WO2015190406A1 - 半導体積層構造およびその製造方法 - Google Patents

半導体積層構造およびその製造方法 Download PDF

Info

Publication number
WO2015190406A1
WO2015190406A1 PCT/JP2015/066313 JP2015066313W WO2015190406A1 WO 2015190406 A1 WO2015190406 A1 WO 2015190406A1 JP 2015066313 W JP2015066313 W JP 2015066313W WO 2015190406 A1 WO2015190406 A1 WO 2015190406A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan layer
multilayer structure
defect density
semiconductor multilayer
type gan
Prior art date
Application number
PCT/JP2015/066313
Other languages
English (en)
French (fr)
Inventor
金田 直樹
三島 友義
中村 徹
Original Assignee
株式会社サイオクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイオクス filed Critical 株式会社サイオクス
Priority to EP15806188.7A priority Critical patent/EP3157068B1/en
Priority to US15/317,838 priority patent/US9899570B2/en
Publication of WO2015190406A1 publication Critical patent/WO2015190406A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • H01L21/26553Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Definitions

  • the present invention relates to a semiconductor multilayer structure and a manufacturing method thereof.
  • Gallium nitride is expected to be used for high-frequency and high-power devices because it has a higher dielectric breakdown electric field and saturation drift velocity than other semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). ing.
  • An object of the present invention is to provide a novel technique relating to the formation of a p-type GaN layer by an ion implantation method.
  • an n-type GaN layer A p-type GaN layer formed on the n-type GaN layer and ion-implanted with Mg;
  • a voltage to a pn junction formed by the n-type GaN layer and the p-type GaN layer a semiconductor multilayer structure showing electroluminescence emission having a peak in photon energy of 3.0 eV or more is provided.
  • a semiconductor laminated structure having a p-type GaN layer into which Mg is ion-implanted and having a good pn junction that causes electroluminescence emission is obtained.
  • FIG. 1 is a schematic cross-sectional view illustrating a process for forming a semiconductor multilayer structure according to an embodiment.
  • FIG. 2A is a schematic cross-sectional view illustrating a process of forming a semiconductor multilayer structure according to the embodiment, and
  • FIG. 2B is a depth profile of the Mg concentration in the example.
  • FIG. 3A is a schematic cross-sectional view illustrating a process for forming a semiconductor multilayer structure according to the embodiment.
  • FIGS. 3B and 3C are views of the surface of the Mg ion-implanted GaN layer according to the example, respectively. It is an AFM image before annealing and after annealing.
  • 4A and 4B are PL emission spectra of the semiconductor stacked structure according to the example.
  • FIG. 1 is a schematic cross-sectional view illustrating a process for forming a semiconductor multilayer structure according to an embodiment.
  • FIG. 2A is a schematic cross-sectional view illustrating a process of
  • FIG. 5A is a schematic cross-sectional view illustrating a process for forming a semiconductor multilayer structure according to the embodiment
  • FIG. 5B is a graph illustrating current-voltage characteristics of the semiconductor multilayer structure according to the example.
  • 6A and 6B are a photograph and an EL emission spectrum showing EL emission of the semiconductor stacked structure according to the example, respectively.
  • FIG. 7A is a schematic cross-sectional view of the semiconductor multilayer structure according to the first comparative example.
  • FIGS. 7B and 7C are views of the surface of the Mg ion-implanted GaN layer according to the first comparative example, respectively. It is an AFM image before annealing and after annealing.
  • FIG. 8 is a PL emission spectrum of the semiconductor multilayer structure according to the first comparative example.
  • FIG. 9 is an EL emission spectrum of the semiconductor laminated structure according to the second comparative example.
  • the inventors of the present application have a pn junction formed by an n-type gallium nitride (GaN) layer and a p-type GaN layer into which magnesium (Mg) is ion-implanted, and 3.0 eV.
  • GaN gallium nitride
  • Mg magnesium
  • EL electroluminescence
  • GaN has a band gap energy of about 3.4 eV.
  • Light emission having a peak at photon energy of 0 eV or higher should be observed. Such light emission is, for example, due to recombination of a donor-acceptor pair (DAP).
  • DAP donor-acceptor pair
  • GaN layer into which Mg is ion-implanted a GaN layer serving as a foundation of the Mg ion-implanted GaN layer
  • the GaN layer into which Mg is ion-implanted is a layer epitaxially grown on the growth substrate. Therefore, it can be considered that such a p-type GaN layer could be formed by using a single crystal GaN free-standing substrate having very good crystallinity as a growth substrate.
  • FIG. 2 (A), FIG. 3 (A), and FIG. 5 (A) are schematic cross-sectional views illustrating a process for forming a semiconductor multilayer structure according to the embodiment.
  • a GaN substrate 1 is prepared as a growth substrate.
  • the GaN substrate 1 is a single-crystal GaN free-standing substrate, and can be formed by a void formation exfoliation (VAS) method which is one method using hydride vapor phase epitaxy (HVPE).
  • VAS void formation exfoliation
  • HVPE hydride vapor phase epitaxy
  • the GaN substrate 1 is manufactured as a large-area wafer having a diameter of 2 inches, for example. In the example, a 1 cm square region cut out from a wafer having a diameter of 2 inches was used as the GaN substrate 1.
  • the GaN substrate 1 having n-type conductivity containing silicon (Si) of about 2 ⁇ 10 18 / cm 3 as an n-type impurity and having an electron concentration of about 2 ⁇ 10 18 / cm 3 was used.
  • a certain GaN substrate 1 is measured by, for example, cathodoluminescence (CL) method, for example, by scanning an observation region having a diameter of 500 ⁇ m per location in a measurement region of 3 mm square and measuring about 10 locations. If performed, the minimum defect density is, for example 3 ⁇ 10 5 / cm 2 or so, the maximum defect density, for example, 3 ⁇ 10 6 / cm 2 or so, the average defect density, for example, 1 ⁇ 10 6 / cm is 2 mm, the maximum most 10 times the ratio of the defect density is, for example, to the minimum defect density.
  • CL cathodoluminescence
  • the GaN substrate 1 has very good crystallinity in that the average defect density is very low and the defect density distribution has very little variation in the in-plane defect density. Even if the measurement region on the GaN substrate 1 is further expanded (for example, a width of about 20 mm square), such a low average defect density and a small variation in the defect density in the plane are as follows. It can be said that the defect density at each measurement point is, for example, 3 ⁇ 10 6 / cm 2 or less at the maximum.
  • the average defect density of the GaN substrate 1 may vary to some extent from substrate to substrate (for each production lot), but falls within a range of about 5 ⁇ 10 5 / cm 2 to about 3 ⁇ 10 6 / cm 2 , for example. Is about 2 ⁇ 10 6 / cm 2 .
  • the GaN substrate 1 having a very low average defect density and a very small variation in the defect density in the surface, has been manufactured so far.
