WO2015190515A1 - 温度管理装置 - Google Patents

温度管理装置 Download PDF

Info

Publication number
WO2015190515A1
WO2015190515A1 PCT/JP2015/066715 JP2015066715W WO2015190515A1 WO 2015190515 A1 WO2015190515 A1 WO 2015190515A1 JP 2015066715 W JP2015066715 W JP 2015066715W WO 2015190515 A1 WO2015190515 A1 WO 2015190515A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat storage
heat
management device
storage material
Prior art date
Application number
PCT/JP2015/066715
Other languages
English (en)
French (fr)
Inventor
千賀明 小暮
山下 隆
大治 澤田
夕香 内海
別所 久徳
雄一 上村
近藤 克己
秀章 山村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015190515A1 publication Critical patent/WO2015190515A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This invention relates to the temperature management apparatus which maintains the temperature in the accommodating part which accommodates the management target object used as the object of temperature management constant.
  • a wine cooler is used to maintain a beverage such as wine at a desired temperature.
  • a wine cooler is used for keeping beverages cold during store sales or meals.
  • Patent Document 1 a soft material such as vinyl is formed into a plurality of kamaboko shapes, filled with absorbed polymer in the kamaboko shape, aligned, and fixed to the belt.
  • a cold insulator fitted with an adhesive such as a fastener is described.
  • the cold insulator is put in a freezer of a refrigerator, taken out after the water-absorbed polymer has been frozen, attached and used by being wrapped around a container containing a beverage.
  • a freezer of a refrigerator taken out after the water-absorbed polymer has been frozen, attached and used by being wrapped around a container containing a beverage.
  • Patent Document 2 since a conventional general wine cooler has water droplets attached to a wine bottle, each time the bottle is taken out from the wine cooler, the bottle is wiped with a towel when the wine is poured into the glass. With the problem of having to be removed, a technique has been disclosed that aims to provide a wine cooler that has a simple configuration and that makes it difficult for water droplets to adhere to the wine bottle and allows the wine bottle label to be visually recognized.
  • a fixing unit that allows a cold insulation material to be detachably attached to an inner wall of a cold insulation container having a cylindrical portion and a bottom surface portion or a cold insulation vessel imitating bamboo is provided.
  • the fixing means is composed of a magnet, a hook-and-loop fastener, a step portion (rib) provided on the inner wall of the container, and the like.
  • JP 2010-018340 A Japanese Patent No. 4406683
  • the cold insulation material of the cold insulator described in Patent Document 1 is composed of a polymer and moisture, it is necessary to freeze it in a freezer at least 0 ° C. or less before using the cold insulator.
  • the temperature of the cold insulator immediately after taking out from the freezer compartment is equivalent to the freezer compartment temperature, and the cold insulation object in contact with this is cooled to the equivalent temperature.
  • wines with a temperature of 2 to 18 ° C. especially red wines with a temperature of 14 to 18 ° C., it is too cold and cannot be kept at a desired temperature. .
  • Patent Document 2 The purpose of the technique disclosed in Patent Document 2 is not to keep the wine bottle at a desired temperature, but to provide a wine cooler in which water drops hardly adhere to the bottle and the bottle label can be visually recognized. Thus, no specific means for keeping the wine bottle at a desired temperature is disclosed.
  • This invention is made
  • the temperature management device of the present invention is a temperature management device that maintains a constant temperature in a storage unit that stores a management target object that is a target of temperature management, and is provided inside the storage unit, and has a phase change.
  • Temperature control unit having a plurality of types of heat storage materials having different temperatures and a function of cooling or heating each heat storage material upon receiving power supply, and setting the temperature of each heat storage material to a predetermined set temperature
  • a heat storage material having a phase change temperature higher than the set temperature Heat is absorbed in the housing part by changing the phase, or heat is released in the housing part by changing the phase of a heat storage material having a phase change temperature lower than the set temperature.
  • the present invention it becomes possible to bring the controlled object to a desired temperature. Moreover, even if it does not supply electric power, it becomes possible to maintain the temperature of the management target object at a constant temperature for a certain period at a plurality of set temperatures.
  • FIG. 1B is a cross-sectional view when the temperature management device 1 of FIG. 1A is cut along AA.
  • FIG. 1B is a cross-sectional view when the temperature management device 1 of FIG. 1A is cut along BB.
  • FIG. It is a figure which shows a mode that the to-be-cooled material 11 was accommodated in the temperature management apparatus 1.
  • FIG. It is a figure which shows a mode that the to-be-cooled material 11 was accommodated in the temperature management apparatus 1.
  • FIG. It is a figure which shows a mode that the to-be-cooled material 11 was accommodated in the temperature management apparatus 1.
  • FIG. 1 shows a mode that the to-be-cooled material 11 was accommodated in the temperature management apparatus 1.
  • FIG. 3 is a diagram showing an aspect in which a cooling unit including a Peltier element 3 is configured to be rotatable on the outer periphery of the temperature management device 1.
  • FIG. 3 is a diagram showing an aspect in which a cooling unit including a Peltier element 3 is configured to be rotatable on the outer periphery of the temperature management device 1. It is a figure which shows the case where the Peltier device 3 is located in the bottom face of the temperature management apparatus 1. FIG. It is a figure which shows the case where the Peltier device 3 is located in the bottom face of the temperature management apparatus 1.
  • FIG. 6 is a diagram showing Example 2.
  • FIG. 6 is a diagram showing Example 3.
  • FIG. 6 is a diagram showing Example 4.
  • FIG. 10 is a diagram showing Example 5.
  • FIG. 10 is a diagram showing Example 6.
  • FIG. 10 is a diagram showing Example 7.
  • FIG. 10 is a diagram showing Example 8.
  • FIG. 10 is a diagram showing Example 9. 10 is a diagram showing Example 10.
  • FIG. FIG. 6 is a diagram showing Example 2.
  • FIG. 10 is a diagram showing Example 11.
  • FIG. 10 is a diagram showing Example 12.
  • FIG. 16 is a diagram showing Example 13.
  • FIG. 16 is a diagram showing Example 13.
  • FIG. 14 is a diagram showing Example 14.
  • FIG. 14 is a diagram showing Example 14.
  • FIG. 16 is a diagram showing Example 15.
  • FIG. 16 is a diagram showing Example 15.
  • the present inventors pay attention to the endothermic action and heat release action when the heat storage material undergoes a phase change, and by providing a plurality of types of heat storage materials having different phase change temperatures in the temperature management device, a beverage such as wine can be obtained at a desired temperature. It has been found that it can be maintained at the present, and the present invention has been made.
  • the temperature management device of the present invention is a temperature management device that maintains a constant temperature in a storage unit that stores a management target object that is a target of temperature management, and is provided inside the storage unit. And a plurality of types of heat storage materials having different phase change temperatures, and a function of cooling or heating each of the heat storage materials upon receiving electric power, and setting the temperature of each of the heat storage materials to a predetermined set temperature.
  • a temperature control unit and when the supply of electric power to the temperature control unit is stopped and a temperature change occurs in the housing unit, the heat storage material has a phase change temperature higher than the set temperature.
  • the heat storage material absorbs heat in the housing part when the phase changes, or the heat storage material having a phase change temperature lower than the set temperature performs heat dissipation in the housing part.
  • the heat storage material having a phase change temperature higher than the set temperature is phase-changed.
  • heat is absorbed in the accommodating part, or the heat storage material having a phase change temperature lower than the set temperature changes the phase so that the heat is dissipated in the accommodating part. It becomes.
  • the temperature of the management target object can be maintained at a constant temperature for a certain period without supplying power.
  • each of the heat storage materials is provided so as to have substantially the same area on the inner surface of the housing portion.
  • each heat storage material has substantially the same area on the inner surface of the accommodating portion, the heat absorption or heat dissipation effect by each heat storage material can be equalized.
  • size of each heat storage material may make each heat storage material a fine rectangle, and may make it an integrated strip shape.
  • each of the heat storage materials is provided so as to have a different area for each phase change temperature on the inner surface of the housing portion.
  • each heat storage material has a different area for each phase change temperature on the inner surface of the housing portion, it is possible to improve heat retention or cold insulation. For example, when the set temperature is relatively low, it is possible to increase the cold insulation by increasing the area of the heat storage material having a phase change temperature lower than the set temperature.
  • the temperature holding performance can be made uniform by adjusting the size so that the latent heat amounts are substantially equal.
  • each of the heat storage materials is provided in a spiral shape on the inner surface of the housing portion.
  • each heat storage material is provided in a spiral shape on the inner surface of the housing portion, it is possible to absorb heat or dissipate the object to be managed such as a wine bottle without being biased.
  • each of the heat storage materials is formed in a strip shape on the inner surface of the housing portion, and the same kind of heat storage materials are connected to each other.
  • each heat storage material is formed in a strip shape, voids can be reduced and the density can be increased. Moreover, since the same kind of heat storage material is connected, it becomes possible to efficiently fill the liquid or fluid heat storage material.
  • each of the heat storage materials is formed in a strip shape extending in the vertical direction on the inner surface of the housing portion, and the temperature control portion is slid on the outer periphery of the housing portion. It is configured to be movable.
  • the temperature control unit is configured to be slidable on the outer periphery of the housing unit, the temperature management device can be moved according to the position of the heat storage material to be cooled or heated. Thereby, it becomes possible to raise the efficiency of cooling or heating of a thermal storage material.
  • the temperature control unit includes an interface capable of selecting any one of a plurality of predetermined set temperatures, and each of the heat storage materials, One of the selected set temperatures is used.
  • the temperature control unit is constituted by an electrothermal conversion device.
  • the temperature management device includes a cooling unit that can be cooled to a desired temperature, a cold insulation member that can maintain a desired cold insulation temperature, and a cold insulation container including the same.
  • This cooling unit is provided with a power source and performs electrical cooling.
