。温度保持層2は、急冷層1と同じ形状を有し、急冷層1を覆うように急冷層1に接触して配置されている。これにより、本実施の形態による保冷部材10は被保冷物Bとの接触面積を大きくして、保冷効果を向上することができる。
(実施例4)
 次に、本実施の形態の実施例4による保冷部材10について図11~図13を用いて説明する。本実施例では、液体Lとして750gのスパークリングワインを含む被保冷物Bを図9および図10に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。スパークリングワインの所望の温度帯は4℃~6℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である塩化カリウム水溶液を200gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を100g混合したものを用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。本実施例の急冷用蓄熱材1aは、共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を1:1で混合して作製される。共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を1:1の割合で混合して作製した急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃で50%が凍結状態(固相状態)となり、残りの50%が未凍結状態(液相状態)となる。保冷部材10の使用状態において、急冷層1の急冷用蓄熱材1aは、固相状態の塩化カリウム水溶液の部分と液相状態の塩化ナトリウム水溶液の部分とが共存する状態になる。このため、急冷層1は被保冷物Bの形状に併せて形状変化できる。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。300gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2bには、主剤として100gの水に、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を100g混合したものを用いた。本実施例の温度保持用蓄熱材2aは、水の相変化温度である0℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。本実施例の温度保持用蓄熱材2aは、水と共晶濃度の塩化ナトリウム水溶液を1:1で混合して作製される。水と共晶濃度の塩化ナトリウム水溶液を1:1の割合で混合して作製した温度保持用蓄熱材2aは、水の相変化温度である0℃で50%が凍結状態(固相状態)となり、残りの50%が未凍結状態(液相状態)となる。保冷部材10の使用状態において、温度保持層2の温度保持用蓄熱材2aは、固相状態の水の部分と液相状態の塩化ナトリウム水溶液の部分とが共存する状態になるようにする。これにより、温度保持層2は被保冷物Bの形状に併せて形状変化できるようになる。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。200gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。
 図11は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図11の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図11中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。
 図11に示すように、被保冷物Bは約24分経過後に所望の温度帯上限6℃に冷却されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約140分経過後まで被保冷物Bを所望の温度帯に保持できている。なお、約33分~約108分の間では、被保冷物Bが所望の温度帯(4℃~6℃)よりも1~3℃程度低い温度に冷却されているが許容範囲とする。
 温度保持用蓄熱材2aが被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。このように、本実施例による保冷部材10は、スパークリングワイン用のワインクーラーとして好適に用いることができる。
 次に、比較例3による保冷部材について説明する。比較例3による保冷部材は、急冷層を有しているが、温度保持層を有していない。比較例3による保冷部材の急冷層は、上記実施例4による保冷部材10の急冷層1と同じ構成を備えている。また、上記実施例4と同様に、液体Lとして750gのスパークリングワインを含む被保冷物Bを用いた。また、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。なお、その他の条件は、上記実施例4と同様である。
 図12は、比較例3による保冷部材を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図12の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図12中の実線で示す曲線は、被保冷物Bの温度変化を示している。図12に示すように、約60分経過後に被保冷物Bの温度は約13℃になり、約70分経過後に被保冷物Bの温度が再び上昇し始めている。このように、比較例3による保冷部材は、被保冷物Bを所望の温度帯に冷却することができなかった。これは、比較例3による保冷部材は、温度保持層を有していないので、急冷層の外周側が外気に晒されてしまい、急冷層の冷熱が外気に奪われてしまったためであると考えられる。
 次に、比較例4による保冷部材について説明する。比較例4による保冷部材は、急冷層を有していないが、温度保持層を有している。比較例4による保冷部材の温度保持層は、上記実施例4による保冷部材10の温度保持層2と同じ構成を備えている。また、上記実施例4と同様に、液体Lとして750gのスパークリングワインを含む被保冷物Bを用いた。また、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。なお、その他の条件は、上記実施例4と同様である。
 図13は、比較例4による保冷部材を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図13の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図13中の実線で示す曲線は、被保冷物Bの温度変化を示している。図13に示すように、約20分経過後に被保冷物Bの温度は約18℃になるが、約40分経過後に被保冷物Bの温度が再び上昇し始めている。このように、比較例4による保冷部材は、被保冷物Bを所望の温度帯に冷却することができなかった。これは、比較例4による保冷部材は、急冷層を有しておらず、被保冷物Bを所望の温度帯に冷却するために必要な冷却量を温度保持層の温度保持用蓄熱材が備えていないためであると考えられる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
