WO2015186882A1 - 유기 화합물, 유기 광전자 소자 및 표시 장치 - Google Patents

유기 화합물, 유기 광전자 소자 및 표시 장치 Download PDF

Info

Publication number
WO2015186882A1
WO2015186882A1 PCT/KR2014/012597 KR2014012597W WO2015186882A1 WO 2015186882 A1 WO2015186882 A1 WO 2015186882A1 KR 2014012597 W KR2014012597 W KR 2014012597W WO 2015186882 A1 WO2015186882 A1 WO 2015186882A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
formula
mmol
Prior art date
Application number
PCT/KR2014/012597
Other languages
English (en)
French (fr)
Inventor
한수진
신창주
이한일
김영권
민수현
유은선
정호국
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2015186882A1 publication Critical patent/WO2015186882A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • An organic compound an organic optoelectronic device, and a display device.
  • An organic optodectric diode is a device that can switch between electrical energy and light energy.
  • Organic optoelectronic devices can be divided into two types according to the principle of operation.
  • One is an optoelectronic device in which an exciton formed by light energy is separated into electrons and holes, and each of the electrons and holes is transferred to another electrode to generate electrical energy. It is a light emitting device that generates light energy from electrical energy.
  • Examples of the organic optoelectronic device may be an organic photoelectric device, an organic light emitting device, an organic solar cell and an organic photo conductor drum.
  • organic light emitting diodes have attracted much attention recently as demand for flat panel displays increases.
  • the organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material, and has a structure in which an organic layer is inserted between an anode and a cathode.
  • the performance of the organic light emitting device is greatly influenced by the characteristics of the organic layer, and in particular, is affected by the organic material included in the organic layer.
  • the organic material included in the organic layer In particular, in order for the organic light emitting diode to be applied to a large flat panel display, it is necessary to develop an organic material that can increase the mobility of holes and electrons and at the same time increase the electrochemical stability.
  • One embodiment provides an organic compound capable of implementing high efficiency and long life organic optoelectronic devices.
  • Another embodiment provides an organic optoelectronic device including the organic compound.
  • Another embodiment provides a display device including the organic optoelectronic device.
  • an organic compound represented by Chemical Formula 1 is provided.
  • R 1 to R 4 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof ,
  • R 5 to R 12 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
  • L 1 to L 6 are each independently a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, or a substituted or unsubstituted quarterphenylene group,
  • n 'to n 4 are each independently an integer of 0 to 5
  • the sum of ⁇ 'to ⁇ 4 is an integer of 2 or more
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C6 to C30 aryl group, a group represented by Formula A, a group represented by Formula B or a combination thereof :
  • At least one of Ar 1 and Ar 2 is a group represented by the formula A,
  • Y is O, S, CR a R b , SiR c R d or NR e ,
  • R 13 to R 20 and R a to R e are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterolog Or a linking point with L 5 or L 6 of Formula 1,
  • R 13 to R 20 are each independently present or two adjacent groups are connected to each other to form a fused ring
  • R 21 to R 30 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof ,
  • R 21 to R 30 are each independently present or two adjacent groups are connected to each other to form a fused ring
  • An organic optoelectronic device including a compound is provided.
  • a display device including the organic optoelectronic device is provided.
  • FIG. 1 and 2 are cross-sectional views illustrating organic light emitting diodes according to example embodiments. [The best form for carrying out invention]
  • substituted means that at least one hydrogen in a substituent or compound is a deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted C1 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C3 to C30 heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heterocycle, C1 to C20 alkoxy group, Mean substituted by a C1 to C10 trifluoroalkyl group or a sarano group, such as a fluoro group and a trifluoromethyl group.
  • C1 to C10 trifluoroalkyl group or cyano group such as heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heterocycle, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group It may also form a ring.
  • substituted C6 to C30 aryl group may be fused to another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
  • hetero means at least one hetero atom selected from the group consisting of ⁇ , ⁇ , S, P, and Si in one functional group, and the remainder is carbon unless otherwise defined.
  • aryl means that all the elements of the cyclic substituent are p-orbital. Which means that these P-orbitals form substituents that form conjugates, and include monocyclic, polycyclic, or fused ring polycyclic (ie, rings that divide adjacent pairs of carbon atoms) functional groups.
  • heterocyclic group refers to an aryl group or
  • a cyclic compound such as a cycloalkyl group contains at least one hetero atom selected from the group consisting of N, 0, S, P and Si, and the rest is carbon.
  • the heterocyclic ring is a fused ring, the heterocyclic group may include one or more heteroatoms for each or each ring.
  • a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heterocyclic group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthra Senyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted P-terphenyl group, ' substituted or Unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted triphenylenyl group, substituted or unsubstituted perrylenyl
  • a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted carbazolyl group, a combination thereof or a combination thereof may be in a fused form, It is not limited to this.
  • the hole characteristic refers to a characteristic capable of forming holes by donating electrons when an electric field is applied, and injecting holes formed at the anode into the light emitting layer having conduction properties along the HOMO level and emitting layer. It refers to a property that facilitates the movement of the hole formed in the anode and movement in the light emitting layer.
  • the electron characteristic refers to a characteristic that can receive electrons when an electric field is applied, and has a conductivity characteristic along the LUMO level, and injects electrons formed in the cathode into the light emitting layer, moves electrons formed in the light emitting layer to the cathode, and It means a property that facilitates movement.
  • the organic compound according to the embodiment is represented by the following Chemical Formula 1.
  • R 1 to R 4 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof ,
  • R 5 to R 12 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
  • L 'to L 6 are each independently a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, or a substituted or unsubstituted quarterphenylene group, n 1 to n 4 are each independently an integer of 0 to 5,
  • n 1 to n 4 is an integer of 2 or more
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C6 to C30 aryl group, a group represented by Formula A, a group represented by Formula B or a combination thereof
  • At least one of Ar 1 and Ar 2 is a group represented by formula A, a group represented by formula B, or a combination thereof,
  • Y is 0, S, CR a R b , SiR c R d or NR e ,
  • R 13 to R 20 and R a to R e are each independently hydrogen, deuterium, a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 12 aryl group, a substituted or unsubstituted C 3 to C 12 hetero A ring group, a combination thereof, or a linking point of Formula 1 with L 5 or L 6 ,
  • R 13 to R 20 are each independently present or two adjacent groups are connected to each other to form a fused ring
  • R 21 to R 30 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 71 C12 heterocyclic group or a combination thereof,
  • R 2 'to R 30 are each independently present or two adjacent to each other are connected to form a fused ring
  • the organic compound represented by Chemical Formula 1 includes a substituted or unsubstituted benzoquinazolin including two nitrogens and two or more meta-bonded substituted or unsubstituted phenylene groups.
  • the nitrogen portion of the substituted or unsubstituted benzoquinazolin has a polarity and can interact with the electrode, thereby facilitating the injection of charge and increasing charge mobility by three fusion rings.
  • substituted or unsubstituted benzoquinazolin has a relatively low LUMO energy level, which facilitates electron injection and may improve thermal stability and electrical stability.
  • the substituted or unsubstituted benzoquinazolin may be, for example, about 1.7 to 2.1 eV
  • the stability of benzoquinazolin can be improved.
  • it is possible to enhance the stability of the organic compound by enjoying the oxidation (oxidation) of the carbons of the ring adjacent to the nitrogen ring of benzoquinazolin, that is, the carbon to which R 3 or R 4 is bonded.
  • the lifetime of an organic compound can be improved.
  • R 3 or R 4 may be each independently hydrogen.
  • n 1 and n 2 of the formula (1) may be each independently 1 to 5.
  • the organic compound since the organic compound has steric hindrance characteristics, the interaction with neighboring molecules can be suppressed to enjoy crystallization, thereby improving efficiency and lifespan.
  • organic compound represented by Chemical Formula 1 may be represented by Chemical Formula A at a terminal thereof. And at least one of the groups represented by the above formula (B).
  • the group represented by the formula (A) and the group represented by the formula (B) is a group having a hole property that is easy to receive holes, it is included with the substituted or unsubstituted benzoquinazolin to form a bipolar (bipolar) structure to flow holes and electrons Can be properly balanced, thereby improving the efficiency of the organic optoelectronic device to which the organic compound is applied.
  • the organic compound may for example have a molecular weight of about 500 or more.
  • Tg glass transition degree