  • the cold insulation unit includes a plurality of types of heat storage materials having different phase change temperatures. That is, each type of heat storage material is a cold insulating material having a different melting point, has a melting point near a desired temperature, and maintains a predetermined temperature during a phase change, thereby maintaining a set desired temperature for a certain period of time.
  • the container has heat insulating properties and improves the cold insulation function.
  • a description will be given assuming a case where the cold is kept at room temperature and lower than room temperature.
  • a switch for selecting the temperature to be held and a removable power plug for supplying external power are provided on the outer side of the cold storage container. Thereby, it becomes possible to select a desired temperature, and to cool the inner cold-retaining member and the cold-reserved object in accordance with the temperature selected by the cooling unit. Further, by making the power plug removable, it is possible to remove the power plug when placing it on the table so that the cord does not get in the way.
  • the cold insulation member can be kept cold for a certain period of time after the phase changes due to cooling of the cooling section.
  • the cold insulation time can be extended according to the amount of the heat storage material. Further, by using together heat storage materials having different melting points, a plurality of desired temperatures can be maintained. In order to prevent heat from escaping and to extend the cooling time, it is effective to make the cool container a highly heat insulating container.
  • FIG. 1A is a perspective view of the temperature management device according to the first embodiment
  • FIG. 1B is a cross-sectional view when the temperature management device 1 of FIG. 1A is cut along AA
  • FIG. It is sectional drawing when the temperature control apparatus 1 of 1A is cut
  • the description will be made assuming that the cold is kept at a temperature lower than the normal temperature at normal temperature.
  • a temperature management device 1 includes a cooling part composed of a Peltier element 3 and a cooling layer 4 for transmitting heat on a side surface of a heat-insulating container, and a heat storage layer 2 as a cold insulation member inside the cooling part. Is provided.
  • the temperature management device 1 has a hollow portion 10 as a housing portion, and can hold a cold object such as a wine bottle in the hollow portion 10 as shown in FIGS.
  • the diameter of the hollow part 10 is sufficient if it has a diameter of about 9 cm, for example, since the diameter of a wine bottle is about 8 cm.
  • the height of the temperature management device 1 may be about 20 cm, and the height of the hollow portion 10 may be about 18 cm.
  • the size of the Peltier element 3 may be about 18 cm in height, 9 cm in width, and about 4 mm in thickness. In the description of the embodiment, the description will be made on the assumption of a single bottle.
  • the Peltier element 3 has a PID temperature control circuit and can select a plurality of temperatures.
  • the cold container is provided with a temperature setting button 7 for selecting the temperature.
  • the temperature setting of the Peltier device 3 can be set to 3 ° C, 7 ° C, 11 ° C, 15 ° C, for example.
  • the Peltier device can be driven at -50 ° C to 150 ° C, and the temperature adjustment is in units of 1 ° C.
  • the present invention is not limited to this.
  • the position and the number of buttons for the user to adjust the temperature are not limited to the description, and the selection method and the selection shape can adopt a dial type, a touch panel type, etc. There is no limit.
  • the Peltier element is described as the cooling mechanism, the present invention is not limited to this, and a compressor, a chemical heat pump, a vaporization absorption, a Stirling refrigerator, or the like can be used.
  • the Peltier element 3 can maintain a stable temperature by supplying electricity. By selecting a specific temperature with the temperature setting button 7, the specific temperature is transmitted from the Peltier element 3 to the heat storage layer 2 through the cooling layer 4 via the temperature control circuit.
  • the temperature is set to 15 ° C., if the heat storage material has a melting point at 16 ° C. higher than that temperature, the heat storage material undergoes a phase change from liquid to solid at 15 ° C. and solidifies.
  • the Peltier element 3 is provided with heat radiating fins 5 to enhance the cooling function. Further, a fan may be attached to improve the heat dissipation performance.
  • the radiating fin 5 is made of a metal such as aluminum, for example, and has a configuration in which plates having a thickness of 2 mm, a height of 18 cm, and a width of 3 cm are arranged in parallel. In addition, if the radiation fin 5 can radiate heat, there is no special restriction on the shape, and a smaller one is preferable in terms of ease of handling and appearance. A configuration in which an infinite number of columnar fins are arranged may be used.
  • the cooling layer 4 can use aluminum foil, a heat conductive sheet, or the like. Note that the present invention is not limited to this.
  • the temperature management device 1 includes a power plug 8 and a power connector 9 for supplying power to the Peltier element 3.
  • the power connector 9 has a removable configuration such as an electric pot.
  • the power plug 8 can be connected to an AC 100V outlet, but is not limited thereto.
  • a primary battery, a secondary battery, and other various types of batteries can be incorporated or packaged.
  • FIGS. 2 to 4 are views showing a state in which the object to be cooled 11 is accommodated in the temperature management device 1.
  • the object to be cooled 11 can be kept at a desired temperature. As long as electricity is supplied, a desired temperature can be maintained without worrying about the holding time.
  • the heat storage material is solidified, it is possible to maintain the temperature for a predetermined time even after the power connector is removed and the supply of electricity is stopped.
  • the temperature management device 1 has a shape in which the bottom is closed and the top is opened.
  • the outer wall of the hollow portion 10 as the housing portion is configured by, for example, molding stainless steel into a cylindrical shape.
  • the temperature management device 1 is used at room temperature (for example, 25 ° C.) with the bottom contacting the tableware placement surface of a table, for example.
  • the bottom of the temperature management device 1 has a planar shape, and can hold the cold object 11 stably on a desktop or the like.
  • various drinks are mentioned as a liquid.
  • a beverage having a temperature lower than room temperature at the time of drinking is suitable.
  • red wine or the like has a drinking temperature of about 14 ° C. to 18 ° C., so it is preferable to use the temperature management device 1 according to the present embodiment.
  • the liquid may be a liquid having a higher viscosity than water or a liquid mixed with solid matter. Further, the solid may be kept cold instead of the liquid.
  • the container include a glass or ceramic bottle, an iron or aluminum can, and a plastic bottle.
  • Refrigerated objects may be other than wine.
  • alcohol such as beer and sake, juice, drinking water, and the like may be used.
  • the object to be kept cold may be foods or pharmaceuticals.
  • examples include fruits, vegetables, meat and fish.
  • the appropriate temperature environment is about 0 to 2 ° C., and it is said that freshness cannot be maintained for more than 2 days outside the same temperature range.
  • pharmaceuticals and the like require more strict temperature control, and the control temperature range is generally said to be 2 to 8 ° C.
  • a heat storage material having a phase change temperature of around 15 ° C. is used for the heat storage material according to the present embodiment.
  • heat storage refers to a technique for temporarily storing heat and extracting the heat as needed.
  • Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like, but in this embodiment, latent heat storage is exclusively used.
  • Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance.
  • the latent heat storage has a high heat storage density and a constant output temperature.
  • a latent heat storage member such as is used.
  • a heat storage material of combustible material such as paraffin can be incorporated, it is preferably an incombustible material because it is an electric device, and in this embodiment, it is more preferable to use an inorganic heat storage member.
  • an inorganic salt aqueous solution used for a heat storage material an aqueous solution in which potassium chloride (KCl) and ammonium chloride (NH 4 Cl) are dissolved in water, sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) are dissolved in water.
  • KCl potassium chloride
  • NH 4 Cl ammonium chloride
  • NaCl sodium chloride
  • NH 4 Cl ammonium chloride
  • inorganic salt hydrates used for heat storage materials sodium sulfate decahydrate (Na 2 SO 4 ⁇ 10H 2 O), sodium acetate trihydrate, sodium thiosulfate pentahydrate, disodium hydrogen phosphate twelve Binary composition of hydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C), lithium nitrate trihydrate and lithium chloride hexahydrate mainly composed of lithium nitrate trihydrate Or a ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting point 5.8).
  • the heat storage material is not limited to these inorganic salt hydrates.
  • quaternary ammonium salts such as tetrabutylammonium bromide (TBAB) and tetrabutylammonium chloride (TBAC) are dissolved in water, and tetrahydrofuran in water
  • TBAB tetrabutylammonium bromide
  • TBAC tetrabutylammonium chloride
  • the 40% aqueous solution of tetrabutylammonium chloride is an example of a heat storage material at around 15 ° C., but in this embodiment, the heat storage material is not limited to these hydrates or aqueous solutions. For example, 12 ° C. tetrabutylammonium bromide, 15 ° C.
  • tetrabutylammonium chloride 28 ° C. tetrabutylammonium fluoride, 7 ° C. n-pentyltributylammonium bromide, 4 ° C. tetrahydrofuran and the like may be used.
  • the heat storage material may be gelled.
  • the gelled heat storage material contains a gelling agent.
  • a gel is a gel in which molecules are partially cross-linked to form a three-dimensional network structure that absorbs a solvent and swells therein. The composition of the gel is almost in the liquid phase, but mechanically it is in the solid phase.
  • the gelled heat storage material maintains a solid state as a whole and does not have fluidity even when the phase is reversibly changed between a solid phase and a liquid phase.
  • the gel heat storage material is easy to handle because it can maintain a solid state as a whole before and after the phase change.
  • Examples of the gelling agent include synthetic polymers, natural polysaccharides, gelatin, and the like using a molecule having at least one hydroxyl group or carboxyl group, sulfonic acid group, amino group, or amide group.
  • Examples of the synthetic polymer include polyacrylamide derivatives, polyvinyl alcohol, polyacrylic acid derivatives, and the like.
  • Examples of natural polysaccharides include agar, alginic acid, fercellan, pectin, starch, a mixture of xanthan gum and locust bean gum, tamarind seed gum, julan gum, carrageenan and the like. Although these are mentioned as an example of a gelling agent, in this embodiment, a gelling agent is not limited to these.
  • the hollow heat storage material storage part for storing the heat storage material is formed of, for example, a resin material.
  • the resin material used for the heat storage material accommodating portion include plastic materials such as polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, acrylic resin (PMMA), and polycarbonate (PC).
  • a material is used.
  • the heat storage material accommodating portion is not limited to resin, and may be formed using an inorganic material such as aluminum laminate, glass, ceramic, or metal.
  • the heat storage material container may contain fiber (glass wool, cotton, cellulose, nylon, carbon nanotube, carbon fiber, etc.), powder (alumina powder, metal powder, microcapsule, etc.) and other modifiers. good. Although these are mentioned as an example of a thermal storage material accommodating part, in this embodiment, a thermal storage accommodating part is not limited to these.
