WO2015199243A1 - 変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法 - Google Patents

変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法 Download PDF

Info

Publication number
WO2015199243A1
WO2015199243A1 PCT/JP2015/068715 JP2015068715W WO2015199243A1 WO 2015199243 A1 WO2015199243 A1 WO 2015199243A1 JP 2015068715 W JP2015068715 W JP 2015068715W WO 2015199243 A1 WO2015199243 A1 WO 2015199243A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
mutant
amino acid
cell
hemagglutinin
Prior art date
Application number
PCT/JP2015/068715
Other languages
English (en)
French (fr)
Inventor
紀ノ岡正博
金美海
藤永由佳子
菅原庸
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2016529687A priority Critical patent/JP6355736B2/ja
Priority to CN201580034073.5A priority patent/CN106459223A/zh
Priority to SG11201610878QA priority patent/SG11201610878QA/en
Priority to AU2015281030A priority patent/AU2015281030A1/en
Priority to KR1020177000761A priority patent/KR20170020431A/ko
Priority to US15/321,835 priority patent/US11230701B2/en
Priority to BR112016030510A priority patent/BR112016030510A2/pt
Priority to EP15811956.0A priority patent/EP3162812A4/en
Priority to CA2953670A priority patent/CA2953670A1/en
Publication of WO2015199243A1 publication Critical patent/WO2015199243A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/72Undefined extracts from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/14Coculture with; Conditioned medium produced by hepatocytes

