WO2015178589A1 - 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 - Google Patents

유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 Download PDF

Info

Publication number
WO2015178589A1
WO2015178589A1 PCT/KR2015/003882 KR2015003882W WO2015178589A1 WO 2015178589 A1 WO2015178589 A1 WO 2015178589A1 KR 2015003882 W KR2015003882 W KR 2015003882W WO 2015178589 A1 WO2015178589 A1 WO 2015178589A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
compound
organic
Prior art date
Application number
PCT/KR2015/003882
Other languages
English (en)
French (fr)
Other versions
WO2015178589A8 (ko
Inventor
민수현
김영권
김준석
류진현
유은선
이상신
이승재
이한일
이현규
정수영
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150053922A external-priority patent/KR101897039B1/ko
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/307,108 priority Critical patent/US10446764B2/en
Priority to CN201580026671.8A priority patent/CN106414407B/zh
Publication of WO2015178589A1 publication Critical patent/WO2015178589A1/ko
Publication of WO2015178589A8 publication Critical patent/WO2015178589A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • An organic compound a composition, an organic optoelectronic device, and a display device.
  • An organic optodectric diode is a device that can switch between electrical energy and light energy.
  • Organic optoelectronic devices can be divided into two types according to the principle of operation.
  • One is an optoelectronic device in which excitons formed by light energy are separated into electrons and holes, and the electrons and holes are transferred to other electrodes, respectively, to generate electric energy. It is a light emitting device that generates light energy from energy.
  • Examples of the organic optoelectronic device may be an organic photoelectric device, an organic light emitting device, an organic solar cell and an organic photo conductor drum.
  • organic light emitting diodes have attracted much attention recently as demand for flat panel displays increases.
  • the organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material, and has a structure in which an organic layer is inserted between an anode and a cathode.
  • the organic layer may include a light emitting layer and an optional auxiliary layer, and the auxiliary layer may include, for example, a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, and an electron injection layer to increase efficiency and stability of the organic light emitting diode. And at least one layer selected from a hole blocking layer.
  • the performance of the organic light emitting device is greatly influenced by the characteristics of the organic layer, and in particular, is affected by the organic material included in the organic layer.
  • One embodiment provides an organic compound capable of implementing high efficiency and long life organic optoelectronic devices.
  • Another embodiment provides a composition for an organic optoelectronic device including the organic compound.
  • Yet another embodiment provides an organic optoelectronic device including the organic compound or the composition.
  • Another embodiment provides a display device including the organic optoelectronic device.
  • an organic compound represented by Chemical Formula 1 is provided. [Formula 1]
  • Z are each independently C, N or CR a ,
  • At least one of Z is N,
  • R 'to R 3 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C20 aryl group, a substituted or unsubstituted C3 to C30 heterocyclic group, or these Is a combination of
  • Ar 1 is a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted quarterphenyl group, a substituted or unsubstituted fused ring, or a combination thereof.
  • a composition for an organic optoelectronic device including the first organic compound which is the organic compound and at least one second organic compound having a carbazole moiety is provided.
  • a display device including the organic optoelectronic device is provided. to provide.
  • FIG. 1 and 2 are cross-sectional views illustrating organic light emitting diodes according to example embodiments.
  • substituted means that at least one hydrogen in a substituent or compound is deuterium, halogen, hydroxy, amino, substituted or unsubstituted.
  • C 1 to C30 amine group nitro group, substituted or unsubstituted C1 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C3 to C30 heterocycloalkyl group, C6 to C30 aryl It means substituted with C1 to C10 trifluoroalkyl group or cyano group such as group, C6 to C30 heterocyclic group, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group.
  • substituted C6 to C30 aryl group may be fused to another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
  • hetero means ⁇ , ⁇ , in one functional group, unless otherwise defined.
  • aryl group refers to a group having one or more hydrocarbon aromatic moieties and is broadly a form in which hydrocarbon aromatic moieties are connected in a single bond and non-aromatic in which the hydrocarbon aromatic moieties are fused directly or indirectly. Also included are fused rings.
  • Aryl groups include monocyclic, polycyclic or fused polycyclic (ie, rings that divide adjacent pairs of carbon atoms) functional groups.
  • a “heterocyclic group” is a concept comprising a heteroaryl group, in addition to carbon (C) in a ring compound such as an aryl group, a cycloalkyl group, a fused ring thereof, or a combination thereof. It means containing at least one hetero atom selected from N, 0, S, P and Si. In the case where the heterocyclic group is a fused ring, the heterocyclic group may include one or more heteroatoms for all or each ring.
  • a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heterocyclic group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthra Senyl group, substituted or unsubstituted
  • Phenanthryl group substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted Or an unsubstituted chrysenyl group, a substituted or unsubstituted triphenylenyl group, a substituted or unsubstituted perrylenyl group, a substituted or unsubstituted indenyl group, a substituted or unsubstituted furanyl group, a substituted or unsubstituted thiophenyl group , Substituted or unsubstituted pyrrolyl group, substituted or unsubstituted pyrazolyl group, substituted or unsubstituted imidazolyl group, substituted or
  • a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group or a substituted or unsubstituted divalent heterocyclic group is defined in the substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group as defined above.
  • linking groups for example, substituted or unsubstituted phenylene group, substituted or unsubstituted naphthalene group, substituted or unsubstituted anthracenylene group, substituted or unsubstituted phenanthrylene, substituted or Unsubstituted naphthasenylene group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quarterphenylene group, substituted or unsubstituted chrysenyl A ethylene group, a substituted or unsubstituted triphenylenylene group, a substituted or unsubstituted perenylene group, a substituted or unsubstituted indenylene group, a substituted or Substituted furanylene group, substituted or unsubstit
  • Oxadiazolylene group substituted or unsubstituted thiadiazolylene group, substituted or unsubstituted pyridinylene group, substituted or unsubstituted pyrimidinylene group, substituted or unsubstituted
  • Benzofuranylene group substituted or unsubstituted benzothiophenylene group, substituted or unsubstituted benzimidazolylene group, substituted or unsubstituted indolylene group, substituted or unsubstituted quinolinylene group, substituted or unsubstituted Isoquinolinylene group, substituted or unsubstituted quinazolinylene group, substituted or unsubstituted quinoxalinylene group, substituted or unsubstituted naphthyridinylene group, substituted or unsubstituted benzoxazinylene group, substituted or unsubstituted Substituted benzthiazinylene group, substituted or unsubstituted acridinylene group, substituted or unsubstituted phenazineylene group, substituted or unsubstituted phenothiazineylene group, substituted or unsubstituted pheno
  • a substituted or unsubstituted arylene group or a substituted or unsubstituted Heteroarylene group or substituted or unsubstituted divalent heterocyclic group is substituted or unsubstituted phenylene group, substituted or unsubstituted biphenylene group, substituted or unsubstituted
  • It may be any one or a combination of a terphenylene group, a substituted or unsubstituted quarterphenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted pyrimidineene group.
  • the hole characteristic refers to a characteristic capable of forming electrons by donating electrons when an electric field is applied, and injecting holes formed at the anode into the light emitting layer having conductive properties along the HOMO level. It means a property that facilitates the movement of the holes formed in the light emitting layer to the anode and the movement in the light emitting layer.
  • the electron characteristic refers to a characteristic in which electrons can be received when an electric field is applied.
  • the electron characteristic has conductivity characteristics along the LUMQ level, and the electrons formed in the cathode are injected into the light emitting layer, the electrons formed in the light emitting layer move to the cathode, and in the light emitting layer It means a property that facilitates movement.
  • An organic compound according to one embodiment is represented by Formula 1 below.
  • Z are each independently C, N or CR a ,
  • At least one of Z is N,
  • R 1 to R 3 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C20 aryl group, a substituted or unsubstituted C3 to C30 heterocyclic group, or these Is a combination of
  • Ar 1 is a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted quarterphenyl group, a substituted or unsubstituted fused ring, or a combination thereof.
  • the organic compound represented by Chemical Formula 1 may be a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted quarterphenyl group, substituted or unsubstituted around two phenylene groups bonded to a meta position With unsubstituted fused rings or combinations thereof Each containing a fused ring having at least one nitrogen.
  • Ar 1 is a substituted or unsubstituted 0-biphenyl group, a substituted or unsubstituted m-biphenyl group, a substituted or unsubstituted P-biphenyl group, a substituted or unsubstituted 0-terphenyl group, a substituted or unsubstituted group Substituted m-terphenyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted 0-quaterphenyl group, substituted or unsubstituted m-quaterphenyl group, substituted or unsubstituted P-quaterphenyl group or hole characteristics
  • the branch may be a substituted or unsubstituted fused ring, and the substituted or unsubstituted fused ring having the hole property may be, for example, a substituted or unsubstituted triphenylene group.
  • one or two of Z may be nitrogen and at least one of Z may be CR a , where R a is, for example, a substituted or unsubstituted C6 to C20 aryl group, a substituted or unsubstituted C3 To C30 heterocyclic group or a combination thereof.
  • R a may be, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a heterocyclic group having at least one nitrogen, or a combination thereof, and the heterocyclic group having at least one nitrogen may be, for example, pyridinyl, pyridazinyl , Pyrimidinyl, pyrazinyl or triazinyl, but is not limited thereto.
  • the organic compound may have a structure in which electrons are easily received when an electric field is applied by including a fused ring having at least one nitrogen, thereby lowering a driving voltage of the organic optoelectronic device to which the organic compound is applied.
  • the organic compound includes a plurality of substituted or unsubstituted phenyl group moieties or fused ring moieties that are susceptible to holes, and nitrogen-containing fused ring moieties that are susceptible to electrons, thereby forming a bipolar structure to prevent the flow of holes and electrons. It can balance suitably, and the efficiency of the organic optoelectronic device to which the said organic compound is applied can be improved.
  • the meta position by including two phenylene groups bonded to the meta position, it is appropriate to localize a plurality of substituted or unsubstituted aryl group moieties that are susceptible to holes and nitrogen-containing ring moieties that are susceptible to electrons in the aforementioned bipolar group compounds.
  • one or two of the two phenylene groups may be an unsubstituted phenylphene group. Accordingly, the lifespan of the organic optoelectronic device to which the organic compound is applied can be improved.
  • the organic compound has a substantially linear structure when deposited Self-arrangement can increase process stability and increase film uniformity.
  • the organic compound may be represented by, for example, the following Chemical Formula 2.
  • Formula 2 may be an unsubstituted phenylene group both phenylene groups bonded to the meta position.
  • the organic compound may be represented by any one of the following Chemical Formulas 3 to 7, for example.
  • R 1 to R 3 and Ar 1 are the same as described above, and R al and R 32 are the same as the above R a .
  • R al is substituted or unsubstituted C6 to C20 It may be an aryl group, a substituted or unsubstituted C3 to C30 heterocyclic group or a combination thereof.
  • R al may be, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a heterocyclic group having at least one nitrogen or a combination thereof, wherein the heterocyclic group having at least one nitrogen is for example pyridinyl, pyridazinyl, It may be, but is not limited to, pyrimidinyl, pyrazinyl or triazinyl.
  • Ar 1 is a substituted or unsubstituted 0-biphenyl group, a substituted or unsubstituted m-biphenyl group, a substituted or unsubstituted P-biphenyl group : a substituted or unsubstituted 0-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted 0-quaterphenyl group, substituted or unsubstituted m- quaterphenyl group, substituted or unsubstituted It may be a P-quaterphenyl group or a substituted or unsubstituted fused ring having hole characteristics, and the fused ring having the hole characteristics may be, for example, a substituted or unsubstituted triphenylene group.
  • the organic compound may be represented by any one of the following Chemical Formulas 8 to 10, for example.
  • L 1 is a single bond or a substituted or unsubstituted C6 to C20 arylene group
  • R 1 to R 20 are each independently hydrogen, deuterium, substituted or unsubstituted C1 to
  • R 4 and R 5 , R 6 and R 7 , R 8 and R 9 , R 10 and R ", R 12 and R 13 , R 14 and R 15 , R 16 and R 17 , and R 18 and R 19 are respectively They may be present independently or may fuse with one another to form a ring.
  • one or two of ⁇ may be nitrogen and at least one of ⁇ may be CR a , wherein R a is a substituted or unsubstituted C6 to C20 aryl group, substituted or It may be an unsubstituted C3 to C30 heterocyclic group or a combination thereof.
  • R a may be, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a heterocyclic group having at least one nitrogen or a combination thereof, wherein the heterocyclic group having at least one nitrogen is for example pyridinyl, pyridazinyl, It may be, but is not limited to, pyrimidinyl, pyrazinyl or triazinyl.
  • the organic compound represented by Chemical Formula 8 may be, for example represented by any one of Chemical Formulas 8a to 8c, but is not limited thereto.
  • the organic compound represented by Chemical Formula 9 may be, for example, an organic compound represented by Chemical Formula 9a, but is not limited thereto.
  • organic compound may be, for example, but not limited to, the organic compounds listed in Group 1 below.
  • the aforementioned organic compounds may be applied to the organic optoelectronic device alone or in combination with other organic compounds.
  • the above-mentioned organic compound is used together with other organic compounds, it can be applied in the form of a composition.
  • the composition may include at least one organic compound having the above-described organic compound and a carbazole moiety.
  • organic compound is referred to as a 'first organic compound' and at least one organic compound having a carbazole moiety is referred to as a 'second organic compound'.
  • the Crab 2 organic compound may be, for example, a compound represented by Chemical Formula 1 1 below.
  • Y 1 is a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heterocycle Groups or a combination thereof,
  • Ar 2 is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof, '
  • R 21 to R 24 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heterocyclic group, or a combination thereof ,
  • At least one of R 21 to R 24 and Ar 2 includes a substituted or unsubstituted triphenylene group or a substituted or unsubstituted carbazole group.
  • the second organic compound represented by Chemical Formula II may be, for example, represented by at least one of Chemical Formulas 1-1-1 to 1 1-111: -I] [Formula 11-11]
  • X ', X 4 and X 5 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, substituted Or an unsubstituted C2 to C30 heterocyclic group or a combination thereof,
  • Ar 2 and Ar 5 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
  • R 21 to R 24 and R 29 to R 40 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heterocycle Groups or a combination thereof.
  • the second organic compound represented by Chemical Formula 1 1 may be selected from, for example, the compounds listed in Group 2, but is not limited thereto.
  • the Crab 2 organic compound may be a compound consisting of a combination of a moiety represented by the following Formula 12 and a moiety represented by the following Formula.
  • Formula 12
  • Y 2 and Y 3 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heterocyclic group or a combination thereof,
  • Ar 3 and Ar 4 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group or a combination thereof,
  • R 25 to R 28 are each independently hydrogen, deuterium, substituted or unsubstituted C1 to
  • Adjacent two * of Formula 12 combines with two * of Formula 13 to form a fused ring, and * which does not form a fused ring in Formula 12 is each independently CR b , R b is hydrogen, deuterium, A substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heterocyclic group, or a combination thereof.
  • the second organic compound consisting of a combination of the moiety represented by Formula 12 and the moiety represented by Formula 13 may be selected from, for example, a compound listed in Group 3 below, but is not limited thereto. [Group 3]
  • the second organic compound may include at least one of a compound represented by Formula 1 1 and a combination of a moiety represented by Formula 12 and a moiety represented by Formula 13 below.
