WO2015190398A1 - 光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物 - Google Patents

光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物 Download PDF

Info

Publication number
WO2015190398A1
WO2015190398A1 PCT/JP2015/066223 JP2015066223W WO2015190398A1 WO 2015190398 A1 WO2015190398 A1 WO 2015190398A1 JP 2015066223 W JP2015066223 W JP 2015066223W WO 2015190398 A1 WO2015190398 A1 WO 2015190398A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
photoelectric conversion
ruthenium complex
conversion element
Prior art date
Application number
PCT/JP2015/066223
Other languages
English (en)
French (fr)
Inventor
征夫 谷
小林 克
陽介 山本
良 藤原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016527774A priority Critical patent/JP6253167B2/ja
Publication of WO2015190398A1 publication Critical patent/WO2015190398A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a ruthenium complex dye, a dye solution, and a bipyridine compound.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various methods such as a method using a metal, a method using a semiconductor, a method using an organic pigment or a dye, or a combination of these methods have been put to practical use for this photoelectric conversion element.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • Patent Document 1 describes a ruthenium complex having a specific structure formed by coordination of a bipyridine compound having an alkylthienyl group as a substituent, and a dye-sensitized solar cell using this ruthenium complex as a photosensitizing dye is excellent. It is described that it shows the photoelectric conversion efficiency.
  • Patent Document 2 describes a ruthenium complex having a specific structure formed by coordination of a bipyridine compound having an alkynylthienylethenyl group. Patent Document 2 describes that each pyridine ring constituting the bipyridine compound has an ethenylene group, thereby increasing the absorption wavelength, increasing the molar absorption coefficient, and increasing the light absorption efficiency. .
  • An object of the present invention is to provide a photoelectric conversion element having a high short-circuit current density (Jsc) and excellent photoelectric conversion efficiency, and a dye-sensitized solar cell using the photoelectric conversion element.
  • the present invention also provides a ruthenium complex dye that can increase Jsc of the photoelectric conversion element and exhibit excellent photoelectric conversion performance when used as a sensitizing dye of the photoelectric conversion element, and a dye solution containing the ruthenium complex dye. The issue is to provide. Furthermore, this invention makes it a subject to provide a bipyridine compound suitable as a ligand of the said ruthenium complex pigment
  • a bipyridine compound having an alkynylthienyl group having no acidic group or an alkenylthienyl group having no acidic group is used as an auxiliary ligand, and a bipyridine compound having an acidic group is used as an acceptor ligand. It has been found that when a ruthenium complex dye having a specific structure is used as a sensitizing dye of a photoelectric conversion element, Jsc of the photoelectric conversion element is increased and excellent photoelectric conversion efficiency is exhibited. The present invention has been completed based on these findings.
  • a photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is represented by the following formula (1)
  • a photoelectric conversion element having semiconductor fine particles carrying a complex dye is represented by the following formula (1)
  • R 1 to R 10 represent a hydrogen atom or a substituent.
  • at least one of R 1 , R 2 and R 3 and at least one of R 6 , R 7 and R 8 is an alkynyl group having no acidic group or an alkenyl group having no acidic group. It is. n1 and n2 represent 0 or 1.
  • a 1 and A 2 represent an acidic group.
  • Z 1 and Z 2 represent a monodentate ligand.
  • R 1 to R 10 represent a hydrogen atom or a substituent.
  • at least one of R 1 , R 2 and R 3 and at least one of R 6 , R 7 and R 8 is an alkynyl group having no acidic group or an alkenyl group having no acidic group. It is. n1 and n2 represent 0 or 1.
  • a 1 and A 2 represent an acidic group.
  • Z 1 and Z 2 represent a monodentate ligand.
  • R 1 to R 10 represent a hydrogen atom or a substituent.
  • at least one of R 1 , R 2 and R 3 and at least one of R 6 , R 7 and R 8 is an alkynyl group having no acidic group or an alkenyl group having no acidic group. It is. n1 and n2 represent 0 or 1.
  • a bidentate ligand comprising the bipyridine compound according to [15].
  • the double bond may be any of E type and Z type in the molecule, or a mixture thereof.
  • substituents, etc. linking groups, ligands, etc.
  • the substituents and the like may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
  • a plurality of substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring for example, an alicyclic ring, an aromatic ring, a hetero ring
  • the display of a compound is used to mean not only the compound itself but also its salt and its ion.
  • a compound that does not clearly indicate substitution or non-substitution means that the compound may have a substituent within a range that exhibits a desired effect. The same applies to substituents, linking groups and ligands.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention have high Jsc and show excellent photoelectric conversion efficiency.
  • the ruthenium complex dye of the present invention can be suitably used as a sensitizing dye of the photoelectric conversion element of the present invention.
  • the dye solution of the present invention comprises the ruthenium complex dye of the present invention and a solvent, and can be suitably used for the preparation of semiconductor fine particles carrying the ruthenium complex dye of the present invention.
  • the bipyridine compound of the present invention is suitable as a ligand for the ruthenium complex dye of the present invention.
  • the photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode (counter electrode), and the photoreceptor layer, the charge transfer layer and the counter electrode are They are provided on the conductive support in this order.
  • at least a part of the semiconductor fine particles forming the photosensitive layer is a ruthenium complex represented by the following formula (1) as a sensitizing dye (hereinafter also simply referred to as “dye”). It carries a pigment.
  • the aspect in which the metal complex dye is supported on the surface of the semiconductor fine particle 22 includes an aspect in which the metal complex dye is adsorbed on the surface of the semiconductor fine particle 22, an aspect in which the metal complex dye is deposited on the surface of the semiconductor fine particle 22, and an aspect in which these are mixed.
  • the adsorption includes chemical adsorption and physical adsorption, and chemical adsorption is preferable.
  • the photoreceptor layer contains an electrolyte.
  • the semiconductor fine particles may carry other metal complex dyes together with the ruthenium complex dye of the following formula (1), but from the viewpoint of improving photoelectric conversion efficiency and durability, A form in which only a ruthenium complex dye is supported is preferable.
  • the semiconductor fine particles carry a co-adsorbent described later together with the ruthenium complex dye.
  • the electrolyte contained in the photoreceptor layer may be the same as or different from the electrolyte of the charge transfer layer, but is preferably the same.
  • the same type of electrolyte means that the components contained in the electrolyte of the photoreceptor layer and the components contained in the electrolyte of the charge transfer layer are the same, and the content of each component is the same, as well as the photosensitive It is the meaning including both the aspects that the component contained in the electrolyte of a body layer and the component contained in the electrolyte of a charge transfer body layer are the same, but the content of each component differs.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and a known structure relating to the photoelectric conversion element can be adopted.
  • Each of the layers constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example. Moreover, you may have layers other than said each layer if needed.
  • the dye-sensitized solar cell of the present invention uses the photoelectric conversion element of the present invention.
  • preferred embodiments of the photoelectric conversion element or the dye-sensitized solar cell of the present invention will be described.
  • a system 100 shown in FIG. 1 is an application of the photoelectric conversion element 10 according to the first aspect of the present invention to a battery application in which an operation means M (for example, an electric motor) is caused to work by an external circuit 6.
  • the photoelectric conversion element 10 is a semiconductor sensitized by supporting a conductive support 1 and a dye 21 (that is, a ruthenium complex of the formula (1) or a metal complex dye containing the ruthenium complex of the formula (1)).
  • the photosensitive member layer 2 includes an electrolyte between the fine particles 22 and the semiconductor fine particles 22, the charge transfer layer 3 as a hole transport layer, and the counter electrode 4.
  • the light receiving electrode 5 includes the conductive support 1 and the photoreceptor layer 2, and functions as a working electrode.
  • the photoelectric conversion element 10 In the system 100 to which the photoelectric conversion element 10 is applied, light incident on the photoreceptor layer 2 excites the dye 21.
  • the excited dye 21 has high-energy electrons, and the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion.
  • the dye 21 is an oxidant.
  • the electrons that have reached the conductive support 1 work in the external circuit 6 and return to the photoreceptor layer 2 where the oxidant and electrolyte of the dye 21 are present via the counter electrode 4, so that the system 100 is a solar cell. Function as.
  • the dye-sensitized solar cell 20 shown in FIG. 2 is configured by the photoelectric conversion element of the second aspect of the present invention.
  • the photoelectric conversion element to be the dye-sensitized solar cell 20 is different from the photoelectric conversion element shown in FIG. 1 in that it has a configuration of the conductive support 41 and the photosensitive layer 42 and a spacer, but other than those points.
  • the configuration is the same as the photoelectric conversion element 10 shown in FIG. That is, the conductive support 41 has a two-layer structure including a substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44.
  • the photoreceptor layer 42 has a two-layer structure including a semiconductor layer 45 and a light scattering layer 46 formed adjacent to the semiconductor layer 45.
  • a spacer is provided between the conductive support 41 and the counter electrode 48.
  • reference numeral 40 denotes a light receiving electrode
  • 47 denotes a charge transfer body layer.
  • the dye-sensitized solar cell 20 functions as a solar cell when light enters the photoreceptor layer 42 as in the system 100 to which the photoelectric conversion element 10 is applied.
  • materials and members used for a photoelectric conversion element or a dye-sensitized solar cell can be prepared by a conventional method.
  • the semiconductor fine particles in the photoreceptor layer are formed by supporting at least a ruthenium complex dye represented by the following formula (1) on the surface thereof.
  • a ruthenium complex dye represented by the following formula (1) among the two bidentate ligands (two bipyridine compounds) constituting the ruthenium complex dye of the following formula (1), bidentate ligands (A 1 and A 2 having a thienyl group) are present. Non-bidentate ligand) is also referred to as an auxiliary ligand. Moreover, the bidentate ligand having A 1 and A 2 is also referred to as an acceptor ligand.
  • R 1 , R 2 and R 3 represent a hydrogen atom or a substituent. However, at least one of R 1 , R 2 and R 3 is an alkynyl group having no acidic group or an alkenyl group having no acidic group (preferably an alkynyl group having no acidic group).
  • the “acidic group” has the same meaning as the acidic group described in A 1 and A 2 described later, and the preferred form is also the same.
  • R 1 , R 2, and R 3 examples include groups selected from the substituent group T described later, and among them, groups selected from alkyl groups, alkoxy groups, alkenyl groups, alkynyl groups, and aryl groups. Is preferred.
  • at least R 3 out of R 1 , R 2 and R 3 is preferably an alkynyl group having no acidic group or an alkenyl group having no acidic group, and at least R 3 represents an acidic group. It is more preferable that the alkynyl group does not have.
  • the alkynyl group not having an acidic group or the alkenyl group not having an acidic group may be linear or branched, but is more preferably linear.
  • the carbon number of the alkynyl group is preferably 2 to 30, more preferably 4 to 25, still more preferably 5 to 18, more preferably 5 to 16, more preferably 5 to 14, and still more preferably 5 to 12.
  • the most rate-determining photoelectric conversion efficiency is a reduction process of a dye from a redox system (electrolyte) such as iodine. Since the dye before the reduction is in an unstable one-electron oxidation state, if the state continues for a long time, the dye is decomposed and the performance of the photoelectric conversion element deteriorates.
  • R 1 , R 2 and R 3 is an alkynyl group
  • the triple bond portion of the alkynyl group is a straight line, and a ⁇ electron cloud is located around it every 90 °, which is presumed to promote the interaction between the redox system and the dye.
  • the alkynyl group is also preferably a 1-alkynyl group. By being a 1-alkynyl group, the redox system can be efficiently induced to the vicinity of a conjugated system in which a radical cation can exist in the one-electron oxidation state of the dye.
  • the alkenyl group When at least one of R 1 , R 2 and R 3 is an alkenyl group having no acidic group, the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 4 to 25 carbon atoms, still more preferably 5 to 5 carbon atoms. 18, more preferably 5 to 16, more preferably 5 to 14, and still more preferably 5 to 12.
  • the reduction of the dye from the redox system proceeds smoothly.
  • a ⁇ electron cloud is located around the alkenyl group every 180 °, which is presumed to promote the interaction between the redox system and the dye.
  • the alkenyl group is preferably a 1-alkenyl group. By being a 1-alkenyl group, a redox system can be efficiently induced to the vicinity of a conjugated system in which a radical cation can exist in the one-electron oxidation state of the dye.