  • FIG. 5 is a diagram illustrating an example of the shape of the heat storage layer, and is a schematic diagram in which the heat storage layer having a cylindrical shape is expanded.
  • the partitioned part is the above-described hollow heat storage material accommodating portion, and the heat storage material is filled there.
  • the heat storage material is filled with a plurality of types of heat storage materials having different phase change temperatures. Thereby, it becomes possible to maintain different temperatures depending on the beverage. For example, in the case of wine, sweet white wine 4 ° C. to 6 ° C., dry white wine and rose wine 6 ° C. to 13 ° C., red wine 14 ° C. to 18 ° C. Phase change temperature member of 4 ° C. for heat storage material 1 (21), Phase change temperature member of 8 ° C.
  • heat storage material 3 for heat storage material 2 (22) and heat storage material 2 ′ (25), heat storage material 3 (23) and heat storage material 3 ′ ( 26) is filled with a phase change temperature member of 12 ° C., and the heat storage material 4 (24) and the heat storage material 4 ′ (27) are filled with a phase change temperature member of 16 ° C. Can be provided.
  • the temperature of the corresponding temperature body and the number thereof are not limited to the description.
  • the outer wall of the temperature management device 1 has heat insulation properties. That is, the temperature management device 1 has heat insulation properties so that heat is not transmitted from the outside to the heat storage layer 2.
  • the heat insulating property is realized by using a fiber heat insulating material (glass wool or the like), a foamed resin heat insulating material (foamed polystyrene, foamed urethane), a vacuum heat insulating material, or the like, but is not limited thereto.
  • the Peltier element 3 When the Peltier element 3 is not supplied with electricity, the Peltier element 3 has low thermal conductivity, so that it is difficult to transfer heat to the outside. When it is desired to further enhance the effect, it is possible to attach a cover 12 having heat insulation properties as shown in FIG.
  • the heat storage material as a cold insulating material cooled by the Peltier element 3 maintains a constant temperature for a predetermined time according to the amount. If it is a latent heat storage material, it is possible to hold
  • the temperature holding time is about 2 hours after solidification.
  • the description has been made with respect to the cold insulation.
  • the heat storage material may be composed of two or more heat storage materials having different phase change temperatures.
  • the heat storage material A (ex.NaCl_20 wt% aqueous solution) having a phase change temperature at -21 ° C.
  • the heat storage material B (ex.TBAB_40 wt% aqueous solution) having a phase change temperature at 12 ° C.
  • One heat storage material may be used. When this heat storage material is frozen in a general freezer room (around -18 ° C), the heat storage material A portion at -21 ° C is not frozen, and only the heat storage material B portion at 12 ° C is frozen, that is, the heat storage material that is half frozen. Become a material.
  • this heat storage material is wound around the heat receiving body, it has a certain degree of flexibility, so that a certain degree of adhesion is secured, and the latent heat stored in the freezer compartment by the heat storage material B in the frozen portion near 12 ° C. is used as the heat receiving body. It becomes possible to give.
  • the heat storage material By configuring the heat storage material with two or more heat storage materials having different phase change temperatures, even if one heat storage material is frozen at a predetermined temperature, the other heat storage material is not frozen, so flexibility It is possible to increase the degree of adhesion to the heat receiving body.
  • FIGSecond Embodiment 6A and 6B are views showing a configuration in which the cooling unit composed of the Peltier element 3 is configured to be rotatable on the outer periphery of the temperature management device 1.
  • Each heat storage material, the temperature management device 1 and the Peltier element 3 are not fixed, and the Peltier element 3 can be positioned at a place where the heat storage material as a desired holding temperature body is present by turning by the user. Thereby, it becomes possible to cool effectively the heat storage material of the temperature to hold
  • the Peltier element 3 has a cooling effect that is enhanced by the surface being in close contact with the surface to be cooled. It becomes more effective when the curvature of the contact surface of 3 is equal.
  • the Peltier element temperature control circuit 6 can be mounted on the lower side of the Peltier element 3 or on the bottom surface of the container.
  • FIGS. 7A and 7B are diagrams showing a case where the Peltier element 3 is positioned on the bottom surface of the temperature management device 1.
  • the side surface can be made clear by disposing the radiation fins 5 below.
  • the Peltier element temperature control circuit 6 can be mounted on the side surface.
  • FIGS. 8A to 8C are diagrams showing a case where an opening is provided in a part of the temperature management device.
  • the degree of opening is preferably up to about half that of the object to be cooled, but is not limited thereto.
  • the inclination can be set up vertically.
  • FIG. 9 is a diagram showing the shape of the heat storage layer in Example 1. As shown in FIG. 9, each type of heat storage material was formed in a strip shape. Since the configuration is simple, it is easy to make and easy to fill with a heat storage material.
  • FIG. 10 is a diagram showing the shape of the heat storage layer in Example 2. As shown in FIG. 10, Example 1 shown in FIG. 9 is divided into two in the horizontal direction, and heat storage materials are further distributed. This makes it easy to keep the temperature uniform.
  • FIG. 11 is a diagram showing the shape of the heat storage layer in Example 3. As shown in FIG. 11, the first embodiment shown in FIG. 9 is divided into two in the vertical direction, and the heat storage materials are distributed. This makes it easy to keep the temperature uniform.
  • FIG. 12A is a diagram showing the shape of the heat storage layer in Example 4. As shown in FIG. 12A, Example 1 shown in FIG. 9 is divided into two in the horizontal direction and in the vertical direction, and the heat storage materials are distributed. As a result, the temperature can be maintained more easily. Furthermore, it is possible to increase the number of divisions and arrange them more uniformly.
  • FIG. 12B is a diagram showing the shape of the heat storage layer in Example 5.
  • the area is changed according to the kind of heat storage material. That is, the area of the heat storage material 1 (41) is the largest, the area of the heat storage material 2 (42) is the second largest, the area of the heat storage material 3 (43) is the third largest, and the heat storage material The area of 4 (44) is the smallest.
  • the heat storage material 1 (41) is the largest
  • the area of the heat storage material 2 (42) is the second largest
  • the area of the heat storage material 3 (43) is the third largest
  • the heat storage material The area of 4 (44) is the smallest.
  • the set temperature is relatively low, it is possible to increase the cold insulation by increasing the area of the heat storage material having a phase change temperature lower than the set temperature.
  • the amount of latent heat [J / g] per unit mass of each heat storage material is different, the size can be adjusted and the entire amount of latent heat can be made uniform.
  • the shape of the heat storage layer may be such that the thickness increases in the vertical direction from the bottom to the top or from the top to the bottom.
  • FIG. 13 is a diagram showing the shape of the heat storage layer in Example 6. As shown in FIG. 13, since the heat storage material having the same phase change temperature is disposed throughout the temperature management device 1, the temperature can be easily maintained uniformly. Moreover, since it becomes a bellows and is connected by one bag, it is easy to fill the heat storage material.
  • FIG. 14 is a diagram showing Example 7. As shown in FIG. 14, the temperature management device 1 includes a heat insulating pedestal 13. With this configuration, since the heat insulation effect is enhanced, it is possible to lengthen the time for maintaining the temperature without supplying electricity.
  • FIG. 15 is a diagram showing Example 8. As shown in FIG. 15, the radiation fins 5 can be removed. At this time, in order to enhance the heat insulating effect, a heat insulating pedestal 13 as shown in FIG. 14 is used. Thereby, when putting on a desktop, it can be made compact.
  • FIG. 16 is a diagram showing Example 9.
  • a cover 12 that covers the object to be cooled 11 such as the heat radiating fins 5 and the bottles is provided in the temperature management device.
  • the heat insulation effect can be enhanced when the power is disconnected.
  • FIG. 17 is a diagram showing Example 10. As shown in FIG. 17, it is possible to remove the heat radiating fin, and after removing the heat radiating fin, it is possible to attach the heat insulating sheet 14 to the corresponding part. It is preferable that the heat insulating sheet 14 has a shape that is easy to remove, such as a fitting type or a magnet bonding.
  • FIG. 18 is a diagram showing Example 11.
  • a handle 170 is provided in the temperature management device 1.
  • the handle 170 can be improved in portability of the temperature management device 1 by being attached to the side surface portion of the temperature management device 1 via, for example, a hinge 171.
  • FIG. 19 is a diagram illustrating Example 12.
  • FIG. A transparent window 180 was provided on the side surface of the temperature management device 1. Thereby, the container and the contents of the bottle can be seen through the window 180.
  • FIG. 20A and 20B are diagrams showing Example 13.
  • FIG. 20A and FIG. 20B legs 190 that serve as a support when tilted are provided on the side surface of the temperature management device 1.
  • the feet 190 support it, so that the contents of the bottle can be tilted without spilling. Further, the contents of the bottle can be easily oxidized as necessary. It can also be used as a handle.
  • FIGS. 21A and 21B are diagrams showing Example 14.
  • FIG. 21A and 21B by making the shape of the radiating fin 5 trapezoidal, it becomes possible to cause the same function as the foot 190 shown in FIGS. 20A and 20B.
  • FIG. 22A and FIG. 22B are diagrams showing Example 15 with a lid for closing the hollow portion 10. Since the hollow portion 10 that accommodates the wine bottle is open at the top, the cool air may escape or room temperature air may enter the interior through the opening of the hollow portion 10 to lose the cooling effect or the cooling effect. There is. By attaching a lid as in this embodiment, it is possible to increase the cooling effect and the cold insulation effect. In addition, as shown to FIG. 22B, you may provide the hole which penetrates the neck part of a wine bottle to the lid
  • the object to be cooled or / and the member to be cooled can be cooled by arranging the object to be cooled in the container and supplying electricity.
  • the power source is a plug-in type and can be easily removed, so it has excellent portability. Because the power supply is provided, the object to be cooled can be cooled even when the cold insulating member is not cooled. As long as electricity is supplied, the user can cool for a desired time.
  • the heat storage material due to the presence of the heat storage material, it is possible to continue the cold insulation at a specific temperature by the heat storage material even after the supply of electricity is stopped after cooling for a certain time. In addition, it is possible to keep cold even when electricity is suddenly insufficient. Further, by arranging a plurality of types of heat storage materials, a plurality of cold insulation temperatures can be selected. In addition, the heat-insulating container reduces heat loss and enables effective cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

