JP4797079B2 - ガスタービン燃焼器 - Google Patents

ガスタービン燃焼器 Download PDF

Info

Publication number
JP4797079B2
JP4797079B2 JP2009060524A JP2009060524A JP4797079B2 JP 4797079 B2 JP4797079 B2 JP 4797079B2 JP 2009060524 A JP2009060524 A JP 2009060524A JP 2009060524 A JP2009060524 A JP 2009060524A JP 4797079 B2 JP4797079 B2 JP 4797079B2
Authority
JP
Japan
Prior art keywords
fuel
cylinder
introduction
burner
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009060524A
Other languages
English (en)
Other versions
JP2010216668A (ja
Inventor
剛生 小田
匡史 松本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2009060524A priority Critical patent/JP4797079B2/ja
Publication of JP2010216668A publication Critical patent/JP2010216668A/ja
Application granted granted Critical
Publication of JP4797079B2 publication Critical patent/JP4797079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Description

本発明は、一定以上の負荷で運転しても排出される窒素酸化物(以下、NOxという)の排出量を抑制できるガスタービン燃焼器に関する。
ガスタービン装置については、運転時にタービンから排出される排ガス組成に関して厳しい環境基準が設けられており、特に、排ガス中に含まれるNOxの排出量の低減が望まれている。従来、このようなガスタービン装置における低NOx化の手法として、燃焼室内に水や蒸気を噴射して燃焼火炎温度を低下させる方法が採用されていたが、この方法によると、装置の熱交換率が低下したり、使用する水質が悪い場合にはタービンの腐食により装置の寿命を短くするなどの課題があった。これらの課題を克服するガスタービン装置として、近年、水や蒸気を用いることなく、低NOx化を図るDLE(Dry Low Emission)燃焼器を用いたガスタービン装置がある。このガスタービン装置は、DLE燃焼器の燃焼筒の下流側に予混合型の追焚きバーナを付加し、上流側で未燃分が排出されなくなった状態で、追焚きバーナから燃料を投入することにより、運転時にタービンから排出されるNOx排出量の低減を図るものである(特許文献1、2)。
特開平8−261468 特開平10−196909
しかしながら、前記特許文献1および2に開示された追焚きバーナは、DLE燃焼器の燃焼筒の上流側から燃焼筒の追焚きバーナ用の空気孔まで予混合ダクトを長く延出しているから、大掛かりな構造となって燃焼器自体の大型化を招くうえに、部品点数や組付工数の増加によりコスト高となる課題があった。
本発明の目的は、コンパクトな予混合型の追焚きバーナを設けることにより、燃焼器の大型化およびコスト高を伴うことなく、低NOx化をコンパクトな構造で実現できるガスタービン燃焼器を提供することにある。
前記目的を達成するために、本発明に係るガスタービン燃焼器は、圧縮機から供給される圧縮空気と燃料を燃焼させてタービンに供給する燃焼器であって、燃焼室を形成する燃焼筒の頭部に設けられたメインバーナと、前記メインバーナよりも前記燃焼筒の下流側で前記燃焼筒の周壁を貫通して配置された予混合型の追焚きバーナとを備え、前記追焚きバーナは、前記燃焼筒の周壁とこれを覆うハウジングとの間に形成された空気通路から、燃焼筒の頭部に向かって流れる前記圧縮空気の一部を燃焼筒の径方向内方へ向かって偏向させて導入する導入通路と、前記導入通路に導入される圧縮空気に複数の燃料供給孔から燃料を供給して前記導入通路内で予混合気を生成させる燃料ノズルと、前記追焚バーナの径方向外方に向かって開口し、前記導入通路の入口を形成する環状の流入口と、この流入口に配置されて、前記圧縮空気を流入口の中心側へ向けて案内する複数のガイド片とを有し、さらに、前記流入口との間に隙間を存して流入口の外周を覆う流入調整部材を備えている。ここで、燃焼筒の下流側とは、燃焼筒内の燃焼ガスの流れ方向に沿った下流側をいう。
この構成によれば、追焚きバーナが燃焼筒の頭部のメインバーナよりも燃焼筒の下流側に配置されており、燃焼筒の周壁とハウジングとの間に形成された空気通路から圧縮空気の一部を導入通路に導入する構造であり、従来技術のような、燃焼筒の頭部から燃焼筒の周壁の追焚きバーナ用空気孔まで予混合ダクトを形成する構造ではないから、燃焼器のコンパクト化が図れる。また、圧縮空気は、導入通路により、燃焼筒の径方向内方へ向かって偏向されるので、偏向による大きな乱れが生じて、燃料との混合が促進される結果、燃料の濃度むらの少ない均一な予混合気が得られる。この濃度むらの少ない均一な予混合気がメインバーナの下流側の高温燃焼ガス中で燃焼されるので、NOxの排出量を低減できる。さらに、予混合気は導入通路によって燃焼筒の径方向内方へ向かう貫通力が付与されるので、導入通路内に逆火して追焚きバーナを損傷させるのが防止されるとともに、予混合気が燃焼室の中心部の前記高温燃焼ガス中に十分貫通するから、均一な燃焼器出口温度分布が形成される。また、圧縮空気は、流入口の中心側へ向けて導入されるので、導入通路内での旋回成分が小さくなり、燃焼室内への貫通力が増大する。さらに、圧縮空気がガイド片を通過したのち燃焼筒の径方向内方へ向かう際に90°偏向されるから、空気流に大きな乱れが生じるので、燃料との攪拌が一層促進される。さらに、前記流入調整部材によって、流入口から流入する圧縮空気の動圧が周方向においてばらつくのが抑制されるので、流入口から導入通路内に流入する圧縮空気量が周方向に均一化される結果、燃料濃度むらの少ない予混合気が得られる。