  • R 6 , R 7 and R 8 in the formula (1) represent a hydrogen atom or a substituent. However, at least one of R 6 , R 7 and R 8 is an alkynyl group having no acidic group or an alkenyl group having no acidic group (preferably an alkynyl group having no acidic group). When the alkynyl group and alkenyl group do not have an acidic group, the reduction efficiency of the dye is improved as described above.
  • Examples of the substituent that can act as R 6 , R 7, and R 8 include groups selected from the substituent group T described later, and among these, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and an aryl group are selected. Groups are preferred.
  • R 8 among R 6 , R 7 and R 8 is an alkynyl group having no acidic group or an alkenyl group having no acidic group, and at least R 8 has an acidic group. It is more preferable that the alkynyl group does not have.
  • the alkynyl group not having an acidic group or the alkenyl group not having an acidic group may be linear or branched, but is more preferably linear.
  • the carbon number of the alkynyl group is preferably 2 to 30, more preferably 4 to 25, still more preferably 5 to 18, more preferably 5 to 16, more preferably 5 to 14, and still more preferably 5 to 12.
  • the alkynyl group is also preferably a 1-alkynyl group.
  • the alkenyl group When at least one of R 6 , R 7 and R 8 is an alkenyl group having no acidic group, the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 4 to 25 carbon atoms, still more preferably 5 to 5 carbon atoms. 18, more preferably 5 to 16, more preferably 5 to 14, and still more preferably 5 to 12.
  • the alkenyl group is also preferably a 1-alkenyl group.
  • a redox system can be efficiently induced to the vicinity of a conjugated system in which a radical cation can exist in the one-electron oxidation state of the dye.
  • the auxiliary ligand in the formula (1) preferably has no acidic group. Adsorption of the auxiliary ligand side to the semiconductor fine particles can be suppressed when the auxiliary ligand has no acidic group. That is, since the alkynyl group and the alkenyl group do not have an acidic group, an auxiliary ligand having a hydrophobic group can easily have a structure arranged on the electrolyte side, and the interaction between the dye and the redox system is facilitated. It is presumed that the reduction efficiency of the dye is further improved and the reduction efficiency of the dye is improved.
  • the alkynyl group or alkenyl group which is a hydrophobic group of the auxiliary ligand, effectively blocks the moisture from the electrolyte, and as a result, the dye is less likely to fall off from the semiconductor fine particles, resulting in the durability of the photoelectric conversion element. Estimated to improve.
  • R 4 , R 5 , R 9 and R 10 represent a hydrogen atom or a substituent.
  • This substituent is preferably a group selected from the substituent group T described later, and among them, a group selected from an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group and an aryl group is preferable.
  • R 4 , R 5 , R 9 and R 10 are more preferably hydrogen atoms.
  • n1 and n2 represent 0 or 1, and 0 is preferable.
  • the alkynyl group having no acidic group or the alkenyl group having no acidic group, which the auxiliary ligand of the formula (1) has, is preferably unsubstituted. Moreover, it is preferable that the structure of the two pyridine rings in an auxiliary ligand is the same including a substituent.
  • a 1 and A 2 represent an acidic group.
  • an acidic group is a substituent having a dissociative proton, and a pKa of 11 or less.
  • acid groups that are acidic groups such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, and a boric acid group, or groups having these acid groups.
  • the group having an acid group include a group having an acid group and a linking group, and preferred examples include a carboxyvinylene group, a dicarboxyvinylene group, a cyanocarboxyvinylene group, and a carboxyphenyl group.
  • the acidic group is preferably a carboxy group or a group having a carboxy group, and more preferably a carboxy group.
  • the acidic group may take a form of releasing a proton and dissociating, or may be a salt.
  • An inorganic or organic ammonium ion or an alkali metal ion is preferable.
  • Preferred examples of the alkali metal ion include sodium ion, potassium ion, lithium ion, and cesium ion, and sodium ion is particularly preferable.
  • inorganic or organic ammonium ions include ammonium ions and pyridinium ions, preferably ammonium ions, preferably tertiary or quaternary ammonium ions, and more preferably quaternary ammonium ions.
  • this quaternary ammonium ion examples include tetramethylammonium ion, tetraethylammonium ion, tetrabutylammonium ion, tetrahexylammonium ion, benzyltriethylammonium ion, tetradecylammonium ion, among them tetrabutylammonium ion or Tetrahexyl ammonium ion is preferable, and tetrabutyl ammonium ion is more preferable.
  • Z 1 and Z 2 are monodentate ligands. Preferred examples of Z 1 and Z 2 are coordinated with a group selected from a selenocyanate group, an isoselenocyanate group, a thiocyanate group, an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, and an arylthio group. Examples thereof include a ligand or a ligand selected from a halogen atom, carbonyl, dialkyl ketone and thiourea. Among these, Z 1 and Z 2 are preferably an isothiocyanate group or a cyano group, and more preferably an isothiocyanate group.
  • the ruthenium complex dye of the above formula (1) is preferably represented by the following formula (1a).
  • a 1, A 2, Z 1 and Z 2 are each synonymous with A 1, A 2, Z 1 and Z 2 in the formula (1), a preferred form also the same.
  • R 3a and R 8a represent an alkynyl group having no acidic group or an alkenyl group having no acidic group, and more preferably an alkynyl group having no acidic group.
  • Preferred forms of the alkynyl group not having an acidic group and the alkenyl group not having an acidic group are such that at least one of R 1 , R 2 and R 3 in the formula (1) has an acidic group.
  • Preferred alkynyl groups and alkenyl groups are the same as described in the form of alkenyl groups having no alkynyl groups or acidic groups.
  • substituent group T when referred to as a substituent, the following substituent group T is defined as a preferred range unless otherwise specified. In the present specification, when only described as a substituent, this substituent group T is referred to, and each group, for example, an alkyl group, is only described. The preferred range and specific examples of the corresponding group included in the substituent group T are applied.
  • Substituent group T includes the following groups.
  • An alkyl group preferably having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, or trifluoromethyl
  • An alkenyl group preferably having 2 to 20 carbon atoms such as vinyl, allyl or oleyl
  • an alkynyl group preferably having 2 to 20 carbon atoms such as ethynyl, butynyl or phenylethynyl
  • a cycloalkyl group preferably Has 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, or 4-methylcyclohexyl
  • a cycloalkenyl group preferably having 5 to 20 carbon atoms, such as
  • An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms such as ethoxycarbonyl or 2-ethylhexyloxycarbonyl), a cycloalkoxycarbonyl group (preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl) Or cyclohexyloxycarbonyl), an aryloxycarbonyl group (preferably having 6 to 20 carbon atoms, for example, phenyloxycarbonyl or naphthyloxycarbonyl), an amino group (preferably having 0 to 20 carbon atoms, an alkylamino group, an alkenyl group).
  • amino group alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, and heterocyclic amino group, such as amino, N, N-dimethylamino, N, N-diethyl Amino, N-ethylamino, N-allylamino, N- (2-propynyl) amino, N-cyclohexylamino, N-cyclohexenylamino, anilino, pyridylamino, imidazolylamino, benzoimidazolylamino, thiazolylamino, benzothiazolylamino, or Triazinylamino), a sulfamoyl group (preferably an alkyl, cycloalkyl or aryl sulfamoyl group having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-cyclohex
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, or benzoylamino), a sulfonamide group (preferably an alkyl, cycloalkyl, or arylsulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, or N-ethylbenzenesulfonamide), alkylthio groups (preferably having 1 to 20 carbon atoms, for example methylthio , Ethylthio, isopropylthio, or benzylthio), a cycloalkylthio group (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopentylthio,
  • Silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy or aryloxy, such as triethylsilyl, triisopropylsilyl, triphenylsilyl, diethylbenzylsilyl, or dimethylphenylsilyl)
  • a silyloxy group (preferably a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy or aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, or dimethylphenylsilyloxy ),
  • a hydroxy group, a cyano group, a nitro group, and a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom).
  • the substituent selected from the substituent group T is more preferably an alkyl group, alkenyl group, cycloalkyl group, aryl group, heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkoxycarbonyl group, cycloalkoxycarbonyl group.
  • An amino group, an acylamino group, a cyano group, and a halogen atom and more preferably an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group, and a cyano group. It is a group.
  • the compound or substituent includes an alkyl group, alkenyl group, alkynyl group, etc., these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, or the like may be monocyclic or condensed, and may be substituted or unsubstituted.
  • each alkyl group represented by —C m H 2m + 1 may be linear or have a branched structure.
  • the maximum absorption wavelength in the solution is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 900 nm, and particularly preferably in the range of 370 to 800 nm. is there.
  • the ruthenium complex dye represented by the formula (1) uses, for example, a bipyridine compound represented by the following formula (L1) as an auxiliary ligand, for example, Japanese Patent No. 4980479, Japanese Patent No. 4576494, and Japanese Patent Laid-Open No. 2001. It can be synthesized by the method described in Japanese Patent No. -291534 or a method analogous thereto.
  • R 1 ⁇ R 10, n1 and n2 have the same meanings as R 1 ⁇ R 10, n1 and n2 in each formula (1), a preferred form also the same.
  • the bipyridine compound of the formula (L1) can be obtained by the step of obtaining the compound d-1-7 in the synthesis example 1 of the examples described later or a step analogous thereto.
  • the conductive support is not particularly limited as long as it has conductivity and can support the photoreceptor layer 2 and the like.
  • the conductive support 1 made of a conductive material, for example, a metal, or glass
  • a conductive support 41 having a plastic substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44 is preferable.
  • the conductive support 41 in which a conductive metal oxide is coated on the surface of the substrate 44 to form a transparent conductive film 43 is more preferable.
  • the substrate 44 made of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the substrate 44.
  • light is preferably incident from the substrate 44 side.
  • Conductive supports 1 and 41 are preferably substantially transparent. “Substantially transparent” means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more. .
  • the thickness of the conductive supports 1 and 41 is not particularly limited, but is preferably 0.05 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm. .
  • the thickness of the transparent conductive film 43 is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m. .
  • the conductive supports 1 and 41 may have a light management function on the surface.
  • a light management function on the surface.
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated may be provided on the surface, as described in JP-A-2002-260746.
  • the light guide function may be provided.
  • Photoreceptor layer Other configurations are not particularly limited as long as the photoreceptor layer includes the semiconductor fine particles 22 on which the dye 21 is supported and an electrolyte.
  • the photoreceptor layer 2 and the photoreceptor layer 42 are used.
  • the semiconductor fine particles 22 are preferably fine particles of a metal chalcogenide (eg, oxide, sulfide, selenide, etc.) or a compound having a perovskite crystal structure.
  • a metal chalcogenide eg, oxide, sulfide, selenide, etc.
  • the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium sulfide, and cadmium selenide.
  • Preferred examples of the compound having a perovskite crystal structure include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods can be used alone or mixed with titania fine particles.
  • the particle diameters of the semiconductor fine particles 22 are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion in terms of the average particle diameter when the projected area is converted into a circle. Is preferred.
  • Examples of a method for coating the semiconductor fine particles 22 on the conductive support 1 or 41 include a wet method, a dry method, and other methods.
  • the semiconductor fine particles 22 preferably have a large surface area so that a large amount of the dye 21 can be adsorbed.
  • the surface area thereof is preferably 10 times or more, more preferably 100 times or more the projected area.
  • the preferred thickness of the semiconductor layer 45 is not uniquely determined depending on the use of the photoelectric conversion element, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, it is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles 22 are preferably applied to the conductive support 1 or 41 and then baked at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours to bring the particles into close contact with each other.
  • the film forming temperature is preferably 60 to 600 ° C. when glass is used as the material of the conductive support 1 or the substrate 44.
  • the coating amount of the semiconductor fine particles 22 per 1 m 2 of the surface area of the conductive support 1 or 41 is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • a short-circuit prevention layer (not shown).
  • a spacer S see FIG. 2 or a separator.
  • At least one ruthenium complex dye represented by the above formula (1) is used as the sensitizing dye.
  • the ruthenium complex dye represented by the formula (1) is as described above.
  • examples of the dye that can be used in combination with the ruthenium complex dye of the above formula (1) include a ruthenium complex dye, a squarylium cyanine dye, an organic dye, a porphyrin dye, and a phthalocyanine dye that are not included in the above formula (1).
