WO2015182727A1 - ガスタービンエンジンの燃焼装置 - Google Patents

ガスタービンエンジンの燃焼装置 Download PDF

Info

Publication number
WO2015182727A1
WO2015182727A1 PCT/JP2015/065477 JP2015065477W WO2015182727A1 WO 2015182727 A1 WO2015182727 A1 WO 2015182727A1 JP 2015065477 W JP2015065477 W JP 2015065477W WO 2015182727 A1 WO2015182727 A1 WO 2015182727A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion
air
fuel injection
annular
Prior art date
Application number
PCT/JP2015/065477
Other languages
English (en)
French (fr)
Inventor
堀川敦史
餝雅英
岡田邦夫
北嶋潤一
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2016523566A priority Critical patent/JP6285022B2/ja
Priority to CN201580028575.7A priority patent/CN106537042B/zh
Priority to EP15800273.3A priority patent/EP3150918B1/en
Priority to AU2015268509A priority patent/AU2015268509B2/en
Priority to CA2950566A priority patent/CA2950566A1/en
Publication of WO2015182727A1 publication Critical patent/WO2015182727A1/ja
Priority to US15/363,105 priority patent/US20170074521A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • F23R3/32Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Definitions

  • the present invention relates to a combustion apparatus used for a gas turbine engine.
  • Gas turbine engines have strict environmental standards regarding the composition of exhaust gas emitted by combustion, considering environmental conservation, and it is required to reduce harmful substances such as nitrogen oxides (hereinafter referred to as NOx). It has been. Therefore, in recent years, a combustion method that adopts a premixed combustion method that effectively reduces the amount of NOx generated, for example, a combined combustion method that combines a lean premixed combustion method and a diffusion combustion method has been proposed (Patent Literature). 1).
  • the flame generated in the combustion chamber is maintained because a strong swirl flow is generated in the combustion chamber to form a backflow region in order to maintain the combustion with the lean fuel. Tends to cause a flashback phenomenon that propagates in the premixing passage.
  • gas turbine engines that use hydrogen as a fuel have been proposed. However, in a gas turbine engine that uses a highly reactive fuel containing hydrogen, a flashback phenomenon is particularly likely to occur.
  • an object of the present invention is to solve the above-described problems, and a gas turbine that can prevent local high-temperature combustion and suppress generation of NOx, and can prevent a flashback phenomenon and stably hold a flame. It is to provide an engine combustion apparatus.
  • a combustion apparatus includes a combustion cylinder that forms a combustion chamber inside, a fuel injection member that is provided at the top of the combustion cylinder and includes a plurality of annular portions for fuel injection, and An air guide member including a plurality of annular portions for combustion air for guiding combustion air, wherein the annular portions for fuel injection and the annular portions for combustion air are alternately arranged concentrically, and fuel is supplied to the combustion chamber; And a fuel injector for injecting air, and a reburning burner disposed in the downstream area of the combustion chamber and on the peripheral wall of the combustion cylinder, the annular portion for fuel injection is opened in the radial direction thereof
  • the combustion air annular portion has a plurality of air guide grooves that open in the axial center direction and guide air to the fuel injected from the fuel injection holes.
  • the reheating burner has a premixing chamber for mixing and stirring fuel and air, and is configured to inject premixed gas generated in the premixing chamber into the combustion chamber. It is preferable that According to this configuration, by providing a premixing type reburning burner in a region where the combustion reaction has progressed in the downstream region of the combustion chamber, it is possible to further reduce NOx while suppressing the occurrence of a backfire phenomenon in the reburning burner. Can be suppressed.
  • an air rectification mechanism is provided upstream of the fuel injector and rectifies air supplied to the air guide member. According to this configuration, since a uniform air flow is supplied to the combustion injection unit, the generation of NOx is suppressed by further uniforming the combustion, and the flashback phenomenon can be prevented more reliably.
  • the rectifying protrusion member includes a support part and a protrusion part protruding from the support part into the combustion chamber, and the rectifying protrusion member is formed in the support part to allow air to flow inside the rectifying protrusion member. It is preferable to have a cooling air introduction hole for introducing the air into the combustion chamber, and a cooling air exhaust hole formed in the protruding portion for discharging the air introduced into the rectifying protrusion member into the combustion chamber. According to the said structure, a protrusion can be cooled by convection cooling from the inside using a part of combustion air.
  • the annular portion for fuel injection is formed in a hollow shape, and the hollow space in the annular portion for fuel injection forms an annular fuel flow passage for circulating fuel in the circumferential direction.
  • the portion of the annular portion for fuel injection that faces the combustion chamber is exposed to a high temperature due to the flame in the combustion chamber.
  • an annular fuel flow passage through which fuel flows is formed inside the annular portion for fuel injection. Therefore, the portion exposed to the high temperature is efficiently cooled by the fuel flowing through the fuel flow passage.
  • the annular portion for fuel injection is located on the combustion chamber side, is located on the opposite side to the combustion chamber, and a first fuel flow passage communicating with the fuel injection hole, A second fuel flow path to which fuel injected from the fuel injection hole is supplied; and an injection nozzle for injecting fuel in the second fuel flow path to the wall surface of the first fuel flow path on the combustion chamber side. It is preferable to have.
  • the wall facing the combustion chamber of the annular part for fuel injection can be cooled from the inside by impingement cooling using fuel.
  • a fuel supply mother pipe having a multi-tube structure for supplying fuel to the fuel injection member is provided, and the fuel supply mother pipe is a first annular of the plurality of fuel injection annular portions. It is preferable to have a first supply passage for supplying fuel to the group and a second supply passage for supplying fuel to the second annular group of the plurality of annular portions for fuel injection.
  • the fuel injection member can be divided into a fuel injection annular portion that supplies fuel and a fuel injection annular portion that does not supply fuel. Corresponding operation (staging combustion) becomes possible.
  • FIG. 1 is a block diagram showing a schematic configuration of a gas turbine engine to which a combustion apparatus according to an embodiment of the present invention is applied. It is sectional drawing which shows the combustion apparatus which concerns on one Embodiment of this invention. It is sectional drawing which shows the combustion apparatus which concerns on one Embodiment of this invention. It is a front view which shows the fuel injector used for the combustion apparatus of FIG.
  • FIG. 5A It is a front view which expands and shows a part of fuel injector used for the combustion apparatus of FIG. It is a front view which shows the modification of the fuel injector of FIG. 5A. It is a perspective view which shows an example of the air baffle plate used for the combustion apparatus of FIG. It is a perspective view which shows the other example of the air baffle plate used for the combustion apparatus of FIG. It is a perspective view which shows the other example of the air baffle plate used for the combustion apparatus of FIG. It is a perspective view which shows the other example of the air baffle plate used for the combustion apparatus of FIG. It is a perspective view which shows the modification of the air rectification mechanism of the combustion apparatus of FIG. FIG.
  • FIG. 10 is a perspective view showing another modification of the air rectifying mechanism of the combustion device of FIG. 2. It is a longitudinal cross-sectional view which shows the fuel injector used for the combustion apparatus of FIG. It is a longitudinal cross-sectional view which shows the modification of the fuel injector used for the combustion apparatus of FIG. It is a longitudinal cross-sectional view which shows the internal structure of the baffle protrusion member used for the combustion apparatus of FIG. It is sectional drawing which shows the combustion apparatus which concerns on one Embodiment which applied this invention to the annular type combustion apparatus. It is a partially broken perspective view of the combustion apparatus of FIG. It is sectional drawing which shows the combustion apparatus which concerns on other embodiment which applied this invention to the annular type combustion apparatus.
  • FIG. 1 shows a schematic configuration of a gas turbine engine (hereinafter simply referred to as a gas turbine) GT to which a combustion apparatus according to an embodiment of the present invention is applied.
  • a gas turbine engine hereinafter simply referred to as a gas turbine
  • the introduced air is compressed by the compressor 1 and guided to the combustion device 3
  • fuel is injected into the combustion device 3 and burned together with the air
  • the turbine 5 is driven by the obtained high-temperature and high-pressure combustion gas.
  • the turbine 5 is connected to the compressor 1 via the rotary shaft 7, and the compressor 1 is driven by the turbine 5.
  • a load L such as an aircraft rotor or a generator is driven by the output of the gas turbine GT.
  • hydrogen gas is used as the fuel injected into the combustion device 3.
  • the compressor 1 side in the axial direction of the gas turbine GT is referred to as “front side”
  • the turbine 5 side is referred to as “rear side”.
  • FIG. 2 is a partially broken perspective view showing the combustion device 3.
  • the combustion apparatus 3 is a can-type combustion apparatus that is arranged in a ring shape around the axis of the gas turbine GT.
  • the combustion device 3 includes a combustion cylinder 13 that forms a combustion chamber 11 inside, and a fuel injector 15 that is attached to the top 13 a of the combustion cylinder 13 and injects fuel and air into the combustion chamber 11.
  • a flame is formed in the combustion chamber 11 by igniting the fuel and air injected from the fuel injector 15 with a spark plug P provided in the combustion cylinder 13.
  • the combustion cylinder 13 and the fuel injector 15 are accommodated concentrically in a substantially cylindrical housing H that is an outer cylinder of the combustion apparatus 3.
  • An end cover 17 is fixed to the front end of the housing H with a bolt 19.
  • the top 13 a of the combustion cylinder 13 is attached to the housing H by connecting and fixing a support cylinder 21 extending in a cylindrical shape from the combustion cylinder 13 to the end cover 17 with a bolt or the like.
  • the combustion device 3 is configured as a reverse flow type in which the flow directions of the air A and the combustion gas G are opposite. That is, the combustion device 3 has an air introduction passage 25 formed between the housing H, the combustion cylinder 13 and the support cylinder 21, and this air introduction passage 25 is compressed by the compressor 1 (FIG. 1). The conducted air A is guided in a direction opposite to the flow direction of the combustion gas G in the combustion chamber 11.
  • the combustion device 3 may be an axial flow type in which the flow directions of the air A and the combustion gas G are the same.
  • a plurality of air introduction holes 27 are arranged in the circumferential direction at the front end portion of the peripheral wall of the support cylinder 21.
  • the air A sent through the air introduction passage 25 is introduced into the air supply passage 29 formed inside the support tube 21 through the air introduction hole 27.
  • the air A introduced into the air supply passage 29 is sent backward, that is, in the direction of the fuel injector 15.
  • a fuel supply mother pipe 31 extending along the axis C of the combustion device 3 is provided at the center of the air supply passage 29.
  • the fuel F is supplied from the fuel supply pipe 31 to the fuel injection annular portion 33 of the fuel injection member 34 described later.
  • the configurations of the air supply passage 29 and the fuel supply mother pipe 31 will be described in detail later.
  • the combustion apparatus 3 includes a premixed reheating burner 10 disposed in the downstream area of the combustion chamber 11 and on the peripheral wall of the combustion cylinder 13. A plurality (for example, four) of burner burners 10 are provided at equal intervals in the circumferential direction.
  • the air A sent from the compressor 1 (FIG. 1) through the air introduction passage 25 and the fuel F sent from the fuel supply system (reheating fuel supply passage 32) are sent to the reheating burner 10. be introduced.
  • the reheating burner 10 is a premixing type and has a premixing chamber 10a for mixing and stirring the air A and the fuel F. As shown in FIG.
  • the air A is introduced into the premixing chamber 10 a from the side peripheral surface of the reheating burner 10, and the fuel F is supplied from the fuel supply system via the reconditioning adjustment valve 72.
  • the fuel injection hole 10c may be provided as a fuel injection nozzle whose tip protrudes into the premixing chamber 10a.
  • the reheating burner 10 is operated in a state in which combustion by the fuel injector 15 that is a main burner is almost completed and high-temperature combustion gas G is generated, so that the reburning burner 10 is injected into the downstream region of the combustion chamber 11.
  • the premixed gas M is burned stably while suppressing generation of NOx by the high-temperature combustion gas G.
  • the reheating burner 10 according to the present embodiment does not require a swirl flow generating mechanism or the like (flame holding mechanism) for forming a backflow region for flame holding, and therefore has high resistance to backfire. Therefore, even hydrogen, which is normally difficult to use as premixed combustion, can be used as a fuel for the reheating burner 10 without fear of backfire.
  • the reheating burner 10 is not limited to the premixing type, but may be a diffusion combustion type.
  • the fuel injector 15 includes a fuel injection member 34 having a plurality of fuel injection annular portions 33 and an air guide member 36 having a plurality of combustion air annular portions 35.
  • the four fuel injection annular portions 33 having different diameters are arranged concentrically with each other and with the combustion device 3 (FIG. 2).
  • five combustion air annular portions 35 having different diameters are arranged concentrically with each other and with the combustion device 3 (FIG. 2).
  • the annular portions for fuel injection 33 and the annular portions for combustion air 35 are alternately arranged with the same central axis. That is, the annular portion for fuel injection 33 and the annular portion for combustion air 35 are alternately arranged concentrically.
  • the fuel injector 15 has four fuel injection annular portions 33 and five combustion air annular portions 35.
  • the number of these can be changed as appropriate, for example, 3 One annular portion 33 for fuel injection and four annular portions 35 for combustion air may be used.
  • the four fuel injection annular portions 33 and the five combustion air annular portions 35 are provided at the same axial position (FIG. 3).
  • the axial positions of the four fuel injection annular portions 33 and the five combustion air annular portions 35 may be shifted from each other.
  • the four fuel injection annular portions 33 may be arranged so that the axial direction positions of the four fuel injection annular portions 33 are sequentially shifted back and forth. You may arrange