(実施例5)
 次に、本実施の形態の実施例5による保冷部材10について図14を用いて説明する。本実施例では、液体Lとして750gの白ワインを含む被保冷物Bを図9および図10に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。白ワインの所望の温度帯は9℃~11℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である塩化カリウム水溶液を100gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を50g混合したものを用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。本実施例の急冷用蓄熱材1aは、共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を2:1で混合して作製される。共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を2:1の割合で混合して作製した急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃で約66%が凍結状態(固相状態)となり、残りの約33%が未凍結状態(液相状態)となる。保冷部材10の使用状態において、急冷層1の急冷用蓄熱材1aは、固相状態の塩化カリウム水溶液の部分と液相状態の塩化ナトリウム水溶液の部分とが共存する状態になるようにする。これにより、急冷層1は被保冷物Bの形状に併せて形状変化できるようになる。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。150gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されてなくてもよい。
 また、温度保持用蓄熱材2aには、主剤としてTBABの濃度が35wt%であるTBAB水溶液を100gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を100g混合したものを用いた。本実施例の温度保持用蓄熱材2aは、TBABの包接水和物の相変化温度(水とTBABとに分解される温度)である約11.5℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。温度保持用蓄熱材2aは、液相状態の塩化ナトリウム水溶液の部分と固相状態のTBABの包接水和物の部分とが共存する状態になるようにする。これにより、温度保持用蓄熱材2aは被保冷物Bの形状に併せて形状変化できるようになる。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。200gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されてなくてもよい。
 図14は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図14の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図14中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。
 図14に示すように、被保冷物Bは約15分経過後に所望の温度帯上限の11℃に冷却されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約80分経過後まで被保冷物Bを所望の温度帯内の11℃に保持できている。このように、本実施例による保冷部材10は、白ワイン用のワインクーラーとして好適に用いることができる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
(実施例6)
 次に、本実施の形態の実施例6による保冷部材10について図15を用いて説明する。本実施例では、液体Lとして750gの赤ワインを含む被保冷物Bを図9および図10に示す保冷部材10により冷却した。保冷部材10には、冷凍室で約-20℃に冷却したものを用いた。赤ワインの所望の温度帯は16℃~18℃である。急冷用蓄熱材1aには、主剤として塩化カリウムの濃度が20wt%である75gの塩化カリウム水溶液に、塩化ナトリウムの濃度が20wt%である25gの塩化ナトリウム水溶液を混合したものを用いた。本実施例の急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。本実施例の急冷用蓄熱材1aは、共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を3:1で混合して作製される。共晶濃度の塩化カリウム水溶液と共晶濃度の塩化ナトリウム水溶液を3:1の割合で混合して作製した急冷用蓄熱材1aは、塩化カリウム水溶液の相変化温度である約-11℃で75%が凍結状態(固相状態)となり、残りの25%が未凍結状態(液相状態)となる。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。100gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aには、TBABを用いた。温度保持用蓄熱材2aは、TBABの濃度が35wt%であるTBAB水溶液を100g用いて作製した。TBABの濃度が35wt%であるTBAB水溶液を用いた温度保持用蓄熱材2aは、約11.5℃に相変化温度を備える。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。100gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。
 図15は、本実施例による保冷部材10を用いて常温の被保冷物Bを冷却した場合の被保冷物Bの温度変化を示すグラフである。図15の横軸は時間(min)を表し、縦軸は温度(℃)を表している。また、図15中の実線で示す曲線は、被保冷物Bの温度変化を示している。本実施例では、被保冷物Bの容器Gの中心部の液体Lの温度を被保冷物Bの温度として測定した。
 図15に示すように、被保冷物Bは約12分経過後に所望の温度帯上限の18℃に冷却されている。保冷部材10は、温度保持用蓄熱材2aの潜熱を利用した保冷により、約120分経過後まで被保冷物Bを所望の温度帯である16℃~18℃に保持できている。
