JP2018154553A - GaN基板 - Google Patents

GaN基板 Download PDF

Info

Publication number
JP2018154553A
JP2018154553A JP2018123656A JP2018123656A JP2018154553A JP 2018154553 A JP2018154553 A JP 2018154553A JP 2018123656 A JP2018123656 A JP 2018123656A JP 2018123656 A JP2018123656 A JP 2018123656A JP 2018154553 A JP2018154553 A JP 2018154553A
Authority
JP
Japan
Prior art keywords
gan layer
defect density
type gan
peak
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018123656A
Other languages
English (en)
Inventor
金田 直樹
Naoki Kaneda
直樹 金田
三島 友義
Tomoyoshi Mishima
友義 三島
中村 徹
Toru Nakamura
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2018123656A priority Critical patent/JP2018154553A/ja
Publication of JP2018154553A publication Critical patent/JP2018154553A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

【課題】イオン注入法によるp型GaN層の形成に関する新規な技術を提供する。
【解決手段】 窒化ガリウムの単結晶からなり、自立可能に構成されたGaN基板であって、最大の欠陥密度が3×10/cm以下であり、面内における最小の欠陥密度に対する最大の欠陥密度の比が10倍以下であり、GaN基板上に、n型GaN層と、Mgがイオン注入されたp型GaN層と、を順に積層させ、n型GaN層とp型GaN層とが形成するpn接合に電圧を印加した際に、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光が得られる。
【選択図】図6