  • the fuel injection annular portion 33 of the fuel injection member 34 is provided with a plurality of fuel injection holes 39 opened in the radial direction R in the circumferential direction Q. Fuel F is injected from each fuel injection hole 39.
  • the fuel injection annular portion 33 of the fuel injection member 34 has a substantially rectangular cross-sectional outer shape, and the rear wall 33 a facing the combustion chamber 11 is perpendicular to the axis C direction. It is arranged to become.
  • the fuel injection holes 39 are provided on both the outer diameter side and the inner diameter side of the fuel injection annular portion 33 of the fuel injection member 34.
  • the fuel injection hole 39 is provided in each of the outer peripheral wall and the inner peripheral wall of the fuel injection annular portion 33 as a through hole that penetrates the outer peripheral wall and the inner peripheral wall in the radial direction R.
  • the fuel injection holes 39 may be provided only on either the outer diameter side or the inner diameter side of the fuel injection member 34.
  • the fuel injection hole 39 may be inclined in the range from ⁇ 10 ° to + 80 ° in the axis C direction with respect to the radial direction R.
  • the inclination angle when the fuel injection hole 39 is inclined upstream of the radial direction R in the axial center C direction is a negative inclination angle
  • the fuel injection hole is downstream of the radial direction R in the axial center C direction.
  • the inclination angle when 39 is inclined is defined as a positive inclination angle.
  • the air guide member 36 guides the air A to the fuel F injected from the fuel injection hole 39 of the fuel injection member 34. More specifically, the air guide member 36 guides the air A in the direction of the axis C from the upstream side of the air supply passage 29 with respect to the fuel F.
  • the air guide member 36 has a plurality of annular portions 35 for combustion air in the shape of an annular plate.
  • the fuel injection annular portion 33 of the fuel injection member 34 and the combustion air annular portion 35 of the air guide member 36 are alternately arranged with the same central axis. As shown in FIG.
  • an air guide groove 41 that is recessed in the radial direction is formed at a circumferential position corresponding to each fuel injection hole 39 of the fuel injection member 34.
  • an air guide groove that is recessed radially outwardly on the inner diameter side of the combustion air annular portion 35 of the air guide member 36 located on the radially outer side of the fuel injection annular portion 33 of the fuel injection member 34. 41 is formed, and an air guide groove 41 that is recessed radially inward is formed on the outer diameter side of the combustion air annular portion 35 that is located on the radially inner side of the fuel injection annular portion 33.
  • the fuel injector 15 includes a fuel injection member 34 having four annular portions 33 for fuel injection and an air guide member 36 having five annular portions 35 for combustion air.
  • the combustion air annular portion 35 disposed on the outer peripheral side of the outermost peripheral fuel injection annular portion 33 and the three combustion air annular portions disposed between each of the four fuel injection annular portions 33.
  • An annular portion 35 for combustion air disposed on the inner peripheral side of the portion 35 and the innermost fuel injection annular portion 33 is provided.
  • the outer periphery of the combustion air annular portion 35 disposed on the outermost periphery is covered with an annular support ring member 43.
  • the fuel injector 15 is supported by the combustion cylinder 13 by connecting the support ring member 43 to the combustion cylinder 13.
  • the air guide member 36 is disposed on the front side of the fuel injection hole 39 of the fuel injection member 34, that is, on the upstream side in the air A flow direction. In this way, by providing the air guide member 36 so as to guide the air A in the direction of the axis C from the upstream with respect to the fuel F injected from each fuel injection hole 39, the fuel F and the air A are almost mutually connected.
  • the fuel F and the air A can be uniformly mixed outside the fuel injector 15.
  • a plurality of cooling holes 45 may be provided in each combustion air annular portion 35 of the air guide member 36.
  • the plurality of cooling holes 45 are arranged at equal intervals in the circumferential direction of the annular portion 35 for combustion air.
  • the cooling hole 45 is formed as a through hole having a substantially circular cross section that penetrates the combustion air annular portion 35 from the front side to the rear side.
  • each cooling hole 45 is formed to extend in the circumferential direction in the combustion air annular portion 35 while being inclined. Therefore, the shape of the opening of the cooling hole 45 on the surface of the annular portion 35 for combustion air is an elliptical shape that is long in the circumferential direction.
  • the cooling hole 45 when the cooling hole 45 is provided in the combustion air annular portion 35, the air A flowing through the air supply passage 29 (FIG. 3) passes through the cooling hole 45, and then the combustion air annular portion 35. It blows off to the combustion chamber side surface, forms a film layer of air along the circumferential direction, and this surface is effusion cooled.
  • the cooling hole 45 is preferably inclined in the circumferential direction, but the inclination direction is not limited to this. Further, the cooling hole 45 does not necessarily have to be inclined, and may be a through hole extending in parallel with the axial direction.
  • the air supply passage 29 has an air rectifying plate 47 as an air rectifying mechanism that rectifies the air A introduced into the air supply passage 29 from the air introduction hole 27 into a uniform flow toward the air guide member 36.
  • the air rectifying plate 47 is a disk-shaped member and has a plurality of through holes 49 penetrating in the axial direction.
  • the air rectifying plate 47 has an outer diameter that matches the inner diameter of the support cylinder 21 of FIG. 3 and a fitting hole 51 having an inner diameter that matches the outer diameter of the fuel supply mother pipe 31 at the center.
  • the air rectifying plate 47 is connected and fixed to the end cover 17 by a rectifying plate bolt 57 via a flange 55 provided at the front end of the fitting portion 53.
  • the air rectifying plate 47 has a plurality of circular through holes 49 having the same diameter. More specifically, the plurality of through-holes 49 are formed by arranging rows of annular through-holes 49 arranged at equal intervals along the circumferential direction at the same radial position of the air rectifying plate 47 at equal intervals in the radial direction. It is arranged in a state where a plurality of rows are provided. That is, the air rectifying plate 47 has a row of annular through holes 49 arranged at equal intervals on the same circumference, and a plurality of the rows are provided with the same center.
  • FIG. 6A shows an air rectifying mechanism including the air rectifying plate 47, the fitting portion 53, and the flange 55.
  • the shape, number, and arrangement of the plurality of through holes 49 in the air rectifying plate 47 are not limited to the mode of FIG. 6A and may be set as appropriate.
  • the inner circumferential edge and the outer circumferential edge of the air rectifying plate 47 are provided with a row of a large number of circular through-holes 49 having the same diameter, and intermediate between the inner circumferential edge and the outer circumferential edge.
  • a row of circular through holes 49 having a larger diameter may be provided in the part.
  • a row of a large number of circular through holes 49 having the same diameter is provided on the inner peripheral edge of the air rectifying plate 47, and the major axis direction is the radial direction of the air rectifying plate 47 on the outer peripheral side.
  • a row of oval through holes 49 may be provided.
  • only a row of oval through holes 49 whose major axis direction coincides with the radial direction of the air rectifying plate 47 may be provided.
  • the ratio of the total area of all the through holes 49 to the entire area of the air rectifying plate 47 (opening ratio) Considering the balance of pressure loss, it is preferably in the range of 20 to 50%, more preferably in the range of 30 to 40%.
  • FIG. 7A shows a flow straightening duct 61a extending from the upstream side of the air introduction hole 27 to the fuel injector 15 so as to reduce the diameter toward the downstream side, and a downstream side of the air introduction hole 27 to the fuel injector 15.
  • a rectifying duct 61 having a rectifying duct 61b extending so as to increase in diameter toward the downstream side is shown.
  • FIG. 7B shows a flow straightening duct 61a extending from the upstream side of the air introduction hole 27 to the fuel injector 15 so as to reduce the diameter toward the downstream side, and from the center position of the air introduction hole 27 to the fuel injector 15.
  • a rectifying duct 61c that extends toward the downstream side, and a rectifying duct 61d that extends from the downstream side of the air introduction hole 27 to the fuel injector 15 so that the diameter decreases toward the downstream side;
  • the rectifying duct 61 having By providing the air rectifying plate 47 and the rectifying duct 61 as the air rectifying mechanism, a uniform air flow is supplied to the fuel injector 15, so that the generation of NOx is suppressed by the uniform combustion and the flashback is ensured. The phenomenon can be prevented.
  • the combustion device 3 is provided with a rectifying protrusion member 63 that is located on the axis C thereof and that protrudes toward the combustion chamber 11 through the fuel injector 15.
  • the rectifying projection member 63 is located in the air supply passage 29 and includes a support portion 63 a having a cylindrical shape and a protruding portion 63 b located in the combustion chamber 11.
  • the rectifying protrusion member 63 is attached to the fuel injector 15, but may be attached to the fuel supply main pipe 31. In any case, the front end (end on the fuel supply mother pipe 31 side) of the support portion 63 a of the rectifying protrusion member 63 is located upstream of the fuel injector 15.
  • the protruding portion 63b has a substantially hemispherical tip.
  • the rectifying protrusion member 63 may be omitted, by providing the rectifying protrusion member 63, the fuel injection annular portion 33 located on the radially inner side of the fuel injector 15 in the vicinity of the position of the axis C in the combustion chamber 11. The flame formed by the fuel injected from the air and the air supplied from the combustion air annular portion 35 is stably held.
  • the fuel injection member 34, the air guide member 36, the support ring member 43, and the rectifying protrusion member 63 constituting the fuel injector 15 may be integrally formed. You may connect mutually by inserting a pin in a direction.
  • the combustion device 3 of the present embodiment has a plurality of fuel supply paths that can supply the fuel F independently to each fuel injection annular portion 33 of the fuel injection member 34.
  • the fuel supply main pipe 31 and each fuel injection annular portion 33 are connected by a plurality of branch fuel supply pipes 66 that branch independently from each other.
  • the fuel supply mother pipe 31 has a plurality of (two in the illustrated example) cylindrical pipes, that is, an inner first fuel supply pipe 64 and a second fuel supply pipe 65 arranged outside thereof concentrically. It has a multi-tube structure (double tube structure).
  • An inner space of the first fuel supply pipe 64 forms a first fuel supply path 67, and a space between the first fuel supply pipe 64 and the second fuel supply pipe 65 forms a second fuel supply path 69. is doing.
  • the fuel F introduced from the outside into the fuel supply passages 67 and 69 in the fuel supply pipe 31 passes through the fuel supply passages formed in the branch fuel supply pipes 66 to the fuel injection annular portions 33. Supplied.
  • the fuel F that has passed through the first fuel supply path 67 passes through the two branched fuel supply pipes 66 connected to the first fuel supply pipe 64, and is out of the plurality of fuel injection annular portions 33.
  • the fuel F supplied to two fuel injection annular portions 33 (hereinafter referred to as “first annular portion group”) disposed on the inner diameter side and passed through the second fuel supply passage 69 is supplied to the second fuel supply pipe 65.
  • Two fuel injection annular portions 33 (hereinafter referred to as “second annular portion group”) arranged on the outer diameter side of the plurality of fuel injection annular portions 33 via two branch fuel supply pipes 66 connected to ")".
  • the first fuel supply passage 67 has an upstream portion 67a extending outside the housing H, and the second fuel supply passage 69 and an upstream portion 69a extending outside the housing H, respectively, to adjust the fuel flow rate.
  • An adjustable control valve 71 is provided.
  • the flow rate of the fuel F supplied to each annular portion group of the fuel injection annular portion 33 can be controlled independently by adjusting the opening degree of the control valve 71 of each fuel supply path 67, 69.
  • the number of the fuel injection annular portions 33 constituting the annular portion group serving as a unit to which the fuel F is independently supplied is not limited to the above example.
  • one annular portion for fuel injection 33 may constitute one annular portion group (a total of four annular portion groups), and two annular portions for fuel injection on the inner diameter side constitute one annular portion.
  • the two fuel injection annular portions 33 on the outer diameter side may constitute one annular portion group (a total of three annular portion groups).
  • the number of fuel supply passages and the number of control valves are set in accordance with the number of configured annular portion groups.
  • the fuel supply amount to each fuel injection annular portion 33 of the fuel injection member 34 can be independently controlled according to the load of the gas turbine GT.
  • the fuel injection member 34 can be divided into the fuel injection annular portion 33 that supplies fuel and the fuel injection annular portion 33 that does not supply fuel, so that it can cope with output changes from rated load to partial load. Operation (staging combustion) is possible.
  • the fuel supply amount is changed from all the fuel injection annular portions 33 on average.
  • a plurality of fuel supply paths 67 and 69 are branched from one fuel supply source (not shown), and the fuel supply amount is independently controlled by the adjustment valve 71 provided in each fuel supply path 67 and 69.
  • the fuel F may be supplied to the fuel supply paths 67 and 68 independently from a plurality of fuel supply sources.
  • the number of branch fuel supply pipes 66 connected to each fuel injection annular portion 33 of the fuel injection member 34 may be appropriately set according to the fuel injection amount of each fuel injection annular portion 33. For example, the number of branch fuel supply pipes 66 connected to the fuel injection annular part 33 arranged on the inner diameter side is reduced, and the branch fuel supply pipes connected to the fuel injection annular part 33 arranged on the outer diameter side are reduced. It is preferable to increase the number of 66.
  • the connection positions in the fuel injection annular portion 33 are preferably equidistant in the circumferential direction.
  • the multi-tubular structure of the fuel supply mother pipe 31 is not limited to the example of FIG. 3 as long as a plurality of fuel supply paths independent of each other can be formed using a plurality of pipes.
  • a multi-tubular structure in which a plurality of fuel supply pipes having the same diameter smaller than this and extending in parallel in one large-diameter mother pipe may be used.