 被管理対象物を、所望の温度に維持する。温度管理の対象となる被管理対象物を収容する中空部10内の温度を一定に維持する温度管理装置1であって、中空部10の内側に設けられ、相変化温度が相互に異なる複数種類の蓄熱材を備える蓄熱層2と、電力の供給を受けて蓄熱層2を冷却または加熱する機能を有し、蓄熱層2の温度を予め定められた設定温度とするペルチェ素子3およびペルチェ素子温度制御回路6と、を備え、ペルチェ素子温度制御回路6への電力の供給が停止し、中空部10内で温度変化が生じた場合、各蓄熱材のうち、設定温度よりも高い相変化温度を有する蓄熱材が相変化することによって中空部10内で吸熱を行ない、または設定温度よりも低い相変化温度を有する蓄熱材が相変化することによって中空部10内で放熱を行なう。

Description

温度管理装置
 本発明は、温度管理の対象となる被管理対象物を収容する収容部内の温度を一定に維持する温度管理装置に関する。
 従来から、ワイン等の飲料を所望の温度に維持するためにワインクーラーが用いられている。ワインクーラーは、店頭販売や食事の際に飲料を保冷する場合に利用されている。
 特許文献1には、ビニール等の軟性な材質を複数のかまぼこ形状に形成し、当該かまぼこ形状内に吸水したポリマーを充填し、整列させてベルトに固定し、ベルトの両端の表と裏に面ファスナー等の接着具を装着した保冷具が記載されている。当該保冷具を冷蔵庫の冷凍室に入れ、吸水したポリマーが冷凍した後に取り出して、飲料が入った容器に巻き付けるようにして取り付けて使用する。これによって、冷えた飲料などを卓上等に置いたままでも、長い間にわたり強制的に冷却することができる。
 また、特許文献2には、従来の一般的なワインクーラーは、ワインボトルに水滴が付着するため、ワインをグラスに注ぐ際、ボトルをワインクーラーから取り出す毎に、ボトルをタオルで拭いて水滴を取り除く必要があったことを課題として、簡単な構成で、ワインボトルに水滴が付着しにくく、ワインボトルのラベルを視認できるワインクーラーを提供することを目的とする技術が開示されている。特許文献2に記載されている技術では、円筒部および底面部からなる保冷容器、または竹を模した保冷容器の内壁に、保冷材を着脱自在に取り付け可能とする固定手段を設け、保冷容器の内側に保冷材の冷気を充満させることにより、ワインを最適な温度に保つことを特徴としている。また、この固定手段は、磁石、面ファスナー、容器の内壁に設けた段部(リブ)等で構成することが記載されている。
特開2010-018340号公報 特許第4406683号明細書
 しかしながら、特許文献1に記載された保冷具の保冷材は、高分子ポリマーと水分から構成されているので、保冷具使用前には少なくとも0℃以下の冷凍室で凍結させる必要がある。冷凍室から取出した直後の保冷具の温度は冷凍室温度相当であり、これに接触する保冷対象物は相当温度に冷却されることになる。例えば、2℃~18℃が飲み頃とされているワイン、特に14~18℃が飲み頃とされている赤ワイン等においては、当該保冷具では冷え過ぎてしまい所望の温度に保冷することができない。
 また、特許文献2に開示された技術の目的は、ワインボトルを所望の温度に保温維持することではなく、ボトルに水滴が付着しにくく、ボトルのラベルを視認できるワインクーラーを提供することであって、ワインボトルを所望の温度に保温維持するための具体的手段は開示されていない。
 本発明は、このような事情に鑑みてなされたものであり、被管理対象物を、所望の温度に維持することができる温度管理装置を提供することを目的とする。
 上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の温度管理装置は、温度管理の対象となる被管理対象物を収容する収容部内の温度を一定に維持する温度管理装置であって、前記収容部の内側に設けられ、相変化温度が相互に異なる複数種類の蓄熱材と、電力の供給を受けて前記各蓄熱材を冷却または加熱する機能を有し、前記各蓄熱材の温度を予め定められた設定温度とする温度制御部と、を備え、前記温度制御部への電力の供給が停止し、前記収容部内で温度変化が生じた場合、前記各蓄熱材のうち、前記設定温度よりも高い相変化温度を有する蓄熱材が相変化することによって前記収容部内で吸熱を行ない、または前記設定温度よりも低い相変化温度を有する蓄熱材が相変化することによって前記収容部内で放熱を行なう。
 本発明によれば、被管理対象物を所望の温度にすることが可能となる。また、電力を供給しなくても、一定期間、被管理対象物の温度を一定の温度に維持することが複数の設定温度にて可能となる。
第1の実施形態に係る温度管理装置の斜視図である。 図1Aの温度管理装置1をA-Aで切断した時の断面図である。 図1Aの温度管理装置1をB-Bで切断した時の断面図である。 温度管理装置1に被保冷物11を収容した様子を示す図である。 温度管理装置1に被保冷物11を収容した様子を示す図である。 温度管理装置1に被保冷物11を収容した様子を示す図である。 蓄熱層の形状の一例を示す図であり、筒状になっている蓄熱層を広げた模式図である。 ペルチェ素子3からなる冷却部が温度管理装置1の外周で回転可能に構成された態様を示す図である。 ペルチェ素子3からなる冷却部が温度管理装置1の外周で回転可能に構成された態様を示す図である。 ペルチェ素子3を温度管理装置1の底面に位置させた場合を示す図である。 ペルチェ素子3を温度管理装置1の底面に位置させた場合を示す図である。 温度管理装置の一部を開放させた態様を示す図である。 温度管理装置の一部を開放させた態様を示す図である。 温度管理装置の一部を開放させた態様を示す図である。 温度管理装置の一部を開放させ、傾斜させた態様を示す図である。 実施例1を示す図である。 実施例2を示す図である。 実施例3を示す図である。 実施例4を示す図である。 実施例5を示す図である。 実施例6を示す図である。 実施例7を示す図である。 実施例8を示す図である。 実施例9を示す図である。 実施例10を示す図である。 実施例11を示す図である。 実施例12を示す図である。 実施例13を示す図である。 実施例13を示す図である。 実施例14を示す図である。 実施例14を示す図である。 実施例15を示す図である。 実施例15を示す図である。
 本発明者らは、蓄熱材が相変化する際の吸熱作用および放熱作用に着目し、温度管理装置に相変化温度が異なる複数種類の蓄熱材を設けることによって、ワイン等の飲料を所望の温度に維持することができることを見出し、本発明をするに至った。
 (1)すなわち、本発明の温度管理装置は、温度管理の対象となる被管理対象物を収容する収容部内の温度を一定に維持する温度管理装置であって、前記収容部の内側に設けられ、相変化温度が相互に異なる複数種類の蓄熱材と、電力の供給を受けて前記各蓄熱材を冷却または加熱する機能を有し、前記各蓄熱材の温度を予め定められた設定温度とする温度制御部と、を備え、前記温度制御部への電力の供給が停止し、前記収容部内で温度変化が生じた場合、前記各蓄熱材のうち、前記設定温度よりも高い相変化温度を有する蓄熱材が相変化することによって前記収容部内で吸熱を行ない、または前記設定温度よりも低い相変化温度を有する蓄熱材が相変化することによって前記収容部内で放熱を行なうことを特徴とする。
 このように、相変化温度が相互に異なる複数種類の蓄熱材を備え、収容部内で温度変化が生じた場合、各蓄熱材のうち、設定温度よりも高い相変化温度を有する蓄熱材が相変化することによって収容部内で吸熱を行ない、または設定温度よりも低い相変化温度を有する蓄熱材が相変化することによって収容部内で放熱を行なうので、被管理対象物を所望の温度にすることが可能となる。また、電力を供給しなくても、一定期間、被管理対象物の温度を一定の温度に維持することが可能となる。
 (2)また、本発明の温度管理装置において、前記各蓄熱材は、前記収容部の内面上で実質的に同一の面積を有するように設けられていることを特徴とする。
 このように、各蓄熱材は、収容部の内面上で実質的に同一の面積を有するので、各蓄熱材による吸熱または放熱効果を均等にすることができる。なお、各蓄熱材の形状および大きさは、各蓄熱材を細かく矩形にしても良いし、一体型の短冊状にしても良い。
 (3)また、本発明の温度管理装置において、前記各蓄熱材は、前記収容部の内面上で相変化温度毎に異なる面積を有するように設けられていることを特徴とする。