Description

本発明は、半導体積層構造およびその製造方法に関する。
窒化ガリウム(GaN)は、シリコン(Si)やヒ化ガリウム(GaAs)等の他の半導体材料と比べ、絶縁破壊電界や飽和ドリフト速度が大きいため、高周波・高出力デバイス等に活用できると期待されている。
この優れた物性をより広い分野で用いるためには、結晶成長後に行う不純物ドーピング技術の開発が重要である。GaNのn型不純物ドーピングには、SiやOが用いられ、イオン注入法を用いて作製された様々なデバイスが報告されている。
一方、GaNのp型不純物ドーピングには、Mg、Be、Mg/P等を用いることが提案されている(例えば特許文献1、非特許文献1参照)。しかし、実際にイオン注入法によってp型GaN層を形成しようとすると、注入層が高抵抗化してしまう等、良好なp型層を形成することはできなかった。
特開2009−91175号公報
E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions. , HITEN 99.
本発明の一目的は、イオン注入法によるp型GaN層の形成に関する新規な技術を提供することである。
本発明の一観点によれば、
n型GaN層と、
前記n型GaN層上に形成され、Mgがイオン注入されたp型GaN層と
を有し、
前記n型GaN層と前記p型GaN層とが形成するpn接合に電圧を印加することにより、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光を示す半導体積層構造が提供される。
Mgがイオン注入されたp型GaN層を有し、エレクトロルミネセンス発光を生じさせるような良好なpn接合を有する半導体積層構造が得られる。
図1は、実施形態による半導体積層構造の形成工程を示す概略断面図である。 図2(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図2(B)は、実施例におけるMg濃度の深さ方向プロファイルである。 図3(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図3(B)および図3(C)は、それぞれ、実施例によるMgイオン注入GaN層の表面のアニール前およびアニール後のAFM像である。 図4(A)および図4(B)は、実施例による半導体積層構造のPL発光スペクトルである。 図5(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図であり、図5(B)は、実施例による半導体積層構造の電流電圧特性を示すグラフである。 図6(A)および図6(B)は、それぞれ、実施例による半導体積層構造のEL発光を示す写真およびEL発光スペクトルである。 図7(A)は、第1比較例による半導体積層構造の概略断面図であり、図7(B)および図7(C)は、それぞれ、第1比較例によるMgイオン注入GaN層の表面のアニール前およびアニール後のAFM像である。 図8は、第1比較例による半導体積層構造のPL発光スペクトルである。 図9は、第2比較例による半導体積層構造のEL発光スペクトルである。
本願発明者らは、以下に説明するように、n型窒化ガリウム(GaN)層と、マグネシウム(Mg)がイオン注入されたp型GaN層とにより形成されたpn接合を有し、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス(EL)発光を示すGaN積層構造を、世界で初めて作製することに成功した。
GaNは、約3.4eVのバンドギャップエネルギーを有する。n型GaN層とp型GaN層とにより良好にpn接合が形成されているとき、電圧を印加してEL発光させると、バンドギャップエネルギーの約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有する発光が観察されるはずである。このような発光は、例えばドナーアクセプターペア(DAP)の再結合によるものである。
上記のようなEL発光が確認されれば、良好なp型GaN層が形成されていることの確認ともなる。Mgのイオン注入によりp型GaN層を形成しようとする試みはこれまでにもなされてきた。しかしながら、本願発明者らが作製するまでは、上記のようなEL発光を示すGaN積層構造を実際に作製できた例はなかった。つまり、Mgイオン注入による良好なp型GaN層を実際に形成できた例はなかった。
本願発明者らは、このようなp型GaN層を形成できた理由の一つは、Mgがイオン注入されるGaN層(Mgイオン注入GaN層の下地となるGaN層)を、非常に良い結晶性で形成できたことにあるのではないかと考えている。Mgがイオン注入されるGaN層は、成長基板上にエピタキシャル成長された層である。したがって、成長基板として非常に結晶性の良い単結晶GaN自立基板を用いたことにより、このようなp型GaN層を形成できたのではないかと考えることもできる。
以下、本発明の実施形態による半導体積層構造として、上記のようなGaN積層構造について説明する。実施形態による半導体積層構造の特徴、例えば成長基板の特徴等を、半導体積層構造の形成工程に沿って説明する。併せて、本実施形態の一例である実験(実施例)の結果について説明する。図1、図2(A)、図3(A)、および図5(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図である。
図1を参照する。成長基板として、GaN基板1を用意する。GaN基板1は、単結晶GaNの自立基板であり、ハイドライド気相エピタキシー(HVPE)を用いた一手法であるボイド形成剥離(VAS)法で形成することができる。GaN基板1は、例えば、直径2インチの大面積のウエハとして製造される。実施例では、直径2インチのウエハから切り出した1cm角の領域を、GaN基板1として用いた。また、実施例では、n型不純物としてシリコン(Si)を2×1018/cm程度含み、電子濃度が2×1018/cm程度のn型導電性を有するGaN基板1を用いた。
ある一枚のGaN基板1について、例えばカソードルミネセンス(CL)法により、例えば、3mm角の測定領域中で、1箇所当たり直径500μmの大きさの観察領域を走査して、10箇所程度の測定を行った場合、最小の欠陥密度が例えば3×10/cm程度であり、最大の欠陥密度が例えば3×10/cm程度であり、平均的な欠陥密度が例えば1×10/cm程度であり、最小の欠陥密度に対する最大の欠陥密度の比が例えば高々10倍程度である。
このように、GaN基板1は、平均欠陥密度が非常に低く、また、面内での欠陥密度のばらつきが非常に少ない欠陥密度分布を有するという点で、結晶性が非常に良い。なお、GaN基板1上の測定領域をより広げても(例えば20mm角程度の広さとしても)、このような平均欠陥密度の低さ、および、面内での欠陥密度のばらつきの少なさは同程度といえ、測定箇所ごとの欠陥密度は、最大でも例えば3×10/cm以下といえる。GaN基板1の平均欠陥密度は、基板ごとに(製造ロットごとに)ある程度ばらつき得るが、例えば5×10/cm程度〜3×10/cm程度の範囲内に収まり、典型的には2×10/cm程度である。
上述のようなGaN基板1、つまり、平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないGaN基板1を用いたことを理由の一つとして、これまで作製することができなかったGaN積層構造を形成できたのではないかと、本願発明者らは考えている。