本発明において、前記燃料ノズルは、隣接する前記ガイド片の間から前記導入通路に燃料を供給する燃料供給孔が設けられ前記導入通路の頂壁を形成するノズルプレートを有することが好ましい。この構成によれば、複数の燃料供給孔がノズルプレートの円周方向に並んでガイド片間に配置されているから、燃料が多点噴射となり、しかもガイド片によって周方向に区画された燃料が導入通路に供給されるので、燃料の濃度むらの一層少ない均一な予混合気が得られる。さらに、ノズルプレートに垂直な燃料供給孔を設けるだけで、この燃料供給孔から燃料が導入通路内の圧縮空気に対して直交方向に噴射されるから、圧縮空気の剪断力により燃料が細かく分断されて、圧縮空気との混合が一層促進される。
本発明において、前記追焚きバーナは、前記流入口からガイド片よりも下流側にまで延びる導入通路上流部の外壁を形成するガイド筒を有することが好ましい。この構成によれば、ガイド筒がガイド片の下流側にまで延びているので、このガイド筒とその下流の前記導入筒とにより、ガイド片の下流、つまり、燃料供給孔の下流に、圧縮空気と燃料とを予混合する予混合距離が長く形成されるので、両者の混合が促進され、より一層濃度むらの少ない均一な予混合気が得られる。
本発明において、前記追焚きバーナは、前記燃焼筒に取り付けられて前記導入通路の下流部を形成する導入筒を有することが好ましい。この構成によれば、導入筒を備えた既存の燃焼筒をそのまま使えるので、製造コストを抑制できる。
また、前記導入筒を有する場合、前記ガイド筒とその下流側の前記導入筒との間に軸方向の隙間が存在することが好ましい。この構成によれば、ガイド筒と導入筒との間に積極的に軸方向の隙間を存在させることにより、ガイド筒と導入筒の形状寸法および取付位置の精度が低くて済むので、これらの製造性および組付性が向上する。前記隙間は内側の予混合気を大きく乱すことがないように適宜の大きさに調節することにより、隙間の存在がNOx特性に影響を与えるのを防止できる。
本発明において、さらに、前記導入通路は、入口の通路面積が出口の通路面積よりも大きいことが好ましい。この構成によれば、導入通路が、その入口から出口にかけて実質的に先細り状となるので、入口から導入された圧縮空気は出口でその流速が増加する。これにより、予混合気の燃焼筒の径方向内側への貫通力が増大する。
本発明によれば、追焚きバーナが燃焼筒の頭部のメインバーナよりも燃焼筒の下流側に配置されており、燃焼筒の周壁とハウジングとの間に形成された空気通路から圧縮空気の一部を追焚きバーナの導入通路に導入する構造であり、燃焼筒の頭部から燃焼筒の周壁の追焚きバーナ用空気孔まで予混合ダクトを形成する構造ではないから、燃焼器のコンパクト化が図れる。また、圧縮空気には、導入通路内での偏向による大きな乱れが生じるので、燃料との混合が促進される結果、燃料の濃度むらの少ない均一な予混合気が得られる。この濃度むらの少ない均一な予混合気がメインバーナの下流側の高温燃焼ガス中で燃焼されるので、NOxの排出量を低減できる。さらに、予混合気は導入通路によって燃焼筒の径方向内方へ向かう貫通力が付与されるので、導入通路内に逆火して追焚きバーナを損傷させるのが防止されるとともに、予混合気が燃焼室の中心部の前記高温燃焼ガス中に十分貫通するために、均一な燃焼器出口温度分布が形成される。
本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる例示および説明のためのものであり、この発明の範囲は添付の特許請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1実施形態にかかるガスタービン燃焼器が適用されるガスタービン発電装置の概略構成図である。 第1実施形態にかかるガスタービン燃焼器の縦断面図である。 第1実施形態にかかるガスタービン燃焼器で使用する追焚きバーナを示し、(A)は、その拡大縦断面図、(B)は(A)のIII B− IIIB線断面図である。 同追焚きバーナの斜視図である。 (A)は比較例の追焚きバーナの拡大縦断面図、(B)は(A)のVB−VB線断面図である。 追焚きバーナ出口での予混合気の濃度分布を示す分布図であり、(A)は第1実施形態による場合を示し、(B)は比較例による場合を示す。 本発明の第2実施形態にかかるガスタービン燃焼器の追焚きバーナを示し、(A)はその縦断面図、(B)は(A)のVIIB−VIIB線断面図である。 本発明の第3実施形態にかかるガスタービン燃焼器の追焚きバーナを示し、同図(A)はその縦断面図、(B)は(A)のVIII B−VIII B線断面図、(C)は(A)の要部を拡大した側面図、(D)は(C)のVIII D−VIII D線断面図である。 第3実施形態にかかる追焚きバーナの斜視図である。 (A)は、第2実施形態における追焚きバーナ出口での予混合気の濃度分布を示す分布図、(B)は第3実施形態における追焚きバーナ出口での予混合気の濃度分布を示す分布図である。 本発明にかかる第1実施形態にかかる追焚きバーナを使用した燃焼器と、比較例の追焚きバーナを使用した燃焼器とのエンジン試験の結果を示す特性図で、負荷率とNOx濃度の関係を示す。 本発明にかかる第1〜3実施形態にかかる追焚きバーナを使用した燃焼器と、比較例の追焚きバーナを使用した燃焼器との燃焼実験の結果を示す特性図で、燃焼器出口温度とNOx濃度の関係を示す。
以下、本発明の好ましい実施形態について図面を参照しながら詳述する。図1は本発明の第1実施形態にかかるガスタービン燃焼器が使用されるガスタービン発電装置の概略構成を示す。同図において、ガスタービンGTは、圧縮機1と、燃焼器2と、タービン3とを主な構成要素とし、燃焼器2は、燃料供給装置5と燃料制御装置6とを備えている。圧縮機1から供給される圧縮空気Aと、燃料制御装置6を介して燃料供給装置5から供給される燃料Fとを燃焼器2で燃焼させ、これにより発生する高温高圧の燃焼ガスGをタービン3に供給して、このタービン3を駆動する。圧縮機1は回転軸7を介してタービン3により駆動され、このタービン3はまた、減速機8を介して発電機9を駆動する。