  • the fuel supply mother pipe 31 has a multi-tube structure in which a plurality of fuel supply pipes having different diameters are concentrically stacked, and the inner space of the innermost fuel supply pipe and each When the space between the pipes is used as a fuel supply passage, an outer diameter fuel supply passage (second fuel supply in the example of FIG.
  • the fuel supply passage (the first fuel supply passage 67 in the example of FIG. 3) that increases the flow passage area of the passage 69) and supplies it to the fuel injection annular portion 33 that requires a smaller amount of fuel. It becomes easy to set the flow path area small.
  • the rear wall 33a facing the combustion chamber 11 of the fuel injection member 34 is provided perpendicular to the direction of the axis C.
  • the air guide member 36 guides the air A supplied from the upstream side to the fuel F injected from the fuel injection hole 39 of the fuel injection member 34 in the direction of the axis C.
  • the annular portion 33 for fuel injection is formed in a hollow shape, and this hollow space forms an annular fuel flow passage 73 through which the fuel F flows in the circumferential direction in the annular portion for fuel injection 33.
  • the rear wall 33a of the fuel injection member 34 and a part of the inner wall of the annular fuel flow passage 73 are the same wall, the wall surface on the combustion chamber side is the rear wall surface 33ab, and the wall surface on the fuel flow passage side is the inner wall surface 33aa. It has become.
  • the branch fuel supply pipe 66 is connected so as to supply the fuel F from the front wall (wall on the air supply passage 29 side) 33b side of the fuel injection member 34 to the annular fuel flow passage 73a.
  • annular fuel flow passages 73 a and 73 b that are partitioned in the direction of the axis C of the combustion device 3 are formed.
  • a downstream fuel flow passage 73b (first fuel flow passage) that is located on the rear side (combustion chamber 11 side) and supplies fuel F to the fuel injection holes 39
  • An upstream fuel flow passage 73a (second fuel flow passage) that is positioned on the front side (air supply passage 29 side) and to which fuel F is directly supplied is formed.
  • the annular first partition wall 77 that divides the upstream fuel flow passage 73a and the downstream fuel flow passage 73b has a through hole that guides fuel from the upstream fuel flow passage 73a to the downstream fuel flow passage 73b in the circumferential direction. A plurality are provided side by side.
  • This through hole functions as a feed hole 79 that connects the two fuel flow passages 73a and 73b and feeds the fuel F from the upstream fuel flow passage 73a to the downstream fuel flow passage 73b.
  • the fuel F introduced into the upstream fuel flow passage 73a from the branch fuel supply pipe 66 flows into the downstream fuel flow passage 73b sequentially through the feed holes 79 while flowing in the circumferential direction in the upstream fuel flow passage 73a. To do.
  • the fuel F is divided by dividing the inside of the fuel injection annular portion 33 of the fuel injection member 34 into the upstream fuel flow passage 73a and the downstream fuel flow passage 73b in the direction of the axis C of the combustion device 3. It is supplied to the fuel injection holes 39 in a state of being uniformly distributed in the circumferential direction.
  • the fuel F flowing into the downstream fuel flow passage 73b collides with the inner wall surface 33aa of the rear wall 33a, so that the fuel F impinges on the rear wall 33a.
  • a nozzle wall 81 protruding rearward is provided on the first partition wall 77 in the circumferential direction, and a plurality of feed holes 79 are provided in the circumferential direction in the nozzle wall 81.
  • the nozzle wall 81 forms an injection nozzle that injects the fuel F in the upstream fuel flow passage portion 73a to the back surface 33aa that is the wall surface on the combustion chamber 11 side of the downstream fuel flow passage portion 73b.
  • the annular portion 33 for fuel injection is located on the combustion chamber 11 side, is located on the opposite side of the combustion chamber 11 from the downstream fuel flow passage 73b communicating with the fuel injection hole 39, and is injected from the fuel injection hole 39.
  • An upstream fuel flow passage 73a to which the fuel F to be supplied is supplied, and an injection nozzle that injects the fuel F in the upstream fuel flow passage 73a to the inner wall surface 33aa on the combustion chamber 11 side of the downstream fuel flow passage 73b.
  • the injection nozzle does not necessarily have the nozzle wall 81, and may be a throttle nozzle formed in the first partition wall 77.
  • a protruding wall 83 extending in the circumferential direction projects into the inner wall surface 33aa of the rear wall 33a in the middle of the flow path from the inner wall surface 33aa of the rear wall 33a to which the fuel F is injected from the feed hole 79.
  • the fuel F can be used to cool the rear wall 33a of the annular portion 33 for fuel injection facing the combustion chamber 11 by convection cooling from the inside (inner wall surface 33aa side).
  • the fuel F supplied from each branch fuel supply pipe 66 flows almost evenly in the fuel flow passage 73, and the fuel F is supplied from the fuel flow passage 73 to the fuel injection holes 39 so that the effect of convection cooling can be sufficiently exhibited.
  • You may provide the 2nd division wall 87 in the middle of being led to. That is, the annular fuel flow passage 73 may be divided into three annular spaces by the outer peripheral side partition wall 87a and the inner peripheral side partition wall 87b.
  • a heat shield plate 85 may be provided on the rear wall 33ab of the rear wall 33a.
  • the material for forming the heat shield plate 85 include Hastelloy-X (Haynes International. Inc .: registered trademark), HA188 (Haynes International. Inc .: registered trademark), which are alloys having corrosion resistance and heat resistance. Alternatively, a combination of these and a ceramic coating can be used. Also in the embodiment shown in FIG. 8, the heat shield plates 85 can be selectively combined.
  • the rectifying protrusion member 63 is formed in a hollow shape as a whole.
  • the support portion 63a of the rectifying projection member 63 is a bottomed cylindrical member, and a cooling air introduction hole 91 that is a radial through hole is provided on the peripheral wall of the front end (upstream end) thereof.
  • a plurality of cooling air introduction holes 91 are formed at equal intervals in the circumferential direction of the peripheral wall at the front end of the support portion 63a.
  • the protrusion 63 b of the rectifying projection member 63 has a double wall structure including a dome-shaped inner wall 93 and an outer wall 95 that are reduced in diameter toward the combustion chamber side (right side in FIG. 10).
  • the protrusion part 63b may not be a dome shape, and a cylinder shape may be sufficient as it. Further, the protruding portion 63b may not have a double wall structure, but may have a single wall structure having only an outer wall.
  • a first cooling air injection hole 97 which is a radial through hole, is provided on the peripheral wall of the inner wall 93 of the protrusion 63b. A plurality of first cooling air injection holes 97 are formed at equal intervals in the circumferential direction and the axial direction of the peripheral wall of the inner wall 93.
  • a plurality of second cooling air injection holes 98 that are through holes extending obliquely rearward with respect to the radial direction are provided in the peripheral wall of the outer wall 95 of the protruding portion 63b.
  • the plurality of second cooling air injection holes 98 are arranged at equal intervals in the circumferential direction and the axial direction of the peripheral wall of the outer wall 95.
  • a cooling air discharge hole 99 that is a through-hole in the axial direction is provided at the center of the tip of the outer wall 95 of the protruding portion 63b. That is, the rectifying projection member 63 is formed at the front end of the support portion 63a, and is formed in the cooling air introduction hole 91 for introducing the air A upstream from the fuel injector 15 into the inside thereof, and the protruding portion 63b thereof.
  • a cooling air discharge hole 99 for discharging the air A introduced into the combustion chamber 11 is provided.
  • the inner space S formed by the support portion 63a and the inner wall 93 of the protrusion 63b and the gap G formed by the inner wall 93 and the outer wall 95 of the protrusion 63b are the first cooling air injection of the inner wall 93. It communicates only through the hole 97.
  • a fitting projection wall 63aa projects from the opening edge of the support portion 63a, and the opening edge 93a of the inner wall 93 is fitted to the inner peripheral side of the fitting projection wall 63aa.
  • the opening edge portion 95a of the outer wall 95 is fitted to the outer peripheral side of the fitting protruding wall 63aa.
  • the protrusion 63b When the protrusion 63b has a single-wall structure with only the outer wall, a part of the air A in the air supply passage 29 flows into the inner space S of the rectifying protrusion member 63 from the cooling air introduction hole 91 and burns as a cooling medium.
  • the projecting portion 63b facing the chamber 11 is discharged from the cooling air discharge hole 99 to the combustion chamber 11 while cooling by convection from the inside.
  • the protruding portion 63b has a double wall structure including the inner wall 93 and the outer wall 95, a part of the air A flowing into the inner space S of the rectifying protrusion 63 from the cooling air introduction hole 91 is a cooling medium.
  • the air A collides with the inner peripheral surface of the outer wall 95, and burns from the cooling air discharge hole 99 through the cooling passage which is the gap G between the inner wall 93 and the outer wall 95 along the inner peripheral surface. It is discharged into the chamber 11.
  • the air A collides with the inner peripheral surface of the outer wall 95 and flows along the inner peripheral surface, whereby the outer wall 95 is impingement cooled from the inside.
  • a part of the air A flowing into the gap G between the inner wall 93 and the outer wall 95 is discharged to the combustion chamber 11 through the second cooling air injection hole 98 of the outer wall 95.
  • the air A blown out from the second cooling air injection hole 98 forms a film layer of air on the surface of the outer wall 95 and effusion cools the outer wall 95 from the outside. In this way, the burnout of the rectifying protrusion member 63 can be prevented. Note that the second cooling air injection hole 98 may be omitted.
  • the outer peripheral surface of the outer wall 95 may be coated with a heat insulating material 100.
  • a heat insulating material 100 ceramics, an alloy having corrosion resistance and heat resistance, Hastelloy-X (Haynes International. Inc .: registered trademark), HA188 (Haynes International. Inc .: registered trademark), or the like is used. Can do.
  • the fuel injector 15 includes the fuel injection member 34 having the plurality of annular portions 33 for fuel injection.
  • the injection annular portion 33 has a large number of fuel injection holes 39 on the outer peripheral surface thereof, so that the fuel F is uniformly injected from the entire surface of the fuel injector 15. Thereby, a fine flame is held at multiple points on the entire surface of the fuel injector 15. Thereby, the occurrence of local high-temperature combustion is prevented and low NOx combustion can be realized.
  • the configuration in which the air A is supplied from the upstream to the fuel F injected from the fuel injection hole 39 prevents the flame from entering the fuel injector 15, thereby suppressing the backfire phenomenon.
  • the combustion device 3 includes a premixing type burner 10 disposed in the downstream area of the combustion chamber 11 and on the peripheral wall of the combustion cylinder 13.
  • the reheating burner 10 is operated in a state in which combustion by the fuel injector 15 that is a main burner is almost completed and high-temperature combustion gas G is generated, so that the reburning burner 10 is injected into the downstream region of the combustion chamber 11.
  • the premixed gas M is burned stably while suppressing generation of NOx by the high-temperature combustion gas G.
  • the reheating burner 10 according to the present embodiment does not require a swirl flow generating mechanism or the like (flame holding mechanism) for forming a backflow region for flame holding, and therefore has high resistance to backfire. Therefore, even when a highly reactive fuel containing hydrogen is used as the fuel for the gas turbine GT, extremely stable combustion is maintained while suppressing the generation of NOx.
  • the fuel F used in the combustion device 3 of the present embodiment is not limited to hydrogen gas, and may be, for example, liquid hydrogen or a mixed fuel of hydrogen gas and other fuel gas (natural gas, CO, etc.). Furthermore, other fuel gas not containing hydrogen (natural gas, CO, etc.) may be used.
  • the can-type combustion apparatus 3 has been described as an example. However, the above-described configuration can also be applied to an annular-type combustion apparatus.
  • FIG. 11 and 12 show an embodiment in which the present invention is applied to a forward flow type annular combustion apparatus
  • FIG. 13 shows an embodiment in which the present invention is applied to a reverse flow type annular combustion apparatus.
  • the combustion apparatus 3 includes a combustion cylinder 13 that forms a combustion chamber 11 inside, a fuel injection member 34 that is provided at the top of the combustion cylinder 13 and includes a plurality of fuel injection annular portions 33, and combustion An air guide member 36 including a plurality of combustion air annular portions 35 for guiding air is provided, and the fuel injection annular portions 33 and the combustion air annular portions 35 are alternately arranged concentrically, and fuel is supplied to the combustion chamber 11.
  • the fuel injection annular portion 33 has a plurality of fuel injection holes 39 opened in the radial direction R, and the combustion air annular portion 35 extends in the axial direction.
  • a plurality of air guide grooves 41 that open and guide the air A to the fuel F injected from the fuel injection holes 39 are provided.
  • the combustion cylinder 13 is constituted by a cylindrical inner wall 101 and an outer wall 103 arranged concentrically with the inner wall on the outer side of the inner wall 101.
  • the space between the outer wall 103 and the outer wall 103 forms an annular combustion chamber 11.
  • Air A compressed by the compressor 1 (FIG. 1) is introduced into the annular combustor housing H from the front through the diffuser 105 and is further supplied to the fuel injector 15.
  • the front of the fuel injector 15 is covered with an air rectifying cowl 107 that is an air rectifying mechanism.
  • the air rectifying cowl 107 is an annular member having a cross-sectional shape that bulges forward, and a plurality of holes through which the air A passes are formed.
  • the combustion cylinder 13 is composed of a cylindrical inner wall 101 and an outer wall 103 arranged concentrically with the inner wall on the outer side of the inner wall 101. A space between 101 and the outer wall 103 forms an annular combustion chamber 11.
  • the air A compressed by the compressor 1 passes from the rear through the air introduction passage 25 formed between the housing H and the combustion cylinder 13 and then is supplied to the fuel injector 15.
  • the front of the fuel injector 15 is covered with an air rectifying cowl 107 that is an air rectifying mechanism.
  • the air rectifying cowl 107 is an annular member having a cross-sectional shape that bulges forward, as in the example shown in FIG. 12, and has a number of holes through which air passes.
  • Combustion device 10 Reheating burner 11 Combustion chamber 13 Combustion cylinder 15 Fuel injector 33 Fuel injection annular portion 34 Fuel injection member 35 Combustion air annular portion 36 Air guide member 39 Fuel injection hole 41 Air guide groove A Air C Combustor axis F Fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