  • the glass transition temperature (Tg) may be related to the thermal stability of the organic compound and the device using the same. That is, when the organic compound having a high glass transition temperature (Tg) is applied to the organic light emitting device in the form of a thin film, the organic compound is prevented from being degraded by silver in a subsequent process such as encapsulation, which is performed after the organic compound is deposited. It is possible to ensure the life characteristics of the organic compound and the device.
  • the glass transition temperature (Tg) of the organic compound may be, for example, about 70 ° C or more, more preferably 90 ° C or more within the above range. Within this range, for example, it may be about 70 ° C to 150 ° C, within the range may be about 90 ° C to 130 ° C.
  • the organic compound may be represented by the following Chemical Formula 2 or 3 depending on the position of nitrogen (N) of benzoquinazolin. [Formula 2]
  • R 1 to R 12 , L 'to ⁇ 1 to n 4 , Ar 1 and Ar 2 are as described above.
  • Formula 2 may be represented by, for example, Formula 2A
  • Formula 3 may be represented by, for example, Formula 3A.
  • L 6 in L 1 may be, for example, a single bond or one of the groups listed in Group 1 below.
  • R 31 to R 34 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 ⁇ C12 heterocyclic group or a combination thereof,
  • R 31 to R 34 may be each independently hydrogen.
  • at least one of Ar 1 and Ar 2 of Formulas 1 to 3, 2A, and 3A may be a group represented by Formula A, a group represented by Formula B, or a combination thereof.
  • the group represented by Formula A may be, for example, one of the groups listed in Group 2 below.
  • R 35 to R 39 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof ego,
  • Formula B may be, for example, one of the donations listed in Group 3. [Group 3
  • R 40 to R 47 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof ,
  • the organic compound may be, for example, a compound listed in Group 4, but is not limited thereto.
  • the aforementioned organic compound can be applied to organic optoelectronic devices.
  • the aforementioned organic compounds may be applied to the organic optoelectronic device alone or in combination with other organic compounds.
  • the organic optoelectronic device is not particularly limited as long as the device can switch electrical energy and light energy. Examples thereof include an organic photoelectric device, an organic light emitting device, an organic solar cell, and an organic photosensitive drum.
  • the organic optoelectronic device may include an anode and a cathode facing each other, at least one organic layer located between the anode and the cathode, and the organic layer may include the above-described organic compound.
  • organic light emitting diodes 100 face each other.
  • the anode 120 may be made of a high work function conductor, for example, to facilitate hole injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • the anode 120 is, for example, a metal such as nickel, platinum, vanadium, chromium, copper, zinc, gold or an alloy thereof; Zinc oxide, indium oxide, indium tin oxide ( ⁇ ),
  • Metal oxides such as indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO and AI or Sn0 2 and Sb; Conductive polymers such as poly (3-methylthiophene), poly (3,4- (ethylene-1,2-dioxy) thiophene Xpolyehtylenedioxythiophene: PEDOT), polypyrrole and polyaniline, and the like. It is not.
  • the cathode 110 may be made of a low work function conductor, for example, to facilitate electron injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • Cathode 110 is, for example, a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or an alloy thereof; Multilayer structure materials such as LiF / Al, Li0 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, but are not limited thereto.
  • the organic layer 105 includes a light emitting layer 130 including the above-described organic compound.
  • the light emitting layer 130 may include, for example, the above-described organic compound alone, or may include a mixture of at least two kinds of the above-described organic compounds.
  • the above-mentioned organic compound may be used as a host of the light emitting layer 130, and at least one
  • It may further comprise a dopant.
  • the dopant is a substance that is lightly mixed with the host compound to cause light emission, and a material such as a metal complex that emits light by multiple excitation which is generally excited above a triplet state may be used.
  • the dopant may be, for example, an inorganic, organic, or inorganic compound, and may be included in one kind or two or more kinds.
  • Examples of the phosphorescent dopant include an organometallic compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof.
  • the phosphorescent dopant may be, for example, a compound represented by Chemical Formula Z, but is not limited thereto. [Formula z]
  • M is a metal
  • L and X are the same or different from each other, and are ligands that form a complex with M.
  • M may be, for example, Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd or a combination thereof, wherein L and X are for example bidentate It may be a ligand.
  • the organic light emitting diode 200 may have holes in addition to the light emitting layer 130.
  • the hole auxiliary layer 140 may further increase hole injection and / or hole mobility between the anode 120 and the light emitting layer 130 and block electrons.
  • the hole auxiliary layer 140 may be, for example, a hole transport layer, a hole injection layer, and / or an electron blocking layer, and may include at least one layer.
  • the organic light emitting device may further include an electron transport layer, an electron injection layer, a hole injection layer, and the like as the organic layer 105 in FIG. 1 or 2.
  • the organic light emitting diodes 100 and 200 form an anode or a cathode on a substrate, and then form an organic layer by a dry film method such as evaporation, sputtering, plasma plating, and ion plating. It can be prepared by forming a cathode or an anode. '
  • the organic light emitting diode described above may be applied to an organic light emitting diode display.
  • intermediate 1-2 (110 g, 223 mmol) was dissolved in 1 L of monochlorobenzene (MCB), followed by 2,3-dichloro-5,6-dicyano-l, 4-benzoquinone (DDQ, 101 g, 446 mmol) was added thereto, and the mixture was heated and refluxed at 130 ° C. for 15 hours. After completion of the reaction, add water to the reaction solution, extract with dichloromethane (DCM), remove moisture with anhydrous MgS04, Filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain Intermediate 1-3 (76.5 g, 70%).
  • MBB monochlorobenzene
  • the intermediate 1-22 (1 10 g, 277 mmol) was dissolved in 1 L of THF, followed by 1-bromo-3-chlorobenzene (53 g, 377 mmol) and tetrakis (triphenylphosphine) palladium (3.2 g, 2.77 mmol) was added and stirred. Potassuim carbonate saturated in water (96 g, 692 mmol) was added and heated to reflux at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain Intermediate 1-23 (96 g, 92%).
  • DCM dichloromethane
  • aniline (30 g, 536 mmol) was dissolved in 1 L of tetrahydrofUran (THF), followed by 2-brotnonaphthalene (1 10 g, 536 mmol) and tris (diphenylideneacetone) dipalladium (o) (5 g, 5.36 mmol ) tris-tert butylphosphine (4.3 g, 21.44 mmol), and sodium tert-butoxide (62 g, 717 mmol) were added sequentially and heated to reflux for 18 hours at 100 ° C.
  • THF tetrahydrofUran
  • 3-bromo-9-phenyl-9H-carbazole (1 15 g, 366 mmol) was dissolved in 1 L of THF, followed by (3-chlorophenyl) boronic acid (57 g, 366 mmol).
  • the intermediate 1-30 (110 g, 269 mmol) was dissolved in 1 L of THF, followed by l-bromo-3-chlorobenzene (62 g, 322 mmol) and tetrakis (triphenylphosphine) palladium (3 ⁇ 1 g). , 2.69 mmol) was added and stirred. Potassuim carbonate saturated in water (93 g, 672 mmol) was added and heated to reflux at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain Compound 1-31 (99 g, 89%).
  • DCM dichloromethane
  • the anode is cut into ⁇ glass substrate having a sheet resistance value of 15 i2 / crf to a size of 50mm x 50 mm x 0.7 mm in each of acetone, isopropyl alcohol and pure water After ultrasonic cleaning for 15 minutes, UV ozone cleaning was used for 30 minutes.
  • Vacuum degree 650xl (T 7 Pa, deposition rate 0.1 to 0.3 nm / s on the substrate)
  • Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum (BAlq) was deposited to have a film thickness of 50 A.
  • a hole blocking layer was formed.
  • Tris (8-hydroxyquinolinato) aluminum (Alq3) was deposited under the same vacuum deposition conditions to form an electron transport layer having a thickness of 250 A.
  • An organic photoelectric device was manufactured by sequentially depositing LiF and A1 as a cathode on the electron transport layer.
  • the structure of the organic photoelectric device is ⁇ / DNTPD (60 nm) / HT-1 (30 nm) / EML
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 3 obtained in Synthesis Example 34 instead of Compound 1 obtained in Synthesis Example 33.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 10 obtained in Synthesis Example 35 instead of the compound 1 obtained in Synthesis Example 33.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 13 obtained in Synthesis Example 36 instead of the compound 1 obtained in Synthesis Example 33.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 15 obtained in Synthesis Example 37 instead of the compound 1 obtained in Synthesis Example 33.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that Compound 41 obtained in Synthesis Example 38 was used instead of Compound 1 obtained in Synthesis Example 33.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 49 obtained in Synthesis Example 39 instead of the compound 1 obtained in Synthesis Example 33.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that Compound 97 obtained in Synthesis Example 40 was used instead of Compound 1 obtained in Synthesis Example 31.
  • the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the resulting organic light emitting device was measured using a luminance meter (Minolta Cs-IOOOA) while increasing the voltage from 0V to 10V to obtain a result.
  • a luminance meter Minolta Cs-IOOOA
  • the current efficiency (cd / A) of the same current density (10 mA / cm 2) was calculated using the luminance, current density, and voltage measured from (1) and (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