図2の縦断面図に示すように、燃焼器2は、これに導入される圧縮空気Aと燃焼ガスGとが互いに燃焼器2内の逆方向に流れる逆流缶型であり、円筒状のハウジングH内に、ほぼ円筒状の燃焼筒10が収納されており、その内部に燃焼室11が形成されている。前記ハウジングHの先端側となる頭部にはエンドカバー12がボルト12aにより固定されている。
ハウジングHの頭部側には、ハウジングH内に位置する支持筒13の基端部が連結され、この支持筒13の先端部(図2の右端部)に燃焼筒10の頭部10aが固定されて、燃焼筒10が支持筒13を介してハウジングHに支持されている。燃焼筒10の周壁10bとこれを覆うハウジングHとの間には、圧縮機1からの圧縮空気Aを燃焼筒10の頭部10a、つまり、上流側へ導く環状の空気通路15が形成されている。支持筒13の内側には空気導入室16が形成されており、支持筒13に、圧縮空気Aを空気導入室16内に導く複数の空気導入孔18が設けられている。
燃焼筒10の頭部10aの中央部には、燃料Fを燃焼室11内に直接噴出する拡散燃焼式の単一のパイロットバーナ20が設けられている。このパイロットバーナ20の外周を囲むようにして、燃料Fと圧縮空気Aを混合して生成した予混合気Mを、予混合通路29から燃焼室11内に噴出する単一の予混合型のメインバーナ21が設けられている。
メインバーナ21は、縦断面L字状の予混合通路29が径方向外向きに開口しており、その開口した環状の空気取入口29aの径方向外側に複数のメイン燃料ノズル23がメインバーナ21の周方向に等間隔で配置されている。メイン燃料ノズル23における空気取入口29aに対向する部分に、複数のメイン燃料噴射孔23aが形成されている。メイン燃料ノズル23の基端はエンドカバー12に設けたメイン燃料導入口25に接続されている。空気取入口29aにはスワーラ26が配置されており、メイン燃料導入口25から供給された燃料Fは、空気取入口29aから流入する圧縮空気Aとともに、スワーラ26によって旋回が付与され、予混合通路29内で予混合されたのち、環状の予混合噴出口29bから予混合気Mとして燃焼室11内に噴出される。
前記パイロット燃料導入口28およびメイン燃料導入口25には、図1の燃料供給装置9から燃料制御装置8を介して燃料Fが供給される。
燃焼筒10の周壁10bの上流部には、点火プラグ30が、その先端を燃焼室11内に臨ませて配置されている。点火プラグ30は、ハウジングHを貫通してハウジングHに固定されており、起動時には、パイロットバーナ20から燃焼室11内に燃料Fを噴射して点火プラグ30による点火により拡散燃焼が行われる。続いて、通常運転時には、メインバーナ21から燃焼室11内に噴射された予混合気Mを燃焼して、燃焼筒10の上流部において、メインバーナ21の下流側に第1の燃焼領域S1を形成させる。また、燃焼筒10における第1の燃焼領域S1よりも下流側には、複数、例えば4つの空気孔31が周方向に等間隔に設けられている。ハウジングHにおける各空気孔31に対向する部分には、予混合型の追焚きバーナ40が取り付けられて、その先端部を、空気孔31を通して燃焼室11内に臨ませている。こうして、追焚きバーナ40は、メインバーナ21よりも燃焼筒10の下流側で燃焼筒10の周壁10bを貫通して配置され、追焚きバーナ用の予混合気M1を燃焼筒10内に噴射して、燃焼室11内で第1の燃焼領域S1の下流側に第2の燃焼領域S2を形成させる。
図3は、追焚きバーナ40の詳細を示す。図3(A)に示すように、この追焚きバーナ40は、燃焼筒10の軸心C(図2)と直交する真直なバーナ軸心C1を有し、環状の空気通路15から燃焼筒10の頭部10aに向かって流れる圧縮空気Aの一部を燃焼筒10の径方向内方へ向かって偏向させて導入する導入通路50と、この導入通路50に燃料Fを供給し、導入通路50内で前記圧縮空気Aとの混合により予混合気M1を生成させる燃料ノズル41とを備えている。
燃料ノズル41は、ハウジングHに設けたマウント60にボルトのような締結部材62により取り付けられるつば付き円柱状のノズルボデイ42と、これに固定された円板状のノズルプレート43とを有しており、燃料ノズル41とノズルプレート43との間に燃料溜め空間45が形成されている。ノズルボデイ42とノズルプレート43は前記バーナ軸心C1上に同心に配置されている。追焚きバーナ40はさらに、ノズルプレート43とともに導入通路50の上流部を形成するガイド筒49と、燃焼筒10に取り付けられて前記導入通路50の下流部を形成する導入筒51と、ガイド筒49の流入口52との間に隙間B1を存して流入口52の外周を覆うように配置された流入調整部材76とを備えている。
前記ガイド筒49の流入口52はバーナ軸心C1と同心の環状であり、流入調整部材76もバーナ軸心C1と同心の円筒状である。この流入調整部材76は、マウント60の下面に固定されており、上端の軸方向位置が流入口52と同一に設定され、下端の軸方向位置が流入口52よりも下方、つまり燃焼筒10の径方向内方に設定されている。これにより、流入調整部材76は、隙間B1を介して、流入口52をその径方向外方から完全に覆う形となっている。前記隙間B1により、導入通路50の上流側に配置された入口通路55が形成されており、この入口通路55により、圧縮空気Aの一部が、燃焼筒10の径方向外方に導入されたのち導入通路50に流入するように導かれる。流入調整部材76とガイド筒49と導入筒51とは、前記バーナ軸心C1上に同心に配置されている。さらに、ガイド筒49と導入筒51との間に軸方向の隙間B2が形成されている。導入筒51の入口51aはベルマウス状に外径方向に湾曲している。
導入通路50の入口を形成する前記流入口52は、バーナ軸心C1と直交するバーナ40の径方向外方に向かって開口している。ガイド筒49はバーナ軸心C1と同心の円筒状の胴部49aとその上流側(上方)へ向かって径方向外方へ拡がった口部49bとを有しており、口部49bの先端である流入口52の直径D1はその下流のガイド筒49の円筒状胴部の内径D2よりも大きくなっている。流入口52には、圧縮空気Aを流入口52の中心側へ向けて案内する複数のガイド片53が設けられている。ガイド筒49は流入口52からガイド片53を経てガイド片53の下流側へ長く延びている。ノズルボディ42とノズルプレート43、ノズルプレート43とガイド片53、ガイド片53とガイド筒49はそれぞれ、例えば溶接により固定されている。前記導入筒51は、従来の燃焼筒10に既存のものをそのまま使える。