  • the composition may include the first organic compound and the crab 2 organic compound in a weight ratio of about 1: 10 to 10: 1.
  • the composition may be applied to an organic layer of an organic optoelectronic device, and the first organic compound and the second organic compound may serve as a host.
  • the first organic compound may be a compound having a bipolar characteristic having a relatively strong electronic property
  • the second organic compound is a compound having a bipolar characteristic having a relatively strong hole property, and may be used together with the first organic compound. It is possible to further improve the luminous efficiency and lifetime characteristics by increasing the mobility and stability of the charge.
  • the composition may further include one or more organic compounds in addition to the above-mentioned one organic compound and the second organic compound.
  • the composition may further comprise a dopant.
  • the dopant may be a red, green or blue dopant, for example a phosphorescent dopant.
  • the dopant is a substance mixed with a small amount of the first organic compound and the second organic compound to emit light, and is generally a metal complex such as a metal complex that emits light by multiple excitation which excites above a triplet state. Materials can be used.
  • the dopant may be, for example, an inorganic, organic, or inorganic compound, and may be included in one kind or two kinds or more.
  • Examples of the phosphorescent dopant include an organometallic compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof.
  • the phosphorescent dopant may be, for example, a compound represented by Chemical Formula Z, but is not limited thereto.
  • is a metal
  • L and X are the same or different from each other and a ligand forming a complex with ⁇ .
  • the ⁇ can be for example Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd or combinations thereof, wherein L and X are for example bidentate It may be a ligand.
  • the composition may be formed by a dry film formation method or a solution process such as chemical vapor deposition.
  • the dry film forming method may be, for example, chemical vapor deposition, sputtering, plasma plating, and ion plating, and two or more compounds may be simultaneously formed or a compound having the same deposition temperature may be mixed and formed together.
  • the solution process can be, for example, inkjet printing, spin coating, slit coating, bar coating and / or dip coating.
  • the organic optoelectronic device is not particularly limited as long as the device can switch electrical energy and light energy. Examples thereof include an organic photoelectric device, an organic light emitting device, an organic solar cell, and an organic photosensitive drum.
  • the organic optoelectronic device may include an anode and a cathode facing each other, at least one organic layer positioned between the anode and the cathode, and the organic layer may include the organic compound or the composition described above.
  • an organic light emitting diode as an example of an organic optoelectronic device will be described with reference to the drawings.
  • an organic light emitting diode 100 includes an anode 120 and a cathode 1 10 facing each other, and an organic layer 105 positioned between the anode 120 and the cathode 110. It includes.
  • the anode 120 may be made of a high work function conductor, for example, to facilitate hole injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • the anode 120 is, for example, a metal such as nickel, platinum, vanadium, chromium, copper, zinc, gold or an alloy thereof; Zinc oxide, indium oxide, indium tin oxide ( ⁇ ),
  • Metal oxides such as indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO and A1 or Sn0 2 and Sb; Conductive polymers such as poly (3-methylthiophene), poly (3,4- (ethylene-1,2-dioxy) thiophene Xpolyehtylenedioxythiophene: PEDOT), polypyrrole and polyaniline, and the like. It is not.
  • the cathode 1 10 may be made of a low work function conductor, for example, to facilitate electron injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • the negative electrode 1 10 is, for example, a metal or alloys thereof such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium and the like; Multilayer structure materials such as LiF / Al, Li0 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, but are not limited thereto.
  • Organic layer 105 comprises an organic compound as described above or a composition as described above
  • the light emitting layer 130 may include, for example, the above-described organic compound alone, may include at least two kinds of the above-described organic compounds in combination, and may include the above-described composition. ,
  • the organic light emitting diode 200 may have holes in addition to the light emitting layer 130.
  • the hole auxiliary layer 140 may further increase hole injection and / or hole mobility between the anode 120 and the light emitting layer 130 and block electrons.
  • the hole auxiliary layer 140 may be, for example, a hole transport layer, a hole injection layer, and / or an electron blocking layer, and may include at least one layer.
  • the organic layer 105 of FIG. 1 or FIG. 2 may further include an electron transport layer, an electron injection layer, a hole injection layer, and the like.
  • the organic light emitting diode described above may be applied to an organic light emitting diode display.
  • triphenylen-2-ylboronic acid (20 g, 73.5 mmol) was dissolved in 300 ml of THF, followed by 3-bromo-3'-chlorobiphenyl (30 g, lOmniol).
  • biphenyl-4-ylboronic acid 15 g, 75.8 mmol was dissolved in 300 ml of THF. After, here with 3 -bromo-3'-chlorobiphenyl (30.4 g, 1 13.6 mmol)
  • Synthesis Example 13 Synthesis of Compound 19 In nitrogen, Intermediate 1-4 (13 g, 25.6 mmol) was dissolved in THF 100 ml, followed by Intermediate 1-5 (6.78 g, 28.1 mmol) and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) ( 1.5 g, 1.28 mmol) was added and stirred. Potassium carbonate saturated in water (K 2 CO 3 ) (7 g, 51.1 mmol) was added thereto, and the mixture was heated and refluxed at 80 t for 12 hours.
  • K 2 CO 3 Potassium carbonate saturated in water
  • intermediate 1-4 (13 g, 25.6 mmol) in THF 100 ml in a nitrogen environment, then add intermediates 1-6 (8.9 g, 28.1 mmol) and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) ( 1.5 g, 1.28 mmol) was added and stirred. Potassuim carbonate (K 2 CO 3 ) saturated in water (7 g, 51.1 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours.
  • K 2 CO 3 Potassuim carbonate
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4) (1.14 g, 0.98 mmol) was added thereto, followed by stirring.
  • Potassium carbonate saturated in water (K 2 CO 3 ) (5.4 g, 39.3 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction, add water to the reaction liquid
  • the energy levels of the compounds obtained in Synthesis Examples 13 to 17 were calculated by Gaussian 09 method using supercomputer GATA (IBA power 6).
  • the compound obtained in Synthesis Examples 13 to 17 is relatively low LUMO It can be seen that it has an energy level. From this, when the compounds obtained in Synthesis Examples 13 to 17 are applied to the light emitting layer of the organic light emitting device, it can be expected that the electron transfer will be easy. Accordingly, the organic light emitting device has low driving voltage, high luminous efficiency and good lifespan characteristics. You can expect it. Fabrication of Organic Light-Emitting Device I
  • An organic light emitting device was manufactured using compound 19 obtained in Synthesis Example 13 as a host, and (piq) 2 Ir (acac) as a dopant.
  • ⁇ 1000 was used to a thickness of 1000 A.
  • cathode aluminum (A1) was used.
  • the anode cuts a glass substrate with a sheet resistance of 15 Q / cuf to a size of 50 mm X 50 mm X 0.7 mm and sonicated for 15 minutes in acetone, isopropyl alcohol and pure water for 30 minutes. UV ozone rinse was used.
  • Vacuum degree of 650xl (T 7 Pa, deposition rate 0.1 to 0.3 nm / s on the substrate)
  • N4, N4'-di (naphthalen-l-yl) -N4, N4'-diphenylbiphenyl-4,4'-diamine (NPB) (80 nm) was deposited to form a hole transport layer of 800A.
  • NBP N4'-diphenylbiphenyl-4,4'-diamine
  • a light emitting layer having a thickness of 300A was formed using compound 19 obtained in Synthesis Example 13 under the same vacuum deposition conditions, wherein a phosphorescent dopant (piq) 2 Ir (acac) was simultaneously deposited.
  • Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum (BAlq) was deposited on the emission layer to form the hole blocking layer having a thickness of 50 A. Subsequently, Alq 3 was deposited under the same vacuum deposition conditions to form an electron transport layer having a thickness of 200 A.
  • An organic photoelectric device was manufactured by sequentially depositing LiF and A1 as a cathode on the electron transport layer.
  • the structure of the organic photoelectric device is 1 ⁇ 0 /? 8 (80 1 1) / £ ⁇ (Compound 19 (98 weight 0 /.) + (Piq) 2 Ir (acac) (2 weight 0 30 nm) / Balq (5 nm) / Alq3 (20 nm) / LiF (1 nm) / Al (100 nm).
  • Example 2
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 20 obtained in Synthesis Example 14 instead of Compound 19 obtained in Synthesis Example 13.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound 74 obtained in Synthesis Example 16 instead of the compound 19 obtained in Synthesis Example 13.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using CBP having the following structure instead of compound 19 obtained in Synthesis Example 13.
  • NPB, BAlq, CBP and (piq) 2 Ir (acac) used in the organic light emitting device fabrication are as follows. [PBJ
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the luminance at that time was measured using a luminance meter (Minolta Cs-1000 A) to obtain a result.
  • the current efficiency (cd / A) of the same current density (10 mA / cm 2) was calculated using the luminance, the current density, and the voltage measured from the above (1) and (2).
  • the present invention exhibits a low driving voltage and high luminous efficiency characteristics due to its strong structural characteristics, which have an energy level capable of facilitating electron transfer.
  • the lifetime of the examples using compounds containing linear meta-bonds in series was better. This may be due to the good localization of the terminal phenyl group and the quinazoline structure, which plays an electronic characteristic role, to minimize the interference effect of each other.
  • the compound phenylcarbazolyl boronic acid (10 g, 34.83 mmol) was dissolved in 0.2 L of toluene in a C-J0 nitrogen environment, and 2-bromotriphenylene (1 1.77 g, 38.31 mmol) was added thereto.
  • tetrakis (triphenylphosphine) palladium (0.80 g, 0.7 mmmol) was added thereto and stirred.
  • Potassium carbonate saturated in water 14.44 g, 104.49 mmol was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours.
  • phenylcarbazolyl bromide (9.97 g, 30.95 mmol) was dissolved in 0.2 L of toluene, and phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) and tetrakis (triphenylphosphine) palladium (1.07 g, 0.93 mmmol) were added thereto and stirred.
  • Potassium carbonate saturated in water (12.83 g, 92.86 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours.
  • Triphenylcarbazolyl bromide 14.62 g, 30.95 mmol in a nitrogen environment.
  • An organic light emitting diode was manufactured by using Compound B-43 according to Synthesis Example 5 of the Synthesis Example 14 and the second host compound as a host, and using (piq) 2 Ir (acac) as a dopant.
  • ITO was used as the anode with a thickness of 1000 A, and aluminum (A1) was used as the cathode.
  • the anode is 15 ⁇ / a ⁇ glass substrate having a sheet resistance of ⁇ 2 cut into a size of 50mm ⁇ 50 mm ⁇ 0.7 mm in acetone and isopropyl alcohol and pure water For every 15 minutes
  • UV ozone washing was used for 30 minutes.
  • Vacuum degree 650x l (T 7 Pa, deposition rate 0.1 to 0.3 nm / s on the substrate)
  • N4, N4'-di (naphthalen-l-yl) -N4, N4'-diphenylbiphenyl-4,4'-diamine (NPB) (80 nm) was deposited to form a hole transport layer of 800A.
  • NBP N4'-diphenylbiphenyl-4,4'-diamine
  • a light emitting layer having a thickness of 300 A was formed using the compound 20 and the compound B-43 simultaneously as a host, and at this time, a phosphorescent dopant (piq) 2 Ir (acac) was simultaneously deposited. At this time, the phosphorescent dopant
  • the total amount of the light emitting layer is 100% by weight, It was deposited so that the compounding amount was 2% by weight.
  • Bis (2-methyl-8- quinoUnolate) -4- (phenylphenolato) aluminum (BAlq) was deposited on the emission layer to form a hole blocking layer having a thickness of 50 A.
  • Alq3 was deposited under the same vacuum deposition conditions to form an electron transport layer having a thickness of 200A.
  • An organic photoelectric device was manufactured by sequentially depositing LiF and A1 as a cathode on the electron transport layer.
  • An organic light emitting diode was manufactured according to the same method as Example 9 except for using Compound 20 and Compound B-43 at 5: 5.
  • An organic light emitting diode was manufactured according to the same method as Example 9 except for using Compound 20 and Compound B-43 at 3: 7.
  • An organic compound was prepared in the same manner as in Example 9, except that Compound C-10, which was obtained in Synthesis Example 1 of the second host compound, was used instead of Compound B-43, and Compound 20 and Compound C-10 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • An organic compound was prepared in the same manner as in Example 9, except that Compound B-10, which was obtained in Synthesis Example 2 of the second host compound, was used instead of Compound B-43 and that Compound 20 and Compound B-10 were included in a ratio of 1: 1.
  • a light emitting device was manufactured.
  • An organic compound was prepared in the same manner as in Example 9, except that Compound E-1, obtained in Synthesis Example 6 of the C2 host compound, was used instead of Compound B-43, and Compound 20 and Compound E-1 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • An organic light emitting diode was manufactured according to the same method as Example 9 except for using Compound 128 obtained in Synthesis Example 17 instead of Compound 20.
  • An organic light emitting diode was manufactured according to the same method as Example 17 except for using Compound 128 and Compound B-43 at 5: 5.
  • An organic light emitting diode was manufactured according to the same method as Example 17 except for using Compound 128 and Compound B-43 at 3: 7.
  • Compound B-10 was used in the same manner as in Example 17 except for using Compound B-10ol obtained in Synthesis Example 2 of the compound 2 instead of Compound B-43 and including Compound 128 and Compound B-10 in a ratio of 1: 1. A light emitting device was manufactured.
  • Example 1 except that Compound B-34 obtained in Synthesis Example 4 of Compound 2 Host Compound was used instead of Compound B-43 and Compound 128 and Compound B-34 were included in a ratio of 1: 1.
  • An organic light emitting diode was manufactured in the same manner as in 17.
  • An organic light emitting diode was manufactured according to the same method as Example 9 except for using Compound 187 obtained in Synthesis Example 19 instead of Compound 20.
  • An organic light emitting diode was manufactured according to the same method as Example 25 except for using the compound 187 and the compound B-43 at 5: 5.
  • An organic light emitting device was manufactured in the same manner as in Example 25, except that Compound 187 and Compound B-43 were used as 3: 7.
  • Compound C-10 was obtained in Synthesis Example 1 of the second host compound instead of Compound B-43, and the same procedure as in Example 25 was carried out except that Compound 187 and Compound C-10 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • Compound B-10 was used in the same manner as in Example 25, except that Compound B-10, which was obtained in Synthesis Example 2 of Compound 2 Host Compound, was used and Compound 187 and Compound B-10 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • An organic compound was prepared in the same manner as in Example 25, except that Compound B-31, which was obtained in Synthesis Example 3 of the second host compound, was used instead of Compound B-43 and Compound 187 and Compound B-31 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • Example 32 An organic compound was prepared in the same manner as in Example 25, except that Compound B-34, which was obtained in Synthesis Example 4 of the second host compound, was used instead of Compound B-43 and Compound 187 and Compound B-34 were included in a ratio of 1: 1. A light emitting device was manufactured.
  • Example 32
  • An organic light emitting diode was manufactured according to the same method as Example 9 except for using Compound B-43 alone as a host instead of two hosts of Compound 20 and Compound B-43. Comparative Example 3
  • An organic light emitting diode was manufactured according to the same method as Example 12 except for using the compound C-10 alone host instead of the two hosts of the compound 20 and the compound C-10. Comparative Example 4
  • An organic light emitting diode was manufactured according to the same method as Example 13 except for using Compound B-10 alone as a host instead of two hosts of Compound 20 and Compound B-10. Comparative Example 5
  • An organic light emitting diode was manufactured according to the same method as Example 14 except for using Compound B-31 alone as a host instead of two hosts of Compound 20 and Compound B-31. Comparative Example 6
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound B-34 alone as a host instead of two hosts of Compound 20 and Compound B-34. Comparative Example 7
  • An organic light emitting diode was manufactured according to the same method as Example 16 except for using the compound E-1 single host instead of the two hosts of the compound 20 and the compound E-1. Evaluation 3
  • the luminance was measured by using a luminance meter (Minolta Cs-IOOOA) while increasing the voltage from 0V to 10V to obtain a result.
  • a luminance meter Minolta Cs-IOOOA
  • the current efficiency (cd / A) of the same current density (10 mA / cm 2) was calculated using the brightness, current density, and voltage measured from (1) and (2).
  • Luminance (cd / m 2) to maintain as 2200cd / m 2, and time of the current efficiency (cd / A) is decreased by 90% to obtain a result.
  • the first organic compound is a compound having a relatively strong electronic property
  • the crab 2 organic compound is a compound having a relatively strong hole property
  • the electron and hole flow are more properly balanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