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the surface area of the conductive support 1 or 41. is there.
  • the use amount of the ruthenium complex dye of the present invention is 5 mol% or more, more preferably 20 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, further preferably 80, based on the total dye. It is preferable to set it as mol% or more, More preferably 90 mol% or more, More preferably, it is 100 mol%.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the surface of the semiconductor fine particles 22 may be treated with an amine compound.
  • Preferable amine compounds include pyridine compounds (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
  • a coadsorbent it is preferable to use a coadsorbent together with the ruthenium complex dye represented by the formula (1) or a dye used in combination as necessary.
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably, a carboxy group or a salt thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • R A1 is preferably a carboxy group or a sulfo group, or an alkyl group substituted with a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 CONHCH 2 CH 2 SO 3 H is more preferred.
  • R A2 examples include a group selected from the above substituent group T. Among these, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, or an arylaminocarbonyloxy group is preferable, and an alkyl group, a hydroxy group, or an acyloxy group is more preferable.
  • nA is preferably 2 to 4.
  • the co-adsorbent has the effect of suppressing the inefficient association of the dye 21 by adsorbing to the semiconductor fine particles 22 and the effect of preventing the reverse electron transfer from the surface of the semiconductor fine particles 22 to the redox system in the electrolyte.
  • the amount of co-adsorbent used is not particularly limited, but is preferably 1 to 200 mol, more preferably 1 mol with respect to 1 mol of the dye supported on the semiconductor fine particles 22 from the viewpoint of effectively expressing the above action. 10 to 150 mol, particularly preferably 20 to 50 mol.
  • the light scattering layer is different from the semiconductor layer in that it has a function of scattering incident light.
  • the light scattering layer 46 preferably contains rod-like or plate-like metal oxide particles. Examples of the metal oxide particles used in the light scattering layer 46 include the metal chalcogenide (oxide) particles.
  • the thickness of the light scattering layer is preferably 10 to 50% of the thickness of the photoreceptor layer 42.
  • the light scattering layer 46 is preferably a light scattering layer described in JP-A No. 2002-289274, and the description of JP-A No. 2002-289274 is preferably incorporated in the present specification as it is.
  • the charge transfer body layers 3 and 47 used in the photoelectric conversion element of the present invention are layers having a function of replenishing electrons to the oxidant of the dye 21 and are provided between the light receiving electrode 5 or 40 and the counter electrode 4 or 48. It is done.
  • the charge transfer layer 3 and 47 contains an electrolyte.
  • “the charge transfer layer contains an electrolyte” means to include both modes of the mode in which the charge transfer layer is made of only an electrolyte and the mode containing an electrolyte and a substance other than the electrolyte.
  • the charge transfer body layers 3 and 47 may be solid, liquid, gel, or a mixed state thereof.
  • Electrolytes examples include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a molten salt containing a redox couple, and a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which a redox couple is dissolved in an organic solvent. .
  • a liquid electrolyte is preferable at the point of photoelectric conversion efficiency.
  • iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • an alkyl viologen eg, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzene eg, hydroquinone, naphthohydroquinone, etc.
  • Combinations of trivalent iron complexes for example, combinations of red blood salt and yellow blood salt
  • divalent and trivalent cobalt complexes and the like.
  • a combination of iodine and iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium
  • the cobalt complex is preferably a complex represented by the formula (CC) described in paragraphs 0144 to 0156 of JP2014-82189A, and described in paragraphs 0144 to 0156 of JP2014-82189A. It is preferably incorporated in the present specification as it is.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the organic solvent used for the liquid electrolyte and the gel electrolyte is not particularly limited, but an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3 -Methyloxazolidinone etc.) are preferred.
  • the organic solvent used for the liquid electrolyte is preferably a nitrile compound, an ether compound, an ester compound, more preferably a nitrile compound, and particularly preferably acetonitrile or methoxypropionitrile.
  • Molten salts include ionic liquids containing imidazolium or triazolium cations, ionic liquids containing oxazolium cations, ionic liquids containing pyridinium cations, ionic liquids containing guanidinium cations, and these A combination is preferred. Moreover, you may combine a specific anion with respect to these cations. Additives may be added to these molten salts.
  • the molten salt may have a liquid crystalline substituent.
  • the molten salt of a quaternary ammonium salt can also be used as the molten salt.
  • molten salts other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the amount of the polymer added is 1 to 50% by mass.
  • ⁇ -butyrolactone may be contained in the electrolyte, which increases the diffusion efficiency of iodide ions and improves the photoelectric conversion efficiency.
  • polymer (polymer matrix) used for the gel electrolyte matrix examples include polyacrylonitrile and polyvinylidene fluoride.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • a method of confining a polymer matrix, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
  • the polymer matrix is preferably a polymer having a nitrogen-containing heterocycle in the main chain or side chain repeating unit and a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a polymer having a ureido structure.
  • Molecules compounds containing liquid crystal compounds, polymers having an ether bond, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resins, crosslinked polysiloxanes, polyvinyl alcohol (PVA), inclusion compounds such as polyalkylene glycol and dextrin, Examples include systems to which oxygen-containing or sulfur-containing polymers are added, natural polymers, and the like.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex of a cation moiety and iodine in one polymer, and the like may be added to these.
  • a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate group with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like.
  • the liquid electrolyte solution may be held in the solid electrolyte membrane or the pores.
  • a preferred method for holding the liquid electrolyte solution is a method using a cloth-like solid such as a conductive polymer film, a fibrous solid, or a filter.
  • the electrolyte contains aminopyridine compound, benzimidazole compound, aminotriazole compound and aminothiazole compound, imidazole compound, aminotriazine compound, urea compound, amide compound, pyrimidine compound or nitrogen as an additive. Heterocycle which does not contain may be contained.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. It is preferable to adjust the water content (content ratio) of the electrolytic solution to 0 to 0.1% by mass.
  • Iodine can also be used as an inclusion compound of iodine and cyclodextrin. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C and Si, and an aromatic such as triarylamine. Group amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the redox couple becomes an electron carrier, it is preferably contained at a certain concentration.
  • a preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit in this case is not particularly limited, but is usually about 5 mol / L.
  • the counter electrodes 4 and 48 preferably function as positive electrodes of the dye-sensitized solar cell.
  • the counter electrodes 4 and 48 can usually have the same configuration as that of the conductive support 1 or 41, but the substrate 44 is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrodes 4 and 48 a structure having a high current collecting effect is preferable.
  • At least one of the conductive support 1 or 41 and the counter electrode 4 or 48 must be substantially transparent.
  • the conductive support 1 or 41 is preferably transparent, and sunlight is preferably incident from the conductive support 1 or 41 side.
  • the counter electrodes 4 and 48 have a property of reflecting light.
  • a glass or plastic on which a metal or conductive oxide is vapor-deposited is preferable, and a glass on which platinum is vapor-deposited is particularly preferable.
  • the present invention includes, for example, Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can be applied to the photoelectric conversion element and the dye-sensitized solar cell described in the publication.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are preferably produced using a dye solution containing the ruthenium complex dye of the above formula (1).
  • the metal complex dye of the present invention is dissolved in a solvent and may contain other components as necessary.
  • Examples of the solvent to be used include, but are not limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, and a mixed solvent of two or more of these are more preferable.
  • a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable. More preferred are alcohol solvent and amide solvent, mixed solvent of alcohol solvent and hydrocarbon solvent, mixed solvent of alcohol solvent and nitrile solvent, particularly preferred mixed solvent of alcohol solvent and amide solvent, mixed solvent of alcohol solvent and nitrile solvent. .
  • a mixed solvent of at least one of methanol, ethanol, propanol and t-butanol and at least one of dimethylformamide and dimethylacetamide, at least one of methanol, ethanol, propanol and t-butanol, and acetonitrile is preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the above formula (CA) is preferable.
  • the dye solution of the present invention is preferably a dye solution in which the concentration of the dye or coadsorbent is adjusted so that the solution can be used as it is when a photoelectric conversion element or a dye-sensitized solar cell is produced.
  • the metal complex dye of the present invention is preferably contained in an amount of 0.001 to 0.1% by mass. The amount of coadsorbent used is as described above.
  • the water content of the dye solution is preferably adjusted.
  • the water content is preferably adjusted to 0 to 0.1% by mass.
  • the photoreceptor layer is preferably formed by applying (including dipping) the above dye solution onto a conductive support provided with semiconductor fine particles, and drying or curing.
  • the photoelectric conversion element or the dye-sensitized solar cell of the present invention can be obtained by further providing a charge transfer layer, a counter electrode, and the like on the photosensitive layer thus produced.
  • a conductive support 41 having a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) formed on a glass substrate (substrate 44, thickness 4 mm) was prepared. Then, a titania paste “18NR-T” (manufactured by DyeSol) is screen-printed on this SnO 2 conductive film, dried at 120 ° C., and then the titania paste “18NR-T” is screen-printed again at 120 ° C. And dried for 1 hour. Thereafter, the dried titania paste was baked at 500 ° C. to form a semiconductor layer 45 (layer thickness: 10 ⁇ m).
  • a titania paste “18NR-AO” (manufactured by DyeSol) was screen-printed on the semiconductor layer 45 and dried at 120 ° C. for 1 hour, and then the dried titania paste was baked at 500 ° C.
  • a light scattering layer 46 (layer thickness: 5 ⁇ m) was formed on the substrate.
  • the photoreceptor layer 42 (light receiving surface area: 5 mm ⁇ 5 mm, layer thickness: 15 ⁇ m, unsupported ruthenium complex dye) is formed on the SnO 2 conductive film, and the ruthenium complex dye is not supported.
  • a light receiving electrode precursor A was prepared.
  • the photoreceptor layer of the above-mentioned photoelectrode precursor A is immersed in the dye solution 1 prepared in the above preparation example at 25 ° C. for 20 hours, and after being pulled up, dried to obtain a ruthenium complex dye D on the photoelectrode precursor A.
  • a light receiving electrode 40 carrying -1 was produced.
  • Thirteen types of light receiving electrodes 40 carrying ruthenium complex dyes D-2 to D-14 were prepared in the same manner as described above except that the dye solutions 2 to 14 were used in place of the dye solution 1.
  • a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the conductive support 41 was prepared.
  • an electrolytic solution iodine 0.1M (mol / L), lithium iodide 0.1M, 4-t-butylpyridine 0.5M and 1,2-dimethyl-3-propylimidazolium iodide 0.6M were used.
  • a liquid electrolyte was prepared by dissolving in acetonitrile.
  • a spacer S (trade name: “Surlin”) manufactured by DuPont having a shape matching the size of the photoreceptor layer 42 was prepared.
  • Each of the 14 types of light receiving electrodes 40 produced as described above and the counter electrode 48 are thermocompression-bonded so as to face each other via the spacer S, and then an electrolytic solution is provided between the photoreceptor layer 42 and the counter electrode 48.
  • the charge transfer layer 47 was formed by filling the liquid electrolyte from the injection port.
  • Fourteen types of dye-sensitized solar cells having different sensitizing dyes (Example 1) were prepared by sealing and curing the outer periphery and electrolyte injection port of the battery thus produced using Resin XNR-5516 manufactured by Nagase Chemtech. To 14) were produced.
  • the battery characteristic test was done using the dye-sensitized solar cell of each Example and comparative example manufactured by the said manufacture example.
  • the battery characteristic test was performed by irradiating 1000 W / m 2 of simulated sunlight from a xenon lamp through an AM1.5 filter using a solar simulator (WXS-85H, manufactured by WACOM).
  • Current-voltage characteristics were measured using an IV tester to determine Jsc and photoelectric conversion efficiency ( ⁇ ). The results are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有し、感光体層が下記式(1)のルテニウム錯体色素が担持された半導体微粒子を有する光電変換素子;この素子を用いた色素増感太陽電池;下記式(1)のルテニウム錯体色素;この色素を含む色素溶液;およびこの色素の配位子として好適なビピリジン化合物。R~R10は水素原子または特定の基である。n1およびn2は0または1であり、AおよびAは酸性基を、ZおよびZは1座の配位子を表す。