Definitions

  • the present disclosure relates to a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum, a method for culturing pluripotent stem cells, and a cell that has developed or escaped from an undifferentiated state that may have occurred during culture of pluripotent stem cells
  • the present invention relates to a method for removing cell, a method for maintaining an undifferentiated state of stem cells having pluripotency, a method for culturing iPS cells, a method for dividing cell clusters of iPS cells, and a kit used for these methods.
  • undifferentiated cells When mass-culturing pluripotent stem cells such as human iPS cells, many undifferentiated cells are prepared by repeating a series of amplification cultures (passage cultures). In this series of cultures, it is known that cells that have deviated from an undifferentiated state "undifferentiated deviating cells" are accidentally generated.
  • this undifferentiated departure cell has a division ability almost equal to that of the undifferentiated cell and induces the conversion from the undifferentiated cell to the undifferentiated departure cell. That is, when an undifferentiated departure cell is generated, its growth rate exceeds that of an undifferentiated cell, and the proliferation of the undifferentiated cell is suppressed.
  • undifferentiated cells The occurrence of undifferentiated cells is often observed in culture by unskilled culture operators. Moreover, it is known that excessive colony size and coalescence of colonies contribute to the occurrence. Therefore, the frequency of generation of undifferentiated cells can be reduced to some extent by passage at low confluence and maintaining uniformity during seeding. Moreover, the frequency of occurrence of undifferentiated cells is also suppressed to some extent by the recently developed culture medium. However, undifferentiated departure cells still occur accidentally, and when they occur, it is still essential to remove colonies containing undifferentiated departure cells.
  • Colonies containing undifferentiated cells are carefully removed by pipetting under a microscope at the time of passage in order to maintain an undifferentiated state.
  • An apparatus simulating such a colony removal technique for example, an apparatus combining an observation apparatus and pipetting by robot handling has been developed.
  • Patent Document 1 discloses culturing pluripotent stem cells in the presence of activin in order to proliferate while maintaining undifferentiation of pluripotent stem cells such as iPS cells.
  • pluripotent stem cells such as human iPS cells
  • a method for maintaining undifferentiated pluripotent stem cells that requires few complicated operations and can be performed by non-experts.
  • pluripotent stem cells such as human iPS cells are desired to be stably supplied in large quantities from the viewpoint of practical application to regenerative medicine and drug discovery research. For this reason, in recent years, culture by suspension culture has been attempted, but there is a problem in that cells are damaged when the cell mass is divided. For this reason, a method capable of easily and efficiently mass-culturing pluripotent stem cells such as human iPS cells is desired.
  • Hemagglutinin (HA) derived from Clostridium botulinum is a component of the botulinum neurotoxin complex. Recently, it has been discovered that this HA has a molecular mechanism that specifically binds to E-cadherin, a cell adhesion molecule, thereby destroying the intercellular barrier of intestinal epithelial cells. By using the molecular mechanism possessed by this HA, the present inventors have removed “cells that have left the undifferentiated state” that occur in colonies during culturing of stem cells having pluripotency (hereinafter “pluripotency”). Has been tried.
  • the present disclosure provides a new hemagglutinin capable of removing “cells from which an undifferentiated state has been removed” generated in a colony during pluripotent stem cell culture.
  • the present disclosure provides a new method for culturing pluripotent stem cells using hemagglutinin.
  • the present disclosure is a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum, wherein the complex protein includes at least subcomponents HA2 and HA3 of hemagglutinin derived from B-type Clostridium botulinum.
  • the present invention relates to a mutant hemagglutinin complex protein in which at least one of the amino acids constituting the site is mutated.
  • the present disclosure is a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum, wherein the complex protein is formed by subcomponents HA1, HA2, and HA3, and the wild type amino acid of the subcomponent HA1 Amino acid corresponding to the 264th asparagine of the sequence, an amino acid corresponding to the 286th asparagine of the wild type amino acid sequence of the subcomponent HA1, and a 528th arginine of the wild type amino acid sequence of the subcomponent HA3
  • the present invention relates to a mutant hemagglutinin complex protein in which one or both of the amino acids are mutated.
  • the present disclosure in one aspect, relates to a method for culturing pluripotent stem cells, which comprises culturing cells in the presence of the mutant hemagglutinin complex protein of the present disclosure.
  • the present disclosure is a method for removing cells that have developed or may have developed an undifferentiated state during pluripotent stem cell culture, and the presence of the mutant hemagglutinin complex protein of the present disclosure It relates to a method comprising culturing cells under.
  • the present disclosure in one aspect, relates to a method for culturing iPS cells derived from humans, comprising suspension culture of the iPS cells in the presence of hemagglutinin derived from Clostridium botulinum.
  • the present disclosure in one aspect, relates to a method for dividing a cell cluster of human-derived iPS cells, comprising suspension culture of the iPS cells in the presence of botulinum-derived hemagglutinin.
  • an effect of removing “cells from which an undifferentiated state has been removed” generated in a colony during pluripotent stem cell culture can be achieved.
  • an effect that a pluripotent stem cell can be easily and efficiently mass-cultured can be produced.
  • FIG. 1 is an example of a microscopic observation photograph of a colony of iPS cells when a B-type wild-type HA complex is added to day 3 (Example 2).
  • FIG. 2 is an example of a microscopic observation photograph of colonies of iPS cells when B-type mutant HA complex 1 (HA1 N286A) is added to day 3 (Example 2).
  • FIG. 3 is an example of a microscopic observation photograph of colonies of iPS cells when B-type mutant HA complex 2 (HA3 R528A) is added to day3 (Example 2).
  • FIG. 1 is an example of a microscopic observation photograph of a colony of iPS cells when a B-type wild-type HA complex is added to day 3 (Example 2).
  • FIG. 2 is an example of a microscopic observation photograph of colonies of iPS cells when B-type mutant HA complex 1 (HA1 N286A) is added to day 3 (Example 2).
  • FIG. 3
  • FIG. 4 is an example of a microscopic observation photograph of colonies of iPS cells when B-type mutant HA complex 3 (HA1 N286A / HA3 R528A) is added to day3 (Example 2).
  • FIG. 5 is an example of a microscopic photograph of a colony of iPS cells when B-type mutant HA complex 4 (HA3 K607A) is added to day 3 (Comparative Example 1).
  • FIG. 6 is an example of a microscopic observation photograph of a colony of iPS cells when B-type wild-type HA complex 1 is added to day 3 (Example 3).
  • FIG. 7 is an example of a microscopic observation photograph of a colony of iPS cells when B-type wild-type HA complex 2 is added to day 3 (Example 3).
  • FIG. 8 is an example of a microscopic observation photograph of an iPS cell colony when B-type wild-type HA complex 3 is added to day 3 (Example 3).
  • FIG. 9 is an example of a microscopic observation photograph of an iPS cell colony when B-type wild-type HA complex 4 is added to day 3 (Example 3).
  • FIG. 10 is an example of a microscopic observation photograph of a colony of iPS cells when B-type wild-type HA complex 5 is added to day 3 (Example 3).
  • FIG. 11 is an example of a microscopic observation photograph of cell clusters of iPS cells when B-type wild type and B-type mutant HA complexes are added in suspension culture (300 cells / well, Example 4).
  • FIG. 12 is an example of a microscopic observation photograph of cell clusters of iPS cells when B-type wild type and B-type mutant HA complexes are added in suspension culture (500 cells / well, Example 4).
  • FIG. 13 is an example of microscopic photographs of cell clusters of iPS cells at various addition times (6, 12, 18 and 24 hours) of B-type wild-type HA complex in suspension culture (Example 5). .
  • FIG. 14 is a diagram for explaining the flow of an experiment performed in Example 6.
  • FIG. 14 is a diagram for explaining the flow of an experiment performed in Example 6.
  • FIG. 15 shows an example of a graph showing the relationship between the number of culture days and the viable cell concentration in Example 6.
  • FIG. 16 is a diagram illustrating the flow of an experiment performed in Example 7.
  • FIG. 17 shows an example of a graph showing the relationship between the number of days of culture and the viable cell concentration in Example 7.
  • FIG. 18 is an example of a microscopic photograph of a colony of iPS cells when A-type mutant HA complex 2 (HA3 R528A) is added to day3 (Example 7).
  • FIG. 19 shows an example of a microscopic observation photograph of colonies of iPS cells when A-type mutant HA complex 3 (HA1 N285A / HA3 R528A) is added to day 3 (Example 7).
  • FIG. 20 is an example of a microscopic observation photograph of colonies of iPS cells when A-type mutant HA complex 4 (HA3 K607A) is added to day 3 (Comparative Example 3).
  • FIG. 21 is an example of a microscopic observation photograph of colonies of control (without HA) iPS cells.
  • Wild-type hemagglutinin derived from Clostridium botulinum is a complex composed of three subcomponents, HA1 (33K, HA-33), HA2 (17K, HA-17), and HA3 (70K, HA-70). Are known. Among them, wild-type hemagglutinin derived from B-type Clostridium botulinum forms a 12-mer complex at a ratio of subcomponents HA1, HA2, and HA3 of 2: 1: 1.
  • wild-type hemagglutinin derived from B-type Clostridium botulinum binds to E-cadherin and inhibits cell-cell adhesion via E-cadherin, and even if it is a complex of HA2 and HA3, E-cadherin binding activity Is known to be obtained.
  • the present disclosure provides at least the hemagglutinin subcomponents HA2 and HA3 derived from B-type Clostridium botulinum, has an amino acid sequence that constitutes an E-cadherin binding site, and an amino acid that constitutes a sugar chain recognition site. If hemagglutinin is mutated at least one (mutant hemagglutinin), cells that have developed in the colony of pluripotent stem cells and / or have escaped the undifferentiated state (hereinafter referred to as “undifferentiated”). It is based on the knowledge that cell-cell adhesion of "developed cells”) can be selectively inhibited, and further, undifferentiated deviated cells can be selectively removed.
  • the present disclosure is that, when a stem cell having pluripotency is cultured in suspension in the presence of hemagglutinin derived from Clostridium botulinum, cell aggregation can be easily performed even in a delicate cell such as a human iPS cell. It is based on the knowledge that it can be efficiently divided into small clumps and that a new cell clump can be formed from the small clumps.
  • the present disclosure includes at least the hemagglutinin subcomponents HA2 and HA3 derived from type A Clostridium botulinum, has an amino acid sequence constituting an E-cadherin binding site, and constitutes a sugar chain recognition site.
  • Hemagglutinin in which at least one of the amino acids has been mutated is based on the finding that undifferentiated cells can be efficiently removed as compared with B-type wild-type hemagglutinin.
  • pluripotent stem cells are human pluripotent stem cells in one or more non-limiting embodiments.
  • human pluripotent stem cells are human iPS cells or human ES cells in one or more non-limiting embodiments.
  • a cell that has left the undifferentiated state is distinguishable in one or a plurality of non-limiting embodiments, unlike a cell in an undifferentiated state.
  • an undifferentiated departure cell is distinguishable in one or a plurality of non-limiting embodiments, unlike a cell in an undifferentiated state.
  • the undifferentiated marker is Oct3 / 4, Nanog, SSEA-4, TRA-1-60, in one or more non-limiting embodiments.
  • the present disclosure relates to a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum (hereinafter, also referred to as “mutant HA complex protein of the present disclosure”).
  • the mutant HA complex protein of the present disclosure is a mutant hemagglutinin complex protein containing at least one of the hemagglutinin subcomponents HA2 and HA3 derived from B-type Clostridium botulinum and having at least one amino acid constituting the sugar chain binding site mutated.
  • the mutant HA complex protein of the present disclosure has an amino acid sequence constituting an E-cadherin binding site, and a mutation in which at least one amino acid constituting a sugar chain binding site is mutated Type hemagglutinin complex protein. In one or a plurality of embodiments, the mutant HA complex protein of the present disclosure has a mutant hemagglutinin complex having E-cadherin binding activity and at least one of amino acids constituting a sugar chain binding site is mutated. It is a protein.
  • the mutant HA complex protein of the present disclosure has a mutant hemagglutinin having E-cadherin function inhibitory activity and having at least one amino acid constituting a sugar chain binding site mutated. It is a complex protein.
  • the mutant HA complex protein of the present disclosure inhibits cell-cell adhesion of undifferentiated deviation cells generated and / or generated in a colony during pluripotent stem cell culture.
  • the effect that it can be done can be produced.
  • the mutant HA complex protein of the present disclosure is preferably capable of removing undifferentiated departure cells from the colony, and can maintain a colony constructed in the culture of pluripotent stem cells in an undifferentiated state (undifferentiated). Can continue to form a colony composed of stem cells having pluripotency with a differentiated state maintained).
  • the mutant HA complex protein of the present disclosure includes at least subcomponents HA2 and HA3 of hemagglutinin derived from B-type Clostridium botulinum, and may further include subcomponent HA1 in one or a plurality of embodiments.
  • the mutant HA complex protein of the present disclosure is a complex composed of two components of HA2 and HA3, and more efficiently inhibits cell-cell adhesion, and more effectively differentiates undifferentiated cells. From the viewpoint of efficient removal, it is a complex composed of three components, HA1, HA2 and HA3.
  • mutant HA complex protein of the present disclosure at least one of the amino acids constituting the sugar chain binding site is mutated.
  • the mutant HA complex protein of the present disclosure is also referred to as a mutant hemagglutinin complex protein in which at least part or all of the sugar chain binding activity in wild-type hemagglutinin derived from B-type Clostridium botulinum is deleted. be able to.
  • the present inventors have established the amino acid sequence of 286 asparagine of HA1 (SEQ ID NO: 1) and HA3 (SEQ ID NO: 3). 528th arginine and the like.
  • the 264th asparagine of the amino acid sequence of HA1 (SEQ ID NO: 1) is known (for example, KwangKookwangLee et al, Biochem Biophys Res Commun 2014 Apr 4, Vol 446, Issue 2, pp.568-573).
  • the mutant HA complex protein of the present disclosure is mutated in these amino acids or amino acids corresponding to these amino acids, and is capable of efficiently removing undifferentiated deviation cells from a colony.
  • the 528th arginine of the amino acid sequence of HA3 (SEQ ID NO: 3) or the amino acid corresponding thereto is preferably mutated, more preferably the 528th arginine of the amino acid sequence of HA3 (SEQ ID NO: 3) or the amino acid corresponding thereto.
  • the amino acid and the 286th asparagine of the amino acid sequence of HA1 (SEQ ID NO: 1) or an amino acid corresponding thereto are mutated.
  • amino acids corresponding to these amino acids refers to amino acids in a position equivalent to the wild-type amino acid constituting the sugar chain binding site described above in a three-dimensional structure.
  • the amino acid mutation in the present disclosure includes a substitution to an amino acid that does not recognize a sugar chain, and preferably includes a substitution to alanine.
  • the mutant HA complex protein of the present disclosure has an amino acid sequence constituting an E-cadherin binding site in wild-type hemagglutinin derived from B-type Clostridium botulinum. That is, the mutant HA complex protein of the present disclosure has E-cadherin binding activity in one or more embodiments. Therefore, the present disclosure, in another aspect, includes at least one of the hemagglutinin subcomponents HA2 and HA3 derived from B-type Clostridium botulinum, has E-cadherin binding activity, and constitutes a sugar chain binding site.
  • the present invention relates to a mutated hemagglutinin complex protein derived from B-type Clostridium botulinum.
  • the E-cadherin binding site in wild-type hemagglutinin derived from A-type botulinum having E-cadherin-binding activity in the same manner as wild-type hemagglutinin derived from B-type Clostridium botulinum has been analyzed (for example, KwangKook Lee et al, Science 2014 Jun 20, Vol.344, no. 6190 pp.1405-1410).
  • the mutant HA complex protein of the present disclosure has 528th arginine or its equivalent in the amino acid sequence (SEQ ID NO: 3) of the wild type (wild type HA3) of HA3 as the subcomponent HA3. A part or all of an amino acid sequence in which amino acids are mutated is included.
  • the mutant HA complex protein of the present disclosure includes part or all of the amino acid sequence (SEQ ID NO: 2) of the wild type (wild type HA2) of HA2 as the subcomponent HA2.
  • the mutant HA complex protein of the present disclosure is the 264th asparagine or its equivalent in the amino acid sequence (SEQ ID NO: 1) of HA1 wild type (wild type HA1) as subcomponent HA1. And / or part or all of the amino acid sequence in which the 286th asparagine or the corresponding amino acid is mutated.
  • the mutant HA complex protein of the present disclosure is formed by subcomponents HA1, HA2, and HA3, and an amino acid corresponding to the 286th asparagine of the wild type amino acid sequence of the subcomponent HA1, And a mutant hemagglutinin complex protein in which one or both amino acids of the amino acid corresponding to the 528th arginine of the wild-type amino acid sequence of the subcomponent HA3 are mutated.
  • mutant HA complex protein of the present disclosure As a first embodiment of the mutant HA complex protein of the present disclosure, HA1 (mutant HA1) in which 264th asparagine and / or 286th asparagine is mutated in the amino acid sequence of wild type HA1 (SEQ ID NO: 1), A mutant HA complex (mutant HA complex 1) containing wild type HA2 and wild type HA3 can be mentioned.
  • mutant HA complex 1 containing wild type HA2 and wild type HA3
  • at least one of the subcomponents HA1 included in the mutant HA complex 1 may be the mutant HA1, and all HA1 may be the mutant HA1. preferable.
  • mutant HA complex protein of the present disclosure the 528th arginine or the amino acid corresponding thereto is mutated in the amino acid sequences of wild-type HA1, wild-type HA2, and wild-type HA3 (SEQ ID NO: 3).
  • a mutant HA complex (mutant HA complex 2) containing HA3 (mutant HA3).
  • at least one of the subcomponents HA3 included in the mutant HA complex 2 may be the mutant HA3, and all the HA3 may be the mutant HA3. preferable.
  • mutant HA complex (mutant HA complex 3) including mutant HA1, wild-type HA2, and mutant HA3 can be mentioned, and more efficiently.
  • HA1 SEQ ID NO: 4
  • the 286th asparagine is mutated to alanine in the amino acid sequence of wild-type HA1 (SEQ ID NO: 1)
  • Wild type HA2 SEQ ID NO: 2
  • HA3 SEQ ID NO: 5
  • 528th arginine is mutated to alanine in the amino acid sequence of wild type HA3 (SEQ ID NO: 3).
  • At least one of the subcomponents HA1 included in the mutant HA complex 3 may be the mutant HA1, and all HA1 may be the mutant HA1. preferable.
  • at least one of the subcomponents HA3 included in the mutant HA complex 3 may be the mutant HA3, and all of the HA3 are preferably mutant HA3.
  • a tag may be bound to the C-terminus of the subcomponent HA1.
  • the tag that binds to the C-terminus include a FLAG tag, a D4 tag (DDDD, SEQ ID NO: 15), and the like in one or a plurality of embodiments.
  • the mutant complex protein of the present disclosure preferably has no tag bound to the N-terminus of subcomponent HA1, and has a His tag or a FLAG tag bound to the N-terminus of subcomponent HA1. Preferably not.
  • the present disclosure is a method for culturing pluripotent stem cells, which includes culturing cells in the presence of the mutant HA complex protein of the present disclosure (hereinafter, “culture method of the present disclosure”). Also called).
  • culture method of the present disclosure since cell culture is performed in the presence of the mutant HA complex protein of the present disclosure, undifferentiated deviation cells can be removed in one or a plurality of embodiments. The effect that the colony comprised in culture
  • cell culture since cell culture is performed in the presence of the mutant HA complex protein of the present disclosure, in one or a plurality of embodiments, a delicate cell such as a human-derived iPS cell is used. Even so, spheroid-like cell clumps can be efficiently divided, and preferably pluripotent stem cells can be efficiently cultured in large quantities.