  • the present inventors think that a GaN laminated structure that could not be formed could be formed.
  • the GaN substrate 1 preferably has an average defect density of, for example, 2 ⁇ 10 6 / cm 2 or less, and preferably has a defect density of 1 ⁇ 10 6 / cm 2 or less. More preferably, it is considered to be more preferable to use a material having a density of 5 ⁇ 10 5 / cm 2 or less. Further, as the GaN substrate 1, it is preferable to use a substrate having a ratio of the maximum defect density to the minimum defect density in the plane of, for example, 10 times or less, more preferably 5 times or less. thinking. The fact that the average defect density is very low and the variation in the defect density in the surface is very small is that the maximum defect density to be measured is suppressed to, for example, 3 ⁇ 10 6 / cm 2 or less. You can also.
  • a GaN layer 2 is epitaxially grown on the GaN substrate 1.
  • MOVPE metal organic vapor phase epitaxy
  • trimethylgallium can be used as the gallium (Ga) source
  • ammonia can be used as the nitrogen (N) source. Since the GaN layer 2 grows taking over the crystallinity of the GaN substrate 1, it is possible to form the GaN layer 2 having good crystallinity with an average defect density as low as the GaN substrate 1 and with little variation in defect density. it can.
  • the undoped GaN layer 2 having a thickness of 2000 nm to 3000 nm was formed.
  • the GaN layer 2 of the example was found to contain about 5 ⁇ 10 15 / cm 3 of Si by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • the GaN layer 2 of the example is formed as a GaN layer having n-type conductivity having about 5 ⁇ 10 15 / cm 3 of Si as an n-type impurity and an electron concentration of about 1 ⁇ 10 15 / cm 3. It was done.
  • the GaN layer 2 can also be formed as a layer positively doped with n-type impurities by using a raw material containing n-type impurities during film formation, if necessary.
  • Mg ions are implanted as p-type impurities into the upper layer of the GaN layer 2 to form the GaN layer 3 into which Mg has been implanted.
  • An implantation protective film 4 such as a silicon oxide film or a silicon nitride film is formed on the GaN layer 2, and Mg ion implantation can be performed through the implantation protective film 4. Ion implantation through the implantation protective film 4 makes it easy to bring the Mg concentration peak position closer to the surface of the GaN layer 3.
  • a silicon oxide film was deposited on the GaN layer 2 to a thickness of 50 nm as the implantation protective film 4 by sputtering.
  • Via an injection protective film 4 by implanting Mg ions implantation energy 60 keV, a dose of 1.0 ⁇ 10 14 / cm 2, to form a GaN layer 3 which is implanted Mg.
  • the implantation protective film 4 was then removed with hydrofluoric acid.
  • FIG. 2B is a profile in the depth direction of the Mg concentration in the example, and is a simulation result calculated by SRIM which is simulation software for ion implantation.
  • Mg having a peak of about 1 ⁇ 10 19 / cm 3 at a position 80 nm deep from the surface of the implantation protective film (SiO 2 film) 4 having a thickness of 50 nm, that is, a position 30 nm deep from the surface of the GaN layer 3. It is estimated that a concentration distribution is formed.
  • the semiconductor multilayer structure (GaN laminated structure in which the n-type GaN substrate 1, the n-type GaN layer 2, and the p-type GaN layer 3 are laminated) according to the embodiment is formed.
  • the GaN substrate 1 and the epitaxially grown GaN layer 2 can be collectively regarded as a GaN layer having the above-described good crystallinity and serving as a base for the p-type GaN layer 3.
  • the impurity activation annealing may be simply referred to as annealing.
  • Annealing can be performed, for example, in a nitrogen (N 2 ) atmosphere at a temperature in the range of 1100 ° C. to 1350 ° C. under a condition that a constant temperature is maintained for 20 seconds to 30 minutes.
  • An annealing protective film 5 such as a silicon nitride film is formed on the GaN layer 3 with a thickness of, for example, 40 nm to 60 nm, and annealing can be performed with the annealing protective film 5 formed.
  • the annealing protective film 5 can prevent the surface of the GaN layer 3 from being rough due to the high temperature during annealing.
  • a silicon nitride film was deposited on the GaN layer 3 to a thickness of 50 nm as the annealing protective film 5 by sputtering. Then, annealing was performed in an N 2 atmosphere with the annealing protective film 5 formed. Two types of samples were produced in which the annealing temperature was changed to 1200 ° C and 1230 ° C. The annealing protective film 5 was then removed with a hydrofluoric acid solution.
  • FIGS. 3B and 3C are atomic force microscope (AFM) images of the surface of the Mg ion-implanted GaN layer 3 according to the example before and after annealing, respectively.
  • the annealing temperature of the sample shown here is 1230 ° C.
  • the root mean square roughness (RMS) of the GaN layer 3 is 0.463 nm before annealing and 0.274 nm after annealing, and the GaN layer 3 has the same high surface flatness before and after annealing.
  • RMS root mean square roughness
  • FIG. 4A is a photoluminescence (PL) emission spectrum of the semiconductor stacked structure according to the example.
  • FIG. 4B is a graph showing the photon energy of 3.1 eV to 3.6 eV in FIG. This is an expanded spectrum.
  • the horizontal axis represents photon energy in eV units
  • the vertical axis represents PL emission intensity in arbitrary units.
  • the PL emission spectrum was measured by irradiating a helium-cadmium (He—Cd) laser with a wavelength of 325 nm at a power of 3 mW at a temperature of 77K.
  • He—Cd helium-cadmium
  • Curve C ai is the spectrum of the sample after ion implantation and as annealed
  • curve C 1200 is the spectrum of the sample annealed at 1200 ° C.
  • curve C 1230 is annealed at 1230 ° C. It is a spectrum of a sample. Luminescence with a peak around 3.28 eV was observed for both the sample annealed at 1200 ° C. and the sample annealed at 1230 ° C. This light emission is considered to be light emission by donor-acceptor pair (DAP) recombination from the value of energy.
  • DAP donor-acceptor pair
  • a p-side electrode 6 p is formed on the surface of the p-type GaN layer 3, and an n-side electrode 6 n is formed on the back surface of the n-type GaN substrate 1.
  • a Pd layer having a thickness of 20 nm is deposited by a vacuum evaporation method to form a p-side electrode 6p
  • a Ti layer having a thickness of 30 nm and an Al layer having a thickness of 200 nm are deposited by a vacuum evaporation method to form an n-side electrode. 6n was formed.
  • the n-side electrode 6n was formed on the entire back surface of the n-type GaN substrate 1.
  • a plurality of p-side electrodes 6p are discretely formed on the surface of the p-type GaN layer 3 to form an element structure capable of applying a voltage to each p-side electrode 6p.
  • the p-side electrode 6p having a diameter of 3 mm, a diameter of 1 mm, a diameter of 400 ⁇ m, a diameter of 200 ⁇ m, and a diameter of 100 ⁇ m was formed.