 当該燃焼装置は、内側に燃焼室(11)を形成する燃焼筒(13)と、前記燃焼筒の頂部に設けられ、複数の燃料噴射用環状部(33)を含む燃料噴射部材(34)および燃焼用の空気を案内する複数の燃焼空気用環状部(35)を含む空気ガイド部材(36)を有し、前記燃料噴射用環状部と前記燃焼空気用環状部とが同心状に交互に配置され、前記燃焼室に燃料(F)と空気(A)を噴射する燃料噴射器(15)と、前記燃焼室の下流域であって、前記燃焼筒の周壁に配置された追い焚きバーナ(10)とを備え、前記燃料噴射用環状部は、その径方向に開口する複数の燃料噴射孔(39)を有し、その軸心方向に開口し、前記燃焼噴射孔から噴射される燃料に対して空気を案内する複数の空気ガイド溝(41)を有する。

Description

ガスタービンエンジンの燃焼装置 関連出願
 本出願は、2014年5月30日出願の特願2014-113269の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、ガスタービンエンジンに使用される燃焼装置に関する。
 ガスタービンエンジンにおいては、環境保全への配慮から、燃焼により排出される排ガスの組成に関して厳しい環境基準が設けられており、窒素酸化物(以下、NOxという)などの有害物質を低減することが求められている。そこで、近年では、NOx発生量を効果的に低減させる予混合燃焼方式を採り入れた燃焼方式、例えば、希薄予混合燃焼方式と拡散燃焼方式とを組み合わせた複合燃焼方式が提案されている(特許文献1)。
 予混合燃焼方式を採り入れた場合、空気と燃料とを予め混合して燃料濃度を均一化した希薄な予混合気として燃焼させるので、局所的に火炎温度が高温となる燃焼領域が存在せず、かつ燃料の希薄化により全体的にも火炎温度を低くできることから、NOx発生量を効果的に低減できる。
特開平8-210641号公報
 一方で、予混合燃焼方式では、希薄な燃料による燃焼を保持するために、燃焼室内に強い旋回流を生じさせ逆流領域を形成することで保炎を行っているため、燃焼室で発生した火炎が予混合通路に伝播する逆火現象が生じやすい。近年、燃料に水素を利用するガスタービンエンジンが提案されているが、水素を含む反応性の高い燃料を使用するガスタービンエンジンでは、逆火現象が特に生じやすい。
 そこで、本発明の目的は、上記の課題を解決するために、局所的な高温燃焼を防止してNOxの発生を抑制し、かつ逆火現象を防止して安定的に火炎を保持できるガスタービンエンジンの燃焼装置を提供することにある。
 前記した目的を達成するために、本発明に係る燃焼装置は、内側に燃焼室を形成する燃焼筒と、前記燃焼筒の頂部に設けられ、複数の燃料噴射用環状部を含む燃料噴射部材および燃焼用空気を案内する複数の燃焼空気用環状部を含む空気ガイド部材を有し、前記燃料噴射用環状部と前記燃焼空気用環状部とが同心状に交互に配置され、前記燃焼室に燃料と空気を噴射する燃料噴射器と、前記燃焼室の下流域であって、前記燃焼筒の周壁に配置された追い焚きバーナと、を備え、前記燃料噴射用環状部は、その径方向に開口する複数の燃料噴射孔を有し、前記燃焼空気用環状部は、その軸心方向に開口し、前記燃料噴射孔から噴射される燃料に対して空気を案内する複数の空気ガイド溝を有する。
 この構成によれば、燃料噴射部材に形成された多数の燃料噴射孔から燃料が噴射され、微細な火炎が多点で保持される。また、燃料噴射孔から径方向に噴射された燃料が軸心方向に流れる空気によって90°偏向されるので、燃料噴射器外での混合が促進される。これにより、局所的な高温燃焼が防止され、低NOx燃焼が実現できる。また、燃料噴射孔から噴射された燃料に対して上流から空気が供給されるという構成によって、火炎が燃料噴射器の内部に入り込むことがないため、逆火現象が抑制される。
 更に、燃焼室の下流域の燃焼反応が進んだ領域に、追い焚きバーナを設けることにより、負荷変動への対応を実現できる。
 したがって、ガスタービンエンジンの燃料として、例えば水素を含む反応性の高い燃料を使用する場合にも、NOxの発生を抑制しながら、極めて安定した燃焼が維持される。
 本発明の一実施形態において、前記追い焚きバーナは、燃料と空気とを混合撹拌する予混合室を有し、前記予混合室で生成された予混合気を前記燃焼室内へ噴射するように構成されていることが好ましい。この構成によれば、燃焼室の下流域の燃焼反応が進んだ領域に、予混合式の追い焚きバーナを設けることにより、追い焚きバーナにおける逆火現象の発生を抑制しつつ、NOxのより一層の発生抑制を実現できる。
 本発明の一実施形態において、さらに、前記燃料噴射器の上流に設けられ、前記空気ガイド部材に供給される空気を整流する空気整流機構を備えていることが好ましい。この構成によれば、燃焼噴射部に対して均一な空気流が供給されるので、さらに燃焼が均一化することによってNOx発生が抑制されるとともに、より確実に逆火現象を防止できる。
 本発明の一実施形態において、燃焼装置の軸心上に設けられ、前記燃料噴射器を貫通して前記燃焼室に向かって突出する整流突起部材をさらに備えていることが好ましい。この構成によれば、燃料噴射器の径方向内側部分から噴射される燃料と空気によって形成される火炎が安定化されるので、燃焼が安定的に保持される。
 本発明の一実施形態において、前記整流突起部材は、支持部と、この支持部から前記燃焼室内に突出する突出部とを含み、前記支持部に形成されて、空気を前記整流突起部材の内部に導入する冷却空気導入孔と、前記突出部に形成されて、前記整流突起部材の内部に導入された空気を前記燃焼室に排出する冷却空気排出孔とを有することが好ましい。上記構成によれば、燃焼用空気の一部を利用して、突出部を内方から対流冷却によって冷却することができる。
 本発明の一実施形態において、前記燃料噴射用環状部は中空状に形成されており、前記燃料噴射用環状部内の中空空間が、燃料を周方向に流通させる環状の燃料流通路を形成していることが好ましい。燃料噴射用環状部の燃焼室に面した部分は、燃焼室内の火炎による高温に曝されるが、上記構成によれば、燃料噴射用環状部の内部に燃料が流れる環状の燃料流通路が形成されるため、高温に曝される当該部分は燃料流通路を流れる燃料によって効率的に冷却される。
 本発明の一実施形態において、前記燃料噴射用環状部は、前記燃焼室側に位置し、前記燃料噴射孔と連通する第1燃料流通路と、前記燃焼室とは反対側に位置し、前記燃料噴射孔から噴射される燃料が供給される第2燃料流通路と、前記第2燃料流通路内の燃料を前記第1燃料流通路の前記燃焼室側の壁面へ噴射する噴射ノズルと、を有することが好ましい。上記構成によれば、燃料を利用して、燃料噴射用環状部の燃焼室に面した壁を内方からインピンジメント冷却によって冷却することができる。
 本発明の一実施形態において、前記燃料噴射部材に燃料を供給する、多管式構造の燃料供給母管を有し、この燃料供給母管は、前記複数の燃料噴射用環状部の第1環状群に燃料を供給する第1供給通路と、前記複数の燃料噴射用環状部の第2環状群に燃料を供給する第2供給通路とを有することが好ましい。この構成によれば、燃料噴射部材のうち、燃料供給を行う燃料噴射用環状部と燃料供給を行わない燃料噴射用環状部とに分けることができるので、定格負荷から部分負荷までの出力変化に対応した運転(ステージング燃焼)が可能となる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施形態に係る燃焼装置が適用されるガスタービンエンジンの概略構成を示すブロック図である。 本発明の一実施形態に係る燃焼装置を示す断面図である。 本発明の一実施形態に係る燃焼装置を示す断面図である。 図2の燃焼装置に使用される燃料噴射器を示す正面図である。 図2の燃焼装置に使用される燃料噴射器の一部を拡大して示す正面図である。 図5Aの燃料噴射器の一変形例を示す正面図である。 図2の燃焼装置に使用される空気整流板の一例を示す斜視図である。 図2の燃焼装置に使用される空気整流板の他の例を示す斜視図である。 図2の燃焼装置に使用される空気整流板の他の例を示す斜視図である。 図2の燃焼装置に使用される空気整流板の他の例を示す斜視図である。 図2の燃焼装置の空気整流機構の一変形例を示す斜視図である。 図2の燃焼装置の空気整流機構の他の変形例を示す斜視図である。 図2の燃焼装置に使用される燃料噴射器を示す縦断面図である。 図2の燃焼装置に使用される燃料噴射器の変形例を示す縦断面図である。 図2の燃焼装置に使用される整流突起部材の内部構造を示す縦断面図である。 本発明をアニュラー式燃焼装置に適用した一実施形態に係る燃焼装置を示す断面図である。 図11の燃焼装置の部分破断斜視図である。 本発明をアニュラー式燃焼装置に適用した他の実施形態に係る燃焼装置を示す断面図である。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明は本実施形態に限定されるものではない。
 図1に、本発明の一実施形態に係る燃焼装置が適用されるガスタービンエンジン(以下、単にガスタービンと称する。)GTの概略構成を示す。ガスタービンGTでは、導入した空気を圧縮機1で圧縮して燃焼装置3に導き、燃料を燃焼装置3内に噴射して前記空気とともに燃焼させ、得られた高温高圧の燃焼ガスによりタービン5を駆動する。タービン5は圧縮機1に回転軸7を介して連結されており、タービン5によって圧縮機1が駆動される。このガスタービンGTの出力により、航空機のロータまたは発電機などの負荷Lを駆動する。本実施形態では、燃焼装置3に噴射される燃料として水素ガスを用いている。以下の説明において、ガスタービンGTの軸心方向における圧縮機1側を「前側」と呼び、タービン5側を「後側」と呼ぶ。
 図2は燃焼装置3を示す部分破断斜視図である。この燃焼装置3は、ガスタービンGTの軸心の周りに環状に複数個配置されるキャン型の燃焼装置である。燃焼装置3は、内側に燃焼室11を形成する燃焼筒13と、燃焼筒13の頂部13aに取り付けられて燃焼室11に燃料と空気を噴射する燃料噴射器15とを備えている。燃料噴射器15から噴射された燃料と空気に、燃焼筒13に設けられた点火プラグPで点火することにより、燃焼室11内に火炎が形成される。これら燃焼筒13および燃料噴射器15は、燃焼装置3の外筒となるほぼ円筒状のハウジングHに同心状に収容されている。ハウジングHの前端にはエンドカバー17がボルト19により固定されている。図3に示すように、エンドカバー17に、燃焼筒13から筒状に延びる支持筒21がボルト等で連結固定されることにより、燃焼筒13の頂部13aがハウジングHに取り付けられている。
 本実施形態では、燃焼装置3は空気Aと燃焼ガスGとの流動方向が逆向きの逆流型として構成されている。すなわち、燃焼装置3は、ハウジングHと燃焼筒13および支持筒21との間に形成された空気導入通路25を有しており、この空気導入通路25は、圧縮機1(図1)で圧縮された空気Aを、燃焼室11内の燃焼ガスGの流動方向と逆方向に導く。なお、燃焼装置3は、空気Aと燃焼ガスGとの流動方向が同じ向きの軸流型であってもよい。支持筒21の周壁の前端部には、複数の空気導入孔27が周方向に並べて設けられている。空気導入通路25を通って送られてきた空気Aは、空気導入孔27を通って、支持筒21の内方に形成された空気供給通路29に導入される。空気供給通路29に導入された空気Aは、後方、すなわち燃料噴射器15の方向へ送られる。また、空気供給通路29の中心部には、燃焼装置3の軸心Cに沿って延びる燃料供給母管31が設けられている。燃料供給母管31から、後述する燃料噴射部材34の燃料噴射用環状部33へと、燃料Fが供給される。空気供給通路29および燃料供給母管31の構成については後に詳述する。
 燃焼装置3は、燃焼室11の下流域であって、燃焼筒13の周壁に配置された、予混合式の追い焚きバーナ10を備えている。追い焚きバーナ10は、周方向に等間隔に複数(例えば4つ)設けられている。圧縮機1(図1)から空気導入通路25を通って送られてきた空気Aと、燃料供給系統(追い焚き用燃料供給路32)から送られてくる燃料Fとが、追い焚きバーナ10に導入される。本実施形態において、追い焚きバーナ10は予混合式であり、空気Aと燃料Fとを混合撹拌するための予混合室10aを有している。図3に示されるように、追い焚きバーナ10においては、空気Aは追い焚きバーナ10の側周面から予混合室10aに導入され、燃料Fは燃料供給系統から追い焚き用調整弁72を介して追い焚きバーナ10内に形成された燃料室10bに一時導入された後に、燃料噴射孔10cから予混合室10aに導入される。燃料噴射孔10cは、その先端が予混合室10a内に突出する燃料噴射ノズルとして設けられてもよい。これにより、追い焚きバーナ10の予混合室10aにおいて空気Aと燃料Fとの予混合気Mが生成される。予混合室10aで生成された予混合気Mは、燃焼室11の下流域に噴射される。
 追い焚きバーナ10は、メインバーナである燃料噴射器15による燃焼が概ね完了し高温の燃焼ガスGが発生している状態で作動されるため、追い焚きバーナ10から燃焼室11の下流域に噴射される予混合気Mは、高温の燃焼ガスGによって、NOxの発生を抑制しながら、安定して燃焼する。また、本実施形態における追い焚きバーナ10は保炎用の逆流領域を形成するための旋回流発生機構等(保炎機構)を必要としないため、逆火に対する耐性が高い。そのため、通常では予混合燃焼としては利用が困難な水素であっても、逆火の心配なく、追い焚きバーナ10の燃料として利用可能である。なお、追い焚きバーナ10は予混合式に限らず、拡散燃焼式であってもよい。
 図4に示すように、燃料噴射器15は、複数の燃料噴射用環状部33を有する燃料噴射部材34および複数の燃焼空気用環状部35を有する空気ガイド部材36を備えている。本実施形態では、径寸法が互いに異なる4つの燃料噴射用環状部33が、互いに同心状に、かつ燃焼装置3(図2)と同心状に配置されている。また、径寸法が互いに異なる5つの燃焼空気用環状部35が、互いに同心状に、かつ燃焼装置3(図2)と同心状に配置されている。更に、燃料噴射用環状部33と燃焼空気用環状部35とは、それぞれの中心軸を同一として交互に配置されている。つまり、燃料噴射用環状部33と燃焼空気用環状部35とは、同心状に交互に配置されている。また、本実施形態では、燃料噴射器15は、4つの燃料噴射用環状部33と5つの燃焼空気用環状部35を有しているが、これらの数は適宜変更可能であり、例えば、3つの燃料噴射用環状部33と4つの燃焼空気用環状部35としても良い。