 このように、各蓄熱材は、収容部の内面上で相変化温度毎に異なる面積を有するので、保温性または保冷性を高めることが可能となる。例えば、設定温度が相対的に低い場合、その設定温度よりも低い相変化温度を有する蓄熱材の面積を大きくすることにより、保冷性を高めることが可能となる。また、潜熱容量が異なる場合に、潜熱量がほぼ等しくなるように大きさを調整することで、温度保持性能を均一にすることが可能となる。
 (4)また、本発明の温度管理装置において、前記各蓄熱材は、前記収容部の内面上で螺旋状に設けられていることを特徴とする。
 このように、各蓄熱材が収容部の内面上で螺旋状に設けられているため、ワインボトルなどの被管理対象物に対して、偏ることなく吸熱または放熱を行なうことが可能となる。
 (5)また、本発明の温度管理装置において、前記各蓄熱材は、前記収容部の内面上で短冊状に形成され、同種類の蓄熱材同士が連結されていることを特徴とする。
 このように、各蓄熱材が短冊状に形成されているため、空隙を少なくし、密度を高めることができる。また、同種類の蓄熱材同士が連結されているため、液体または流動体の蓄熱材を効率良く充填することが可能となる。
 (6)また、本発明の温度管理装置において、前記各蓄熱材は、前記収容部の内面上で鉛直方向に延びる短冊状に形成され、前記温度制御部は、前記収容部の外周上で摺動可能に構成されていることを特徴とする。
 このように、温度制御部が収容部の外周上で摺動可能に構成されているので、冷却または加熱すべき蓄熱材の位置に応じて、温度管理装置を移動させることが可能となる。これにより、蓄熱材の冷却または加熱の効率を高めることが可能となる。
 (7)また、本発明の温度管理装置において、前記温度制御部は、予め定められた複数の設定温度のうち、いずれか一つの設定温度を選択可能なインタフェースを備え、前記各蓄熱材を、前記選択されたいずれかの設定温度とすることを特徴とする。
 このように、複数の温度を設定できるので、飲み頃の温度がワインの種類によって異なるワインボトルのような被管理対象物を所望の温度に維持することが可能となる。
 (8)また、本発明の温度管理装置において、前記温度制御部は、電熱変換装置で構成されていることを特徴とする。
 このように、電熱変換装置を用いるため、騒音が無く、小型化を図ることが可能で、食卓で使用する場合の利便性を高めることが可能となる。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。
 本実施形態に係る温度管理装置は、所望の温度に冷やすことのできる冷却部と、所望の保冷温度を維持できる保冷部材およびそれを備えた保冷容器を具備する。この冷却部は、電源を備え、電気的に冷却を行なう。保冷部は、相変化温度が異なる複数種類の蓄熱材を備える。すなわち、各種類の蓄熱材は、それぞれ異なる融点を持つ保冷材であり、それぞれ所望の温度付近の融点を持ち、相変化時に一定の温度を保つことによって、設定した所望の温度を一定時間保つ。容器は、断熱性を持ち、保冷機能を向上させる。ここでは、一例として常温において、室温よりも低い温度で保冷する場合を想定し説明する。
 保冷容器の外側の側面には、保持する温度を選択するスイッチ、および、外部電源を供給する取り外し可能な電源プラグを備える。これにより所望の温度を選択し、冷却部が選択された温度に応じて、更に内側の保冷部材、および、保冷対象物の冷却を行なうことが可能となる。また、取り外し可能な電源プラグにすることで、テーブルに置く際に電源プラグを外しコードが邪魔にならないようにすることが可能となる。
 保冷部材は、冷却部の冷却により相変化した後、一定時間の保冷を可能とする。保冷時間は蓄熱材の量に応じて時間を延ばすことができる。また、異なる融点を持つ蓄熱材を併用することにより、複数の所望の温度の保持を可能とする。保冷容器は、熱が逃げない様にし、保冷時間を延ばす為に断熱性の高い容器とすることが効果的である。
 [第1の実施形態]
 図1Aは、第1の実施形態に係る温度管理装置の斜視図であり、図1Bは、図1Aの温度管理装置1をA-Aで切断した時の断面図であり、図1Cは、図1Aの温度管理装置1をB-Bで切断した時の断面図である。ここでは、説明を簡易にするために常温において、常温より低い温度で保冷する場合を想定して説明する。
 図1A~Cにおいて、温度管理装置1は、断熱性を有する容器の側面に、ペルチェ素子3とその熱を伝える冷却層4からなる冷却部とその冷却部の内側に保冷部材としての蓄熱層2を備える。温度管理装置1は、収容部としての中空部10があり、図2から図4に示すように、中空部10にワインボトル等の被保冷物を収容することができる。
 中空部10の直径は、例えば、ワインのボトルの直径が8cm程度なので、9cm程度の大きさの直径を有していれば足りる。温度管理装置1の高さは、20cm程度、中空部10の高さは18cm程度であれば良い。ペルチェ素子3の大きさは、高さ18cm、横9cm、厚さ4mm程度であれば良い。実施形態の説明では、一本を想定して説明を行なうが、複数本入れる容器にすることも可能である。
 ペルチェ素子3は、PID温度制御回路を持ち、複数の温度を選択可能となっている。また、温度選択をするために保冷容器は温度設定ボタン7を備える。ペルチェ素子3の温度設定は、例えば、3℃、7℃、11℃、15℃とすることができるが、一般にペルチェ素子は-50℃~150℃で駆動が可能で、温度調整も1℃単位で可能であり、これに限定されることはない。ユーザが温度調整をするためのボタンの位置や数は記載に限定されることはなく、また、選択方式や選択形状に関しても、ダイヤル式、タッチパネル式などを採用することが可能であり、ボタンに限定されることはない。また、冷却機構としてペルチェ素子にて説明をしているが、これに限定されることなく、コンプレッサー、ケミカルヒートポンプ、気化吸収、スターリング冷凍機などを活用することも可能である。
 ペルチェ素子3は、電気を供給することで安定した温度を保つことが可能である。温度設定ボタン7により特定の温度を選択することで、温度制御回路を介して、特定の温度がペルチェ素子3から、冷却層4を通じ蓄熱層2に伝わる。15℃に設定された場合、蓄熱材はその温度より高い16℃で融点を持つとすると、15℃にて液体から固体へ相変化を起こし、固化する。
 ペルチェ素子3は、冷却機能を高める為に放熱フィン5を備える。更に放熱性能を高める為にファンを付けても良い。放熱フィン5は、例えば、アルミ等の金属で構成されており、厚みが2mm、高さ18cm、横が3cmの板が並設された構成を採っている。なお、放熱フィン5は、放熱が出来れば、形状に特別な制約はなく、小さい方が扱いやすさと外見上好ましい。柱状のフィンが無数並んだ構成でも良い。冷却層4は、アルミ箔や、熱伝導シートなどを使用することができる。なお、本発明は、これに限定されるわけではない。
 図1A~Cにおいて、温度管理装置1は、ペルチェ素子3に電力を供給する為の電源プラグ8および電源コネクタ9を備える。電源コネクタ9は、例えば、電気ポットのような取り外し可能な構成となっている。電源プラグ8は例えば、AC100Vのコンセントに接続することができるが、これに限定されることはない。一次電池、二次電池、その他各種電池を内蔵若しくは外装することも可能である。
 図2~図4は、温度管理装置1に被保冷物11を収容した様子を示す図である。図2~図4に示すように、被保冷物11を置き、温度設定をすることで、被保冷物11を所望の温度にて保つことが可能となる。電気を供給している限りは、保持時間を気にすることなく所望の温度を保持することができる。また、蓄熱材が固化した後は、電源コネクタを外し、電気の供給を停めた後も所定時間の温度の維持が可能である。
 温度管理装置1は、より具体的には、図1A~図1Cに示すように、底部が閉じて上部が開口した形状をしている。収容部としての中空部10の外壁は、例えば、ステンレス鋼を円筒状に成型して構成されている。温度管理装置1は、底部を、例えば食卓の食器載置面に接触させて室温(例えば、25℃)中で使用される。温度管理装置1の底部は平面形状であり、卓上等に安定して被保冷物11を保持して置くことができる。被保冷物11としては、液体として各種の飲料が挙げられる。
 特に、室温より低い温度が飲み頃温度となる飲料が好適である。例えば、赤ワイン等は、14℃から18℃程度が飲み頃温度なので、本実施形態に係る温度管理装置1を用いることが好ましい。また、液体は、水より粘性が高い液体や固形物が混入された液体でも良い。さらには、液体に代えて固体を保冷しても良い。容器としては、ガラス製やセラミック製のビン、鉄製やアルミニウム製の缶、ペットボトル等が挙げられる。