Description

光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物
 本発明は、光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いた方式、半導体を用いた方式、有機顔料や色素を用いた方式、または、これらを組み合わせた方式等の様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。
 そこで、色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。
 現在までに、色素増感太陽電池に使用される金属錯体色素として、N3、N719、N749(ブラックダイともいう)、Z907、J2と呼ばれる色素等が開発されている。しかし、これらの色素を用いた光電変換素子ないし色素増感太陽電池は、いずれも光電変換効率が十分とはいえない。
 そこで、光電変換効率を向上させる金属錯体色素の開発が進められている。例えば特許文献1には、置換基としてアルキルチエニル基を有するビピリジン化合物が配位してなる特定構造のルテニウム錯体が記載され、このルテニウム錯体を光増感色素として用いた色素増感太陽電池が優れた光電変換効率を示すことが記載されている。
 また、特許文献2には、アルキニルチエニルエテニル基を有するビピリジン化合物が配位してなる特定構造のルテニウム錯体が記載されている。特許文献2には、ビピリジン化合物を構成する各ピリジン環がエテニレン基を有することにより、吸収波長が長波長化し、またモル吸光係数が増大して、光吸収効率が増大することが記載されている。
特開2007-302879号公報 特開2012-12570号公報
 本発明は、短絡電流密度(Jsc)が高く、優れた光電変換効率を示す光電変換素子、およびこの光電変換素子を用いた色素増感太陽電池を提供することを課題とする。また本発明は、光電変換素子の増感色素として用いることで、光電変換素子のJscを高めて優れた光電変換性能を発現させることができるルテニウム錯体色素、およびこのルテニウム錯体色素を含む色素溶液を提供することを課題とする。さらに本発明は、上記ルテニウム錯体色素の配位子として好適なビピリジン化合物を提供することを課題とする。
 本発明者らは、上記課題に鑑み鋭意検討を重ねた。その結果、酸性基を有さないアルキニルチエニル基または酸性基を有さないアルケニルチエニル基を有するビピリジン化合物を補助配位子として有し、且つ、酸性基を有するビピリジン化合物をアクセプター性配位子として有する特定構造のルテニウム錯体色素を、光電変換素子の増感色素として用いた場合に、光電変換素子のJscが高まり、優れた光電変換効率を示すことを見い出した。本発明は、これらの知見に基づき完成されるに至った。
 本発明の上記課題は、以下の手段によって解決された。
〔1〕
 導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、上記感光体層が、下記式(1)で表されるルテニウム錯体色素が担持された半導体微粒子を有する光電変換素子。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。AおよびAは酸性基を表す。ZおよびZは1座の配位子を表す。
〔2〕
 少なくとも上記RおよびRが、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である、〔1〕に記載の光電変換素子。
〔3〕
 少なくとも上記RおよびRが、酸性基を有さないアルキニル基である、〔2〕に記載の光電変換素子。
〔4〕
 上記R、R、R、R、R、R、RおよびR10が水素原子である、〔1〕~〔3〕のいずれかに記載の光電変換素子。
〔5〕
 上記n1およびn2が0である、〔1〕~〔4〕のいずれかに記載の光電変換素子。
〔6〕
 上記ZおよびZがイソチオシアネート基またはシアノ基である、〔1〕~〔5〕のいずれかに記載の光電変換素子。
〔7〕
 〔1〕~〔6〕のいずれかに記載の光電変換素子を用いた色素増感太陽電池。
〔8〕
 下記式(1)で表されるルテニウム錯体色素。
 式(1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。AおよびAは酸性基を表す。ZおよびZは1座の配位子を表す。
〔9〕
 少なくとも上記RおよびRが、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である、〔8〕に記載のルテニウム錯体色素。
〔10〕
 少なくとも上記RおよびRが、酸性基を有さないアルキニル基である、〔9〕に記載のルテニウム錯体色素。
〔11〕
 上記R、R、R、R、R、R、RおよびR10が水素原子である、〔8〕~〔10〕のいずれかに記載のルテニウム錯体色素。
〔12〕
 上記n1およびn2が0である、〔8〕~〔11〕のいずれかに記載のルテニウム錯体色素。
〔13〕
 上記ZおよびZがイソチオシアネート基またはシアノ基である、〔8〕~〔12〕のいずれかに記載のルテニウム錯体色素。
〔14〕
 〔8〕~〔13〕のいずれかに記載のルテニウム錯体色素と溶媒とを含有する色素溶液。
〔15〕
 下記式(L1)で表されるビピリジン化合物。
Figure JPOXMLDOC01-appb-C000006
 式(L1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。
〔16〕
 〔15〕に記載のビピリジン化合物からなる二座配位子。
 本明細書において、特に断りがない限り、二重結合については、分子内にE型およびZ型が存在する場合、これらのいずれであってもよく、またこれらの混合物であってもよい。
 特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環(例えば脂環、芳香族環、ヘテロ環)はさらに縮環して縮合環を形成していてもよい。
 本明細書において、化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。さらに、置換または無置換を明記していない化合物については、所望の効果を奏する範囲で置換基を有していてもよい意味である。このことは、置換基、連結基および配位子についても同様である。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の光電変換素子および色素増感太陽電池は、Jscが高く、優れた光電変換効率を示す。また、本発明のルテニウム錯体色素は、本発明の光電変換素子の増感色素として好適に用いることができる。また、本発明の色素溶液は、本発明のルテニウム錯体色素と溶媒とを含んでなり、本発明のルテニウム錯体色素が担持された半導体微粒子の調製に好適に用いることができる。また、本発明のビピリジン化合物は、本発明のルテニウム錯体色素の配位子として好適である。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の第1態様の光電変換素子を、電池用途に応用したシステムにおいて、層中の円部分の拡大図も含めて、模式的に示した断面図である。 本発明の第2態様の光電変換素子からなる色素増感太陽電池を模式的に示した断面図である。
[光電変換素子、色素増感太陽電池]
 本発明の光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層、および、対極(対向電極)を有し、感光体層、電荷移動体層および対極がこの順で導電性支持体上に設けられている。
 本発明の光電変換素子において、その感光体層を形成する半導体微粒子の少なくとも一部は、増感色素(以下、単に「色素」ともいう。)として後述する式(1)で表されるルテニウム錯体色素を担持してなる。ここで、金属錯体色素が半導体微粒子22の表面に担持される態様は、半導体微粒子22の表面に吸着する態様、半導体微粒子22の表面に堆積する態様、および、これらが混在した態様等を包含する。なお、吸着は、化学吸着と物理吸着とを含み、化学吸着が好ましい。
 また、感光体層は電解質を含む。本発明において半導体微粒子は下記式(1)のルテニウム錯体色素と併せて、他の金属錯体色素を担持していてもよいが、光電変換効率及び耐久性向上の観点から、下記式(1)のルテニウム錯体色素のみを担持してなる形態が好ましい。半導体微粒子は、上記ルテニウム錯体色素とともに後述する共吸着剤を担持していることが好ましい。
 感光体層に含まれる電解質は、電荷移動体層が有する電解質と同種でも異種であってもよいが、同種であることが好ましい。ここで、電解質が同種とは、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであり、且つ、各成分の含有量も同じである態様、並びに、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであるが、各成分の含有量が異なる態様、の両態様を含む意味である。
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子に関する公知の構成を採用できる。本発明の光電変換素子を構成する上記各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。また、必要により上記各層以外の層を有してもよい。
 本発明の色素増感太陽電池は、本発明の光電変換素子を用いてなる。
 以下、本発明の光電変換素子ないし色素増感太陽電池の好ましい実施形態について説明する。
 図1に示されるシステム100は、本発明の第1態様の光電変換素子10を、外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したものである。
 光電変換素子10は、導電性支持体1と、色素21(すなわち式(1)のルテニウム錯体、または式(1)のルテニウム錯体を含む金属錯体色素)が担持されることにより増感された半導体微粒子22、および、半導体微粒子22間に電解質を含む感光体層2と、正孔輸送層である電荷移動体層3と、対極4とからなる。
 光電変換素子10において、受光電極5は、導電性支持体1および感光体層2よりなり、作用電極として機能する。
 光電変換素子10を応用したシステム100において、感光体層2に入射した光は、色素21を励起する。励起された色素21はエネルギーの高い電子を有しており、この電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21は酸化体となっている。導電性支持体1に到達した電子が外部回路6で仕事をしながら、対極4を経由して、色素21の酸化体および電解質が存在する感光体層2に戻ることで、システム100が太陽電池として機能する。
 図2に示される色素増感太陽電池20は、本発明の第2態様の光電変換素子により構成されている。
 色素増感太陽電池20となる光電変換素子は、図1に示す光電変換素子に対して、導電性支持体41および感光体層42の構成ならびにスペーサーを有する点で異なるが、それらの点以外は図1に示す光電変換素子10と同様に構成されている。すなわち、導電性支持体41は、基板44と、基板44の表面に成膜された透明導電膜43とからなる2層構造を有している。また、感光体層42は、半導体層45と、半導体層45に隣接して成膜された光散乱層46とからなる2層構造を有している。導電性支持体41と対極48との間にはスペーサーが設けられている。色素増感太陽電池20において、40は受光電極であり、47は電荷移動体層である。
 色素増感太陽電池20は、光電変換素子10を応用したシステム100と同様に、感光体層42に光が入射することにより、太陽電池として機能する。
 本発明において、光電変換素子ないし色素増感太陽電池に用いられる材料および各部材は常法により調製することができる。例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
<式(1)で表されるルテニウム錯体色素>
 本発明の光電変換素子において、感光体層中の半導体微粒子は、その表面に少なくとも下記式(1)で表されるルテニウム錯体色素を担持してなる。本明細書において、下記式(1)のルテニウム錯体色素を構成する2つの2座配位子(2つのビピリジン化合物)のうち、チエニル基を有する2座配位子(AおよびAを有さない2座配位子)を補助配位子ともいう。また、AおよびAを有する2座配位子をアクセプター性配位子ともいう。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R、RおよびRは水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基(好ましくは酸性基を有さないアルキニル基)である。本明細書において「酸性基」は、後述のA及びAにおいて説明する酸性基と同義であり、好ましい形態も同じである。
 R、RおよびRが採用しうる置換基としては後述する置換基群Tから選ばれる基が挙げられ、なかでもアルキル基、アルコキシ基、アルケニル基、アルキニル基およびアリール基から選ばれる基が好ましい。
 式(1)において、R、RおよびRのうち少なくともRが酸性基を有さないアルキニル基または酸性基を有さないアルケニル基であることが好ましく、少なくともRが酸性基を有さないアルキニル基であることがより好ましい。この酸性基を有さないアルキニル基または酸性基を有さないアルケニル基は、直鎖でも分岐していてもよいが、直鎖であることがより好ましい。
 R、RおよびRのうち少なくとも1つが酸性基を有さないアルキニル基である場合、このアルキニル基の炭素数は好ましくは2~30、より好ましくは4~25、さらに好ましくは5~18、さらに好ましくは5~16、さらに好ましくは5~14、さらに好ましくは5~12である。通常、色素増感型の光電変換素子において、光電変換効率の最も律速となるのは、ヨウ素等のレドックス系(電解質)からの色素の還元工程である。還元前の色素は不安定な一電子酸化状態であるため、その状態が長時間続くと色素が分解され、光電変換素子の性能が劣化する。しかし、R、RおよびRのうち少なくとも1つがアルキニル基であることにより、レドックス系からの色素の還元がよりスムーズに進行する。アルキニル基の三重結合部分は直線であり、その周りには90°ごとにπ電子雲が位置し、これがレドックス系と色素との相互作用を促進すると推定される。
 上記アルキニル基は1-アルキニル基であることも好ましい。1-アルキニル基であることで、色素の一電子酸化状態においてラジカルカチオンが存在しうる共役系の近傍までレドックス系を効率的に誘導しうる。
 R、RおよびRのうち少なくとも1つが酸性基を有さないアルケニル基である場合、このアルケニル基の炭素数は好ましくは2~30、より好ましくは4~25、さらに好ましくは5~18、さらに好ましくは5~16、さらに好ましくは5~14、さらに好ましくは5~12である。R、RおよびRのうち少なくとも1つが酸性基を有さないアルケニル基であることにより、レドックス系からの色素の還元がスムーズに進行する。アルケニル基の周りには180°ごとにπ電子雲が位置し、これがレドックス系と色素との相互作用を促進すると推定される。
 上記アルケニル基は1-アルケニル基であることも好ましい。1-アルケニル基であることで、色素の一電子酸化状態においてラジカルカチオンが存在しうる共役系の近傍までレドックス系を効率的に誘導しうる。
 式(1)中のR、RおよびRは水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基(好ましくは酸性基を有さないアルキニル基)である。上記アルキニル基及びアルケニル基が酸性基を有さない形態であることにより、上述と同様に、色素の還元効率が向上する。
 R、RおよびRとして作用しうる置換基としては、後述する置換基群Tから選ばれる基が挙げられ、なかでもアルキル基、アルコキシ基、アルケニル基、アルキニル基およびアリール基から選ばれる基が好ましい。
 式(1)において、R、RおよびRのうち少なくともRが酸性基を有さないアルキニル基または酸性基を有さないアルケニル基であることが好ましく、少なくともRが酸性基を有さないアルキニル基であることがより好ましい。酸性基を有さないアルキニル基または酸性基を有さないアルケニル基は、直鎖でも分岐していてもよいが、直鎖であることがより好ましい。
 R、RおよびRのうち少なくとも1つが酸性基を有さないアルキニル基である場合、このアルキニル基の炭素数は好ましくは2~30、より好ましくは4~25、さらに好ましくは5~18、さらに好ましくは5~16、さらに好ましくは5~14、さらに好ましくは5~12である。また、このアルキニル基は1-アルキニル基であることも好ましい。1-アルキニル基であることで、色素の一電子酸化状態においてラジカルカチオンが存在しうる共役系の近傍までレドックス系を効率的に誘導しうる。
 R、RおよびRのうち少なくとも1つが酸性基を有さないアルケニル基である場合、このアルケニル基の炭素数は好ましくは2~30、より好ましくは4~25、さらに好ましくは5~18、さらに好ましくは5~16、さらに好ましくは5~14、さらに好ましくは5~12である。また、このアルケニル基は1-アルケニル基であることも好ましい。1-アルケニル基であることで、色素の一電子酸化状態においてラジカルカチオンが存在しうる共役系の近傍までレドックス系を効率的に誘導しうる。
