WO2015193989A1 - 射出成形方法 - Google Patents

射出成形方法 Download PDF

Info

Publication number
WO2015193989A1
WO2015193989A1 PCT/JP2014/066117 JP2014066117W WO2015193989A1 WO 2015193989 A1 WO2015193989 A1 WO 2015193989A1 JP 2014066117 W JP2014066117 W JP 2014066117W WO 2015193989 A1 WO2015193989 A1 WO 2015193989A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
injection molding
resin
molding method
mold
Prior art date
Application number
PCT/JP2014/066117
Other languages
English (en)
French (fr)
Inventor
健一 落合
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2016528709A priority Critical patent/JP6265263B2/ja
Priority to EP14895043.9A priority patent/EP3159134B1/en
Priority to PCT/JP2014/066117 priority patent/WO2015193989A1/ja
Priority to US15/318,302 priority patent/US20170113386A1/en
Priority to CN201480079893.1A priority patent/CN106660247B/zh
Priority to KR1020167033025A priority patent/KR101912028B1/ko
Publication of WO2015193989A1 publication Critical patent/WO2015193989A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14819Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • B29C2045/205Elongated nozzle openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an injection molding method.
  • the mixed resin injected into the cavity shrinks in volume when cooled, but since the mixed resin exists in the runner part and the gate part, the resin molded part is prevented while preventing bubbles from entering the resin molded part.
  • the manufacturing cycle can be shortened.
  • the mixed resin remaining in the runner part and the gate part after the production of the resin molded product is discarded, there is a problem that the yield of the mixed resin is lowered.
  • the problem to be solved by the present invention is an injection molding method capable of shortening the manufacturing cycle of the molded product while preventing air bubbles from being mixed into the molded product and suppressing the decrease in the yield of the resin material. Is to provide.
  • the above-mentioned problem is solved by including a standby step of waiting until the temperature of the tip of the nozzle becomes equal to or lower than the melting point of the resin material while the nozzle is pressed against the inlet.
  • the nozzle since at least a part of the nozzle is heated, it is possible to efficiently raise the temperature of the nozzle at the start of production of the molded product, and shorten the production cycle of the molded product. Can be planned. Further, in the standby step, by keeping the nozzle pressed against the inlet, the nozzle is quickly cooled and the resin material near the inlet is quickly solidified to below the melting point. Air bubbles can be prevented from entering the product. Furthermore, since it is possible to omit providing the runner portion and the gate portion in the mold, it is possible to improve the yield of the resin material used for injection molding.
  • FIG. 1 is a perspective view showing a single battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the battery body taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a plan view showing an injection molding apparatus used in the injection molding method according to the embodiment of the present invention.
  • FIG. 5 is a process diagram showing the injection molding method in the embodiment of the present invention.
  • FIGS. 6A to 6F are cross-sectional views for explaining the injection molding method in the embodiment of the present invention.
  • FIG. 7 is an enlarged view of a portion VII in FIG.
  • FIG. 8 is a graph showing the temperature change of the nozzle in the injection molding method according to the embodiment of the present invention.
  • FIG. 1 is a perspective view showing a unit cell according to the present embodiment
  • FIG. 2 is a cross-sectional view of the battery body taken along line II-II in FIG. 1
  • FIG. 3 is taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view
  • FIG. 4 is a plan view of the injection molding apparatus used in the injection molding method of the present embodiment except for the upper mold of the insert molding die.
  • the injection molding device 1 used in the injection molding method in the present embodiment is a device for providing the elastic resin portion 21 on a part of the outer periphery of the unit cell 2 and includes an insert molding die 3 and a filling device 4 ( (See FIG. 4).
  • the unit cell 2 in the present embodiment includes a thin and flat battery body 22 and a spacer 23 as shown in FIG.
  • the battery main body 22 has a power generation element 222 accommodated inside a pair of laminate film exterior members 221, and the pair of exterior members 221 are sealed at an outer peripheral portion 223 of the accommodation portion. ing.
  • the power generation element 222 is shown in FIG.
  • the laminated film constituting the exterior member 221 has, for example, a three-layer structure as shown in the drawing sectional view A of FIG. 2, and the inner resin layer 221a and the intermediate metal layer are sequentially formed from the inner side to the outer side of the secondary battery 1. 221b and the outer resin layer 221c can be formed.
  • Examples of the material constituting the inner resin layer 221a include a resin film excellent in electrolytic solution resistance and heat fusion property, such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer.
  • Examples of the material constituting the intermediate metal layer 221b include metal foil such as aluminum.
  • the resin film excellent in electrical insulation such as a polyamide-type resin or a polyester-type resin, can be illustrated.
  • one surface (the inner surface of the secondary battery 1) of the intermediate metal layer 221 b made of aluminum foil or the like is made of polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer.
  • the other surface (the outer surface of the secondary battery 1) is laminated with a polyamide-based resin or a polyester-based resin, and is formed of a flexible material such as a resin-metal thin film laminate material.
  • the strength of the exterior member 221 itself can be improved. Further, by forming the inner resin layer 221a of the exterior member 221 with a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, it is possible to achieve good fusion with the metal electrode terminals 224 and 225. Can be secured.
  • a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer
  • the exterior member 221 in the present invention is not limited to the three-layer structure described above, and may have a single-layer structure of the inner or outer resin layers 221a and 221c. Further, a two-layer structure of either one of the inner or outer resin layers 221a and 221c and the intermediate metal layer 221b may be used. Furthermore, the structure of four layers or more may be sufficient as needed.
  • Each of the pair of exterior members 221 has a shape in which a rectangular flat plate is formed into a shallow bowl shape (dish shape) so that the power generation element 222 can be accommodated.
  • the outer peripheral part 223 is overlapped, and the entire periphery of the outer peripheral part 223 is joined by heat fusion or an adhesive.