 本実施形態では、4つの燃料噴射用環状部33および5つの燃焼空気用環状部35は同一の軸心方向位置に設けられている(図3)。もっとも、4つの燃料噴射用環状部33および5つの燃焼空気用環状部35の軸心方向位置は互いにずれていてもよい。例えば、4つの燃料噴射用環状部33の軸心方向位置が順に前後にずれるように配置してもよく、5つの燃焼空気用環状部35の軸心方向位置は、対応する燃料噴射用環状部33の軸心方向位置に合わせて、順に前後にずれるように配置してもよい。
 図5に示すように、燃料噴射部材34の燃料噴射用環状部33には、径方向Rに開口する燃料噴射孔39が周方向Qに複数設けられている。各燃料噴射孔39から燃料Fが噴射される。また、図8に示すように、燃料噴射部材34の燃料噴射用環状部33は、断面外形がほぼ矩形に形成されており、燃焼室11に面する後壁33aが、軸心C方向に垂直となるよう配置されている。図示の例では、燃料噴射孔39は、燃料噴射部材34の燃料噴射用環状部33の外径側および内径側のいずれにも設けられている。換言すれば、燃料噴射孔39は、燃料噴射用環状部33の外周壁および内周壁のそれぞれに、外周壁および内周壁を径方向Rに貫通する貫通孔として設けられている。もっとも、燃料噴射孔39は、燃料噴射部材34の外径側および内径側のいずれか一方のみに設けられていてもよい。また、燃料噴射孔39は、径方向Rに対して軸心C方向に、-10°から+80°までの範囲で傾斜していてもよい。ここで、径方向Rに対して軸心C方向上流側に燃料噴射孔39が傾斜する場合の傾斜角をマイナスの傾斜角とし、径方向Rに対して軸心C方向下流側に燃料噴射孔39が傾斜する場合の傾斜角をプラスの傾斜角とする。
 空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39から噴射された燃料Fに対して空気Aを案内する。より具体的には、空気ガイド部材36は、燃料Fに対して、空気Aを空気供給通路29の上流側から軸心C方向に案内する。空気ガイド部材36は、円環板状の複数の燃焼空気用環状部35を有している。燃料噴射部材34の燃料噴射用環状部33と空気ガイド部材36の燃焼空気用環状部35とは、それぞれの中心軸を同一として交互に配置されている。図5に示すように、各空気ガイド部材36の燃焼空気用環状部35には、燃料噴射部材34の各燃料噴射孔39に対応する周方向位置に、径方向に凹む空気ガイド溝41が形成されている。すなわち、図示の例では、燃料噴射部材34の燃料噴射用環状部33の径方向外側に位置する空気ガイド部材36の燃焼空気用環状部35の内径側に、径方向外方に凹む空気ガイド溝41が形成されており、燃料噴射用環状部33の径方向内側に位置する燃焼空気用環状部35の外径側に、径方向内方に凹む空気ガイド溝41が形成されている。
 図4に示すように、本実施形態では、2つの燃料噴射用環状部33の間に、1つの燃焼空気用環状部35を配置し、この燃焼空気用環状部35の外径側および内径側の両方に空気ガイド溝41を設けている。したがって、燃料噴射器15は、4つの燃料噴射用環状部33を有する燃料噴射部材34と、5つの燃焼空気用環状部35を有する空気ガイド部材36と、を備えている。具体的には、最外周側の燃料噴射用環状部33の外周側に配置される燃焼空気用環状部35,4つの燃料噴射用環状部33の各間に配置される3つの燃焼空気用環状部35および最内径側の燃料噴射用環状部33の内周側に配置される燃焼空気用環状部35が設けられている。空気ガイド部材36のうち最外周に配置された燃焼空気用環状部35の外周は、環状の支持リング部材43によって覆われている。図2に示すように、支持リング部材43を燃焼筒13に連結することにより、燃料噴射器15が燃焼筒13に支持される。
 図8、9に示すように、空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39よりも前側、すなわち空気Aの流れ方向における上流側に配置されている。このように、各燃料噴射孔39から噴射される燃料Fに対して上流から空気Aを軸心C方向に案内するように空気ガイド部材36を設けることにより、燃料Fと空気Aとが互いにほぼ直交する向きで交わることとなり、燃料噴射器15外にて燃料Fと空気Aを均一に混合させることができる。
 なお、図5Bに本実施形態の変形例として示すように、空気ガイド部材36の各燃焼空気用環状部35に、複数の冷却孔45が設けられていてもよい。複数の冷却孔45は、燃焼空気用環状部35の周方向に等間隔に配置されている。冷却孔45は、燃焼空気用環状部35を前側から後側へ貫通する、断面がほぼ円形の貫通孔として形成されている。図示の例では、各冷却孔45は、燃焼空気用環状部35内を周方向に傾斜して延びるように形成されている。したがって、燃焼空気用環状部35表面における冷却孔45の開口の形状は、周方向に長い楕円形状となっている。このように、燃焼空気用環状部35に冷却孔45を設けた場合、空気供給通路29(図3)を流れてきた空気Aが、冷却孔45を通った後に、燃焼空気用環状部35の燃焼室側表面に吹き出して、周方向に沿って空気のフィルム層を形成し、この表面をエフュージョン冷却する。なお、冷却孔45は、周方向に傾斜していることが好ましいが、傾斜方向はこれに限定されない。また、冷却孔45は必ずしも傾斜していなくともよく、軸心方向に平行に延びる貫通孔であってもよい。
 図2に示すように、空気供給通路29には、空気導入孔27から空気供給通路29に導入された空気Aを空気ガイド部材36へ向かう均一な流れに整流する空気整流機構として空気整流板47が設けられている。空気整流板47は、円板状の部材であり、軸心方向に貫通する貫通孔49を複数有している。空気整流板47は、図3の支持筒21の内径に一致する外径を有するとともに、中心部に燃料供給母管31の外径に一致する内径の嵌合孔51を有している。本実施形態では、空気整流板47の嵌合孔51から、燃料供給母管31の外周面に嵌合する筒状の嵌合部53が軸心C方向前方に突設されている。空気整流板47は、嵌合部53の前端に設けられたフランジ55を介してエンドカバー17に整流板ボルト57によって連結固定されている。
 図示の例では、空気整流板47は、同一径の円形の貫通孔49を複数有している。より詳細には、これら複数の貫通孔49は、空気整流板47の同一の径方向位置に周方向に沿って等間隔に配列された環状の貫通孔49の列が、径方向に等間隔に複数列設けられた状態に配置されている。つまり、空気整流板47は、同一円周上に等間隔に配置された環状の貫通孔49の列を有し、その列はその中心を同一として複数設けられている。図6Aに、前記空気整流板47、嵌合部53およびフランジ55からなる空気整流機構を示す。
 もっとも、空気整流板47における複数の貫通孔49の形状、数および配置は図6Aの態様に限定されず、適宜設定してよい。例えば、図6Bに示すように、空気整流板47の内周縁部および外周縁部には、多数の同一径の円形の貫通孔49からなる列を設け、内周縁部および外周縁部との中間部に、より大径の円形の貫通孔49からなる列を設けてもよい。また、図6Cに示すように、空気整流板47の内周縁部に多数の同一径の円形の貫通孔49からなる列を設け、その外周側に、その長径方向が空気整流板47の径方向と一致する長円形の貫通孔49の列を設けてもよい。また、図6Dに示すように、その長径方向が空気整流板47の径方向と一致する長円形の貫通孔49の列のみを設けてもよい。
 空気整流板47における貫通孔の形状、数および配置をどのように設定する場合にも、空気整流板47全体の面積に対する全貫通孔49の合計面積の割合(開孔率)は、整流効果と圧力損失のバランスを考慮して、20~50%の範囲にあることが好ましく、30~40%の範囲にあることがより好ましい。
 また、空気導入孔27から空気供給通路29に導入された空気Aを燃料噴射器15へ向かう均一な流れに整流する空気整流機構として、空気整流板47の代わりに、図7A,7Bに示すように、整流ダクト61を設けてもよい。図7Aは、空気導入孔27の上流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61aと、空気導入孔27の下流側から燃料噴射器15まで、下流側に向かって拡径となるように延びた整流ダクト61bと、を有する整流ダクト61を示している。図7Bは、空気導入孔27の上流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61aと、空気導入孔27の中心位置から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61cと、空気導入孔27の下流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61dと、を有する整流ダクト61を示している。空気整流機構として空気整流板47や整流ダクト61を設けることにより、燃料噴射器15に対して均一な空気流が供給されるので、均一な燃焼によってNOx発生が抑制されるとともに、確実に逆火現象を防止できる。
 また、図3に示すように、燃焼装置3には、その軸心C上に位置し、燃料噴射器15を貫通して燃焼室11に向かって突出する整流突起部材63が設けられている。整流突起部材63は、空気供給通路29内に位置し、円筒形状を有する支持部63aと、燃焼室11内に位置する突出部63bとからなる。図示の例では、整流突起部材63は燃料噴射器15に取り付けられているが、燃料供給母管31に取り付けられてもよい。いずれの場合も、整流突起部材63の支持部63aの前端(燃料供給母管31側の端部)は燃料噴射器15よりも上流に位置している。突出部63bは、その先端部がほぼ半球状に形成されている。整流突起部材63は省略してもよいが、整流突起部材63を設けることにより、燃焼室11内の軸心C位置付近において、燃料噴射器15の径方向内側に位置する燃料噴射用環状部33から噴射される燃料と、燃焼空気用環状部35から供給される空気とによって形成される火炎が安定的に保持される。
 なお、燃料噴射器15を構成する燃料噴射部材34、空気ガイド部材36、支持リング部材43および整流突起部材63は、一体的に形成してもよく、それぞれ別体に形成したうえで、例えば径方向にピンを挿通することにより互いに連結してもよい。
 次に、燃焼装置3における燃料噴射部材34への燃料供給構造について説明する。本実施形態の燃焼装置3は、燃料噴射部材34の各燃料噴射用環状部33に独立に燃料Fを供給可能な複数の燃料供給路を有している。具体的には、燃料供給母管31と各燃料噴射用環状部33とは、互いに独立に分岐する複数の分岐燃料供給管66によって接続されている。燃料供給母管31は、複数(図示の例では2つ)の円筒管、つまり内側の第1燃料供給管64と、その外側に配置された第2燃料供給管65とを同心状に重ねた多管式構造(二重管構造)を有している。第1燃料供給管64の内方空間が、第1燃料供給路67を形成し、第1燃料供給管64と第2燃料供給管65との間の空間が、第2燃料供給路69を形成している。外部から、燃料供給母管31内の各燃料供給路67,69に導入された燃料Fは、各分岐燃料供給管66内に形成された燃料供給路を通って各燃料噴射用環状部33へ供給される。本実施形態では、第1燃料供給路67を通った燃料Fは、第1燃料供給管64に接続された2つの分岐燃料供給管66を介して、複数の燃料噴射用環状部33のうちの内径側に配置された2つの燃料噴射用環状部33(以下、「第1環状部群」という。)へ供給され、第2燃料供給路69を通った燃料Fは、第2燃料供給管65に接続された2つの分岐燃料供給管66を介して、複数の燃料噴射用環状部33のうちの外径側に配置された2つの燃料噴射用環状部33(以下、「第2環状部群という。」)へ供給される。第1燃料供給路67の、ハウジングHの外部に延設された上流部67aと、第2燃料供給路69、ハウジングHの外部に延設された上流部69aには、それぞれ、燃料流量を調節できる調節弁71が設けられている。各燃料供給路67,69の調節弁71の開度を調節することにより、燃料噴射用環状部33の各環状部群へ供給される燃料Fの流量を独立に制御することができる。
 なお、それぞれ独立に燃料Fが供給される単位となる環状部群を構成する燃料噴射用環状部33の数は、上記の例に限定されない。例えば、1つの燃料噴射用環状部33がそれぞれ1つの環状部群を構成(計4つの環状部群を構成)してもよく、内径側の2つの燃料噴射用環状部33で1つの環状部群を構成し、外径側の2つの燃料噴射用環状部33が、それぞれ1つの環状部群を構成(計3つの環状部群を構成)してもよい。構成される環状部群の数に対応して、燃料供給路の数および調節弁の数が設定される。
 このような燃料供給構造とすることにより、ガスタービンGTの負荷に応じて燃料噴射部材34の各燃料噴射用環状部33への燃料供給量を独立に制御できる。つまり、燃料噴射部材34のうち、燃料供給を行う燃料噴射用環状部33と燃料供給を行わない燃料噴射用環状部33とに分けることができるので、定格負荷から部分負荷までの出力変化に対応した運転(ステージング燃焼)が可能となる。本実施形態のように、燃料Fを燃料噴射部材34の多数の燃料噴射孔39に分散させて噴射する場合には、すべての燃料噴射用環状部33から平均的に燃料供給量を変化させるよりも、作動させる燃料噴射用環状部33と作動しない燃料噴射用環状部33を選択することによって負荷変動に対応することが、安定的かつ低NOx燃焼のために効果的である。本実施形態では、1つの燃料供給源(図示せず)から複数の燃料供給路67,69を分岐させて、各燃料供給路67,69に設けた調節弁71によって燃料供給量を独立に制御するが、複数の燃料供給源から独立に各燃料供給路67,68に燃料Fを供給するように構成してもよい。
 なお、燃料噴射部材34の各燃料噴射用環状部33に接続される分岐燃料供給管66の数は、各燃料噴射用環状部33の燃料噴射量に応じて適宜設定してよい。例えば、内径側に配置された燃料噴射用環状部33に接続される分岐燃料供給管66の数を少なくし、外径側に配置された燃料噴射用環状部33に接続される分岐燃料供給管66の数を多くすることが好ましい。一つの燃料噴射用環状部33に複数の分岐燃料供給管66を接続する場合、その燃料噴射用環状部33における接続位置は、周方向に等間隔であることが好ましい。