  • FIG. 5B is a graph showing current-voltage characteristics of the semiconductor stacked structure according to the example.
  • the sample shown here has an annealing temperature of 1230 ° C., and is a measurement for the element structure portion in which the p-side electrode 6p having a diameter of 400 ⁇ m is formed.
  • the horizontal axis represents voltage in V units, and the vertical axis represents current in A units.
  • a rectifying property in which a current rises in the vicinity of a forward bias of 5 V was observed, and it was found that a pn junction diode was formed.
  • Hall measurement was also performed, a Hall coefficient having a positive value could be obtained.
  • 6A and 6B are a photograph and an EL emission spectrum showing EL emission of the semiconductor stacked structure according to the example, respectively.
  • the sample shown here has an annealing temperature of 1230 ° C., and is a measurement for the element structure portion in which the p-side electrode 6p having a diameter of 400 ⁇ m is formed.
  • the horizontal axis indicates photon energy in eV units
  • the vertical axis indicates EL emission intensity in arbitrary units.
  • the EL emission was observed at room temperature, and the EL emission spectrum was measured with a LabRAM® HR-800 manufactured by Horiba, which can measure a very small amount of light with high sensitivity.
  • Blue-green EL emission was observed by forward bias application.
  • a peak near 3.1 eV and a peak near 2.4 eV were observed.
  • the peak in the vicinity of 3.1 eV is considered to be due to the light emission of recombination (DAP recombination) between the donor and the Mg acceptor, and the half width (full width) is estimated to be 0.6 eV or less or 0.5 eV or less.
  • the peak around 2.4 eV is considered to be due to light emission related to Mg acceptor and oxygen (O). Since these peak wavelengths correspond to ultraviolet and blue-green, respectively, it is considered that the emission color was observed as blue-green.
  • the emission intensity sharply decreases in the vicinity of 3.3 eV because the GaN substrate 1 has absorbed light.
  • the semiconductor multilayer structure according to the example exhibited current-voltage characteristics having rectification properties and EL emission having a peak in photon energy corresponding to DAP recombination. From these facts, it can be determined that the semiconductor laminated structure according to the example has a pn junction, and the Mg ion-implanted GaN layer 3 exhibits p-type conductivity.
  • FIG. 7A is a schematic cross-sectional view of a semiconductor multilayer structure according to a first comparative example.
  • An undoped GaN layer 13 having a thickness of 2000 nm is formed on a sapphire (Al 2 O 3 ) substrate 11 with a buffer layer 12 interposed therebetween.
  • Mg ions are implanted into the upper layer of the GaN layer 13 to form an Mg ion implanted GaN layer 14.
  • Impurity activation annealing was performed on the semiconductor multilayer structure of the first comparative example in which the Mg ion-implanted GaN layer 14 was formed. Two types of samples were produced in which the annealing temperature was changed to 1200 ° C. and 1250 ° C.
  • FIGS. 7B and 7C are AFM images of the surface of the Mg ion-implanted GaN layer 14 according to the first comparative example before and after annealing, respectively.
  • the annealing temperature of the sample shown here is 1250 ° C.
  • the RMS of the GaN layer 14 was 1.419 nm before annealing and 2.286 nm after annealing, and it was found that the surface flatness of the GaN layer 14 was deteriorated by annealing.
  • FIG. 8 is a PL emission spectrum of the semiconductor multilayer structure according to the first comparative example.
  • the measurement temperature is 77K.
  • Curve C ai is the spectrum of the sample after ion implantation and as annealed
  • curve C 1200 is the spectrum of the sample annealed at 1200 ° C.
  • curve C 1250 is annealed at 1250 ° C. It is a spectrum of a sample. Even in the sample annealed at the higher annealing temperature of 1250 ° C., no peak due to emission by acceptor-bound exciton (ABE) was observed. This indicates that defects due to ion implantation cannot be sufficiently recovered by annealing.
  • ABE acceptor-bound exciton
  • the surface flatness of the Mg ion-implanted GaN layer 14 was deteriorated and defects were not recovered by ion implantation.
  • the annealed Mg ion-implanted GaN layer 14 was a very high resistance layer.
  • the GaN layer 13 is epitaxially grown on the sapphire substrate 11 which is a different substrate. For this reason, it is difficult to improve the crystallinity of the GaN layer 13.
  • the defect density of the GaN layer 13 is on the order of 1 ⁇ 10 8 / cm 2 or more. This is considered to make it difficult to form a p-type GaN layer by Mg ion implantation.
  • FIG. 9 is an EL emission spectrum of the semiconductor laminated structure according to the second comparative example. This EL emission spectrum is described in E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions., HITEN 99. In this document, an attempt is made to form a p-type GaN layer by implanting Mg ions into a GaN layer formed on a silicon carbide (SiC) substrate which is a heterogeneous substrate.
  • SiC silicon carbide
  • the spectrum in FIG. 9 is broad and the emission color is white. In the spectrum of FIG. 9, no peak due to light emission caused by the Mg acceptor is observed.
  • the first comparative example and the second comparative example it can be said that it is difficult to form a good p-type GaN layer by implanting Mg ions into a GaN layer grown on a different substrate.
  • Mg ion implantation it is preferable to use at least a single-crystal GaN free-standing substrate in order to grow the GaN layer into which Mg ions are implanted with good crystallinity.
  • the inventors of the present invention used a single-crystal GaN free-standing substrate having very good crystallinity to form an epitaxially grown GaN layer as a base for an Mg ion-implanted GaN layer.
  • it has a pn junction formed by an n-type GaN layer and a p-type GaN layer into which Mg is ion-implanted, and the band gap energy of GaN is about 3.4 eV.
  • a GaN laminated structure showing EL emission having a peak at a slightly lower photon energy, for example, a photon energy of 3.0 eV or more could be produced.
  • the use of the p-type GaN layer by Mg ion implantation is not limited to a light emitting diode.
  • it can be applied to a transistor such as a power transistor.
  • semiconductor elements such as light emitting diodes and power transistors have a tendency to increase in size.
  • large elements 0.5 cm square or more, 1 cm square or more, and the like can be formed.
  • the GaN substrate 1 described in the embodiment has little variation in the defect density within the surface. For this reason, there is also an advantage that it is suitable for forming a large-sized element (for example, a size of 1 mm square or more). If there is a large variation in defect density in the surface and there is a region with a very high defect density, it is difficult to improve the performance of the entire device. For example, the light emission efficiency is lowered or the reverse breakdown voltage is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Led Devices (AREA)