  • the unit cell 2 of this example is a lithium ion secondary battery, and as shown in FIG. 2, includes a power generation element 222 configured by laminating a separator 222c between a positive electrode plate 222a and a negative electrode plate 222b. Yes.
  • the power generation element 222 of this example includes three positive plates 222a, five separators 222c, three negative plates 222b, and an electrolyte (not shown).
  • the unit cell 2 according to the present invention is not limited to a lithium ion secondary battery, and may be another battery such as an alkaline storage battery such as a nickel-cadmium battery or a lead storage battery.
  • the positive electrode plate 222a constituting the power generation element 222 includes a positive electrode side current collector 222d extending to the positive electrode terminal 224, and positive electrode layers 222e and 222f formed on both main surfaces of a part of the positive electrode side current collector 222d, respectively.
  • the positive electrode plate 222a and the positive electrode side current collector 222d are formed of a single conductor.
  • the positive electrode plate 222a and the positive electrode side current collector 222d are formed of different members, and You may join.
  • the positive electrode side current collector 222d of the positive electrode plate 222a is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.
  • the positive electrode layers 222e and 222f of the positive electrode plate 222a are made of, for example, a lithium composite oxide such as lithium nickelate (LiNiO2), lithium manganate (LiMnO2), or lithium cobaltate (LiCoO2), chalcogen (S, Se, Te).
  • a mixture of a positive electrode active material such as fluoride, a conductive agent such as carbon black, an adhesive such as an aqueous dispersion of polytetrafluoroethylene, and a solvent is applied to both main surfaces of the positive electrode current collector plate 222d. It is formed by drying and rolling.
  • the negative electrode plate 222b constituting the power generation element 222 includes a negative electrode side current collector 222g extending to the negative electrode terminal 225, and negative electrode layers 222h and 222i formed on both main surfaces of a part of the negative electrode side current collector 222g, respectively. And have.
  • the negative electrode plate 222b and the negative electrode side current collector 222g are formed of a single conductor.
  • the negative electrode plate 222b and the negative electrode side current collector 222g are formed of different members, and You may join.
  • the negative electrode side current collector 222g of the negative electrode plate 222b is made of an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil.
  • the negative electrode layers 222h and 222i of the negative electrode plate 222b are negative electrodes that occlude and release lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite.
  • An active material is mixed with an aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body, dried and then pulverized to carry carbonized styrene butadiene rubber on the carbon particle surface.
  • the main material is formed by further mixing a binder such as an acrylic resin emulsion with this, applying this mixture to both main surfaces of the negative electrode current collector plate 222g, and drying and rolling.
  • the separator 222c stacked between the positive electrode plate 222a and the negative electrode plate 222b prevents a short circuit between the positive electrode plate 222a and the negative electrode plate 222b, and may have a function of holding an electrolyte.
  • the separator 222c is a microporous film made of, for example, a polyolefin such as polyethylene or polypropylene. When an overcurrent flows, the separator 222c also has a function of blocking the current by closing the pores of the layer due to heat generation.
  • the separator 222c is not limited to a single-layer film such as a polyolefin, and a three-layer structure in which a polypropylene film is stacked with a polyethylene film interposed therebetween, or a structure in which a polyolefin microporous film and an organic nonwoven fabric are stacked can also be used.
  • various functions such as an overcurrent prevention function, an electrolyte holding function, and a shape maintaining (stiffness improvement) function of the separator 222c can be provided.
  • the above power generation element 222 is formed by alternately stacking positive plates 222a and negative plates 222b via separators 222c.
  • the three positive plates 222a are respectively connected to the positive terminal 224 made of metal foil via the positive current collector 222d, while the three negative plates 222b are connected to the negative current collector 222g.
  • each is connected to a negative electrode terminal 225 made of metal foil.
  • a positive electrode terminal 224 and a negative electrode terminal 225 are led out of the exterior member 221 from each of the positive electrode plate 222a and the negative electrode plate 222b of the power generation element 222.
  • the positive electrode terminal 224 and the negative electrode terminal 225 are led out side by side from the outer peripheral portion 223 of one side of the exterior member 221 (short side in front of FIG. 1).
  • the positive electrode terminal 224 and the negative electrode terminal 225 are also referred to as a positive electrode tab 224 and a negative electrode tab 225.
  • FIG. 2 illustrates a cross-sectional view from the positive electrode plate 222a of the power generation element 222 to the positive electrode terminal 224, and a cross section from the negative electrode plate 222b to the negative electrode terminal 225 of the power generation element 222 is omitted.
  • 225 has the same structure as the positive electrode plate 222a and the positive electrode terminal 224 shown in the cross-sectional view of FIG.
  • the positive electrode plate 222a (positive electrode side current collector 222d) and the negative electrode plate 222b (negative electrode side current collector 222g) between the end of the power generation element 222 and the positive electrode terminal 224 and the negative electrode terminal 225 contact each other in plan view. Not cut in half so as not to do.
  • the outer peripheral portion 223 that joins a pair of exterior members 221 and seals the inside is also referred to as outer peripheral portions 223a to 223d as shown in FIG. .
  • the outer shape of the battery body 22 is not limited to a rectangle, and can be formed in a square or other polygons.
  • the lead-out positions of the positive electrode terminal 224 and the negative electrode terminal 225 may be derived from each of the outer peripheral portions 223a and 223b and 223c and 223d facing each other, as well as being derived from one outer peripheral portion 223a as in this example. Good. Moreover, you may make it derive