より具体的には、GaN基板1として、平均欠陥密度が、例えば、2×10/cm以下であるものを用いることが好ましく、1×10/cm以下であるものを用いることがより好ましく、5×10/cm以下であるものを用いることがさらに好ましいと考えている。また、GaN基板1として、面内における最小の欠陥密度に対する最大の欠陥密度の比が、例えば、10倍以下であるものを用いることが好ましく、5倍以下であるものを用いることがより好ましいと考えている。平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないことは、測定される最大の欠陥密度が例えば3×10/cm以下に抑制されていることによると言うこともできる。
GaN基板1上に、GaN層2をエピタキシャル成長させる。GaN層2の成膜方法として例えば有機金属気相エピタキシー(MOVPE)を用いることができる。ガリウム(Ga)原料として例えばトリメチルガリウムを用いることができ、窒素(N)原料として例えばアンモニアを用いることができる。GaN層2はGaN基板1の結晶性を引き継いで成長するので、GaN基板1と同程度に平均欠陥密度が低く、欠陥密度のばらつきが少ない良好な結晶性を有するGaN層2を形成することができる。
実施例では、例えば厚さ2000nm〜3000nm(例えば厚さ2500nm)のアンドープのGaN層2を形成した。ただし、実施例のGaN層2は、2次イオン質量分析(SIMS)により、5×1015/cm程度のSiを含んでいることがわかった。Ga原料または反応管に含まれたSiが不純物として取り込まれた可能性がある。実施例のGaN層2は、結果的に、n型不純物としてSiを5×1015/cm程度含み、電子濃度が1×1015/cm程度のn型導電性を有するGaN層として形成された。なお、GaN層2は、必要に応じ、n型不純物を含む原料を成膜時に用いてn型不純物を積極的にドープした層として形成することもできる。
図2(A)を参照する。GaN層2の上層部に、p型不純物としてMgイオンを注入して、Mgの注入されたGaN層3を形成する。GaN層2上に例えば酸化シリコン膜や窒化シリコン膜等の注入保護膜4を形成し、注入保護膜4を介してMgイオン注入を行うことができる。注入保護膜4を介したイオン注入により、Mg濃度のピーク位置をGaN層3の表面に近づけることが容易になる。
実施例では、GaN層2上に、注入保護膜4として酸化シリコン膜をスパッタ法により厚さ50nm堆積させた。注入保護膜4を介し、Mgイオンを注入エネルギー60keV、ドーズ量1.0×1014/cmで注入して、Mgの注入されたGaN層3を形成した。注入保護膜4は、その後、フッ酸で除去した。
図2(B)を参照する。図2(B)は、実施例におけるMg濃度の深さ方向プロファイルであり、イオン注入のシミュレーションソフトウェアであるSRIMにより計算されたシミュレーション結果である。厚さ50nmの注入保護膜(SiO膜)4の表面から深さ80nmの位置で、つまり、GaN層3の表面から深さ30nmの位置で1×1019/cm程度のピークを有するMg濃度分布が形成されていると見積もられる。
図3(A)を参照する。Mgイオン注入GaN層3を形成した後、不純物活性化アニールを行う。不純物活性化アニールによりGaN層3がp型導電性に反転し、n型導電性を有するn型GaN層2とp型導電性を有するp型GaN層3とが形成され、pn接合が形成されて、実施形態による半導体積層構造(n型GaN基板1、n型GaN層2、およびp型GaN層3が積層されたGaN積層構造)が形成される。なお、GaN基板1とエピタキシャル成長GaN層2とをまとめて、上述のような良好な結晶性を有しp型GaN層3の下地となるGaN層と捉えることもできる。
不純物活性化アニールを、以下、単にアニールと呼ぶこともある。アニールは、例えば、窒素(N)雰囲気において、1100℃〜1350℃の範囲の温度で、一定温度が20秒〜30分維持されるような条件で行うことができる。GaN層3上に例えば窒化シリコン膜等のアニール保護膜5を例えば厚さ40nm〜60nm形成し、アニール保護膜5が形成された状態でアニールを行うことができる。アニール保護膜5により、アニールの際の高温に起因したGaN層3の表面の荒れを防ぐことができる。
実施例では、GaN層3上に、アニール保護膜5として窒化シリコン膜をスパッタ法により厚さ50nm堆積させた。そして、アニール保護膜5が形成された状態で、N雰囲気においてアニールを行った。アニール温度を1200℃、1230℃と変化させた2種の試料を作製した。アニール保護膜5は、その後、フッ酸系溶液で除去した。
図3(B)および図3(C)を参照する。図3(B)および図3(C)は、それぞれ、実施例によるMgイオン注入GaN層3の表面のアニール前およびアニール後の原子間力顕微鏡(AFM)像である。ここで図示された試料のアニール温度は1230℃である。GaN層3の二乗平均表面粗さ(RMS)は、アニール前で0.463nmであり、アニール後で0.274nmであり、GaN層3は、アニールの前後とも同程度の高い表面平坦性を有していた。なお、アニール後のRMSの方がやや小さく、表面平坦性が良くなっているように見えるのは、アニール前後で正確に同じ場所を測定できなかったことに起因すると考えられる。
図4(A)および図4(B)を参照する。図4(A)は、実施例による半導体積層構造のフォトルミネセンス(PL)発光スペクトルであり、図4(B)は、図4(A)のフォトンエネルギー3.1eV〜3.6eVの部分を拡大したスペクトルである。図4(A)および図4(B)のそれぞれにおいて、横軸はフォトンエネルギーをeV単位で示し、縦軸はPL発光強度を任意単位で示す。PL発光スペクトルは、温度77Kにおいて、波長325nmのヘリウム−カドミウム(He−Cd)レーザーを3mWのパワーで照射して測定した。
曲線Caiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C1200が、1200℃でアニールされた試料のスペクトルであり、曲線C1230が、1230℃でアニールされた試料のスペクトルである。1200℃でアニールされた試料および1230℃でアニールされた試料の両方で、3.28eV付近にピークを有する発光が観察された。この発光は、エネルギーの値から、ドナーアクセプターペア(DAP)再結合による発光であると考えられる。なお、MOVPEでMgドープのp型GaN層を成長させた試料についてこれと同様のPL発光スペクトルを確認しており、この発光は、Mgアクセプタ起因の発光であると思われる。
1230℃でアニールされた試料では、3.47eV付近にピークを有する発光が明瞭に観察された。この発光は、エネルギーの値、またピークの形状から、アクセプタ束縛エキシトン(ABE)による発光であると考えられる。アニール温度を1200℃から1230℃に上昇させることにより、イオン注入によって生じた欠陥をより回復させ、結晶性をより向上させることができるといえる。なお、DAP−1LO、ABE−1LOと示した発光ピークは、それぞれ、DAP再結合による発光、ABEによる発光のフォノンレプリカによるものと考えられる。
図5(A)を参照する。p型GaN層3の表面上にp側電極6pを形成し、n型GaN基板1の裏面上にn側電極6nを形成する。p側電極6pとn側電極6nとを形成することで、電圧印加により、実施形態による半導体積層構造の電流電圧特性およびEL発光特性を測定することができる。