Abstract

 半導体積層構造は、n型GaN層と、n型GaN層上に形成され、Mgがイオン注入されたp型GaN層とを有し、n型GaN層とp型GaN層とが形成するpn接合に電圧を印加することにより、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光を示す。

Description

半導体積層構造およびその製造方法
 本発明は、半導体積層構造およびその製造方法に関する。
 窒化ガリウム(GaN)は、シリコン(Si)やヒ化ガリウム(GaAs)等の他の半導体材料と比べ、絶縁破壊電界や飽和ドリフト速度が大きいため、高周波・高出力デバイス等に活用できると期待されている。
 この優れた物性をより広い分野で用いるためには、結晶成長後に行う不純物ドーピング技術の開発が重要である。GaNのn型不純物ドーピングには、SiやOが用いられ、イオン注入法を用いて作製された様々なデバイスが報告されている。
 一方、GaNのp型不純物ドーピングには、Mg、Be、Mg/P等を用いることが提案されている(例えば特許文献1、非特許文献1参照)。しかし、実際にイオン注入法によってp型GaN層を形成しようとすると、注入層が高抵抗化してしまう等、良好なp型層を形成することはできなかった。
特開2009-91175号公報
E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions. , HITEN 99.
 本発明の一目的は、イオン注入法によるp型GaN層の形成に関する新規な技術を提供することである。
 本発明の一観点によれば、
 n型GaN層と、
 前記n型GaN層上に形成され、Mgがイオン注入されたp型GaN層と
を有し、
 前記n型GaN層と前記p型GaN層とが形成するpn接合に電圧を印加することにより、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光を示す半導体積層構造が提供される。
 Mgがイオン注入されたp型GaN層を有し、エレクトロルミネセンス発光を生じさせるような良好なpn接合を有する半導体積層構造が得られる。
図1は、実施形態による半導体積層構造の形成工程を示す概略断面図である。 図2(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図2(B)は、実施例におけるMg濃度の深さ方向プロファイルである。 図3(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図3(B)および図3(C)は、それぞれ、実施例によるMgイオン注入GaN層の表面のアニール前およびアニール後のAFM像である。 図4(A)および図4(B)は、実施例による半導体積層構造のPL発光スペクトルである。 図5(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図5(B)は、実施例による半導体積層構造の電流電圧特性を示すグラフである。 図6(A)および図6(B)は、それぞれ、実施例による半導体積層構造のEL発光を示す写真およびEL発光スペクトルである。 図7(A)は、第1比較例による半導体積層構造の概略断面図であり、図7(B)および図7(C)は、それぞれ、第1比較例によるMgイオン注入GaN層の表面のアニール前およびアニール後のAFM像である。 図8は、第1比較例による半導体積層構造のPL発光スペクトルである。 図9は、第2比較例による半導体積層構造のEL発光スペクトルである。
 本願発明者らは、以下に説明するように、n型窒化ガリウム(GaN)層と、マグネシウム(Mg)がイオン注入されたp型GaN層とにより形成されたpn接合を有し、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス(EL)発光を示すGaN積層構造を、世界で初めて作製することに成功した。
 GaNは、約3.4eVのバンドギャップエネルギーを有する。n型GaN層とp型GaN層とにより良好にpn接合が形成されているとき、電圧を印加してEL発光させると、バンドギャップエネルギーの約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有する発光が観察されるはずである。このような発光は、例えばドナーアクセプターペア(DAP)の再結合によるものである。
 上記のようなEL発光が確認されれば、良好なp型GaN層が形成されていることの確認ともなる。Mgのイオン注入によりp型GaN層を形成しようとする試みはこれまでにもなされてきた。しかしながら、本願発明者らが作製するまでは、上記のようなEL発光を示すGaN積層構造を実際に作製できた例はなかった。つまり、Mgイオン注入による良好なp型GaN層を実際に形成できた例はなかった。
 本願発明者らは、このようなp型GaN層を形成できた理由の一つは、Mgがイオン注入されるGaN層(Mgイオン注入GaN層の下地となるGaN層)を、非常に良い結晶性で形成できたことにあるのではないかと考えている。Mgがイオン注入されるGaN層は、成長基板上にエピタキシャル成長された層である。したがって、成長基板として非常に結晶性の良い単結晶GaN自立基板を用いたことにより、このようなp型GaN層を形成できたのではないかと考えることもできる。
 以下、本発明の実施形態による半導体積層構造として、上記のようなGaN積層構造について説明する。実施形態による半導体積層構造の特徴、例えば成長基板の特徴等を、半導体積層構造の形成工程に沿って説明する。併せて、本実施形態の一例である実験(実施例)の結果について説明する。図1、図2(A)、図3(A)、および図5(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図である。
 図1を参照する。成長基板として、GaN基板1を用意する。GaN基板1は、単結晶GaNの自立基板であり、ハイドライド気相エピタキシー(HVPE)を用いた一手法であるボイド形成剥離(VAS)法で形成することができる。GaN基板1は、例えば、直径2インチの大面積のウエハとして製造される。実施例では、直径2インチのウエハから切り出した1cm角の領域を、GaN基板1として用いた。また、実施例では、n型不純物としてシリコン(Si)を2×1018/cm程度含み、電子濃度が2×1018/cm程度のn型導電性を有するGaN基板1を用いた。
 ある一枚のGaN基板1について、例えばカソードルミネセンス(CL)法により、例えば、3mm角の測定領域中で、1箇所当たり直径500μmの大きさの観察領域を走査して、10箇所程度の測定を行った場合、最小の欠陥密度が例えば3×10/cm程度であり、最大の欠陥密度が例えば3×10/cm程度であり、平均的な欠陥密度が例えば1×10/cm程度であり、最小の欠陥密度に対する最大の欠陥密度の比が例えば高々10倍程度である。
 このように、GaN基板1は、平均欠陥密度が非常に低く、また、面内での欠陥密度のばらつきが非常に少ない欠陥密度分布を有するという点で、結晶性が非常に良い。なお、GaN基板1上の測定領域をより広げても(例えば20mm角程度の広さとしても)、このような平均欠陥密度の低さ、および、面内での欠陥密度のばらつきの少なさは同程度といえ、測定箇所ごとの欠陥密度は、最大でも例えば3×10/cm以下といえる。GaN基板1の平均欠陥密度は、基板ごとに(製造ロットごとに)ある程度ばらつき得るが、例えば5×10/cm程度~3×10/cm程度の範囲内に収まり、典型的には2×10/cm程度である。