화학식 1로 표현되는 유기 화합물, 상기 유기 화합물을 적용한 유기 광전자 소자 및 상기 유기 광전자 소자를 포함하는 표시 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
유기 화합물, 유기 광전자 소자 및 표시 장치
【기술분야】
유기 화합물, 유기 광전자 소자 및 표시 장치에 관한 것이다.
【배경기술】
유기 광전자 소자 (organic optodectric diode)는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이다.
유기 광전자 소자는 동작 원리에 따라크게 두 가지로 나눌 수 있다.
하나는 광 에너지에 의해 형성된 액시톤 (exciton)이 전자와 정공으로 분리되고 상기 전자와 정공이 각각 다른 전극으로 전달되면서 전기 에너지를 발생하는 광전 소자이고, 다른 하나는 전극에 전압 또는 전류를 공급하여 전기 에너지로부터 광 에너지를 발생하는 발광 소자이다.
유기 광전자 소자의 예로는 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 (organic photo conductor drum) 등을 들 수 있다.
이 중, 유기 발광 소자 (organic light emitting diode, OLED)는 근래 평판 표시 장치 (flat panel display device)의 수요 증가에 따라 크게 주목받고 있다. 상기 유기 발광 소자는 유기 발광 재료에 전류를 가하여 전기 에너지를 빛으로 전환시키는 소자로서, 통상 양극 (anode)과 음극 (cathode)사이에 유기 층이 삽입된 구조로 이루어져 있다.
유기 발광 소자의 성능은 상기 유기 층의 특성에 의해 영향을 많이 받으며, 그 중에서도 상기 유기 층에 포함된 유기 재료에 의해 영향을 많이 받는다. 특히 상기 유기 발광 소자가 대형 평판 표시 장치에 적용되기 위해서는 정공 및 전자의 이동성을 높이는동시에 전기화학적 안정성을 높일 수 있는 유기 재료의 개발이 필요하다.
【발명의 상세한 설명】
【기술적 과제】
일 구현예는 고효율 및 장수명 유기 광전자 소자를 구현할 수 있는 유기 화합물을 제공한다.
다른 구현예는 상기 유기 화합물을 포함하는 유기 광전자 소자를 제공한다. 또 다른 구현예는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다. 【기술적 해결방법】
일 구현예에 따르면, 하기 화학식 1로 표현되는 유기 화합물을 제공한다.
Figure imgf000003_0001
상기 화학식 1에서,
X 중 두 개는 N이고 두 개는 C이고,
R1 내지 R4는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R5 내지 R12는 각각 독립적으로 수소, 중수소, 치환또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 또는 이들의 조합이고,
L1 내지 L6은 각각 독립적으로 단일 결합, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기 또는 치환 또는 비치환된 쿼터페닐렌기이고,
n' 내지 n4는 각각 독립적으로 0 내지 5의 정수이고,
η' 내지 η4의 합은 2 이상의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합이고:
Ar1 및 Ar2 중 적어도 하나는 하기 화학식 A로 표현되는 기, 하기 화학식
B로 표현되는 기 또는 이들의 조합이고, A]
Figure imgf000004_0001
상기 화학식 A에서,
Y는 Ο, S, CRaRb, SiRcRd또는 NRe이고,
R13 내지 R20 및 Ra 내지 Re는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환또는 비치환된 C6 내지 C12 아릴기, 치환또는 비치환된 C3 내지 C12 해테로고리기, 이들의 조합 또는 상기 화학식 1의 L5 또는 L6와의 연결 지점이고,
R13 내지 R20은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고,
화학식 B]
Figure imgf000004_0002
상기 화학식 B에서,
R21 내지 R30은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R21 내지 R30은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고,
*는 화학식 1의 L5 또는 L6와의 연결 지점이다.
다른 구현예에 따르면, 서로 마주하는 양극과 음극, 및 상기 양극과 상기 음극사이에 위치하는 적어도 1층의 유기층을 포함하고, 상기 유기층은 상기 유기 화합물을 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현예에 따르면 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.
【유리한 효과】
고효율 장수명 유기 광전자 소자를 구현할 수 있다.
【도면의 간단한 설명】
도 1 및 도 2는 각각 일 구현예에 따른 유기 발광 소자를 도시한 단면도이다. 【발명을 실시를 위한 최선의 형태】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환 "이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로고리, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10트리플루오로알킬기 또는 사아노기로 치환된 것을 의미한다.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30
헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로고리, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가융합되어 고리를 형성할 수도 있다.
예를 들어, 상기 치환된 C6 내지 C30 아릴기는 인접한 또 다른 치환된 C6 내지 C30 아릴기와 융합되어 치환 또는 비치환된 플루오렌 고리를 형성할 수 있다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 Ν, Ο, S, P 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 적어도 한 개를 함유하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "아릴기 (aryl)"는 환형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 P-오비탈이 공액 (conjugation)을 형성하고 있는 치환기를 의미하고, 모노시클릭, 폴리시클릭 또는 융합 고리 폴리시클릭 (즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
본 명세서에서 "헤테로고리기 (heterocyclic group)"는 아릴기 또는
시클로알킬기와 같은 고리 화합물 내에 N, 0, S, P 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 적어도 한 개를 함유하고, 나머지는 탄소인 것을 의미한다. 상기 헤테로고리가 융합고리인 경우, 상기 헤테로고리기 전체 또는 각각의 고리마다 헤테로 원자를 한 개 이상 포함할 수 있다.
보다 구체적으로, 치환 또는 비치환된 C6 내지 C30 아릴기 및 /또는 치환 또는 비치환된 C2 내지 C30 헤테로고리기는, 치환 또는 비치환된 페닐기, 치환또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 P-터페닐기,'치환 또는 비치환된 m- 터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피를릴기, 치환또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기 , 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된
퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된
벤즈옥사진일기 , 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된
아크리디닐기, 치환또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기, 치환 또는 비치환된 플루오레닐기 , 치환또는 비치환된 디벤조퓨란일기, 치환 또는 비치환된 디벤조티오페닐기, 치환또는 비치환된 카바졸릴기, 이들의 조합 또는 이들의 조합이 융합된 형태일 수 있으나, 이에 제한되지는 않는다.
본 명세서에서, 정공 특성이란, 전기장 (electric field)을 가했을 때 전자를 공여하여 정공을 형성할 수 있는 특성을 말하는 것으로, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입, 발광층에서 형성된 정공의 양극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
또한 전자 특성이란, 전기장을 가했을 때 전자를 받을 수 있는 특성을 말하는 것으로, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입, 발광층에서 형성된 전자의 음극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
이하 일 구현예에 따른 유기 화합물을 설명한다.
' 일 구현예에 따른 유기 화합물은 하기 화학식 1로 표현된다.
Figure imgf000007_0001
상기 화학식 1에서,
X 증 두 개는 N이고 두 개는 C이고
R1 내지 R4는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R5 내지 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 또는 이들의 조합이고,
L' 내지 L6은 각각 독립적으로 단일 결합, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기 또는 치환 또는 비치환된 쿼터페닐렌기이고, n1 내지 n4는 각각 독립적으로 0 내지 5의 정수이고,
n1 내지 n4의 합은 2 이상의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 상기 화학식 A로 표현되는 기,상기 화학식 B로 표현되는 기 또는 이들의 조합이고
Ar1 및 Ar2 중 적어도 하나는 하기 화학식 A로 표현되는 기, 하기 화학식 B로 표현되는 기 또는 이들의 조합이고,
A]
Figure imgf000008_0001
상기 화학식 A에서,
Y는 0, S, CRaRb, SiRcRd또는 NRe이고,
R13 내지 R20 및 Ra내지 Re는 각각 독립적으로 수소, 중수소, 치환 또는 비차환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기, 이들의 조합 또는 상기 화학식 1와 L5 또는 L6와의 연결 지점이고,
R13 내지 R20은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고,
B]
Figure imgf000008_0002
상기 화학식 B에서,
R21 내지 R30은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내71 C12 헤테로고리기 또는 이들의 조합이고,
R2' 내지 R30은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고,
*는 화학식 1의 L5 또는 L6와의 연결 지점이다.
상기 화학식 1로 표현되는 유기 화합물은 두 개의 질소를 포함하는 치환 또는 비치환된 벤조퀴나졸린와 두 개 이상의 메타 결합된 치환 또는 비치환된 페닐렌기를 포함한다.
상기 치환 또는 비치환된 벤조퀴나졸린의 질소 부분은 극성을 가지고 있어 전극과 상호작용이 가능하고 이에 따라 전하의 주입을 용이하게 할 수 있고 세 개의 융합고리에 의해 전하 이동도를 높일 수 있다.
더구나 상기 치환또는 비치환된 벤조퀴나졸린은 비교적 낮은 LUMO 에너지 준위를 가지고 있어 전자 주입에 용이하며 열안정성 및 전기적 안정성이 개선될 수 있다. 상기 치환 또는 비치환된 벤조퀴나졸린은 예컨대 약 1.7 내지 2.1 eV의
LUMO 에너지 준위를 가질 수 있다.
상기 두 개 이상의 메타 결합된 치환 또는 비치환된 페닐렌기는
벤조퀴나졸린 측으로 이동하는 전하의 흐름을 적절하게 제어하여 상기
벤조퀴나졸린의 안정성을 높일 수 있다. 특히 벤조퀴나졸린의 함질소 고리에 인접한 고리의 탄소들, 즉 R3 또는 R4가 결합되어 있는 탄소들의 산화 (oxidation)를 즐여 유기 화합물의 안정성을 높일 수 있다. 이에 따라 유기 화합물의 수명을 개선할 수 있다.
일 예로, R3 또는 R4는 각각 독립적으로 수소일 수 있다.
상기 두 개 이상의 메타 결합된 치환 또는 비치환된 페닐렌기는
벤조퀴나졸린의 일측에 위치할 수도 있고 벤조퀴나졸린의 양측에 위치할 수도 있다. 일 예로, 상기 두 개 이상의 메타 결합된 치환 또는 비치환된 페닐렌기는
벤조퀴나졸린의 양측에 위치할수 있으며, 예컨대 상기 화학식 1의 n1 및 n2는 각각 독립적으로 1 내지 5일 수 있다.
또한 상기 유기 화합물의 구조에 의해 입체 장해 특성을 가지므로 이웃한 분자와의 상호 작용을 억제하여 결정화를 즐일 수 있고 이에 따라 효율 및 수명 특성을 개선할 수 있다.
또한상기 화학식 1로 표현되는 유기 화합물은 말단에 상기 화학식 A로 표현되는 기 및 상기 화학식 B로 표현되는 기 증 적어도 하나를 포함한다.
상기 화학식 A로 표현되는 기 및 상기 화학식 B로 표현되는 기는 정공을 받기 쉬운 정공 특성을 가지는 기로, 상기 치환 또는 비치환된 벤조퀴나졸린와 함께 포함됨으로써 바이폴라 (bipolar) 구조를 형성하여 정공 및 전자의 흐름을 적절히 균형 맞출 수 있고, 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 효율을 개선할 수 있다.
전술한 바이폴라 구조의 화합물 내에서 연결기 (L1 내지 L6) 및 /또는
페닐렌기를 중심으로 전자를 받기 쉬운 벤조퀴나졸린 부분과 정공을 받기 쉬운 부분을 적절히 구역화 (localization)하고 공액계의 흐름을 제어함으로써 우수한 바이폴라 (bipolar) 특성을 나타낼 수 있다. 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 수명을 개선할 수 있다.
상기 유기 화합물은 예컨대 약 500 이상의 분자량을 가질 수 있다. 상기 분자량을 가짐으로써 유기 화합물의 유리전이은도 (Tg)를 높여 상기 유기 화합물을 소자에 적용시 공정 중 화합물의 안정성을 높이고 열화를 방지할 수 있다. 상기 범위 내에서 예컨대 약 500 내지 1000 일 수 있고, 상기 범위 내에서 예컨대 약 550 내지 800 알수 있다.
유리전이온도 (Tg)는 유기 화합물 및 이를 적용한 소자의 열안정성과 관련될 수 있다. 즉 높은 유리전이온도 (Tg)를 가지는 유기 화합물은, 유기발광소자에 박막 형태로 적용되었을 때, 상기 유기 화합물을 증착한 후에 이루어지는 후속 공정, 예컨대 봉지 (encapsulation) 공정에서 은도에 의해 열화되는 것이 방지되어 유기 화합물 및 소자의 수명 특성을 확보할 수 있다.
상기 유기 화합물의 유리전이온도 (Tg)는 예컨대 약 70°C 이상일 수 있고, 상기 범위 내에서 90 °C 이상인 경우가 보다 효과적이다. 상기 범위 내에서 예컨대 약 70 °C 내지 150 °C일 수 있고, 상기 범위 내에서 약 90°C 내지 130°C일 수 있다. 상기 유기 화합물은 벤조퀴나졸린의 질소 (N)의 위치에 따라 하기 화학식 2 또는 3으로 표현될 수 있다. 화학식 2]
Figure imgf000011_0001
[화학식 3]
Figure imgf000011_0002
상기 화학식 2 또는 3에서, R1 내지 R12,L' 내지 ΐΛη1 내지 n4, Ar1 및 Ar2는 각각 전술한 바와 같다.
상기 화학식 2는 예컨대 하기 화학식 2A로 표현될 수 있고, 상기 화학식 3은 예컨대 하기 화학식 3 A로 표현될 수 있다.
화학식 2A] [화학식 3A]
Figure imgf000012_0001
상기 화학식 2A 및 ᅀ에서, 내지 R8, ! 내지 L4 n1 내지 n4, Ar1 및 Ar2는 각각 전술한 바와 같다.
상기 화학식 1 내 ^ 3, 2A 및 3A에서, 상기 L1 내 L6은 예컨대 단일 결합이거나 하기 그룹 1에 나열된 기 중 하나일 수 있다.
[
Figure imgf000012_0002
상기 그룹 1에서,
R31 내지 R34는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내^ C12 헤테로고리기 또는 이들의 조합이고,
*는 연결 지점이다.
일 예로, 상기 그룹 1에서 R31 내지 R34는 각각 독립적으로 수소일 수 있다. 전술한 바와 같이, 상기 화학식 1 내지 3, 2A 및 3A의 Ar1 및 Ar2 중 적어도 하나는 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합일 수 있다.
일 예로, 상기 화학식 A로 표현되는 기는 예컨대 하기 그룹 2에 나열된 기 중 하나일 수 있다.
[그룹 2]
Figure imgf000013_0001
상기 그룹 2에서,
R35 내지 R39는 각각독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
*는 연결 지점이다.
일 예로, 상기 화학식 B는 예컨대 하기 그룹 3에 나열된 기 증 하나일 수 있다. [그룹 3
Figure imgf000014_0001
상기 그룹 3에서,
R40 내지 R47은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
*는 연결 지점이다.
상기 유기 화합물은 예컨대 하기 그룹 4에 나열된 화합물일 수 있으나, 이에 한정되는 것은 아니다.
[그룹 4]
Figure imgf000014_0002
Figure imgf000015_0001