 本発明において、式(1)中の補助配位子は、酸性基を有さないことが好ましい。補助配位子が酸性基を有さない形態であることにより、補助配位子側が半導体微粒子に吸着することを抑制できる。すなわち、上記アルキニル基及びアルケニル基が酸性基を有さない形態であることにより、疎水基を有する補助配位子が電解質側に配置した構造をとりやすくなり、色素とレドックス系との相互作用がより促進されて色素の還元効率が向上すると推定される。また、補助配位子が有する疎水基であるアルキニル基ないしアルケニル基により、電解質からの水分の接近が効果的にブロックされ、その結果、半導体微粒子から色素が脱落しにくく光電変換素子の耐久性が向上すると推定される。
 式(1)中、R、R、RおよびR10は水素原子または置換基を表す。この置換基としては後述する置換基群Tから選ばれる基が好ましく、なかでもアルキル基、アルコキシ基、アルケニル基、アルキニル基およびアリール基から選ばれる基が好ましい。R、R、RおよびR10は水素原子であることがより好ましい。
 式(1)中、n1およびn2は0または1を表し、0が好ましい。
 式(1)の補助配位子が有する酸性基を有さないアルキニル基又は酸性基を有さないアルケニル基は無置換であることが好ましい。
 また、補助配位子中の2つのピリジン環の構造は、置換基を含めて同一であることが好ましい。
 AおよびAは酸性基を表す。本発明において、酸性基とは、解離性のプロトンを有する置換基であり、pKaが11以下の置換基である。例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基といった酸性を示す基である酸基、または、これらの酸基を有する基が挙げられる。酸基を有する基は、酸基と連結基とを有する基が挙げられ、例えば、カルボキシビニレン基、ジカルボキシビニレン基、シアノカルボキシビニレン基、カルボキシフェニル基を好ましいものとして挙げることができる。
 上記酸性基は、好ましくはカルボキシ基またはカルボキシ基を有する基であり、より好ましくはカルボキシ基である。
 本発明において酸性基はプロトンを放出して解離した形を採っていてもよく、塩であってもよい。酸性基が塩となるときの対イオンとしては、特に限定されないが、無機もしくは有機のアンモニウムイオン、またはアルカリ金属イオンが好ましい。このアルカリ金属イオンの好ましい例としては、ナトリウムイオン、カリウムイオン、リチウムイオン、セシウムイオンが挙げられ、なかでもナトリウムイオンが好ましい。無機もしくは有機のアンモニウムイオンとしては、例えばアンモニウムイオンやピリジニウムイオンが挙げられ、好ましくはアンモニウムイオンであり、3級または4級アンモニウムイオンが好ましく、4級アンモニウムイオンがさらに好ましい。この4級アンモニウムイオンの好ましい例としては、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、テトラデシルアンモニウムイオンが挙げられ、なかでもテトラブチルアンモニウムイオンまたはテトラヘキシルアンモニウムイオンが好ましく、テトラブチルアンモニウムイオンがより好ましい。
 式(1)中、ZおよびZは1座の配位子である。ZおよびZの好ましい例としては、セレノシアネート基、イソセレノシアネート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、およびアリールチオ基から選ばれる基で配位する配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトンおよびチオ尿素から選ばれる配位子が挙げられる。なかでもZおよびZはイソチオシアネート基またはシアノ基が好ましく、イソチオシアネート基がより好ましい。
 上記式(1)のルテニウム錯体色素は、より好ましくはR、R、R、R、R、R、RおよびR10のすべてが水素原子であり、RおよびRが酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。
 すなわち、上記式(1)のルテニウム錯体色素は下記式(1a)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(1a)中、A、A、ZおよびZは、それぞれ上記式(1)におけるA、A、ZおよびZと同義であり、好ましい形態も同じである。
 式(1a)中、R3aおよびR8aは酸性基を有さないアルキニル基または酸性基を有さないアルケニル基を表し、より好ましくは酸性基を有さないアルキニル基である。この酸性基を有さないアルキニル基および酸性基を有さないアルケニル基の好ましい形態はそれぞれ、上述の、式(1)のR、RおよびRのうち少なくとも1つが酸性基を有さないアルキニル基または酸性基を有さないアルケニル基の形態で説明した、好ましいアルキニル基の形態およびアルケニル基の形態と同じである。
<置換基群T>
 本明細書において置換基というときには、特に断らない限り、下記の置換基群Tをその好ましい範囲とする。
 また、本明細書において、単に置換基としてしか記載されていない場合は、この置換基群Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの場合は、この置換基群Tに含まれる対応する基における好ましい範囲、具体例が適用される。
 置換基群Tには下記の基が含まれる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、またはトリフルオロメチル)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、またはオレイル)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブチニル、またはフェニルエチニル)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、または4-メチルシクロヘキシル)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニル、またはシクロヘキセニル)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル、ジフルオロフェニル、またはテトラフルオロフェニル)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、または2-オキサゾリル)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、またはベンジルオキシ)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、またはアリルオキシ)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシ、または4-ブチニルオキシ)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、または4-メチルシクロヘキシルオキシ)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、または4-メトキシフェノキシ)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、またはプリニルオキシ)、
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニル、または2-エチルヘキシルオキシカルボニル)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、またはシクロヘキシルオキシカルボニル)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、またはナフチルオキシカルボニル)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、およびヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、またはトリアジニルアミノ)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、またはN-フェニルスルファモイル)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、またはベンゾイル)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、またはベンゾイルオキシ)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、またはN-フェニルカルバモイル)、
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、またはベンゾイルアミノ)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、またはN-エチルベンゼンスルホンアミド)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、またはベンジルチオ)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、または4-メチルシクロヘキシルチオ)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、または4-メトキシフェニルチオ)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、またはベンゼンスルホニル)、
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシまたはアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリイソプロピルシリル、トリフェニルシリル、ジエチルベンジルシリル、またはジメチルフェニルシリル)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシまたはアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、またはジメチルフェニルシリルオキシ)、ヒドロキシ基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、またはヨウ素原子)が挙げられる。
 置換基群Tから選ばれる置換基は、より好ましくはアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルコキシカルボニル基、シクロアルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基およびハロゲン原子から選ばれる基であり、さらに好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基およびシアノ基から選ばれる基である。
 化合物ないし置換基等がアルキル基、アルケニル基、アルキニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 以下に、式(1)で表されるルテニウム錯体色素の具体例を示すが、本発明はこれらに限定されるものではない。これらのルテニウム錯体色素は光学異性体、幾何異性体が存在する場合、これらの異性体のいずれであってもよく、またこれらの異性体の混合物であってもよい。また、後述する実施例において合成したルテニウム錯体色素D-1~D-10も式(1)で表されるルテニウム錯体色素として好ましい。
 また、下記表1を含む本明細書において-C2m+1(mは自然数)で表される各アルキル基は、直鎖でも分岐構造を有してもよい。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 式(1)で表されるルテニウム錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲にあり、より好ましくは350~900nmの範囲であり、特に好ましくは370~800nmの範囲にある。
 式(1)で表されるルテニウム錯体色素は、下記式(L1)で表されるビピリジン化合物を補助配位子として用いて、例えば、特許第4980479号公報、特許第4576494号公報、特開2001-291534号公報に記載の方法、または、これらに準じた方法で合成することができる。
Figure JPOXMLDOC01-appb-C000011
 式(L1)中、R~R10、n1およびn2は、それぞれ式(1)におけるR~R10、n1およびn2と同義であり、好ましい形態も同じである。
 式(L1)のビピリジン化合物は、後述する実施例の合成例1において、化合物d-1-7を得る工程、あるいはこれに準じた工程によりにより得ることができる。
 次に、光電変換素子および色素増感太陽電池の主たる部材の好ましい態様について説明する。
<導電性支持体>
 導電性支持体は、導電性を有し、感光体層2等を支持できるものであれば特に限定されないが、導電性を有する材料、例えば金属で形成された導電性支持体1、または、ガラスもしくはプラスチックの基板44とこの基板44の表面に成膜された透明導電膜43とを有する導電性支持体41が好ましい。
 なかでも、基板44の表面に導電性の金属酸化物を塗設して透明導電膜43を成膜した導電性支持体41がさらに好ましい。プラスチックで形成された基板44としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。また、基板44を形成する材料は、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、基板44の表面積1m当たり0.1~100gが好ましい。導電性支持体41を用いる場合、光は基板44側から入射させることが好ましい。
 導電性支持体1および41は、実質的に透明であることが好ましい。「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上であることが特に好ましい。
 導電性支持体1および41の厚みは、特に限定されないが、0.05μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明導電膜43を設ける場合、透明導電膜43の厚みは、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
 導電性支持体1および41は、表面に光マネージメント機能を有してもよい。例えば、表面に、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
<感光体層>
 感光体層は、上記色素21が担持された半導体微粒子22および電解質を有していれば、その他の構成は特に限定されない。好ましくは、上記感光体層2および上記感光体層42が挙げられる。
- 半導体微粒子(半導体微粒子が形成する層) -
 半導体微粒子22は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイト型結晶構造を有する化合物の微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブもしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイト型結晶構造を有する化合物としては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドは、単独で、または、チタニア微粒子に混合して、用いることができる。
 半導体微粒子22の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子22を導電性支持体1または41上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。
 半導体微粒子22は多くの色素21を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子22を導電性支持体1または41上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。
 半導体層45(光電変換素子10においては感光体層2)の好ましい厚みは、光電変換素子の用途によって一義的ではないが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は、1~50μmが好ましく、3~30μmがより好ましい。
 半導体微粒子22は、導電性支持体1または41に塗布した後に、100~800℃の温度で10分~10時間焼成して、粒子同士を密着させることが好ましい。成膜温度は、導電性支持体1または基板44の材料としてガラスを用いる場合、60~600℃が好ましい。
 なお、半導体微粒子22の、導電性支持体1または41の表面積1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