  • cell culture includes, in one or more embodiments, adhesion culture (planar culture), suspension culture, and the like.
  • cell culture is performed by adhesion culture.
  • the cell culture is an adhesion culture
  • an effect of removing undifferentiated departure cells from the colonies formed on the culture surface can be obtained. Therefore, in another aspect, the present disclosure is a method for removing cells that have developed or have degenerated from an undifferentiated state that may have occurred during culture of pluripotent stem cells, and the mutant hemagglutinin complex of the present disclosure It relates to a method comprising culturing cells in the presence of a protein.
  • the present disclosure is a method of forming a colony including undifferentiated cells from a colony in which cells that have left the undifferentiated state are generated, and the presence of the mutant HA complex protein of the present disclosure
  • the present invention relates to a method comprising culturing a colony in which a cell that has deviated from the undifferentiated state is generated.
  • the present disclosure relates to a method for maintaining an undifferentiated state of a pluripotent stem cell, the method comprising culturing the cell in the presence of the mutant HA complex protein of the present disclosure.
  • undifferentiated departure cells can be efficiently removed from the colonies, and only undifferentiated cells can be efficiently removed. Can be cultured. According to the culture method and the removal method of the present disclosure, in one or a plurality of embodiments, undifferentiated departure cells can be removed while maintaining a closed space during the culture in the culture apparatus, and the cells constituting the colony are Colony selection can be performed using substantially only undifferentiated cells.
  • the cell culture in the first embodiment can employ pluripotent stem cell culture conditions and culture medium that are conventionally used and / or developed in the future, and the mutant HA of the present disclosure is used as the culture medium. This can be done in the presence of a complex protein.
  • the mutant HA complex protein of the present disclosure may be added to the culture medium being cultured, or a medium pre-added with the mutant HA complex protein of the present disclosure is used. And may be cultured.
  • the mutant HA complex protein of the present disclosure may be added as needed when generation of undifferentiated cells is confirmed in a colony. Commercially available culture media and culture plates may be used.
  • the concentration of the mutant HA complex protein of the present disclosure to be present in the culture medium is 5 nM or more, 10 nM or more, or 15 nM or more from the viewpoint of efficiently removing undifferentiated cells in one or more embodiments that are not limited. It is done. From the same viewpoint, it is 200 nM or less, 150 nM or less, or 100 nM or less.
  • the mutant HA complex protein added to the culture medium in the culture method, removal method, colony formation method and / or maintenance method of the present disclosure is absorbed intracellularly (endocytosis and the like). Can be removed spontaneously.
  • the mutant HA complex protein may be forcibly recovered from the medium by providing an adsorption column targeting the tag attached to the mutant HA complex protein and circulating the medium.
  • the culturing method of the present disclosure includes performing cell culture of pluripotent stem cells by automatic operation in a bioreactor.
  • the cell culture in the first embodiment may be a culture using feeder cells or a feeder-less culture in one or a plurality of embodiments that are not limited.
  • the feeder cells include, but are not limited to, MEF (Mouse Embryo Fibroblast) cells, SL10, and SNL 76/7 feeder cells.
  • the feeder cell is preferably a feeder cell in which the migration rate of pluripotent stem cells is relatively slow.
  • the feeder cell has a relatively slow migration of the pluripotent stem cell, and the pluripotent stem cell is colonized during the culture of the pluripotent stem cell.
  • SNL 76/7 feeder cells are preferred because they can be generated.
  • cell culture is performed by suspension culture.
  • the cell culture is suspension culture, in one or a plurality of embodiments, it is a delicate cell such as a human-derived iPS cell and can efficiently divide a cell cluster, and preferably a pluripotent stem cell is efficiently used. It can be cultured in large quantities.
  • the present disclosure is a method for dividing a cell cluster of stem cells having pluripotency, wherein the stem cells having pluripotency are suspended in the presence of the mutant HA complex protein of the present disclosure.
  • the present invention relates to a method for dividing a cell cluster of pluripotent stem cells, including culturing.
  • the culture method according to the second embodiment divides the stem cell clump into small clumps by suspending the cell clump of stem cells in the presence of hemagglutinin derived from Clostridium botulinum. And suspension culture of the small mass to form a new cell mass.
  • the culture method in the second embodiment forms the cell clumps in the same medium as the division of the cell clumps.
  • the mutant HA complex protein of the present disclosure added to the medium can be removed spontaneously by intracellular absorption (such as endocytosis) in one or more embodiments.
  • the culture method according to the second embodiment includes dividing a cell clump and forming a new cell clump by continuous culture without washing the mutant HA complex protein. It can be carried out.
  • the culture method in the second embodiment does not include a step of washing the mutant HA complex protein in one or a plurality of embodiments.
  • an adsorption column targeting the tag attached to the mutant HA complex protein of the present disclosure is provided, and the medium is circulated to forcibly recover the substance from the medium. Also good.
  • the mutant HA complex protein can be spontaneously and / or forcibly removed / recovered to control the division of the cell conglomerate so that the division effect can be exhibited temporarily or continuously in a timely manner.
  • the culture method of the present disclosure includes, in one or a plurality of embodiments, cell culture of pluripotent stem cells by automatic operation in a bioreactor.
  • the cell culture according to the second embodiment can employ pluripotent stem cell culture conditions and culture media that are conventionally used and / or developed in the future, and the mutant HA of the present disclosure can be used as the culture medium. This can be done in the presence of a complex protein.
  • the mutant HA complex protein of the present disclosure may be added to the culture medium being cultured, or a medium pre-added with the mutant HA complex protein of the present disclosure is used. And may be cultured. Commercially available culture media and culture vessels may be used.
  • the concentration of the mutant HA complex protein of the present disclosure to be present in the culture medium is 5 nM or more, 10 nM or more, or 15 nM or more from the viewpoint of efficiently removing undifferentiated cells in one or more embodiments that are not limited. It is done. From the same viewpoint, it is 200 nM or less, 150 nM or less, or 100 nM or less.
  • suspension culture can employ pluripotent stem cell culture conditions and culture media that are conventionally used and / or developed in the future. This can be achieved by the presence of type HA complex protein.
  • the present disclosure is a method for culturing iPS cells, which includes suspension culture of the iPS cells in the presence of Haemagglutinin derived from Clostridium botulinum (hereinafter referred to as “the iPS cells of the present disclosure”). Also referred to as “culture method”). According to the iPS cell culturing method of the present disclosure, spheroid-like cell clumps can be efficiently divided even with delicate cells such as human-derived iPS cells. Can do.
  • the present disclosure provides a method for dividing a cell cluster of iPS cells, which includes suspension culture of iPS stem cells in the presence of hemagglutinin derived from Clostridium botulinum (hereinafter, “this book”). Also referred to as “disclosure method”.
  • the iPS cell culturing method of the present disclosure divides the iPS cell clump into small clumps by suspending the cell clump of iPS cells in the presence of hemagglutinin derived from Clostridium botulinum. And suspension culture of the small mass to form a new cell mass.
  • the method for culturing iPS cells of the present disclosure forms a cell clump in the same medium as the division of the cell clump.
  • the mutant HA complex protein of the present disclosure added to the medium can be removed spontaneously by intracellular absorption (such as endocytosis) in one or more embodiments.
  • the iPS cell culturing method of the present disclosure includes dividing a cell clump and forming a new cell clump by continuous culture without washing the mutant HA complex protein. It can be carried out.
  • the method for culturing iPS cells of the present disclosure does not include a step of washing the mutant HA complex protein.
  • an adsorption column targeting the tag attached to the mutant HA complex protein of the present disclosure is provided, and the medium is circulated to forcibly recover the substance from the medium. Also good.
  • the mutant HA complex protein can be spontaneously and / or forcibly removed / recovered to control the division of the cell conglomerate so that the division effect can be exhibited temporarily or continuously in a timely manner.
  • the culture method of the present disclosure includes, in one or a plurality of embodiments, cell culture of pluripotent stem cells by automatic operation in a bioreactor.
  • hemagglutinin derived from Clostridium botulinum used in the iPS cell culture method and division method of the present disclosure include hemagglutinin derived from botulinum type A, hemagglutinin derived from botulinum type B, and the like as one or more embodiments.
  • the hemagglutinin derived from B-type Clostridium botulinum preferably includes a subcomponent HA1 having a tag bound to the C-terminus.
  • the hemagglutinin derived from B-type Clostridium botulinum includes, in one or more embodiments, the mutant HA complex protein of the present disclosure.
  • hemagglutinin derived from type A botulinum is preferable from the viewpoint that cell clumps can be efficiently divided at a low concentration.
  • hemagglutinin derived from A-type botulinum include hemagglutinin derived from A-type wild-type botulinum and hemagglutinin derived from A-type mutant botulinum described later in one or a plurality of embodiments.
  • the suspension culture conditions, HA addition conditions, and the like can be performed in the same manner as the culture method of the second embodiment.
  • composition of the present disclosure relates to a composition containing hemagglutinin derived from Clostridium botulinum (hereinafter, also referred to as “composition of the present disclosure”).
  • composition of the present disclosure can be used for the culture method of the present disclosure, the removal method of the present disclosure, the colony formation method of the present disclosure, the maintenance method of the present disclosure, and / or the division method of the present disclosure.
  • the present disclosure is a composition used in the culture method of the present disclosure, the removal method of the present disclosure, the colony formation method of the present disclosure, the maintenance method of the present disclosure, and / or the division method of the present disclosure.
  • the present disclosure provides a method for culturing hemagglutinin derived from turinus in the culture method of the present disclosure, the removal method of the present disclosure, the colony formation method of the present disclosure, the maintenance method of the present disclosure, and / or the division method of the present disclosure. Regarding use.
  • Examples of the hemagglutinin derived from Clostridium botulinum include, in one or a plurality of embodiments, the hemagglutinin derived from the above-mentioned A-type Clostridium botulinum, the hemagglutinin derived from Clostridium botulinum, and a complex thereof. In one or more embodiments, a mutant HA complex of the present disclosure and a wild type HA complex are included.
  • kits in another aspect, relate to a kit (hereinafter, also referred to as “kit of the present disclosure”) including a medium component for pluripotent stem cells and the mutant hemagglutinin complex protein of the present disclosure.
  • the “mutant hemagglutinin complex protein” in the kit of the present disclosure is as described above.
  • the kit of the present disclosure can be used for the culture method, removal method, colony formation method, and / or maintenance method of the present disclosure.
  • the medium component for stem cells having pluripotency is not particularly limited, and those conventionally used or developed in the future can be used.
  • composition used for culturing pluripotent stem cells relates to a composition used for culturing pluripotent stem cells (hereinafter, “culturing composition of the present disclosure”), which includes a mutant hemagglutinin complex protein derived from Clostridium botulinum.
  • the culture composition of the present disclosure can be used for the culture method of the present disclosure, the removal method of the present disclosure, the colony formation method of the present disclosure, the maintenance method of the present disclosure, and / or the division method of the present disclosure.
  • the mutant hemagglutinin complex protein derived from Clostridium botulinum included in the culture composition of the present disclosure includes at least the subcomponents HA2 and HA3 of hemagglutinin derived from Clostridium botulinum, and has an amino acid sequence that constitutes an E-cadherin binding site. And a mutant hemagglutinin complex protein in which at least one of the amino acids constituting the sugar chain binding site is mutated.
  • the type of botulinum is not particularly limited as long as the hemagglutinin constituting the mutant hemagglutinin complex protein is hemagglutinin having an interaction with E-cadherin.
  • Examples of the botulinum bacteria include, but are not particularly limited to, A-type botulinum bacteria or B-type botulinum bacteria.
  • the mutant hemagglutinin complex protein derived from Clostridium botulinum includes the mutant HA complex protein of the present disclosure which is a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum.
  • the mutant hemagglutinin complex protein derived from Clostridium botulinum includes a mutant hemagglutinin complex protein derived from type A Clostridium botulinum (hereinafter also referred to as “type A mutant HA complex”). .
  • Examples of the A-type mutant HA complex include known A-type mutant HA complexes in which at least one of the amino acids constituting the sugar chain binding site is mutated in one or a plurality of embodiments.
  • Examples of amino acids constituting the sugar chain binding site in wild-type hemagglutinin derived from A-type Clostridium botulinum include, for example, the 285th asparagine of the amino acid sequence of HA1 (SEQ ID NO: 16) and the 528th of the amino acid sequence of HA3 (SEQ ID NO: 18). Arginine, asparagine at position 263 in the amino acid sequence of HA1 (SEQ ID NO: 16), and the like.
  • the A-type mutant HA complex includes at least subcomponents HA2 and HA3 of hemagglutinin derived from A-type Clostridium botulinum, and may further include a subcomponent HA1 in one or a plurality of embodiments.
  • the A-type mutant HA complex is a complex composed of two components of HA2 and HA3, which more efficiently inhibits cell-cell adhesion and makes undifferentiated cells more efficient. From the viewpoint of being able to be removed, it is a complex composed of three components, HA1, HA2 and HA3.
  • the A type mutant HA complex at least one of the amino acids constituting the sugar chain binding site is mutated.
  • the A-type mutant HA complex may also be referred to as a mutant hemagglutinin complex protein in which at least part or all of the sugar chain binding activity in wild-type hemagglutinin derived from A-type Clostridium botulinum is deleted. it can.
  • the A-type mutant HA complex has an amino acid constituting a sugar chain binding site or an amino acid corresponding to these amino acids mutated, and can efficiently remove undifferentiated deviation cells from a colony.
  • the 528th arginine of the amino acid sequence of HA3 (SEQ ID NO: 18) or the amino acid corresponding thereto is mutated, more preferably the 528th arginine of the amino acid sequence of HA3 (SEQ ID NO: 18) or The corresponding amino acid and the 285th asparagine of the amino acid sequence of HA1 (SEQ ID NO: 16) or an amino acid corresponding thereto are mutated.
  • the A-type mutant HA complex has an amino acid sequence constituting an E-cadherin binding site in wild-type hemagglutinin derived from A-type Clostridium botulinum. That is, the A-type mutant HA complex has E-cadherin binding activity in one or more embodiments.
  • the A-type mutant HA complex has, as subcomponent HA3, arginine at position 528 in the amino acid sequence (SEQ ID NO: 18) of wild-type (wild-type HA3) of type A-HA3 or the equivalent thereof. Part or all of the amino acid sequence in which the amino acid to be mutated is included.
  • the A-type mutant HA complex includes a part or all of the amino acid sequence (SEQ ID NO: 17) of the wild type (wild-type HA2) of type A-HA2 as the subcomponent HA2.
  • the A-type mutant HA complex has 264th asparagine in the wild-type (wild-type HA1) amino acid sequence (SEQ ID NO: 16) of A-HA1 as subcomponent HA1 or It includes a part or all of the amino acid sequence in which the corresponding amino acid and / or the 286th asparagine or the corresponding amino acid is mutated.
  • a tag may be bound to the C-terminal of the subcomponent HA1 in the A-type mutant HA complex.
  • the tag that binds to the C-terminus include a FLAG tag, a D4 tag (DDDD, SEQ ID NO: 15), and the like in one or a plurality of embodiments.
  • the mutant complex protein of the present disclosure preferably has no tag bound to the N-terminus of subcomponent HA1, and has a His tag or a FLAG tag bound to the N-terminus of subcomponent HA1. Preferably not.
  • the present disclosure is a method of culturing pluripotent stem cells using the culturing composition of the present disclosure, an undeveloped or possibly generated during culturing of pluripotent stem cells.
  • the present invention relates to a method for removing cells from which a differentiated state has been removed, and a method for maintaining an undifferentiated state of pluripotent stem cells.
  • these methods include culturing pluripotent stem cells in the presence of the culture composition of the present disclosure.
  • a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum The complex protein is Including at least subcomponents HA2 and HA3 of hemagglutinin derived from B-type Clostridium botulinum, A mutant hemagglutinin complex protein in which at least one of the amino acids constituting the sugar chain binding site is mutated.
  • a mutant hemagglutinin complex protein derived from B-type Clostridium botulinum The complex protein is Including at least subcomponents HA2 and HA3 of hemagglutinin derived from B-type Clostridium botulinum, Having an amino acid sequence constituting an E-cadherin binding site, and A mutant hemagglutinin complex protein in which at least one of the amino acids constituting the sugar chain binding site is mutated.
  • the amino acid constituting the sugar chain binding site is an amino acid corresponding to the 264th asparagine of the wild-type amino acid sequence of the HA1, an amino acid corresponding to the 286th asparagine of the wild-type amino acid sequence of the HA1, And the mutant hemagglutinin complex protein according to [A3], selected from the group consisting of amino acids corresponding to the 528th arginine of the wild-type amino acid sequence of HA3.
  • [A8] The mutant hemagglutinin complex protein according to any one of [A1] to [A7], wherein the complex protein has E-cadherin function inhibitory activity.
  • [A9] The mutant hemagglutinin complex protein according to any one of [A1] to [A8], wherein the complex protein has E-cadherin binding activity.
  • [A10] The mutant hemagglutinin complex protein according to any one of [A1] to [A9], wherein the complex protein has an amino acid sequence constituting an E-cadherin binding site.
  • [B1] A method for culturing stem cells having pluripotency, the method comprising culturing cells in the presence of the mutant hemagglutinin complex protein according to any one of [A1] to [A10] .
  • [B2] The method according to [B1], wherein the cell culture is adhesion culture or suspension culture.
  • [C1] A method for removing cells that have developed or have been able to develop an undifferentiated state during culturing of stem cells having pluripotency, the method according to any one of [A1] to [A10] Culturing the cells in the presence of the mutant hemagglutinin complex protein.
  • [C2] A method for maintaining an undifferentiated state of a stem cell having pluripotency, comprising culturing cells in the presence of the mutant HA complex protein according to any one of [A1] to [A10] Including a method.
  • [D1] A method for culturing human-derived iPS cells, comprising suspension culture of the iPS cells in the presence of Haemagglutinin derived from Clostridium botulinum.