  • the battery body 22 configured as described above can be used alone, it is connected to and combined with other secondary batteries or a secondary battery having a desired output and capacity (hereinafter referred to as a battery module). It can also be used for use. Further, a plurality of such battery modules can be connected and combined (hereinafter also referred to as an assembled battery), and the assembled battery can be mounted on a vehicle such as an electric vehicle or a hybrid vehicle and used as a driving power source.
  • the main surfaces of the plurality of battery main bodies 22 are stacked and accommodated in a battery case (not shown).
  • the positive electrode terminal 224 and the negative electrode terminal 225 derived from the outer peripheral portion 223 a of the battery main body 22 and the positive electrode terminal 224 and the negative electrode terminal 225 derived from the outer peripheral portion 223 a of the battery main body 22 stacked on the battery main body 22.
  • a bus bar for connecting the positive electrode terminal 224 and the negative electrode terminal 225 in series and / or in parallel, or a connector for a voltage detection sensor may be disposed.
  • a spacer 23 made of a material is used.
  • the spacers 23 of this example are arranged between the outer peripheral portions 223a and 223a of the battery main bodies 22 when the battery main bodies 22 are stacked, and the battery main bodies 22 are arranged in a predetermined manner such as battery module cases or automobile bodies.
  • the fixing through-hole 231 for fixing to the installation position is provided.
  • the spacer 23 is made of an insulating resin material having rigidity such as polybutylene terephthalate (PBT) or polypropylene (PP), and is formed in a long shape having a length equal to or longer than the outer peripheral portion 223 a of the battery body 22. ing. And the fixing through-hole 231 which consists of a sheath-like through-hole is formed in each of the both ends. It is desirable that the length of the spacer 23 is longer than the outer peripheral portion 223a to be mounted.
  • PBT polybutylene terephthalate
  • PP polypropylene
  • the mechanical strength (stiffness such as bending strength or buckling strength) of the PBT or PP spacer 23 described above is the electrode plate (the positive electrode plate 222a and the above-described positive electrode plate 222a) that constitutes the power generation element 222 accommodated in the battery body 22. It is desirable to make it larger than the mechanical strength of the negative electrode plate 222b).
  • the sides 223 c and 223 d (outer peripheral portion on the long side) where the spacer 23 is not attached in the outer peripheral portion 223 of the battery main body 22 and the ends of the sides 223 c and 223 d.
  • the elastic resin portion 21 is provided so as to cover the corner portion located in the portion.
  • the elastic resin portion 21 is formed by insert molding of a resin material. Examples of the material constituting the elastic resin portion 21 include elastic resin materials such as vulcanized rubber, thermosetting resin elastomer, thermoplastic resin elastomer, and polyamide-based resin (hot melt grade). In addition, you may form the elastic resin part 21 in the perimeter of the outer peripheral part 223.
  • the end portion of the elastic resin portion 21 is provided at a position corresponding to a position where the spacer 23 is fixed on the outer peripheral portion 223 a of the battery body 22. Then, when an external force such as vehicle vibration applied to the fixing through hole 231 of the spacer 23 is transmitted from the spacer 23 to the outer peripheral portion 223a of the battery body 22, a buffering force is generated in the elastic resin portion 21 itself, The external force transmitted to the battery body 22 can be reduced.
  • the insert mold 3 for forming the elastic resin portion 21 has a lower mold 31 and an upper mold 32 corresponding to the lower mold 31.
  • the lower mold 31 and the upper mold 32 are made of a material having excellent thermal conductivity, and examples of such a material include a metal material.
  • the lower mold 31 of the insert mold 3 has a substantially rectangular shape in plan view, and a concave portion 310 corresponding to the three-dimensional shape of the unit cell 2 is formed at the approximate center of the lower mold 31.
  • a locate pin 312 is provided at a position corresponding to the fixing through hole 231 of the spacer 23, and when the unit cell 2 is set in the recess 310, the locate pin 312 is fixed to the spacer 23. By inserting into the hole 231, the approximate position of the unit cell 2 in the lower mold 31 is defined.
  • the lower die 31 is provided with a pressing cylinder 311 for strictly defining the position of the unit cell 2 at the time of molding.
  • the pressing cylinder 311 has, for example, a drive mechanism using an air cylinder, a hydraulic cylinder, or a motor.
  • the lot portion 311a moves and presses the unit cell 2 by the mechanism, the unit cell 2 is brought into a predetermined position. It is prescribed.
  • a total of four pressing cylinders 311 in this embodiment are arranged at positions corresponding to the locate pins 312, but the number and arrangement of the pressing cylinders 311 are not particularly limited thereto.
  • the long side portion 310a (the portion corresponding to the outer peripheral portions 223c and 223d of the battery body 22) of the concave portion 310 of the lower mold 31 is provided with a groove portion 313 for forming the cavity C that forms the elastic resin portion 21. It has been.
  • a recess 314 having a semicircular cross section is formed at a substantially central portion of the groove 313, and the recess 314 increases in diameter toward the outside of the lower mold 31.
  • the upper mold 32 of the insert mold 3 has a shape corresponding to the lower mold 31 described above, and the upper mold 32 also corresponds to the groove 321 and the recess 314 corresponding to the groove 313 of the lower mold 31.
  • a recess 322 is formed (see FIG. 7).
  • a spool S (injection port) for injecting the molten resin 5 into the cavity C configured by the groove portions 313 and 321 is configured by the recess portions 314 and 321.
  • the spool S constituted by the recesses 314 and 321 has a tapered shape (second tapered shape) that tapers from the outside to the inside of the insert mold 3, and the tapered shape is a filling device 4 described later. This corresponds to the shape of the nozzle 422.
  • the filling device 4 is a device for injecting the molten resin 5 into the cavity C of the insert mold 3 and includes a resin material supply unit 41 and an injection unit 42 as shown in FIG.
  • the resin material supply unit 41 has a heating device 411 and heats the resin material by the heating device 411 (for example, 160 ° C. to 230 ° C.). Further, the resin material supply unit 41 includes a gear pump 412, and the molten resin 5 produced by heating by the heating device 411 is subjected to predetermined conditions (for example, pump rotation speed 10 rpm to 90 rpm, extrusion pressure 2.0 MPa to 6.MPa). 5 MPa). The molten resin 5 extruded from the resin material supply unit 41 is supplied to the injection unit 42 via the heat hose 43.