 保冷対象物は、ワイン以外であっても良い。例えば、ビール、日本酒等のアルコール類、またはジュース、飲料水等であっても良い。さらに、保冷対象物は、食品類や医薬品類であっても良い。例えば、食品類であれば、果物や野菜、肉・魚類等が挙げられる。具体的には、いちごの場合、適温環境は、0~2℃程度であり、同温度範囲外では2日以上鮮度を維持することは出来ないと言われている。一方、医薬品類等は更に厳密な温度管理が必要であり、その管理温度域は、一般的には2~8℃と言われている。
 本実施形態に係る蓄熱材には、相変化温度が15℃前後の蓄熱材料が用いられている。ここで、蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施形態では、専ら潜熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相変化の熱エネルギーを蓄える。潜熱蓄熱は、蓄熱密度が高く、出力温度が一定である。潜熱蓄熱を利用する蓄熱材には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、無機塩水溶液、無機塩水和物、包接水和物などの潜熱蓄熱部材が用いられる。パラフィン等の可燃物の蓄熱材も内蔵可能であるが、電気機器であるため不燃物であることが好ましく、本実施形態では無機系の蓄熱部材を使用するのがより好ましい。
 蓄熱材に用いられる無機塩水溶液として、塩化カリウム(KCl)と塩化アンモニウム(NHCl)とを水に溶解した水溶液、塩化ナトリウム(NaCl)と塩化アンモニウム(NHCl)とを水に溶解した水溶液等が挙げられるが、本実施形態において蓄熱材はこれらの水溶液に限定されない。例えば、-3℃の炭酸ナトリウム、-6℃の炭酸水素カリウム、-11℃の塩化カリウム、-15℃の塩化アンモニウム、-18℃の硫酸アンモニウム、-21℃の塩化ナトリウム、-12℃の(塩化カリウム+炭酸水素カリウム)、-24℃の(塩化ナトリウム+塩化アンモニウム水溶液)等であっても良い。
 蓄熱材に用いられる無機塩水和物として、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム十二水和物とリン酸水素二カリウム六水和物との二元系組成物(融解点5℃)、硝酸リチウム三水和物を主成分とする硝酸リチウム三水和物と塩化マグネシウム六水和物との二元系組成物(融解点8~12℃)または硝酸リチウム三水和物-塩化マグネシウム六水和物-臭化マグネシウム六水和物の三元系組成物(融解点5.8~9.7℃)等が挙げられるが、本実施形態において蓄熱材はこれらの無機塩水和物に限定されない。
 蓄熱材に用いられる包接水和物として、臭化テトラブチルアンモニウム(TBAB)、塩化テトラブチルアンモニウム(TBAC)等の四級アンモニウム塩を水に溶解した水和物または水溶液、テトラヒドロフランを水に溶解した水和物または水溶液等が挙げられ、塩化テトラブチルアンモニウムの40%水溶液が15℃前後の蓄熱材料の一例となるが、本実施形態において蓄熱材はこれらの水和物または水溶液に限定されない。例えば、12℃のテトラブチルアンモニウムブロミド、15℃のテトラブチルアンモニウムクロリド、28℃のテトラブチルアンモニウムフルオリド、7℃のn-ペンチルトリブチルアンモニウムブロミド、4℃のテトラヒドロフラン等であっても良い。
 また、蓄熱材はゲル化されていても良い。ゲル化された蓄熱材にはゲル化剤が含有されている。ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には固相状態となる。ゲル化した蓄熱材は、固相と液相との間で可逆的に相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。
 ゲル化剤としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類またはゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガムとローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化剤の一例として挙げられるが、本実施形態においてゲル化剤はこれらに限定されない。
 蓄熱材を収容する中空の蓄熱材収容部は、例えば、樹脂材料で形成されている。蓄熱材収容部に用いられる樹脂材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチック材料が挙げられる。蓄熱材収容部には、これらのプラスチック材料を射出成形やブロー成形等によって成形したプラスチック容器からなる硬質包装材、または溶液法、溶融法、カレンダー法等によって成膜されたプラスチックフィルムからなる軟質包装材が用いられる。蓄熱材収容部は、樹脂に限らずアルミラミネート、ガラス、セラミック、金属等の無機材料を用いて形成されていても良い。また、蓄熱材収容部は、繊維質(グラスウール、綿、セルロース、ナイロン、カーボンナノチューブ、炭素繊維等)、粉末(アルミナ粉末、金属粉末、マイクロカプセル等)およびその他改質剤が含まれていても良い。これらは、蓄熱材収容部の一例として挙げられるが、本実施形態において蓄熱収容部はこれらに限定されない。
 図5は、蓄熱層の形状の一例を示す図であり、筒状になっている蓄熱層を広げた模式図である。区画された箇所が上記中空の蓄熱材収容部になっており、そこへ蓄熱材が充填される。ここで、蓄熱材は、相変化温度の異なる複数種類の蓄熱材を充填する。これにより、飲料物により異なる温度の保持が可能となる。例えば、ワインの場合、甘口白ワイン4℃~6℃、辛口白ワイン、およびロゼワイン6℃~13℃、赤ワイン14℃~18℃とされる。蓄熱材1(21)に4℃の相変化温度部材、蓄熱材2(22)と蓄熱材2’(25)に8℃の相変化温度部材、蓄熱材3(23)と蓄熱材3’(26)に12℃の相変化温度部材、蓄熱材4(24)と蓄熱材4’(27)に16℃の相変化温度部材を充填することで、その時々で異なるワインに対して所望の温度を提供することが可能となる。対応する温度体の温度やその数は記載に限定されることはない。
 温度管理装置1の外壁は、断熱性を有する。すなわち、温度管理装置1は、蓄熱層2に外部から熱が伝わらないように断熱性を有している。断熱性は、繊維系断熱材(グラスウール等)や発泡樹脂系断熱材(発泡スチロール、発泡ウレタン)、真空断熱材等を用いて実現されるが、これらに限定されない。
 ペルチェ素子3は、電気の供給がない場合は、熱伝導率が低いので、熱を外部へ伝えにくくなる。更に効果を高めたい場合は、図4に示すように、断熱性を有するカバー12を付けることが可能である。ペルチェ素子3により冷却された保冷材としての蓄熱材は、その量に応じて所定の時間一定温度を保持する。潜熱蓄熱材であれば、固化した蓄熱材が、融解し液化するまで一定温度を保持することが可能である。例えば、12℃の相変化部材として臭化テトラブチルアンモニウム(TBAB)40w%水溶液150gを蓄冷材として充填した場合、固化した後、温度保持時間は2時間程度となる。ここでは、保冷に関して説明をしたが、常温より高温に保温する場合は、融解させ、液化した蓄熱材が、固化するまで一定温度を保持することが可能である。
 蓄熱材は、相変化温度の異なる二つ以上の蓄熱材料から構成しても良い。例えば、-21℃に相変化温度を有する蓄熱材料A(ex.NaCl_20wt%水溶液)と、12℃に相変化温度を有する蓄熱材料B(ex.TBAB_40wt%水溶液)の二種類の蓄熱材料から構成される一つの蓄熱材を用いても良い。この蓄熱材を一般の冷凍室(-18℃近辺)で凍結させると、-21℃の蓄熱材料A部分は凍結せず、12℃の蓄熱材料B部分のみが凍結した状態、つまり半分凍結した蓄熱材となる。この蓄熱材を受熱体に巻き付ければ、ある程度フレキシブル性を有することから、ある程度の密着性を確保するとともに、12℃近辺では凍結した部分の蓄熱材料Bが冷凍室内で蓄えた潜熱を受熱体に与えることが可能となる。相変化 温度の異なる二つ以上の蓄熱材料で蓄熱材を構成することにより、所定の温度で一つの蓄熱材料が凍結した場合であっても、他方の蓄熱材料が凍結していないため、柔軟性を有し、受熱体に対する密着度を高めることが可能となる。
 [第2の実施形態]
 図6Aおよび図6Bは、ペルチェ素子3からなる冷却部が温度管理装置1の外周で回転可能に構成された態様を示す図である。各蓄熱材と温度管理装置1、および、ペルチェ素子3は固定されておらず、ユーザが回すことによって、所望の保持温度体としての蓄熱材がある場所にペルチェ素子3を位置づけることができる。これにより、保持したい温度の蓄熱材を効果的に冷却することが可能となる。ペルチェ素子3は、表面が被冷却面と密着することで冷却効果が高まるので、保持温度体の蓄熱材に対し、接触し易いように各蓄熱材からなる蓄熱層の外側の曲率と、ペルチェ素子3の接触面の曲率が等しいとより効果的になる。ペルチェ素子温度制御回路6は、ペルチェ素子3の下の方に搭載するか、容器底面に搭載することが可能である。