Figure imgf000016_0001
Figure imgf000017_0001
상술한 유기 화합물은 유기 광전자 소자에 적용될 수 있다.
상술한 유기 화합물은 단독으로 또는 다른 유기 화합물과 함께 유기 광전자 소자에 적용될 수 있다.
상기 유기 광전자 소자는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이면 특별히 한정되지 않으며, 예컨대 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 등을 들 수 있다.
상기 유기 광전자 소자는 서로 마주하는 양극과 음극, 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층올 포함할 수 있고, 상기 유기층은 전술한 유기 화합물을 포함할 수 있다.
여기서는 유기 광전자 소자의 일 예인 유기 발광 소자를 도면을 참고하여 설명한다.
도 1 및 도 2는 일 구현예에 따른 유기 발광 소자를 보여주는 단면도이다. 도 1을 참고하면, 일 구현예에 따른 유기 발광 소자 (100)는 서로 마주하는 양극 (120)과 음극 (110), 그리고 양극 (120)과음극 (110) 사이에 위치하는 유기층 (105)을 포함한다.
양극 (120)은 예컨대 정공 주입이 원활하도록 일 함수가 높은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 양극 (120)은 예컨대 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석산화물 (ΠΌ),
인듐아연산화물 (IZO)과 같은 금속 산화물; ZnO와 AI 또는 Sn02와 Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜), 폴리 (3,4- (에틸렌 -1,2- 디옥시)티오펜 Xpolyehtylenedioxythiophene: PEDOT), 폴리피를 및 폴리아닐린과 같은 도전성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다.
음극 (110)은 예컨대 전자 주입이 원활하도록 일 함수가 낮은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 음극 (110)은 예컨대 마그네슴, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금; LiF/Al, Li02/Al, LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질을 들 수 있으나, 이에 한정되는 것은 아니다.
유기층 (105)은 전술한 유기 화합물을 포함하는 발광층 (130)을 포함한다.
발광층 (130)은 예컨대 전술한 유기 화합물올 단독으로 포함할 수도 있고 전술한 유기 화합물 중 적어도 두 종류를 흔합하여 포함할 수도 있다. 전술한 유기 화합물은 발광층 (130)의 호스트 (host)로서 사용될 수 있고, 하나 이상의
도펀트 (dopant)를 더 포함할수 있다.
상기 도편트는 호스트 화합물에 미량 흔합되어 발광을 일으키는 물질로, 일반적으로 삼중항 상태 이상으로 여기시키는 다중항 여기 (multiple excitation)에 의해 발광하는 금속 착체 (metal complex)와 같은 물질이 사용될 수 있다. 상기 도펀트는 예컨대 무기, 유기, 유무기 화합물일 수 있으며, 1종 또는 2종 이상 포함될 수 있다. 상기 인광 도펀트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합올 포함하는 유기 금속화합물을 들 수 있다. 상기 인광 도편트는 예컨대 하기 화학식 Z로 표현되는 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다. [화학식 z]
L2MX
상기 화학식 Z에서, M은 금속이고, L 및 X는서로 같거나 다르며 M과 착화합물을 형성하는 리간드이다.
상기 M은 예컨대 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합일 수 있고, 상기 L 및 X는 예컨대 바이덴테이트 리간드일 수 있다. 도 2를 참고하면, 유기 발광 소자 (200)는 발광층 (130) 외에 정공
보조층 (140)을 더 포함한다. 정공 보조층 (140)은 양극 (120)과 발광층 (130)사이의 정공 주입 및 /또는 정공 이동성올 더욱 높이고 전자를 차단할 수 있다. 정공 보조층 (140)은 예컨대 정공 수송층, 정공 주입층 및 /또는 전자 차단층일 수 있으며, 적어도 1층을 포함할 수 있다.
또한, 본 발명의 일 구현예에서는 도 1 또는 도 2에서 유기층 (105)으로서 추가로 전자 수송층, 전자주입층, 정공주입층 등을 더 포함한 유기 발광 소자일 수도 있다.
유기 발광 소자 (100, 200)는 기판 위에 양극 또는 음극을 형성한 후, 진공증착법 (evaporation), 스퍼터링 (sputtering), 플라즈마 도금 및 이온도금과 같은 건식성막법 등으로 유기층을 형성한 후, 그 위에 음극 또는 양극을 형성하여 제조할 수 있다. '
상술한 유기 발광 소자는 유기 발광 표시 장치에 적용될 수 있다.
【발명을 실시를 위한 형태】
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다. 유기 화합물의 합성법
[대표합성법]
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
중간체의 합성
합성예 1: 중간체 1-1의 합성
반응식 1]
Figure imgf000020_0004
질소 환경에서 a-tetralone(100g, 684mmol)을 에탄올 1L에 녹인 후, 여기에 3- bro mobenzaldehyde( 127 g, 684 mn l)와 sodium hydroxide(41.0 g, 1026 mmol)을 넣고 상온에서 2시간동안 교반하였다. 반웅 완료후 반응액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-1(179 g, 83 %)올 얻었다.
HRMS (70 eV, EI+): m/z calcd for C17H13BrO: 312.0150, found: 312.
Elemental Analysis: C, 65 %; H, 4 % 합성예 2: 중간체 1-2의 합성
반웅식 2]
Figure imgf000021_0001
1 -2
질소 환경에서 중간체 1-1(170 g, 543 mmol)을 에탄올 1.5L에 녹인 후, 여기에 3-bromobenzimidamide hydrochloride 128 g, 543 mmol)와 sodium hydroxide(65.2 g, 1,629 mmol)을 넣고 상온에서 17시간 동안 교반하였다. 반응 완료 후 반웅액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-2(120 g, 45 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H16Br2N2: 489.9680, found: 490.
Elemental Analysis: C, 59 %; H, 3 % 합성예 3: 증간체 1-3의 합성
Figure imgf000021_0002
질소 환경에서 중간체 1-2(110 g, 223 mmol)을 monochlorobenzene(MCB) 1 L에 녹인 후, 여기에 2,3-dichloro-5,6-dicyano-l ,4-benzoquinone(DDQ, 101 g, 446 mmol) 을 넣고 130 °C에서 15시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-3(76.5 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H14Br2N2: 487.9524, found: 488.
Elemental Analysis: C, 59 %; H, 3 % 합성예 4: 증간체 1-4의 합성
반웅식 4]
Figure imgf000022_0001
질소 환경에서 01^^10^(100 ^ 684 010101)을 에탄올 1L에 녹인 후, 여기에 benzaldehyde(72.6 g, 684 mmol)와 sodium hydroxide(41.0 g, 1026 mmol)을 넣고 상온에서 2시간 동안 교반하였다. 반웅 완료 후 반웅액을 필터 후, 소량의 ethanol로 씻어주었다. 이렇게 중간체 1-4(139 g, 87 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C17H140: 234.1045, found: 234.
Elemental Analysis: C, 87 %; H, 6 % 합성예 5: 중간체 1-5의 합성
Figure imgf000022_0002
질소 환경에서 중간체 1-4(130 g, 555 mmol)을 에탄을 1.5L에 녹인 후, 여기에 3-bromobenzimidamide hydrochloride(131 g, 555 mmol)와 sodium hydroxide(66.6 g, 1,665 mmol)을 넣고 상온에서 15시간 동안 교반하였다. 반응 완료 후 반응액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-5(1 15 g, 50 %)올 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H17BrN2: 412.0575, found: 412.
Elemental Analysis: C, 70 %; H, 4 % 합성예 6: 증간체 1-6의 합성
[반응식 6]
Figure imgf000023_0001
질소 환경에서 중간체 1-5(1 10 g, 266 mmol)을 monochlorobenzene(MCB) 1.2 L에 녹인 후, 여기에 2,3-dichloro-5,6-dicyano-l,4-benzoquinone(DDQ, 121 g, 532 mmol) 을' 넣고 130 °C에서 15시간 동안가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-6(72.2 g, 66 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H15BrN2: 410.0419, found: 410.
Elemental Analysis: C, 70 %; H, 4 % 합성예 7: 증간체 1-7의 합성
7]
Figure imgf000023_0002
질소 환경에서 9H-carbazole (100 g, 598 mmol)를 tetrahydrofliran(THF) 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene(170 g, 598 mmol)와
tris(diphenylideneacetone)dipalladium(o)(5.5 g, 5.98 mmol) tris-tert butylphosphine(4.8 g, 23.92 mmol), 그리고 sodium tert-butoxide(69 g, 717 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-7 (181 g, 94 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C18H12BrN: 321.0153, found: 321. Elemental Analysis: C, 67 %; H, 4 % 합성예 8: 중간체 1-8의 합성
[반응식 8]
Figure imgf000024_0001
질소 환경에서 상기 중간체 1-7 (50 g, 155 mmol)을 THF 1 L에 녹인 후, 여기에
(3-chlorophenyl)boronic acid (24 g, 155 mmol)와 tetrakis(triphenylphosphine)palladium (1.8 g.
1.55 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(54 g, 388 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichlorotnethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-8 (51 g, 92 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H16C1N: 353.0971, found: 353.
Elemental Analysis: C, 82%; H, 5% 합성예 9: 중간체 1-9의 합성
9]
Figure imgf000024_0002
질소 환경에서 증간체 1-8 (50 g, 162 mmol)을 dimethylforamide(DMF) 1 L에 녹 후, 여기에 1^({3 ^01^0)^1)01ᅳ00 (49 194 1 101)와 (1 ,1 - bis(diphenylphosphine)ferrocene)dichloropalladium(II) (1.3 g, 1.62 mmol) 그리고 potassium ^ 106 405 1^0101)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다.
반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-9 (64 g, 88 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H28BNO2: 445.2213, found: 445
Elemental Analysis: C, 81 %; H, 6 % 합성예 10: 중간체 1-10의 합성
[반응식 10]
Figure imgf000025_0001
I - 10