  • predetermined conditions for example, pump rotation speed 10 rpm to 90 rpm, extrusion pressure 2.0 MPa to 6.MPa). 5 MPa.
  • the injection part 42 has a main body part 421 and a nozzle 422 provided on the main part 421, and a flow path 420 through which the molten resin 5 passes is formed in the nozzle 422 (see FIG. 7).
  • the nozzle 422 includes a conical tip 422a and a straight cylindrical rear end 422b, and the maximum outer diameter of the tip 422a is equal to the outer shape of the rear end 422b (see FIG. 7). ).
  • the tip portion 422a has a taper shape (first taper shape) that tapers toward the tip (side facing the cavity C), and the first taper shape of the tip portion 422a of the nozzle 422 and the insert
  • the second tapered shape of the spool S constituted by the recesses 314 and 321 of the mold 3 has shapes corresponding to each other.
  • the molten resin 5 supplied from the resin material supply unit 41 passes through the flow path 420 in the nozzle 422 and is then pushed out toward the cavity C from the tip end part 422a.
  • a heating device 423 is provided at the rear end 422b of the nozzle 422 of the filling device 4 of the present embodiment, and the molten resin 5 passing through the flow path 420 of the nozzle 422 is heated by the heating device 423.
  • a heating apparatus 423 a coil heater, an infrared heater, etc. can be illustrated.
  • the place where the heating device 423 is provided in the nozzle 422 is not particularly limited, but from the viewpoint of shortening the manufacturing cycle of the molded product, the heating device is provided only in the rear end portion 422b of the nozzle 422 as in the present embodiment. 423 is preferably provided.
  • a temperature sensor (not shown) is attached to the front end 422a and the rear end 422b of the nozzle 422, and the temperature of the front end 422a and the rear end 422b can always be measured by the temperature sensor. It has become.
  • FIG. 5 is a process diagram showing the injection molding method in the present embodiment.
  • FIGS. 6A to 6F are cross-sectional views for explaining the operation of the injection molding apparatus 1, and
  • FIG. 8 is an enlarged view of a portion VII in (C), and
  • FIG. 8 is a graph showing the temperature change of the nozzle in the filling device.
  • the unit cell 2 is set in the recess 310 of the lower mold 31 of the insert mold 3.
  • the upper mold 32 is set to the lower mold 31 and the upper mold 32 is pressed against the lower mold 31 with a predetermined pressing force to perform mold clamping (mold clamping process S1 in FIG. 5).
  • the insert mold 3 has a temperature lower than the melting point of the molten resin 5 filled in the cavity C.
  • the tip of the nozzle 422 of the filling device 4 is inserted into the spool S constituted by the recess 314 of the lower mold 31 of the insert mold 3 and the recess 322 of the upper mold 32.
  • the part 422a is inserted and pressed.
  • molten resin is injected from the tip of the nozzle 422 into the cavity C constituted by the groove 313 of the lower mold 31 and the groove 321 of the upper mold 32 (the filling step in FIG. 5). S2).
  • FIG. 6B the tip of the nozzle 422 of the filling device 4 is inserted into the spool S constituted by the recess 314 of the lower mold 31 of the insert mold 3 and the recess 322 of the upper mold 32.
  • the part 422a is inserted and pressed.
  • molten resin is injected from the tip of the nozzle 422 into the cavity C constituted by the groove 313 of the lower mold 31 and the groove 321 of the upper mold 32 (the filling step in FIG. 5).
  • the first taper shape formed at the tip portion 422a of the nozzle 422 is in close contact with the second taper shape of the spool S, and the tip portion 422a of the nozzle 422 is formed in the cavity C. This is in a state of directly facing the nozzle 422 side end.
  • the cavity C When the cavity C is completely filled with the molten resin 5, as shown in FIG. 6D, it waits with the tip of the nozzle 422 pressed against the spool S (waiting step S3 in FIG. 5), and the molten resin
  • the elastic resin part 21 is formed by cooling and solidifying 5.
  • the tip portion 422a of the nozzle 422 remains in contact with the insert mold 3, the heat of the tip portion 422a is transmitted to the insert mold 3, and the temperature of the tip portion 422a is quickly increased. Descend.
  • the rear end portion 422b of the nozzle 422 remains heated to a temperature equal to or higher than the melting point by the heating device 423 provided in the nozzle 422.
  • the injection portion 42 is pulled away from the insert mold 3 (see FIG. 6E). Then, the unit cell 2 in which the elastic resin portion 21 is formed is obtained by separating the upper cell 32 of the insert mold 3 from the lower mold 31 and releasing the unit cell 2 (mold release step S4 in FIG. 5). Can do.
  • the temperature of the nozzle 422 is reduced until the temperature of the tip 422a of the nozzle 422 is equal to or lower than the melting point of the resin material. It waits in the state which pressed the front-end
  • the tip 422a of the nozzle 422 of the filling device 4 in the present embodiment has a first tapered shape that tapers, and the shape of the spool S (injection port) also corresponds to the second tapered shape. It has a tapered shape.
  • the adhesion between the tip 422a of the nozzle 422 and the spool S in the filling process is improved, and the heat of the tip 422a of the nozzle 422 is easily transferred to the insert mold 3, so the molten resin 5 is filled into the cavity C.
  • the tip portion 422a of the subsequent nozzle 422 can be efficiently cooled. For this reason, it is possible to more reliably prevent bubbles from being mixed into the resin material when the nozzle 422 is pulled away from the insert mold 3.
  • the manufacturing cycle of a molded product can also be shortened.
  • the rear end portion 422b of the nozzle 422 is at a temperature equal to or higher than the melting point of the resin material by the heating device 423 (see FIG. 8). For this reason, since the resin material in the flow path 420 of the nozzle 422 can be efficiently heated when another elastic resin portion 21 is subsequently formed after the formation of the elastic resin portion 21 is finished, the molded product The manufacturing cycle can be further shortened.
  • the tip 422a of the nozzle 422 can be directly opposed to the end of the cavity C, and it is possible to omit providing the runner part and the gate part in the molding die.
  • the yield of the resin material used for use can be improved.
  • Nozzle 422a ... Tip part 422b ... Rear end part 423 ... Heating device 43 ... Heat hose 5 ... Melting Resin S1 ⁇ ⁇ ⁇ clamping step S2 ⁇ ⁇ ⁇ filling step S3 ⁇ ⁇ ⁇ standby step S4 ⁇ ⁇ ⁇ releasing step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 射出成形方法は、少なくとも一部が加温されたノズル422をインサート成形型3のスプールSに押し当てて、ノズル422から溶融状態の樹脂材料5をインサート成形型3のキャビティCに充填する充填工程S2と、充填工程S2の後、ノズル422をスプールSに押し当てたままの状態で、ノズル422の先端部422aの温度が樹脂材料の融点以下となるまで待機する待機工程S3と、を有する。