화학식 1로 표현되는 유기 화합물, 상기 유기 화합물을 포함하는 유기 광전자 소자용 조성물, 상기 유기 화합물 또는 상기 조성물을 적용한 유기 광전자 소자 및 상기 유기 광전자 소자를 포함하는 표시 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
【기술분야】
유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치에 관한 것이다.
【배경기술】
유기 광전자 소자 (organic optodectric diode)는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이다.
유기 광전자 소자는 동작 원리에 따라 크게 두 가지로 나눌 수 있다.
하나는 광 에너지에 의해 형성된 엑시톤 (exciton)이 전자와 정공으로 분리되고 상기 전자와 정공이 각각 다른 전극으로 전달되면서 전기 에너지를 발생하는 광전 소자이고, 다른 하나는 전극에 전압 또는 전류를 공급하여 전기 에너지로부터 광 에너지를 발생하는 발광 소자이다.
유기 광전자 소자의 예로는 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 (organic photo conductor drum) 등을 들 수 있다.
이 중, 유기 발광 소자 (organic light emitting diode, OLED)는 근래 평판 표시 장치 (flat panel display device)의 수요 증가에 따라 크게 주목받고 있다. 상기 유기 발광 소자는 유기 발광 재료에 전류를 가하여 전기 에너지를 빛으로 전환시키는 소자로서, 통상 양극 (anode)과 음극 (cathode) 사이에 유기 층이 삽입된 구조로
이루어져 있다. 여기서 유기 층은 발광층과 선택적으로 보조층을 포함할 수 있으며, 상기 보조층은 예컨대 유기발광소자의 효율과 안정성을 높이기 위한 정공 주입 층, 정공 수송 층, 전자 차단 층, 전자 수송 층, 전자 주입 층 및 정공 차단 층에서 선택된 적어도 1층을 포함할 수 있다.
유기 발광 소자의 성능은 상기 유기 층의 특성에 의해 영향을 많이 받으며, 그 중에서도 상기 유기 층에 포함된 유기 재료에 의해 영향을 많이 받는다.
특히 상기 유기 발광 소자가 대형 평판 표시 장치에 적용되기 위해서는 정공 및 전자의 이동성을 높이는 동시에 전기화학적 안정성을 높일 수 있는 유기 재료의 개발이 필요하다.
【발명의 상세한 설명】
【기술적 과제】 일 구현예는 고효율 및 장수명 유기 광전자 소자를 구현할 수 있는 유기 화합물을 제공한다.
다른 구현예는 상기 유기 화합물을 포함하는 유기 광전자 소자용 조성물을 제공한다.
또 다른 구현예는 상기 유기 화합물 또는 상기 조성물을 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현예는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다. 【기술적 해결방법】
일 구현예에 따르면, 하기 화학식 1로 표현되는 유기 화합물을 제공한다. 화학식 1]
Figure imgf000004_0001
상기 화학식 1에서,
Z는 각각 독립적으로 C, N 또는 CRa이고,
Z 중 적어도 하나는 N 이고,
R' 내지 R3및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar1은 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합이다. 다른 구현예에 따르면, 상기 유기 화합물인 제 1 유기 화합물, 그리고 카바졸 모이어티를 가지는 적어도 하나의 제 2 유기 화합물을 포함하는 유기광전자소자용 조성물을 제공한다.
또 다른 구현예에 따르면, 서로 마주하는 양극과 음극, 그리고 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함하고, 상기 유기층은 상기 유기 화합물 또는 상기 유기광전자소자용 조성물올 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현예에 따르면, 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.
【유리한 효과】
.고효율 장수명 유기 광전자 소자를 구현할 수 있다.
【도면의 간단한 설명】
도 1 및 도 2는 각각 일 구현예에 따른 유기 발광 소자를 도시한 단면도이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환 "이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된
C 1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로고리기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30
헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로고리기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.
예를 들어, 상기 치환된 C6 내지 C30 아릴기는 인접한 또 다른 치환된 C6 내지 C30 아릴기와 융합되어 치환 또는 비치환된 플루오렌 고리를 형성할 수 있다.
본 명세서에서 "헤테로 "란 별도의 정의가 없는 한, 하나의 작용기 내에 Ν, Ο,
S, P 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 적어도 한 개를 함유하고, 나머지는 탄소인 것을 의미한다ᅳ
본 명세서에서 "아릴기 (aryl group)"는 탄화수소 방향족 모이어티를 하나 이상 갖는 그룹을 의미하며 넓게는 탄화수소 방향족 모이어티들이 단일 결합으로 연결된 형태 및 탄화수소 방향족 모이어티들이 직접 또는 간접적으로 융합된 비방향족 융합 고리 또한 포함한다. 아릴기는 모노시클릭 , 폴리시클릭 또는 융합된 폴리시클릭 (즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다. 본 명세서에서 "헤테로고리기 (heterocyclic group)"는 헤테로아릴기를 포함하는 개념이며, 이에 추가하여 아릴기, 사이클로알킬기, 이들의 융합고리 또는 이들의 조합과 같은 고리 화합물 내에서 탄소 (C) 대신에 N, 0, S, P 및 Si에서 선택되는 헤테로 원자를 적어도 한 개를 함유하는 것을 의미한다. 상기 헤테로고리기가 융합고리인 경우, 상기 헤테로고리기 전체 또는 각각의 고리마다 헤테로 원자를 한 개 이상 포함할 수 있다.
보다 구체적으로, 치환 또는 비치환된 C6 내지 C30 아릴기 및 /또는 치환 또는 비치환된 C2 내지 C30 헤테로고리기는, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된
페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 P-터페닐기, 치환 또는 비치환된 m- 터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된
퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된
벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된
아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 디벤조퓨란일기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 카바졸릴기, 이들의 조합 또는 이들의 조합이 융합된 형태일 수 있으나, 이에 제한되지는 않는다. 본 명세서에서, 치환 또는 비치환된 아릴렌기 또는 치환 또는 비치환된 헤테로아릴렌기 또는 치환 또는 비치환된 2가의 헤테로고리기는 위에서 정의한 치환 또는 비치환된 아릴기 또는 치환 또는 비치환된 헤테로고리기에서 연결기가 2개 있는 것을 의미하는 것이며, 예를 들어, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 나프탈렌기, 치환 또는 비치환된 안트라세닐렌기 , 치환 또는 비치환된 페난트릴렌기 , 치환 또는 비치환된 나프타세닐렌기 , 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 쿼터페닐렌기, 치환 또는 비치환된 크리세닐렌기, 치환 또는 비치환된 트리페닐레닐렌기, 치환 또는 비치환된 페릴레닐렌기, 치환 또는 비치환된 인데닐렌기, 치환 또는 비치환된 퓨라닐렌기, 치환 또는 비치환된 티오페닐렌기, 치환 또는 비치환된 피를릴렌기, 치환 또는 비치환된 피라졸릴렌기, 치환 또는 비치환된 이미다졸일렌기, 치환 또는 비치환된 트리아졸일렌기 , 치환 또는 비치환된 옥사졸일렌기, 치환 또는 비치환된 티아졸일렌기, 치환 또는 비치환된
옥사디아졸일렌기 , 치환 또는 비치환된 티아디아졸일렌기 , 치환 또는 비치환된 피리디닐렌기, 치환 또는 비치환된 피리미디닐렌기, 치환 또는 비치환된
피라지닐렌기, 치환 또는 비치환된 트리아지닐렌기, 치환 또는 비치환된
벤조퓨라닐렌기, 치환 또는 비치환된 벤조티오페닐렌기 , 치환 또는 비치환된 벤즈이미다졸일렌기, 치환 또는 비치환된 인돌일렌기, 치환 또는 비치환된 퀴놀리닐렌기, 치환 또는 비치환된 이소퀴놀리닐렌기, 치환 또는 비치환된 퀴나졸리닐렌기, 치환 또는 비치환된 퀴녹살리닐렌기, 치환 또는 비치환된 나프티리디닐렌기 , 치환 또는 비치환된 벤즈옥사진일렌기 , 치환 또는 비치환된 벤즈티아진일렌기 , 치환 또는 비치환된 아크리디닐렌기 , 치환 또는 비치환된 페나진일렌기, 치환 또는 비치환된 페노티아진일렌기, 치환 또는 비치환된 페녹사진일렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 디벤조퓨란일렌기, 치환 또는 비치환된 디벤조티오페닐렌기, 치환 또는 비치환된 카바졸렌기, 이들의 조합 또는 이들의 조합이 융합된 형태일 수 있으나, 이에 제한되지는 않는다.
본 발명의 일예에서, 치환 또는 비치환된 아릴렌기 또는 치환 또는 비치환된 헤테로아릴렌기 또는 치환 또는 비치환된 2가의 헤테로고리기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된
터페닐렌기, 치환 또는 비치환된 쿼터페닐렌기, 치환 또는 비치환된 나프탈렌기, 치환 또는 비치환된 피리미딘렌기 중 어느 하나 또는 이들의 조합일 수 있다.
본 명세서에서, 정공 특성이란, 전기장 (electric field)을 가했을 때 전자를 공여하여 정공을 형성할 수 있는 특성을 말하는 것으로 , HOMO 준위를 따라 전도 특성을.가져 양극에서 형성된 정공의 발광층으로의 주입, 발광층에서 형성된 정공의 양극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
또한 전자 특성이란, 전기장을 가했을 때 전자를 받을 수 있는 특성을 말하는 것으로, LUMQ 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입, 발광층에서 형성된 전자의 음극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