 上述のようなGaN基板1、つまり、平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないGaN基板1を用いたことを理由の一つとして、これまで作製することができなかったGaN積層構造を形成できたのではないかと、本願発明者らは考えている。
 より具体的には、GaN基板1として、平均欠陥密度が、例えば、2×10/cm以下であるものを用いることが好ましく、1×10/cm以下であるものを用いることがより好ましく、5×10/cm以下であるものを用いることがさらに好ましいと考えている。また、GaN基板1として、面内における最小の欠陥密度に対する最大の欠陥密度の比が、例えば、10倍以下であるものを用いることが好ましく、5倍以下であるものを用いることがより好ましいと考えている。平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないことは、測定される最大の欠陥密度が例えば3×10/cm以下に抑制されていることによると言うこともできる。
 GaN基板1上に、GaN層2をエピタキシャル成長させる。GaN層2の成膜方法として例えば有機金属気相エピタキシー(MOVPE)を用いることができる。ガリウム(Ga)原料として例えばトリメチルガリウムを用いることができ、窒素(N)原料として例えばアンモニアを用いることができる。GaN層2はGaN基板1の結晶性を引き継いで成長するので、GaN基板1と同程度に平均欠陥密度が低く、欠陥密度のばらつきが少ない良好な結晶性を有するGaN層2を形成することができる。
 実施例では、例えば厚さ2000nm~3000nm(例えば厚さ2500nm)のアンドープのGaN層2を形成した。ただし、実施例のGaN層2は、2次イオン質量分析(SIMS)により、5×1015/cm程度のSiを含んでいることがわかった。Ga原料または反応管に含まれたSiが不純物として取り込まれた可能性がある。実施例のGaN層2は、結果的に、n型不純物としてSiを5×1015/cm程度含み、電子濃度が1×1015/cm程度のn型導電性を有するGaN層として形成された。なお、GaN層2は、必要に応じ、n型不純物を含む原料を成膜時に用いてn型不純物を積極的にドープした層として形成することもできる。
 図2(A)を参照する。GaN層2の上層部に、p型不純物としてMgイオンを注入して、Mgの注入されたGaN層3を形成する。GaN層2上に例えば酸化シリコン膜や窒化シリコン膜等の注入保護膜4を形成し、注入保護膜4を介してMgイオン注入を行うことができる。注入保護膜4を介したイオン注入により、Mg濃度のピーク位置をGaN層3の表面に近づけることが容易になる。
 実施例では、GaN層2上に、注入保護膜4として酸化シリコン膜をスパッタ法により厚さ50nm堆積させた。注入保護膜4を介し、Mgイオンを注入エネルギー60keV、ドーズ量1.0×1014/cmで注入して、Mgの注入されたGaN層3を形成した。注入保護膜4は、その後、フッ酸で除去した。
 図2(B)を参照する。図2(B)は、実施例におけるMg濃度の深さ方向プロファイルであり、イオン注入のシミュレーションソフトウェアであるSRIMにより計算されたシミュレーション結果である。厚さ50nmの注入保護膜(SiO膜)4の表面から深さ80nmの位置で、つまり、GaN層3の表面から深さ30nmの位置で1×1019/cm程度のピークを有するMg濃度分布が形成されていると見積もられる。
 図3(A)を参照する。Mgイオン注入GaN層3を形成した後、不純物活性化アニールを行う。不純物活性化アニールによりGaN層3がp型導電性に反転し、n型導電性を有するn型GaN層2とp型導電性を有するp型GaN層3とが形成され、pn接合が形成されて、実施形態による半導体積層構造(n型GaN基板1、n型GaN層2、およびp型GaN層3が積層されたGaN積層構造)が形成される。なお、GaN基板1とエピタキシャル成長GaN層2とをまとめて、上述のような良好な結晶性を有しp型GaN層3の下地となるGaN層と捉えることもできる。
 不純物活性化アニールを、以下、単にアニールと呼ぶこともある。アニールは、例えば、窒素(N)雰囲気において、1100℃~1350℃の範囲の温度で、一定温度が20秒~30分維持されるような条件で行うことができる。GaN層3上に例えば窒化シリコン膜等のアニール保護膜5を例えば厚さ40nm~60nm形成し、アニール保護膜5が形成された状態でアニールを行うことができる。アニール保護膜5により、アニールの際の高温に起因したGaN層3の表面の荒れを防ぐことができる。
 実施例では、GaN層3上に、アニール保護膜5として窒化シリコン膜をスパッタ法により厚さ50nm堆積させた。そして、アニール保護膜5が形成された状態で、N雰囲気においてアニールを行った。アニール温度を1200℃、1230℃と変化させた2種の試料を作製した。アニール保護膜5は、その後、フッ酸系溶液で除去した。
 図3(B)および図3(C)を参照する。図3(B)および図3(C)は、それぞれ、実施例によるMgイオン注入GaN層3の表面のアニール前およびアニール後の原子間力顕微鏡(AFM)像である。ここで図示された試料のアニール温度は1230℃である。GaN層3の二乗平均表面粗さ(RMS)は、アニール前で0.463nmであり、アニール後で0.274nmであり、GaN層3は、アニールの前後とも同程度の高い表面平坦性を有していた。なお、アニール後のRMSの方がやや小さく、表面平坦性が良くなっているように見えるのは、アニール前後で正確に同じ場所を測定できなかったことに起因すると考えられる。
 図4(A)および図4(B)を参照する。図4(A)は、実施例による半導体積層構造のフォトルミネセンス(PL)発光スペクトルであり、図4(B)は、図4(A)のフォトンエネルギー3.1eV~3.6eVの部分を拡大したスペクトルである。図4(A)および図4(B)のそれぞれにおいて、横軸はフォトンエネルギーをeV単位で示し、縦軸はPL発光強度を任意単位で示す。PL発光スペクトルは、温度77Kにおいて、波長325nmのヘリウム-カドミウム(He-Cd)レーザーを3mWのパワーで照射して測定した。
 曲線Caiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C1200が、1200℃でアニールされた試料のスペクトルであり、曲線C1230が、1230℃でアニールされた試料のスペクトルである。1200℃でアニールされた試料および1230℃でアニールされた試料の両方で、3.28eV付近にピークを有する発光が観察された。この発光は、エネルギーの値から、ドナーアクセプターペア(DAP)再結合による発光であると考えられる。なお、MOVPEでMgドープのp型GaN層を成長させた試料についてこれと同様のPL発光スペクトルを確認しており、この発光は、Mgアクセプタ起因の発光であると思われる。
 1230℃でアニールされた試料では、3.47eV付近にピークを有する発光が明瞭に観察された。この発光は、エネルギーの値、またピークの形状から、アクセプタ束縛エキシトン(ABE)による発光であると考えられる。アニール温度を1200℃から1230℃に上昇させることにより、イオン注入によって生じた欠陥をより回復させ、結晶性をより向上させることができるといえる。なお、DAP-1LO、ABE-1LOと示した発光ピークは、それぞれ、DAP再結合による発光、ABEによる発光のフォノンレプリカによるものと考えられる。
 図5(A)を参照する。p型GaN層3の表面上にp側電極6pを形成し、n型GaN基板1の裏面上にn側電極6nを形成する。p側電極6pとn側電極6nとを形成することで、電圧印加により、実施形態による半導体積層構造の電流電圧特性およびEL発光特性を測定することができる。