Description

射出成形方法
 本発明は、射出成形方法に関するものである。
 射出成形機のシリンダの外周部に配置されたヒータによって加熱された混合樹脂を、金型のランナ部及びゲート部を介してキャビティに注入する樹脂成形品の製造方法が知られている(例えば特許文献1参照)。
特開2005-219324号公報
 上記の技術において、キャビティに注入された混合樹脂は冷却時に体積が収縮するが、ランナ部及びゲート部に混合樹脂が存在するため、樹脂成形品に気泡が混入することを防ぎつつ当該樹脂成形品の製造サイクルの短縮化を図ることができる。一方、樹脂成形品の製造後においてランナ部及びゲート部に残存する混合樹脂は廃棄されるため、混合樹脂の歩留まりが低下するという問題がある。
 本発明が解決しようとする課題は、成形品に気泡が混入することを防ぎつつ当該成形品の製造サイクルの短縮化を図ると共に、樹脂材料の歩留まりの低下を抑制することができる射出成形方法を提供することである。
 本発明の射出成形方法では、少なくとも一部が加温された状態のノズルを成形型の注入口に押し当てて、当該ノズルから成形型のキャビティに溶融状態の樹脂材料を充填する充填工程と、当該充填工程の後に、ノズルを注入口に押し当てたままの状態で、当該ノズルの先端の温度が樹脂材料の融点以下となるまで待機する待機工程と、を有することによって上記課題を解決する。
 本発明によれば、ノズルの少なくとも一部が加温されていることにより、成形品の製造開始時における当該ノズルの昇温を効率的に行うことができ、成形品の製造サイクルの短縮化を図ることができる。また、待機工程において、ノズルを注入口に押し当てたままの状態にすることにより、当該ノズルが速やかに冷却されると共に注入口付近の樹脂材料は速やかに融点以下となって固化するため、成形品に気泡が混入することを防ぐことができる。さらに、成形型にランナ部及びゲート部を設けることを省略できるため、射出成形に用いる樹脂材料の歩留まりの向上を図ることができる。
図1は、本発明の実施形態における単電池を示す斜視図である。 図2は図1のII-II線に沿った電池本体の断面図である。 図3は、図1のIII-III線に沿った断面図である。 図4は、本発明の実施形態における射出成形方法で用いる射出成形装置を示す平面図である。 図5は、本発明の実施形態における射出成形方法を示す工程図である。 図6(A)~図6(F)は、本発明の実施形態における射出成形方法を説明するための断面図である。 図7は、図6(C)のVII部の拡大図である。 図8は、本発明の実施形態における射出成形方法のノズルの温度変化を示すグラフである。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は本実施形態における単電池を示す斜視図であり、図2は図1のII-II線に沿った電池本体の断面図であり、図3は図1のIII-III線に沿った断面図であり、図4は本実施形態における射出成形方法で用いる射出成形装置においてインサート成形型の上型を除いた平面図である。
 本実施形態における射出成形方法で用いる射出成形装置1は、単電池2の外周の一部に弾性樹脂部21を設けるための装置であり、インサート成形型3と、充填装置4と、を備える(図4参照)。
 本実施形態における単電池2は、図1に示すように、薄型扁平状の電池本体22と、スペーサ23と、を有する。
 電池本体22は、図2に示すように、一対のラミネートフィルム製外装部材221の内部に発電要素222が収容されており、当該収容部分の外周部分223において、一対の外装部材221が封止されている。図1においては外装部材221の一方のみを示し、発電要素222は図2に示す。外装部材221を構成するラミネートフィルムは、図2の引き出し断面図Aに示すように、例えば三層構造とされ、二次電池1の内側から外側に向かって順に、内側樹脂層221a、中間金属層221b及び外側樹脂層221cとすることができる。
 内側樹脂層221aを構成する材料としては、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムを例示することができる。中間金属層221bを構成する材料としては、アルミニウム等の金属箔を例示することができる。また、外側樹脂層221cを構成する材料としては、ポリアミド系樹脂又はポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムを例示することができる。
 このように、一対の外装部材221は何れも、たとえばアルミニウム箔等からなる中間金属層221bの一方の面(二次電池1の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又はアイオノマー等の樹脂でラミネートし、他方の面(二次電池1の外側面)をポリアミド系樹脂又はポリエステル系樹脂でラミネートした、樹脂-金属薄膜ラミネート材等の可撓性を有する材料で形成されている。
 一対の外装部材221が内側及び外側樹脂層221a、221cに加えて中間金属層221bを具備することにより、外装部材221自体の強度向上を図ることができる。また、外装部材221の内側樹脂層221aを、たとえばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又はアイオノマー等の樹脂で構成することにより、金属製の電極端子224,225との良好な融着性を確保することができる。
 なお、本発明における外装部材221は、上述した三層構造にのみ限定されず、内側又は外側樹脂層221a、221cのいずれか一層構造であってもよい。また、内側又は外側樹脂層221a、221cのいずれか一方と中間金属層221bとの二層構造であってもよい。さらに、必要に応じて四層以上の構造であってもよい。
 一対の外装部材221のそれぞれは、発電要素222が収容できるように矩形状平板を浅い椀型(皿型)に成形した形状とされ、内部に発電要素222と電解液を入れたのち、それぞれの外周部223を重ね合わせ、当該外周部223の全周が熱融着や接着剤により接合されている。
 本例の単電池2は、リチウムイオン二次電池であり、図2に示すように、正極板222aと負極板222bとの間にセパレータ222cを積層して構成された発電要素222を有している。本例の発電要素222は、3枚の正極板222aと、5枚のセパレータ222cと、3枚の負極板222bと、特に図示しない電解質とから構成されている。なお、本発明に係る単電池2はリチウムイオン二次電池に限定されず、例えば、ニッケル-カドミウム電池等のアルカリ蓄電池や鉛蓄電池等の他の電池であってもよい。
 発電要素222を構成する正極板222aは、正極端子224まで伸びている正極側集電体222dと、正極側集電体222dの一部の両主面にそれぞれ形成された正極層222e,222fとを有する。なお、本例では正極板222aと正極側集電体222dとが一枚の導電体で形成されているが、正極板222aと正極側集電体222dとを別の部材で構成し、これらを接合してもよい。
 正極板222aの正極側集電体222dは、たとえばアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔から構成されている。また正極板222aの正極層222e,222fは、たとえば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)又はコバルト酸リチウム(LiCoO2)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤と、溶剤とを混合したものを、正極集電板222dの両主面に塗布し、乾燥及び圧延することにより形成されている。
 発電要素222を構成する負極板222bは、負極端子225まで伸びている負極側集電体222gと、当該負極側集電体222gの一部の両主面にそれぞれ形成された負極層222h、222iとを有する。なお、本例では負極板222bと負極側集電体222gとが一枚の導電体で形成されているが、負極板222bと負極側集電体222gとを別の部材で構成し、これらを接合してもよい。
 負極板222bの負極側集電体222gは、たとえばニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔から構成されている。また、負極板222bの負極層222h,222iは、たとえば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極集電板222gの両主面に塗布し、乾燥及び圧延させることにより形成されている。