ノズルプレート43の外周部には、燃料溜め空間45に連通し、燃焼筒10の径方向内方に向かって開孔した複数の燃料供給孔44が、ノズルプレート43と同心状の配置で設けられている。ノズルボディ42には、燃料溜め空間45に燃料Fを導入するための燃料導入路46が形成され、さらに、燃料導入路46への燃料導入口47を形成するニップル48が取り付けられている。燃料Fは燃料導入口47および燃料ノズル46を通って燃料溜め空間45に入り、燃料供給孔44から導入通路50内に供給される。また、このノズルプレート43の中央部には先端が逆円錐状となった中央突起43aが形成されており、この中央突起43aは、少なくともガイド片53の高さ(垂直方向長さ)を若干上回る長さを有している。
図3(B)に示すように、ガイド片53は、ノズルプレート43と同心の配置で円周方向に等間隔で複数(例えば12個)設けられており、このガイド片53の上部を覆う前記ノズルプレート43の燃料供給孔44は、隣接するガイド片53の間に、一つまたは複数個ずつ(この実施形態では一つずつ)配置されている。空気通路15からの圧縮空気Aが、導入通路50の入口となる流入口52に流入するとき、隣接するガイド片53で区画された複数の分割口53aから流れ込んで流入口52の中心方向へ向けて導入される。各分割口53aから流入する空気流a1は、中央突起43aによって互いに直接衝突して流速が低下するのが避けられた状態で、中央突起43aにより下向きに90度偏向される。このとき、空気流a1は前記分割口53aのどの個所から流入しても中央突起43aに当り、この中央突起43a先端の逆円錐状部分に沿って燃焼筒10の径方向内方へ向かって強制的に偏向させられて、下方側のガイド筒49から導入筒51へと流入し、導入通路50の出口となる導入筒51の流出口51bから燃焼筒10内へ導入される。
追焚きバーナ40の斜視図である図4に明示するように、分割口53aは追焚きバーナ40の外周に開口しており、これら分割口53aのみから圧縮空気Aが導入通路50内に流入する。図3(A)に示すように、燃料Fはノズルプレート43の燃料供給孔44から下方の各ガイド片53間の分割口53a(図3(B))に向けて噴射されるが、このとき、燃料供給孔44からの燃料Fは、前記圧縮空気Aに対して直交方向に噴射されるので、圧縮空気Aのせん断力により燃料Fが細かく分断されて、圧縮空気Aと燃料Fの混合が促進される。
図4に示す流入口52の通路面積E、すなわち、分割口53aの総開口面積は、導入筒51の流出口51bの通路面積eよりも大きくなるように設定されている。このように設定することで、圧縮空気Aが導入される導入通路50が、入口である流入口52から、出口である導入筒51の流出口51bにわたって、先細り状になるので、空気通路15から流入口52に導入された圧縮空気Aは、導入筒51の流出口51bでその流速が増加する。つまり、図3(A)の燃焼筒10の径方向内側への圧縮空気Aの貫通力が増大する。
また、前記流入口52から導入筒51の出口までの間には、ガイド片53と、ガイド筒49と、導入筒51が存在してこれらが導入通路50を形成し、この導入通路50で圧縮空気Aと燃料Fとが混合される。つまり、圧縮空気Aと燃料Fとの予混合される予混合距離Wは、後述する図5の比較例における追焚きバーナの予混合距離W1に比べ、長めに設定されている。このように、予混合距離Wを長めに設定することで、圧縮空気Aと燃料Fとが予混合される時間が長くなって、圧縮空気Aと燃料Fとがよく混ざり合い、燃料Fの濃度むらが少ない均一な予混合気M1を生成できる。
つぎに、上記構成にかかるガスタービン燃焼器の動作について図2を参照しながら説明する。この燃焼器2の起動時および起動後に拡散運転(非低NOx運転)する場合には、パイロットバーナ20を作動させ、燃料導入口28から導入した燃料Fを燃焼室11内に噴射して、拡散燃焼させる。通常運転時(低NOx運転時)には、メインバーナ21を作動させ、メインバーナ21内で生成した予混合気Mを燃焼室11内に噴射して第1の燃焼領域S1において希薄燃焼させる。これにより、燃焼室11内の燃焼温度が低下して、NOxの発生が抑制される。この状態で、下流側の追焚きバーナ40から噴出された予混合気M1が、前記第1の燃焼領域S1によりかなりの高温になっている第2の燃焼領域S2に導入されて燃焼する。これにより、第2の燃焼領域S2でのNOxの発生も抑制され、その排出量を低減できる。
追焚きバーナ40では、燃焼筒10の頭部に向かって流れる空気通路15内の圧縮空気Aの一部が、図3(A)に矢印a1で示すように、流入調整部材76と流入口52との間の入口通路55に流入し、さらに、導入通路50の入口である流入口52に配置された複数のガイド片53の間を進み、中央突起43aに当って、矢印a2に示すように90°偏向され、燃焼筒10の径方向内方へ向かって導入される。このように、流入調整部材76とガイド筒49との間の入口通路55に流入した圧縮空気a1は、入口通路55内を燃焼筒10の径方向外方へ向かって流れ、90°偏向して流入口52から導入通路50に流入する。
ここで、流入口52における、空気通路15内の圧縮空気Aの上流側に向いた部分(図3(A)の右側の部分)からは、圧縮空気Aの大きな動圧によって、多量の圧縮空気Aが流入しようとする一方で、流入口52における圧縮空気Aの下流側に向いた部分(図3(A)の左側の部分)は、圧縮空気Aの動圧が低いので、流入量が低下する傾向がある。これに対し、前記流入調整部材76が圧縮空気Aの動圧を受けるので、特に、流入調整部材76における圧縮空気Aの上流側に向いた部分(右側部分)とガイド筒49との間の入口通路55に流入した圧縮空気a1の動圧が低くなる。その結果、流入口52から流入する圧縮空気a1の動圧が周方向においてばらつくのが抑制されるので、流入口52から導入通路50内に流入する圧縮空気量が周方向に均一となるように調整されて、燃料濃度むらの少ない予混合気M1が得られる。
さらに、圧縮空気a1は、導入通路50の上流部を形成するガイド筒49内で、ガイド片53を経て燃焼筒10の径方向内方へ向かうように90°偏向されるので、この偏向によって強い乱れが発生する。他方、燃料Fは、図3(B)に示すように、燃料供給孔44から複数のガイド片53間の周方向に区画された領域に噴射されるので、周方向の燃料の濃度むらが抑制される。さらに、燃料Fは、図3(A)に示す燃焼筒10の径方向内方に向かって開孔した燃料供給孔44から、圧縮空気Aに対して直交方向に噴射されるので、圧縮空気Aの剪断力により燃料Fが細かく分断されて、圧縮空気Aとの混合が一層促進される。さらにその後、この混合気は、前述のとおり、90°偏向する。その際に、圧縮空気a1の強い乱れにより撹拌されて混合が促進される。