질소 환경에서 p-tetralone(100 g, 684 mmol)을 에탄을 1L에 녹인 후, 여기에 3- bro mobenzaldehyde( 127 g, 684 mmol)와 sodium hydroxide(41.0 g, 1026 mmol)을 넣고 상온에서 2시간 동안 교반하였다. 반응 완료 후 반웅액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-10(161 g, 75 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C17H13BrO: 312.0150, found: 312.
Elemental Analysis: C, 65 %; H, 4 % 합성예 11: 증간체 1-11의 합성
반응식 1 1]
Figure imgf000025_0002
I . tO 1 - 11
질소 환경에서 증간체 1-10(150 g, 479 mmol)을 에탄올 1.5 L에 녹인 후, 여기에 3-bromobenzimidamide hydrochloride(95.3 g, 479 mmo 1)와 sodium hydroxide(65.2 g, 1,437 mmol)을 넣고 상온에서 15시간 동안 교반하였다. 반웅 완료 후 반응액을 필터 후, 소량의 ethanol로 씻어주었다. 이렇게 화합물 1-1 1(91.9 g, 39 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H16Br2N2: 489.9680, found: 490. Elemental Analysis: C, 59 %; H, 3 % 합성예 12: 중간체 1-12의 합성
반응식 12]
Figure imgf000026_0001
질소 환경에서 중간체 1- 1 1(85 g, 173 mmol)을 monochk)robenzene(MCB) 0.8 L에 녹인 후, 여기에 2,3-dichloro-5,6-dicyano-l ,4-benzoquinone(DDQ, 78.4 g, 345 mmol) 을 넣고 130 °C에서 15시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 증간체 1- 12(57.7 g, 68 %)을 얻었다.
HRMS (70 eV, EI+): mlz calcd for C24H14Br2N2: 487.9524, found: 488.
Elemental Analysis: C, 59 %; H, 3 % 합성예 13: 중간체 1-13의 합성
[반웅식 13]
Figure imgf000026_0002
질소 환경에서 4-bromodibenzo[b,d]ftjran (80 g, 328 mmol)을
dimethylforamide(DMF) 1 L에 녹인 후, 여기에 bis(pinacolato)diboron (100 g, 393 mmol)와 (l, -bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.68 g, 3.28 mmol), 그리고 potassium acetate(80 g, 820 tnmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-13 (86 g, 90%)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C18H19B03: 294.1427, found: 294
Elemental Analysis: C, 74 %; H, 7 % 합성예 14: 중간체 1-14의 합성
14]
Figure imgf000027_0001
질소 환경에서 4-bromodibenzo[b,d]fUran (90 g, 366 mmol)을 THF 1L에 녹인 후, 여기에 (3-chlorophenyl)boronic acid (57 g, 366 mmol)와
1 ^ 5( ^}11)1105}311^ ^311&(1^ 1(4.2 ^ 3.6611111101)을 넣고 교반시켰다. 물에 포화된 {)(^5511^0^^«^6(126 9151 «01)을 넣고 8( C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-14 (93 g, 92 %)를 얻었다.
HRMS (70 eV; EI+): m/z calcd for C18H11C10: 278.0498, found: 278.
Elemental Analysis: C, 78%; H, 4% 합성예 15: 중간체 1-15의 합성
15]
Figure imgf000027_0002
질소 환경에서 증간체 1-14(91 g, 328 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron(100g,393 mmol)와 (1,1- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.68 g, 3.28 mmol), 그리고 potassium acetate(80 g, 820 mmol)을 넣고 150°C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-15 (1 12 g, 90 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H23B03: 370.1740, found: 370
Elemental Analysis: C, 78 %; H, 6 % 합성예 16: 중간체 1-16의 합성
반응식 16]
Figure imgf000028_0001
질소 환경에서 증간체 1- 15 (100 g, 277 mmol)을 THF 1 L에 녹인 후, 여기에 1- bromo-3-chlorobenzene (53 g, 377 mmol)와 tetrakis(triphenylphosphine)palladium (3.2 g, 2.77 mmol)을 넣고 교반시켰다. 물에 포화된 {^&5511^ 03^0 1^96 692 111«101)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1- 16 (96 g, 92 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H15C10: 354.081 1 , found: 354.
Elemental Analysis: C, 81%; H, 4% 합성예 17: 중간체 1-17의 합성
[반웅식 17]
Figure imgf000028_0002
질소 환경에서 중간체 1-16 (1 10 g, 315 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (96 g, 378 mmol)와 (Ι, Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.57 g, 3.15 mmol) 그리고 potassium acetate(77 g, 787 mmol)을 넣고 15CTC에서 48시간 동안가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 흔합물을 필터한후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-17 (128 g, 91 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H27BO3: 446.2053, found: 446
Elemental Analysis: C, 81 %; H, 6 % 합성예 18: 중간체 1-18의 합성
[반웅식 18]
Figure imgf000029_0001
1 - 18
질소 환경에서 01 ^10^(100 684 0^01)을 에탄올 1L에 녹인 후, 여기에 2- naphthaldehyde(107 g, 684 mmol)와 sodium hydroxide(41.0 g, 1026 mmol)을 넣고 상온에서 2시간 동안 교반하였다. 반응 완료 후 반응액을 필터 후, 소량의 ethan이로
씻어주었다. 이렇게 증간체 1-18(173 g, 89 %)올 얻었다.
HRMS (70 eV, EI+): m/z calcd for C21H60: 284.1201, found: 284.
Elemental Analysis: C, 89 %; H, 6 % 합성예 19: 중간체 1-19의 합성
[반응식 19]
Figure imgf000029_0002
l - i6 1 - 19
질소 환경에서 중간체 1-18(170 g, 598 mmol)을 에탄올 1.5L에 녹인 후, 여기에 4-bromobenzimidamide hydrochloride(141 g, 598 mn l)와 sodium hydroxide(71.8 g, 1 ,794 tnmol)을 넣고 상온에서 15시간 동안 교반하였다. 반웅 완료 후 반웅액을 필터 후 소량의 에탄을로 씻어주었다. 이렇게 중간체 1-19(1 14 g, 41 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C28H19BrN2: 462.0732, found: 462.
Elemental Analysis: C, 73 %; H, 4 % 합성예 20: 증간체 1-20의 합성
반응식 20]
Figure imgf000030_0001
1 - 10 I - 20
질소 환경에서 증간체 1-19( 105 g, 227 mmol)을 monochlorobenzene(MCB) 1 L에 녹인 후, 여기에 2,3-dichloro-5,6-dicyano-l ,4-benzoquinone(DDQ, 103 g, 453 mmol) 을 넣고 13CTC에서 15시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-20(68.1 g, 65 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C28H17BrN2: 460.0575, found: 460.
Elemental Analysis: C, 73 %; H, 4 % 합성예 21: 중간체 1-21의 합성
21 ]
Figure imgf000030_0002
질소 환경에서 상기 화합물 2-bromo-9,9-dimethyl-9H-fluorene (100 g, 366 mmol)을 THF 1L에 녹인 후, 여기에 (3-chlorophenyl)boronic acid (57 g, 366 mmol)와 tetrakis(triphenylphosphine)palladium (4.2 g, 3.66 mmol)을 넣고 교반시켰다. 물에 포화된 |^35^0^31 00 6(126 915 011^01)을 넣고 80 °C에서 12시간동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-21 (102 g, 92 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C21H17C1: 304.1019, found: 304.
Elemental Analysis: C, 83%; H, 6% 합성예 22: 중간체 1-22의 합성
22]
Figure imgf000031_0001
질소 환경에서 중간체 1-21 (100 g, 328 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (100 g, 393 mmol)와 (1,1'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.68 g, 3.28 mmol), 그리고 potassium acetate(80 g, 820 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 증간체 1-22 (116 g, 90 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C27H29B02: 396.2261, found: 396
Elemental Analysis: C, 82 %; H, 7 % 합성예 23: 중간체 1-23의 합성
23]
Figure imgf000031_0002
질소 환경에서 상기 중간체 1-22 (1 10 g, 277 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-3-chlorobenzene (53 g, 377 mmol)와 tetrakis(triphenylphosphine)palladium (3.2 g, 2.77 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(96 g, 692 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-23 (96 g, 92 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C27H21C1: 380.1332, found: 380.
Elemental Analysis: C, 85%; H, 6%
' 합성예 24: 중간체 1-24의 합성
4]
Figure imgf000032_0001
질소 환경에서 중간체 1-23 (120 g, 315 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (96 g, 378 mmol)와 (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.57 g, 3.15 mmol) 그리고 potassium acetate(77 g, 787 mmol)을 넣고 150°C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 증간체 1-24 (133 g, 90 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C33H33B02: 472.2574, found: 472
Elemental Analysis: C, 84 %; H, 7 % 합성예 25: 중간체 1-25의 합성
반웅식 25]
Figure imgf000032_0002
1 - 25