 また、燃料供給母管31の多管式構造は、複数の管を用いて互いに独立した複数の燃料供給路を形成できるのであれば、図3の例に限らない。例えば、1つの大径の母管の中に、これより小径の同一径の複数の燃料供給管を平行に延設した多管式構造でもよい。もっとも、本実施形態のように、燃料供給母管31を互いに異なる径を有する複数の燃料供給管を同心状に重ねた多管式構造として、最内径側の燃料供給管の内方空間および各管の間の空間を燃料供給路とした場合は、より大量の燃料を要する外径側の燃料噴射用環状部33に供給する外径側の燃料供給路(図3の例では第2燃料供給路69)の流路面積を大きくし、より小量の燃料を要する内径側の燃料噴射用環状部33に供給する内径側の燃料供給路(図3の例では第1燃料供給路67)の流路面積を小さく設定することが容易となる。
 次に、燃焼室11に面して燃焼室11の高温に曝される部材である燃料噴射部材34および整流突起部材63の内部冷却構造、または防熱構造について説明する。
 燃料噴射部材34については、上述のように、燃料噴射部材34の燃焼室11に面する後壁33aが、軸心C方向に垂直に設けられている。図8に示すように、空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39から噴射された燃料Fに対して上流側から供給される空気Aを軸心C方向に案内する。燃料噴射用環状部33は中空状に形成されており、この中空空間が、燃料噴射用環状部33内に燃料Fを周方向に流通させる環状の燃料流通路73を形成している。つまり、燃料噴射部材34の後壁33aと環状の燃料流通路73の内壁の一部とは同じ壁であって、燃焼室側の璧面が後壁面33ab、燃料流通路側の壁面が内壁面33aaとなっている。
 分岐燃料供給管66は、燃料噴射部材34の前壁(空気供給通路29側の壁)33b側から環状の燃料流通路73aに、燃料Fを供給するように接続されている。燃料噴射部材34の燃料噴射用環状部33の内部には、燃焼装置3の軸心C方向に区画された2つの環状の燃料流通路73a、73bが形成されている。すなわち、燃料噴射用環状部33の内部には、後側(燃焼室11側)に位置して燃料噴射孔39に燃料Fを供給する下流側燃料流通路73b(第1燃料流通路)と、前側(空気供給通路29側)に位置して燃料Fが直接供給される上流側燃料流通路73a(第2燃料流通路)とが形成されている。
 上流側燃料流通路73aと下流側燃料流通路73bとを区画する環状の第1区画壁77には、上流側燃料流通路73aから下流側燃料流通路73bへと燃料を導く貫通孔が周方向に並んで複数設けられている。この貫通孔が、2つの燃料流通路73a、73bを連通させ、燃料Fを上流側燃料流通路73aから下流側燃料流通路73bへ送給する送給孔79として機能する。分岐燃料供給管66から上流側燃料流通路73aへ導入された燃料Fは、上流側燃料流通路73aを周方向に流れながら、送給孔79を通って順次下流側燃料流通路73b内へ流入する。送給孔79から下流側燃料流通路73bへ流入した燃料Fは、後壁33aの内壁面33aaに衝突して下流側燃料流通路73b内を周方向に流れながら、燃料噴射孔39へ導かれる。このように、燃料噴射部材34の燃料噴射用環状部33内部を、燃焼装置3の軸心C方向に上流側燃料流通路73aと下流側燃料流通路73bとに区画することにより、燃料Fが周方向に均一に分布した状態で燃料噴射孔39へ供給される。
 また、下流側燃料流通路73bへ流入した燃料Fが後壁33aの内壁面33aaに衝突することにより、燃料Fが後壁33aをインピンジメント冷却する。図示の例では、第1区画壁77に、後方へ突出するノズル壁81を周方向に延設し、このノズル壁81内に、送給孔79を周方向に複数設けている。ノズル壁81は、上流側燃料流通路部73a内の燃料Fを下流側燃料流通路部73bの燃焼室11側の壁面である背面33aaへ噴射する噴射ノズルを形成する。つまり、燃料噴射用環状部33は、燃焼室11側に位置し、燃料噴射孔39と連通する下流側燃料流通路73bと、燃焼室11とは反対側に位置し、燃料噴射孔39から噴射される燃料Fが供給される上流側燃料流通路73aと、上流側燃料流通路73a内の燃料Fを下流側燃料流通路73bの燃焼室11側の内壁面33aaへ噴射する噴射ノズルと、を有する。これにより、燃料Fが下流側燃料流通路73bの燃焼室11側の内壁面33aaへ噴き付けられ、内壁面33aaがインピンジメント冷却によって冷却される、つまり、後壁33aが燃料Fによってきわめて効果的に冷却される。なお、噴射ノズルは、ノズル壁81を必ずしも有さなくてもよく、第1区画壁77内に形成された絞りノズルであってもよい。さらに、燃料Fが送給孔79から噴射される後壁33aの内壁面33aaから燃料噴射孔39までの流通経路の中途に、周方向に延びる突壁83を後壁33aの内壁面33aaに突設することにより、燃料Fが下流側燃料流通路73b内を流れることによる対流冷却の効果を一層高めている。
 また、燃料噴射部材34の燃料噴射用環状部33内に設けられる燃料流通路73の形状としては、図9に示す変形例のように、一つの燃料流通路73のみを設けてもよい。この場合は、燃料Fを利用して、燃料噴射用環状部33の燃焼室11に面した後壁33aを内方(内壁面33aa側)から対流冷却によって冷却することができる。
 また、各分岐燃料供給管66から供給される燃料Fが燃料流通路73内をほぼ均等に流れ、対流冷却の効果を十分に発揮できるように、燃料Fが燃料流通路73から燃料噴射孔39に導かれる途中に第2区画壁87を設けてもよい。つまり、環状の燃料流通路73は、外周側区画壁87aと内周側区画壁87bとによって、3つの環状の空間に分割されていてもよい。
 更に、後壁33aの後壁面33abに遮熱板85を設けてもよい。遮熱板85を形成する材質としては、例えば、耐腐食性及び耐熱性を有する合金であるHastelloy-X(Haynes International.Inc.:登録商標)、HA188(Haynes International.Inc.:登録商標)、若しくはこれらとセラミックコーティングとの組み合わせたもの等を使用することができる。また、図8に示す実施例においても、遮熱板85を選択的に組み合わせることが可能である。
 図10に示すように、整流突起部材63は、全体として中空状に形成されている。整流突起部材63の支持部63aは、有底の円筒状部材からなり、その前端(上流端)の周壁には、径方向の貫通孔である冷却空気導入孔91が設けられている。冷却空気導入孔91は、支持部63aの前端の周壁の周方向に等間隔に複数形成されている。整流突起部材63の突出部63bは、燃焼室側(図10の右側)に向かって縮径となるドーム形状の内側壁93と外側壁95からなる二重壁構造を有している。なお、突出部63bは、ドーム形状でなくてもよく、円柱形状であってもよい。また、突出部63bは、二重壁構造でなくてもよく、外壁だけの単壁構造であってもよい。突出部63bの内側壁93の周壁には、径方向の貫通孔である第1冷却空気噴射孔97が設けられている。第1冷却空気噴射孔97は、内側壁93の周壁の周方向及び軸心方向に等間隔に複数形成されている。さらに、突出部63bの外側壁95の周壁には、径方向に対して後方に傾斜して延びる貫通孔である第2冷却空気噴射孔98が複数設けられている。複数の第2冷却空気噴射孔98は、外側壁95の周壁の周方向及び軸心方向に等間隔に配置されている。
 突出部63bの外側壁95の先端部中央には、軸心方向の貫通孔である冷却空気排出孔99が設けられている。つまり、整流突起部材63は、その支持部63aの前端に形成され、燃料噴射器15よりも上流の空気Aをその内部に導入する冷却空気導入孔91と、その突出部63bに形成され、その内部に導入された空気Aを燃焼室11に排出する冷却空気排出孔99とを有している。
 支持部63aと突出部63bの内側壁93によって形成される内方空間Sと、突出部63bの内側壁93と外側壁95によって形成される隙間Gとが、内側壁93の第1冷却空気噴射孔97のみを介して連通する。図示の例では、支持部63aの開口縁部には、嵌合突壁63aaが突設されており、この嵌合突壁63aaの内周側に内側壁93の開口縁部93aが嵌合し、嵌合突壁63aaの外周側に外側壁95の開口縁部95aが嵌合する。これにより、支持部63aと突出部63bとが連結されている。
 突出部63bが外壁だけの単壁構造の場合は、空気供給通路29の空気Aの一部は、冷却空気導入孔91から整流突起部材63の内方空間Sに流入し、冷却媒体として、燃焼室11に面した突出部63bを内方から対流による冷却を行いながら、冷却空気排出孔99から燃焼室11へ排出される。更に、突出部63bが内側壁93と外側壁95からなる二重壁構造の場合は、冷却空気導入孔91から整流突起部材63の内方空間Sに流入した空気Aの一部は、冷却媒体として、内側壁93の第1冷却空気噴出孔97から径方向に噴射される。この空気Aは、外側壁95の内周面に衝突し、この内周面に沿って内側壁93と外側壁95との間の隙間Gである冷却通路を通って冷却空気排出孔99から燃焼室11へ排出される。このように空気Aが外側壁95の内周面に衝突し、内周面に沿って流れることにより、外側壁95が内部からインピンジメント冷却される。また、内側壁93と外側壁95との間の隙間Gに流入した空気Aの一部は、外側壁95の第2冷却空気噴射孔98を通って燃焼室11へ排出される。第2冷却空気噴射孔98から吹き出された空気Aは、外側壁95の表面に空気のフィルム層を形成し、外側壁95を外部からエフュージョン冷却する。このようにして、整流突起部材63の焼損を防止できる。なお、第2冷却空気噴射孔98は省略してもよい。
 さらに、外側壁95の外周面は、断熱材100によってコーティングされてもよい。断熱材100としては、セラミックスや、耐腐食性及び耐熱性を有する合金であるHastelloy-X(Haynes International.Inc.:登録商標)、HA188(Haynes International.Inc.:登録商標)等を使用することができる。断熱材100によるコーティングを施すことにより、さらに確実に整流突起部材63の焼損を防止することができる。
 以上説明したように、本実施形態に係る図2に示すガスタービンの燃焼装置3によれば、燃料噴射器15は複数の燃料噴射用環状部33を有する燃料噴射部材34を備えており、燃料噴射用環状部33はその外周面に多数の燃料噴射孔39を有しているので、燃料噴射器15の全面から均一に燃料Fが噴射されることになる。これにより、燃料噴射器15の全面において微細な火炎が多点で保持される。これにより、局所的な高温燃焼の発生が防止され、低NOx燃焼が実現できる。また、燃料噴射孔39から噴射された燃料Fに対して上流から空気Aが供給されるという構成によって、火炎が燃料噴射器15の内部に入り込むことがないため、逆火現象が抑制される。
 さらに、燃焼装置3は、燃焼室11の下流域であって、燃焼筒13の周壁に配置された、予混合式の追い焚きバーナ10を備えている。追い焚きバーナ10は、メインバーナである燃料噴射器15による燃焼が概ね完了し高温の燃焼ガスGが発生している状態で作動されるため、追い焚きバーナ10から燃焼室11の下流域に噴射される予混合気Mは、高温の燃焼ガスGによって、NOxの発生を抑制しながら、安定して燃焼する。また、本実施形態における追い焚きバーナ10は保炎用の逆流領域を形成するための旋回流発生機構等(保炎機構)を必要としないため、逆火に対する耐性が高い。したがって、ガスタービンGTの燃料として、水素を含む反応性の高い燃料を使用する場合にも、NOxの発生を抑制しながら、極めて安定した燃焼が維持される。
 なお、本実施形態の燃焼装置3に利用される燃料Fは、水素ガスに限定されず、例えば、液体の水素でもよく、水素ガスと他の燃料ガス(天然ガス、COなど)の混合燃料でもよく、さらには水素を含まない他の燃料ガス(天然ガス、COなど)であってもよい。また、本実施形態では、キャン型の燃焼装置3を例として説明したが、アニュラー型の燃焼装置にも上記構成を適用することができる。
 本発明を順流式のアニュラー型燃焼装置に適用した実施形態を図11,12に、逆流式のアニュラー型燃焼装置に適用した実施形態を図13に示す。これらの実施形態に係る燃焼装置3は、内側に燃焼室11を形成する燃焼筒13と、燃焼筒13の頂部に設けられ、複数の燃料噴射用環状部33を含む燃料噴射部材34および燃焼用空気を案内する複数の燃焼空気用環状部35を含む空気ガイド部材36を有し、燃料噴射用環状部33と燃焼空気用環状部35とが同心状に交互に配置され、燃焼室11に燃料と空気を噴射する燃料噴射器15と、燃焼室11の下流域であって、燃焼筒13の周壁に配置された追い焚きバーナ10とを備えている点で図2の実施形態と共通する。上記実施形態について図5とともに説明したように、燃料噴射用環状部33は、その径方向Rに開口する複数の燃料噴射孔39を有し、燃焼空気用環状部35は、その軸心方向に開口し、燃料噴射孔39から噴射される燃料Fに対して空気Aを案内する複数の空気ガイド溝41を有している。
 図11に示す順流式アニュラー型の燃焼装置3では、燃焼筒13が、筒状の内壁101と、内壁101の外側に内壁と同心状に配置された外壁103とによって構成されており、内壁101と外壁103の間の空間が環状の燃焼室11を形成している。圧縮機1(図1)で圧縮された空気Aは、前方からディフューザ105を介して環状の燃焼器ハウジングH内に導入され、さらに燃料噴射器15へ供給される。燃料噴射器15の前方は、空気整流機構である空気整流カウル107によって覆われている。図12に示すように、空気整流カウル107は、前方に膨出する断面形状を有する環状の部材であり、空気Aを通過させる多数の孔が形成されている。
 図13に示す逆流式アニュラー型の燃焼装置3においても、燃焼筒13は、筒状の内壁101と、内壁101の外側に内壁と同心状に配置された外壁103とによって構成されており、内壁101と外壁103の間の空間が環状の燃焼室11を形成している。圧縮機1(図1)で圧縮された空気Aは、後方から、ハウジングHと燃焼筒13との間に形成された空気導入通路25を通った後、燃料噴射器15へ供給される。燃料噴射器15の前方は、空気整流機構である空気整流カウル107によって覆われている。空気整流カウル107は、図12に示す例と同様、前方に膨出する断面形状を有する環状の部材であり、空気を通過させる多数の孔が形成されている。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
3 燃焼装置
10 追い焚きバーナ 
11 燃焼室
13 燃焼筒
15 燃料噴射器
33 燃料噴射用環状部
34 燃料噴射部材
35 燃焼空気用環状部
36 空気ガイド部材
39 燃料噴射孔
41 空気ガイド溝
A 空気
C 燃焼装置軸心
F 燃料