実施例では、厚さ20nmのPd層を真空蒸着法により堆積してp側電極6pを形成し、厚さ30nmのTi層と厚さ200nmのAl層を真空蒸着法により堆積してn側電極6nを形成した。n側電極6nはn型GaN基板1の裏面上の全面に形成した。一方、p側電極6pはp型GaN層3の表面上に離散的に複数個形成して、p側電極6pごとに電圧印加できる素子構造を形成した。具体的には、直径3mm、直径1mm、直径400μm、直径200μm、および直径100μmのp側電極6pを形成した。
図5(B)を参照する。図5(B)は、実施例による半導体積層構造の電流電圧特性を示すグラフである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。横軸は電圧をV単位で示し、縦軸は電流をA単位で示す。順方向バイアス5V付近で電流が立ち上がる整流性が観察され、pn接合ダイオードが形成されていることがわかった。なお、ホール測定も行ったところ、プラスの値を有するホール係数を得ることができた。
図6(A)および図6(B)を参照する。図6(A)および図6(B)は、それぞれ、実施例による半導体積層構造のEL発光を示す写真およびEL発光スペクトルである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。図6(B)の横軸はフォトンエネルギーをeV単位で示し、縦軸はEL発光強度を任意単位で示す。EL発光は室温で観察し、EL発光スペクトルは、微量な光を感度良く測定できるHoriba製LabRAM HR−800で測定した。
順方向バイアス印加により、青緑色のEL発光が観察された。EL発光スペクトルには、3.1eV付近のピークと2.4eV付近のピークとが観察された。3.1eV付近のピークは、ドナーとMgアクセプタとの間の再結合(DAP再結合)の発光によるものと考えられ、半値幅(全幅)が0.6eV以下または0.5eV以下と見積もられる。2.4eV付近のピークは、Mgアクセプタと酸素(O)とに関連する発光によるものと考えられる。これらのピーク波長は、それぞれ、紫外、青緑に対応しているため、発光色は青緑色に観察されたと考えられる。なお、3.3eV付近で発光強度が急激に低下しているのは、GaN基板1が光を吸収してしまったためであると考えられる。
以上説明したように、実施例による半導体積層構造は、整流性を持つ電流電圧特性を示すとともに、DAP再結合に対応するフォトンエネルギーにピークを有するEL発光を示した。これらのことより、実施例による半導体積層構造はpn接合を有し、Mgイオン注入GaN層3はp型導電性を示していると判断することができる。
次に、比較形態として、第1比較例および第2比較例による半導体積層構造について説明する。
図7(A)は、第1比較例による半導体積層構造の概略断面図である。サファイア(Al)基板11上に、バッファ層12を介し、アンドープのGaN層13が厚さ2000nm形成されている。GaN層13の上層部にMgイオンが注入されて、Mgイオン注入GaN層14が形成されている。
Mgイオン注入GaN層14が形成された第1比較例の半導体積層構造に対し、不純物活性化アニールを行った。アニール温度を1200℃、1250℃と変化させた2種の試料を作製した。
図7(B)および図7(C)を参照する。図7(B)および図7(C)は、それぞれ、第1比較例によるMgイオン注入GaN層14の表面のアニール前およびアニール後のAFM像である。ここで図示された試料のアニール温度は1250℃である。GaN層14のRMSは、アニール前で1.419nmであり、アニール後で2.286nmであり、GaN層14の表面平坦性は、アニールにより悪化してしまうことがわかった。
図8を参照する。図8は、第1比較例による半導体積層構造のPL発光スペクトルである。測定温度は77Kである。曲線Caiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C1200が、1200℃でアニールされた試料のスペクトルであり、曲線C1250が、1250℃でアニールされた試料のスペクトルである。高い方のアニール温度である1250℃でアニールされた試料においても、アクセプタ束縛エキシトン(ABE)による発光によるピークが観察されなかった。これは、イオン注入による欠陥がアニールによって十分には回復できないことを示している。
このように、第1比較例では、アニールを行っても、Mgイオン注入GaN層14の表面平坦性が悪化し、イオン注入による欠陥の回復が行われないことがわかった。なお、アニール後のMgイオン注入GaN層14はかなり高抵抗な層となっていた。
第1比較例では、異種基板であるサファイア基板11上にGaN層13をエピタキシャル成長させている。このため、GaN層13の結晶性を良くすることが困難である。例えば、GaN層13の欠陥密度は、1×10/cm以上のオーダーとなってしまう。これに起因して、Mgイオン注入によるp型GaN層の形成が困難となるものと考えられる。
図9は、第2比較例による半導体積層構造のEL発光スペクトルである。このEL発光スペクトルは、E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions. , HITEN 99.(非特許文献1)に記載されているものである。この文献では、異種基板である炭化シリコン(SiC)基板上に形成されたGaN層にMgイオンを注入することにより、p型GaN層を形成することが試みられている。
図9のスペクトルはブロードであり、発光色は白色とされている。図9のスペクトルでは、Mgアクセプタ起因の発光によるピークが観察されていない。
第1比較例および第2比較例より、異種基板上に成長させたGaN層にMgイオンを注入して良好なp型GaN層を形成することは困難であるといえる。Mgイオン注入による良好なp型GaN層の形成には、Mgイオンが注入されるGaN層を結晶性良く成長させるために、少なくとも、単結晶GaNの自立基板を用いることが好ましい。
上述のように、本願発明者らは、実施例として説明した実験において、非常に良好な結晶性を持つ単結晶GaN自立基板を用いて、Mgイオン注入GaN層の下地となるエピタキシャル成長GaN層を非常に良好な結晶性で成長させることにより、n型GaN層と、Mgがイオン注入されたp型GaN層とにより形成されたpn接合を有し、GaNのバンドギャップエネルギーである約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有するEL発光を示すGaN積層構造を作製することができた。
なお、上記実施例では、Mgイオン注入によるp型GaN層の形成を確認するため、発光ダイオードを作製し、EL発光を観察した。しかし、Mgイオン注入によるp型GaN層の用途は、発光ダイオードに限定されない。例えば、パワートランジスタ等のトランジスタに応用することもできる。
近年、発光ダイオードやパワートランジスタ等の半導体素子は大型化する趨勢があり、例えば0.5cm角以上や1cm角以上等の大型の素子を形成できることが望まれている。実施形態で説明したGaN基板1は、面内での欠陥密度のばらつきが少ない。このため、大型(例えば1mm角以上の大きさ)の素子を形成するのに好適という利点も有する。面内での欠陥密度のばらつきが大きく、欠陥密度の非常に高い領域が存在すると、素子全体としての性能を高めることが難しい。例えば、発光効率が低下したり、逆耐圧が低下したりしてしまう。
以上、実施形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
1 GaN基板
2 エピタキシャル成長GaN層、n型GaN層
3 Mgイオン注入GaN層、p型GaN層
4 注入保護膜
5 アニール保護膜
6p p側電極
6n n側電極