질소 환경에서 aniline (30 g, 536 mmol)를 tetrahydrofUran(THF) 1 L에 녹인 후, 여기에 2-brotnonaphthalene (1 10 g, 536 mmol)와 tris(diphenylideneacetone)dipalladium(o)(5 g, 5.36 mmol) tris-tert butylphosphine(4.3 g, 21.44 mmol), 그리고 sodium tert-butoxide(62 g, 717 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안 가열하여 환류시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음무수 MgS04로 수분을 제'거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-25 (1 10 g, 94 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C16H13N: 219.1048, found: 219.
Elemental Analysis: C, 88 %; H, 6 % 합성예 26: 중간체 1-26의 합성
반웅식 26]
Figure imgf000033_0001
질소 환경에서 α-tetrabne(100 g, 684 mmol)을 에탄올 1L에 녹인 후, 여기에 [1,1 '-bipheny l]-3-carbaldehyde (125 g, 684 mmol)와 sodium hydroxide(41.0 g, 1026 mmol)을 넣고 상은에서 2시간 동안 교반하였다. 반웅 완료 후 반응액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-26(180 g, 89 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C23H180: 310.1358, found: 310.
Elemental Analysis: C, 89 %; H, 6 % 합성예 27: 증간체 1-27의 합성
반응식 27]
Figure imgf000033_0002
질소 환경에서 증간체 1-26(185 g, 598 mmol)을 에탄올 1.5L에 녹인 후, 여기에
4-bromobenzimidamide hydrochloride(141 g, 598 mmol)와 sodium hydroxide(71.8 g, 1,794 mmol)을 넣고 상온에서 15시간 동안 교반하였다. 반응 완료 후 반응액을 필터 후, 소량의 에탄올로 씻어주었다. 이렇게 중간체 1-27(1 19 g, 41 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H21BrN2: 488.0888, found: 488. Elemental Analysis: C, 74 %; H, 4 % 합성예 28: 중간체 1-28의 합성
반응식 28]
Figure imgf000034_0001
질소 환경에서 중간체 1-27(135 g, 227 mmol)을 monochlorobenzene(MCB) 1 L에 녹인 후, 여기에 2,3-dichloro-5,6-dicyano-l ,4-benzoquinone(DDQ, 103 g, 453 mmol)을 넣고 130 °C에서 15시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-28(73 g, 67 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H19BrN2: 486.0732, found: 486.
Elemental Analysis: C, 74 %; H, 4 % 합성예 29: 중간체 1-29의 합성
29]
Figure imgf000034_0002
질소 환경에서 3-bromo-9-phenyl-9H-carbazole (1 15 g, 366 mmol)을 THF 1 L에 녹인 후, 여기에 (3-chlorophenyl)boronic acid (57 g, 366 mmol)와
tetrakis(triphenylphosphine)palladium (4.2 g, 3.66 mmol)을 넣고 교반시켰다. 물에 포화된 {^&5511 0&1"1300 6(126 915 1^001)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-29 (1 18 g, 92 %)를 얻었다. HRMS (70 eV, EI+): m/z calcd for C24H16C1N: 353.0971, found: 353.
Elemental Analysis: C, 81%; H, 5% 합성예 30: 중간체 1-30의 합성
30]
Figure imgf000035_0001
질소 환경에서 중간체 1-29 (1 15 g, 328 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (100 g, 393 mmol)와 (Ι, Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2.68 g, 3.28 mmol) 그리고 potassium acetate(80 g, 820 mmol)을 넣고 150°C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 중간체 1-30 (131 g, 90 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H28BNO2: 445.2213, found: 445
Elemental Analysis: C, 81 %; H, 6 % 합성예 31: 중간체 1-31의 합성
Figure imgf000035_0002
질소 환경에서 상기 중간체 1-30 (110 g, 269 mmol)을 THF 1 L에 녹인 후, 여기에 l-bromo-3-chlorobenzene (62 g, 322 mmol)와 tetrakis(triphenylphosphine)palladium (3 · 1 g, 2.69 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(93 g, 672 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 화합물 1-31 (99 g, 89 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H20C1N: 429.1284, found: 429.
Elemental Analysis: C, 84%; H, 5% 합성예 32: 중간체 1-32의 합성
32]
Figure imgf000036_0001
질소 환경에서 중간체 1-31 (95 g, 221 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (67 g, 265 mmol)와 (Ι , Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (1.8 g, 2.21 mmol) 그리고 potassium acetate(54 g, 552 mmol)을 넣고 150°C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 증간체 1-32 (98 g, 90 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H32BN02: 521.2526, found: 521
Elemental Analysis: C, 83 %; H, 6 % 최종 화합물의 합성
합성예 33: 화합물 1의 합성
Figure imgf000037_0001
질소 환경에서 증간체 1-3(8 g, 16.3 mmol)을 를루엔 0.18L에 녹인 후, 여기에 9H-carbazole (5.4 g, 32.6 mmol)와 tris(diphenylideneacetone)dipalladium(o)(0.163 g, 0.163 mmol), tris-tert butylphosphine(0.26 g, 0.652 mmol), 그리고 sodium tert-butoxide(1.9 g, 20 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안 가열하여 환류시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다ᅳ 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 1 (8 g, 77 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H30N4: 662.2470, found: 662.
Elemental Analysis: C, 87 %; H, 5 % 합성예 34: 화합물 3의 합성
Figure imgf000037_0002
질소 환경에서 중간체 1-6(10 g, 24.3 mmol)을 THF 1 L에 녹인 후, 여기에 증간체 1-9 (1 1 g, 24.3 mmol)와 tetrakis(triphenylphosphine)palladium)(0.28 g, 0.243 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(8 g, 60 mmol)을 넣고 8( C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 화합물 3 (13 g, 83 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H31N3: 649.2518, found:649. Elemental Analysis: C, 89%; H, 5% 합성예 35: 화합물 10의 합성
[반웅식 35]
Figure imgf000038_0001
질소 환경에서 증간체 1- 12(10 g, 24.3 mmol)을 를루엔 0.18 L에 녹인 후 여기에 9H-carbazole (8 g, 48.6 mmol)와 tris(diphenylideneacetone)dipalladium(o)(0.163 g, 0.243 mmol), tris-tert butylphosphine(0.19 g, 0.243 mmol), 그리고 sodium tert-butoxide(2.8 g.
29 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 10 (13 g, 79 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H30N4: 662.2470, found: 662.
Elemental Analysis: C, 87 %; H, 5 % 합성예 36: 화합물 13의 합성
Figure imgf000038_0002
질소 환경에서 중간체 1-3(8 g, 16.3 mmol)을 를루엔 0.18L에 녹인 후, 여기에 중간체 1-13 (10 g, 32.6 mmol)와 tris(diphenylideneacetone)dipalladium(o)(0.163 g, 0.163 mmol), tris-tert butylphosphine(0.26 g, 0.652 mmol) 그리고 sodium tert-butoxide(1.9 g, 20 mmol)을 순차적으로 넣고 10(TC에서 18시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 13 (8.5 g, 78 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H28N202: 664.2151 , found: 664.
Elemental Analysis: C, 87 %; H, 4 % 합성예 37: 화합물 15의 합성
반웅식 37]
Figure imgf000039_0001
질소 환경에서 중간체 1-6(10 g, 24.3 mmol)을 THF 1 에 녹인 후, 여기에 중간체 1-17 (1 1 g, 24.3 mmol)와 tetrakis(triphenylphosphine)palladium)(0.28 g, 0.243 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(8 g, 60 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 화합물 15 (13 g, 83 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H30N2O: 650.2358, found: 650.
Elemental Analysis: C, 87%; H, 5% 합성예 38: 화합물 41의 합성
Figure imgf000039_0002
질소 환경에서 중간체 1-20(1 1 g, 24.3 mmol)을 THF 1 L에 녹인 후, 여기에 증간체 1-24 (12 g, 24.3 mmol)와 tetrakis(triphenylphosphine)palladium)(0.28 g, 0.243 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(8 g, 60 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 화합물 41 (14 g, 79 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C55H38N2: 726.3035, found: 726.
Elemental Analysis: C, 91%; H, 5% 합성예 39: 화합물 49의 합성
Figure imgf000040_0001
질소 환경에서 중간체 1-28(8 g, 16.3 mmol)을 를루엔 0.18L에 녹인 후, 여기에 중간체 1-25 .(4 g, 16.3 mmol)와 tris(diphenylideneacetone)dipalladium(o)(0.163 g, 0.163 mmol), tris-tert butylphosphine(0.26 g, 0.652 mmol), 그리고 sodium tert-butoxide(1.9 g, 20 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안 가열하여 환류시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 49 (9 g, 85 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C46H31N3: 625.2518, found: 625.