つづいて、圧縮空気Aおよび燃料Fは、図3(A)のガイド片53の下流側にまで延びたガイド筒49とその下流の導入筒51とを通って十分混合されたのち、予混合気M1となって燃焼筒10の内側の燃焼室11に流入する。したがって、導入筒51の流出口51bにおいて、流出口51bを横断する面内で燃料Fの濃度むらの少ない均一な予混合気M1が得られる。この濃度むらの少ない均一な予混合気M1が第2の燃焼領域S2で、つまり第1の燃焼領域S1の下流の高温燃焼ガス中で、燃焼されるので、NOxの排出量を低減できる。ここで、予混合気M1は導入通路50によって燃焼筒10の径方向内方へ向かう貫通力が付与されるので、導入通路50内に逆火して追焚きバーナ40を損傷させるのが防止されるとともに、予混合気M1が燃焼室10の中心部の前記高温燃焼ガス中に十分進入して燃焼される。
導入通路50における予混合距離Wは、燃料供給孔44からガイド筒49を経て導入筒51の流出口51bに至るまでの長さとなる。これに対して、比較例として図5に示す追焚きバーナ100の場合、同図(A)に示すように、真直な燃料導管80の先端に燃料供給孔81を設けて燃料ノズルを構成したうえで、燃料供給孔81を導入筒51の内側に位置させており、第1実施形態のようなガイド筒49を設けていない。この比較例における予混合距離W1は、燃料導管80の燃料供給孔81から導入筒51の流出口51bまでと、大幅に短くなっている。この予混合距離W1は導入筒51の内径D3よりも小さい。このように、第1実施形態の場合、図3(A)の予混合距離Wを長くとれる分だけ、燃料Fと圧縮空気Aとが予混合される時間が長くとれ、燃料Fの濃度むらの少ない均一な予混合気M1を生成させることができる。
また、図5(B)の比較例では、燃料ノズル機能を兼備させた燃料導管80の先端断面は小径となっており、設けられる燃料供給孔81の数も少なく(例えば8個)、十分な多点噴射とはならない。これに対して、第1実施形態の場合、図3(A)に示すように、燃料供給孔44は導入筒51よりも大径のガイド筒49の流入口52近傍、つまり、ノズルプレート43の外周部に、複数(例えば12個)設けられているので、十分な多点噴射が可能となり、この点からも予混合気Mの燃料Fの濃度むらが少なくなる。
また、導入筒51は従来の燃焼筒10に既設のものをそのまま使えるので、製造コストを抑制できる。さらに、追焚きバーナ40は、導入通路50の入口を形成する環状の流入口52と、この流入口52に配置されて、圧縮空気Aを流入口52の中心側へ向けて案内する複数のガイド片41とを有するものであるから、圧縮空気Aは、流入口52の中心側へ向けて導入されて、導入通路50内での旋回成分が小さくなり、それだけ燃焼室10内への貫通力が大きくなるので、圧縮空気Aと燃料Fの予混合が一層促進され、逆火も防止される。これにより、逆火に起因して起こり得る燃焼バーナ40の損傷を回避できる。
また、ガイド筒49とその下流側の前記導入筒51との間には、隙間B2を存在させてあるから、ガイド筒49と導入筒51の形状寸法および取付位置の精度が低くても、両者49,51が接触して位置や姿勢を歪ませることがないので、これらの製造性および組付性が向上する。前記隙間B2は内側の予混合気Mを大きく乱すことがないように適宜の大きさに調節することにより、隙間B2の存在がNOx特性に影響を与えるのを防止できる。
さらに、前記流入口52の通路面積Eが、前記導入筒51の流出口51bの通路面積eよりも大きくしてあるので、圧縮空気Aの導入通路50が入り口(流入口52)から出口(流出口51b)にかけて実質的に先細り状となって、圧縮空気Aが導入通路50内でその流速を増加させる。これにより、予混合気Mの燃焼筒10の径方向内方へ向かう貫通力が増大する。
図6は追焚きバーナ出口、つまり導入筒51の流出口51bでの予混合気M1の濃度分布を示しており、(A)は第1実施形態による場合を、(B)は比較例による場合をそれぞれ示す。図6(B)の比較例では、完全予混合よりもはるかに濃度が高い第1エリアP1(最大濃度0.095 )が中央部のかなり大きな部分を占め、その周りに濃度が低い順に第2エリアP2、第3エリアP3が形成され、最も濃度が低い第3エリアP3が最外周にかなり広めに形成されている。これに対し、第1実施形態による場合、図6(A)に示すように、最も濃度が高い第1エリアP1(最大濃度0.043 )が中央部の狭い部分のみであり、最も濃度が低い第3エリアP3が最外周に僅かに形成されているにすぎず、中間濃度の第2エリアP2が大きく広がっており、全体として燃料濃度のばらつきが少ない。このように、第1実施形態では、比較例に比べ、燃料Fの最大ピーク濃度がほぼ半減しており、濃度分布も平滑化されていて、燃料Fの濃度むらの少ない予混合気Mが生成されていることがわかる。
以上のように、本発明の第1実施形態によれば、追焚きバーナ用の予混合気M1を、既存の空気通路15から導入通路50に導入した圧縮空気Aの一部に燃料Fを供給して導入通路50内で生成できるから、燃焼器のコンパクト化が図れる。また、圧縮空気Aは、導入通路50内で燃焼筒10の径方向内方へ向かって偏向されるので、燃焼筒10の径方向内方へ向かう貫通力が与えられる。この圧縮空気Aに、複数の燃料供給孔44からの多点噴射によって燃料Fが供給されるので、圧縮空気Aと燃料Fが導入通路50内で急速に混合されて、燃料Fの濃度むらの少ない均一な予混合気M1が得られる。この濃度むらの少ない均一な予混合気M1が第2の燃焼領域S2の高温燃焼ガス中で燃焼されるので、NOxの排出量を低減できる。
図7は本発明の第2実施形態にかかるガスタービン燃焼器で使用する追焚きバーナ40Aを示す。この第2実施形態において、前記第1実施形態と同一部分または相当部分には同一の符号を付してその詳しい説明を省略し、異なる構成についてのみ説明する。この第2実施形態は、図7(A)に示すように、第1実施形態のガイド筒49に代えて、複数の燃料小通路を束ねた燃料供給通路ユニットを形成する集束パイプ60を用いた。導入通路50Aは導入筒51により形成されている。集束パイプ60は多数の小径パイプ60aを束ねたもので、小径パイプ60aが上下方向、つまり燃焼器10の軸心C(図2)と直交する径方向に延びて、その下端の燃料供給孔60aaが前記径方向の内方を向いている。