 実施例では、厚さ20nmのPd層を真空蒸着法により堆積してp側電極6pを形成し、厚さ30nmのTi層と厚さ200nmのAl層を真空蒸着法により堆積してn側電極6nを形成した。n側電極6nはn型GaN基板1の裏面上の全面に形成した。一方、p側電極6pはp型GaN層3の表面上に離散的に複数個形成して、p側電極6pごとに電圧印加できる素子構造を形成した。具体的には、直径3mm、直径1mm、直径400μm、直径200μm、および直径100μmのp側電極6pを形成した。
 図5(B)を参照する。図5(B)は、実施例による半導体積層構造の電流電圧特性を示すグラフである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。横軸は電圧をV単位で示し、縦軸は電流をA単位で示す。順方向バイアス5V付近で電流が立ち上がる整流性が観察され、pn接合ダイオードが形成されていることがわかった。なお、ホール測定も行ったところ、プラスの値を有するホール係数を得ることができた。
 図6(A)および図6(B)を参照する。図6(A)および図6(B)は、それぞれ、実施例による半導体積層構造のEL発光を示す写真およびEL発光スペクトルである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。図6(B)の横軸はフォトンエネルギーをeV単位で示し、縦軸はEL発光強度を任意単位で示す。EL発光は室温で観察し、EL発光スペクトルは、微量な光を感度良く測定できるHoriba製LabRAM HR-800で測定した。
 順方向バイアス印加により、青緑色のEL発光が観察された。EL発光スペクトルには、3.1eV付近のピークと2.4eV付近のピークとが観察された。3.1eV付近のピークは、ドナーとMgアクセプタとの間の再結合(DAP再結合)の発光によるものと考えられ、半値幅(全幅)が0.6eV以下または0.5eV以下と見積もられる。2.4eV付近のピークは、Mgアクセプタと酸素(O)とに関連する発光によるものと考えられる。これらのピーク波長は、それぞれ、紫外、青緑に対応しているため、発光色は青緑色に観察されたと考えられる。なお、3.3eV付近で発光強度が急激に低下しているのは、GaN基板1が光を吸収してしまったためであると考えられる。
 以上説明したように、実施例による半導体積層構造は、整流性を持つ電流電圧特性を示すとともに、DAP再結合に対応するフォトンエネルギーにピークを有するEL発光を示した。これらのことより、実施例による半導体積層構造はpn接合を有し、Mgイオン注入GaN層3はp型導電性を示していると判断することができる。
 次に、比較形態として、第1比較例および第2比較例による半導体積層構造について説明する。
 図7(A)は、第1比較例による半導体積層構造の概略断面図である。サファイア(Al)基板11上に、バッファ層12を介し、アンドープのGaN層13が厚さ2000nm形成されている。GaN層13の上層部にMgイオンが注入されて、Mgイオン注入GaN層14が形成されている。
 Mgイオン注入GaN層14が形成された第1比較例の半導体積層構造に対し、不純物活性化アニールを行った。アニール温度を1200℃、1250℃と変化させた2種の試料を作製した。
 図7(B)および図7(C)を参照する。図7(B)および図7(C)は、それぞれ、第1比較例によるMgイオン注入GaN層14の表面のアニール前およびアニール後のAFM像である。ここで図示された試料のアニール温度は1250℃である。GaN層14のRMSは、アニール前で1.419nmであり、アニール後で2.286nmであり、GaN層14の表面平坦性は、アニールにより悪化してしまうことがわかった。
 図8を参照する。図8は、第1比較例による半導体積層構造のPL発光スペクトルである。測定温度は77Kである。曲線Caiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C1200が、1200℃でアニールされた試料のスペクトルであり、曲線C1250が、1250℃でアニールされた試料のスペクトルである。高い方のアニール温度である1250℃でアニールされた試料においても、アクセプタ束縛エキシトン(ABE)による発光によるピークが観察されなかった。これは、イオン注入による欠陥がアニールによって十分には回復できないことを示している。
 このように、第1比較例では、アニールを行っても、Mgイオン注入GaN層14の表面平坦性が悪化し、イオン注入による欠陥の回復が行われないことがわかった。なお、アニール後のMgイオン注入GaN層14はかなり高抵抗な層となっていた。
 第1比較例では、異種基板であるサファイア基板11上にGaN層13をエピタキシャル成長させている。このため、GaN層13の結晶性を良くすることが困難である。例えば、GaN層13の欠陥密度は、1×10/cm以上のオーダーとなってしまう。これに起因して、Mgイオン注入によるp型GaN層の形成が困難となるものと考えられる。
 図9は、第2比較例による半導体積層構造のEL発光スペクトルである。このEL発光スペクトルは、E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions. , HITEN 99.(非特許文献1)に記載されているものである。この文献では、異種基板である炭化シリコン(SiC)基板上に形成されたGaN層にMgイオンを注入することにより、p型GaN層を形成することが試みられている。
 図9のスペクトルはブロードであり、発光色は白色とされている。図9のスペクトルでは、Mgアクセプタ起因の発光によるピークが観察されていない。
 第1比較例および第2比較例より、異種基板上に成長させたGaN層にMgイオンを注入して良好なp型GaN層を形成することは困難であるといえる。Mgイオン注入による良好なp型GaN層の形成には、Mgイオンが注入されるGaN層を結晶性良く成長させるために、少なくとも、単結晶GaNの自立基板を用いることが好ましい。
 上述のように、本願発明者らは、実施例として説明した実験において、非常に良好な結晶性を持つ単結晶GaN自立基板を用いて、Mgイオン注入GaN層の下地となるエピタキシャル成長GaN層を非常に良好な結晶性で成長させることにより、n型GaN層と、Mgがイオン注入されたp型GaN層とにより形成されたpn接合を有し、GaNのバンドギャップエネルギーである約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有するEL発光を示すGaN積層構造を作製することができた。
 なお、上記実施例では、Mgイオン注入によるp型GaN層の形成を確認するため、発光ダイオードを作製し、EL発光を観察した。しかし、Mgイオン注入によるp型GaN層の用途は、発光ダイオードに限定されない。例えば、パワートランジスタ等のトランジスタに応用することもできる。
 近年、発光ダイオードやパワートランジスタ等の半導体素子は大型化する趨勢があり、例えば0.5cm角以上や1cm角以上等の大型の素子を形成できることが望まれている。実施形態で説明したGaN基板1は、面内での欠陥密度のばらつきが少ない。このため、大型(例えば1mm角以上の大きさ)の素子を形成するのに好適という利点も有する。面内での欠陥密度のばらつきが大きく、欠陥密度の非常に高い領域が存在すると、素子全体としての性能を高めることが難しい。例えば、発光効率が低下したり、逆耐圧が低下したりしてしまう。
 以上、実施形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
1 GaN基板
2 エピタキシャル成長GaN層、n型GaN層
3 Mgイオン注入GaN層、p型GaN層
4 注入保護膜
5 アニール保護膜
6p p側電極
6n n側電極