Elemental Analysis: C, 88 %; H, 5 % 합성예 40: 화합물 97의 합성
Figure imgf000040_0002
질소 환경에서 증간체 1-6(10 g, 24.3 mmol)을 THF 1 L에 녹인 후, 여기에 중간체 1-32 (13 g, 24.3 mmol)와 tetrakis(triphenylphosphine)palladium)(0.28 g, 0.243 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(8 g, 60 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 상기 화합물 97 (15 g, 85 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C54H35N3: 725.2831, found: 725.
Elemental Analysis: C, 89%; H, 5% 유기 발광소자의 제작
실시예 1
합성예 33에서 얻은 화합물 1을 호스트로 사용하고, acetylacetonatobis(2- phenylquinolinato)iddium (Ir(pq)2acac)를 도펀트로 사용하예유기발광소자를
제작하였다.
양극으로는 ΠΌ를 1500 A의 두께로 사용하였고, 음극으로는 알루미늄 (A1)을
1000 A의 두께로 사용하였다. 구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15 i2/crf의 면저항값을 가진 ΠΌ 유리 기판을 50mm X 50 mm X 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코을과 순수물 속에서 각 15 분 동안 초음파세정한후, 30 분 동안 UV오존 세정하여 사용하였다.
상기 기판상부에 진공도 650xl(T7Pa, 증착속도 0.1 내지 0.3 nm/s의 조건으로
4,4'-bis[N-[4-{N,N-bis(3-methylphenyl)amino}-phenyl]-N-phenylamino]biphenyl [DNTPD]를 진공 증착하여 600人두께의 정공 주입층을 형성하였다. 이어서 동일한 진공 증착조건에서 HT-1을 진공 증착으로 300A 두께의 정공 수송층을 형성하였다. 다음으로, 동일한 진공 증착조건에서 합성예 33에서 얻은 화합물 1을 이용하여 막 두께 300 A의 발광층을 형성하였고, 이 때, 인광 도펀트인 acetylacetonatobis(2- phenylquinolinato)iHdium (k(pq)2acac)을 동시에 증착하였다. 이 때, 인광 도편트의 증착속도를 조절하여, 발광층의 전체량을 100 증량 %로 하였을 때, 인광 도펀트의 배합량이 7 중량 %가 되도록 증착하였다.
상기 발광층 상부에 동일한 진공 증착조건을 이용하여 Bis(2-methyl-8- quinolinolate)-4-(phenylphenolato)aluminium (BAlq)를 증착하여 막 두께 50 A의 정공저지층을 형성하였다. 이어서, 동일한 진공 증착조건에서 Tris(8- hydroxyquinolinato)aluminium (Alq3)를 증착하여, 막 두께 250 A의 전자수송층을 형성하였다. 상기 전자수송층 상부에 음극으로서 LiF와 A1을 순차적으로 증착하여 유기광전소자를 제작하였다.
상기 유기광전소자의 구조는 ΠΌ/ DNTPD (60 nm)/ HT-1 (30 nm)/ EML
(화합물 1 (93 증량0 /。) + Ir(pq)2acac(7 중량0 /0), 30 nm)/ Balq (5 nm)/ Alq3 (25 nm)/ LiF (1 nm) / Al (100 nm) 의 구조로 제작하였다.
실시예 2
합성예 33에서 얻은 화합물 1 대신 합성예 34에서 얻은 화합물 3를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 3
합성예 33에서 얻은 화합물 1 대신 합성예 35에서 얻은 화합물 10를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 4
합성예 33에서 얻은 화합물 1 대신 합성예 36에서 얻은 화합물 13를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 5
합성예 33에서 얻은 화합물 1 대신 합성예 37에서 얻은 화합물 15를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 6
합성예 33에서 얻은 화합물 1 대신 합성예 38에서 얻은 화합물 41을사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 7
합성예 33에서 얻은 화합물 1 대신 합성예 39에서 얻은 화합물 49를사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 8
합성예 31에서 얻은 화합물 1 대신 합성예 40에서 얻은 화합물 97을사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
비교예 1
합성예 31에서 얻은 화합물 1 대신 4,4'-di(9H-carbazol-9-yl)biphenyl (CBP)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. 상기 유기발광소자 제작에 사용된 DNTPD, BAlq, HT-l, CBP 및 Ir(pq)2acac의 구조는 하기와 같다.
[οιιτρο] fBAtq]
Figure imgf000043_0001
실시예 1 내지 8과 비교예 1에 따른 유기발광소자의 전압에 따른 전류밀도 변화, 휘도 변화 및 발광효율을 측정하였다.
구체적인 측정방법은 하기와 같고, 그 결과는 표 1과 같다.
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V부터 10V까지 상승시키면서 휘도계 (Minolta Cs-IOOOA)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류말도 (10 mA/cm2)의 전류 효율 (cd/A) 을 계산하였다.
(4) 수명 측정 초기휘도 (cd/m2)를 3000 cd/m2로 발광시키고 시간 경과에 따른 휘도의 감소를 측정하여 초기 휘도 대비 90%로 감소하는 시간을 측정하여 결과를 얻었다.
【표 1】
Figure imgf000044_0001
표 1을 참고하면, 실시예 1 내지 8에 따른 유기발광소자는 비교예 1에 따른 유기발광소자와 비교하여 발광효율 및 수명특성이 현저하게 개선된 것을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【특허청구범위】
【청구항 1】
하기 화학식 1로 표현되는 유기 화합물:
Figure imgf000045_0001
상기 화학식 1에서,
X 증 두 개는 N이고 두 개는 C이고,
R1 내지 R4는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R5 내지 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 또는 이들의 조합이고,
L1 내지 L6은 각각 독립적으로 단일 결합, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기 또는 치환 또는 비치환된 쿼터페닐렌기이고,
n1 내지 η4는 각각 독립적으로 0 내지 5의 정수이고,
n1 내지 n4의 합은 2 이상의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 하기 화학식 A로 표현되는 기, 하기 화학식 B로 표현되는 기 또는 이들의 조합이고,
Ar1 및 Ar2 증 적어도 하나는 하기 화학식 A로 표현되는 기, 하기 화학식 B로 표현되는 기 또는 이들의 조합이고, [화 A]
Figure imgf000046_0001
상기 화학식 A에서,
Y는 0, S, CRaRb, SiRcRd또는 NRe이고,
R'3 내지 R20 및 Ra 내지 Re는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또 비치환된 C3 내지 C12 해테로고리기, 이들의 조합 또는 상기 화학식 1의 L5 또는 L6와의 연결 지점이고,
R13 내지 R20은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고, '
화학식 B]
Figure imgf000046_0002
상기 화학식 B에서,
R21 내지 R30은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R21 내지 R30은 각각 독립적으로 존재하거나 인접한 두 개가 연결되어 융합고리를 형성하고,
*는 화학식 1의 L5 또는 L6와의 연결 지점이다.
【청구항 2】
제 1항에서, 하기 화학식 2 또는 3으로 표현되는 유기 화합물:
2]
Figure imgf000047_0001
상기 화학식 2 또는 3에서,
R1 내지 R4는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R5 내지 R12는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 또는 이들의 조합이고,
L1 내지 L6은 각각 독립적으로 단일 결합, 치환또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기 또는 치환 또는 비치환된 쿼터페닐렌기이고,
n1 내지 n4는 각각 독립적으로 0 내지 5의 정수이고,
η' 내지 η4의 합은 2 이상의 정수이고, Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합이고,
Ar1 및 Ar2 중 적어도 하나는 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합이다.
【청구항 3]
제 2항에서,
하기 화학식 2A 또는 3A로 표현되는 유기 화합물:
[화학식 2A] [화학식 3A]
Figure imgf000048_0001
상기 화학식 2A 또는 3A에서,
R1 내지 R4는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 '내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이고,
R5 내지 R8은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 또는 이들의 조합이고,
L1 내지 L4는 각각 독립적으로 단일 결합, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기 또는 치환 또는 비치환된 쿼터페닐렌기이고,
n1 및 n2는 각각 독립적으로 0 내지 5의 정수이고,
n1 및 n2의 합은 2 이상의 정수이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합이고,
Ar1 및 Ar2 증 적어도 하나는 상기 화학식 A로 표현되는 기, 상기 화학식 B로 표현되는 기 또는 이들의 조합이다.
【청구항 4】
제 1항에서,
상기 화학식 1의 n1 및 n2는 각각 독립적으로 1 내지 5인 유기 화합물.
【청구항 5】
제 1항에서,
상기 화학식 1의 R3 및 R4는 각각 독립적으로 수소인 유기 화합물.
【청구항 6】
제 1항에서,
상기 화학식 1의 L1 내지 L6은 각각 독립적으로 단일 결합이거나 하기 그룹 HI 나열된 기 중 하나인 유기 화합물:
[그
Figure imgf000049_0001
상기 그룹 1에서,
R31 내지 R34는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C 12 헤테로고리기 또는 이들의 조합이고, *는 연결 지점이다.
【청구항 7】
제 6항에서,
상기 R31 내지 R34는 각각 독립적으로 수소인 유기 화합물.
【청구항 8]
제 1항에서,
상기 화학식 A는 하기 그룹 2에 나열된 기 증 하나인 유기 화합물:
【청구항 9】
게 1항에서,
상기 화학식 B는 하기 그룹 3에 나열된 기 증 하나인 유기 화합물:
【청구항 10】
저 n항에서,
하기 그룹 4에 나열된 유기 화합물:
Figure imgf000051_0002
Figure imgf000052_0001
19
Z8898l/ST0Z OAV 52
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000054_0001
【청구항 1 1】
서로 마주하는 양극과 음극, 그리고
상기 양극과 상기 음극사이에 위치하는 적어도 1층의 유기층 을 포함하고,
상기 유기층은 제 1항 내지 제 10항 중 어느 한 항에 따른 유기 화합물을 포함하는 유기 광전자 소자.
【청구항 12】
제 1 1항에서,
상기 유기층은 발광층을 포함하고,
상기 발광층은 상기 유기 화합물올 포함하는 유기 광전자 소자.
【청구항 13】
제 1 1항에 따른 유기 광전자 소자를 포함하는 표시 장치.
PCT/KR2014/012597 2014-06-05 2014-12-19 유기 화합물, 유기 광전자 소자 및 표시 장치 WO2015186882A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140068491A KR101782881B1 (ko) 2014-06-05 2014-06-05 유기 화합물, 유기 광전자 소자 및 표시 장치
KR10-2014-0068491 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015186882A1 true WO2015186882A1 (ko) 2015-12-10