 このように、本実施例による保冷部材10は、被保冷物Bを約12分で所望の温度帯に急冷することができた。また、本実施例による保冷部材10は、温度保持用蓄熱材2aの潜熱を利用して、被保冷物Bを約110分間、所望の温度帯に保冷することができた。これは、温度保持用蓄熱材2aは、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有しているからである。このように、本実施例による保冷部材10は、赤ワイン用のワインクーラーとして好適に用いることができる。
 本実施例による保冷部材10は、被保冷物Bを所望の時間内で所望の温度帯に急冷する急冷用蓄熱材1aを備えた急冷層1と、被保冷物Bを所望の時間以上に亘って所望の温度帯に保持する温度保持用蓄熱材2aを備えた温度保持層2と有している。急冷用蓄熱材1aの冷却量は、被保冷物Bを所望の温度帯に冷却するための必要な冷却量よりも大きい。温度保持用蓄熱材2aは被保冷物Bを所望の時間以上に亘って所望の温度帯に保持するために必要な潜熱量を有している。保冷部材10は、急冷層1で被保冷物Bを所望の時間内で所望の温度帯に急冷し、温度保持層2で被保冷物Bを所望の時間以上に亘って所望の温度帯に保持することができる。
(実施例7)
 次に、本実施の形態の実施例7による保冷部材10について、図16~図18を用いて説明する。なお、図1等に示す保冷部材10と同一の作用効果を奏する同一の構成要素には同一の符号を付してその説明を省略する説明を省略する。図16および図17は、本実施例による保冷部材10の断面形状を示している。図16(a)および図17(a)は、円筒形状の保冷部材10の中心軸を含む平面で切断した断面を示し、図16(b)および図17(b)はそれぞれ図16(a)、図17(a)に示す保冷部材10の中心軸に直交するA-A線で保冷部材10を切断した断面を示している。本実施の形態による保冷部材10は、温度保持層2の外側に配置され、断熱材を備えた断熱層3を有することに特徴を有している。
 断熱層3は、温度保持層2の外周に沿って配置されている。断熱層3の断熱材は、急冷層1および温度保持層2に外部から熱が伝わらないように断熱している。断熱層3の断熱材は、繊維系断熱材(グラスウール等)や発泡樹脂系断熱材(発泡スチロール、発泡ウレタン)、真空断熱材や布等を用いて形成される。
 本実施の形態による保冷部材10は、温度保持層2の外側に配置された断熱層3を有するので、急冷層1および温度保持層2の冷熱が外部に放出されないようにし、冷却効果を向上することができる。
(実施例8)
 本実施の形態の実施例8による保冷部材10について、図18を用いて説明する。本実施例の保冷部材10は、複数に分割された急冷層1および温度保持層2を有している点に特徴を有している。保冷部材10は、急冷層1および温度保持層2が複数に分割されていると、被保冷物Bの形状や大きさに併せて、急冷層1および温度保持層2を配置することができる。これにより、本実施例による保冷部材10は、効率的に被保冷物を短時間で所望の温度帯までに冷却し、かつ所望の温度度帯で長時間保持することができる。
 図18(a)は、図16(b)および図17(b)に示す状態と同様に、保冷部材10の断面形状を示している。図18(b)は、保冷部材10を温度保持層2側から観察した状態を示している。図18(a)、(b)に示すように、保冷部材10は、六つに分割された急冷層1および温度保持層2を有している。また、一つの急冷層1および温度保持層2は一体的に形成され、長方形形状を有している。
 急冷層1および温度保持層2は、接続部4で接続されている。また、接続部4が収縮性を有し、保冷部材10の被保冷物Bへの設置が容易となる。接続部4の形成材料には、例えば、シリコンゴム、エラストマー樹脂、あるいはスポンジ等を用いることができるが、本実施例では、これらに限定されない。
 図18(c)および(d)は、図16(b)および図17(b)に示す状態と同様に、保冷部材10の断面形状を示している。図18(c)は、三つ分割された急冷層1および温度保持層2を有する保冷部材10の断面形状を示している。図18(c)に示す保冷部材10は、三つの独立した急冷層1と温度保持層2とを備えている。また、一つの急冷層1および温度保持層2は一体的に形成され、被保冷物Bの容器Gと同じ曲率に形成された曲面形状を有している。本例の保冷部材10は、複数の急冷層1および温度保持層2を有している。複数の急冷層1および温度保持層2は独立して形成されており、保冷部材10は、不図示の紐やゴム紐等で被保冷物Bに固定されて使用される。本例の保冷部材10は、被保冷物Bとの密着性を高めて、冷却効果を向上することができる。
 図18(d)は、図18(c)に示す複数の急冷層1および温度保持層2が互に接続された保冷部材10を示している。本例の保冷部材10は、複数の急冷層1および温度保持層2を接続する接続部5を有している。接続部5の形成材料には、例えば、シリコンゴム、エラストマー樹脂、あるいはスポンジ等を用いることができるが、本実施例では、これらに限定されない。本例の保冷部材10は、被保冷物Bへの設置が容易である。
 本実施の形態による保冷部材10は、急冷層1および温度保持層2を複数有している。一つの急冷層1および温度保持層2は一体的に形成されている。また、隣り合う急冷層1および温度保持層2は、接続部4、5で互に接続されている。本実施例による保冷部材10は、被保冷物Bへの設置を容易にすることができる。
(実施例9)
 次に、本実施の形態の実施例9による保冷部材10について説明する。本実施例による保冷部材10は、図16および図17に示す保冷部材10と同様の構成を備えている。急冷用蓄熱材1aには、塩化ナトリウムの濃度が10wt%である塩化ナトリウム水溶液を250g用いた。本実施例の急冷用蓄熱材1aは、約-7℃に相変化温度を備える。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。250gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 温度保持用蓄熱材2aには、塩化ナトリウムの濃度が10wt%である塩化ナトリウム水溶液を153g用いた。本実施例の温度用蓄熱材2aは、約-7℃に相変化温度を備える。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。153gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されていなくてもよい。また、断熱層3には、長方形状のポリエチレン(PE)の片面にアルミが蒸着されている約1mm厚の断熱シートを用いた。