  • [D2] The cell cluster of the iPS cells is suspended in the presence of Haemagglutinin derived from Clostridium botulinum to divide the cell cluster into small clusters; Including forming a lump, The method according to [D1], wherein the formation of the cell clump is performed in the same medium as the division of the cell clump.
  • [D3] A method for dividing a cell cluster of human-derived iPS cells, comprising suspension-culturing the iPS cells in the presence of hemagglutinin derived from Clostridium botulinum.
  • [D4] The method according to any one of [D1] to [D3], wherein the hemagglutin derived from Clostridium botulinum is incorporated by endocytosis.
  • [D5] The method according to any one of [D1] to [D4], wherein the hemagglutinin derived from Clostridium botulinum is selected from the group consisting of hemagglutinin derived from A-type Clostridium botulinum and hemagglutinin derived from B-type Clostridium botulinum.
  • [D6] The method according to [D5], wherein the hemagglutinin derived from B-type Clostridium botulinum comprises the mutant hemagglutinin complex protein according to any one of claims 1 to 5.
  • [E1] A composition comprising hemagglutinin derived from Clostridium botulinum, for use in the method according to any one of [B1], [B2], [C1], [C2] and [D1] to [D6] Composition.
  • [F1] A kit comprising a medium component for pluripotent stem cells and the mutant hemagglutinin complex protein according to any one of [A1] to [A10].
  • [F2] The kit according to [F1] for use in the method according to any one of [B1], [B2], [C1], [C2] and [D1] to [D6].
  • [G1] a composition comprising a mutant hemagglutinin complex protein derived from Clostridium botulinum, The complex protein is At least the hemagglutinin subcomponents HA2 and HA3 from Clostridium botulinum, Having an amino acid sequence constituting an E-cadherin binding site, and A mutant hemagglutinin complex protein in which at least one of the amino acids constituting the sugar chain binding site is mutated,
  • the composition comprises A method for removing cells that have developed or have been undifferentiated during the culture of pluripotent stem cells; A method for maintaining the undifferentiated state of stem cells having pluripotency, A composition for use in any method selected from the group consisting of a method of suspension culture of human-derived iPS cells and a method of
  • composition according to [G2] The composition according to [G1], wherein the Clostridium botulinum is an A-type botulinum or a B-type botulinum.
  • composition according to [G1] or [G2], wherein the complex protein further includes a subcomponent HA1 of hemagglutinin derived from Clostridium botulinum.
  • the amino acids constituting the sugar chain binding site are: In the case of type A Clostridium botulinum, the amino acid corresponding to the 263rd asparagine of the wild-type amino acid sequence of HA1, the amino acid corresponding to the 285th asparagine of the wild-type amino acid sequence of HA1, and the wild-type of HA3 Selected from the group consisting of amino acids corresponding to the 528th arginine of the amino acid sequence; In the case of B-type Clostridium botulinum, the amino acid corresponding to the 264th asparagine of the wild-type amino acid sequence of the HA1, the amino acid corresponding to the 286th asparagine of the wild-type amino acid sequence of the HA1, and the wild-type of the HA3
  • the composition according to [G3] which is selected from the group consisting of amino acids corresponding to 528th arginine in the amino acid sequence.
  • [H1] A method for culturing pluripotent stem cells, comprising culturing cells in the presence of the composition according to any one of [G1] to [G4].
  • [H2] The method according to [H1], wherein the cell culture is adhesion culture or suspension culture.
  • [H3] A method for removing cells that have developed or have been caused to degenerate from an undifferentiated state during culturing of pluripotent stem cells, wherein the composition according to any one of [G1] to [G4] Culturing the cells in the presence.
  • [H4] A method for maintaining an undifferentiated state of pluripotent stem cells, comprising culturing cells in the presence of the composition according to any one of [G1] to [G4].
  • Example 1 [Preparation of B-type Botulinum HA Complex]
  • the wild-type HA complex and mutant HA complexes 1 to 4 derived from B-type Clostridium botulinum shown in Table 1 below were prepared according to the following procedure.
  • These HA complexes include wild-type HA subcomponents derived from B-type Clostridium botulinum (HA1, HA2, HA3), mutant-type HA1 (HA1 N286A, SEQ ID NO: 4).
  • Mutant HA3 HA3 R528A, SEQ ID NO: 5
  • mutant HA3X HA3 K607A, SEQ ID NO: 6
  • HA1 Recombinant protein in which a FLAG tag is bound to the C-terminal of a protein comprising the amino acid sequence at positions 7-294 of the amino acid sequence of SEQ ID NO: 1
  • HA2 Protein comprising the amino acid sequence at positions 2-146 of the amino acid sequence of SEQ ID NO: 2
  • Recombinant protein HA3 having a FLAG tag bound to the N-terminus thereof: Recombinant protein having a Strep tag bound to the N-terminus of a protein comprising the amino acid sequence of positions 19-626 of the amino acid sequence of SEQ ID NO: 3 (tag sequence) FLAG tag: DYKDDDDK (SEQ ID NO: 7) Strep tag: WSHPQFEK (SEQ ID NO: 8)
  • HA1 amplification primer HA1 forward primer: catgccatgggcatccaaaattcattaaatgac (SEQ ID NO: 9)
  • HA1 reverse primer cgggatccttactt
  • HA1 is inserted into the NcoI-BamHI site of pET52b (+)
  • HA2 is inserted into the HindIII-SalI site of pT7-FLAG-1 (Sigma)
  • pET52b (+) (Novagen) is used for HA3.
  • (2) Protein expression Each of the prepared plasmids was transformed into Escherichia coli strain Rosetta2 (DE3) (Novagen) alone. Induction of protein expression was performed using the Overnight Express Automation System 1 (Novagen). For HA1 and HA3, protein expression was induced at 30 ° C. for 36 hours, and for HA2 at 18 ° C.
  • HA1 and HA2 were purified using Anti-FLAG M2 agarose (Sigma).
  • IPS cells [Effect of type B mutant HA complex on iPS cells] IPS cells were seeded on feeder cells (day 0), and the medium was replaced with a maintenance medium every 24 hours. Three days later (day 3), the HA complex (wild-type HA complex or mutant HA complex) was added, incubated for 24 hours, washed twice with PBS, and the medium was replaced with the maintenance medium (day 4). Thereafter, the medium was replaced with the maintenance medium every 24 hours until 9 days later (day 9). After culturing, the expression of Oct3 / 4 in the cultured cells was confirmed by an immune cell staining method.
  • the used cells, medium, and culture conditions are as follows.
  • ⁇ cell ⁇ iPS cells Tic NP29 (passed Tic maintained by MEF)
  • Feeder cells SNL 76/7 ⁇ Culture medium ⁇ iPS cells: Repro Stem (trade name, manufactured by ReproCELL), 5 ng / mL bFGF (manufactured by ReproCELL)
  • Feeder cells DMEM (manufactured by Sigma) (7% FBS (manufactured by GIBCO), 1% penicillin-streptomycin solution (manufactured by NACALAI TESQUE)) ⁇ container ⁇ 12-well plate (culture area: 3.8 cm 2 / well, manufactured by Corning) [HA preparation and addition method]
  • the HA complex was serially diluted with PBS, and further diluted with a medium (Repro Stem) (final concentration: 100 nM).
  • Example 1 An experiment similar to Example 2 was performed using the mutant HA complex 4 (HA3 K607A). The result is shown in FIG. In FIG. 5, a portion surrounded by a solid line in the upper diagram is shown in the lower diagram.
  • FIG. 1 is a photomicrograph of wild type HA complex
  • FIG. 2 is a photomicrograph of mutant HA complex 1
  • FIG. 3 is a photomicrograph of mutant HA complex 2
  • FIG. 4 is a microphotograph of mutant HA complex 3.
  • the undifferentiated deviant cells were 24 hours after the addition of the mutant HA complex (day 3). Intercellular adhesion became loose, and inhibition of intercellular adhesion of undifferentiated cells was confirmed.
  • mutant HA complex 2 (HA3 R528A) inhibited intercellular adhesion of undifferentiated cells at the center of colonies and confirmed cell detachment.
  • mutant HA complex 3 (HA1 N286A / In HA3 R528A), as shown in FIG. 4, intercellular adhesion becomes loose 24 hours after the addition of the mutant HA complex (day 3), and after 48 hours (day 4), other mutant HA and wild type HA It was confirmed that the effect of cell detachment was higher than that of (part indicated by the arrow in FIG. 4). Furthermore, it was found that undifferentiated maintenance colonies were formed on the ninth day of culture (day 9).
  • the mutant HA complex 4 (HA3 K607A) of Comparative Example 1 which is a cadherin-binding activity disappearing mutant was not confirmed to inhibit cell-cell adhesion and cell detachment (FIG. 5). Therefore, the mutant HA complexes 1 to 3 lacking the sugar chain binding activity can inhibit local cell-cell adhesion, and particularly according to the mutant HA complexes 2 and 3. It was suggested that efficient undifferentiated cells can be detached.
  • Colonies using DAPI and undifferentiated markers (Oct3 / 4, TRA-1-60 and SSEA-4) or early differentiation markers of endoderm, mesoderm or ectoderm ( ⁇ -SAM, Serum albumin or Nestin) Stained.
  • undifferentiated markers Oct3 / 4, TRA-1-60 and SSEA-4
  • early differentiation markers of endoderm, mesoderm or ectoderm ⁇ -SAM, Serum albumin or Nestin
  • Example 3 [Effect of type B HA complex on iPS cells (part 2)] As shown in Table 2 below, wild-type HA complexes 1 to 5 were prepared in the same manner as in Example 1 except that tags were bound at different positions. Using the prepared wild-type HA complexes 1 to 5, the effect on iPS cells was confirmed in the same manner as in Example 2. The results are shown in FIGS. 6 is a micrograph of wild-type HA complex 1, FIG. 7 is a micrograph of wild-type HA complex 2, FIG. 8 is a micrograph of wild-type HA complex 3, and FIG. 9 is a microscope of wild-type HA complex 4. FIG. 10 and FIG. 10 show micrographs of wild-type HA complex 5.
  • any wild type HA complex loosening of cell-to-cell adhesion of undifferentiated cells (day 3) was observed 24 hours after the addition of the wild type HA complex (day 3). Inhibition).
  • wild-type HA complex 1, 3 and 4 confirmed cell detachment 24 hours after addition (day 3).
  • wild-type HA complex 1 was undifferentiated on the fifth day of culture (day 5). Deviating cells were removed, and it was confirmed that undifferentiated maintenance colonies were formed. Therefore, according to the wild-type HA complex 1, it was suggested that the undifferentiated departure cells can be efficiently detached.
  • Example 4 [Effects of B-type mutant HA complex on iPS cell cluster (part 1)] An iPS cell conglomerate was prepared using 96 well-V bottom plate, and a half-volume medium was changed every day. On day 3 of culture (day 3), the HA complex was added to the iPS cell cluster. On the fourth day of culture (day 4), the iPS cell conglomerate was transferred to a 96-well plate flat bottom plate, and light pipetting was performed to confirm whether the cell conglomerate was broken.
  • the used cells, medium, HA complex, culture conditions, etc. are as follows.
  • HA ⁇ cell ⁇ Human iPS cells (Tic NP41 (iPS cells maintained with iMatrix-511 (nippi))) ⁇ Culture medium ⁇ mTeSR1 (STEMCELL Technologies) ⁇ container ⁇ 96well-V bottom plate (Sumitomo Bakelite) [HA] Wild type HA complex Mutant HA complex 1 (HA1 N286A) Mutant HA complex 2 (HA3 R528A) Mutant HA complex 3 (HA1 N286A / HA3 R528A) Mutant HA complex 4 (HA3 K607A) [HA preparation and addition method] The HA complex was serially diluted with PBS, and further diluted with a medium (mTeSR1) (final concentration: 100 nM) was added to the wells.
  • mTeSR1 medium
  • the broken cell conglomerate was cultured on a laminin-coated culture surface (feeder cell: SNL), and the entire medium was changed every day. On the fifth day of culture, the cell morphology was observed and the expression of Oct3 / 4 in the cultured cells was confirmed by immunocytostaining using mouse monoclonal Oct3 / 4 antibody (Santa Cruz Biotechnology, sc-5279). In addition, DAPI staining was performed.
  • the human iPS cell clump could be divided into smaller-sized cell clumps. .
  • the addition of mutant HA complexes 1 to 3 allowed the human iPS cell clumps to be divided into smaller clumps.
  • the addition of the mutant HA complex 4 (HA3 K607A) of Comparative Example 1 which is a mutant with cadherin-binding activity disappeared, but almost no cell clumps were divided, and the control (no HA complex added) showed no cell clumping. Did not split.
  • Example 5 [Effect of type B HA complex on iPS cell cluster (part 2)]
  • iPs cells were cultured in a 30 ml reactor for 5 days. Cells on day 5 of culture were transferred to a 24 well plate and HA complex was added. After 6, 12, 18 or 24 hours from the addition of the HA complex, HA was removed by exchanging the medium, and pipetting was performed to divide the cell clump. Thereafter, the cells were cultured for 24 hours, and the morphology of the cell clumps was observed.
  • the used cells, medium, HA, culture conditions, etc. are as follows. The obtained micrograph is shown in FIG. ⁇ cell ⁇ Human iPS cells (Tic, National Center for Global Health and Medicine, Np.
  • the HA complex added to the medium is equipped with an adsorption column that targets the tag attached to the HA complex, and the medium can be circulated to forcibly recover the HA complex from the medium. It is. Therefore, since the HA complex can be removed or collected spontaneously or forcibly, the effect of removing the deviating cells and dividing the cell clumps can be demonstrated temporarily or continuously in a timely manner, and automatic operation in the bioreactor is possible. It was suggested that it was possible.
  • Example 6 [Effect of B-type mutant HA complex on iPS cell cluster (part 3)] IPS cells were cultured according to the procedure shown in FIG. First, iPS cells were suspended in a bioreactor for 120 hours to form cell clusters of iPS cells. Subsequently, the B-type mutant HA complex was added, and after HA treatment for 6 hours, the cell clump was divided by pipetting, and then 10 ⁇ M ROCK inhibitor was added to carry out suspension culture. In addition, the viable cell concentration was measured every 24 hours. An example of the result is shown in FIG. ⁇ cell ⁇ Human iPS cells (Tic, National Center for Global Health and Medicine, Np.
  • Example 7 [Effect of B-type mutant HA complex on iPS cell cluster (part 4)] IPS cells were cultured according to the procedure shown in FIG. First, iPS cells were placed in a bioreactor, 10 ⁇ M ROCK inhibitor was added, and after 24 hours of ROCK inhibitor treatment, suspension culture was performed for 120 hours to form cell clusters of iPS cells. Subsequently, a B-type mutant HA complex was added, and after HA treatment for 6 hours, the cell cluster was divided by pipetting. Subsequently, 10 ⁇ M ROCK inhibitor was added, and after 18 hours of ROCK inhibitor treatment, suspension culture was further performed for 12 hours. The medium was changed and the viable cell concentration was measured every 24 hours. An example of the result is shown in FIG.
  • iPS cells were cultured by a normal subculture method as shown in FIG. That is, iPS cells were cultured in the same manner as in Example 7 except that the HA treatment and the ROCK inhibitor treatment were not performed for 150 hours and 198 hours after the start of the culture. An example of the result is shown in FIG.
  • Example 7 it was confirmed that the cell agglomeration was divided by pipetting after HA treatment and the cell agglomeration was reaggregated by the subsequent culture.
  • the viable cell concentration increased from 24 h after the start of the culture and rapid proliferation was confirmed, but the growth rate decreased moderately around 144 h of the start of the culture, and the HA treatment
  • the growth in the control without the control, the growth (increase in viable cell concentration) was slow after 144 h, and after 168 h, almost no growth could be confirmed when the viable cell concentration was around 1.5 ⁇ 10 6 cells / ml.
  • Example 6 in which the HA treatment was performed 144 h after the start of the culture, the growth rate once decreased was recovered again, and cell proliferation was confirmed after 144 h. Further, when the second HA treatment was performed 192 h after the start of the culture, a moderate recovery of the growth rate was confirmed, and the final viable cell concentration after the 216 h culture was 3.36 ⁇ 10 6 cells in Example 6. / Ml (control is 1.68 ⁇ 10 6 cells / ml). From the above, it was found that the culture method using the cell division operation method by HA treatment maintained the cell proliferation ability compared to the normal subculture method and was able to culture iPS cells at high density.
  • Example 8 [Effect of type A mutant HA complex on iPS cells] A type wild type HA complex and type A mutant HA complex shown in Table 4 below were prepared. These HA complexes were prepared based on T. Matsumura et al., Nature Communications 2015 Feb 17; 6: 6255. Doi: 10.1038 / ncomms7255.
  • HA1 is a recombinant protein with a FLAG tag bound to the C-terminus
  • HA2 is a recombinant protein with a FLAG tag bound to the N-terminus
  • HA3 has a Strep tag bound to the N-terminus Recombinant protein was used.
  • IPS cells were seeded on feeder cells (day 0), and the medium was replaced with a maintenance medium every 24 hours.
  • the HA complex type A wild type HA complex or type A mutant HA complex
  • the medium was replaced with the maintenance medium (day 4).
  • the medium was replaced with the maintenance medium every 24 hours until 7 days later (day 7).
  • the used cells, medium, and culture conditions are as follows.
  • ⁇ cell ⁇ iPS cell Tic (passed Tic maintained by MEF and seeded on SNL cell, NP13)
  • Feeder cells SNL ⁇ Culture medium ⁇ iPS cells: Repro Stem (trade name, manufactured by ReproCELL), 5 ng / mL bFGF (manufactured by ReproCELL)
  • Feeder cells DMEM (manufactured by Sigma) (7% FBS (manufactured by GIBCO), 1% penicillin-streptomycin solution (manufactured by NACALAI TESQUE)) ⁇ container ⁇ 12-well plate (culture area: 3.8 cm 2 / well, manufactured by Corning) [HA preparation and addition method]
  • BFGF final concentration 5 ng / ml
  • Type A mutant HA complexes 2 to 4 shown in Table 4 above were diluted with a dilution medium (final concentration: 100 nM) and added to the wells.
  • a dilution medium final concentration: 100 nM
  • IN Cell Analyzer 2000 trade name, manufactured by GE Healthcare Bioscience
  • Photographing was performed at a magnification of 4 times. The obtained microscopic observation photographs are shown in FIGS. 18 to 20, the lower part shows the part surrounded by the solid line in the upper part.
  • FIG. 18 shows a micrograph of the A-type mutant HA complex 2 (HA3 R528A), and FIG. 19 shows a micrograph of the A-type mutant HA complex 3 (HA1 N285A / HA3 R528A).
  • iPS cells were cultured in the same manner as in the above example, except that A-type mutant HA complex 4 (HA3 K607A), which is a mutant with cadherin binding activity lost, was used.
  • A-type mutant HA complex 4 (HA3 K607A)
  • iPS cells were cultured in the same manner as in Example except that the HA complex was not added.
  • the obtained microscopic observation photographs are shown in FIGS. 20 and 21, respectively.
  • any of the A-type mutant HA complexes 2 and 3 lacking the sugar chain binding activity 24 hours after the addition of the A-type mutant HA complex (day 3), The cell-cell adhesion of undifferentiated cells at the center of the colony became loose, and inhibition of cell-cell adhesion of undifferentiated cells was confirmed, and cell detachment was confirmed.
  • the A-type mutant HA complex 3 (HA1 N285A / HA3 R528A) was found to have a higher cell detachment effect than the A-type wild type HA complex and the A-type mutant HA complex 2. .
  • Example 9 [Effect of type A mutant HA complex on iPS cell cluster] IPS cells were seeded in a non-adhesive medium container 60 mm dish (Thermo: Nunclon Sphere) (4.2 ⁇ 10 6 cells / 60 mm dish) and cultured to prepare iPS cell conglomerates. The medium was changed every day until the fourth day of culture (day 4). On the fourth day of culture (day 4), the iPS cell conglomerate was transferred to a 24-well plate, a photograph before HA addition was taken, and then the HA complex was added (final concentration: 40 nM).
  • HA ⁇ cell ⁇ Human iPS cells Tic (iPS cells maintained with iMatrix-511 (nippi), NP19)) ⁇ Culture medium ⁇ mTeSR1 (STEMCELL Technologies)
  • Type A wild type HA complex Type A mutant HA complex 1 (HA1 N285A) Type A mutant HA complex 2 (HA3 R528A) Type A mutant HA complex 3 (HA1 N285A / HA3 R528A) Type A mutant HA complex 4 (HA3 K607A)
  • the HA complex was serially diluted with PBS, and further diluted with a medium (mTeSR1) (final concentration: 100 nM) was added to the wells.
  • mTeSR1 final concentration: 100 nM
  • the type A wild type complex was able to degrade the cell cluster at the same level as the type B wild type HA complex and the type B mutant HA complex 1 to 3.
  • the A-type mutant HA complexes 1 to 3 are smaller in mass than the A-type wild-type complex, the B-type wild-type HA complex, and the B-type mutant HA complex 1 to 3 when performed under the same concentration conditions.
  • the addition of the mutant HA complex 4 (HA3 K607A) of Comparative Example 1 which is a mutant lacking cadherin binding activity shows almost no cell clump division, and the control (without HA complex added) shows no cell clumping. Did not split.
  • SEQ ID NO: 1 Subcomponent HA1 of wild-type hemagglutinin derived from B-type Clostridium botulinum
  • SEQ ID NO: 2 Subcomponent HA2 of wild-type hemagglutinin derived from B-type Clostridium botulinum
  • SEQ ID NO: 3 Subcomponent HA3 of wild type hemagglutinin derived from B-type Clostridium botulinum
  • SEQ ID NO: 4 B-type mutant HA1 (HA1 N286A)
  • SEQ ID NO: 6 B-type mutant HA3X (HA3 K607A)
  • SEQ ID NO: 8 Strep tag
  • SEQ ID NO: 9-14 Primer SEQ ID NO: 15: D4 tag
  • SEQ ID NO: 16 Subcomponent HA1 of wild-type hemagglutinin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