 正極板222aと負極板222bとの間に積層されるセパレータ222cは、正極板222aと負極板222bとの短絡を防止するものであり、電解質を保持する機能を備えてもよい。セパレータ222cは、たとえばポリエチレンやポリプロピレンなどのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。ただし、セパレータ222cは、ポリオレフィン等の単層膜にのみ限られず、ポリエチレン膜を挟んでポリプロピレン膜を積層した三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものも用いることができる。このようにセパレータ222cを複層化することで、過電流の防止機能、電解質保持機能及びセパレータ222cの形状維持(剛性向上)機能等の諸機能を付与することができる。
 以上の発電要素222は、セパレータ222cを介して正極板222aと負極板222bとが交互に積層されてなる。そして、3枚の正極板222aは、正極側集電体222dを介して、金属箔製の正極端子224にそれぞれ接続される一方で、3枚の負極板222bは、負極側集電体222gを介して、同様に金属箔製の負極端子225にそれぞれ接続されている。
 図2に示すように、発電要素222の正極板222a及び負極板222bのそれぞれから外装部材221の外部へ正極端子224と負極端子225とが導出されている。本例の二次電池1では、外装部材221の一辺(図1の手前の短辺)の外周部223から正極端子224と負極端子225とが並んで導出されている。正極端子224及び負極端子225は正極タブ224及び負極タブ225とも称される。
 本例の単電池2は、外装部材221の一つの辺の外周部から正極端子224と負極端子225とが並んで導出されているものである。そのため、図2には発電要素222の正極板222aから正極端子224に至る断面図を図示し、発電要素222の負極板222bから負極端子225に至る断面を省略するが、負極板222b及び負極端子225も図2の断面図に示す正極板222a及び正極端子224と同様の構造とされている。ただし、発電要素222の端部から正極端子224及び負極端子225に至る間の正極板222a(正極側集電体222d)及び負極板222b(負極側集電体222g)は、平面視において互いに接触することがないように半分以下に切り欠かれている。
 単電池2の電池本体22は平面視において長方形とされているので、一対の外装部材221を接合して内部を封止する外周部223を、図1に示すように外周部223a~223dとも称する。なお、電池本体22の外形形状は長方形にのみ限定されず、正方形や他の多角形に形成することも可能である。また、正極端子224と負極端子225の導出位置は、本例のように一つの外周部223aから導出させること以外にも、対向する外周部223aと223bや223cと223dのそれぞれから導出させてもよい。また、長辺の外周部223c,223dから導出させてもよい。
 以上のように構成された電池本体22は単体で使用に供することもできるが、他の一または複数の二次電池と接続して組み合わせ、所望の出力、容量の二次電池(以下、電池モジュールともいう)として使用に供することもできる。さらに、こうした電池モジュールを複数接続して組み合わせ(以下、組電池ともいう)、この組電池を電気自動車やハイブリッド自動車などの車両に搭載して、走行駆動用電源として用いることもできる。
 複数の電池本体22を接続して電池モジュールを構成する場合には、複数の電池本体22の主面同士を積み重ねて電池ケース(不図示)内に収容することが行われる。この場合に、電池本体22の外周部223aから導出された正極端子224及び負極端子225と、この電池本体22に積層された電池本体22の外周部223aから導出された正極端子224及び負極端子225との絶縁性を確保するとともに、これら正極端子224及び負極端子225を直列及び/又は並列に接続するためのバスバを配置したり、電圧検出用センサのコネクタを配置したりするために、絶縁性材料から構成されたスペーサ23が用いられる。
 本例のスペーサ23は、電池本体22同士を積層した際に、当該電池本体22の互いの外周部223a、223aの間に配置され、電池本体22を、電池モジュールのケースや自動車の車体など所定の設置位置に対して固定するための固定用貫通孔231を有している。
 スペーサ23は、ポリブチレンテレフタレート(PBT)やポリプロピレン(PP)などの剛性を有する絶縁性樹脂材料から構成され、電池本体22の外周部223aの長さ以上の長さを有する長尺状に形成されている。そして、その両端のそれぞれに鞘状の通孔からなる固定用貫通孔231が形成されている。なお、スペーサ23の長さは装着される外周部223a以上の長さとすることが望ましい。
 また、上述したPBTやPP製のスペーサ23の機械的強度(折り曲げ強度又は座屈強度などの剛性)は、電池本体22に収容された発電要素222を構成する電極板(上述した正極板222a及び負極板222b)の機械的強度より大きくすることが望ましい。車載された単電池2等に対しスペーサ23に著しく過大な外力が作用すると、スペーサ23と発電要素222とが接触して両者ともに潰れようとする際に、スペーサ23の方をより潰れ難くすることで単電池2の保持安定性を確保するためである。
 本例の単電池2では、図3に示すように、電池本体22の外周部223においてスペーサ23が取り付けられていない辺223c、223d(長辺側の外周部)および当該辺223c、223dの端部に位置する角部を覆うように弾性樹脂部21が設けられている。この弾性樹脂部21は、樹脂材料のインサート成形により形成されている。弾性樹脂部21を構成する材料としては、加硫ゴム、熱硬化性樹脂エラストマ、熱可塑性樹脂エラストマ、ポリアミド系樹脂(ホットメルトグレード)などの弾性樹脂材料を例示することができる。なお、外周部223の全周に弾性樹脂部21を形成してもよい。
 弾性樹脂部21の端部は、図2に示すように、電池本体22の外周部223aにおいてスペーサ23が固定される位置に対応する位置に設けられている。そして、スペーサ23の固定用貫通孔231に印加された車両振動のような外力が、スペーサ23から電池本体22の外周部223aに伝達する際に、弾性樹脂部21自体に緩衝力を発生させ、電池本体22に伝達する外力を軽減することができる。
 弾性樹脂部21を形成するためのインサート成形型3は、下型31と、当該下型31に対応する上型32と、を有している。下型31及び上型32は、熱伝導性に優れる材料から構成されており、この様な材料としては金属材料等を例示することができる。
 インサート成形型3の下型31は、図4に示すように、平面視において略矩形状であり、当該下型31の略中央には、単電池2の三次元形状に対応する凹部310が形成されている。下型31においてスペーサ23の固定用貫通孔231に対応する位置には、ロケートピン312が設けられており、単電池2が凹部310にセットされる際は、当該ロケートピン312がスペーサ23の固定用貫通孔231に挿入されることによって、下型31における単電池2の凡その位置が規定される。
 下型31には、成形時において単電池2の位置を厳密に規定するための押圧シリンダ311が設けられている。この押圧シリンダ311は、例えば、エアシリンダ、油圧シリンダ、又はモータによる駆動機構を有しており、当該機構によってロット部311aが移動して単電池2を押圧することにより単電池2が所定位置に規定される。本実施形態における押圧シリンダ311は、図4に示すように、ロケートピン312と対応する位置に合計4つ配置されているが、押圧シリンダ311の数及び配置は特にこれに限定されない。
 また、下型31の凹部310の長辺部310a(電池本体22の外周部分223c、223dに対応する部分)には、弾性樹脂部21を形成するキャビティCを構成するための溝部313がそれぞれ設けられている。そして、溝部313の略中央部には、断面半円状の窪部314がそれぞれ形成されており、当該窪部314は下型31の外側に向かって拡径している。
 インサート成形型3の上型32は、上述の下型31と対応する形状を有しており、当該上型32にも、下型31の溝部313に対応する溝部321及び窪部314に対応する窪部322が形成されている(図7参照)。そして、溝部313、321によって構成されるキャビティCに溶融樹脂5が注入するためのスプールS(注入口)が、窪部314、321によって構成される。窪部314、321によって構成されるスプールSは、インサート成形型3の外側から内側に向かうに従って先細りとなるテーパ形状(第2のテーパ形状)となっており、当該先細り形状は後述する充填装置4のノズル422の形状と対応している。