 導電性支持体1または41と感光体層2または42との間には、感光体層2または42が含む電解質と導電性支持体1または41が直接接触することによる逆電流を防止するため、図示していない短絡防止層を形成することが好ましい。
 また、受光電極5または40と対極4または48の接触を防ぐために、スペーサーS(図2参照)やセパレータを用いることが好ましい。
 - 色素 -
 光電変換素子10および色素増感太陽電池20においては、増感色素として少なくとも1種の上記式(1)で表されるルテニウム錯体色素を使用する。式(1)で表されるルテニウム錯体色素は上記の通りである。
 本発明において、上記式(1)のルテニウム錯体色素と併用できる色素としては、上記式(1)に包含されないルテニウム錯体色素、スクアリリウムシアニン色素、有機色素、ポルフィリン色素、フタロシアニン色素等が挙げられる。
 色素の使用量は、全体で、導電性支持体1または41の表面積1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明のルテニウム錯体色素の使用量は、全色素中5モル%以上、より好ましくは20モル%以上、さらに好ましくは50モル%以上、さらに好ましくは70モル%以上、さらに好ましくは80モル%以上、さらに好ましくは90モル%以上、さらに好ましくは100モル%とすることが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 色素を半導体微粒子22に担持させた後に、アミン化合物を用いて半導体微粒子22の表面を処理してもよい。好ましいアミン化合物としてピリジン化合物(例えば4-t-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。
 - 共吸着剤 -
 本発明においては、式(1)で表されるルテニウム錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシ基またはその塩)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。
 脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えば、ブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
 好ましい共吸着剤は、下記式(CA)で表される化合物である。
Figure JPOXMLDOC01-appb-C000012
 式(CA)中、RA1は酸性基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 RA1は、カルボキシ基もしくはスルホ基またはこれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
 RA2としては、上記の置換基群Tから選ばれる基が挙げられる。中でも、アルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基またはアリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基またはアシルオキシ基がより好ましい。
 nAは2~4が好ましい。
 上記共吸着剤は、半導体微粒子22に吸着させることにより、色素21の非効率な会合を抑制する効果および半導体微粒子22表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は、特に限定されないが、上記の作用を効果的に発現させる観点から、上記半導体微粒子22に担持される色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルである。
 - 光散乱層 -
 本発明において、光散乱層は、入射光を散乱させる機能を有する点で、半導体層と異なる。
 色素増感太陽電池20において、光散乱層46は、好ましくは、棒状または板状の金属酸化物粒子を含有する。光散乱層46に用いられる金属酸化物粒子は、例えば、上記金属のカルコゲニド(酸化物)の粒子が挙げられる。光散乱層46を設ける場合、光散乱層の厚みは感光体層42の厚みの10~50%とすることが好ましい。
 光散乱層46は、特開2002-289274号公報に記載されている光散乱層が好ましく、特開2002-289274号公報の記載が、そのまま本明細書に好ましく取り込まれる。
<電荷移動体層>
 本発明の光電変換素子に用いられる電荷移動体層3および47は、色素21の酸化体に電子を補充する機能を有する層であり、受光電極5または40と対極4または48との間に設けられる。
 電荷移動体層3および47は電解質を含む。ここで、「電荷移動体層が電解質を含む」とは、電荷移動体層が電解質のみからなる態様、および、電解質と電解質以外の物質を含有する態様の、両態様を含む意味である。
 電荷移動体層3および47は、固体状、液体状、ゲル状またはこれら混合状態のいずれであってもよい。
 - 電解質 -
 電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を含有する溶融塩および酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質等が挙げられる。なかでも、液体電解質が光電変換効率の点で好ましい。
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合せ(例えば赤血塩と黄血塩の組み合せ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうち、ヨウ素とヨウ化物との組み合わせ、または2価と3価のコバルト錯体の組み合わせが好ましく、ヨウ素とヨウ化物との組み合わせが特に好ましい。
 上記コバルト錯体は、特開2014-82189号公報の段落番号0144~0156に記載の式(CC)で表される錯体が好ましく、特開2014-82189号公報の段落番号0144~0156の記載が、そのまま本願明細書に好ましく取り込まれる。
 電解質として、ヨウ素とヨウ化物との組み合せを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。
 液体電解質およびゲル電解質に用いる有機溶媒としては、特に限定されないが、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。
 特に、液体電解質に用いる有機溶媒としては、ニトリル化合物、エーテル化合物、エステル化合物等が好ましく、ニトリル化合物がより好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
 溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム型陽イオンを含むイオン性液体、ピリジニウム型陽イオンを含むイオン性液体、グアニジウム型陽イオンを含むイオン性液体およびこれらの組み合わせが好ましい。また、これら陽イオンに対して特定のアニオンを組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。溶融塩は液晶性の置換基を持っていてもよい。また、溶融塩として、四級アンモニウム塩の溶融塩を用いることもできる。
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解質に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり光電変換効率が向上する。
 ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリクス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。
 また、ポリマーマトリクス、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いてもよい。
 ポリマーマトリクスとして好ましくは、含窒素複素環を主鎖または側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン、メタクリレート・アクリレート、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリコールとデキストリン等の包接化合物、含酸素または含硫黄高分子を添加した系、天然高分子等が挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子等を添加してもよい。
 ポリマーマトリクスとして、2官能以上のイソシアネート基と、ヒドロキシ基、アミノ基、カルボキシ基等の官能基とを反応させた架橋ポリマーを含む系を用いてもよい。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸等を2価以上の金属イオン化合物と反応させる架橋方法等を用いてもよい。
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒等が挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよい。液体電解質溶液を保持させる方法として好ましくは、導電性高分子膜、繊維状固体、フィルタ等の布状固体を使用する方法が挙げられる。
 電解質は、添加物として、4-t-ブチルピリジンのほか、アミノピリジン化合物、ベンズイミダゾール化合物、アミノトリアゾール化合物およびアミノチアゾール化合物、イミダゾール化合物、アミノトリアジン化合物、尿素化合物、アミド化合物、ピリミジン化合物または窒素を含まない複素環を含有していてもよい。
 また、光電変換効率を向上させるために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。
 ヨウ素は、ヨウ素とシクロデキストリンとの包摂化合物として使用することもできる。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
 以上の液体電解質および擬固体電解質の代わりに、p型半導体あるいはホール輸送材料等の固体電荷輸送層、例えば、CuI、CuNCS等を用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。有機ホール輸送材料として好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミン等の芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。
 酸化還元対は、電子のキャリアになるので、ある程度の濃度で含有するのが好ましい。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/L以上であり、特に好ましくは0.3モル/L以上である。この場合の上限は特に制限はないが、通常5モル/L程度である。
<対極>
 対極4および48は、色素増感太陽電池の正極として働くものであることが好ましい。対極4および48は、通常、上記導電性支持体1または41と同じ構成とすることもできるが、強度が十分に保たれるような構成では基板44は必ずしも必要でない。対極4および48の構造としては、集電効果が高い構造が好ましい。感光体層2および42に光が到達するためには、上記導電性支持体1または41と対極4または48との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体1または41が透明であって太陽光を導電性支持体1または41側から入射させるのが好ましい。この場合、対極4および48は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極4および48としては、金属もしくは導電性の酸化物を蒸着したガラスまたはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
 本発明は、例えば、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。
[光電変換素子および色素増感太陽電池の製造方法]
 本発明の光電変換素子および色素増感太陽電池は、上記式(1)のルテニウム錯体色素を含有する色素溶液を用いて、製造することが好ましい。
 上記色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒を挙げることができるが、特にこれに限定されない。本発明においては有機溶媒が好ましく、さらにアルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、および、これらの2種以上の混合溶媒がより好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。さらに好ましくはアルコール溶媒とアミド溶媒、アルコール溶媒と炭化水素溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒、特に好ましくはアルコール溶媒とアミド溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒である。具体的にはメタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、ジメチルホルムアミドおよびジメチルアセトアミドの少なくとも1種との混合溶媒、メタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、アセトニトリルとの混合溶媒が好ましい。
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、上記の共吸着剤が好ましく、なかでも上記式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、色素や共吸着剤の濃度が調整されている色素溶液が好ましい。本発明においては、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。共吸着剤の使用量は上記した通りである。
 色素溶液は、水分含有量を調整することが好ましく、本発明では水分含有量を0~0.1質量%に調整することが好ましい。
 本発明においては、上記色素溶液を用いて半導体微粒子表面に、ルテニウム錯体色素あるいはこれを含む金属錯体色素を担持させることにより、感光体層を作製することが好ましい。すなわち、感光体層は、上記色素溶液を、半導体微粒子を付与した導電性支持体上に塗布(ディップ法を含む)し、乾燥または硬化させて、形成することが好ましい。
 このようにして作製した感光体層に、さらに電荷移動体層や対極等を設けることで、本発明の光電変換素子または色素増感太陽電池を得ることができる。
 以下に実施例に基づき、本発明についてさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。
[合成例] ルテニウム錯体色素の合成 
 以下に、本発明のルテニウム錯体色素の合成方法を詳しく説明するが、本発明における出発物質、色素中間体および合成ルートはこれらに限定されるものではない。
<合成例1> 色素D-1の合成
 下記スキームに従って色素D-1を合成した。下記スキーム中、Etはエチル、Phはフェニルを示す。
Figure JPOXMLDOC01-appb-C000013
(i)化合物d-1-3の合成
 化合物d-1-1(2-ブロモチオフェン)20gをトリエチルアミン(TEA)80mlおよびTHF(テトラヒドロフラン)120mlに溶解し、ヨウ化銅(I)2.33gおよびテトラキストリフェニルフォスフィンパラジウム(0)4.25gを添加した。窒素雰囲気下、攪拌しながら、ナトリウムエトキシド18.9gを添加し15分攪拌した。その後、d-1-2(1-ヘキチン)21.1mlを添加し、外設55℃で2時間攪拌した。室温に戻した後、4規定塩酸水溶液120mlを滴下し、さらにトルエン120mlを滴下し、分液した。次いで有機層に飽和重曹水120mlを添加し、分液した。さらに有機層に水120ml添加し、分液した。有機層を濃縮し、減圧蒸留を行ない、d-1-3の精製物15.6gを得た。
(ii)化合物d-1-5の合成
 14.7gの化合物d-1-3をTHF334mlに溶解し、窒素雰囲気下、-78℃で攪拌しながら、1.6Mのn-ブチルリチウムヘキサン溶液58.8mlを滴下し、その後30分攪拌した。その後、27.2mlの化合物d-1-4を滴下し、10分間攪拌した。ゆっくり室温に戻した後、水500mlおよび酢酸エチル500mlを添加し、分液した。次いで有機層に水400mlを添加し、分液した。有機層を硫酸ナトリウムで乾燥し、ろ過後、濃縮してd-1-5の粗精製物19.3gを得た。
(iii)化合物d-1-7の合成
 18.6gの化合物d-1-5および8.1gの化合物d-1-6をTHF248mlおよび水62mlに溶解し、炭酸カリウム10.6gを添加した。窒素雰囲気下、テトラキストリフェニルフォスフィンパラジウム(0)1.3gを添加し、80℃で、3.5時間攪拌した。室温に戻して水450mlを添加し、ろ過後、ろ物を2-プロパノール400mlに分散させてろ過し、ろ物を再度2-プロパノール300mlに分散させた後、ろ過した。得られた結晶を40℃で減圧乾燥し、化合物d-1-7を9.8g得た。