Claims (10)

  1.  n型GaN層と、
     前記n型GaN層上に形成され、Mgがイオン注入されたp型GaN層と
    を有し、
     前記n型GaN層と前記p型GaN層とが形成するpn接合に電圧を印加することにより、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光を示す半導体積層構造。
  2.  前記n型GaN層は、測定される最大の欠陥密度が3×10/cm以下である請求項1に記載の半導体積層構造。
  3.  前記n型GaN層は、面内における最小の欠陥密度に対する最大の欠陥密度の比が10倍以下である請求項1または2に記載の半導体積層構造。
  4.  前記n型GaN層は、平均欠陥密度が2×10/cm以下である請求項1~3のいずれか1項に記載の半導体積層構造。
  5.  測定される最大の欠陥密度が3×10/cm以下であるGaN層と、
     前記GaN層上に形成され、Mgがイオン注入されたp型GaN層と
    を有する半導体積層構造。
  6.  前記n型GaN層は、面内における最小の欠陥密度に対する最大の欠陥密度の比が10倍以下である請求項5に記載の半導体積層構造。
  7.  前記n型GaN層は、平均欠陥密度が2×10/cm以下である請求項5または6に記載の半導体積層構造。
  8.  測定される最大の欠陥密度が3×10/cm以下であるGaN基板上に、GaN層
    をエピタキシャル成長させる工程と、
     前記GaN層に、Mgイオンを注入する工程と、
     前記Mgイオンを注入する工程の後、アニールを行う工程と
    を有する半導体積層構造の製造方法。
  9.  前記GaN層は、面内における最小の欠陥密度に対する最大の欠陥密度の比が10倍以下である請求項8に記載の半導体積層構造の製造方法。
  10.  前記GaN層は、平均欠陥密度が2×10/cm以下である請求項8または9に記載の半導体積層構造の製造方法。
PCT/JP2015/066313 2014-06-10 2015-06-05 半導体積層構造およびその製造方法 WO2015190406A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15806188.7A EP3157068B1 (en) 2014-06-10 2015-06-05 Semiconductor multilayer structure and method for producing same
US15/317,838 US9899570B2 (en) 2014-06-10 2015-06-05 Semiconductor multilayer structure and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-119819 2014-06-10
JP2014119819A JP6363403B2 (ja) 2014-06-10 2014-06-10 半導体積層構造およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015190406A1 true WO2015190406A1 (ja) 2015-12-17

Family

ID=54833498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066313 WO2015190406A1 (ja) 2014-06-10 2015-06-05 半導体積層構造およびその製造方法

Country Status (5)