이하 일 구현예에 따른 유기 화합물을 설명한다.
일 구현예에 따른 유기 화합물은 하기 화학식 1로 표현된다.
화학식 1]
Figure imgf000008_0001
상기 화학식 1에서,
Z는 각각 독립적으로 C, N 또는 CRa이고,
Z 중 적어도 하나는 N 이고,
R1 내지 R3및 Ra는 각각 독립적으로 수소, 중수소, 치환또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar1은 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합이다. 상기 화학식 1로 표현되는 유기 화합물은 메타 (meta) 위치로 결합된 두 개의 페닐렌기를 중심으로 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합과 적어도 하나의 질소를 가지는 융합고리를 각각 포함한다.
일 예로, 상기 Ar1은 치환 또는 비치환된 0-바이페닐기, 치환 또는 비치환된 m-바이페닐기, 치환 또는 비치환된 P-바이페닐기, 치환 또는 비치환된 0-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 P-터페닐기, 치환 또는 비치환된 0-쿼터페닐기, 치환 또는 비치환된 m-쿼터페닐기, 치환 또는 비치환된 P- 쿼터페닐기 또는 정공 특성을 가지는 치환 또는 비치환된 융합고리일 수 있고, 상기 정공 특성을 가지는 치환 또는 비치환된 융합고리는 예컨대 치환 또는 비치환된 트리페닐렌기일 수 있다.
일 예로, 상기 Z 중 1개 또는 2개는 질소일 수 있고 상기 Z 중 적어도 하나는 CRa일 수 있고, 여기서 Ra는 예컨대 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합일 수 있다. 상기 Ra는 예컨대 페닐기, 바이페닐기, 터페닐기, 나프틸기, 적어도 하나의 질소를 가지는 헤테로고리기 또는 이들의 조합일 수 있으며, 상기 적어도 하나의 질소를 가지는 헤테로고리기는 예컨대 피리디닐, 피리다지닐, 피리미디닐, 피라지닐 또는 트리아지닐일 수 있으나 이에 한정되는 것은 아니다.
상기 유기 화합물은 적어도 하나의 질소를 가지는 융합고리를 포함함으로써 전기장 인가시 전자를 받기 쉬운 구조가 될 수 있고, 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 구동 전압을 낮출 수 있다.
또한 상기 유기 화합물은 정공을 받기 쉬운 복수의 치환 또는 비치환된 페닐기 부분 또는 융합고리 부분과 전자를 받기 쉬운 질소 함유 융합고리 부분을 함께 포함함으로써 바이폴라 (bipolar) 구조를 형성하여 정공 및 전자의 흐름을 적절히 균형 맞출 수 있고, 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 효율을 개선할 수 있다.
또한 메타 위치로 결합된 두 개의 페닐렌기를 포함함으로써 전술한 바이폴라 조의 화합물 내에서 정공을 받기 쉬운 복수의 치환 또는 비치환된 아릴기 부분과 전자를 받기 쉬운 질소 함유 고리 부분을 적절히 구역화 (localization)하고 공액계의 흐름을 제어함으로써 우수한 바이폴라 (bipolar) 특성을 나타낼 수 있다. 이때 상기 두 개의 페닐렌기 중 하나 또는 두 개는 비치환된 페닐펜기일 수 있다. 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 수명을 개선할 수 있다.
또한 상기 유기 화합물은 실질적인 선형 구조를 가짐으로써 증착시 자기배열 (self-arrangement)되어 공정 안정성을 높일 수 있고 박막 균일성을 높일 수 있다.
상기 유기 화합물은 예컨대 하기 화학식 2로 표현될 수 있다.
[화학식 2]
Figure imgf000010_0001
상기 화학식 2에서 , Z, R R2및 Ar1은 전술한 바와 같다.
상기 화학식 2는 메타 위치로 결합된 두 개의 페닐렌기가 모두 비치환된 페닐렌기일 수 있다.
상기 유기 화합물은 예컨대 하기 화학식 3 내지 7 중 어느 하나로 표현될 수 있다.
화학식 3] [화학식 4]
Figure imgf000010_0002
상기 화학식 3 내지 7에서, R1 내지 R3 및 Ar1은 전술한 바와 같고 Ral및 R32는 전술한 Ra와 같다.
상기 화학식 3 내지 7에서, Ral은 예컨대 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합일 수 있다 . Ral는 예컨대 페닐기, 바이페닐기, 터페닐기, 나프틸기, 적어도 하나의 질소를 가지는 헤테로고리기 또는 이들의 조합일 수 있으며, 상기 적어도 하나의 질소를 가지는 헤테로고리기는 예컨대 피리디닐, 피리다지닐, 피리미디닐, 피라지닐 또는 트리아지닐일 수 있으나 이에 한정되는 것은 아니다.
상기 화학식 3 내지 7에서, 일 예로, 상기 Ar1은 예컨대 치환 또는 비치환된 0-바이페닐기 , 치환 또는 비치환된 m-바이페닐기, 치환 또는 비치환된 P-바이페닐기 : 치환 또는 비치환된 0-터페닐기 , 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 P-터페닐기, 치환 또는 비치환된 0-쿼터페닐기, 치환 또는 비치환된 m- 쿼터페닐기, 치환 또는 비치환된 P-쿼터페닐기, 또는 정공 특성을 가지는 치환 또는 비치환된 융합고리일 수 있고, 상기 정공 특성을 가지는 융합고리는 예컨대 치환 또는 비치환된 트리페닐렌기일 수 있다.
상기 유기 화합물은 예컨대 하기 화학식 8 내지 10 중 어느 하나로 표현될 수 있다.
화학식 8] [화학식 9]
Figure imgf000011_0001
상기 화학식 8 내지 10에서,
Z는 전술한 바와 같고,
L1은 단일 결합 또는 치환 또는 비치환된 C6 내지 C20 아릴렌기이고,
R1 내지 R20는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지
C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지
C30 헤테로고리기 또는 이들의 조합이고, R4 및 R5, R6 및 R7, R8 및 R9, R10 및 R", R12 및 R13, R14 및 R15, R16 및 R17, 그리고 R18 및 R19는 각각 독립적으로 존재하거나 서로 융합하여 고리를 형성할 수 있다.
상기 화학식 8 내지 10에서, 일 예로 , Ζ 중 1개 또는 2개는 질소일 수 있고 Ζ 중 적어도 하나는 CRa일 수 있고, 여기서 Ra는 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합일 수 있다. Ra는 예컨대 페닐기, 바이페닐기, 터페닐기, 나프틸기, 적어도 하나의 질소를 가지는 헤테로고리기 또는 이들의 조합일 수 있으며, 상기 적어도 하나의 질소를 가지는 헤테로고리기는 예컨대 피리디닐, 피리다지닐, 피리미디닐, 피라지닐 또는 트리아지닐일 수 있으나 이에 한정되는 것은 아니다.
상기 화학식 8로 표현되는 유기 화합물은 예컨대 하기 화학식 8a 내지 8c 중 어느 하나로 표현될 수 있으나, 이에 한정되는 것은 아니다.
8a] [화학식 8b]
Figure imgf000012_0001
8c]
Figure imgf000012_0002
상기 화학식 8a 내지 8c에서 , Ζ 및 R1 내지 R9는 전술한 바와 같다.
상기 화학식 9로 표현되는 유기 화합물은 예컨대 하기 화학식 9a로 표현되는 유기 화합물일 수 있으나, 이에 한정되는 것은 아니다.
[화학식 9a]
Figure imgf000012_0003
상기 화학식 9a에서 , Z, R' 내지 R3 및 R10 내지 R15는 전술한 바와 같다. 상기 유기 화합물은 예컨대 하기 그룹 1에 나열된 유기 화합물일 수 있으나 한정되는 것은 아니다.
[그룹 1]
Figure imgf000013_0001
Figure imgf000014_0001
Z88C00/ST0ZaM/X3d 68S8.T/S10Z OAV
OAV S8S0
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Figure imgf000016_0001
Z88C00/Sl0ZaM/X3d
68S8.t/ST0∑ OJSX
O/SAV 68S8/JSI/:/02M1£ S8S0S1
Figure imgf000017_0001
Figure imgf000018_0001
z88coo/siora¾/i3d 68S8.T/ST0Z: OAV
Figure imgf000019_0001
Figure imgf000020_0001
81
Z88£00 SlOZaX/X3d 68S8.1/S10J ΟΛΧ 상술한 유기 화합물은 유기 광전자 소자에 적용될 수 있다.
상술한 유기 화합물은 단독으로 또는 다른 유기 화합물과 함께 유기 광전자 소자에 적용될 수 있다. 상술한 유기 화합물이 다른 유기 화합물과 함께 사용되는 경우, 조성물의 형태로 적용될 수 있다.
'이하, 상술한 유기 화합물을 포함하는 유기 광전자 소자용 조성물의 일 예를 설명한다.
상기 유기 광전자 소자용 조성물의 일 예로, 상술한 유기 화합물과 카바졸 모이어티를 가지는 적어도 하나의 유기 화합물을 포함하는 조성물일 수 있다.
이하에서 상술한 유기 화합물은 '제 1 유기 화합물 '이라 하고 카바졸 모이어티를 가지는 적어도 하나의 유기 화합물은 '제 2 유기 화합물 '이라 한다.
상기 게 2 유기 화합물은 예컨대 하기 화학식 1 1로 표현되는 화합물일 수 있다.
Figure imgf000021_0001
상기 화학식 1 1에서,
Y1은 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고, '
R21 내지 R24는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로고리기 또는 이들의 조합이고,
R21 내지 R24 및 Ar2 중 적어도 하나는 치환 또는 비치환된 트리페닐렌기 또는 치환 또는 비치환된 카바졸기를 포함한다.
상기 화학식 Π로 표현되는 제 2 유기 화합물은 예컨대 하기 화학식 1 1-1 내지 1 1 -111 중 적어도 하나로 표현될 수 있다: -I] [화학식 11-11]
Figure imgf000022_0001
[화학식 1 1-111]
Figure imgf000022_0002
상기 화학식 11-1 내지 11 -III에서,
Υ', Υ4 및 Υ5는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar2및 Ar5는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
R21 내지 R24및 R29 내지 R40은각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로고리기 또는 이들의 조합이다.
상기 화학식 1 1로 표현되는 제 2 유기 화합물은 예컨대 하기 그룹 2에 나열된 화합물에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
그룹 2]
Figure imgf000022_0003
B-10 B-l B-12
Figure imgf000023_0001
Figure imgf000024_0001
Z88C00/ST0ZaM/X3d 68S8.T/S10Z OAV 
Figure imgf000025_0001