多能性を有する幹細胞の培養中のコロニーに発生する未分化状態を脱した細胞を除去可能な新たなヘマグルチニンの提供及びへマグルチンニンを用いた、多能性を有する幹細胞の新たな培養方法の提供。B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、前記複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質に関する。多能性を有する幹細胞の培養方法であって、本開示の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む方法に関する。

Description

変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法
 本開示は、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質、多能性を有する幹細胞の培養方法、多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法、多能性を有する幹細胞の未分化状態を維持する方法、iPS細胞の培養方法、iPS細胞の細胞集塊の分割方法、及び、これらの方法に使用するキットに関する。
 ヒトiPS細胞などの多能性幹細胞を大量培養する際には、一連の増幅培養(継代培養)の繰り返しにより多くの未分化な細胞を調製する。この一連の培養において、未分化状態から逸脱した細胞“未分化逸脱細胞”が偶発的に発生することが知られている。
 この未分化逸脱細胞は、未分化細胞とほぼ同等の分裂能力を有し、かつ、未分化細胞から未分化逸脱細胞への転換を誘発することが知られている。すなわち、未分化逸脱細胞が発生すると、その増殖速度は未分化細胞のそれを上回り、未分化細胞の増殖が抑制される。
 未分化逸脱細胞の発生は、熟練してない培養操作者による培養で多く観察される。また、コロニーサイズの過大や、コロニー同士の合一が発生の一因であると知られている。よって、低コンフルエントでの継代、播種時の均一性維持により、未分化逸脱細胞の発生頻度をある程度下げることができる。また、近年の開発された培地によっても、未分化逸脱細胞の発生頻度がある程度抑制されている。しかしながら、それでも未分化逸脱細胞は偶発的に発生し、発生した場合には、未分化逸脱細胞を含むコロニーを除去することが未だ必須である。
 未分化逸脱細胞を含むコロニーは、未分化状態を維持するため、継代時に顕微鏡下のピペッティング作業により丁寧に除去される。このようなコロニー除去の手技を模した装置、例えば、観察装置とロボットハンドリングによるピペッティングを組み合せた装置も開発されている。
 また、特許文献1には、iPS細胞等の多能性幹細胞の未分化を維持しつつ増殖させるために、アクチビン存在下で多能性幹細胞を培養することを開示する。
特開2012-143229号公報
 上述したとおり、ヒトiPS細胞等の多能性幹細胞の継代培養では、脱未分化現象を引き起こしやすく、未分化維持が困難で、数回の継代後には多くのiPS細胞コロニーが脱未分化現象を引き起こし、未分化状態を脱した細胞を含むコロニーとなりうる。よって、丁寧な培養、及び、丁寧なコロニーの選別という煩雑な操作が不可欠となる。幹細胞産業を促進する点からも、煩雑な操作が少なく、熟練者でなくても可能な、多能性幹細胞の未分化維持方法が望まれている。
 また、ヒトiPS細胞等の多能性幹細胞は、再生医療や創薬研究への実用化の点から、高品質の細胞を安定に大量供給することが望まれている。このため、近年、浮遊培養による培養が試みられているが、細胞塊の分割時に細胞にダメージを与えること等が問題となっている。このため、ヒトiPS細胞等の多能性幹細胞を簡便に効率よく大量培養可能な方法が望まれている。
 ボツリヌス菌由来のヘマグルチニン(HA)は、ボツリヌス神経毒素複合体の成分である。近年、このHAが、細胞接着分子であるE-カドヘリンに特異的に結合し、それによって腸管上皮細胞の細胞間バリアを破壊するという分子機構を有することが発見された。このHAが有する分子機構を用いて、多能性(“pluripotency”以下同様)を有する幹細胞の培養中のコロニーに発生する「未分化状態を脱した細胞」を除去することが本発明者らによって試みられている。
 本開示は、一態様において、多能性を有する幹細胞の培養中のコロニーに発生する「未分化状態を脱した細胞」を除去可能な新たなヘマグルチニンを提供する。
 本開示は、一態様において、へマグルチンニンを用いた、多能性を有する幹細胞の新たな培養方法を提供する。
 本開示は、一態様において、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、前記複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質に関する。
 本開示は、一態様において、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、前記複合体タンパク質は、サブコンポーネントHA1、HA2及びHA3によって形成され、前記サブコンポーネントHA1の野生型のアミノ酸配列の264番目のアスパラギンに相当するアミノ酸、前記サブコンポーネントHA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記サブコンポーネントHA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸の一方のアミノ酸又は双方のアミノ酸が変異した変異型ヘマグルチニン複合体タンパク質に関する。
 本開示は、一態様において、多能性を有する幹細胞の培養方法であって、本開示の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む方法に関する。
 本開示は、一態様において、多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法であって、本開示の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む方法に関する。
 本開示は、一態様において、ヒト由来のiPS細胞の培養方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む方法に関する。
 本開示は、一態様において、ヒト由来のiPS細胞の細胞集塊の分割方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む方法に関する。
 本開示によれば、一態様において、多能性を有する幹細胞の培養中のコロニーに発生する「未分化状態を脱した細胞」を除去できるという効果が奏されうる。
 本開示によれば、一態様において、多能性を有する幹細胞を、簡便に効率よく大量培養できるという効果が奏されうる。
図1は、B型野生型HA複合体をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例2)。 図2は、B型変異型HA複合体1(HA1 N286A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例2)。 図3は、B型変異型HA複合体2(HA3 R528A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例2)。 図4は、B型変異型HA複合体3(HA1 N286A/HA3 R528A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例2)。 図5は、B型変異型HA複合体4(HA3 K607A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(比較例1)。 図6は、B型野生型HA複合体1をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例3)。 図7は、B型野生型HA複合体2をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例3)。 図8は、B型野生型HA複合体3をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例3)。 図9は、B型野生型HA複合体4をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例3)。 図10は、B型野生型HA複合体5をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例3)。 図11は、浮遊培養においてB型野生型及びB型変異型HA複合体を添加したときのiPS細胞の細胞集塊の顕微鏡観察写真の一例である(300cells/well、実施例4)。 図12は、浮遊培養においてB型野生型及びB型変異型HA複合体を添加したときのiPS細胞の細胞集塊の顕微鏡観察写真の一例である(500cells/well、実施例4)。 図13は、浮遊培養においてB型野生型HA複合体の種々の添加時間(6、12、18及び24時間)における、iPS細胞の細胞集塊の顕微鏡観察写真の一例である(実施例5)。 図14は、実施例6で行った実験の流れを説明する図である。 図15は、実施例6における培養日数と生細胞濃度との関係を示すグラフの一例を示す。 図16は、実施例7で行った実験の流れを説明する図である。 図17は、実施例7における培養日数と生細胞濃度との関係を示すグラフの一例を示す。 図18は、A型変異型HA複合体2(HA3 R528A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例7)。 図19は、A型変異型HA複合体3(HA1 N285A/HA3 R528A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(実施例7)。 図20は、A型変異型HA複合体4(HA3 K607A)をday3に添加したときのiPS細胞のコロニーの顕微鏡観察写真の一例である(比較例3)。 図21は、コントロール(HA無添加)のiPS細胞のコロニーの顕微鏡観察写真の一例である。
 ボツリヌス菌由来の野生型ヘマグルチニンは、HA1(33K、HA-33)、HA2(17K、HA-17)及びHA3(70K、HA-70)の3つのサブコンポーネントから構成される複合体であることが知られている。中でもB型ボツリヌス菌由来の野生型ヘマグルチニンは、サブコンポーネントHA1、HA2及びHA3が2:1:1の割合で12量体の複合体を形成している。また、B型ボツリヌス菌由来の野生型ヘマグルチニンは、E-カドヘリンと結合してE-カドヘリンを介した細胞間接着を阻害すること、及びHA2とHA3の複合体であってもE-カドヘリン結合活性が得られることが知られている。
 本開示は、一態様において、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、糖鎖認識部位を構成するアミノ酸の少なくとも一つを変異させたヘマグルチニン(変異型ヘマグルチニン)であれば、多能性を有する幹細胞の培養中のコロニー内に発生した及び/又は発生する未分化状態を脱した細胞(以下、「未分化逸脱細胞」ともいう)の細胞間接着を選択的に阻害することができ、さらには未分化逸脱細胞を選択的に除去できるという知見に基づく。
 また、本開示は、一態様において、ボツリヌス菌由来のヘマグルチニン存在下で、多能性を有する幹細胞を浮遊培養すると、ヒトiPS細胞のようにデリケートな細胞であっても、細胞集塊を容易に効率よく小塊に分割でき、さらには小塊から新たな細胞集塊を形成させることができる、との知見に基づく。
 また、本開示は、一態様において、A型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、糖鎖認識部位を構成するアミノ酸の少なくとも一つを変異させたヘマグルチニン(A型変異型ヘマグルチニン)は、B型野生型ヘマグルチニンと比較して、未分化逸脱細胞を効率よく除去できる、との知見に基づく。
 [多能性を有する幹細胞]
 本開示において、多能性を有する幹細胞は、限定されない一又は複数の実施形態において、ヒト多能性(pluripotent)幹細胞である。本開示において、ヒト多能性幹細胞は、限定されない一又は複数の実施形態において、ヒトiPS細胞又はヒトES細胞である。
 [未分化状態を脱した細胞(未分化逸脱細胞)]
 本開示において未分化状態を脱した細胞(未分化逸脱細胞)とは、限定されない一又は複数の実施形態において、細胞の形態が未分化状態の細胞のそれとは異なり、判別可能である。未分化逸脱細胞となったことは、限定されない一又は複数の実施形態において、未分化マーカーの消失で確認できる。未分化マーカーは、限定されない一又は複数の実施形態において、Oct3/4、Nanog、SSEA-4、TRA-1-60である。
 [変異型ヘマグルチニン(HA)複合体タンパク質]
 本開示は、一又は複数の実施形態において、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質(以下、「本開示の変異型HA複合体タンパク質」ともいう)に関する。本開示の変異型HA複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した変異型ヘマグルチニン複合タンパク質である。本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した変異型ヘマグルチニン複合タンパク質である。また、本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、E-カドヘリン結合活性を有し、かつ、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した変異型ヘマグルチニン複合タンパク質である。また、本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、E-カドヘリン機能阻害活性を有し、かつ、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した変異型ヘマグルチニン複合タンパク質である。
 本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、多能性を有する幹細胞の培養中に、コロニー内に発生した及び/又は発生する未分化逸脱細胞の細胞間接着を阻害することができるという効果を奏しうる。本開示の変異型HA複合体タンパク質は、好ましくはコロニーから未分化逸脱細胞を除去することができ、また、多能性を有する幹細胞の培養において構成されるコロニーを未分化状態に維持できる(未分化状態が維持された多能性を有する幹細胞で構成されたコロニーを形成し続けることができる)という効果を奏しうる。
 本開示の変異型HA複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、一又は複数の実施形態において、サブコンポーネントHA1をさらに含んでいてもよい。本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、HA2及びHA3の2成分で構成される複合体であり、より効率よく細胞間接着を阻害し、未分化逸脱細胞をより効率的に除去できる観点から、HA1、HA2及びHA3の3成分で構成される複合体である。
 本開示の変異型HA複合体タンパク質は、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異している。本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、B型ボツリヌス菌由来の野生型ヘマグルチニンにおける糖鎖結合活性の少なくとも一部又は全部を欠損させた変異型ヘマグルチニン複合タンパク質ともいうことができる。本発明者らは、B型ボツリヌス菌由来の野生型ヘマグルチニンにおける糖鎖結合部位を構成するアミノ酸として、HA1のアミノ酸配列(配列番号1)の286番目のアスパラギン及びHA3のアミノ酸配列(配列番号3)の528番目のアルギニン等を見出している。また、その他のアミノ酸としては、HA1のアミノ酸配列(配列番号1)の264番目のアスパラギン等が知られている(例えば、KwangKook Lee et al, Biochem Biophys Res Commun 2014 Apr 4, Vol 446, Issue 2, pp.568-573等)。本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、これらのアミノ酸又はこれらのアミノ酸に相当するアミノ酸が変異されており、コロニーから効率よく未分化逸脱細胞を除去できる点からは、HA3のアミノ酸配列(配列番号3)の528番目のアルギニン又はそれに相当するアミノ酸が変異されていることが好ましく、より好ましくはHA3のアミノ酸配列(配列番号3)の528番目のアルギニン又はそれに相当するアミノ酸と、HA1のアミノ酸配列(配列番号1)の286番目のアスパラギン又はそれに相当するアミノ酸とが変異されている。本開示において「これらのアミノ酸に相当するアミノ酸」とは、上記した糖鎖結合部位を構成する野生型のアミノ酸と立体構造上同等な位置のアミノ酸をいう。本開示におけるアミノ酸の変異は、一又は複数の実施形態において、糖鎖を認識しないアミノ酸への置換を含み、好ましくはアラニンへの置換を含む。
 本開示の変異型HA複合体タンパク質は、B型ボツリヌス菌由来の野生型ヘマグルチニンにおけるE-カドヘリン結合部位を構成するアミノ酸配列を有している。すなわち、本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、E-カドヘリン結合活性を有している。したがって、本開示は、その他の態様において、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、E-カドヘリン結合活性を有し、かつ、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質に関する。E-カドヘリン結合部位としては、B型ボツリヌス菌由来の野生型ヘマグルチニンと同様にE-カドヘリン結合活性を有するA型ボツリヌス菌由来の野生型ヘマグルチニンにおけるE-カドヘリン結合部位が解析されている(例えば、KwangKook Lee et al, Science 2014 Jun 20, Vol.344, no. 6190 pp.1405-1410等)。
 本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA3として、HA3の野生型(野生型HA3)のアミノ酸配列(配列番号3)において528番目のアルギニン又はそれに相当するアミノ酸が変異したアミノ酸配列の一部又は全部を含む。
 本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA2として、HA2の野生型(野生型HA2)のアミノ酸配列(配列番号2)の一部又は全部を含む。
 本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA1として、HA1の野生型(野生型HA1)のアミノ酸配列(配列番号1)において、264番目のアスパラギン若しくはそれに相当するアミノ酸、及び/又は286番目のアスパラギン若しくはそれに相当するアミノ酸が変異したアミノ酸配列の一部又は全部を含む。
 本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA1、HA2及びHA3によって形成され、前記サブコンポーネントHA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記サブコンポーネントHA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸の一方のアミノ酸又は双方のアミノ酸が変異した変異型ヘマグルチニン複合体タンパク質である。
 本開示の変異型HA複合体タンパク質の第1の実施形態として、野生型HA1のアミノ酸配列(配列番号1)において264番目のアスパラギン及び/又は286番目のアスパラギンが変異したHA1(変異型HA1)、野生型HA2及び野生型HA3を含む変異型HA複合体(変異型HA複合体1)が挙げられる。変異型HA複合体1の一又は複数の実施形態において、変異型HA複合体1に含まれるサブコンポーネントHA1の少なくとも1つが変異型HA1であればよく、全てのHA1が変異型HA1であることが好ましい。
 本開示の変異型HA複合体タンパク質の第2の実施形態として、野生型HA1、野生型HA2、及び、野生型HA3のアミノ酸配列(配列番号3)において528番目のアルギニン又はそれに相当するアミノ酸が変異したHA3(変異型HA3)を含む変異型HA複合体(変異型HA複合体2)が挙げられる。変異型HA複合体2の一又は複数の実施形態において、変異型HA複合体2に含まれるサブコンポーネントHA3の少なくとも1つが変異型HA3であればよく、全てのHA3が変異型HA3であることが好ましい。
 本開示の変異型HA複合体タンパク質の第3の実施形態として、変異型HA1、野生型HA2及び変異型HA3を含む変異型HA複合体(変異型HA複合体3)が挙げられ、より効率よく細胞間接着を阻害し、未分化逸脱細胞をより効率的に除去する観点から、好ましくは野生型HA1のアミノ酸配列(配列番号1)において286番目のアスパラギンがアラニンに変異したHA1(配列番号4)、野生型HA2(配列番号2)、及び野生型HA3のアミノ酸配列(配列番号3)において528番目のアルギニンがアラニンに変異したHA3(配列番号5)が挙げられる。変異型HA複合体3の一又は複数の実施形態において、変異型HA複合体3に含まれるサブコンポーネントHA1の少なくとも1つが変異型HA1であればよく、全てのHA1が変異型HA1であることが好ましい。また、変異型HA複合体3に含まれるサブコンポーネントHA3の少なくとも1つが変異型HA3であればよく、全てのHA3が変異型HA3であることが好ましい。
 本開示の変異型複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA1のC末端にタグが結合していてもよい。C末端に結合するタグとしては、一又は複数の実施形態において、FLAGタグ、D4タグ(DDDD、配列番号15)等が挙げられる。本開示の変異型複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA1のN末端にタグが結合していないことが好ましく、サブコンポーネントHA1のN末端にHisタグ又はFLAGタグが結合していないことが好ましい。
 [多能性を有する幹細胞の培養方法]
 本開示は、一態様において、多能性を有する幹細胞の培養方法であって、本開示の変異型HA複合体タンパク質の存在下で細胞培養することを含む(以下、「本開示の培養方法」ともいう)。本開示の培養方法によれば、本開示の変異型HA複合体タンパク質の存在下で細胞培養することから、一又は複数の実施形態において、未分化逸脱細胞を除去することができ、また、多能性を有する幹細胞の培養において構成されるコロニーを未分化状態に維持できるという効果を奏しうる。また、本開示の培養方法によれば、本開示の変異型HA複合体タンパク質の存在下で細胞培養することから、一又は複数の実施形態において、ヒト由来のiPS細胞のようにデリケートな細胞であっても、スフェロイド状の細胞集塊を効率よく分割でき、好ましくは多能性を有する幹細胞を効率よく大量に培養することができる。本開示の培養方法において、細胞培養は、一又は複数の実施形態において、接着培養(平面培養)、及び浮遊培養等が挙げられる。
 〔接着培養〕
 本開示の培養方法の第一の実施形態として、接着培養により細胞培養を行うことが挙げられる。細胞培養が接着培養である場合、一又は複数の実施形態において、培養面上に形成されるコロニーから未分化逸脱細胞を除去できるという効果を奏しうる。したがって、本開示は、その他の態様において、多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法であって、本開示の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む方法に関する。また、本開示は、その他の態様において、未分化状態を脱した細胞が発生したコロニーから未分化状態の細胞からなるコロニーを形成する方法であって、本開示の変異型HA複合体タンパク質の存在下で前記未分化状態を脱した細胞が発生したコロニーを培養することを含む方法に関する。本開示は、その他の態様において、多能性を有する幹細胞の未分化状態を維持する方法であって、本開示の変異型HA複合体タンパク質の存在下で細胞培養することを含む方法に関する。
 本開示の培養方法、除去方法、コロニー形成方法及び/又は維持方法によれば、一又は複数の実施形態において、コロニーから未分化逸脱細胞を効率よく除去ができ、効率的に未分化細胞のみを培養できる。本開示の培養方法及び除去方法によれば、一又は複数の実施形態において、培養装置での培養中に閉鎖空間を維持しながら未分化逸脱細胞を除去することができ、コロニーを構成する細胞を実質的に未分化細胞のみとするコロニー選抜を行うことができる。
 第一の実施形態における細胞培養は、従来用いられる及び/又は今後開発される、多能性を有する幹細胞の培養条件及び培養培地等を採用でき、該培養条件の培地に本開示の変異型HA複合体タンパク質を存在させることで行える。限定されない一又は複数の実施形態において、本開示の変異型HA複合体タンパク質を培養中の培養培地に添加してもよく、或いは、本開示の変異型HA複合体タンパク質を予め添加した培地を使用して培養してもよい。限定されない一又は複数の実施形態において、本開示の変異型HA複合体タンパク質は、コロニーに未分化逸脱細胞の発生が確認された場合に随時添加してもよい。培養培地、培養プレート等は市販のものを使用してもよい。