 得られた化合物d-1-7の構造はNMRおよびMS測定により確認した。
H NMR(CDCl、400MHz):δ(ppm)=8.66(2H,J=5.2Hz,d),8.60(2H,J=1.2Hz,d),7.49(2H,J=3.6Hz,d)、7.45(2H,J=1.2Hz,5.2Hz,dd),7.13(2H,J=3.6Hz,d),2.47(4H,J=7.2Hz,t)1.65-1.44(8H,m),0.96(3H,J=7.2Hz,t)
MS-ESI m/z=481.3(M+H)
(iv)化合物d-1-10の合成
 15.3gの化合物d-1-8と15gの化合物d-1-9をエタノール500ml中で、外設100℃で4時間攪拌した。室温まで冷却後、減圧濃縮し、化合物d-1-10を30.3g得た。
(v)化合物d-1-12の合成
 10gの化合物d-1-10、7.9gの化合物d-1-7をDMF(N、N-ジメチルホルムアミド)200mlに加え窒素雰囲気下、150℃で3時間攪拌した。その後、50gのチオシアン酸アンモニウムを加え130℃で2時間攪拌した。濃縮後、水を加えろ過した。ろ物をシリカゲルカラムクロマトグラフィーで精製し、化合物d-1-12を6.0g得た。
(vi)色素D-1の合成
 6.0gの化合物d-1-12をDMF100mlおよび水5mlに溶解し、1N水酸化ナトリウム水溶液5mlを添加し、外温30℃で3時間攪拌した。減圧濃縮後、メタノール30mlを添加し、塩酸でpH3.0に調整し、析出物をろ過し、色素D-1を5.5g得た。
 得られた色素D-1の構造はNMR及びMS測定により確認した。
H NMR(DMSO-d、400MHz):Aromatic reigion δ(ppm)=9.45(1H,J=6.0Hz,d),9.18(1H,J=6.0Hz,d),9.14(1H,s)、9.07(1H,s),8.99(1H,s),8.92(1H,s),8.34(1H,J=6.0Hz,1.6Hz,dd),8.23(1H,J=6.0Hz,1.6Hz,dd),8.18(1H,J=4.0Hz,d),7.97(1H,J=3.6Hz,d),7.96(1H,J=6.0Hz,d),7.64(1H,J=6.0Hz,1.6Hz,dd)、7.48(1H,J=3.6Hz,d),7.44(1H,J=6.0Hz,d),7.40-7.35(2H,m)
MS-ESI m/z=942.3(M+H)
<合成例2> 色素D-2の合成
 上記で合成した色素D-1の1gを使用し、色素の0.05mol/lのメタノール溶液を調液した。これに水酸化ナトリウム水溶液を1当量滴下し、濃縮して、減圧乾燥することにより色素D-2を1g得た。
 得られた色素D-2の構造はNMR及びMS測定により確認した。
H NMR(DMSO-d、400MHz):Aromatic reigion δ(ppm)=9.32(1H,J=4.2Hz,d),9.21(1H,J=6.0Hz,d),9.04(1H,d)、8.98(1H,s),8.90(1H,J=1.6Hz,d),8.82(1H,s),8.24(1H,J=6.0Hz,d),8.20(1H,J=6.0Hz,2.0Hz,dd),8.17(1H,J=4.0Hz,d),7.95(1H,J=4.0Hz,d),7.80(1H,J=5.2Hz,d),7.57(1H,J=6.0Hz,1.6Hz,dd),7.47(1H,J=4.0Hz,d)、7.44(1H,J=6.4Hz,d),7.39(1H,J=6.4Hz,4.0Hz,dd),7.35(1H,J=4.0Hz,d)
MS-ESI m/z=942.3(M+2H-Na)
<合成例3> 色素D-3の合成
 上記合成例2において、水酸化ナトリウム水溶液に代えて、水酸化カリウム水溶液を用いた以外は上記合成例2と同様にして色素D-3を合成した。
 得られた色素D-3の構造はMS測定により確認した。
MS-ESI m/z=942.3(M+2H-K)
<合成例4> 色素D-4の合成
 上記合成例2において、水酸化ナトリウム水溶液に代えて、テトラブチルアンモニウムヒドロキシドメタノール溶液を用いた以外は、上記合成例2と同様にして色素D-4を合成した。
 得られた色素D-4の構造はMS測定により確認した。
MS-ESI m/z=942.3(M+2H-NBu
<合成例5> 色素D-5の合成
 上記合成例1において、化合物d-1-2に代えて下記化合物d-5-1を用いた以外は、上記合成例1と同様にして、下記化合物d-5-2を経て色素D-5を合成した。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 得られた化合物d-5-2の構造をNMRおよびMS測定により確認した。
H NMR(CDCl、400MHz):δ(ppm)=8.65(2H,J=5.2Hz,d),8.61(2H,J=1.6Hz,d),7.50(2H,J=3.6Hz,d)、7.45(2H,J=1.6Hz,5.2Hz,dd),7.14(2H,J=3.6Hz,d),2.46(4H,J=7.2Hz,t)1.67-1.23(H,m),0.88(3H,J=7.2Hz,t)
MS-ESI m/z=649.4(M+H)
 また、得られた色素D-5の構造をNMR及びMS測定により確認した。
H NMR(DMSO-d、400MHz):Aromatic reigion δ(ppm)=9.45(1H,J=6.0Hz,d),9.18(1H,J=6.0Hz,d),9.14(1H,s)、9.06(1H,s),8.99(1H,s),8.92(1H,s),8.34(1H,J=6.0Hz,1.6Hz,dd),8.23(1H,J=6.0Hz,1.6Hz,dd),8.18(1H,J=4.0Hz,d),7.97(1H,J=3.6Hz,d),7.96(1H,J=6.0Hz,d),7.64(1H,J=6.0Hz,1.6Hz,dd)、7.47(1H,J=3.6Hz,d),7.44(1H,J=6.0Hz,d),7.39-7.35(2H,m)
MS-ESI m/z=1111.3(M+H)
<合成例6> 色素D-6の合成
 上記合成例1において、化合物d-1-3に代えて下記化合物d-6-3を用いた以外は、上記合成例1と同様にして色素D-6を合成した。
 化合物d-6-3は、Macromolecules 2010,Vol.43,p.6264-6267を参照し、下記スキームに従って合成した。下記スキーム中、NBSはN-ブロモスクシンイミドを示す。
Figure JPOXMLDOC01-appb-C000016
 得られた色素D-6の構造はMS測定により確認した。
MS-ESI m/z=943.1(M+H)
<合成例7> 色素D-7の合成
 上記合成例1において、化合物d-1-3に代えて下記化合物d-7-1を用いた以外は、上記合成例1と同様にして色素D-7を合成した。
 化合物d-7-1は下記スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000017
 得られた色素D-7の構造はMS測定により確認した。
MS-ESI m/z=1107.1(M+H)
<合成例8> 色素D-8の合成
 上記合成例1において、化合物d-1-1に代えて下記化合物d-8-1を用いた以外は、上記合成例1と同様にして色素D-8を合成した。
Figure JPOXMLDOC01-appb-C000018
 得られた色素D-8の構造はMS測定により確認した。
MS-ESI m/z=1059.1(M+H)
<合成例9> 色素D-9の合成
 上記合成例1において、化合物d-1-3に代えて下記化合物d-9-3を用いた以外は、上記合成例1と同様にして色素D-9を合成した。
 化合物d-9-3は、J.AM.CHEM.SOC.2004,Vol.126,p.84865-4875を参照し、下記スキームに従って合成した。下記スキーム中、dbaはジベンジリデンアセトンを示す。
Figure JPOXMLDOC01-appb-C000019
 得られた色素D-9の構造はMS測定により確認した。
MS-ESI m/z=971.1(M+H)
<合成例10> 色素D-10の合成
 上記合成例1において、チオシアン酸アンモニウムに代えてシアン化カリウムを用いた以外は、上記合成例1と同様にして例示色素D-10を合成した。
 得られた例示色素D-10の構造はMS測定により確認した。
MS-ESI m/z=879.1(M+H)
<合成例11> 色素D-11の合成
 上記合成例5において、化合物d-1-9に代えてd-11-1を用いた以外は、上記合成例1と同様にして例示色素D-11を合成した。
Figure JPOXMLDOC01-appb-C000020
得られた例示色素D-11の構造はMS測定により確認した。
MS-ESI m/z=1163.3(M+H)
<合成例12> 色素D-12の合成
 上記で合成した色素D-5の1gを使用し、色素の0.05mol/lのメタノール溶液を調液した。これに水酸化ナトリウム水溶液を1当量滴下し、濃縮して、減圧乾燥することにより色素D-12を1g得た。
 得られた色素D-12の構造はNMR及びMS測定により確認した。
H NMR(DMSO-d、400MHz):Aromatic reigion δ(ppm)=9.31(1H,J=5.2Hz,d),9.22(1H,J=5.6Hz,d),9.04(1H,s)、9.00(1H,s),8.89(1H,s),8.84(1H,s),8.23(1H,J=5.6Hz,d),8.19(1H,J=6.0Hz,d),8.17(1H,J=2.4Hz,d),7.94(1H,J=2.8Hz,d),7.78(1H,J=5.2Hz,d),7.56(1H,J=6.0Hz,d),7.46(1H,J=2.8Hz,d)、7.43(1H,J=5.6Hz,d),7.38(1H,J=6.0Hz,d),7.34(1H,J=2.8Hz,d)
MS-ESI m/z=1111.3(M+2H-Na)
<合成例13> 色素D-13の合成
 上記合成例12において、水酸化ナトリウム水溶液に代えて、水酸化カリウム水溶液を用いた以外は上記合成例12と同様にして色素D-13を合成した。
 得られた色素D-13の構造はMS測定により確認した。
MS-ESI m/z=1111.3(M+2H-K)
<合成例14> 色素D-14の合成
 上記合成例12において、水酸化ナトリウム水溶液に代えて、テトラブチルアンモニウムヒドロキシドメタノール溶液を用いた以外は、上記合成例12と同様にして色素D-14を合成した。
 得られた色素D-14の構造はMS測定により確認した。
MS-ESI m/z=1111.3(M+2H-NBu
 上記合成例1~14で合成したルテニウム錯体色素の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 
[調製例] 色素溶液の調液
 t-ブタノールとアセトニトリルとの1:1(体積比)の混合溶媒に、ルテニウム錯体色素D-1の濃度が2×10-4モル/Lとなるように溶解し、さらにそこへ共吸着剤としてデオキシコール酸をルテニウム錯体色素D-1の1モルに対して30モル加え、ルテニウム錯体色素D-1を含む色素溶液1を調製した。同様にして、ルテニウム錯体色素D-2~D-14を含む色素溶液2~14を調製した。
[製造例] 色素増感太陽電池の製造
 以下に示す手順により、図2に示す色素増感太陽電池20(5mm×5mmのスケール)を製造した。
(受光電極前駆体Aの作製)
 ガラス基板(基板44、厚み4mm)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成した導電性支持体41を準備した。そして、このSnO導電膜上に、チタニアペースト「18NR-T」(DyeSol社製)をスクリーン印刷し、120℃で乾燥させ、次いで、チタニアペースト「18NR-T」を再度スクリーン印刷し、120℃で1時間乾燥させた。その後、乾燥させたチタニアペーストを500℃で焼成し、半導体層45(層厚;10μm)を成膜した。この半導体層45上に、チタニアペースト「18NR-AO」(DyeSol社製)をスクリーン印刷し、120℃で1時間乾燥させた後に、乾燥させたチタニアペーストを500℃で焼成し、半導体層45上に光散乱層46(層厚;5μm)を成膜した。このようにして、SnO導電膜上に、感光体層42(受光面の面積;5mm×5mm、層厚;15μm、ルテニウム錯体色素は未担持)を形成し、ルテニウム錯体色素を担持していない受光電極前駆体Aを作製した。
(色素吸着)
 次に、上記の受光電極前駆体Aの感光体層を上記調製例で調製した色素溶液1に25℃で20時間浸漬し、引き上げ後に乾燥させることにより、受光電極前駆体Aにルテニウム錯体色素D-1が担持された受光電極40を作製した。
 上記色素溶液1に代えて色素溶液2~14を用いた以外は上記と同様にして、ルテニウム錯体色素D-2~D-14が担持された13種の受光電極40を作成した。
(色素増感太陽電池の組み立て)
 対極48として、上記の導電性支持体41と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)を作製した。また、電解液として、ヨウ素0.1M(モル/L)、ヨウ化リチウム0.1M、4-t-ブチルピリジン0.5Mおよび1,2-ジメチル-3-プロピルイミダゾリウムヨージド0.6Mをアセトニトリルに溶解して、液体電解質を調製した。さらに、感光体層42の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備した。
 上記のようにして作製した14種の受光電極40の各々と対極48とを、上記スペーサーSを介して、対向させて熱圧着させた後に、感光体層42と対極48との間に電解液注入口から上記液体電解質を充填して電荷移動体層47を形成した。このようにして作製した電池の外周および電解液注入口を、ナガセケムテック製レジンXNR-5516を用いて封止、硬化し、増感色素の異なる14種の色素増感太陽電池(実施例1~14)を製造した。
 上記色素増感太陽電池の製造において、ルテニウム錯体色素を、比較のための下記ルテニウム錯体色素C-1~C-5に代えた以外は上記色素増感太陽電池の製造と同様にして、比較のための色素増感太陽電池(比較例1~5)を製造した。
 また、上記色素増感太陽電池の製造において、ルテニウム錯体色素を、参考のための下記ルテニウム錯体色素R-1に代えた以外は上記色素増感太陽電池の製造と同様にして、比較のための色素増感太陽電池(参考例1)を製造した。
 上記表1中、色素C-1~C-5およびR-1の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000023
[試験例]
 上記製造例で製造した各実施例、比較例の色素増感太陽電池を用いて電池特性試験を行った。電池特性試験は、ソーラーシミュレーター(WXS-85H、WACOM社製)を用い、AM1.5フィルタを通したキセノンランプから1000W/mの擬似太陽光を照射することにより行った。I-Vテスターを用いて電流-電圧特性を測定し、Jscおよび光電変換効率(η)を求めた。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000024
 上記表2に示されるように、ルテニウム錯体色素の補助配位子が、酸性基を有さないアルキニルチエニル基または酸性基を有さないアルケニルチエニル基を置換基として有さない場合、Jscが低く光電変換効率に大きく劣る結果となった。すなわち、色素の補助配位子がアルキルチエニル基やアリールチエニル基等を有していても、Jscが低く光電変換効率に大きく劣る結果となり(比較例1~4)、また、補助配位子が酸性基を有するアルキニル基を有する場合もまた、Jscが低く光電変換効率に大きく劣る結果となった(比較例5)。
 これに対し、補助配位子が置換基として酸性基を有さないアルキニル基または酸性基を有さないアルケニル基を有するルテニウム錯体色素を用いた実施例1~14の色素増感太陽電池は、優れた光電変換効率を示した。
 また、金属錯体色素は一般に、共役構造が伸びると吸収波長が長波長化し、またモル吸光係数も増大して光吸収効率が増大し、光電変換効率が向上するとされる(特開2012-12570号公報)。しかし、上記表2の実施例1~6、12~14の色素増感太陽電池は、色素R-1よりも共役系が短い(すなわちエテニレン基を有さない)にもかかわらず、逆にJscが改善し、その結果、参考例1と同様に優れた光電変換効率を示した。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年6月13日に日本国で特許出願された特願2014-122381及び2014年8月26日に日本国で特許出願された特願2014-171755に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1、41 導電性支持体
2、42 感光体層
 21 色素
 22 半導体微粒子
3、47 電荷移動体層
4、48 対極
5、40 受光電極
6 回路
10 光電変換素子
100 光電変換素子を電池用途に応用したシステム
M 動作手段(例えば電動モーター)
20 色素増感太陽電池
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
S スペーサー