Figure imgf000026_0001
Figure imgf000027_0001
Z88C00/ST0ZaM/X3d 68S8.T/S10Z OAV
Figure imgf000028_0001
Figure imgf000028_0002
B-lll B— 112 B-113
Figure imgf000028_0003
Figure imgf000029_0001
Figure imgf000030_0001
D-27 P-28 D-29 상기 게 2 유기 화합물은 하기 화학식 12로 표현되는 모이어티와 하기 화학식 표현되는 모이어티의 조합으로 이루어진 화합물일 수 있다. 화학식 12] 화학식
Figure imgf000031_0001
상기 화학식 12 및 13에서,
Y2 및 Y3는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 해테로고리기 또는 이들의 조합이고,
Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 해테로고리기 또는 이들의 조합이고,
R25 내지 R28은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지
C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로고리기 또는 이들의 조합이고,
상기 화학식 12의 인접한 두 개의 *는 상기 화학식 13의 두 개의 *와 결합하여 융합고리를 형성하고 상기 화학식 12에서 융합고리를 형성하지 않은 *는 각각 독립적으로 CRb이고, Rb는 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C 12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로고리기 또는 이들의 조합이다.
상기 화학식 12로 표현되는 모이어티와 상기 화학식 13으로 표현되는 모이어티의 조합으로 이루어진 제 2 유기 화합물은 예컨대 하기 그룹 3에 나열된 화합물에서 선택될 수 있으나, 이에 한정되는 것은 아니다. [그룹 3]
Figure imgf000032_0001
Figure imgf000033_0001
상기 제 2 유기 화합물은 상기 화학식 1 1로 표현되는 화합물 및 하기 화학식 12로 표현되는 모이어티와 하기 화학식 13으로 표현되는 모이어티의 조합으로 이루어진 화합물 중 적어도 하나를 포함할 수 있다.
상기 조성물은 상기 제 1 유기 화합물과 상기 게 2 유기 화합물을 약 1 : 10 내지 10: 1의 중량비로 포함할 수 있다.
상기 조성물은 유기 광전자 소자의 유기층에 적용될 수 있으며, 상기 제 1 유기 화합물과 상기 제 2 유기 화합물은 호스트 (host)로서 역할을 할 수 있다. 이 때 상기 제 1 유기 화합물은 전자 특성이 상대적으로 강한 바이폴라 특성을 가지는 화합물일 수 있고 상기 제 2 유기 화합물은 정공 특성이 상대적으로 강한 바이폴라 특성을 가지는 화합물로, 상기 제 1 유기 화합물과 함께 사용되어 전하의 이동성 및 안정성을 높임으로써 발광 효율 및 수명 특성을 더욱 개선시킬 수 있다.
상기 조성물은 전술한 게 1 유기 화합물과 제 2 유기 화합물 외에 1종 이상의 유기 화합물을 더 포함할 수 있다. 상기 조성물은 도편트를 더 포함할 수 있다. 상기 도편트는 적색, 녹색 또는 청색의 도편트일 수 있으며, 예컨대 인광 도펀트일 수 있다.
상기 도펀트는 게 1 유기 화합물과 제 2 유기 화합물에 미량 흔합되어 발광을 일으키는 물질로, 일반적으로 삼중항 상태 이상으로 여기시키는 다중항 여기 (multiple excitation)에 의해 발광하는 금속 착체 (metal complex)와 같은 물질이 사용될 수 있다. 상기 도편트는 예컨대 무기, 유기, 유무기 화합물일 수 있으며 , 1종 또는 2종 이상 포함될 수 있다.
상기 인광 도편트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합을 포함하는 유기 금속화합물을 들 수 있다. 상기 인광 도편트는 예컨대 하기 화학식 Z로 표현되는 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 Z]
L2MX
상기 화학식 Z에서 , Μ은 금속이고, L 및 X는 서로 같거나 다르며 Μ과 착화합물을 형성하는 리간드이다.
상기 Μ은 예컨대 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합일 수 있고, 상기 L 및 X는 예컨대 바이덴테이트 리간드일 수 있다. 상기 조성물은 화학기상증착과 같은 건식 성막법 또는 용액 공정으로 형성될 수 있다. 상기 건식 성막법은 예컨대 화학기상증착법, 스퍼터링, 플라즈마 도금 및 이온도금 일 수 있고, 둘 이상의 화합물을 동시에 성막하거나 증착 온도가 같은 화합물을 흔합하여 같이 성막할 수 있다. 상기 용액 공정은 예컨대 잉크젯 인쇄법, 스핀 코팅, 슬릿 코팅, 바 코팅 및 /또는 딥 코팅일 수 있다.
이하 상술한 유기 화합물 또는 상술한 조성물을 적용한 유기 광전자 소자를 설명한다.
상기 유기 광전자 소자는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이면 특별히 한정되지 않으며, 예컨대 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 등을 들 수 있다.
상기 유기 광전자 소자는 서로 마주하는 양극과 음극, 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함할 수 있고, 상기 유기층은 전술한 유기 화합물 또는 전술한 조성물을 포함할 수 있다. 여기서는 유기 광전자 소자의 일 예인 유기 발광 소자를 도면을 참고하여 설명한다.
도 1 및 도 2는 일 구현예에 따른 유기 발광 소자를 보여주는 단면도이다. 도 1을 참고하면, 일 구현예에 따른 유기 발광 소자 (100)는 서로 마주하는 양극 (120)과 음극 (1 10), 그리고 양극 (120)과 음극 (110) 사이에 위치하는 유기층 (105)을 포함한다.
양극 (120)은 예컨대 정공 주입이 원활하도록 일 함수가 높은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 양극 (120)은 예컨대 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석산화물 (ΠΌ),
인듐아연산화물 (IZO)과 같은 금속 산화물; ZnO와 A1 또는 Sn02와 Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜), 폴리 (3,4- (에틸렌 -1,2- 디옥시)티오펜 Xpolyehtylenedioxythiophene: PEDOT), 폴리피를 및 폴리아닐린과 같은 도전성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다.
음극 (1 10)은 예컨대 전자 주입이 원활하도록 일 함수가 낮은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 음극 (1 10)은 예컨대 마그네슘, 칼슴, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금; LiF/Al, Li02/Al, LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질을 들 수 있으나, 이에 한정되는 것은 아니다.
유기층 (105)은 전술한 유기 화합물 또는 전술한 조성물을 포함하는
발광층 (130)을 포함한다.
발광층 (130)은 예컨대 전술한 유기 화합물을 단독으로 포함할 수도 있고 전술한 유기 화합물 중 적어도 두 종류를 흔합하여 포함할 수도 있고 전술한 조성물을 포함할 수도 있다. ,
도 2를 참고하면, 유기 발광 소자 (200)는 발광층 (130) 외에 정공
보조층 (140)을 더 포함한다. 정공 보조층 (140)은 양극 (120)과 발광층 (130) 사이의 정공 주입 및 /또는 정공 이동성을 더욱 높이고 전자를 차단할 수 있다. 정공 보조층 (140)은 예컨대 정공 수송층, 정공 주입층 및 /또는 전자 차단층일 수 있으며, 적어도 1층을 포함할 수 있다. 또한, 일 예로 도 1 또는 도 2의 유기층 (105)에 추가로 전자 수송층, 전자주입층, 정공주입층 등올 더 포함할 수 있다.
상술한 유기 발광 소자는 유기 발광 표시 장치에 적용될 수 있다.
【발명의 실시를 위한 형태】
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다. '
거 U 유기 화합물의 합성
중간체의 합성
합성예 1: 중간체 1-1의 합성
1]
Figure imgf000036_0001
질소 환경에서 2-(biphenyl-3-yl)-4,4,5,5-tetramethyl-l,3,2-dioxaboiOlane (20 g, 71 mmol)을 THF(Tetrahydrofuran) 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene (22 g, 78 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4)(0.8 g, 0.71 mmol)^: 넣고 교반시켰다. 물에 포화된 3511^ 0&1 0 ^^1<:2 )3)(25 177 1^ 101)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-1 (20 g, 91 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C18H13Br: 308.0201, found: 308 Elemental Analysis: C, 70 %; H, 4 % 합성예 2: 중간체 1-2의 합성
[반웅식 2]
Figure imgf000036_0002
질소 환경에서 중간체 1-1 (50 g, 162 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (49 g, 194 mmol)^ (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(Pd(dppf)Cl2)(1.3 g, 1.62 mmol) 그리고 potassium acetate(KOAc)(40 g, 405 mmol)을 넣고 150°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-2 (47 g, 82 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H25B02: 356.1948, found: 356
Elemental Analysis: C, 81 %; H, 7 % 합성예 3: 중간체 1-3의 합성
3]
Figure imgf000037_0001
1-2 1-3
질소 환경에서 중간체 1-2 (50 g, 140 mmol)을 THF 1 L에 녹인 후, 여기에 3- bromo-3 '-chlorobiphenyl (56 g, 210 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (8.1 g, 7.02 mmol)올 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(39 g, 280 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-3 (57 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H21C1: 416.94, found 416
Elemental Analysis: C, 86 %; H, 5 % 합성예 4: 중간체 1-4의 합성
[반웅식 4]
Figure imgf000037_0002
질소 환경에서 중간체 1-3 (55 g, 132 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (40 g, 158 mmol)와 (Ι,Γ- bis(dipheny lphosphine)ferrocene)dichloropalladium(II)(Pd(dppf)Cl2)(4.55 g, 7.9 mmol) 그리고 potassium acetate(KOAc)(38.8 g, 396 mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-4 (50 g, 75 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H33B02: 508.46, found: 508
Elemental Analysis: C, 85 %; H, 6 % 합성예 5: 중간체 1-5의 합성
반웅식 5]
Figure imgf000038_0001
1-5
질소 환경에서 4,4,5,5-tetramethyl-2-phenyl-l,3,2-dioxaborolane (20 g, 100 mmol)을 THF 1 L에 녹인 후, 여기에 2,4-dichloroquinazoline (20.5 g, 100 mmol)와
tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (2.9 g, 2.51 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(28 g, 200 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-5 (17 g, 70 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C14H9C1N2: 240.69, found 240
Elemental Analysis: C, 69 %; H, 3 % 합성예 6: 중간체 I 의 합성 반응식 6]
Figure imgf000039_0001
1-6
질소 환경에서 2-(biphenyl-4-yl)-4,4,5,5-tetramethyl-l,3,2-dioxaborolane (20 g, 100 mmol)을 THF 1 L에 녹인 후, 여기에 2,4-dichloroquinazoline (28.2 g, 100 mmol)와 tetrakis(triphenylphosphine)palladium (Pd(PPh3)4)(2.9 g, 2.51 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(28 g, 200 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-6 (22.3 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C20H13C1N2: 316.78, found 316
Elemental Analysis: C, 75 %; H, 4 % 7: 중간체 1-7의 합성
Figure imgf000039_0002
질소 환경에서 2-(te^henyl-3-yl)-4,4,5,5-tetramethyl-l ,3,2-dioxaborolane (20 g, ^ mmol)을 THF 250 ml에 녹인 후, 여기에 3-bromo-3'-chlorobiphenyl (22.5 g, 84 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (3.24 g, 2.8 nunol)을 넣고 교반시켰다. 물에 포화된
Figure imgf000039_0003
1 12 11 01)을 넣고 80 °C에서 12시간 동안 가열하여 환류시켰다. 반웅 완료 후 반응액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-7 (21 g, 65 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H21C1: 416.94, found 416
Elemental Analysis: C, 86 %; H, 5 % 합성예 8: 중간체 1-8의 합성
[반웅식 8
Figure imgf000040_0001
질소 환경에서 중간체 1-7 (55 g, 132 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (40 g, 158 mmol)와 (Ι ,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(Pd(dppf)Cl2)(4.55 g, 7.9 mmol) 그리고 potassium acetate(KOAc)(38.8 g, 396 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-8 (47 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H33B02: 508.46, found: 508
Elemental Analysis: C, 85 %; H, 6 % 합성예 9: 중간체 1-9의 합성
9]
Figure imgf000040_0002
질소 환경에서 triphenylen-2-ylboronic acid (20 g, 73.5 mmol)을 THF 300 ml에 녹인 후, 여기에 3-bromo-3'-chlorobiphenyl (30 g, l lO mniol)와
tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (4.25 g, 3.67 mmol)을 넣고 교반시켰다. 물에 포화된 !^&33 ^^∑1^0^{^¾ 03)(20.32 138 1끄1 1)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-9 (20 g, 65 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H19C1: 414.92, found 414
Elemental Analysis: C, 86 %; H, 4 % 합성예 10: 중간체 1-10의 합성
[ 10]
Figure imgf000041_0001
1-10
질소 환경에서 중간체 Iᅳ 9 (20 g, 48.2 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (14.7 g, 57.84 mmol)와 (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(Pd(dppf)Cl2)(1.66 g, 3 mmol) 그리고 potassium acetate(KO Ac)(l 4.2 g, 144 mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물올 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-10 (16 g, 65 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H33B02: 506.44, found: 506
Elemental Analysis: C, 85 %; H, 6 % 합성예 11: 중간체 1-11의 합성
[반웅식 11]
I
Figure imgf000041_0002
질소 환경에서 biphenyl-4-ylboronic acid (15 g, 75.8 mmol)을 THF 300 ml에 녹인 후, 여기에 3 -bromo-3 '-chlorobiphenyl (30.4 g, 1 13.6 mmol)와
tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (4.38 g, 3.8 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(21 g, 151 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-11 (14 g, 55 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C24H17C1: 340.84, found 340
Elemental Analysis: C, 84 %; H, 5 % 합성예 12: 중간체 1-12의 합성
[ 12]
Figure imgf000042_0001
질소 환경에서 증간체 1-11 (20 g, 58.7 mmol)을 dimethylforamide(DMF) 300mWl 녹인 후, 여기에 bis(pinacolato)diboron (17.9 g, 70.4 mmol)와 (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(Pd(dppf)Cl2)(2 g, 3.5 mmol) 그리고 potassium acetate(KOAc)(l 7.3 g, 176 mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 중간체 1-12 (20.3 g, 80 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.36, found: 432
Elemental Analysis: C, 83 %; H, 6 % 최종 화합물의 합성
합성예 13: 화합물 19의 합성
Figure imgf000043_0001
질소 환경에서 중간체 1-4 (13 g, 25.6 mmol)을 THF lOO ml에 녹인 후, 여기에 중간체 1-5 (6.78 g, 28.1 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (1.5 g, 1.28 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(7 g, 51.1 mmol)을 넣고 80t에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 19 (12 g, 80 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C44H30N2: 586.72, found 586
Elemental Analysis: C, 90 %; H, 5 % 합성예 14: 화합물 20의 합성
Figure imgf000043_0002
질소 환경에서 중간체 1-4 (13 g, 25.6 mmol)을 THF lOO ml에 녹인 후, 여기에 중간체 1-6 (8.9 g, 28.1 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (1.5 g, 1.28 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(7 g, 51.1 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 화합물 20 (12.7 g, 75 %)올 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 662.82, found 662
Elemental Analysis: C, 90 %; H, 5 % 합성예 15: 화합물 73의 합성
반웅식 15]
Figure imgf000044_0001
질소 환경에서 중간체 1-8 (10 g, 19.7 mmol)을 THF lOO ml에 녹인 후, 여기에 중간체 1-5 (5.21 g, 21.6 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (1.14 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(5.4 g, 39.3 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 73 (9.2 g, 80 %)올 얻었다.
HRMS (70 eV, EI+): m/z calcd for C44H30N2: 586.72, found 586
Elemental Analysis: C, 90 %; H, 5 % 합성예 16: 화합물 74의 합성
16]
Figure imgf000044_0002
질소 환경에서 중간체 1-8 (10 g, 19.6 mmol)을 THF lOO m 녹인 후, 여기에 중간체 1-6 (6.85 g, 21.6 mmol)와 tetrakis(triphenylphosphine)palladium (Pd(PPh3)4)(1.14 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(5.4 g, 39.3 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 74 (1 1 g, 85 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 662.82, found 662
Elemental Analysis: C, 90 %; H, 5 % 합성예 17: 화합물 128의 합성
[반웅식 Γ7]
Figure imgf000045_0001
질소 환경에서 중간체 1-10 (10 g, 19.8 mmol)을 THF lOO ml에 녹인 후, 여기에 중간체 1-6 (6.88 g, 21.7 mmol)와 tetrakis(triphenylphosphine)palladium (Pd(PPh3)4)(l .14 g, 0.99 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(5.4 g, 39.5 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 128 (10 g, 75 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 660.80, found 660
Elemental Analysis: C, 90 %; H, 4 % 합성예 18: 화합물 186의 합성
[반웅식 18]
Figure imgf000045_0002
질소 환경에서 중간체 1-10 (10 g, 19.8 mmol)을 THF lOO ml에 녹인 후, 여기에 2-(biphenyl-4-yl)-4-chloroquinazoline (6.88 g, 21.7 mmol)와
tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (1.14 g, 0.99 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(5,4 g, 39.5 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 186 (9.3 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 660.80, found 660
Elemental Analysis: C, 90 %; H, 4 % 합성예 19: 화합물 187의 합성
[반웅식 19
Figure imgf000046_0001
질소 환경에서 중간체 1-8 (10 g, 19.6 mmol)을 THF lOO ml에 녹인 후, 여기에 2-(biphenyl-4-yl)-4-chloroquinazoline (6.85 g, 21.6 mn l)와
tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (1.14 g, 0.98 mmol)을 넣고 교반入 1켰다. 물에 포화된 potassuim carbonate(K2C03)(5.4 g, 39.3 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 187 (10.4 g, 80 %)를 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 662.82, found 662
Elemental Analysis: C, 90 %; H, 5 % 합성예 20: 화합물 188의 합성
Figure imgf000047_0001
188
질소 환경에서 중간체 1-12 (19 g, 44.2 mmol)을 THF 150 ml에 녹인 후, 여기에 2,4-dichloroquinazoline (4 g, 20.1 mmol)와 tetrakis(triphenylphosphine)palladium(Pd(PPh3)4) (U 6 g, 1.00 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(K2C03)(l 1.11 g; 80.4 mmol)을 넣고 80°C에서 , 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼
크로마토그래피로 분리 정제하여 화합물 188 (10g, 67 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C50H34N2: 738.91, found 738
Elemental Analysis: C, 91 %; H, 5 % 평가 1: 화합물의 에너지 레벨
합성예 13 내지 17에서 얻은 화합물의 에너지 준위를 슈퍼컴퓨터 GATA(IBA power 6)을 사용하여 Gaussian 09 방법으로 계산하였다.
그 결과는 표 1과 같다.
【표 1】
Figure imgf000047_0002
표 1을 참고하면, 합성예 13 내지 17에서 얻은 화합물은 비교적 낮은 LUMO 에너지 준위를 가지는 것을 확인할 수 있다. 이로부터 합성예 13 내지 17에서 얻은 화합물을 유기 발광 소자의 발광층에 적용한 경우 전자 이동이 용이할 것을 예상할 수 있고 이에 따라 상기 유기 발광 소자는 낮은 구동 전압, 높은 발광 효율 및 양호한 수명 특성을 가질 것을 예상할 수 있다. 유기 발광소자의 제작 I
실시예 1
합성예 13에서 얻은 화합물 19를 호스트로 사용하고, (piq)2Ir(acac)를 도편트로 사용하여 유기발광소자를 제작하였다.
양극으로는 ΠΌ를 1000A의 두께로 사용하였고, 음극으로는 알루미늄 (A1)을
1000A의 두께로 사용하였다. 구체적으로, 유기발광소자의 제조방법을.설명하면, 양극은 15 Q/cuf의 면저항값을 가진 ΠΌ 유리 기판을 50mm X 50 mm X 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안 초음파세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다.
상기 기판 상부에 진공도 650xl(T7 Pa, 증착속도 0.1 내지 0.3 nm/s의 조건으로
N4,N4'-di(naphthalen-l-yl)-N4,N4'-diphenylbiphenyl-4,4'-diamine (NPB) (80 nm)를 증착하여 800A의 정공수송층을 형성하였다. 이어서, 동일한 진공 증착 조건에서 합성예 13에서 얻은 화합물 19를 이용하여 막 두께 300A의 발광층을 형성하였고, 이때 인광 도편트인 (piq)2Ir(acac)을 동시에 증착하였다. 이때, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량을 100 중량0 /。로 하였을 때, 인광 도펀트의 배합량이 2 중량 %가 되도록 증착하였다.
상기 발광층 상부에 동일한 진공 증착조건을 이号하여 Bis(2-methyl-8- quinolinolate)-4-(phenylphenolato)aluminium (BAlq)를 증착하여 막 두께 50 A의 정공저지층을 형성하였다. 이어서, 동일한 진공 증착조건에서 Alq3를 증착하여, 막 두께 200 A의 전자수송층을 형성하였다. 상기 전자수송층 상부에 음극으로서 LiF와 A1을 순차적으로 증착하여 유기광전소자를 제작하였다.
상기 유기광전소자의 구조는 1丁0/ ?8 (80 1 1)/ £^^ (화합물19 (98 중량0 /。) + (piq)2Ir(acac) (2 중량0 30 nm)/ Balq (5 nm)/ Alq3 (20 nm)/ LiF (1 nm) / Al (100 nm) 의 구조로 제작하였다. 실시예 2
합성예 13에서 얻은 화합물 19 대신 합성예 14에서 얻은 화합물 20을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 3
합성예 13에서 얻은 화합물 19 대신 합성예 15에서 얻은 화합물 73을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다ᅳ
실시예 4
합성예 13에서 얻은 화합물 19 대신 합성예 16에서 얻은 화합물 74를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
실시예 5
합성예 13에서 얻은 화합물 19 대신 합성예 17에서 얻은 화합물 128을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. 실시예 6
합성예 13에서 얻은 화합물 19 대신 합성예 18에서 얻은 화합물 186을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. 실시예 7
합성예 13에서 얻은 화합물 19 대신 합성예 19에서 얻은 화합물 187을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. 실시예 8
합성예 13에서 얻은 화합물 19 대신 합성예 20에서 얻은 화합물 188올 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. . 비교예 1
합성예 13에서 얻은 화합물 19 대신 하기 구조의 CBP를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.
상기 유기발광소자 제작에 사용된 NPB, BAlq, CBP 및 (piq)2Ir(acac)의 구조는 하기와 같다. [ PBJ
Figure imgf000050_0001
평가 2
실시예 l 내지 8과 비교예 1에 따른 유기발광소자의 전압에 따른 전류밀도 변화, 휘도 변화 및 발광효율을 측정하였다.
구체적인 측정방법은 하기와 같고, 그 결과는 표 2와 같다.
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서
휘도계 (Minolta Cs- 1000 A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10 mA/cm2)의 전류 효율 (cd/A) 올 계산하였다.
(4) 수명 측정
휘도 (cd/m2)를 2200 cd/m2로 유지하고 전류 효율 (cd/A)이 90%로 감소하는 시간을 측정하여 결과를 얻었다.
【표 2】
ᅫ 효율 90% 수명 (h)
No. 화합물 구동전압 (V)
(EL color) (cd/A) At 2200 cd/m2 실시예 1 화합물 19 4.5 Red 15.8 100 실시예 2 화합물 20 4.4 Red 12.4 95 실시예 3 화합물 73 4.8 Red 10.7 80 실시예 4 화합물 74 4.7 Red 10.7 75 실시예 5 화합물 128 5.2 Red 6.6 90 실시예 6 화합물 186 5.0 Red 8.0 85 실시예 7 화합물 187 5.6 Red 20.4 70 실시예 8 화합물 188 4.7 Red 18.8 70 비교예 1 CBP 6.5 Red 4.5 10 표 2를 참고하면, 실시예 1 내지 8에 따른 유기발광소자는 비교예 1과 비교하여 낮은 구동 전압, 높은 발광 효율 및 양호한 수명 특성을 나타내는 것을 확인할 수 있다.
구체적으로, 본 발명은 전자 특성이 강한 구조적 특성상 전자 전달을 용이하게 할 수 있는 에너지 준위를 갖고 있어 낮은 구동 전압과 높은 발광효율 특성을 나타내고 있다. 또한 선형의 메타 결합이 연속적으로 들어가 있는 화합물을 사용한 실시예의 수명이 좀 더 좋았다. 이는 정공 특성 역할을 하는 말단의 페닐기와 전자 특성 역할을 하는 퀴나졸린 구조가 양호하게 구역화 (localization)되어 서로의 간섭효과를 최소화 한 것에 기인했으리라 예상된다. 제 2 호스트 화합물의 합성예
제 2 호스트 화합물의 합성예 1: 화합물 C-10의 합성
[ 54]
Figure imgf000051_0001
2 C-J0 질소 환경에서 상기 화합물 phenylcarbazolyl boronic acid (10 g, 34.83 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 2-bromotriphenylene (1 1.77 g, 38.31 mmol)와 tetrakis(triphenylphosphine)palladium(0.80 g, 0.7 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(14.44 g, 104.49 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 C-10 (14.4 g, 88 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H23N: 469.18, found: 469
Elemental Analysis: C, 92 %; H, 5 % 제 2 호스트 화합물의 합성예 2: 화합물 B-10의 합성
반웅식 55]
Figure imgf000052_0001
제 1 단계: 화합물 J의 합성
질소 환경에서 상기 화합물 9-phenyl-3-(4,4,5,5-tetramethyl-U,2-dioxaborolan-2- yl)-9H-carbazole (26.96 g, 81.4 mmol)을 Toluene/THF 0.2 L에 녹인 후, 여기에 3-bromo- 9H-carbazole (23.96 g, 97.36 mnx>l)와 tetrakis(triphenylphosphine)palladium(0.90 g, 0.8 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(28 g, 203.49 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 J (22.6 g, 68%)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H20N2: 408.16, found: 408
Elemental Analysis: C, 88 %; H, 5 %
제 2단계: 화합물 B-10의 합성
질소 환경에서 상기 화합물 J (22.42 g, 54.88 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 2-bromo-4,6-diphenylpyridine (20.43 g, 65.85 mmol)와 NaOtBu (7.92 g, 82.32 mmol); Tris(dibenzylideneacetone)dipalladium(0)(1.65 g, 1.65 mmol), Tri-tert-butylphosphine (1.78 g, 4.39 mmol) 을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼
크로마토그래피로 분리 정제하여 상기 화합물 B-10 (28.10 g, 80%)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C47H31N3: 637.25, found: 637
Elemental Analysis: C, 89 %; H, 5 % 제 2 호스트 화합물의 합성예 3: 화합물 B-31의 합성
[반웅식 56]
Figure imgf000053_0001
질소 환경에서 상기 화합물 phenylcarbazolyl bromide (9.97 g, 30.95 mmol)올 Toluene 0.2 L에 녹인 후, 여기에 phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) 와 tetrakis(triphenylphosphine)palladium(1.07 g, 0.93 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물올 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 B-31 (13.8 g, 92 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H24N2: 484.19, found: 484
Elemental Analysis: C, 89 %; H, 5 % 2 호스트 화합물의 합성예 4: 화합물 B-34의 합성
Figure imgf000054_0001
질소 환경에서 상기 화합물 triphenylcarbazolyl bromide (14.62 g, 30.95 mmol)을
Toluene 0.2 L에 녹인 후, 여기에 phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) 와 tetrakis(triphenylphosphine)palladium(1.07 g, 0.93 mmmol)-ir 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 B-34 (16.7 g, 85 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C47H29N2: 621.23, found: 621
Elemental Analysis: C, 91 %; H, 5 % 제 2 호스트 화합물의 합성예 5: 화합물 B-43의 합성
[반웅식 58]
Figure imgf000054_0002
질소 환경에서 상기 화합물 Biphenylcarbazolyl bromide (12.33 g, 30.95 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 biphenylcarbazolylboronic acid (12.37 g, 34.05 mmol) 와 tetrakis(triphenylphosphine)palladium(1.07 g, 0.93 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 화합물 B-43 (18.7 g, 92 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.26, found: 636
Elemental Analysis: C, 91 %; H, 5 % 제 2 호스트 화합물의 합성예 6: 화합물 E-1의 합성
[반 59]
Figure imgf000055_0001
제 1 단계: 화합물 K의 합성
phenylhydrazine hydrochloride를 증류수에 녹인 후 2M NaOH 수용액을 넣는다. 생성된 고체를 필터하여 phenylhydrazine 를 얻는다. 질소 환경에서 상기 화합물 cyclohexane-l,3-dione (30 g, 267.5 mmol)을 ethan이 1000ml에 녹인 phenylhydrazine 을 천천히 넣은 후 20분 간 반응시켰다. 반웅 완료 후 얼음물은 넣는다. 생성된 고체를 에탄올로 씻어주며 필터한다. 감압 건조하여 화합물 K(46.2 g, 38 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C18H20N4: 292.3782, found: 292
Elemental Analysis: C, 74 %; H, 7%
제 2단계: 화합물 L 의 합성
질소 환경 0°C 에서 상기 화합물 K (46.2 g, 102.6 mmol)을 아세트산과 황산 흔합용액 (1 :4) 140ml에 천천히 넣는다 . 5분 교반 후 빨리 50 °C로 올린 후 1 10 °C까지 천천히 을린다 . 20분 후 상온으로 넁각하고 12시간 교반한다. 에탄을을 넣고 한시간 후 고체가 생기고 생성된 고체를 감압 필터하고 중성으로 만든다. 감압 건조하면 상기 화합물 L (21.7 g, 51 %)을 얻었다.
H MS (70 eV, EI+): m/z calcd for C18H12N2: 256.3013, found: 256
Elemental Analysis: C, 84 %; H, 5 %
제 3단계: 화합물 E-l 의 합성
질소 환경에서 상기 화합물 L (10 g, 39.0 mmol), iodobenzene (10.4 ml, 93.6 mmol)와 18-crown-6 (4.2 g, 15.6 mmol), copper (3 g, 46.8 mmol), potassuim carbonate (48.6 g, 351 mmol) 을 넣고 180 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 ethyl acetate(e.a)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼
크로마토그래피로 분리 정제하여 상기 화합물 E-1 (6.7 g, 17.3 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H20N2: 408.4932, found: 408
Elemental Analysis: C, 88 %; H, 5 % 유기 발광소자의 제작 II
실시예 9
합성예 14에서 얻은 화합물 20과 제 2 호스트 화합물의 합성예 5에 따른 화합물 B-43을 동시에 호스트로 사용하고, (piq)2Ir(acac)를 도편트로 사용하여 유기발광소자를 제작하였다.
양극으로는 ITO를 1000 A의 두께로 사용하였고, 음극으로는 알루미늄 (A1)을
1000A의 두께로 사용하였다. 구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15 Ω/αη2의 면저항값을 가진 ΠΌ 유리 기판을 50mm χ 50 mm χ 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안
초음파세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다.
상기 기판 상부에 진공도 650x l(T7Pa, 증착속도 0.1 내지 0.3 nm/s의 조건으로
N4,N4'-di(naphthalen-l-yl)-N4,N4'-diphenylbiphenyl-4,4'-diamine (NPB) (80 nm)를 증착하여 800A의 정공수송층을 형성하였다. 이어서, 동일한 진공 증착 조건에서 화합물 20과 화합물 B-43을 동시에 호스트로 이용하여 막 두께 300 A의 발광층올 형성하였고, 이 때, 인광 도편트인 (piq)2Ir(acac)을 동시에 증착하였다. 이 때, 인광 도펀트의
증착속도를 조절하여, 발광층의 전체량을 100 중량%로 하였을 때, 인광 도편트의 배합량이 2 중량 %가 되도록 증착하였다.
상기 발광층 상부에 동일한 진공 증착조건을 이용하여 Bis(2-methyl-8- quinoUnolate)-4-(phenylphenolato)aluminium (BAlq)를 증착하여 막 두께 50 A의 정공저지층을 형성하였다. 이어서, 동일한 진공 증착조건에서 Alq3를 증착하여, 막 두께 200A의 전자수송층을 형성하였다. 상기 전자수송층 상부에 음극으로서 LiF와 A1을 순차적으로 증착하여 유기광전소자를 제작하였다.
상기 유기광전소자의 구조는 ITO/ NPB (80 nm)/ EML ((화합물 20:화합물 B- 43=7:3(중량비 )(총 호스트 = 98 중량0 /0) + (piq)2Ir(acac) (2 중량0 /。), 30 nm)/ Balq (5 rnn)/ Alq3 (20 nm)/ LiF (1 nm) / Al (100 nm) 의' 구조로 제작하였다. 실시예 10
화합물 20과 화합물 B-43을 5:5 로 사용한 것올 제외하고는 실시예 9와 —동일한 방법으로 유기발광소자를 제작하였다.
실시예 11
화합물 20과 화합물 B-43을 3:7 로 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 12
화합물 B-43 대신 제 2 호스트 화합물의 합성예 1에서 얻은 화합물 C-10을 사용하고 화합물 20과 화합물 C-10이 1 :1의 비율로 포함된 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 13
화합물 B-43 대신 제 2 호스트 화합물의 합성예 2에서 얻은 화합물 B-10을 사용하고 화합물 20과 화합물 B-10이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 14
화합물 B-43 대신 제 2 호스트 화합물의 합성예 3에서 얻은 화합물 B-31을 사용하고 화합물 20과 화합물 B-31이 1 :1의 비율로 포함된 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 15
화합물 B-43 대신 게 2 호스트 화합물의 합성예 4에서 얻은 화합물 B-34를 사용하고 화합물 20과 화합물 B-34가 1 : 1의 비율로 포함된 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 16
화합물 B-43 대신 게 2 호스트 화합물의 합성예 6에서 얻은 화합물 E-1을 사용하고 화합물 20과 화합물 E-1이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 17
화합물 20 대신 합성예 17에서 얻은 화합물 128을 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 18
화합물 128과 화합물 B-43을 5:5 로 사용한 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 19
화합물 128과 화합물 B-43을 3:7 로 사용한 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 20
화합물 B-43 대신 게 2 호스트 화합물의 합성예 1에서 얻은 화합물 C-10을 사용하고 화합물 128과 화합물 C-10이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 21
화합물 B-43 대신 게 2 호스트 화합물의 합성예 2에서 얻은 화합물 B-10올 사용하고 화합물 128과 화합물 B-10이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 22
화합물 B-43 대신 게 2 호스트 화합물의 합성예 3에서 얻은 화합물 B-31을 사용하고 화합물 128과 화합물 B-31이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 23
화합물 B-43 대신 게 2 호스트 화합물의 합성예 4에서 얻은 화합물 B-34를 사용하고 화합물 128과 화합물 B-34가 1 : 1의 비율로 포함된 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 24
화합물 B-43 대신 게 2 호스트 화합물의 합성예 6에서 얻은 화합물 E-1을 사용하고 화합물 128과 화합물 E-1이 1 : 1의 비을로 포함된 것을 제외하고는 실시예 17과 동일한 방법으로 유기발광소자를 제작하였다.
실시예 25
화합물 20 대신 합성예 19에서 얻은 화합물 187을 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 26
화합물 187과 화합물 B-43을 5:5 로 사용한 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 27
화합물 187과 화합물 B-43을 3 :7 로 사용한 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 28
화합물 B-43 대신 제 2 호스트 화합물의 합성예 1에서 얻은 화합물 C-10올 사용하고 화합물 187과 화합물 C-10이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 29
화합물 B-43 대신 게 2 호스트 화합물의 합성예 2에서 얻은 화합물 B-10을 사용하고 화합물 187과 화합물 B-10이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 30
화합물 B-43 대신 제 2 호스트 화합물의 합성예 3에서 얻은 화합물 B-31을 사용하고 화합물 187과 화합물 B-31이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
실시예 31
화합물 B-43 대신 제 2 호스트 화합물의 합성예 4에서 얻은 화합물 B-34를 사용하고 화합물 187과 화합물 B-34가 1 : 1의 비율로 포함된 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 32
화합물 B-43 대신 제 2 호스트 화합물의 합성예 6에서 얻은 화합물 E-1을 사용하고 화합물 187과 화합물 E-1이 1 : 1의 비율로 포함된 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다.
비교예 2
화합물 20과 화합물 B-43의 2종 호스트 대신 화합물 B-43 단독 호스트를 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 3
화합물 20과 화합물 C-10의 2종 호스트 대신 화합물 C-10 단독 호스트를 사용한 것을 제외하고는 실시예 12와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 4
화합물 20과 화합물 B-10의 2종 호스트 대신 화합물 B-10 단독 호스트를 사용한 것을 제외하고는 실시예 13과 동일한 방법으로 유기발광소자를 제작하였다. 비교예 5
화합물 20과 화합물 B-31의 2종 호스트 대신 화합물 B-31 단독 호스트를 사용한 것을 제외하고는 실시예 14와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 6
화합물 20과 화합물 B-34의 2종 호스트 대신 화합물 B-34 단독 호스트를 사용한 것올 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 7
화합물 20과 화합물 E-1의 2종 호스트 대신 화합물 E-1 단독 호스트를 사용한 것을 제외하고는 실시예 16과 동일한 방법으로 유기발광소자를 제작하였다. 평가 3
실시예 9 내지 32와 비교예 2 내지 7에 따른 유기발광소자의 발광효율 및 수명특성을 평가하였다.
구체적인 측정방법은 하기와 같고, 그 결과는 표 3 및 표 4와 같다.
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 휘도계 (Minolta Cs-IOOOA)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10mA/cm2)의 전류 효율 (cd/A) 을 계산하였다.
(4) 수명 측정
휘도 (cd/m2)를 2200cd/m2로 유지하고 전류 효율 (cd/A)이 90%로 감소하는 시간을 측정하여 결과를 얻었다.
【표 3】
거 u유기화합물: 발광효율 수명 T90 제 1유기화합물 제 2유기화합물
제 2유기화합물 (cd/A) (h) 실시예 9 화합물 20 B-43 7:3 12.5 380 실시예 10 화합물 20 B-43 5:5 14.5 450 실시예 11 화합물 20 B-43 3:7 13.2 400 실시예 12 화합물 20 C-10 1:1 12.1 250 실시예 13 화합물 20 B-10 1:1 13.5 280 실시예 14 화합물 20 B-31 1:1 12.5 180 실시예 15 화합물 20 B-34 1:1 12.8 250 실시예 16 화합물 20 E-1 1:1 11.5 150 실시예 17 화합물 128 B-43 7:3 8.4 450 실시예 18 화합물 128 B-43 5:5 12.3 550 실시예 19 화합물 128 B-43 3:7 15.6 400 실시예 20 화합물 128 C-10 1:1 10.8 300 실시예 21 화합물 128 B-10 1:1 11.3 280 실시예 22 화합물 128 B-31 1:1 13.0 400 실시예 23 화합물 128 B-34 1:1 10.5 350 실시예 24 화합물 128 E-1 11.5 200
1:1 실시예 25 화합물 187 B-43 7:3 20.0 120 실시예 26 화합물 187 B-43 5:5 16.8 150 실시예 27 화합물 187 B-43 3 :7 14.1 250 실시예 28 화합물 187 C-10 1 : 1 13.5 130 실시예 29 화합물 187 B-10 1 : 1 14.5 150 실시예 30 화합물 187 B-31 1 : 1 15.5 180 실시예 31 화합물 187 B-34 1 : 1 16.0 170 실시예 32 화합물 187 E-1 1 : 1 12.5 190 비교예 2 B-10 - 5.0 - 비교예 3 B-31 - 4.0 -' 비교예 4 C-10 - 4.0 - 비교예 5 B-34 - 4.2 - 비교예 6 B-43 - 5.5 - 비교예 7 E-1 ― 4.0 - 표 3을 참고하면, .실시예 9 내지 32에 따른 유기발광소자는 비교예 2 내지 7에 따른 유기발광소자와 비교하여 발광효율이 현저하게 개선된 것을 확인할 수 있다. 또한 실시예 9 내지 32에 따른 유기발광소자는 전술한 실시예 1 내지 8에 따른 유기발광소자보다도 더욱 우수한 수명특성을 나타내는 것을 또한 확인할 수 있다.
실시예 9 내지 32에서, 상기 제 1 유기 화합물은 전자 특성이 상대적으로 강한 화합물이고 상기 게 2 유기 화합물은 정공 특성이 상대적으로 강한 화합물로, 이들이 함께 사용됨으로써 전자 및 정공의 흐름을 더욱 더 적절히 균형 맞춤으로써 유기발광소자의 효율 및 수명특성이 더욱 개선되는 것을 확인할 수 있다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 【부호의 설명】
100, 200: 유기 발광 소자
105: 유기층
1 10: 음극
120: 양극
130: 발광충
140: 정공 보조층