集束パイプ60は、図7(B)に示すように、例えば32本の小径パイプ60aが一定密度で束ねられている。各燃料小通路を形成する小径パイプ60aの本数は、図5の比較例よりも多い10本以上であり、16本以上が好ましく、16本以上、24本以上または32本以上がさらに好ましい。集束パイプ60の外径D4は、導入筒51の内径D3とほぼ同一である。これにより、燃料Fが集束パイプ60から広い面状に導入通路50A内に噴射されるので、圧縮空気Aと燃料Fとが均一に混合される。前記集束パイプ60を構成する各小径パイプ60aの上端をノズルプレート61に貫通させて固定し、前記上端を、燃料溜め空間45に連通させて燃料ノズル41Aを構成している。ノズルプレート61と導入筒51の入口51aの間が、空気通路15から圧縮空気Aを取り入れる空気流入口65、つまり導入通路50A の入口となっている。小径パイプ60aの下端は導入筒51の入口51aに臨んで、この入口51a よりも若干上方、すなわち燃焼筒10の径方向外方に離間している。これにより、集束パイプ60が空気流入口65を塞いで圧縮空気Aの流入を妨げるのを回避している。また、集束パイプ60の下端から導入筒51の流出口51bまでの予混合距離W2が確保されている。
この第2実施形態では、燃料Fが燃料溜め空間45から集束パイプ60の小径パイプ60a内に導入され、各小径パイプ60aの下端の燃料供給孔60aaから導入通路50A内に、導入筒51の軸方向内方、すなわち燃焼筒10の径方向内方に向けて噴出される。導入筒51内で前記燃料Fと圧縮空気Aとが混合されて、予混合気M2が生成される。圧縮空気Aは、導入通路50Aの入口である流入口65から流入して、燃料Fが集束パイプ60から広い面状に導入通路50A内に噴出されるので、燃料Fと圧縮空気Aとが均一に混合されて、燃料Fの濃淡の小さい予混合気M2が得られる。さらに、予混合距離W2が確保されていることにより、一層の予混合の促進が期待できる。なお、この第2実施形態においても図10(A)に示すように、追焚きバーナ40Bの出口である導入筒51の流出口51b での予混合気M2の濃度分布は、図6(B)に示す比較例の濃度分布に比べ、燃料Fの最大濃度(0.061 )を示す第1エリアP1が小さく、燃料Fの濃度分布も平滑化されて、全体として燃料濃度のばらつきが少なくなっている。
図8は本発明の第3実施形態にかかるガスタービン燃焼器で使用する追焚きバーナ40Bを示す。この第3実施形態は、図8(A)に示すように、第1実施形態のガイド筒49に代えて、ノズルプレート67に支持されて燃料溜め空間45に連通する単一の燃料導管70と、この燃料導管70に連結されて燃料導管70の径方向外方に延びる燃料供給バー71と、この燃料供給バー71の下方で燃料供給バー71と平行に配置されて燃料導管70に連結された偏向用バー72とを備えた噴射ユニット73を設けている。燃料導管70および燃料供給バー71は複数本、例えば4本ずつ、それぞれ周方向に等間隔で配置されている。
前記燃料供給バー71は、燃料導管70の径方向に並んだ複数の燃料供給孔71aを有しており、導入筒51内の上流部内側に配置されている。燃料供給孔71aは、燃料供給バー71の周方向に180°離れた部分に2列で、各列3個ずつ設けられており、燃料供給孔71aから、導入筒51内の導入通路50Aを通る圧縮空気Aにほぼ直交する方向に燃料Fを噴出する。また、図8(B)および斜視図である図9に示すように、前記燃料供給バー71と偏向用バー72はいずれも、燃料導管70の軸方向、つまり追焚きバーナ40Bの軸心C1の方向から見て十字状の形状を有しており、前記軸方向から見て両者が重なり合うように、燃料導管70の同一周方向位置に設けられている。燃料供給孔71aは合計24個設けられている。燃料供給孔71aの好ましい数は、12個以上、16個以上または24個以上である。また、燃料供給孔71aから導入筒51の流出口51bまでの予混合距離W3が確保されている。
この第3実施形態では、図8(C)に示すように、燃料Fが燃料供給バー71の両側の6つの燃料供給孔71aから導入筒51内の導入通路50Aに噴出されると、図8(D)に示すように、燃料Fは圧縮空気Aによって導入筒51の下流へ押し流されるように曲がって流れるが、その反動で、偏向用バー71の下流側では互いに近づく方向へ流れて合流しようとするために、燃料Fの拡散が妨げられるおそれがある。ところが、偏向用バー71があるため、燃料Fの合流が阻止される。つまり、燃料Fが偏在せず、導入筒51内に満遍なく拡散されて上方からの圧縮空気Aと混合される。したがって、燃料Fと圧縮空気Aとが均一に混合された、燃料Fの濃淡の小さい予混合気M3が得られる。この第3実施形態においても、図10(B)に示すように、追焚きバーナ40Bの出口、つまり、導入筒51の流出口51bでの予混合気M3の濃度分布は、図6(B)に示す比較例の濃度分布に比べて、燃料の最大濃度(0.065 )を示す第1エリアP1の部分が小さく、濃度分布も平滑化されて、全体として燃料濃度のばらつきが少なくなっている。
図11に、本発明の第1実施形態にかかる燃焼器と、比較例として示した図5の燃焼器とをエンジンに搭載して行ったエンジン試験の結果を示す。図11の横軸は負荷率であり、縦軸は燃焼筒10の出口10e(図2)でのNOx濃度(燃焼用空気の酸素濃度15%)である。同図に示すように、比較例の場合、追焚きバーナの作動時点BSから負荷率が100%に近づくにつれて、NOxの排出量、つまり、NOx濃度は上昇していき、100%の手前で急速に増加して、NOx目標値を越えてしまう。これに対し、第1実施形態の場合では、すべての負荷率領域でNOx目標値を下回り、負荷率が100%に達してもNOx濃度の上昇は認められなかった。
図12に、前記第1〜3実施形態にかかる追焚きバーナを使用した燃焼器と図5に示した比較例の追焚きバーナを使用した燃焼器との燃焼実験の結果を示す。図12の横軸は、図2に示した燃焼筒10の出口10eでの燃焼ガスGの温度(燃焼器出口温度)を示す。図12に示すように、比較例の場合、燃焼器内での温度上昇が増大して、負荷率100%に対応する評価基準温度Trに近づくと、NOx濃度が大幅に増加している。これに対し、第1〜3実施形態のいずれの場合でも、すべての温度領域でNOx目標値を下回り、基準温度Trに達した時点でも、NOx濃度が低いことがわかる。