 本開示の培養方法、除去方法、コロニー形成方法及び/又は維持方法に使用する本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、効率的に未分化逸脱細胞を除去する点から、変異型HA3を含むことが好ましく、より好ましくは変異型HA1及び変異型HA3を含む。培地に存在させる本開示の変異型HA複合体タンパク質の濃度は、限定されない一又は複数の実施形態において、効率的に未分化細胞を除去する観点から、5nM以上、10nM以上、又は15nM以上が挙げられる。同様の観点から、200nM以下、150nM以下、又は100nM以下である。
 本開示の培養方法、除去方法、コロニー形成方法及び/又は維持方法において、培地中に添加された変異型HA複合体タンパク質は、一又は複数の実施形態において、細胞内吸収(エンドサイトーシスなど)により自発的に除去させることができる。また、変異型HA複合体タンパク質に付したタグを標的とした吸着カラムを備え付け、培地を循環させることにより、変異型HA複合体タンパク質を強制的に培地から回収してもよい。このように変異型HA複合体タンパク質を自発的及び/又は強制的に除去・回収することによって、未分化逸脱細胞の除去を適時に一時的又は連続的に行うことができる。本開示の培養方法は、一又は複数の実施形態において、多能性を有する幹細胞の細胞培養をバイオリアクターでの自動運転により行うことを含む。
 第一の実施形態における細胞培養は、限定されない一又は複数の実施形態において、フィーダ細胞を用いた培養であってもよいし、フィーダレス培養であってもよい。フィーダ細胞は、限定されない一又は複数の実施形態において、MEF(Mouse Embryo Fibroblast)細胞、SL10、及びSNL 76/7フィーダ細胞等が挙げられる。フィーダ細胞は、限定されない一又は複数の実施形態において、フィーダ細胞の中でも、多能性を有する幹細胞の遊走速度が比較的ゆっくりなフィーダ細胞が好ましい。フィーダ細胞は、限定されない一又は複数の実施形態において、多能性を有する幹細胞の遊走が比較的ゆっくりであり、多能性を有する幹細胞の培養中のコロニーに未分化逸脱細胞をコロニー中央部に発生させることができる点から、SNL 76/7フィーダ細胞が好ましい。
 〔浮遊培養〕
 本開示の培養方法の第二の実施形態として、浮遊培養により細胞培養を行うことが挙げられる。細胞培養が浮遊培養である場合、一又は複数の実施形態において、ヒト由来のiPS細胞のようにデリケートな細胞であって細胞集塊を効率よく分割でき、好ましくは多能性を有する幹細胞を効率よく大量に培養することができる。したがって、本開示は、その他の態様において、多能性を有する幹細胞の細胞集塊の分割方法であって、本開示の変異型HA複合体タンパク質の存在下で、多能性を有する幹細胞を浮遊培養することを含む、多能性を有する幹細胞の細胞集塊の分割方法に関する。
 第二の実施形態における培養方法は、一又は複数の実施形態において、前記幹細胞の細胞集塊をボツリヌス菌由来のヘマグルチニン存在下で浮遊培養することによって、前記幹細胞の細胞集塊を小塊に分割すること、及び前記小塊を浮遊培養して新たな細胞集塊を形成させることを含む。第二の実施形態における培養方法は、一又は複数の実施形態において、細胞集塊の形成を、細胞集塊の分割と同じ培地内で行う。培地中に添加された本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、細胞内吸収(エンドサイトーシスなど)による自発的に除去できることができる。したがって、第二の実施形態における培養方法は、一又は複数の実施形態において、変異型HA複合体タンパク質を洗浄することなく、連続培養によって細胞集塊の分割と新たな細胞集塊の形成とを行うことができる。第二の実施形態における培養方法は、一又は複数の実施形態において、変異型HA複合体タンパク質を洗浄する工程を含まない。また、一又は複数の実施形態において、本開示の変異型HA複合体タンパク質に付したタグを標的とした吸着カラムを備え付け、培地を循環させることにより、本物質を強制的に培地から回収してもよい。このように変異型HA複合体タンパク質を自発的及び/又は強制的に除去・回収可能することによって、細胞集塊の分割を制御して分割効果を適時に一時的又は連続的に発揮させることができる本開示の培養方法は、一又は複数の実施形態において、多能性を有する幹細胞の細胞培養をバイオリアクターでの自動運転により行うことを含む。
 第二の実施形態における細胞培養は、従来用いられる及び/又は今後開発される、多能性を有する幹細胞の培養条件及び培養培地等を採用でき、該培養条件の培地に本開示の変異型HA複合体タンパク質を存在させることで行える。限定されない一又は複数の実施形態において、本開示の変異型HA複合体タンパク質を培養中の培養培地に添加してもよく、或いは、本開示の変異型HA複合体タンパク質を予め添加した培地を使用して培養してもよい。培養培地及び培養容器等は市販のものを使用してもよい。
 培地に存在させる本開示の変異型HA複合体タンパク質の濃度は、限定されない一又は複数の実施形態において、効率的に未分化細胞を除去する観点から、5nM以上、10nM以上、又は15nM以上が挙げられる。同様の観点から、200nM以下、150nM以下、又は100nM以下である。
 浮遊培養は、一又は複数の実施形態において、従来用いられる及び/又は今後開発される、多能性を有する幹細胞の培養条件及び培養培地等を採用でき、該培養条件の培地に本開示の変異型HA複合体タンパク質を存在させることで行える。
 [iPS細胞の培養方法]
 本開示は、一又は複数の実施形態において、iPS細胞の培養方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む方法(以下、「本開示のiPS細胞の培養方法」ともいう)に関する。本開示のiPS細胞の培養方法によれば、ヒト由来のiPS細胞のようにデリケートな細胞であってもスフェロイド状の細胞集塊を効率よく分割できることから、iPS細胞を効率よく大量に培養することができる。したがって、本開示は、一又は複数の実施形態において、iPS細胞の細胞集塊の分割方法であって、ボツリヌス菌由来のヘマグルチニン存在下でiPS幹細胞を浮遊培養することを含む方法(以下、「本開示の分割方法」ともいう)に関する。
 本開示のiPS細胞の培養方法は、一又は複数の実施形態において、iPS細胞の細胞集塊をボツリヌス菌由来のヘマグルチニン存在下で浮遊培養することによって、iPS細胞の細胞集塊を小塊に分割すること、及び前記小塊を浮遊培養して新たな細胞集塊を形成させることを含む。本開示のiPS細胞の培養方法は、一又は複数の実施形態において、細胞集塊の形成を、細胞集塊の分割と同じ培地内で行う。培地中に添加された本開示の変異型HA複合体タンパク質は、一又は複数の実施形態において、細胞内吸収(エンドサイトーシスなど)による自発的に除去できることができる。したがって、本開示のiPS細胞の培養方法は、一又は複数の実施形態において、変異型HA複合体タンパク質を洗浄することなく、連続培養によって細胞集塊の分割と新たな細胞集塊の形成とを行うことができる。本開示のiPS細胞の培養方法は、一又は複数の実施形態において、変異型HA複合体タンパク質を洗浄する工程を含まない。また、一又は複数の実施形態において、本開示の変異型HA複合体タンパク質に付したタグを標的とした吸着カラムを備え付け、培地を循環させることにより、本物質を強制的に培地から回収してもよい。このように変異型HA複合体タンパク質を自発的及び/又は強制的に除去・回収可能することによって、細胞集塊の分割を制御して分割効果を適時に一時的又は連続的に発揮させることができる本開示の培養方法は、一又は複数の実施形態において、多能性を有する幹細胞の細胞培養をバイオリアクターでの自動運転により行うことを含む。
 本開示のiPS細胞の培養方法及び分割方法において使用するボツリヌス菌由来のヘマグルチニンとしては、一又は複数の実施形態として、A型ボツリヌス菌由来のヘマグルチニン及びB型ボツリヌス菌由来のヘマグルチニン等が挙げられる。B型ボツリヌス菌由来のヘマグルチニンとしては、一又は複数の実施形態において、C末端にタグが結合したサブコンポーネントHA1を含むことが好ましい。B型ボツリヌス菌由来のヘマグルチニンは、一又は複数の実施形態において、本開示の変異型HA複合体タンパク質等が挙げられる。
 本開示のiPS細胞の培養方法及び分割方法において、低濃度で効率よく細胞集塊を分割することができる点からは、A型ボツリヌス菌由来のヘマグルチニンが好ましい。A型ボツリヌス菌由来のヘマグルチニンとしては、一又は複数の実施形態において、A型野生型ボツリヌス菌由来のヘマグルチニン及び後述するA型変異型ボツリヌス菌由来のヘマグルチニンが挙げられる。
 本開示のiPS細胞の培養方法及び分割方法において、浮遊培養条件、HAの添加条件等は第二の実施形態の培養方法と同様に行うことができる。
 [組成物]
 本開示は、その他の態様において、ボツリヌス菌由来のヘマグルチニンを含む組成物(以下、「本開示の組成物」ともいう。)に関する。本開示の組成物は、本開示の培養方法、本開示の除去方法、本開示のコロニー形成方法、本開示の維持方法、及び/又は本開示の分割方法のために使用できる。したがって、本開示は、その他の態様において、本開示の培養方法、本開示の除去方法、本開示のコロニー形成方法、本開示の維持方法、及び/又は本開示の分割方法に用いる組成物であって、ボツリヌス菌由来のヘマグルチニンを含む組成物に関する。また、本開示は、その他の態様において、本開示の培養方法、本開示の除去方法、本開示のコロニー形成方法、本開示の維持方法、及び/又は本開示の分割方法におけるツリヌス由来のヘマグルチニンの使用に関する。ボツリヌス菌由来のヘマグルチニンとしては、一又は複数の実施形態において、上述のA型ボツリヌス菌由来のヘマグルチニン及びB型ボツリヌス菌由来のヘマグルチニン並びにこれらの複合体が挙げられ、B型ボツリヌス菌由来のヘマグルチニンとしては、一又は複数の実施形態において、本開示の変異型HA複合体、及び野生型HA複合体が挙げられる。
 [キット]
 本開示は、その他の態様において、多能性を有する幹細胞用の培地成分と本開示の変異型ヘマグルチニン複合体タンパク質とを含むキット(以下、「本開示のキット」ともいう。)に関する。本開示のキットにおける「変異型ヘマグルチニン複合体タンパク質」は、上述のとおりである。本開示のキットは、本開示の培養方法、除去方法、コロニー形成方法、及び/又は維持方法のために使用できる。多能性を有する幹細胞用の培地成分は、特に限定されず、従来使用される又は今後開発されるものを使用できる。
 [多能性を有する幹細胞の培養に用いる組成物]
 本開示は、その他の態様において、ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質を含む、多能性を有する幹細胞の培養に用いる組成物(以下、「本開示の培養用組成物」)に関する。本開示の培養用組成物は、本開示の培養方法、本開示の除去方法、本開示のコロニー形成方法、本開示の維持方法、及び/又は本開示の分割方法のために使用できる。
 本開示の培養用組成物に含まれるボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質は、ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質である。変異型ヘマグルチニン複合体タンパク質を構成するヘマグルチニンは、E-カドヘリンとの相互作用を有するヘマグルチニンであればそのボツリヌス菌の型は特に制限されない。ボツリヌス菌としては、特に限定されない一又は複数の実施形態において、A型ボツリヌス菌又はB型ボツリヌス菌が挙げられる。
 ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質は、一又は複数の実施形態において、B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質である本開示の変異型HA複合体タンパク質が挙げられる。
 ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質は、一又は複数の実施形態において、A型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質(以下、「A型変異型HA複合体」ともいう)が挙げられる。
 A型変異型HA複合体としては、一又は複数の実施形態において、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した公知のA型変異型HA複合体が挙げられる。A型ボツリヌス菌由来の野生型ヘマグルチニンにおける糖鎖結合部位を構成するアミノ酸として、例えば、HA1のアミノ酸配列(配列番号16)の285番目のアスパラギン、及びHA3のアミノ酸配列(配列番号18)の528番目のアルギニン、HA1のアミノ酸配列(配列番号16)の263番目のアスパラギン等がある。
 A型変異型HA複合体は、A型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、一又は複数の実施形態において、サブコンポーネントHA1をさらに含んでいてもよい。A型変異型HA複合体は、一又は複数の実施形態において、HA2及びHA3の2成分で構成される複合体であり、より効率よく細胞間接着を阻害し、未分化逸脱細胞をより効率的に除去できる観点から、HA1、HA2及びHA3の3成分で構成される複合体である。
 A型変異型HA複合体は、糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異している。A型変異型HA複合体は、一又は複数の実施形態において、A型ボツリヌス菌由来の野生型ヘマグルチニンにおける糖鎖結合活性の少なくとも一部又は全部を欠損させた変異型ヘマグルチニン複合タンパク質ともいうことができる。A型変異型HA複合体は、一又は複数の実施形態において、糖鎖結合部位を構成するアミノ酸又はこれらのアミノ酸に相当するアミノ酸が変異されており、コロニーから効率よく未分化逸脱細胞を除去できる点からは、HA3のアミノ酸配列(配列番号18)の528番目のアルギニン又はそれに相当するアミノ酸が変異されていることが好ましく、より好ましくはHA3のアミノ酸配列(配列番号18)の528番目のアルギニン又はそれに相当するアミノ酸と、HA1のアミノ酸配列(配列番号16)の285番目のアスパラギン又はそれに相当するアミノ酸とが変異されている。
 A型変異型HA複合体は、A型ボツリヌス菌由来の野生型ヘマグルチニンにおけるE-カドヘリン結合部位を構成するアミノ酸配列を有している。すなわち、A型変異型HA複合体は、一又は複数の実施形態において、E-カドヘリン結合活性を有している。
 A型変異型HA複合体は、一又は複数の実施形態において、サブコンポーネントHA3として、A型-HA3の野生型(野生型HA3)のアミノ酸配列(配列番号18)において528番目のアルギニン又はそれに相当するアミノ酸が変異したアミノ酸配列の一部又は全部を含む。
 A型変異型HA複合体は、一又は複数の実施形態において、サブコンポーネントHA2として、A型-HA2の野生型(野生型HA2)のアミノ酸配列(配列番号17)の一部又は全部を含む。
 A型変異型HA複合体は、一又は複数の実施形態において、サブコンポーネントHA1として、A型-HA1の野生型(野生型HA1)のアミノ酸配列(配列番号16)において、264番目のアスパラギン若しくはそれに相当するアミノ酸、及び/又は286番目のアスパラギン若しくはそれに相当するアミノ酸が変異したアミノ酸配列の一部又は全部を含む。
 A型変異型HA複合体は、一又は複数の実施形態において、サブコンポーネントHA1のC末端にタグが結合していてもよい。C末端に結合するタグとしては、一又は複数の実施形態において、FLAGタグ、D4タグ(DDDD、配列番号15)等が挙げられる。本開示の変異型複合体タンパク質は、一又は複数の実施形態において、サブコンポーネントHA1のN末端にタグが結合していないことが好ましく、サブコンポーネントHA1のN末端にHisタグ又はFLAGタグが結合していないことが好ましい。
 本開示は、一又は複数の実施形態において、本開示の培養用組成物を用いた多能性を有する幹細胞を培養する方法、多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法、及び多能性を有する幹細胞の未分化状態を維持する方法に関する。これらの方法は、一又は複数の実施形態において、本開示の培養用組成物の存在下で多能性を有する幹細胞を細胞培養をすることを含む。
 本開示はさらに以下の限定されない一又は複数の実施形態に関する。
〔A1〕 B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、
 前記複合体タンパク質は、
  B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、
  糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質。
〔A2〕 B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、
 前記複合体タンパク質は、
  B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、
  E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、
  糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質。
〔A3〕 前記複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA1をさらに含む、〔A1〕記載の変異型ヘマグルチニン複合体タンパク質。
〔A4〕 前記糖鎖結合部位を構成するアミノ酸は、前記HA1の野生型のアミノ酸配列の264番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択される、〔A3〕記載の変異型ヘマグルチニン複合体タンパク質。
〔A5〕 B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、
 前記複合体タンパク質は、サブコンポーネントHA1、HA2及びHA3によって形成され、
 前記サブコンポーネントHA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記サブコンポーネントHA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸の一方のアミノ酸又は双方のアミノ酸が変異した、変異型ヘマグルチニン複合体タンパク質。
〔A6〕 前記サブコンポーネントHA1のC末端にタグが結合している、〔A1〕から〔A5〕のいずれかに記載の変異型ヘマグルチニン複合体タンパク質。
〔A8〕 前記複合体タンパク質は、E-カドヘリン機能阻害活性を有する、〔A1〕から〔A7〕のいずれかに記載の変異型ヘマグルチニン複合タンパク質。
〔A9〕 前記複合体タンパク質は、E-カドヘリン結合活性を有する、〔A1〕から〔A8〕のいずれかに記載の変異型ヘマグルチニン複合タンパク質。
〔A10〕 前記複合体タンパク質は、E-カドヘリン結合部位を構成するアミノ酸配列を有する、〔A1〕から〔A9〕のいずれかに記載の変異型ヘマグルチニン複合タンパク質。
〔B1〕 多能性(pluripotency)を有する幹細胞の培養方法であって、〔A1〕から〔A10〕のいずれかに記載の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む、方法。
〔B2〕 前記細胞培養は、接着培養又は浮遊培養である、〔B1〕記載の方法。
〔C1〕 多能性(pluripotency)を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法であって、〔A1〕から〔A10〕のいずれかに記載の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む、方法。
〔C2〕 多能性(pluripotency)を有する幹細胞の未分化状態を維持する方法であって〔A1〕から〔A10〕のいずれかに記載の変異型HA複合体タンパク質の存在下で細胞培養することを含む、方法。
〔D1〕 ヒト由来のiPS細胞の培養方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む、方法。
〔D2〕 前記iPS細胞の細胞集塊をボツリヌス菌由来のヘマグルチニン存在下で浮遊培養することによって、前記細胞集塊を小塊に分割すること、及び
 前記小塊を浮遊培養して新たな細胞集塊を形成させることを含み、
 前記細胞集塊の形成を、前記細胞集塊の分割と同じ培地内で行う、〔D1〕記載の方法。
〔D3〕 ヒト由来のiPS細胞の細胞集塊の分割方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む、方法。
〔D4〕 前記ボツリヌス菌由来のへマグルチンは、エンドサイトーシスによって取り込まれる、〔D1〕から〔D3〕のいずれかに記載の方法。
〔D5〕 前記ボツリヌス菌由来のヘマグルチニンは、A型ボツリヌス菌由来のヘマグルチニン及びB型ボツリヌス菌由来のヘマグルチニンからなる群から選択される、〔D1〕から〔D4〕のいずれかに記載の方法。
〔D6〕 前記B型ボツリヌス菌由来のヘマグルチニンは、請求項1から5のいずれかに記載の変異型ヘマグルチニン複合体タンパク質を含む、〔D5〕記載の方法。
〔E1〕 ボツリヌス菌由来のヘマグルチニンを含む組成物であって、〔B1〕、〔B2〕、〔C1〕、〔C2〕及び〔D1〕から〔D6〕のいずれかに記載の方法に使用するための組成物。
〔F1〕 多能性を有する幹細胞用の培地成分と、〔A1〕から〔A10〕のいずれかに記載の変異型ヘマグルチニン複合体タンパク質とを含む、キット。
〔F2〕 〔B1〕、〔B2〕、〔C1〕、〔C2〕及び〔D1〕から〔D6〕のいずれかに記載の方法に使用するための〔F1〕記載のキット。
〔G1〕 ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質を含む組成物であって、
 前記複合体タンパク質は、
  ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、
  E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、
  糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質であり、
 前記組成物は、
 多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法、
 多能性を有する幹細胞の未分化状態を維持する方法、
 ヒト由来のiPS細胞を浮遊培養する方法、及び
 ヒト由来のiPS細胞の細胞集塊の分割方法からなる群から選択されるいずれかの方法に使用するための組成物。
〔G2〕 前記ボツリヌス菌は、A型ボツリヌス菌又はB型ボツリヌス菌である、〔G1〕記載の組成物。
〔G3〕 前記複合体タンパク質は、ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA1をさらに含む、〔G1〕又は〔G2〕に記載の組成物。
〔G4〕 前記糖鎖結合部位を構成するアミノ酸は、
 A型ボツリヌス菌の場合、前記HA1の野生型のアミノ酸配列の263番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の285番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択され、
 B型ボツリヌス菌の場合、前記HA1の野生型のアミノ酸配列の264番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択される、〔G3〕記載の組成物。
〔H1〕 多能性を有する幹細胞の培養方法であって、〔G1〕から〔G4〕のいずれかに記載の組成物の存在下で細胞培養することを含む、方法。
〔H2〕 前記細胞培養は、接着培養又は浮遊培養である、〔H1〕記載の方法。
〔H3〕 多能性を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法であって、〔G1〕から〔G4〕のいずれかに記載の組成物の存在下で細胞培養することを含む、方法。
〔H4〕 多能性を有する幹細胞の未分化状態を維持する方法であって、〔G1〕から〔G4〕のいずれかに記載の組成物の存在下で細胞培養することを含む、方法。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
 (実施例1)
 [B型ボツリヌスHA複合体の作製]
 下記表1に示すB型ボツリヌス菌由来の野生型HA複合体及び変異型HA複合体1~4を次の手順に従い作製した。これらのHA複合体(野生型HA複合体及び変異型HA複合体)は、B型ボツリヌス菌由来の野生型HAサブコンポーネント(HA1、HA2、HA3)、変異型HA1(HA1 N286A、配列番号4)、変異型HA3(HA3 R528A、配列番号5)及び変異型HA3X(HA3 K607A、配列番号6)を使用して作製した。
(1)プラスミドの作製
 野生型は、HA1、HA2及びHA3のそれぞれのタンパク質として以下のタンパク質をコードする遺伝子を、それぞれ下記のプライマーを用いてClostridium botulinum B-Okra株のゲノムDNAをテンプレートとして、PCR法により増幅した。
(各サブコンポーネントのタンパク質)
HA1:配列番号1のアミノ酸配列の7-294位のアミノ酸配列からなるタンパク質のC末端にFLAGタグが結合した組換えタンパク質