 [第3の実施形態]
 図7Aおよび図7Bは、ペルチェ素子3を温度管理装置1の底面に位置させた場合を示す図である。この場合、放熱フィン5が下に配置されることで、側面をすっきりさせることができる。ペルチェ素子温度制御回路6は、側面に搭載することが可能である。
 [第4の実施形態]
 図8A~図8Cは、温度管理装置の一部に開放部を設けた場合を示す図である。この場合、保冷性能は低下するが、被保冷物を置き易く、また、見易くすることができる。また、図8Dに示す様に、傾斜をつけることも可能である。開放度合いは被保冷物の半分程度までが好ましいがこれに限定されることはない。また、傾斜については、垂直に立てることも可能である。
 以下、本実施形態に係る実施例について説明する。
 図9は、実施例1であって、蓄熱層の形状を示す図である。図9に示すように、各種類の蓄熱材を短冊状に形成した。構成が簡易なため、作り易く、蓄熱材を充填し易い形状となっている。
 図10は、実施例2であって、蓄熱層の形状を示す図である。図10に示すように、図9に示した実施例1を水平方向に2分割し、さらに蓄熱材を分散配置させている。これにより、温度保持を均一にし易くなっている。
 図11は、実施例3であって、蓄熱層の形状を示す図である。図11に示すように、図9に示した実施例1を鉛直方向に2分割し、蓄熱材を分散配置させている。これにより、温度保持を均一にし易くなっている。
 図12Aは、実施例4であって、蓄熱層の形状を示す図である。図12Aに示すように、図9に示した実施例1を水平方向および鉛直方向にそれぞれ2分割し、蓄熱材を分散配置させている。これにより、温度保持を、より均一にし易い構成としている。更に、分割数を増やし、より全体に均一に配置することも可能である。
 図12Bは、実施例5であって、蓄熱層の形状を示す図である。図12Bに示すように、蓄熱材の種類に応じて面積を変えている。すなわち、蓄熱材1(41)の面積を一番大きくし、蓄熱材2(42)の面積を2番目に大きくし、蓄熱材3(43)の面積を3番目に大きくし、そして、蓄熱材4(44)の面積を一番小さくしている。これにより、保温性または保冷性を高めることが可能となる。例えば、設定温度が相対的に低い場合、その設定温度よりも低い相変化温度を有する蓄熱材の面積を大きくすることにより、保冷性を高めることが可能となる。また、それぞれの蓄熱材の単位質量あたりの潜熱量[J/g]が異なる時に、大きさを調整性し、全体の潜熱量を均一にすることが可能となる。
 蓄熱層の形状としては、鉛直方向に対し、下部から上部、または上部から下部に向かって、厚くなるような構成であっても良い。下部から上部、または上部から下部に向かって蓄熱材の層の厚さを変えることにより、熱保冷対象物の温度勾配をなくすことができる。すなわち、一般的に、密度が大きい冷たい液体は下方へ、密度が小さい暖かい液体は上方へ対流が発生するため、結果として、保冷対象物の上部が高温に、下部が低温になるという温度勾配が発生する。蓄熱層を本形状とすることによってこの課題を解決することができる。
 図13は、実施例6であって、蓄熱層の形状を示す図である。図13に示すように、同一の相変化温度を有する蓄熱材が温度管理装置1の全体に配置されるため、均一に温度保持がし易い構成となっている。また、蛇腹になり、一つの袋でつながっているため、蓄熱材の充填がし易い。
 以上の説明は、あくまでも例示であり、本発明は、これらに限定されるわけではない。例えば、相変化温度が異なる複数種類の蓄熱材を、温度管理装置1の内部に同心円状に設けることも可能である。
 図14は、実施例7を示す図である。図14に示すように、温度管理装置1は、断熱台座13を備えている。この構成により、断熱効果が高まるため、電気を供給せずに、温度を保持する時間を長くすることが可能となる。
 図15は、実施例8を示す図である。図15に示すように、放熱フィン5を取り外し可能とした。この際、断熱効果を高めるために、図14に示したような断熱台座13を用いる。これにより、卓上に置く際に、コンパクトにすることができる。
 図16は、実施例9を示す図である。図16に示すように、温度管理装置に、放熱フィン5やボトル等の被保冷物11を覆うカバー12を設けた。このように、全体をカバー12で覆うことにより、電源を抜いた際に、断熱効果を高めることができる。なお、カバー12を透明にすることによって、ボトルを見やすくすることもできる。
 図17は、実施例10を示す図である。図17に示すように、放熱フィンを取り外し可能とし、放熱フィンを取り外した後、該当の部分に断熱シート14を装着することが可能である。断熱シート14は、はめ込み式や、磁石接着など取り外しがし易い形状であることが好ましい。
 図18は、実施例11を示す図である。図18に示すように、温度管理装置1に取っ手170を設けた。取っ手170は、例えば、ヒンジ171を介して温度管理装置1の側面部に取り付けることによって、温度管理装置1の可搬性を良くすることができる。
 図19は、実施例12を示す図である。温度管理装置1の側面に透明な窓180を設けた。これにより、窓180を介してボトルの容器や中身を見ることができる。
 図20Aおよび図20Bは、実施例13を示す図である。図20Aおよび図20Bに示すように、温度管理装置1の側面に、傾けた際に支えとなる足190を設けた。温度管理装置1を傾けた際に、足190が支えることによって、ボトルの中身をこぼさず傾けることができる。また、必要に応じてボトルの中身を酸化しやすくすることができる。また、取っ手と兼用させることも可能である。
 図21Aおよび図21Bは、実施例14を示す図である。図21Aおよび図21Bに示すように、放熱フィン5の形状を台形にすることで、図20Aおよび図20Bに示した足190と同様の機能を生じさせることが可能となる。
 図22Aおよび図22Bは、実施例15であって、中空部10を閉塞する蓋を付けた場合を示す図である。ワインボトルを収容する中空部10は上方が開口しているため、冷気が逃げたり、室温の空気が中空部10の開口部から内部に入り込んだりして、冷却効果または保冷効果を失わせる可能性がある。本実施例のように、蓋を付ける事で、冷却効果や保冷効果を上げる事が可能となる。なお、図22Bに示すように、蓋15Bにワインボトルのネック部分を挿通させる穴を設けても良い。ワインボトルを冷却または保冷する場合、ユーザが飲み始めるのはワインボトル内の上部にあるワインであるため、蓋15Bを用いてワインボトルを収容することによって、ワインボトル内の上部にあるワインの冷却効果や保冷効果を高めることが可能となる。
 以上説明したように、本実施形態によれば、被保冷物を容器内に配置し、電気を供給することによって、被保冷物または/および保冷部材を冷却することができる。電源は差し込みプラグ式であり、容易に取り外しが可能であるため、可搬性に優れる。電源付きのため、保冷部材が冷えてない場合でも、被保冷物を冷やすことが可能となる。電気を供給する限り、ユーザの好きな時間保冷が可能となる。
 また、蓄熱材の存在により、一定時間の冷却後、電気の供給を停止した後も蓄熱材により、特定の温度で保冷を継続することが可能となる。また、不意に電気不足となった場合にも、保冷が可能となる。また、蓄熱材を複数種類配置することによって、保冷温度も複数の選択が可能となる。また、断熱性を有する容器により、熱損失を軽減し、効果的な保冷が可能となる。
 なお、本国際出願は、2014年6月11日に出願した日本国特許出願第2014-120738号および2015年4月14日に出願した日本国特許出願第2015-082509号に基づく優先権を主張するものであり、日本国特許出願第2014-120738号および日本国特許出願第2015-082509号の全内容を本国際出願に援用する。
1 温度管理装置
2 蓄熱層
3 ペルチェ素子
4 冷却層
5 放熱フィン
6 ペルチェ素子温度制御回路
7 温度設定ボタン
8 電源プラグ
9 電源コネクタ
10 中空部
11 被保冷物
12 カバー
13 断熱台座
14 断熱シート
15A、15B 蓋
16 底
21、22、23、24、25、26、27、28、41、42、43、44 蓄熱材
170 取っ手
171 ヒンジ
180 透明な窓
190 足