Family

ID=54766932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012597 WO2015186882A1 (ko) 2014-06-05 2014-12-19 유기 화합물, 유기 광전자 소자 및 표시 장치

Country Status (2)

Country Link
KR (1) KR101782881B1 (ko)
WO (1) WO2015186882A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272332A (zh) * 2018-03-15 2019-09-24 中国科学院理化技术研究所 一种甲氧基修饰的碳纳米环及其合成方法
KR20210018105A (ko) 2019-08-09 2021-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
CN113214167A (zh) * 2020-02-04 2021-08-06 昱镭光电科技股份有限公司 苯并喹唑啉化合物及有机电致发光元件
EP4141979A1 (en) * 2021-08-24 2023-03-01 Novaled GmbH Organic light emitting diode and a compound for use therein
EP4141980A1 (en) * 2021-08-24 2023-03-01 Novaled GmbH Organic light emitting diode and a compound for use therein
WO2023238629A1 (ja) * 2022-06-06 2023-12-14 キヤノン株式会社 有機化合物および有機発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599292B1 (ko) * 2016-11-30 2023-11-08 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039786A1 (en) * 2002-10-30 2004-05-13 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
KR20120117693A (ko) * 2011-04-15 2012-10-24 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
WO2013180376A1 (en) * 2012-05-30 2013-12-05 Alpha Chem Co., Ltd. New electron transport material and organic electroluminescent device using the same
KR20130142971A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20140000640A (ko) * 2012-06-22 2014-01-03 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039786A1 (en) * 2002-10-30 2004-05-13 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
KR20120117693A (ko) * 2011-04-15 2012-10-24 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
WO2013180376A1 (en) * 2012-05-30 2013-12-05 Alpha Chem Co., Ltd. New electron transport material and organic electroluminescent device using the same
KR20130142971A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20140000640A (ko) * 2012-06-22 2014-01-03 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272332A (zh) * 2018-03-15 2019-09-24 中国科学院理化技术研究所 一种甲氧基修饰的碳纳米环及其合成方法
KR20210018105A (ko) 2019-08-09 2021-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
US11690290B2 (en) 2019-08-09 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting device
CN113214167A (zh) * 2020-02-04 2021-08-06 昱镭光电科技股份有限公司 苯并喹唑啉化合物及有机电致发光元件
EP4141979A1 (en) * 2021-08-24 2023-03-01 Novaled GmbH Organic light emitting diode and a compound for use therein
EP4141980A1 (en) * 2021-08-24 2023-03-01 Novaled GmbH Organic light emitting diode and a compound for use therein
WO2023025843A1 (en) * 2021-08-24 2023-03-02 Novaled Gmbh Organic light emitting diode and a compound for use therein
WO2023025839A1 (en) * 2021-08-24 2023-03-02 Novaled Gmbh Organic light emitting diode and a compound for use therein
WO2023238629A1 (ja) * 2022-06-06 2023-12-14 キヤノン株式会社 有機化合物および有機発光素子

Also Published As

Publication number Publication date
KR101782881B1 (ko) 2017-09-28
KR20150140127A (ko) 2015-12-15

Similar Documents

Publication Publication Date Title
CN109970724B (zh) 有机化合物、组合物、有机光电子装置和显示装置
TWI541232B (zh) 有機化合物與組成物以及有機光電元件與顯示元件
KR102122340B1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101773363B1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
JP6335288B2 (ja) 有機化合物、有機光電子素子および表示装置
JP6257113B2 (ja) 有機化合物、有機光電子素子および表示装置
JP6431530B2 (ja) 有機光電子素子用発光材料、有機光電子素子および表示装置
JP6402192B2 (ja) 有機光電子素子用組成物、有機光電子素子および表示装置
CN109890937B (zh) 用于有机光电子装置的化合物、有机光电子装置和显示装置
CN109196075B (zh) 用于有机光电装置的化合物、用于有机光电装置的组合物、有机光电装置及显示设备
WO2015105251A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2015111848A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2014200148A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2015186882A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
KR101897039B1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2016021815A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2017104946A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
JP6478672B2 (ja) 有機化合物、組成物、有機光電子素子および表示装置
CN107868035B (zh) 用于有机光电装置的化合物、用于有机光电装置的组合物及有机光电装置及显示装置
KR102008895B1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
CN114149429A (zh) 用于有机光电装置的化合物、用于有机光电装置的组合物、有机光电装置和显示装置
KR102146791B1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
KR102162401B1 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
CN108699079B (zh) 有机化合物、组合物、有机光电子器件和显示器件
WO2015178589A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894169

Country of ref document: EP

Kind code of ref document: A1