HA2:配列番号2のアミノ酸配列の2-146位のアミノ酸配列からなるタンパク質のN末端にFLAGタグが結合した組換えタンパク質
HA3:配列番号3のアミノ酸配列の19-626位のアミノ酸配列からなるタンパク質のN末端にStrepタグが結合した組換えタンパク質
(タグ配列)
FLAGタグ:DYKDDDDK(配列番号7)
Strepタグ:WSHPQFEK(配列番号8)
(HA1増幅用プライマー)
HA1 フォワードプライマー:catgccatgggcatccaaaattcattaaatgac(配列番号9)
HA1 リバースプライマー:cgggatccttacttgtcgtcatcgtctttgtagtctgggttactcatagtccatatc(配列番号10)
(BHA2増幅用プライマー)
HA2 フォワードプライマー:tgaataagctttcagctgaaagaacttttc(配列番号11)
HA2 リバースプライマー:cactttggtaccttatattttttcaagtttga(配列番号12)
(HA3増幅用プライマー)
HA3 フォワードプライマー:gaaaaagggtaccaatatagtgatactattg(配列番号13)
HA3 リバースプライマー:cgtgtcgacttaattagtaatatctatatgc(配列番号14)
 変異型HA複合体1~4(表1)は、変異体の作製は、野生型HAが挿入されたベクターを鋳型として、PCR によるsite-directed mutagenesis法によって行った。
 増幅したDNA断片について、HA1はpET52b(+)のNcoI-BamHI siteに挿入し、HA2はpT7-FLAG-1(Sigma)のHindIII-SalI siteに挿入し、HA3についてはpET52b(+)(Novagen)のKpnI-SalI siteに挿入した(pET-BHA3)。
(2)タンパク質発現
 作製したプラスミドはそれぞれ単独で大腸菌株Rosetta2(DE3)(Novagen)にトランスフォームした。タンパク質発現誘導はOvernight Express Autoinduction system 1(Novagen)を用いて行った。HA1及びHA3は30℃で36時間、HA2については18℃で40時間、タンパク質発現誘導を行った。大腸菌は遠心により回収し、-80℃で保存した。
(3)タンパク質精製及び複合体作製
 HA1及びHA2は、Anti-FLAG M2 agarose(Sigma)を用いて精製を行った。HA3はStrepTrap HP(GE Healthcare)を用いて精製した。
 それぞれ精製した組換え体タンパク質を、HA1:HA2:HA3=4:4:1のモル比で混合し、37℃で3時間インキュベートした後、StrepTrap HPにより精製することにより、HA複合体を得た。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 [B型変異型HA複合体がiPS細胞に及ぼす影響]
 フィーダ細胞上にiPS細胞を播種し(day0)、24時間ごとに維持培地で培地交換した。3日後(day3)においてHA複合体(野生型HA複合体又は変異型HA複合体)を添加し24時間インキュベートし、PBSで2度洗浄して維持培地で培地交換した(day4)。その後、9日後(day9)まで24時間ごとに維持培地で培地交換した。培養後、培養された細胞のOct3/4の発現を免疫細胞染色法で確認した。使用した細胞、培地、及び培養条件は以下のとおりである。
 〔細胞〕
 iPS細胞:Tic NP29(MEFで維持していたTicを継代したもの)
 フィーダ細胞:SNL 76/7
 〔培地〕
 iPS細胞:Repro Stem(商品名、ReproCELL社製)、5ng/mL bFGF(ReproCELL社製)
 フィーダ細胞:DMEM(Sigma社製)(7%FBS(GIBCO社製),1%Penicillin-streptomycin solution(NACALAI TESQUE社製))
 〔容器〕
 12ウェルプレート(培養面積:3.8cm2/ウェル、Corning社製)
 〔HA調製・添加方法〕
 PBSでHA複合体を段階希釈し、さらに、培地(Repro Stem)を用いて希釈した(終濃度:100nM)。さらにbFGF(終濃度5ng/ml)を加え、それをウェルに添加した。
 〔培養条件〕
 37℃、5%CO2雰囲気下
 iPS細胞の継代後、3日後(day3)の培地交換において、HA複合体を各濃度で添加し、24時間培養した。その後、4日後(day4)の培地交換において、HA複合体無添加の培地に切り替え、培養を継続した。
 〔観察〕
 day3、day4、day5及びday9において、IN Cell Analyzer 2000(商品名、GEヘルスケアバイオサイエンス社製)で培養細胞を観察し画像を取得した。得られた顕微鏡観察写真を図1~4に示す。図1~4において、上図において実線で囲んだ部分を下図に示す。
 (比較例1)
 変異型HA複合体4(HA3 K607A)を用い、実施例2と同様の実験を行った。その結果を図5に示す。図5において、上図において実線で囲んだ部分を下図に示す。
 図1は野生型HA複合体の顕微鏡写真、図2は変異型HA複合体1の顕微鏡写真、図3は変異型HA複合体2の顕微鏡写真及び図4は変異型HA複合体3の顕微鏡写真を示す。
 サブコンポーネントHA1における286番目のアスバラギン及びHA3における528番目のアルギニンは、糖鎖認識部位であることが知られている。図2~4に示すように、糖鎖結合活性を欠失させたいずれの変異型HA複合体1~3においても、変異型HA複合体添加から24時間後(day3)で未分化逸脱細胞の細胞間接着がゆるくなり、未分化逸脱細胞の細胞間接着の阻害が確認できた。特に、変異型HA複合体2(HA3 R528A)は、コロニー中心の未分化逸脱細胞の細胞間接着を阻害すると共に、細胞の剥離が確認された、また、変異型HA複合体3(HA1 N286A/HA3 R528A)では、図4に示すように変異型HA複合体添加から24時間後(day3)で細胞間接着がゆるくなり、48時間後(day4)には、他の変異型HA及び野生型HAと比較して細胞剥離の効果が高いことが認められた(図4の矢印で示す部分)。さらに、培養9日目(day9)には未分化維持コロニーを形成していることが分かった。一方、カドヘリン結合活性消失変異体である比較例1の変異型HA複合体4(HA3 K607A)は、細胞間接着の阻害及び細胞の剥離は確認されなかった(図5)。このため、糖鎖結合活性を欠失させた変異型HA複合体1~3によって、局所的な細胞-細胞間接着の阻害が可能であるとともに、特に変異型HA複合体2及び3によれば効率よい未分化逸脱細胞の剥離が可能であることが示唆された。
 コロニーを、DAPIと、未分化マーカー(Oct3/4、TRA-1-60及びSSEA-4)又は内胚葉、中胚葉若しくは外胚葉の初期分化マーカー(α―SAM、Serum albumin又はNestin)を用いて染色した。その結果、コロニー中心に発生した未分化逸脱細胞は未分化マーカー及び上記の初期分化マーカーのいずれも陰性であり、その周辺の細胞は未分化マーカーが陽性であることが確認された。
 (実施例3)
 [B型HA複合体がiPS細胞に及ぼす影響(その2)]
 下記表2に示すように異なる位置にタグを結合させた以外は実施例1と同様の手順で野生型HA複合体1~5を作製した。
 調製した野生型HA複合体1~5を用いて、実施例2と同様にしてiPS細胞に及ぼす影響を確認した。その結果を図6~10に示す。図6は野生型HA複合体1の顕微鏡写真、図7は野生型HA複合体2の顕微鏡写真、図8は野生型HA複合体3の顕微鏡写真、図9は野生型HA複合体4の顕微鏡写真、及び図10は野生型HA複合体5の顕微鏡写真を示す。
Figure JPOXMLDOC01-appb-T000002
 図6~10の矢印で示すように、いずれの野生型HA複合体においても、野生型HA複合体添加から24時間後(day3)で、未分化逸脱細胞の細胞間接着のゆるみ(細胞間接着の阻害)が確認できた。特に、野生型HA複合体1、3及び4は、添加から24時間後(day3)で細胞の剥離が確認され、中でも野生型HA複合体1は培養5日目(day5)には、未分化逸脱細胞が除去され、未分化維持コロニーを形成していることが確認された。したがって、野生型HA複合体1によれば、効率よい未分化逸脱細胞の剥離が可能であることが示唆された。
 (実施例4)
 [B型変異型HA複合体がiPS細胞集塊に及ぼす影響(その1)]
 96well-V bottom plateを用いてiPS細胞集塊を作成し、毎日半量培地交換を行った。培養3日目(day3)にiPS細胞集塊にHA複合体を添加した。培養4日目(day4)に、iPS細胞集塊を96well plate flat bottom plateに移し、軽いピペッティングを行い、細胞集塊が割れるかどうかを確認した。使用した細胞、培地、HA複合体及び培養条件等は以下のとおりである。
 〔細胞〕
 ヒトiPS細胞(Tic NP41(iMatrix-511(nippi)で維持していたiPS細胞))
 〔培地〕
 mTeSR1(STEMCELL Technologies)
 〔容器〕
 96well-V bottom plate(Sumitomo Bakelite)
 〔HA〕
 野生型HA複合体
 変異型HA複合体1(HA1 N286A)
 変異型HA複合体2(HA3 R528A)
 変異型HA複合体3(HA1 N286A/HA3 R528A)
 変異型HA複合体4(HA3 K607A)
 〔HA調製・添加方法〕
 PBSでHA複合体を段階希釈し、さらに、培地(mTeSR1)を用いて希釈したもの(終濃度:100nM)をウェルに添加した。
 〔培養条件〕
 37℃、5%CO2雰囲気下
 〔観察〕
 全視野をIn Cell Aanalyzer(商品名、GEヘルスケアバイオサイエンス社製)を用いて細胞集塊を観察し画像を取得した。撮影は、変異型HA複合体添加前後(day3及びday4)に倍率4倍で行った。得られた顕微鏡写真を図11及び12に示す。
 割れた細胞集塊をlamininコート培養面上で培養し(フィーダ細胞:SNL)、毎日、全量培地交換を行った。培養5日目に、細胞形態の観察を行うと共に、培養された細胞のOct3/4の発現をmouse monoclonal Oct3/4 antibody(Santa Cruz Biotechnology, sc-5279)を用いた免疫細胞染色法で確認し、また、DAPI染色を行った。
 コントロールとして、HA複合体を添加しない以外は、上記と同様にして行った。以上の結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図11及び12に示すように、野生型HA複合体及び変異型HA複合体1~3を添加することによって、ヒトiPS細胞集塊をより小さい大きさの細胞集塊に分割させることができた。特に変異型HA複合体1~3の添加によって、ヒトiPS細胞集塊をより小さな塊に分割させることができた。一方、カドヘリン結合活性消失変異体である比較例1の変異型HA複合体4(HA3 K607A)の添加では細胞集塊の分割は殆どみられず、control(HA複合体未添加)では細胞集塊は分割しなかった。
 (実施例5)
 [B型HA複合体がiPS細胞集塊に及ぼす影響(その2)]
 前培養として30mlリアクターで5日間iPs細胞を培養した。培養5日目の細胞を24well plateに移しHA複合体を添加した。HA複合体添加から6、12、18又は24時間経過後、培地交換によってHAを取り除き、ピペッティングして細胞集塊を分割させた。その後培養を24時間行い、細胞集塊の形態を観察した。使用した細胞、培地、HA及び培養条件等は以下のとおりである。得られた顕微鏡写真を図13に示す。
 〔細胞〕
ヒトiPS細胞(Tic, National Center for Global Health and Medicine,Np.52)
 〔培地〕
 mTeSR1(Cata #0580/05896,STEMCELL TECHNOLOGIES)
 〔培養環境〕
 37℃,5%CO2雰囲気下
 〔培養容器〕
 24well plate(Corning,Cat.No.3526)
 〔播種密度〕
 1.0×105cells/ml
 〔HA〕
 野生型HA複合体5(His-BHA1-FLAG:His-BHA2:Strep-BHA3)
 添加濃度:40nM
 〔観察装置〕
 IN Cell Analyzer(GE Healthcare)
 図13に示すように、HA複合体の添加によって小さく分割させた細胞集塊を培養することによって、再び凝集塊が形成された。また、HA複合体の添加時間(HA添加から培地交換までの時間)に対して、添加時間が6時間の場合が最も分割の度合いが強く、12時間以降では分割されにくくなるという傾向が確認された。これにより、培地内のHA複合体が、細胞のエンドサイトーシス等によってHA複合体が消化又は失活している可能性が示唆された。したがって、HA複合体により細胞集塊を分割させた後、HAの除去操作を行わない場合であっても、iPS細胞を再度凝集させて細胞集塊を形成できることが示唆された。一方、培地中に添加されたHA複合体は、HA複合体に付したタグを標的とした吸着カラムを備え付け、培地を循環させることにより、HA複合体を強制的に培地から回収することが可能である。よって、HA複合体を自発的または強制的に除去・回収可能であるため、逸脱細胞の除去や細胞集塊の分割効果を適時に一時的または連続的に発揮でき、バイオリアクターでの自動運転を可能であることを示唆された。
 (実施例6)
 [B型変異型HA複合体がiPS細胞集塊に及ぼす影響(その3)]
 図14に示す手順でiPS細胞の培養を行った。まず、バイオリアクターでiPS細胞を120時間浮遊培養してiPS細胞の細胞集塊を形成した。ついでB型変異型HA複合体を添加し、6時間HA処理した後、ピペッティングにより細胞集塊を分割し、ついで10μM ROCKインヒビターを添加しさらに浮遊培養を行った。また、24時間ごとに生細胞濃度の測定を行った。その結果の一例を図15に示す。
 〔細胞〕
ヒトiPS細胞(Tic, National Center for Global Health and Medicine,Np.52)
 〔培地〕
 mTeSR1(Cata #0580/05896,STEMCELL TECHNOLOGIES)
 〔培養環境〕
 37℃,5%CO2雰囲気下
 〔培養容器〕
 24well plate(Corning,Cat.No.3526)
 〔播種密度〕
 1.0×105cells/ml
 〔HA〕
B型変異型HA複合体(タグ(結合箇所、種類)HA1:C末端FLAG、HA2:N末端FLAG、HA3:N末端Strep)
 添加濃度:10nM
 〔観察装置〕
 IN Cell Analyzer(GE Healthcare)
 HA処理後のピペッティングによって小さな塊に分割された細胞集塊が、その後の培養により再凝集して細胞集塊を形成することが確認できた。よって、細胞のエンドサイトーシス等によってHA複合体が消化又は失活していることが示唆された。また、図15に示すように、培養日数とともに生細胞濃度が増加することが確認できた。したがって、HA処理による細胞分割操作を活用することによって、iPS細胞の高密度培養プロセスを実現することができた。
 (実施例7)
 [B型変異型HA複合体がiPS細胞集塊に及ぼす影響(その4)]
 図16に示す手順でiPS細胞の培養を行った。まず、バイオリアクターにiPS細胞を入れ、ついで10μM ROCKインヒビターを添加し、24時間ROCKインヒビター処理を行った後、120時間浮遊培養してiPS細胞の細胞集塊を形成した。ついでB型変異型HA複合体を添加し、6時間HA処理した後、ピペッティングにより細胞集塊を分割した。ついで10μM ROCKインヒビターを添加し、18時間ROCKインヒビター処理を行った後、さらに12時間浮遊培養を行った。なお、24時間ごとに培地交換及び生細胞濃度の測定を行った。その結果の一例を図17に示す。
 〔細胞〕
ヒトiPS細胞(Tic, National Center for Global Health and Medicine,Np.52)
 〔培地〕
 mTeSR1(Cata #0580/05896,STEMCELL TECHNOLOGIES)
 〔培養環境〕
 37℃,5%CO2雰囲気下
 〔培養容器〕
 24well plate(Corning,Cat.No.3526)
 〔播種密度〕
 1.0×105cells/ml
 〔HA〕
B型変異型HA複合体(タグ(結合箇所、種類)HA1:C末端FLAG、HA2:N末端FLAG、HA3:N末端Strep)
 添加濃度:10nM
 〔観察装置〕
 IN Cell Analyzer(GE Healthcare)
 コントロールとして、図16に示すように通常の継代培養法によるiPS細胞の培養を行った。すなわち、HA処理及び培養開始後150時間及び198時間のROCKインヒビター処理を行わなかった以外は、実施例7と同様にiPS細胞の培養を行った。その結果の一例を図17に示す。
 実施例7では、HA処理後のピペッティングによる細胞集塊の分割と、その後の培養による細胞集塊の再凝集とが確認できた。図17に示すように、実施例6及びコントロールのいずれも培養開始24h後から生細胞濃度が増加し迅速な増殖が確認されたが、培養開始144h付近では増殖速度が穏やかに減少し、HA処理を行わないコントロールでは、144h以降では増殖(生細胞濃度の増加)が遅くなり、168h以降では生細胞濃度が1.5×106cells/ml付近で増殖がほとんど確認できなくなった。一方、培養開始144h後にHA処理を行った実施例6では、1度低下していた増殖速度が再び回復し、144h以降においても細胞の増殖が確認された。また、培養開始192h後に2回目のHA処理を行ったところ、緩やかだった増殖速度の回復が確認され、216h培養後の最終的な生細胞濃度は、実施例6は3.36×106cells/mlであった(コントロールは1.68×106cells/ml)。以上より、HA処理による細胞分割操作法を利用した培養法は通常の継代培養法と比べて細胞増殖能が維持されiPS細胞の高密度培養が可能であることが分かった.
 (実施例8)
 [A型変異型HA複合体がiPS細胞に及ぼす影響]
 下記表4に示すA型野生型HA複合体及びA型変異型HA複合体を作製した。これらのHA複合体は、T. Matsumura et al., Nature Communications 2015 Feb 17;6:6255. doi: 10.1038/ncomms7255に基づき作製した。なお、プラスミド作製時における各サブコンポーネントのタンパク質としては、HA1はC末端にFLAGタグが結合した組み換えタンパク質、HA2はN末端にFLAGタグが結合した組み換えタンパク質、HA3はN末端にStrepタグが結合した組み換えタンパク質を使用した。
Figure JPOXMLDOC01-appb-T000004
 フィーダ細胞上にiPS細胞を播種し(day0)、24時間ごとに維持培地で培地交換した。3日後(day3)においてHA複合体(A型野生型HA複合体又はA型変異型HA複合体)を添加し24時間インキュベートし、PBSで2度洗浄して維持培地で培地交換した(day4)。その後、7日後(day7)まで24時間ごとに維持培地で培地交換した。使用した細胞、培地、及び培養条件は以下のとおりである。
 〔細胞〕
 iPS細胞:Tic(MEFで維持していたTicを継代し、SNL細胞上に播種したもの、NP13)
 フィーダ細胞:SNL
 〔培地〕
 iPS細胞:Repro Stem(商品名、ReproCELL社製)、5ng/mL bFGF(ReproCELL社製)
 フィーダ細胞:DMEM(Sigma社製)(7%FBS(GIBCO社製),1%Penicillin-streptomycin solution(NACALAI TESQUE社製))
 〔容器〕
 12ウェルプレート(培養面積:3.8cm2/ウェル、Corning社製)
 〔HA調製・添加方法〕
 培地(Repro Stem)にbFGF(終濃度5ng/ml)を加え、希釈培地を準備した。上記表4に示すA型変異型HA複合体2~4を、希釈培地を用いて希釈し(終濃度:100nM)し、それをウェルに添加した。
 〔培養条件〕
 37℃、5%CO2雰囲気下
 iPS細胞の継代後、3日後(day3)の培地交換において、HA複合体添加し、24時間培養した。その後、4日後(day4)の培地交換において、HA複合体無添加の培地に切り替え、培養を継続した。
 〔観察〕
 day3、day4、day5及びday7において、IN Cell Analyzer 2000(商品名、GEヘルスケアバイオサイエンス社製)で培養細胞を観察し画像を取得した。撮影は倍率4倍で行った。得られた顕微鏡観察写真を図18及び19に示す。図18~20において、上図において実線で囲んだ部分を下図に示す。
 図18はA型変異型HA複合体2(HA3 R528A)の顕微鏡写真及び図19はA型変異型HA複合体3(HA1 N285A/HA3 R528A)の顕微鏡写真を示す。
 比較例3として、カドヘリン結合活性消失変異体であるA型変異型HA複合体4(HA3 K607A)を用いた以外は、上記実施例と同様にしてiPS細胞の培養を行った。コントロールとして、HA複合体を添加しない以外は、実施例と同様にしてiPS細胞の培養を行った。得られた顕微鏡観察写真をそれぞれ図20及び21に示す。
 図18及び19に示すように、糖鎖結合活性を欠失させたいずれのA型変異型HA複合体2及び3においても、A型変異型HA複合体添加から24時間後(day3)で、コロニー中心の未分化逸脱細胞の細胞間接着がゆるくなり、未分化逸脱細胞の細胞間接着の阻害が確認できたと共に、細胞の剥離が確認された。特に、A型変異型HA複合体3(HA1 N285A/HA3 R528A)では、A型野生型HA複合体及びA型変異型HA複合体2と比較して細胞剥離の効果が高いことが認められた。一方、HA複合体無添加のコントロール及びカドヘリン結合活性消失変異体である比較例3の変異型HA複合体4(HA3 K607A)は、細胞間接着の阻害及び細胞の剥離は確認されなかった(図20及び21)。このため、糖鎖結合活性を欠失させたA型変異型HA複合体2及び3によって、局所的な細胞-細胞間接着の阻害が可能であるとともに、効率よい未分化逸脱細胞の剥離が可能であることが示唆された。
 (実施例9)
 [A型変異型HA複合体がiPS細胞集塊に及ぼす影響]
 非接着性培地容器60mm dish(Thermo: Nunclon Sphere)にiPS細胞を播種し(4.2×106cells/60mm dish)、培養してiPS細胞集塊を作成した。培養4日目(day4)まで毎日培地交換を行った。培養4日目(day4)にiPS細胞集塊を24well plateに移し、HA添加前の写真を撮影した後、HA複合体を添加した(終濃度:40nM)。HA添加から6、12、18又は24時間後にピペッティングを行い、ピペッティング前後に細胞集塊の観察をするとともに、細胞集塊が分割するかどうかの確認を行った。ピペッティング後、24時間さらに培養を行い、細胞集塊の観察を行った。使用した細胞、培地、HA複合体及び培養条件等は以下のとおりである。また、A型野生型HA複合体及びA型変異型HA複合体は実施例8で作製したものと同様のものを使用した。
 〔細胞〕
 ヒトiPS細胞(Tic(iMatrix-511(nippi)で維持していたiPS細胞、NP19))
 〔培地〕
 mTeSR1(STEMCELL Technologies)
 〔HA〕
 A型野生型HA複合体
 A型変異型HA複合体1(HA1 N285A)
 A型変異型HA複合体2(HA3 R528A)
 A型変異型HA複合体3(HA1 N285A/HA3 R528A)
 A型変異型HA複合体4(HA3 K607A)
 〔HA調製・添加方法〕
 PBSでHA複合体を段階希釈し、さらに、培地(mTeSR1)を用いて希釈したもの(終濃度:100nM)をウェルに添加した。
 〔培養条件〕
 37℃、5%CO2雰囲気下
 〔観察〕
 全視野をIn Cell Aanalyzer(商品名、GEヘルスケアバイオサイエンス社製)を用いて細胞集塊を観察した。
 コントロールとして、HA複合体を添加しない以外は、上記と同様にして行った。
 以上の結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 A型野生型複合体は、B型野生型HA複合体及びB型変異型HA複合体1~3と同様のレベルで細胞集塊を分解することができた。A型変異型HA複合体1~3は、同じ濃度条件で行った場合、A型野生型複合体、B型野生型HA複合体及びB型変異型HA複合体1~3よりもさらに小さな塊に分割することができた。一方、カドヘリン結合活性消失変異体である比較例1の変異型HA複合体4(HA3 K607A)の添加では細胞集塊の分割は殆どみられず、コントロール(HA複合体未添加)では細胞集塊は分割しなかった。
配列番号1:B型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA1
配列番号2:B型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA2
配列番号3:B型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA3
配列番号4:B型変異型HA1(HA1 N286A)
配列番号5:B型変異型HA3(HA3 R528A)
配列番号6:B型変異型HA3X(HA3 K607A)
配列番号7:FLAGタグ
配列番号8:Strepタグ
配列番号9~14:プライマー
配列番号15:D4タグ
配列番号16:A型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA1
配列番号17:A型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA2
配列番号18:A型ボツリヌス菌由来の野生型ヘマグルチニンのサブコンポーネントHA3