 充填装置4は、インサート成形型3のキャビティCに溶融樹脂5を注入するための装置であり、図4に示すように、樹脂材料供給部41と注入部42とを有している。
 樹脂材料供給部41は、加熱装置411を有しており、当該加熱装置411によって樹脂材料を加熱(例えば、160℃~230℃)する。また、樹脂材料供給部41は、ギアポンプ412を有しており、加熱装置411による加熱によってできた溶融樹脂5を、所定条件(例えば、ポンプ回転数10rpm~90rpm、押出圧力2.0MPa~6.5MPa)で押し出す機能を有している。樹脂材料供給部41から押し出された溶融樹脂5は、ヒートホース43を介して注入部42に供給される。
 注入部42は、本体部421と当該421に設けられたノズル422とを有しており、ノズル422内には、溶融樹脂5が通過する流路420が形成されている(図7参照)。ノズル422は、円錐状の先端部422aと、直筒状の後端部422bと、から構成されており、先端部422aの最大外径は後端部422bの外形と等しくなっている(図7参照)。先端部422aは、先端(キャビティCに対向する側)に向かうに従って先細りとなるテーパ形状(第1のテーパ形状)を有しており、ノズル422の先端部422aの第1のテーパ形状と、インサート成形型3の窪部314、321によって構成されるスプールSの第2のテーパ形状と、はそれぞれ互いに対応する形状となっている。樹脂材料供給部41から供給される溶融樹脂5は、ノズル422内の流路420に沿って通過した後、先端部422aからキャビティCに向かって押し出される。
 また、本実施形態の充填装置4のノズル422の後端部422bには、加熱装置423が設けられており、当該加熱装置423によってノズル422の流路420を通過する溶融樹脂5を加熱することが可能となっている。このような加熱装置423としては、コイルヒータや赤外線ヒータ等を例示することができる。本実施形態では、ノズル422において加熱装置423が設けられる場所は特に限定されないが、成形品の製造サイクルの短縮化の観点から、本実施形態のようにノズル422の後端部422bのみに加熱装置423が設けられていることが好ましい。
 また、ノズル422の先端部422a及び後端部422bには、特に図示しない温度センサが取り付けられており、当該温度センサによって当該先端部422a及び後端部422bの温度を常時測定することが可能となっている。
 次に、本実施形態における射出成形方法の作用について説明する。図5は本実施形態における射出成形方法を示す工程図であり、図6(A)~図6(F)は射出成形装置1の動作を説明するための断面図であり、図7は図6(C)のVII部の拡大図であり、図8は充填装置におけるノズルの温度変化を示すグラフである。
 まず、図6(A)に示すように、インサート成形型3の下型31の凹部310に、単電池2をセットする。そして、上型32を下型に31にセットして当該上型32を下型31に向かって所定押圧力で押圧することにより型締めを行う(図5において型締め工程S1)。この際、インサート成形型3は、キャビティCに充填する溶融樹脂5の融点よりも低い温度となっている。
 次いで、図6(B)に示すように、インサート成形型3の下型31の窪部314と、上型32の窪部322と、から構成されるスプールSに充填装置4のノズル422の先端部422aを挿入し、押し当てる。そして、図6(C)に示すように、下型31の溝部313と上型32の溝部321とから構成されるキャビティCに、ノズル422の先端から溶融樹脂を注入する(図5において充填工程S2)。このとき、図7に示すように、ノズル422の先端部422aに形成された第1のテーパ形状は、スプールSの第2のテーパ形状に密着すると共に、当該ノズル422の先端部422aはキャビティCの当該ノズル422側端部に直接対向した状態となる。
 キャビティCに溶融樹脂5を充填し終わると、図6(D)に示すように、ノズル422の先端をスプールSに押し当てたままの状態で待機し(図5において待機工程S3)、溶融樹脂5を冷却して固化させることにより弾性樹脂部21を形成する。この際、ノズル422の先端部422aがインサート成形型3に接触した状態のままとなっていることにより、当該先端部422aの熱はインサート成形型3に伝達され、先端部422aの温度は速やかに下降する。一方、図8に示すように、ノズル422に設けられた加熱装置423によって当該ノズル422の後端部422bは融点以上の温度に加熱されたままの状態となっている。
 次いで、ノズル422の先端部422aの温度が弾性樹脂部21を構成する樹脂材料の融点以下になると、注入部42をインサート成形型3から引き離す(図6(E)参照)。そして、インサート成形型3の上型32を下型31から離して単電池2を離型することにより(図5において離型工程S4)、弾性樹脂部21が形成された単電池2を得ることができる。
 次に、本実施形態における射出成形方法の作用について説明する。
 本実施形態における射出成形方法では、インサート成形型3のキャビティCに溶融樹脂5を充填(充填工程)した後、ノズル422の先端部422aの温度が樹脂材料の融点以下になるまで当該ノズル422の先端部422aをスプールSに押し当てたままの状態で待機する(待機工程)。これにより、ノズル422の先端部422aは速やかに冷却されてスプールS付近の溶融樹脂5が迅速に固化するため、インサート成形型3からノズル422を引き離した際に、樹脂材料内に気泡が混入することを防ぐことができる。
 また、本実施形態における充填装置4のノズル422の先端部422aは、先細りとなる第1のテーパ形状であると共に、スプールS(注入口)の形状も当該第1のテーパ形状に対応した第2のテーパ形状となっている。これにより、充填工程におけるノズル422の先端部422aとスプールSの密着性が向上し、ノズル422の先端部422a熱がインサート金型3に伝達されやすくなるため、溶融樹脂5をキャビティCに充填した後のノズル422の先端部422aの冷却を効率的に行うことができる。このため、インサート成形型3からノズル422を引き離した際の樹脂材料内への気泡の混入をより確実に防ぐことができる。また、ノズル422の先端部422aの冷却時間を短縮化できるため、成形品の製造サイクルの短縮化も図ることができる。
 また、実施形態では、加熱装置423によりノズル422の後端部422bのみを加熱する。このため、当該ノズル422の先端部422aの冷却をより一層効率的に行うことが可能となり、上記の効果をより向上することができる。
 また、樹脂材料をキャビティCに充填して当該樹脂材料を冷却する間、ノズル422の後端部422bは加熱装置423により樹脂材料の融点以上の温度となっている(図8参照)。このため、弾性樹脂部21の成形が終わった後に、続いて別の弾性樹脂部21を成形する際、効率的にノズル422の流路420内の樹脂材料を加熱することができるため、成形品の製造サイクルの短縮化をより一層図ることができる。
 また、本実施形態では、ノズル422の先端部422aをキャビティCの端部に直接対向させることが可能となり、成形型にランナ部及びゲート部を設けることを省略することができるため、射出成形型の使用に用いる樹脂材料の歩留まりの向上を図ることができる。
 なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
1・・・射出成形装置
 2・・・単電池
  22・・・電池本体
   221・・・外装部材
   222・・・発電要素
   223・・・外周部分
  23・・・スペーサ
   231・・・固定用貫通孔
 21・・・弾性樹脂部
 3・・・インサート成形型
  31・・・下型
   310・・・凹部
   311・・・押圧シリンダ
   312・・・ロケートピン
   313・・・溝部
   314・・・窪部
  32・・・上型
   321・・・溝部
   322・・・窪部
  C・・・キャビティ
  S・・・スプール
 4・・・充填装置
  41・・・樹脂材料供給部
   411・・・加熱装置
   412・・・ギアポンプ
  42・・・注入部
   421・・・本体部
   422・・・ノズル
    422a・・・先端部
    422b・・・後端部
   423・・・加熱装置
  43・・・ヒートホース
5・・・溶融樹脂
S1・・・型締め工程
S2・・・充填工程
S3・・・待機工程
S4・・・離型工程