Claims (8)

  1.  温度管理の対象となる被管理対象物を収容する収容部内の温度を一定に維持する温度管理装置であって、
     前記収容部の内側に設けられ、相変化温度が相互に異なる複数種類の蓄熱材と、
     電力の供給を受けて前記各蓄熱材を冷却または加熱する機能を有し、前記各蓄熱材の温度を予め定められた設定温度とする温度制御部と、を備え、
     前記温度制御部への電力の供給が停止し、前記収容部内で温度変化が生じた場合、前記各蓄熱材のうち、前記設定温度よりも高い相変化温度を有する蓄熱材が相変化することによって前記収容部内で吸熱を行ない、または前記設定温度よりも低い相変化温度を有する蓄熱材が相変化することによって前記収容部内で放熱を行なう温度管理装置。
  2.  前記各蓄熱材は、前記収容部の内面上で実質的に同一の面積を有するように設けられている請求項1記載の温度管理装置。
  3.  前記各蓄熱材は、前記収容部の内面上で相変化温度毎に異なる面積を有するように設けられている請求項1記載の温度管理装置。
  4.  前記各蓄熱材は、前記収容部の内面上で螺旋状に設けられている請求項1記載の温度管理装置。
  5.  前記各蓄熱材は、前記収容部の内面上で短冊状に形成され、同種類の蓄熱材同士が連結されている請求項1記載の温度管理装置。
  6.  前記各蓄熱材は、前記収容部の内面上で鉛直方向に延びる短冊状に形成され、
     前記温度制御部は、前記収容部の外周上で摺動可能に構成されている請求項1記載の温度管理装置。
  7.  前記温度制御部は、予め定められた複数の設定温度のうち、いずれか一つの設定温度を選択可能なインタフェースを備え、前記各蓄熱材を、前記選択されたいずれかの設定温度とする請求項1記載の温度管理装置。
  8.  前記温度制御部は、電熱変換装置で構成されている請求項1記載の温度管理装置。
PCT/JP2015/066715 2014-06-11 2015-06-10 温度管理装置 WO2015190515A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-120738 2014-06-11
JP2014120738 2014-06-11
JP2015082509 2015-04-14
JP2015-082509 2015-04-14

Publications (1)

Publication Number Publication Date
WO2015190515A1 true WO2015190515A1 (ja) 2015-12-17

Family

ID=54833605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066715 WO2015190515A1 (ja) 2014-06-11 2015-06-10 温度管理装置

Country Status (1)

Country Link
WO (1) WO2015190515A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026820A1 (ja) * 2017-07-31 2019-02-07 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット
WO2019156182A1 (ja) * 2018-02-07 2019-08-15 シャープ株式会社 保冷用具および飲料保冷方法
JP2019199995A (ja) * 2018-05-16 2019-11-21 株式会社テックスイージー 容器入り飲料温度調節装置
JP2019203689A (ja) * 2019-09-06 2019-11-28 株式会社テックスイージー 容器入り飲料温度調節装置及び伝熱部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269889A (ja) * 1988-04-20 1989-10-27 Fujitsu General Ltd 電気冷蔵庫の制御方法
JP3172320U (ja) * 2011-09-30 2011-12-15 弘行 根岸 シート状蓄熱パック
WO2013176169A1 (ja) * 2012-05-23 2013-11-28 シャープ株式会社 保管容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269889A (ja) * 1988-04-20 1989-10-27 Fujitsu General Ltd 電気冷蔵庫の制御方法
JP3172320U (ja) * 2011-09-30 2011-12-15 弘行 根岸 シート状蓄熱パック
WO2013176169A1 (ja) * 2012-05-23 2013-11-28 シャープ株式会社 保管容器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026820A1 (ja) * 2017-07-31 2019-02-07 シャープ株式会社 潜熱蓄熱材、保冷具、保冷庫、物流梱包容器および保冷ユニット
CN110945101A (zh) * 2017-07-31 2020-03-31 夏普株式会社 潜热蓄热材料、保冷器具、冷藏库、物流包装容器以及保冷单元
WO2019156182A1 (ja) * 2018-02-07 2019-08-15 シャープ株式会社 保冷用具および飲料保冷方法
JP2019199995A (ja) * 2018-05-16 2019-11-21 株式会社テックスイージー 容器入り飲料温度調節装置
WO2019220998A1 (ja) * 2018-05-16 2019-11-21 株式会社テックスイージー 容器入り飲料温度調節装置及び伝熱部材
CN112074697A (zh) * 2018-05-16 2020-12-11 泰克斯机电有限公司 容器装饮料温度调节装置和传热构件
CN112074697B (zh) * 2018-05-16 2022-06-10 泰克斯机电有限公司 容器装饮料温度调节装置和传热构件
CN115265037A (zh) * 2018-05-16 2022-11-01 泰克斯机电有限公司 容器装饮料温度调节装置和传热构件
US11971213B2 (en) 2018-05-16 2024-04-30 Tex E.G. Co., Ltd. Container-contained beverage temperature adjustment apparatus and heat transfer member
JP2019203689A (ja) * 2019-09-06 2019-11-28 株式会社テックスイージー 容器入り飲料温度調節装置及び伝熱部材
JP7178711B2 (ja) 2019-09-06 2022-11-28 株式会社テックスイージー 容器入り飲料温度調節装置並びに伝熱部材及びその使用方法

Similar Documents

Publication Publication Date Title
WO2015190515A1 (ja) 温度管理装置
JP6594870B2 (ja) 保冷部材
CN201634086U (zh) 一种带有可拆卸蓄冷容器的便携式保温箱
US10823477B2 (en) Thermal energy storage member and storage container using the same, and refrigerator using the same
US9651311B2 (en) Thermal exchange food processing device and method of producing same
US10281188B2 (en) Ice cooler
KR200476864Y1 (ko) 냉온 기능을 갖는 텀블러 장치
WO2015093311A1 (ja) 保冷部材およびそれを備えた保冷容器
JP2016211750A (ja) 蓄熱パックおよび熱交換ユニット
US20080308563A1 (en) Subcontainer temperature regulating mechanism
ES2372458B1 (es) Dispositivo de enfriado de bebidas.
US4809522A (en) Server for displaying and keeping cool wine bottles and the like
CN203980709U (zh) 变温器
KR20110069639A (ko) 전열소자를 이용한 냉온용기
US10767915B2 (en) Smarter cooler
CN202244659U (zh) 一种保冷容器
JPH05285053A (ja) ウォータポット
CN208037160U (zh) 一种恒温减震缓冲泡沫塑料箱
JP7083586B1 (ja) 保冷剤ケース
KR200321267Y1 (ko) 마이크로웨이브파로 축열이 가능한 피씨엠팩을 이용한보온 보냉 가방
CN106175346B (zh) 一种蓄热保温水杯
WO2016084634A1 (ja) 熱交換ユニット、温度管理方法および蓄熱パックの製造方法
JP2016098007A (ja) 熱交換ユニット
CN215738541U (zh) 一种饮品冷却装置及饮品恒温容器
CN215246920U (zh) 隔水保温箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15807414

Country of ref document: EP

Kind code of ref document: A1