 図19(a)は、冷凍室で約-18℃に冷却した本実施例による保冷部材10を用いて、実際の使用状況を想定して被保冷物Bを冷却した場合の被保冷物Bに含まれるスパークリングワインの温度変化を示すグラフである。図19(a)の横軸は時間(min)を表し、縦軸は温度(℃)を表している。本例では、容器Gに高さ30cmのガラス製のワインボトルを用い、ワインボトル内のスパークリングワインの温度をワインボトル内の上部、中部、下部の3箇所で測定した。ワインボトル内の上部の温度測定箇所は、ワインボトル上端から鉛直下方に13cmの箇所とし、ワインボトル内の中部の温度測定箇所は、ワインボトル上端から鉛直下方に17cmの箇所とし、ワインボトル内の下部の温度測定箇所は、ワインボトルの上端から鉛直下方に22cmの箇所とした。図19(a)中の点線で示す曲線はワインボトル内上部のスパークリングワインの温度変化を示し、一点鎖線で示す曲線はワインボトル内中部のスパークリングワインの温度変化を示し、実線で示す曲線はワインボトル内下部のスパークリングワインの温度変化を示している。
 また、上記の保冷部材10の実際の使用状況として、ワインを冷却開始してから30分後に飲み始めると想定し、保冷部材10を用いたスパークリングワインの冷却開始から30分後にスパークリングワイン200mlを容器Gからグラスに注ぎ、冷却開始から45分後にスパークリングワイン100mlを容器Gからグラスに注ぎ、冷却開始から60分後にスパークリングワイン100mlを容器Gからグラスに注いだ。冷却開始から30分後にスパークリングワイン200mlを容器Gからグラスに注いだことで、ワインボトル内のスパークリングワインの液面がワインボトル内上部の温度測定箇所よりも下方になった。このため、冷却開始から30分後以降のワインボトル内上部の温度は計測していない。また、冷却開始から60分後以降では、合計400mlのスパークリングワインが容器Gからグラスに注がれたことで、ワインボトル内のスパークリングワインの液面がワインボトル内中部の温度測定箇所よりも下方になった。このため、冷却開始から60分後以降のワインボトル内中部の温度は計測していない。
 次に、図19(a)を参照しつつ、図19(b)を用いて本実施例による保冷部材10の保冷性能の実験結果についてより詳しく説明する。図19(b)は、本実施例による蓄熱部材10の保冷性能の実験結果をまとめた表である。図19(b)の表に示す目標温度は、本実施例の保冷部材10を用いてスパークリングワインを冷却する場合のスパークリングワインの目標の温度を示し、目標温度はスパークリングワインの飲み頃温度の4~6℃とした。また、図19(b)の表に示す目標到達時間は、本実施例の保冷部材10を用いて常温のスパークリングワインを目標温度にまで冷却するのに要する目標の時間を示し、目標到達時間は30分とした。また、図19(b)の表に示す到達時間は、図19(a)に示すスパークリングワインの温度変化のグラフにおいて、ワインボトル内中部のスパークリングワインの温度が常温から目標温度上限の6℃に到達するのに要した時間を示し、到達時間は27分であった。また、図19(b)の表に示す目標保持時間は、本実施例の保冷部材10を用いて、常温のスパークリングワインを目標温度で保持する目標の時間を示し、目標保持時間は60分とした。また、図19(b)の表に示す保持時間は、図19(a)に示すスパークリングワインの温度変化のグラフにおいて、ワインボトル内下部のスパークリングワインの温度が目標温度4~6℃で保持されていた時間であり、保持時間は59分であった。このように、本実施例による保冷部材10は、被保冷物Bに含まれるスパークリングワインを目標到達時間内の27分で常温から目標温度の上限の6℃に急冷し、その後、目標保持時間に相当する59分間に亘って目標温度の4~6℃で保持することができた。なお、被保冷物Bの冷却開始から30分後においてグラスに注いだスパークリングワイン200mlの温度は、8.7℃であり、被保冷物Bの冷却開始から45分後においてグラスに注いだスパークリングワイン100mlの温度は、6.5℃であり、被保冷物Bの冷却開始から30分後においてグラスに注いだスパークリングワイン100mlの温度は、6.6℃であった。
 本実施例による保冷部材10は、温度保持層2の外側に配置された断熱層3を有している。このため、本実施例による保冷部材10は、外部との熱移動を減少させて急冷層1の冷却効果を向上させることができ、上記実施例1、4による保冷部材10よりも急冷用蓄熱材1aの量を減らすことができる。
 また、本実施例による保冷部材10は、急冷用蓄熱材1aおよび温度保持用蓄熱材2aに同一の蓄熱材が用いられている。急冷用蓄熱材1aを有する急冷層1は被保冷物Bの周辺部に配置され、温度保持用蓄熱材2aを有する温度保持層2は急冷層1の外側に配置されるため、温度保持用蓄熱材2aは、急冷用蓄熱材1aに比して温度の上昇が緩やかになる。このため、急冷用蓄熱材1aが被保冷物Bの温度とほぼ同一温度になった後においても、急冷用蓄熱材1aと温度保持用蓄熱材2aとの温度差によって、温度保持層2に被保冷物Bの熱が流入することになり、温度保持層2は被保冷物Bを冷却し続けることができる。このため、急冷用蓄熱材1aおよび温度保持用蓄熱材2aに同一の蓄熱材を用いる場合においても、急冷層1を被保冷物の周辺部に配置し、温度保持層2を急冷層1の外側に配置することで、被保冷物を目標温度で保持する時間を長くすることができる。
 このように、本実施例による保冷部材10は、被保冷物Bに含まれるスパークリングワインを目標到達時間内の27分で常温から目標温度の上限の6℃に急冷し、その後、目標保持時間とほぼ同じ59分間に亘って目標温度の4~6℃で保持することができた。また、本実施例による保冷部材10は、急冷用蓄熱材の量を減らすことで材料の費用を削減することができる。このように、本実施例による保冷部材10は、スパークリングワイン用のワインクーラーとして好適に用いることができる。
(実施例10)
 次に、本実施の形態の実施例10による保冷部材10について説明する。本実施例による保冷部材10は、図16および図17に示す保冷部材10と同様の構成を備えている。急冷用蓄熱材1aには、塩化ナトリウムの濃度が10wt%である塩化ナトリウム水溶液を165g用いた。本実施例の急冷用蓄熱材1aは、約-7℃に相変化温度を備える。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。250gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aは、主剤としてTBABの濃度が25wt%であるTBAB水溶液を75gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を75g混合して作製した。TBABの濃度が25wt%である75gのTBAB水溶液に、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を75g混合することで、TBABの濃度が12.5wt%であり、塩化ナトリウムの濃度が10wt%である温度保持用蓄熱材2aが作製される。本実施例の温度保持用蓄熱材2aは、TBABの包接水和物の相変化温度(水とTBABとに分解される温度)である約11.5℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。温度保持用蓄熱材2aは、-20℃~11℃の温度域において、液相状態の塩化ナトリウム水溶液の部分と固相状態のTBABの包接水和物の部分とが共存する状態となる。これにより、温度保持用蓄熱材2aは被保冷物Bの形状に併せて形状変化できるようになる。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。150gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されてなくてもよい。また、断熱層3には、長方形状のポリエチレン(PE)の片面にアルミが蒸着されている約1mm厚の断熱シートを用いた。