Country Link
US (1) US9899570B2 (ja)
EP (1) EP3157068B1 (ja)
JP (1) JP6363403B2 (ja)
TW (1) TW201603263A (ja)
WO (1) WO2015190406A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388778B2 (en) * 2016-11-18 2019-08-20 Nexperia B.V. Low resistance and leakage device
US10636663B2 (en) 2017-03-29 2020-04-28 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device including implanting impurities into an implanted region of a semiconductor layer and annealing the implanted region
JP6801556B2 (ja) * 2017-03-29 2020-12-16 豊田合成株式会社 半導体装置の製造方法
JP2019062139A (ja) * 2017-09-28 2019-04-18 豊田合成株式会社 半導体装置の製造方法
JP6844520B2 (ja) 2017-12-12 2021-03-17 株式会社豊田中央研究所 Iii族窒化物半導体基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128189A (ja) * 2002-10-02 2004-04-22 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体の製造方法
JP2004356257A (ja) * 2003-05-28 2004-12-16 Toyota Central Res & Dev Lab Inc p型III族窒化物半導体の製造方法
JP2005340747A (ja) * 2003-11-04 2005-12-08 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、iii−v族窒化物系半導体デバイス、iii−v族窒化物系半導体基板のロット
JP2009170604A (ja) * 2008-01-15 2009-07-30 Sumitomo Electric Ind Ltd p型窒化ガリウム系半導体領域を形成する方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657335A (en) * 1993-11-01 1997-08-12 The Regents, University Of California P-type gallium nitride
JP3631724B2 (ja) 2001-03-27 2005-03-23 日本電気株式会社 Iii族窒化物半導体基板およびその製造方法
US7276779B2 (en) * 2003-11-04 2007-10-02 Hitachi Cable, Ltd. III-V group nitride system semiconductor substrate
JP4340866B2 (ja) * 2003-11-14 2009-10-07 日立電線株式会社 窒化物半導体基板及びその製造方法
US7339255B2 (en) 2004-08-24 2008-03-04 Kabushiki Kaisha Toshiba Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
JP2009091175A (ja) 2007-10-04 2009-04-30 Sumitomo Electric Ind Ltd GaNエピタキシャル基板、半導体デバイス、GaNエピタキシャル基板及び半導体デバイスの製造方法
JP2010182950A (ja) 2009-02-06 2010-08-19 Japan Gore Tex Inc 太陽電池モジュール用裏面保護シート
JP5434111B2 (ja) 2009-02-06 2014-03-05 三菱化学株式会社 自立基板の製造方法
JP5407385B2 (ja) * 2009-02-06 2014-02-05 住友電気工業株式会社 複合基板、エピタキシャル基板、半導体デバイス及び複合基板の製造方法
JP2012064926A (ja) 2010-08-17 2012-03-29 Toyobo Co Ltd 太陽電池用易接着性黒色ポリエステルフィルムおよびそれを用いたバックシート
JP2014051423A (ja) 2012-09-10 2014-03-20 Hitachi Metals Ltd Iii族窒化物系半導体結晶、iii族窒化物半導体基板、iii族窒化物半導体自立基板、窒化物半導体デバイス、及び整流ダイオード
JP6190582B2 (ja) * 2012-10-26 2017-08-30 古河電気工業株式会社 窒化物半導体装置の製造方法
JP6082229B2 (ja) 2012-10-30 2017-02-15 住友化学株式会社 窒化物半導体素子およびその製造方法
JP6242678B2 (ja) 2013-12-25 2017-12-06 住友化学株式会社 窒化物半導体素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128189A (ja) * 2002-10-02 2004-04-22 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体の製造方法
JP2004356257A (ja) * 2003-05-28 2004-12-16 Toyota Central Res & Dev Lab Inc p型III族窒化物半導体の製造方法
JP2005340747A (ja) * 2003-11-04 2005-12-08 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、iii−v族窒化物系半導体デバイス、iii−v族窒化物系半導体基板のロット
JP2009170604A (ja) * 2008-01-15 2009-07-30 Sumitomo Electric Ind Ltd p型窒化ガリウム系半導体領域を形成する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3157068A4 *

Also Published As

Publication number Publication date
US20170141270A1 (en) 2017-05-18
TW201603263A (zh) 2016-01-16
JP6363403B2 (ja) 2018-07-25
EP3157068A4 (en) 2017-11-22
EP3157068A1 (en) 2017-04-19
US9899570B2 (en) 2018-02-20
EP3157068B1 (en) 2022-08-03
JP2015233097A (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
Kikuchi et al. InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate
US7294859B2 (en) Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
JP6363403B2 (ja) 半導体積層構造およびその製造方法
JP6902255B2 (ja) 紫外線発光素子
JPWO2007138658A1 (ja) 窒化物半導体発光素子
JPWO2007138656A1 (ja) 窒化物半導体発光素子
JP2016513880A (ja) InGaNを含んでいる活性領域を有している発光ダイオード半導体構造
US20110204483A1 (en) Electroluminescent device for the production of ultra-violet light
JP5528120B2 (ja) 改良エピタキシャル堆積のために炭化珪素基板を処理する方法、及びその方法によって得られる構造とデバイス
US8306083B2 (en) High performance ZnO-based laser diodes
JP2018154553A (ja) GaN基板
US8294146B2 (en) ZnO-containing semiconductor layer and device using the same
Amano et al. Novel aspects of the growth of nitrides by MOVPE
WO2017180633A1 (en) Method to achieve active p-type layer/layers in iii-nitride epitaxial or device structures having buried p-type layers
JP6984571B2 (ja) 半導体装置の製造方法
CN109148658B (zh) PLD结合MOCVD法在Si衬底上生长AlGaN基的紫外LED结构及制备方法
JP2011096902A (ja) ZnO系化合物半導体素子及びその製造方法
JP2009158702A (ja) 発光デバイス
JP5898656B2 (ja) Iii族窒化物半導体素子
KR101101954B1 (ko) 확산방지층을 가지는 전극구조체를 구비한 수직형 구조의 그룹 Ⅲ족 n형 질화물계 반도체 소자 및 이를 포함하는 발광다이오드 소자
WO2022261541A1 (en) ELECTRON OVERFLOW OF AIGaN DEEP ULTRAVIOLET LIGHT EMITTING DIODES
JP5547989B2 (ja) ZnO系半導体素子の製造方法
JP3884717B2 (ja) 窒化ガリウム系化合物半導体の製造方法
Tetsuyama et al. Fabrication of UV-LED using ZnO nanowires directly grown on p-GaN film by NAPLD
Kalinina et al. ZnO/AlGaN Ultraviolet Light Emitting Diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15317838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015806188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806188

Country of ref document: EP