Claims

【청구의 범위】
【청구항 1】
하기 화학식 1로 표현되는 유기 화합물:
[화학식 1
Figure imgf000064_0001
상기 화학식 1에서,
Z는 각각 독립적으로 C, N 또는 CRa이고,
Z 중 적어도 하나는 N 이고,
R1 내지 R3및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar1은 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합이다.
【청구항 2】
제 1항에서,
하기 화학식 2로 표현되는 유기 화합물:
화학식 2]
Figure imgf000064_0002
상기 화학식 2에서,
Z는 각각 독립적으로 C, N 또는 CRa 이고,
Z 중 적어도 하나는 N 이고,
R', R2 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내 C30 해테로고리기 또는 이들의 조합이고, Ar1은 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합이다.
【청구항 3】
제 1항에서,
하기 화학식 3 내지 7 중 어느 하나로 표현되는 유기 화합물:
화학식 3] [화학식 4]
Figure imgf000065_0001
상기 화학식 3 내지 7에서,
R1 내지 R3, Ral 및 R32는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 Cr내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar1은 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 쿼터페닐기, 치환 또는 비치환된 융합고리 또는 이들의 조합이다.
【청구항 4】
게 3항에서,
Ral는 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합인 유기 화합물.
【청구항 5】 제 1항에서,
하기 화학식 8 내지 10 중 어느 하나로 표현되는 유기 화합물:
[화학식 8] [화학식 9
Figure imgf000066_0001
상기 화학식 8 내지 10에서,
Z는 각각 독립적으로 C, N 또는 CRa 이고,
Z 중 적어도 하나는 N 이고,
L1은 단일 결합 또는 치환 또는 비치환된 C6 내지 C20 ,아릴렌기이고,
R1 내지 R20 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 해테로고리기 또는 이들의 조합이고,
R4 및 R5, R6 및 R7, R8 및 R9, R10 및 RU, R12 및 R13, R14 및 R15, R16 및 R17, 그리고 R18 및 R19는 각각 독립적으로 존재하거나 서로 융합하여 고리를 형성한다.
【청구항 6]
제 5항에서,
상기 화학식 8로 표현되는 유기 화합물은 하기 화학식 8a 내지 8c 중 어느 하나로 표현되는 유기 화합물:
Figure imgf000067_0001
Figure imgf000067_0002
상기 화학식 8a 내지 8c에서,
Z는 각각 독립적으로 C, N 또는 CRa 이고,
Z 중 적어도 하나는 N 이고,
R1 내지 R9 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
4 및 R5, R6 및 R7, 그리고 R8 및 R9는 각각 독립적으로 존재하거나 서로 융합하여 고리를 형성한다.
【청구항 7】
게 5항에서,
상기 화학식 9로 표현되는 유기 화합물은 하기 화학식 9a로 표현되는 유기 화합물:
화학식 9a]
Figure imgf000067_0003
상기 화학식 9a에서,
Z는 각각 독립적으로 C, N 또는 CRa 이고
Z 중 적어도 하나는 N 이고, R1 내지 R3, R10 내지 R'5 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또 비치환된 C3 내지 C30 헤테로고리기 또는 이들의 조합이고,
R10 및 R1 1, 그리고 R14 및 R15는 각각 독립적으로 존재하거나 서로 융합하여 고리를 형성한다.
【청구항 8]
제 1항에서,
하기 그룹 1에 나열된 유기 화합물:
[그룹 1]
Figure imgf000068_0001
Figure imgf000069_0001
L9
Z88fOO/STOra¾/13d 68S8Z,T/ST0Z ΟΛ\
Figure imgf000070_0001
89
Z88£00/SlOZ¾X/X3d 68S8.1/S10Z OAV
Figure imgf000071_0001
Z88i"00/SlOra¾/13d 68S8.1/SI0J OAV
Figure imgf000072_0001
OL
Z88C00/ST0ZaM/X3d 68S8.T/S10Z OAV
Figure imgf000073_0001
U
68S8Z.I/CI0C OAV
Figure imgf000074_0001
73
Figure imgf000075_0001
Figure imgf000076_0001
【청구항 9】
제 1항에 따른 게 1 유기 화합물, 그리고
카바졸 모이어티를 가지는 적어도 하나의 게 2 유기 화합물
을 포함하는 유기광전자소자용 조성물.
【청구항 10】
게 9항에서,
상기 제 2 유기 화합물은 하기 화학식 1 1로 표현되는 화합물, 및 하기 화학식 12로 표현되는 모이어티와 하기 화학식 13으로 표현되는 모이어티의 조합으로 이루어진 화합물 중 적어도 하나를 포함하는 유기광전자소자용 조성물:
1 1]
Figure imgf000076_0002
상기 화학식 1 1에서,
Y1은 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 해테로고리기 또는 이들의 조합이고,
R21 내지 R24는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내7' C50 헤테로고리기 또는 이들의 조합이고,
R21 내지 R24 및 Ar2 중 적어도 하나는 치환 또는 비치환된 트리페닐렌기 또는 치환 또는 비치환된 카바졸기를 포함하고,
화학식 12] [화학식 13]
Figure imgf000077_0001
상기 화학식 12 및 13에서,
Y2 및 Y3는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고, '
Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 해테로고리기 또는 이들의 조합이고,
R25 내지 R28은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로고리기 또는 이들의 조합이고,
상기 화학식 12의 인접한 두 개의 *는 상기 화학식 13의 두 개의 *와 결합하여 융합고리를 형성하고 상기 화학식 12에서 융합고리를 형성하지 않은 *는 각각 독립적으로 CRb이고,
Rb는 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C 12 .헤테로고리기 또는 이들의 조합이다.
【청구항 1 1】
제 10항에서,
상기 화학식 u로 표현되는 제 2、유기 화합물은 하기 화학식 1 1-1 내지 1 1-111 중 적어도 하나로 표현되는 유기광전자소자용 조성물: 1 1 -I] [화학식 1 1-11]
Figure imgf000078_0001
상기 화학식 1 1-1 내지 11 -ΠΙ에서,
Υ', Υ4 및 Υ5는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
Ar2 및 Ar5는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기 또는 이들의 조합이고,
R21 내지 R24 및 R29 내지 R40은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로고리기 또는 이들의 조합이다.
【청구항 12]
제 10항에서,
상기 화학식 1 1로 표현되는 제 2 유기 화합물은 그룹 2에 나열된 화합물에서 선택되는 유기광전자소자용 조성물:
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000080_0003
B-32
Figure imgf000080_0004
B-3S B-37 B-3S
Figure imgf000080_0005
8S-S
'S
Figure imgf000081_0001
6L
I88e00/ST0^HX/I3d 68S8 -T/ST0∑: OAV 80
Figure imgf000082_0001
Figure imgf000082_0002
Figure imgf000083_0001
18
Z88C00/ST0ZaM/X3d 68S8.T/S10Z OAV
Figure imgf000084_0001
Figure imgf000084_0002
Figure imgf000084_0003
Figure imgf000084_0004
Figure imgf000085_0001
τεο οεύι
Figure imgf000086_0001
Figure imgf000086_0002
Figure imgf000086_0003
D-24 D-25 D-26
Figure imgf000087_0001
D-27 D-28 D-29
【청구항 13]
제 10항에서,
상기 화학식 12로 표현되는 모이어티와 상기 화학식 13으로 표현되는 모이어티의 조합으로 이루어진 제 2 유기 화합물은 하기 그룹 3에 나열된 화합물에서 선택되는 유기광전자소자용 조성물:
[그룹 3]
Figure imgf000087_0002
Figure imgf000088_0001
^ᅳ^
Figure imgf000088_0002
【청구항 14】
제 9항에서,
상기 게 1 유기 화합물과 상기 제 2 유기 화합물은 1 : 10 내지 10: 1의 중량비로 포함되어 있는 유기광전자소자용 조성물.
【청구항 15]
거 19항에서,
인광 도펀트를 더 포함하는 유기광전자소자용 조성물.
【청구항 16】
서로 마주하는 양극과 음극, '그리고
상가 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기충
을 포함하고,
상기 유기층은 제 1항 내지 게 8항 중 어느 한 항에 따른 유기 화합물 또는 게 9항 내지 제 15항 중 어느 한 항에 따른 유기광전자소자용 조성물을 포함하는 유기 광전자 소자.
【청구항 17】
제 16항에서,
상기 유기층은 발광층을 포함하고,
상기 발광층은 상기 유기 화합물 또는 상기 유기광전자소자용 조성물을 포함하는 유기 광전자 소자.
【청구항 18 ]
제 17항에서,
상기 유기 화합물 또는 상기 유기광전자소자용 조성물은 상기 발광층의 호스트로서 포함되는 유기 광전자 소자.
【청구항 19】
제 16항에 따른 유기 광전자 소자를 포함하는 표시 장치.
PCT/KR2015/003882 2014-05-22 2015-04-17 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 WO2015178589A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/307,108 US10446764B2 (en) 2014-05-22 2015-04-17 Organic compound, composition, organic optoelectric device, and display device
CN201580026671.8A CN106414407B (zh) 2014-05-22 2015-04-17 有机化合物、组合物、有机光电装置以及显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140061892 2014-05-22
KR10-2014-0061892 2014-05-22
KR1020150053922A KR101897039B1 (ko) 2014-05-22 2015-04-16 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR10-2015-0053922 2015-04-16

Publications (2)

Publication Number Publication Date
WO2015178589A1 true WO2015178589A1 (ko) 2015-11-26
WO2015178589A8 WO2015178589A8 (ko) 2016-11-17

Family

ID=54554218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003882 WO2015178589A1 (ko) 2014-05-22 2015-04-17 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치

Country Status (1)

Country Link
WO (1) WO2015178589A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623073A (zh) * 2016-07-13 2018-01-23 三星Sdi株式会社 用于有机光电装置的组合物以及有机光电装置和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045731A1 (en) * 2007-07-07 2009-02-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
JP2012092047A (ja) * 2010-10-27 2012-05-17 Canon Inc ピラゾロインドール化合物及びこれを用いた有機発光素子
JP2012121857A (ja) * 2010-12-09 2012-06-28 Canon Inc 新規有機化合物およびそれを有する有機発光素子
KR20130114785A (ko) * 2012-04-10 2013-10-21 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US20140131665A1 (en) * 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045731A1 (en) * 2007-07-07 2009-02-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
JP2012092047A (ja) * 2010-10-27 2012-05-17 Canon Inc ピラゾロインドール化合物及びこれを用いた有機発光素子
JP2012121857A (ja) * 2010-12-09 2012-06-28 Canon Inc 新規有機化合物およびそれを有する有機発光素子
KR20130114785A (ko) * 2012-04-10 2013-10-21 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US20140131665A1 (en) * 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623073A (zh) * 2016-07-13 2018-01-23 三星Sdi株式会社 用于有机光电装置的组合物以及有机光电装置和显示装置
CN107623073B (zh) * 2016-07-13 2019-09-06 三星Sdi株式会社 用于有机光电装置的组合物以及有机光电装置和显示装置
US10593894B2 (en) 2016-07-13 2020-03-17 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device and organic optoelectronic device and display device

Also Published As

Publication number Publication date
WO2015178589A8 (ko) 2016-11-17

Similar Documents

Publication Publication Date Title
TWI622637B (zh) 有機化合物及有機光電元件及顯示元件
TWI651312B (zh) 有機化合物及有機光電裝置和顯示裝置
KR101773363B1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101829745B1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
JP6431530B2 (ja) 有機光電子素子用発光材料、有機光電子素子および表示装置
EP3020708B1 (en) Organic compound, and organic optoelectronic element and display device
CN109890937B (zh) 用于有机光电子装置的化合物、有机光电子装置和显示装置
KR101972802B1 (ko) 유기 화합물, 조성물 및 유기 광전자 소자
WO2016024675A1 (ko) 유기 광전자 소자 및 표시 장치
WO2015034125A1 (ko) 유기광전자소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2015111848A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2015105251A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
KR101897039B1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101782881B1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2016021815A1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2017104946A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
JP6478672B2 (ja) 有機化合物、組成物、有機光電子素子および表示装置
CN107868035B (zh) 用于有机光电装置的化合物、用于有机光电装置的组合物及有机光电装置及显示装置
US10270042B2 (en) Compound for organic optoelectric device and organic optoelectric device and display device
KR102008896B1 (ko) 유기 화합물, 유기 광전자 소자 및 표시 장치
KR102146791B1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
KR102162401B1 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2015178589A1 (ko) 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101948208B1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15307108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795369

Country of ref document: EP

Kind code of ref document: A1