 図20(a)は、冷凍室で約-18℃に冷却した本実施例による保冷部材10を用いて、実際の使用状況を想定して被保冷物Bを冷却した場合の、被保冷物Bに含まれる白ワインの温度変化を示すグラフである。図20(a)の横軸は時間(min)を表し、縦軸は温度(℃)を表している。本例では、容器Gに高さ30cmのガラス製のワインボトルを用い、ワインボトル内の白ワインの温度をワインボトル内の上部、中部、下部の3箇所で測定した。ワインボトル内の上部の温度測定箇所は、ワインボトル上端から鉛直下方に13cmの箇所とし、ワインボトル内の中部の温度測定箇所は、ワインボトル上端から鉛直下方に17cmの箇所とし、ワインボトル内の下部の温度測定箇所は、ワインボトルの上端から鉛直下方に22cmの箇所とした。図20(a)中の点線で示す曲線はワインボトル内上部の白ワインの温度変化を示し、一点鎖線で示す曲線はワインボトル内中部の白ワインの温度変化を示し、実線で示す曲線はワインボトル内下部の白ワインの温度変化を示している。
 また、上記の保冷部材10の実際の使用状況として、ワインを冷却開始してから30分後に飲み始めると想定して、保冷部材10を用いた白ワインの冷却開始から30分後に白ワイン200mlを容器Gからグラスに注ぎ、冷却開始から45分後に白ワイン100mlを容器Gからグラスに注ぎ、冷却開始から60分後に白ワイン100mlを容器Gからグラスに注いだ。冷却開始から30分後に白ワイン200mlを容器Gからグラスに注いだことで、ワインボトル内の白ワインの液面がワインボトル内上部の温度測定箇所よりも下方になった。このため、冷却開始から30分後以降のワインボトル内上部の温度は計測していない。また、冷却開始から60分後以降では、合計400mlの白ワインが容器Gからグラスに注がれたことで、ワインボトル内の白ワインの液面がワインボトル内中部の温度測定箇所よりも下方になった。このため、冷却開始から60分後以降のワインボトル内中部の温度は計測していない。
 次に、図20(a)を参照しつつ、図20(b)を用いて本実施例による蓄熱部材10の保冷性能の実験結果についてより詳しく説明する。図20(b)は、本実施例による蓄熱部材10の保冷性能の実験結果をまとめた表である。図20(b)の表に示す目標温度は、本実施例の保冷部材10を用いて白ワインを冷却する場合の白ワインの目標の温度を示し、目標温度は白ワインの飲み頃温度の9~11℃とした。また、図20(b)の表に示す目標到達時間は、本実施例の保冷部材10を用いて常温の白ワインを目標温度にまで冷却するのに要する目標の時間を示し、目標到達時間は30分とした。また、図20(b)の表に示す到達時間は、図20(a)に示す白ワインの温度変化のグラフにおいて、ワインボトル内中部の白ワインの温度が常温から目標温度上限の11℃に到達するのに要した時間を示し、到達時間は22分であった。また、図20(b)の表に示す目標保持時間は、本実施例の保冷部材10を用いて、常温の白ワインを目標温度で保持する目標の時間を示し、目標保持時間は90分とした。また、図20(b)の表に示す保持時間は、図20(a)に示す白ワインの温度変化のグラフにおいて、ワインボトル内下部の白ワインの温度が目標温度9~11℃で保持されていた時間であり、保持時間は88分であった。このように、本実施例による保冷部材10は、被保冷物Bに含まれる白ワインを目標到達時間内の22分で常温から目標温度の上限の11℃に急冷し、その後、目標保持時間に相当する88分間に亘って目標温度の9~11℃で保持することができた。なお、被保冷物Bの冷却開始から30分後においてグラスに注いだ白ワイン200mlの温度は、12.6℃であり、被保冷物Bの冷却開始から45分後においてグラスに注いだ白ワイン100mlの温度は、10.8℃であり、被保冷物Bの冷却開始から60分後においてグラスに注いだ白ワイン100mlの温度は、10.5℃であった。
 本実施例による保冷部材10は、温度保持層2の外側に配置された断熱層3を有している。このため、本実施例による保冷部材10は、外部との熱移動を減少させて急冷層1の冷却効果を向上させることができ、上記実施例2、5による保冷部材10よりも急冷用蓄熱材1aの量を減らすことができる。
 このように、本実施例による保冷部材10は、被保冷物Bに含まれる白ワインを目標到達時間内の22分で常温から目標温度の上限の11℃に急冷し、その後、目標保持時間とほぼ同じ88分間に亘って目標温度の9~11℃で保持することができた。また、本実施例による保冷部材10は、急冷用蓄熱材1aの量を減らすことで材料の費用を削減することができる。このように、本実施例による保冷部材10は、白ワイン用のワインクーラーとして好適に用いることができる。
(実施例11)
 次に、本実施の形態の実施例11による保冷部材10について説明する。本実施例による保冷部材10は、図16および図17に示す構成を備えている。急冷用蓄熱材1aには、塩化ナトリウムの濃度が10wt%である塩化ナトリウム水溶液を75g用いた。本実施例の急冷用蓄熱材1aは、約-7℃に相変化温度を備える。また、急冷用蓄熱材1aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。250gの急冷用蓄熱材1aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、急冷用蓄熱材1aはゲル化されていなくてもよい。
 また、温度保持用蓄熱材2aは、主剤としてTBABの濃度が25wt%であるTBAB水溶液を60gに、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を60g混合して作製した。TBABの濃度が25wt%である60gのTBAB水溶液に、塩化ナトリウムの濃度が20wt%である塩化ナトリウム水溶液を60g混合することで、TBABの濃度が12.5wt%であり、塩化ナトリウムの濃度が10wt%である温度保持用蓄熱材2aが作製される。本実施例の温度保持用蓄熱材2aは、TBABの包接水和物の相変化温度(水とTBABとに分解される温度)である約11.5℃と、塩化ナトリウム水溶液の相変化温度である約-21℃とに相変化温度を備える。温度保持用蓄熱材2aは、-20℃~11℃の温度域において、液相状態の塩化ナトリウム水溶液の部分と固相状態のTBABの包接水和物の部分とが共存する状態となる。これにより、温度保持用蓄熱材2aは被保冷物Bの形状に併せて形状変化できるようになる。また、温度保持用蓄熱材2aにゲル化剤を加えてゲル化した。ゲル化剤には、アクリルアミドモノマーと、N,N’-メチレンビスアクリルアミドモノマーと、2-ケトグルタル酸とを用いた。150gの温度保持用蓄熱材2aに対して、アクリルアミドモノマーは5%とし、N,N’-メチレンビスアクリルアミドモノマーは0.1%とし、2-ケトグルタル酸は0.12%とした。なお、温度保持用蓄熱材2aはゲル化されてなくてもよい。また、断熱層3には、長方形状のポリエチレン(PE)の片面にアルミが蒸着されている約1mm厚の断熱シートを用いた。