Claims (19)

  1.  B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、
     前記複合体タンパク質は、
      B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、
      E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、
      糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質。
  2.  前記複合体タンパク質は、B型ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA1をさらに含む、請求項1記載の変異型ヘマグルチニン複合体タンパク質。
  3.  前記糖鎖結合部位を構成するアミノ酸は、前記HA1の野生型のアミノ酸配列の264番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択される、請求項2記載の変異型ヘマグルチニン複合体タンパク質。
  4.  B型ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質であって、
     前記複合体タンパク質は、サブコンポーネントHA1、HA2及びHA3によって形成され、
     前記サブコンポーネントHA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記サブコンポーネントHA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸の一方のアミノ酸又は双方のアミノ酸が変異した、変異型ヘマグルチニン複合体タンパク質。
  5.  前記サブコンポーネントHA1のC末端にタグが結合している、請求項1から4のいずれかに記載の変異型ヘマグルチニン複合体タンパク質。
  6.  多能性(pluripotency)を有する幹細胞の培養方法であって、請求項1から5のいずれかに記載の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む、方法。
  7.  前記細胞培養は、接着培養又は浮遊培養である、請求項6記載の方法。
  8.  多能性(pluripotency)を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去する方法であって、請求項1から5のいずれかに記載の変異型ヘマグルチニン複合体タンパク質の存在下で細胞培養することを含む、方法。
  9.  多能性(pluripotency)を有する幹細胞の未分化状態を維持する方法であって、請求項1から5のいずれかに記載の変異型HA複合体タンパク質の存在下で細胞培養することを含む、方法。
  10.  ヒト由来のiPS細胞の培養方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む、方法。
  11.  前記iPS細胞の細胞集塊をボツリヌス菌由来のヘマグルチニン存在下で浮遊培養することによって、前記細胞集塊を小塊に分割すること、及び
     前記小塊を浮遊培養して新たな細胞集塊を形成させることを含み、
     前記細胞集塊の形成を、前記細胞集塊の分割と同じ培地内で行う、請求項10記載の方法。
  12.  ヒト由来のiPS細胞の細胞集塊の分割方法であって、ボツリヌス菌由来のヘマグルチニン存在下で前記iPS細胞を浮遊培養することを含む、方法。
  13.  前記ボツリヌス菌由来のへマグルチンは、エンドサイトーシスによって取り込まれる、請求項10から12のいずれかに記載の方法。
  14.  前記ボツリヌス菌由来のヘマグルチニンは、A型ボツリヌス菌由来のヘマグルチニン及びB型ボツリヌス菌由来のヘマグルチニンからなる群から選択される、請求項10から13のいずれかに記載の方法。
  15.  多能性を有する幹細胞用の培地成分と、請求項1から5のいずれかに記載の変異型ヘマグルチニン複合体タンパク質とを含む、キット。
  16.  ボツリヌス菌由来の変異型ヘマグルチニン複合体タンパク質を含む組成物であって、
     前記複合体タンパク質は、
      ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA2及びHA3を少なくとも含み、
      E-カドヘリン結合部位を構成するアミノ酸配列を有し、かつ、
      糖鎖結合部位を構成するアミノ酸の少なくとも一つが変異した、変異型ヘマグルチニン複合タンパク質であり、
     多能性(pluripotency)を有する幹細胞の培養中に発生した又は発生しうる未分化状態を脱した細胞を除去するために用いる、又はヒト由来のiPS細胞を浮遊培養するために用いる、組成物。
  17.  前記ボツリヌス菌は、A型ボツリヌス菌又はB型ボツリヌス菌である、請求項16記載の組成物。
  18.  前記複合体タンパク質は、ボツリヌス菌由来のヘマグルチニンのサブコンポーネントHA1をさらに含む、請求項16又は17に記載の組成物。
  19.  前記糖鎖結合部位を構成するアミノ酸は、
     A型ボツリヌス菌の場合、前記HA1の野生型のアミノ酸配列の263番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の285番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択され、
     B型ボツリヌス菌の場合、前記HA1の野生型のアミノ酸配列の264番目のアスパラギンに相当するアミノ酸、前記HA1の野生型のアミノ酸配列の286番目のアスパラギンに相当するアミノ酸、及び前記HA3の野生型のアミノ酸配列の528番目のアルギニンに相当するアミノ酸からなる群から選択される、請求項18記載の組成物。
PCT/JP2015/068715 2014-06-27 2015-06-29 変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法 WO2015199243A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016529687A JP6355736B2 (ja) 2014-06-27 2015-06-29 変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法
CN201580034073.5A CN106459223A (zh) 2014-06-27 2015-06-29 变异型血凝素复合体蛋白、以及使用其的具有多能性的干细胞的培养方法
SG11201610878QA SG11201610878QA (en) 2014-06-27 2015-06-29 Mutant hemagglutinin complex protein, and method for culturing pluripotent stem cells using same
AU2015281030A AU2015281030A1 (en) 2014-06-27 2015-06-29 Mutant hemagglutinin complex protein, and method for culturing pluripotent stem cells using same
KR1020177000761A KR20170020431A (ko) 2014-06-27 2015-06-29 변이형 헤마글루티닌 복합체 단백질, 및 그것을 사용한 다능성을 갖는 간세포의 배양 방법
US15/321,835 US11230701B2 (en) 2014-06-27 2015-06-29 Mutant hemagglutinin complex protein, and method for culturing pluripotent stem cells using same
BR112016030510A BR112016030510A2 (pt) 2014-06-27 2015-06-29 proteína do complexo de hemaglutinina mutante, e método para cultivo de células-tronco pluripotentes usando a mesma
EP15811956.0A EP3162812A4 (en) 2014-06-27 2015-06-29 Mutant hemagglutinin complex protein, and method for culturing pluripotent stem cells using same
CA2953670A CA2953670A1 (en) 2014-06-27 2015-06-29 Mutant hemagglutinin complex protein, and method for culturing pluripotent stem cells using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014133364 2014-06-27
JP2014-133364 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015199243A1 true WO2015199243A1 (ja) 2015-12-30

Family

ID=54938318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068715 WO2015199243A1 (ja) 2014-06-27 2015-06-29 変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法

Country Status (10)

Country Link
US (1) US11230701B2 (ja)
EP (1) EP3162812A4 (ja)
JP (1) JP6355736B2 (ja)
KR (1) KR20170020431A (ja)
CN (1) CN106459223A (ja)
AU (1) AU2015281030A1 (ja)
BR (1) BR112016030510A2 (ja)
CA (1) CA2953670A1 (ja)
SG (1) SG11201610878QA (ja)
WO (1) WO2015199243A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121840A1 (ja) * 2015-01-29 2016-08-04 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
JP2018099078A (ja) * 2016-12-20 2018-06-28 国立大学法人大阪大学 多能性幹細胞の増殖を促進するための組成物、及び多能性幹細胞の増殖促進方法
WO2019103111A1 (ja) 2017-11-24 2019-05-31 国立大学法人金沢大学 ヘマグルチニン複合体タンパク質及びその用途
WO2023149566A1 (ja) * 2022-02-07 2023-08-10 国立大学法人大阪大学 多能性幹細胞の分化誘導制御剤および分化誘導安定化剤
WO2023149565A1 (ja) * 2022-02-07 2023-08-10 国立大学法人大阪大学 多能性幹細胞から網膜色素上皮細胞への分化誘導方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511609A (ja) * 2003-11-17 2007-05-10 アラーガン、インコーポレイテッド ボツリヌス毒素中毒症を治療するための救出薬剤
JP2008169166A (ja) * 2007-01-14 2008-07-24 Tokyo Univ Of Agriculture & Technology 糖結合性ポリペプチド、複合材料、及び薬剤送達システム
WO2014087849A1 (ja) * 2012-12-04 2014-06-12 第一三共株式会社 粘膜ワクチン用アジュバント
WO2014104207A1 (ja) * 2012-12-28 2014-07-03 国立大学法人大阪大学 多能性(pluripotency)を有する幹細胞の培養方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612562A (zh) * 2009-08-27 2012-07-25 色奈普提科研究有限公司 一种新的用于生成诱导性多能干(iPS)细胞或组织特异性细胞的蛋白质递送系统
JP2012143229A (ja) 2010-12-24 2012-08-02 Chiba Univ 多能性幹細胞培養用組成物およびその用途
CN103857797A (zh) * 2011-07-19 2014-06-11 帷幄生物技术公司 用于修复软骨损伤的非遗传修饰性重编程细胞的组合物和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511609A (ja) * 2003-11-17 2007-05-10 アラーガン、インコーポレイテッド ボツリヌス毒素中毒症を治療するための救出薬剤
JP2008169166A (ja) * 2007-01-14 2008-07-24 Tokyo Univ Of Agriculture & Technology 糖結合性ポリペプチド、複合材料、及び薬剤送達システム
WO2014087849A1 (ja) * 2012-12-04 2014-06-12 第一三共株式会社 粘膜ワクチン用アジュバント
WO2014104207A1 (ja) * 2012-12-28 2014-07-03 国立大学法人大阪大学 多能性(pluripotency)を有する幹細胞の培養方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MEE HAE KIM ET AL.: "Botulinus-kin Yurai no Hemagglutinin o Mochiita Hito iPS Saibo no Mibunka o Itsudatsu shita Saibo no Jokyo", REGENERATIVE MEDICINE, vol. 14, no. suppl 2015, 1 February 2015 (2015-02-01), pages 326, P-02 - 026, XP008185848 *
See also references of EP3162812A4 *
SUGAWARA, Y. ET AL.: "Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin", THE JOURNAL OF CELL BIOLOGY, vol. 189, no. 4, May 2010 (2010-05-01), pages 691 - 700, XP055247313 *
SUGAWARA, Y. ET AL.: "Functional Dissection of the Clostridium botulinum Type B Hemagglutinin Complex: Identification of the Carbohydrate and E-Cadherin Binding Sites", PLOS ONE, vol. 9, no. Issue 10, October 2014 (2014-10-01), pages e111170, XP055247317 *
YUKAKO FUJINAGA: "Botulinus Dokuso Fukugotai no Chokan Kyushu Sokushin Sayo no Mechanism Kaimei to Honsayo o Riyo shita Shinki Yakubutsu Sotatsu Sysmtem no Kaihatsu", RESEARCH PAPERS OF THE SUZUKEN MEMORIAL FOUNDATION 2009, vol. 28, February 2011 (2011-02-01), pages 298 - 301, XP008185561 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021191284A (ja) * 2015-01-29 2021-12-16 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
JPWO2016121840A1 (ja) * 2015-01-29 2017-11-09 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
JP7312413B2 (ja) 2015-01-29 2023-07-21 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
WO2016121840A1 (ja) * 2015-01-29 2016-08-04 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
US11225644B2 (en) 2015-01-29 2022-01-18 Somar Corporation Cell culture method, cell aggregates, cell aggregation control agent, and medium
WO2018117110A1 (ja) 2016-12-20 2018-06-28 国立大学法人大阪大学 多能性幹細胞の増殖を促進するための組成物、及び多能性幹細胞の増殖促進方法
KR20190091466A (ko) 2016-12-20 2019-08-06 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 다능성 줄기 세포의 증식을 촉진하기 위한 조성물, 및 다능성 줄기 세포의 증식 촉진 방법
CN110088270A (zh) * 2016-12-20 2019-08-02 国立大学法人大阪大学 用于促进多能干细胞的增殖的组合物、和促进多能干细胞的增殖的方法
JP2018099078A (ja) * 2016-12-20 2018-06-28 国立大学法人大阪大学 多能性幹細胞の増殖を促進するための組成物、及び多能性幹細胞の増殖促進方法
US11795438B2 (en) 2016-12-20 2023-10-24 Osaka University Composition for promoting proliferation of pluripotent stem cells, and method for promoting proliferation of pluripotent stem cells
JPWO2019103111A1 (ja) * 2017-11-24 2020-12-03 国立大学法人金沢大学 ヘマグルチニン複合体タンパク質及びその用途
WO2019103111A1 (ja) 2017-11-24 2019-05-31 国立大学法人金沢大学 ヘマグルチニン複合体タンパク質及びその用途
JP7269605B2 (ja) 2017-11-24 2023-05-09 国立大学法人金沢大学 ヘマグルチニン複合体タンパク質及びその用途
WO2023149566A1 (ja) * 2022-02-07 2023-08-10 国立大学法人大阪大学 多能性幹細胞の分化誘導制御剤および分化誘導安定化剤
WO2023149565A1 (ja) * 2022-02-07 2023-08-10 国立大学法人大阪大学 多能性幹細胞から網膜色素上皮細胞への分化誘導方法

Also Published As

Publication number Publication date
SG11201610878QA (en) 2017-02-27
US20170130206A1 (en) 2017-05-11
AU2015281030A1 (en) 2017-02-16
US11230701B2 (en) 2022-01-25
EP3162812A4 (en) 2018-02-28
JPWO2015199243A1 (ja) 2017-04-27
EP3162812A1 (en) 2017-05-03
CN106459223A (zh) 2017-02-22
KR20170020431A (ko) 2017-02-22
BR112016030510A2 (pt) 2017-10-31
CA2953670A1 (en) 2015-12-30
JP6355736B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6355736B2 (ja) 変異型ヘマグルチニン複合体タンパク質、及びそれを用いた多能性を有する幹細胞の培養方法
JP7357086B2 (ja) 多能性幹細胞を培養するための新規な方法および培養培地
Gottipamula et al. Serum‐free media for the production of human mesenchymal stromal cells: a review
JP7023228B2 (ja) 幹細胞の製造に用いられるフィブロネクチンフラグメント
WO2011043405A1 (ja) ヒト多能性幹細胞用培養基材およびその利用
JP2015109833A (ja) 線維芽細胞から血管内皮細胞を製造する方法
JP6421335B2 (ja) 肝幹前駆様細胞の培養方法及びその培養物
Chichagova et al. Generation of human induced pluripotent stem cells using RNA-based Sendai virus system and pluripotency validation of the resulting cell population
Kim et al. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration
JP6112514B2 (ja) 多能性(pluripotency)を有する幹細胞の培養方法
Zhu et al. Cell‐Reprogramming‐Inspired Dynamically Responsive Hydrogel Boosts the Induction of Pluripotency via Phase‐Separated Biomolecular Condensates
US11795438B2 (en) Composition for promoting proliferation of pluripotent stem cells, and method for promoting proliferation of pluripotent stem cells
Ishibashi et al. Human auricular chondrocytes with high proliferation rate show high production of cartilage matrix
Chen et al. An extracellular matrix culture system for induced pluripotent stem cells derived from human dental pulp cells.
JP2008148643A (ja) 無血清培地および幹細胞の培養方法
JPWO2017078029A1 (ja) 筋衛星細胞培養用材料および筋衛星細胞の培養方法
JPWO2021021907A5 (ja)
JP2016010379A (ja) 薬物評価用細胞及び薬物評価方法
CN114127264A (zh) 包含环植物鞘氨醇-1-磷酸酯或其药学上可接受的盐作为有效成分的干细胞增殖促进用组合物
JP2012165660A (ja) ヒト造血幹細胞を増幅させるための組成物及び方法
Pavlovic Very small embryonic like cells (VSELs): pros and cons—review and perspectives in the light of critical data and controversies
Li et al. Advanced Hydrogel for Physiological 3D Colonies of Pluripotent Stem Cells
Yeola Generating multipotent stem cells from primary human adipocytes for tissue repair
Pelekanos Derivation of mesenchymal stem/stromal cells from induced pluripotent stem cells
Fan et al. Scalable Expansion and Directed Differentiation of Human Pluripotent Stem Cells in Stirred-Suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529687

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2953670

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15321835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000761

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030510

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015811956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015281030

Country of ref document: AU

Date of ref document: 20150629

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016030510

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161223