Claims (5)

  1. 窒化ガリウムの単結晶からなり、自立可能に構成されたGaN基板であって、
    面内における最大の欠陥密度が3×10/cm以下であり、面内における最小の欠陥密度に対する前記最大の欠陥密度の比が10倍以下であり、
    前記GaN基板上に、n型GaN層と、Mgがイオン注入されたp型GaN層と、を順に形成し、前記n型GaN層と前記p型GaN層とが形成するpn接合に電圧を印加した際に、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス発光が得られるGaN基板。
  2. 前記ピークは、前記エレクトロルミネセンス発光のスペクトルにおいて、発光強度が最大のピークである請求項1に記載のGaN基板。
  3. 前記ピークは、半値全幅が0.6eV以下のピークである請求項1または2に記載のGaN基板。
  4. 前記ピークは、前記エレクトロルミネセンス発光のスペクトルにおいて、Mgアクセプタと酸素とに関連する発光の強度よりも高い発光強度を有する請求項1〜3のいずれか1項に記載のGaN基板。
  5. 面内における平均欠陥密度が2×10/cm以下である請求項1〜4のいずれか1項に記載のGaN基板。
JP2018123656A 2018-06-28 2018-06-28 GaN基板 Pending JP2018154553A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123656A JP2018154553A (ja) 2018-06-28 2018-06-28 GaN基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123656A JP2018154553A (ja) 2018-06-28 2018-06-28 GaN基板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014119819A Division JP6363403B2 (ja) 2014-06-10 2014-06-10 半導体積層構造およびその製造方法