 図21(a)は、冷凍室で約-18℃に冷却した本実施例による保冷部材10を用いて、実際の使用状況を想定して被保冷物Bを冷却した場合の、被保冷物Bに含まれる赤ワインの温度変化を示すグラフである。図21(a)の横軸は時間(min)を表し、縦軸は温度(℃)を表している。本例では、容器Gに高さ30cmのガラス製のワインボトルを用い、ワインボトル内の赤ワインの温度をワインボトル内の上部、中部、下部の3箇所で測定した。ワインボトル内の上部の温度測定箇所は、ワインボトル上端から鉛直下方に13cmの箇所とし、ワインボトル内の中部の温度測定箇所は、ワインボトル上端から鉛直下方に17cmの箇所とし、ワインボトル内の下部の温度測定箇所は、ワインボトルの上端から鉛直下方に22cmの箇所とした。図21(a)中の点線で示す曲線はワインボトル内上部の赤ワインの温度変化を示し、一点鎖線で示す曲線はワインボトル内中部の赤ワインの温度変化を示し、実線で示す曲線はワインボトル内下部の赤ワインの温度変化を示している。
 また、上記の保冷部材10の実際の使用状況として、ワインを冷却開始してから30分後に飲み始めると想定して、保冷部材10を用いた赤ワインの冷却開始から30分後に赤ワイン200mlを容器Gからグラスに注ぎ、冷却開始から45分後に赤ワイン100mlを容器Gからグラスに注ぎ、冷却開始から60分後に赤ワイン100mlを容器Gからグラスに注いだ。冷却開始から30分後に赤ワイン200mlを容器Gからグラスに注いだことで、ワインボトル内の赤ワインの液面がワインボトル内上部の温度測定箇所よりも下方になった。このため、冷却開始から30分後以降のワインボトル内の上部の温度は計測していない。また、冷却開始から60分後以降では、合計400mlの赤ワインが容器Gからグラスに注がれたことで、ワインボトル内の赤ワインの液面がワインボトル内中部の温度測定箇所よりも下方になった。このため、冷却開始から60分後以降のワインボトル内中部の温度は計測していない。
 次に、図21(a)を参照しつつ、図21(b)を用いて本実施例による蓄熱部材10の保冷性能の実験結果についてより詳しく説明する。図21(b)は、本実施例による蓄熱部材10の保冷性能の実験結果をまとめた表である。図21(b)の表に示す目標温度は、本実施例の保冷部材10を用いて赤ワインを冷却する場合の赤ワインの目標の温度を示し、目標温度は赤ワインの飲み頃温度の16~18℃とした。また、図21(b)の表に示す目標到達時間は、本実施例の保冷部材10を用いて常温の赤ワインを目標温度にまで冷却するのに要する目標の時間を示し、目標到達時間は20分とした。また、図21(b)の表に示す到達時間は、図21(a)に示す赤ワインの温度変化のグラフにおいて、ワインボトル内中部の赤ワインの温度が常温から目標温度上限の18℃に到達するのに要した時間を示し、到達時間は13分であった。また、図21(b)の表に示す目標保持時間は、本実施例の保冷部材10を用いて、常温の赤ワインを目標温度で保持する目標の時間を示し、目標保持時間は120分とした。また、図21(b)の表に示す保持時間は、図21(a)に示す赤ワインの温度変化のグラフにおいて、ワインボトル内下部の赤ワインの温度が目標温度16~18℃で保持されていた時間であり、保持時間は127分であった。このように、本実施例による保冷部材10は、被保冷物Bに含まれる赤ワインを目標到達時間内の13分で常温から目標温度の上限の18℃に急冷し、その後、目標保持時間よりも長い127分間に亘って目標温度の16~18℃で保持することができた。なお、被保冷物Bの冷却開始から30分後においてグラスに注いだ赤ワイン200mlの温度は、17.5℃であり、被保冷物Bの冷却開始から45分後においてグラスに注いだ赤ワイン100mlの温度は、16.6℃であり、被保冷物Bの冷却開始から60分後においてグラスに注いだ赤ワイン100mlの温度は、16.7℃であった。
 また、本実施例による保冷部材10は、温度保持層2の外側に配置された断熱層3を有している。このため、本実施例による保冷部材10は、急冷層1の冷却効果を向上させていることから、上記実施例3、6による保冷部材10と比較して、急冷用蓄熱材1aの量を減らすことができる。
 このように、本実施例の保冷部材10は、被保冷物Bに含まれる赤ワインを目標到達時間内の13分で常温から目標温度の上限の18℃に急冷し、その後、目標保持時間よりも長い127分間に亘って目標温度の16~18℃で保持することができた。また、本実施例の保冷部材10は、急冷用蓄熱材の量を減らすことで材料の費用を削減することができる。このように、本実施例による保冷部材10は、赤ワイン用のワインクーラーとして好適に用いることができる。
 本発明は、上記実施の形態に例に限らず種々の変形が可能である。
 上記実施例1では、保冷部材10は上面および底面が開口された円筒形状を有しているが、本発明はこれに限られない。例えば保冷部材10の底部が急冷層1および温度保持層2で閉じられていてもよい。また、保冷部材10は、中空の角柱形状を有していてもよい。また例えば、保冷部材10の中心軸に直交する平面で切断した断面形状は、円形に限られず、楕円形状や三角形以上の多角形形状であってもよい。
 また、上記の各実施例では、ワインクーラーとして保冷部材10が用いられているが、本発明はこれらに限られない。本発明による保冷部材は、野菜、魚、肉、果物等の生鮮食料品や加工食品、臓器移植に用いられる臓器等を冷却するために用いられてもよい。
 また、本発明による保冷部材は、クーラーボックス等の保冷容器に設置されてもよい。本発明による保冷部材を備えた保冷容器は、ワインクーラー、生鮮食料品、加工食品、臓器等を保冷するクーラーボックス等に用いることができる。
 なお、上記の各実施例に記載されている技術的特徴(構成要件)は相互に組合せ可能であり、組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、蓄熱材を備えた保冷部材に広く利用可能である。
1 急冷層
1a 急冷用蓄熱材
1b 急冷用蓄熱材収容部
2 温度保持層
2a 温度保持用蓄熱材
2b 温度保持用蓄熱材収容部
10 保冷部材
3 断熱層
4、5 接続部
B 被保冷物
G 容器
L 液体