Claims (8)

  1.  内側に燃焼室を形成する燃焼筒と、
     前記燃焼筒の頂部に設けられ、複数の燃料噴射用環状部を含む燃料噴射部材および燃焼用空気を案内する複数の燃焼空気用環状部を含む空気ガイド部材を有し、前記燃料噴射用環状部と前記燃焼空気用環状部とが同心状に交互に配置され、前記燃焼室に燃料と空気を噴射する燃料噴射器と、
     前記燃焼室の下流域であって、前記燃焼筒の周壁に配置された追い焚きバーナと、
    を備え、
     前記燃料噴射用環状部は、その径方向に開口する複数の燃料噴射孔を有し、
     前記燃焼空気用環状部は、その軸心方向に開口し、前記燃料噴射孔から噴射される燃料に対して空気を案内する複数の空気ガイド溝を有する、燃焼装置。
  2.  請求項1に記載の燃焼装置において、前記追い焚きバーナは、燃料と空気とを混合撹拌する予混合室を有し、前記予混合室で生成された予混合気を前記燃焼室内へ噴射する、
    燃焼装置。
  3.  請求項1または2に記載の燃焼装置において、さらに、前記燃料噴射器の上流に設けられ、前記空気ガイド部材に供給される空気を整流する空気整流機構を備える燃焼装置。
  4.  請求項1から3のいずれか一項に記載の燃焼装置において、燃焼装置の軸心上に設けられ、前記燃料噴射器を貫通して前記燃焼室に向かって突出する整流突起部材をさらに備える燃焼装置。
  5.  請求項4に記載の燃焼装置において、前記整流突起部材は、支持部と、この支持部から前記燃焼室内に突出する突出部とを含み、前記支持部に形成されて、空気を前記整流突起部材の内部に導入する冷却空気導入孔と、前記突出部に形成されて、前記整流突起部材の内部に導入された空気を前記燃焼室に排出する冷却空気排出孔とを有する燃焼装置。
  6.  請求項1から5のいずれか一項に記載の燃焼装置において、前記燃料噴射用環状部は中空状に形成されており、
     前記燃料噴射用環状部内の中空空間が、燃料を周方向に流通させる環状の燃料流通路を形成している燃焼装置。
  7.  請求項6に記載の燃焼装置において、前記燃料噴射用環状部は、前記燃焼室側に位置し、前記燃料噴射孔と連通する第1燃料流通路と、前記燃焼室とは反対側に位置し、前記燃料噴射孔から噴射される燃料が供給される第2燃料流通路と、前記第2燃料流通路内の燃料を前記第1燃料流通路の前記燃焼室側の壁面へ噴射する噴射ノズルと、を有する燃焼装置。
  8.  請求項1から7のいずれか一項に記載の燃焼装置において、前記燃料噴射部材に燃料を供給する、多管式構造の燃料供給母管を有し、
     この燃料供給母管は、前記複数の燃料噴射用環状部の第1環状群に燃料を供給する第1供給通路と、前記複数の燃料噴射用環状部の第2環状群に燃料を供給する第2供給通路とを有する燃焼装置。
PCT/JP2015/065477 2014-05-30 2015-05-28 ガスタービンエンジンの燃焼装置 WO2015182727A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016523566A JP6285022B2 (ja) 2014-05-30 2015-05-28 ガスタービンエンジンの燃焼装置
CN201580028575.7A CN106537042B (zh) 2014-05-30 2015-05-28 燃气涡轮发动机的燃烧装置
EP15800273.3A EP3150918B1 (en) 2014-05-30 2015-05-28 Combustion device for gas turbine engine
AU2015268509A AU2015268509B2 (en) 2014-05-30 2015-05-28 Combustion device for gas turbine engine
CA2950566A CA2950566A1 (en) 2014-05-30 2015-05-28 Combustion device for gas turbine engine
US15/363,105 US20170074521A1 (en) 2014-05-30 2016-11-29 Combustion device for gas turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014113269 2014-05-30
JP2014-113269 2014-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/363,105 Continuation US20170074521A1 (en) 2014-05-30 2016-11-29 Combustion device for gas turbine engine

Publications (1)

Publication Number Publication Date
WO2015182727A1 true WO2015182727A1 (ja) 2015-12-03

Family

ID=54699050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065477 WO2015182727A1 (ja) 2014-05-30 2015-05-28 ガスタービンエンジンの燃焼装置

Country Status (7)