なお、導入通路50の上流側の流入調整部材76は省略することもできる。また、メインバーナ21としては、上記実施形態で用いた予混合型のバーナに限られず、拡散型のバーナを用いてもよい。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
1 圧縮機
2 燃焼器
3 タービン
5 燃料供給装置
6 燃料制御装置
10 燃焼筒
10a 周壁
11 燃焼室
15 空気通路
20 パイロットバーナ
21 メインバーナ
40、40A、40B 追焚きバーナ
41 燃料ノズル
42 ノズルボディ
43 ノズルプレート
43a 中央突起
44,60aa,71a 燃料供給孔
49 ガイド筒
50,50A 導入通路
51 導入筒
51b 流出口(出口)
52 流入口(入口)
53 ガイド片
60 集束パイプ
60a 小径パイプ
71 燃料供給バー
72 偏向用バー
76 流入調整部材
A 圧縮空気
F 燃料
H ハウジング
S1 第1の燃焼領域
S2 第2の燃焼領域
E 入口の通路面積
e 出口の通路面積
B2 隙間
W 予混合距離

Claims (6)

  1. 圧縮機から供給される圧縮空気と燃料を燃焼させてタービンに供給する燃焼器であって、
    燃焼室を形成する燃焼筒の頭部に設けられたメインバーナと、前記メインバーナよりも前記燃焼筒の下流側で前記燃焼筒の周壁を貫通して配置された予混合型の追焚きバーナとを備え、
    前記追焚きバーナは、
    前記燃焼筒の周壁とこれを覆うハウジングとの間に形成された空気通路から、燃焼筒の頭部に向かって流れる前記圧縮空気の一部を燃焼筒の径方向内方へ向かって偏向させて導入する導入通路と、
    前記導入通路に導入される圧縮空気に複数の燃料供給孔から燃料を供給して前記導入通路内で予混合気を生成させる燃料ノズルと、
    前記追焚バーナの径方向外方に向かって開口し、前記導入通路の入口を形成する環状の流入口と、
    この流入口に配置されて、前記圧縮空気を流入口の中心側へ向けて案内する複数のガイド片とを有し、
    さらに、前記流入口との間に隙間を存して流入口の外周を覆う流入調整部材を備えたガスタービン燃焼器。
  2. 請求項1において、前記燃料ノズルは、隣接する前記ガイド片の間から前記導入通路に燃料を供給する燃料供給孔が設けられ前記導入通路の頭部を形成するノズルプレートを有するガスタービン燃焼器。
  3. 請求項2において、前記追焚きバーナは、前記流入口からガイド片よりも下流側にまで延びる導入通路上流部の外壁を形成するガイド筒を有するガスタービン燃焼器。
  4. 請求項3において、前記追焚きバーナは、前記燃焼筒に取り付けられて導入通路下流部を形成する導入筒を有するガスタービン燃焼器。
  5. 請求項4において、前記ガイド筒とその下流側の前記導入筒との間に軸方向の隙間が存在するガスタービン燃焼器。
  6. 請求項1から5のいずれか一項において、前記導入通路は、入口の通路面積が出口の通路面積よりも大きいガスタービン燃焼器。
JP2009060524A 2009-03-13 2009-03-13 ガスタービン燃焼器 Active JP4797079B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060524A JP4797079B2 (ja) 2009-03-13 2009-03-13 ガスタービン燃焼器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009060524A JP4797079B2 (ja) 2009-03-13 2009-03-13 ガスタービン燃焼器
US12/659,527 US8656721B2 (en) 2009-03-13 2010-03-11 Gas turbine combustor including separate fuel injectors for plural zones
EP10156222.1A EP2236938B1 (en) 2009-03-13 2010-03-11 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2010216668A JP2010216668A (ja) 2010-09-30
JP4797079B2 true JP4797079B2 (ja) 2011-10-19

Family

ID=42237316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060524A Active JP4797079B2 (ja) 2009-03-13 2009-03-13 ガスタービン燃焼器

Country Status (3)

Country Link
US (1) US8656721B2 (ja)
EP (1) EP2236938B1 (ja)
JP (1) JP4797079B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531471A (ja) * 2012-10-01 2015-11-02 ターボメカTurbomeca 可変空気供給源を備えたタービンエンジン燃焼組立体

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689559B2 (en) * 2009-03-30 2014-04-08 General Electric Company Secondary combustion system for reducing the level of emissions generated by a turbomachine
US8769955B2 (en) 2010-06-02 2014-07-08 Siemens Energy, Inc. Self-regulating fuel staging port for turbine combustor
JP5649949B2 (ja) * 2010-12-28 2015-01-07 川崎重工業株式会社 燃焼装置
JP5679326B2 (ja) * 2011-05-25 2015-03-04 新潟原動機株式会社 ガスタービン燃焼器