Claims (10)

  1.  被保冷物を所望の時間内で所望の温度帯に急冷する急冷用蓄熱材と、前記急冷用蓄熱材を収容する急冷用蓄熱材収容部とを備え、前記被保冷物の周辺部に配置される急冷層と、
     前記被保冷物を前記所望の時間以上に亘って前記所望の温度帯に保持する温度保持用蓄熱材と、前記温度保持用蓄熱材を収容する温度保持用蓄熱材収容部とを備え、前記急冷層の外側に配置される温度保持層と
    を有する保冷部材。
  2.  請求項1に記載の保冷部材であって、
     前記温度保持用蓄熱材は、前記急冷用蓄熱材の相変化温度より高い相変化温度を有する保冷部材。
  3.  請求項1に記載の保冷部材であって、
     前記急冷用蓄熱材は、前記所望の温度帯より低い相変化温度を有する
    保冷部材。
  4.  請求項1に記載の保冷部材であって、
     前記温度保持用蓄熱材は、前記所望の温度帯より低い相変化温度を有する
    保冷部材。
  5.  請求項1に記載の保冷部材であって、
     前記急冷用蓄熱材は、前記被保冷物を急冷する温度帯では一部が固相状態であり、他の一部が液相状態である
    保冷部材。
  6.  請求項1に記載の保冷部材であって、
     前記温度保持用蓄熱材は、前記被保冷物の所望の温度に保持する温度帯では一部が固相状態であり、他の一部が液相状態である
    保冷部材。
  7.  請求項1に記載の保冷部材であって、
     前記温度保持層の外側に配置され、断熱材を備えた断熱層を有する
    保冷部材。
  8.  請求項1に記載の保冷部材であって、
     前記急冷用蓄熱材の潜熱量と顕熱量との合計値は、前記被保冷物を前記所望の温度帯に冷却するために必要な冷却量より大きく、
     前記温度保持用蓄熱材は、前記被保冷物を前記所望の時間以上に亘って前記所望の温度帯に保持するために必要な潜熱量を有する
    保冷部材。
  9.  請求項1に記載の保冷部材であって、
     前記急冷層は、前記急冷用蓄熱材の前記相変化温度で柔軟性を有する
    保冷部材。
  10.  請求項1に記載の保冷部材であって、
     前記急冷層を複数有し、
     前記複数の急冷層は、互に接続されている
    保冷部材。
PCT/JP2015/068175 2014-06-30 2015-06-24 保冷部材 WO2016002597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/322,469 US20170153054A1 (en) 2014-06-30 2015-06-24 Cold insulation member
JP2016531295A JP6594870B2 (ja) 2014-06-30 2015-06-24 保冷部材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-134508 2014-06-30
JP2014134508 2014-06-30
JP2015118077 2015-06-11
JP2015-118077 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016002597A1 true WO2016002597A1 (ja) 2016-01-07