Claims (5)

  1.  少なくとも一部が加温されたノズルを成形型の注入口に押し当てて、前記ノズルから溶融状態の樹脂材料を成形型のキャビティに充填する充填工程と、
     前記充填工程の後、前記ノズルを前記注入口に押し当てたままの状態で、前記ノズルの先端の温度が前記樹脂材料の融点以下となるまで待機する待機工程と、を有することを特徴とする射出成形方法。
  2.  請求項1に記載の射出成形方法であって、
     前記ノズルの先端は、先細りとなる第1のテーパ形状であり、
     前記注入口は、前記第1のテーパ形状に対応した第2のテーパ形状であることを特徴とする射出成形方法。
  3.  請求項1又は2に記載の射出成形方法であって、
     前記充填工程において、前記ノズルの後端側のみが加温されていることを特徴とする射出成形方法。
  4.  請求項1~3の何れか1項に記載の射出成形方法であって、
     前記ノズルの先端は、前記充填工程及び前記待機工程において、前記キャビティの端部に直接対向していることを特徴とする射出成形方法。
  5.  請求項1~4の何れか1項に記載の射出成形方法であって、
     前記充填工程の前に、外装部材で収容された発電要素を有する単電池を前記成形型にセットする工程を有し、
     前記キャビティは、前記単電池の外周の少なくとも一部を包囲する形状に対応する形状であることを特徴とする射出成形方法。
PCT/JP2014/066117 2014-06-18 2014-06-18 射出成形方法 WO2015193989A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016528709A JP6265263B2 (ja) 2014-06-18 2014-06-18 射出成形方法
EP14895043.9A EP3159134B1 (en) 2014-06-18 2014-06-18 Injection molding method
PCT/JP2014/066117 WO2015193989A1 (ja) 2014-06-18 2014-06-18 射出成形方法
US15/318,302 US20170113386A1 (en) 2014-06-18 2014-06-18 Injection Molding Method
CN201480079893.1A CN106660247B (zh) 2014-06-18 2014-06-18 注射成形方法
KR1020167033025A KR101912028B1 (ko) 2014-06-18 2014-06-18 사출 성형 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066117 WO2015193989A1 (ja) 2014-06-18 2014-06-18 射出成形方法

Publications (1)

Publication Number Publication Date
WO2015193989A1 true WO2015193989A1 (ja) 2015-12-23

Family

ID=54935021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066117 WO2015193989A1 (ja) 2014-06-18 2014-06-18 射出成形方法

Country Status (6)

Country Link
US (1) US20170113386A1 (ja)
EP (1) EP3159134B1 (ja)
JP (1) JP6265263B2 (ja)
KR (1) KR101912028B1 (ja)
CN (1) CN106660247B (ja)
WO (1) WO2015193989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107083A (ja) * 2016-12-28 2018-07-05 日産自動車株式会社 樹脂成形方法及び外装体に樹脂部材を備えるラミネート型電池。

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210040720A (ko) * 2019-10-04 2021-04-14 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124919A (ja) * 1985-11-27 1987-06-06 Sumitomo Heavy Ind Ltd 射出成形機の射出ノズル
JPH06106574A (ja) * 1992-09-29 1994-04-19 Seiki Kk 射出成形機用ノズル
JP2003340896A (ja) * 2002-05-30 2003-12-02 Meiki Co Ltd 射出成形機の溶融材料加熱装置と加熱方法
JP2008143157A (ja) * 2006-12-07 2008-06-26 Direcs Kk 射出成形用複合ノズル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845037A (ja) * 1981-09-10 1983-03-16 Toshiba Mach Co Ltd ランナレス射出成形方法
JP2003136559A (ja) * 2001-10-30 2003-05-14 Seiko Epson Corp 射出ノズル及びこれを備えた射出成形装置並びに射出成形方法
JP3992546B2 (ja) * 2002-06-13 2007-10-17 株式会社ソニー・ディスクアンドデジタルソリューションズ 射出成形装置および射出成形方法
JP2005219324A (ja) 2004-02-05 2005-08-18 Mitsubishi Electric Corp 樹脂成形品の形成方法
KR100980104B1 (ko) * 2005-09-28 2010-09-07 주식회사 엘지화학 이차전지 제조장치
WO2009072262A1 (ja) * 2007-12-05 2009-06-11 Panasonic Corporation 電池パックの製造方法、および製造装置
US20140127347A1 (en) * 2011-06-16 2014-05-08 JNL Corporation Injection mold device and injection molding machine
JP5762869B2 (ja) * 2011-07-26 2015-08-12 住友重機械工業株式会社 射出成形機
JP5917899B2 (ja) * 2011-11-29 2016-05-18 日産自動車株式会社 薄型電池及び薄型電池の製造方法
JP2014003157A (ja) * 2012-06-19 2014-01-09 Hitachi Ltd スピン波スイッチングデバイス、スピン波導波路、及びスピン波の進行方向を制御する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124919A (ja) * 1985-11-27 1987-06-06 Sumitomo Heavy Ind Ltd 射出成形機の射出ノズル
JPH06106574A (ja) * 1992-09-29 1994-04-19 Seiki Kk 射出成形機用ノズル
JP2003340896A (ja) * 2002-05-30 2003-12-02 Meiki Co Ltd 射出成形機の溶融材料加熱装置と加熱方法
JP2008143157A (ja) * 2006-12-07 2008-06-26 Direcs Kk 射出成形用複合ノズル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159134A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107083A (ja) * 2016-12-28 2018-07-05 日産自動車株式会社 樹脂成形方法及び外装体に樹脂部材を備えるラミネート型電池。

Also Published As

Publication number Publication date
CN106660247A (zh) 2017-05-10
US20170113386A1 (en) 2017-04-27
JPWO2015193989A1 (ja) 2017-04-20
KR101912028B1 (ko) 2018-10-25
CN106660247B (zh) 2019-05-03
EP3159134A1 (en) 2017-04-26
EP3159134A4 (en) 2017-07-26
KR20160147276A (ko) 2016-12-22
JP6265263B2 (ja) 2018-01-24
EP3159134B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN110199405B (zh) 包括两步密封工艺的密封袋形电池的侧部的方法
US9178187B2 (en) Thin battery
CN104934649B (zh) 固体电池及其制造方法以及组电池及其制造方法
KR101319176B1 (ko) 전지 모듈
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JP2020520062A (ja) エンドフレームを備えるバッテリーモジュール
JP6623525B2 (ja) 二次電池、二次電池の製造方法および二次電池の電極−シール材の組立体
JP6604636B2 (ja) 熱可塑性樹脂による固定構造を含む電池パックの製造方法および製造装置
JP2012230916A (ja) 集電体の製造方法
EP3633757A1 (en) Secondary battery including injection molded battery case
US10608210B2 (en) Flat battery and method for producing flat battery
JP6265263B2 (ja) 射出成形方法
CN101276934A (zh) 具有聚合物电解质的可再充电电池及其形成方法
JP5402853B2 (ja) 固体電池の発電要素の製造方法
KR102263470B1 (ko) 핫 멜팅 접착부를 포함하는 전지셀
JP6392008B2 (ja) インサート成形型及びインサート成形方法
JP2016201172A (ja) ラミネート型蓄電モジュール
JP2006286471A (ja) 電池の製造方法及び電池
JP6600193B2 (ja) 射出成形方法及び射出成形装置
CN218241964U (zh) 电池装置及车辆
JP6007651B2 (ja) 薄型電池及び薄型電池の製造方法
US20110268997A1 (en) Battery having simplified design
JP2015103284A (ja) 電池装置及びその製造方法
CN214411290U (zh) 一种电芯及具有其的电池、物体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528709

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167033025

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895043

Country of ref document: EP