Country Link
US (1) US20170074521A1 (ja)
EP (1) EP3150918B1 (ja)
JP (1) JP6285022B2 (ja)
CN (1) CN106537042B (ja)
AU (1) AU2015268509B2 (ja)
CA (1) CA2950566A1 (ja)
WO (1) WO2015182727A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110955A1 (ja) * 2015-12-22 2017-06-29 川崎重工業株式会社 燃料噴射装置
WO2018212001A1 (ja) * 2017-05-16 2018-11-22 川崎重工業株式会社 ガスタービン燃焼器およびその運転方法
JP2019002400A (ja) * 2017-06-13 2019-01-10 ゼネラル・エレクトリック・カンパニイ 燃料供給アセンブリおよび関連する方法
JP2019100571A (ja) * 2017-11-29 2019-06-24 川崎重工業株式会社 バーナ装置
JP2020535381A (ja) * 2017-07-21 2020-12-03 キュッパース・ソリューションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バーナー
WO2022050259A1 (ja) * 2020-09-04 2022-03-10 三菱重工業株式会社 ガスタービン燃焼器の多孔板、ガスタービン燃焼器及びガスタービン
WO2022249938A1 (ja) * 2021-05-28 2022-12-01 川崎重工業株式会社 ガスタービン燃焼器
CN115597087A (zh) * 2022-08-12 2023-01-13 中国航发沈阳发动机研究所(Cn) 一种扩张型射流孔的氢燃料燃烧室头部结构
WO2023145218A1 (ja) * 2022-01-31 2023-08-03 株式会社Ihi 燃焼装置およびガスタービンシステム
JP7470855B1 (ja) 2023-09-19 2024-04-18 東京瓦斯株式会社 水素燃焼式ダクトバーナ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2950558C (en) * 2014-05-30 2020-10-20 Kawasaki Jukogyo Kabushiki Kaisha Combustor for gas turbine engine
US10364751B2 (en) * 2015-08-03 2019-07-30 Delavan Inc Fuel staging
US10215038B2 (en) * 2016-05-26 2019-02-26 Siemens Energy, Inc. Method and computer-readable model for additively manufacturing ducting arrangement for a gas turbine engine
CN108731029B (zh) 2017-04-25 2021-10-29 帕克-汉尼芬公司 喷气燃料喷嘴
JP6941576B2 (ja) * 2018-03-26 2021-09-29 三菱パワー株式会社 燃焼器及びそれを備えるガスタービン
JP7260365B2 (ja) * 2019-03-29 2023-04-18 川崎重工業株式会社 予混合燃焼バーナ
FR3101696B1 (fr) * 2019-10-08 2021-10-29 Safran Helicopter Engines Canne de prevaporisation pour une chambre de combustion de turbomachine
CN113531584B (zh) * 2020-04-15 2023-05-23 上海慕帆动力科技有限公司 燃气轮机的燃烧装置
CN113932253B (zh) * 2020-06-29 2022-10-18 中国航发商用航空发动机有限责任公司 燃烧室头部、燃烧室、燃气涡轮发动机及燃烧控制方法
KR102382634B1 (ko) * 2020-12-22 2022-04-01 두산중공업 주식회사 연소기용 노즐, 연소기 및 이를 포함하는 가스 터빈
CN114183772A (zh) * 2021-11-30 2022-03-15 哈尔滨工程大学 一种氢气预混的高效低排放燃烧室头部
CN114294680B (zh) * 2021-12-29 2023-07-04 哈尔滨工业大学 一种中心分级燃气轮机微预混燃烧室
KR102583223B1 (ko) * 2022-01-28 2023-09-25 두산에너빌리티 주식회사 연소기용 노즐, 연소기 및 이를 포함하는 가스터빈
KR102607177B1 (ko) * 2022-01-28 2023-11-29 두산에너빌리티 주식회사 연소기용 노즐, 연소기 및 이를 포함하는 가스터빈
CN114754378B (zh) * 2022-06-13 2022-08-19 成都中科翼能科技有限公司 一种燃气轮机燃烧器结构
CN115355531B (zh) * 2022-08-12 2023-06-20 中国航发沈阳发动机研究所 一种半跑道型射流孔的氢燃料燃烧室头部结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364849A (ja) * 2001-06-07 2002-12-18 Mitsubishi Heavy Ind Ltd 燃焼器
WO2006100983A1 (ja) * 2005-03-18 2006-09-28 Kawasaki Jukogyo Kabushiki Kaisha ガスタービン燃焼器およびその着火方法
WO2009022449A1 (ja) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha 燃焼装置
JP2012141078A (ja) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd 燃焼装置、及び該燃焼装置の燃焼制御方法
JP2012149869A (ja) * 2011-01-18 2012-08-09 General Electric Co <Ge> 燃料噴射システム及び方法
JP2013190201A (ja) * 2012-03-12 2013-09-26 General Electric Co <Ge> 複数管燃料ノズルにおける混合を強化するシステム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
JP3183053B2 (ja) * 1994-07-20 2001-07-03 株式会社日立製作所 ガスタービン燃焼器及びガスタービン
US5421158A (en) * 1994-10-21 1995-06-06 General Electric Company Segmented centerbody for a double annular combustor
US6267585B1 (en) * 1995-12-19 2001-07-31 Daimlerchrysler Aerospace Airbus Gmbh Method and combustor for combusting hydrogen
DE19547506B4 (de) * 1995-12-19 2008-06-05 Airbus Deutschland Gmbh Verfahren und Brenner zum Verbrennen von Wasserstoff
JP3742722B2 (ja) * 1998-03-16 2006-02-08 財団法人電力中央研究所 ガスタービン燃焼器
US7007477B2 (en) * 2004-06-03 2006-03-07 General Electric Company Premixing burner with impingement cooled centerbody and method of cooling centerbody
US8511097B2 (en) * 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
US8539773B2 (en) * 2009-02-04 2013-09-24 General Electric Company Premixed direct injection nozzle for highly reactive fuels
US8424311B2 (en) * 2009-02-27 2013-04-23 General Electric Company Premixed direct injection disk
JP4797079B2 (ja) * 2009-03-13 2011-10-19 川崎重工業株式会社 ガスタービン燃焼器
US8418468B2 (en) * 2010-04-06 2013-04-16 General Electric Company Segmented annular ring-manifold quaternary fuel distributor
US8919673B2 (en) * 2010-04-14 2014-12-30 General Electric Company Apparatus and method for a fuel nozzle
JP5524407B2 (ja) * 2011-03-16 2014-06-18 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン
US20130219899A1 (en) * 2012-02-27 2013-08-29 General Electric Company Annular premixed pilot in fuel nozzle
US9212822B2 (en) * 2012-05-30 2015-12-15 General Electric Company Fuel injection assembly for use in turbine engines and method of assembling same
US9310078B2 (en) * 2012-10-31 2016-04-12 General Electric Company Fuel injection assemblies in combustion turbine engines
US9546789B2 (en) * 2013-03-15 2017-01-17 General Electric Company System having a multi-tube fuel nozzle
US10018359B2 (en) * 2013-11-05 2018-07-10 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
CA2950558C (en) * 2014-05-30 2020-10-20 Kawasaki Jukogyo Kabushiki Kaisha Combustor for gas turbine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364849A (ja) * 2001-06-07 2002-12-18 Mitsubishi Heavy Ind Ltd 燃焼器
WO2006100983A1 (ja) * 2005-03-18 2006-09-28 Kawasaki Jukogyo Kabushiki Kaisha ガスタービン燃焼器およびその着火方法
WO2009022449A1 (ja) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha 燃焼装置
JP2012141078A (ja) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd 燃焼装置、及び該燃焼装置の燃焼制御方法
JP2012149869A (ja) * 2011-01-18 2012-08-09 General Electric Co <Ge> 燃料噴射システム及び方法
JP2013190201A (ja) * 2012-03-12 2013-09-26 General Electric Co <Ge> 複数管燃料ノズルにおける混合を強化するシステム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116158A (ja) * 2015-12-22 2017-06-29 川崎重工業株式会社 燃料噴射装置
US10612470B2 (en) 2015-12-22 2020-04-07 Kawasaki Jukogyo Kabushiki Kaisha Fuel injection device
WO2017110955A1 (ja) * 2015-12-22 2017-06-29 川崎重工業株式会社 燃料噴射装置
WO2018212001A1 (ja) * 2017-05-16 2018-11-22 川崎重工業株式会社 ガスタービン燃焼器およびその運転方法
JP2018194210A (ja) * 2017-05-16 2018-12-06 川崎重工業株式会社 ガスタービン燃焼器およびその運転方法
US11421599B2 (en) 2017-05-16 2022-08-23 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and operating method thereof
JP2019002400A (ja) * 2017-06-13 2019-01-10 ゼネラル・エレクトリック・カンパニイ 燃料供給アセンブリおよび関連する方法
JP7187181B2 (ja) 2017-06-13 2022-12-12 ゼネラル・エレクトリック・カンパニイ 燃料供給アセンブリおよび関連する方法
JP2020535381A (ja) * 2017-07-21 2020-12-03 キュッパース・ソリューションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング バーナー
JP7126346B2 (ja) 2017-11-29 2022-08-26 川崎重工業株式会社 バーナ装置
JP2019100571A (ja) * 2017-11-29 2019-06-24 川崎重工業株式会社 バーナ装置
WO2022050259A1 (ja) * 2020-09-04 2022-03-10 三菱重工業株式会社 ガスタービン燃焼器の多孔板、ガスタービン燃焼器及びガスタービン
JP2022043702A (ja) * 2020-09-04 2022-03-16 三菱パワー株式会社 ガスタービン燃焼器の多孔板、ガスタービン燃焼器及びガスタービン
US12031723B2 (en) 2020-09-04 2024-07-09 Mitsubishi Heavy Industries, Ltd. Perforated plate for gas turbine combustor, gas turbine combustor, and gas turbine
WO2022249938A1 (ja) * 2021-05-28 2022-12-01 川崎重工業株式会社 ガスタービン燃焼器
WO2023145218A1 (ja) * 2022-01-31 2023-08-03 株式会社Ihi 燃焼装置およびガスタービンシステム
CN115597087A (zh) * 2022-08-12 2023-01-13 中国航发沈阳发动机研究所(Cn) 一种扩张型射流孔的氢燃料燃烧室头部结构
CN115597087B (zh) * 2022-08-12 2024-02-23 中国航发沈阳发动机研究所 一种扩张型射流孔的氢燃料燃烧室头部结构
JP7470855B1 (ja) 2023-09-19 2024-04-18 東京瓦斯株式会社 水素燃焼式ダクトバーナ

Also Published As

Publication number Publication date
US20170074521A1 (en) 2017-03-16
JP6285022B2 (ja) 2018-02-28
EP3150918A4 (en) 2018-01-10
CN106537042B (zh) 2019-05-14
AU2015268509B2 (en) 2018-04-26
CA2950566A1 (en) 2015-12-03
AU2015268509A1 (en) 2016-12-15
JPWO2015182727A1 (ja) 2017-04-20
EP3150918A1 (en) 2017-04-05
EP3150918B1 (en) 2019-12-18
CN106537042A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6285022B2 (ja) ガスタービンエンジンの燃焼装置
JP6285081B2 (ja) ガスタービンエンジンの燃焼装置
US9366441B2 (en) Burner, combustor and remodeling method for burner
JP5400936B2 (ja) ガスタービンエンジン内で燃料を燃焼させるための方法及び装置
JP5528756B2 (ja) 二次燃料ノズル用の管状燃料噴射器
JP5199172B2 (ja) 燃焼器ノズル
WO2013183618A1 (ja) 燃料噴射装置
JP5458121B2 (ja) ガスタービン燃焼器およびガスタービン燃焼器の運転方法
US20170307210A1 (en) Gas turbine combustor and gas turbine
JP2006112776A (ja) 低コスト二元燃料燃焼器及び関連する方法
JP2010203758A (ja) 予混合式直接噴射ディスク
JP2011141113A (ja) 内蔵通路を備えた燃料ノズル及びその作動方法
JP2012042194A (ja) 燃料噴射ノズル本体上の火炎安定化用のディンプル付き/グルーブ付き面及び関連する方法
JP2016057056A (ja) ガスタービンの燃焼器用の希釈ガス又は空気混合器
JP2010133621A (ja) ガスタービン燃焼器
JP2011196680A (ja) 低排出燃焼システム用マルチゾーンパイロット
JP2016023916A (ja) ガスタービン燃焼器
JP2014105886A (ja) 燃焼器
JP5462449B2 (ja) 燃焼装置のバーナおよびこれを備えた燃焼装置
JP2014112003A (ja) 燃焼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950566

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016523566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015268509

Country of ref document: AU

Date of ref document: 20150528

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800273

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800273

Country of ref document: EP