Family

ID=55019139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068175 WO2016002597A1 (ja) 2014-06-30 2015-06-24 保冷部材

Country Status (3)

Country Link
US (1) US20170153054A1 (ja)
JP (1) JP6594870B2 (ja)
WO (1) WO2016002597A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179298A (ja) * 2016-03-31 2017-10-05 トッパン・フォームズ株式会社 保冷具
WO2018003768A3 (ja) * 2016-06-28 2018-03-01 シャープ株式会社 保冷容器、保冷皿および赤ワイン用サーバー
WO2018169859A1 (en) * 2017-03-13 2018-09-20 David Yoskowitz Beverage containers and coolants therefore
WO2019009358A1 (ja) * 2017-07-07 2019-01-10 シャープ株式会社 保冷用具
JPWO2019026820A1 (ja) * 2017-07-31 2020-07-30 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603364B1 (ja) * 2018-05-16 2019-11-06 株式会社テックスイージー 容器入り飲料温度調節装置
CN111721042A (zh) * 2020-06-24 2020-09-29 申清可 一种组合式酒架

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560437A (ja) * 1991-06-24 1993-03-09 Kazuo Eto 瞬間急冷用容器
JP3053431U (ja) * 1998-04-21 1998-10-27 義夫 渡邊 飲料容器用保冷袴
JP2010163183A (ja) * 2009-01-14 2010-07-29 Tooru Uchiyama 蓄冷,熱剤入り飲料物用袴

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802343A (en) * 1987-07-01 1989-02-07 The Coca-Cola Company Self-cooling container
JP2542069Y2 (ja) * 1992-11-10 1997-07-23 直継 森 ワインクーラー
US6634417B1 (en) * 1997-04-07 2003-10-21 J. Bruce Kolowich Thermal receptacle with phase change material
US6082114A (en) * 1998-04-09 2000-07-04 Leonoff; Christopher A. Device for heating and cooling a beverage
GB9814405D0 (en) * 1998-07-02 1998-09-02 Chilla Limited Cooling apparatus
US7257963B2 (en) * 2003-05-19 2007-08-21 Minnesota Thermal Science, Llc Thermal insert for container having a passive controlled temperature interior
JP2007118972A (ja) * 2005-10-26 2007-05-17 Costem:Kk 定温保冷ボックスと定温保冷方法
JP2010525996A (ja) * 2007-05-04 2010-07-29 エントロピー ソリューションズ、インコーポレイテッド 相変化材を有する包装及び温度の影響を受けやすい荷物の輸送中の使用方法
JP2010163207A (ja) * 2008-12-03 2010-07-29 Masazumi Tanaka 試料輸送容器、並びに、試料輸送方法
US9689602B2 (en) * 2012-12-23 2017-06-27 Illuminate Consulting, Llc Method and apparatus for thermally protecting and/or transporting temperature sensitive products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560437A (ja) * 1991-06-24 1993-03-09 Kazuo Eto 瞬間急冷用容器
JP3053431U (ja) * 1998-04-21 1998-10-27 義夫 渡邊 飲料容器用保冷袴
JP2010163183A (ja) * 2009-01-14 2010-07-29 Tooru Uchiyama 蓄冷,熱剤入り飲料物用袴

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179298A (ja) * 2016-03-31 2017-10-05 トッパン・フォームズ株式会社 保冷具
WO2018003768A3 (ja) * 2016-06-28 2018-03-01 シャープ株式会社 保冷容器、保冷皿および赤ワイン用サーバー
WO2018169859A1 (en) * 2017-03-13 2018-09-20 David Yoskowitz Beverage containers and coolants therefore
US11209210B2 (en) 2017-03-13 2021-12-28 David Yoskowitz Beverage containers and coolants therefore
WO2019009358A1 (ja) * 2017-07-07 2019-01-10 シャープ株式会社 保冷用具
JPWO2019026820A1 (ja) * 2017-07-31 2020-07-30 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット

Also Published As

Publication number Publication date
US20170153054A1 (en) 2017-06-01
JP6594870B2 (ja) 2019-10-23
JPWO2016002597A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6594870B2 (ja) 保冷部材
WO2015093311A1 (ja) 保冷部材およびそれを備えた保冷容器
WO2016002596A1 (ja) 蓄熱材およびそれを用いた物品
JP6999030B2 (ja) 潜熱蓄熱材料およびその製造方法、ならびにこれを用いた保冷具、物流梱包容器、人体冷却用具、冷蔵庫および食品保冷用具
US20200248057A1 (en) Latent heat storage material, cold storage pack, cooling container, logistic packaging container, and cooling unit
JP2016211750A (ja) 蓄熱パックおよび熱交換ユニット
JP6284627B2 (ja) 蓄熱材
CN107814034B (zh) 一种低成本长时效医药冷链保温箱
JP6663508B2 (ja) 蓄熱材、保冷具、物流梱包容器および保冷ユニット
WO2015190515A1 (ja) 温度管理装置
JP6937852B2 (ja) 潜熱蓄熱材、及び、それを用いた保冷具、物流梱包容器、輸送方法、人体冷却具及び飲料品保冷用具
JP6723266B2 (ja) 蓄熱材、これを用いた冷蔵庫および保冷容器
JP6864742B2 (ja) 蓄冷材および蓄冷パック
CN202244662U (zh) 一种冰镇酒水、饮料用的冰桶
JPWO2017135231A1 (ja) 蓄熱材、これを用いた蓄熱パック、恒温容器および輸送用容器
WO2019235279A1 (ja) 保冷具および梱包容器、ならびに保冷対象物の輸送方法
JP4840075B2 (ja) 保冷剤および保冷材
JP2007163045A (ja) 保冷材を備えた生鮮魚介類用保冷容器及び保冷材の繰返し使用可能な回数の増加方法
JP7481973B2 (ja) 蓄熱材、保冷具、物流梱包容器及び蓄熱材の製造方法
JP7011744B1 (ja) 冷凍温度帯蓄冷材とそれを用いた保冷具、物流梱包容器および物流システム
JP6700008B2 (ja) 冷却保冷容器
JP2013233314A (ja) 保冷用タンブラー
JP2016098007A (ja) 熱交換ユニット
JPWO2019013161A1 (ja) 蓄熱材、保冷容器および冷蔵庫
JP2000154379A (ja) 冷凍剤、恒温冷却装置及び急速冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531295

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322469

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815071

Country of ref document: EP

Kind code of ref document: A1