Publications (1)

Publication Number Publication Date
JP2018154553A true JP2018154553A (ja) 2018-10-04

Family

ID=63716074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123656A Pending JP2018154553A (ja) 2018-06-28 2018-06-28 GaN基板

Country Status (1)

Country Link
JP (1) JP2018154553A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613527A (zh) * 2020-05-20 2020-09-01 南京大学 一种基于Mg离子注入与高温退火工艺实现氮化镓p型掺杂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657335A (en) * 1993-11-01 1997-08-12 The Regents, University Of California P-type gallium nitride
JP2006290676A (ja) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Iii−v族窒化物半導体基板およびその製造方法
JP2014086698A (ja) * 2012-10-26 2014-05-12 Furukawa Electric Co Ltd:The 窒化物半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657335A (en) * 1993-11-01 1997-08-12 The Regents, University Of California P-type gallium nitride
JP2006290676A (ja) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Iii−v族窒化物半導体基板およびその製造方法
JP2014086698A (ja) * 2012-10-26 2014-05-12 Furukawa Electric Co Ltd:The 窒化物半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613527A (zh) * 2020-05-20 2020-09-01 南京大学 一种基于Mg离子注入与高温退火工艺实现氮化镓p型掺杂的方法

Similar Documents

Publication Publication Date Title
US7294859B2 (en) Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
JP6363403B2 (ja) 半導体積層構造およびその製造方法
JPWO2007138656A1 (ja) 窒化物半導体発光素子
JPWO2007138658A1 (ja) 窒化物半導体発光素子
JP5528120B2 (ja) 改良エピタキシャル堆積のために炭化珪素基板を処理する方法、及びその方法によって得られる構造とデバイス
WO2006001001A2 (en) An electroluminescent device for the production of ultra-violet light
JP6625536B2 (ja) n型窒化アルミニウム単結晶基板
JP2018154553A (ja) GaN基板
US8294146B2 (en) ZnO-containing semiconductor layer and device using the same
JP5451320B2 (ja) ZnO系化合物半導体素子
US20190181329A1 (en) Method to achieve active p-type layer/layers in iii-nitride epitaxial or device structures having buried p-type layers
JP6984571B2 (ja) 半導体装置の製造方法
CN109148658B (zh) PLD结合MOCVD法在Si衬底上生长AlGaN基的紫外LED结构及制备方法
KR100693407B1 (ko) p형 산화아연 반도체를 이용한 산화아연 단파장 발광소자 제작방법
JP4285337B2 (ja) 窒化ガリウム系化合物半導体ウエハーの製造方法
JP5898656B2 (ja) Iii族窒化物半導体素子
JP7137539B2 (ja) 窒化物半導体発光素子の製造方法
KR101101954B1 (ko) 확산방지층을 가지는 전극구조체를 구비한 수직형 구조의 그룹 Ⅲ족 n형 질화물계 반도체 소자 및 이를 포함하는 발광다이오드 소자
JP2011091077A (ja) ZnO系化合物半導体素子
JP5547989B2 (ja) ZnO系半導体素子の製造方法
WO2022261541A1 (en) ELECTRON OVERFLOW OF AIGaN DEEP ULTRAVIOLET LIGHT EMITTING DIODES
JP3884717B2 (ja) 窒化ガリウム系化合物半導体の製造方法
JP2006310714A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827