Claims (16)

  1.  導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、該感光体層が、下記式(1)で表されるルテニウム錯体色素が担持された半導体微粒子を有する光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。AおよびAは酸性基を表す。ZおよびZは1座の配位子を表す。
  2.  少なくとも前記RおよびRが、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である、請求項1に記載の光電変換素子。
  3.  少なくとも前記RおよびRが、酸性基を有さないアルキニル基である、請求項2に記載の光電変換素子。
  4.  前記R、R、R、R、R、R、RおよびR10が水素原子である、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記n1およびn2が0である、請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記ZおよびZがイソチオシアネート基またはシアノ基である、請求項1~5のいずれか1項に記載の光電変換素子。
  7.  請求項1~6のいずれか1項に記載の光電変換素子を用いた色素増感太陽電池。
  8.  下記式(1)で表されるルテニウム錯体色素。
    Figure JPOXMLDOC01-appb-C000002
     式(1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。AおよびAは酸性基を表す。ZおよびZは1座の配位子を表す。
  9.  少なくとも前記RおよびRが、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である、請求項8に記載のルテニウム錯体色素。
  10.  少なくとも前記RおよびRが、酸性基を有さないアルキニル基である、請求項9に記載のルテニウム錯体色素。
  11.  前記R、R、R、R、R、R、RおよびR10が水素原子である、請求項8~10のいずれか1項に記載のルテニウム錯体色素。
  12.  前記n1およびn2が0である、請求項8~11のいずれか1項に記載のルテニウム錯体色素。
  13.  前記ZおよびZがイソチオシアネート基またはシアノ基である、請求項8~12のいずれか1項に記載のルテニウム錯体色素。
  14.  請求項8~13のいずれか1項に記載のルテニウム錯体色素と溶媒とを含有する色素溶液。
  15.  下記式(L1)で表されるビピリジン化合物。
    Figure JPOXMLDOC01-appb-C000003
     式(L1)中、R~R10は水素原子または置換基を表す。但し、R、RおよびRのうち少なくとも1つ、および、R、RおよびRのうち少なくとも1つは、酸性基を有さないアルキニル基または酸性基を有さないアルケニル基である。n1およびn2は0または1を表す。
  16.  請求項15に記載のビピリジン化合物からなる二座配位子。
PCT/JP2015/066223 2014-06-13 2015-06-04 光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物 WO2015190398A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016527774A JP6253167B2 (ja) 2014-06-13 2015-06-04 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-122381 2014-06-13
JP2014122381 2014-06-13
JP2014171755 2014-08-26
JP2014-171755 2014-08-26

Publications (1)

Publication Number Publication Date
WO2015190398A1 true WO2015190398A1 (ja) 2015-12-17

Family

ID=54833491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066223 WO2015190398A1 (ja) 2014-06-13 2015-06-04 光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物

Country Status (3)

Country Link
JP (1) JP6253167B2 (ja)
TW (1) TW201605845A (ja)
WO (1) WO2015190398A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169271A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 光電変換素子用色素溶液及び色素溶液調製用キット、並びに、光電変換素子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749335B (zh) * 2019-06-26 2021-12-11 國立清華大學 半導體化合物之用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502187A (ja) * 2007-10-25 2011-01-20 ソニー株式会社 分子構造内にアンカー基を含む色素
JP2012131906A (ja) * 2010-12-22 2012-07-12 Toyo Ink Sc Holdings Co Ltd 色素および色素増感太陽電池
JP2012216496A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 光電変換素子及び色素増感太陽電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050470B1 (ko) * 2010-04-05 2011-07-20 삼성에스디아이 주식회사 루테늄 착체 및 이를 이용한 염료감응 태양전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502187A (ja) * 2007-10-25 2011-01-20 ソニー株式会社 分子構造内にアンカー基を含む色素
JP2012131906A (ja) * 2010-12-22 2012-07-12 Toyo Ink Sc Holdings Co Ltd 色素および色素増感太陽電池
JP2012216496A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 光電変換素子及び色素増感太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169271A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 光電変換素子用色素溶液及び色素溶液調製用キット、並びに、光電変換素子の製造方法

Also Published As

Publication number Publication date
JP6253167B2 (ja) 2018-01-10
TW201605845A (zh) 2016-02-16
JPWO2015190398A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5925541B2 (ja) 光電変換素子用金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法
KR101711315B1 (ko) 금속 착물 색소, 광전 변환 소자, 색소 증감 태양전지 및 금속 착물 색소를 함유하는 색소 용액
WO2016006512A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6311204B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6253167B2 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
WO2015190466A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
EP2903078B1 (en) Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2015002081A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP6204603B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6371908B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液および酸化物半導体電極
JP6391080B2 (ja) ルテニウム錯体色素、色素溶液、光電変換素子および色素増感太陽電池
JP6300333B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6300334B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2016052196A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6300332B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6410669B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6063361B2 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
JP2016076585A (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2016063154A (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
WO2016052195A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2015033698A1 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用逆電子移動防止剤
JP2016056276A (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP2016072394A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP2015053150A (ja) 光電変換素子および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15805849

Country of ref document: EP

Kind code of ref document: A1