US9297534B2 (en) 2011-07-29 2016-03-29 General Electric Company Combustor portion for a turbomachine and method of operating a turbomachine
US9010120B2 (en) * 2011-08-05 2015-04-21 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
US8919137B2 (en) * 2011-08-05 2014-12-30 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
JP5393745B2 (ja) * 2011-09-05 2014-01-22 川崎重工業株式会社 ガスタービン燃焼器
US9303872B2 (en) * 2011-09-15 2016-04-05 General Electric Company Fuel injector
US20130111918A1 (en) * 2011-11-07 2013-05-09 General Electric Company Combustor assembly for a gas turbomachine
US9243507B2 (en) * 2012-01-09 2016-01-26 General Electric Company Late lean injection system transition piece
US9062609B2 (en) * 2012-01-09 2015-06-23 Hamilton Sundstrand Corporation Symmetric fuel injection for turbine combustor
US9151500B2 (en) * 2012-03-15 2015-10-06 General Electric Company System for supplying a fuel and a working fluid through a liner to a combustion chamber
US9284888B2 (en) * 2012-04-25 2016-03-15 General Electric Company System for supplying fuel to late-lean fuel injectors of a combustor
US8745986B2 (en) * 2012-07-10 2014-06-10 General Electric Company System and method of supplying fuel to a gas turbine
EP2888531B1 (en) * 2012-08-24 2020-06-17 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
US10060630B2 (en) 2012-10-01 2018-08-28 Ansaldo Energia Ip Uk Limited Flamesheet combustor contoured liner
US9897317B2 (en) 2012-10-01 2018-02-20 Ansaldo Energia Ip Uk Limited Thermally free liner retention mechanism
US20140090400A1 (en) 2012-10-01 2014-04-03 Peter John Stuttaford Variable flow divider mechanism for a multi-stage combustor
US20150184858A1 (en) * 2012-10-01 2015-07-02 Peter John Stuttford Method of operating a multi-stage flamesheet combustor
US10378456B2 (en) 2012-10-01 2019-08-13 Ansaldo Energia Switzerland AG Method of operating a multi-stage flamesheet combustor
US9222673B2 (en) * 2012-10-09 2015-12-29 General Electric Company Fuel nozzle and method of assembling the same
US9803498B2 (en) * 2012-10-17 2017-10-31 United Technologies Corporation One-piece fuel nozzle for a thrust engine
US9310078B2 (en) * 2012-10-31 2016-04-12 General Electric Company Fuel injection assemblies in combustion turbine engines
US8943834B2 (en) 2012-11-20 2015-02-03 Niigata Power Systems Co., Ltd. Pre-mixing injector with bladeless swirler
US9441543B2 (en) * 2012-11-20 2016-09-13 Niigata Power Systems Co., Ltd. Gas turbine combustor including a premixing chamber having an inner diameter enlarging portion
CN104870902A (zh) * 2012-12-13 2015-08-26 川崎重工业株式会社 适合多种燃料的燃气轮机燃烧器
US9366443B2 (en) * 2013-01-11 2016-06-14 Siemens Energy, Inc. Lean-rich axial stage combustion in a can-annular gas turbine engine
US9322558B2 (en) * 2013-06-27 2016-04-26 Siemens Aktiengesellschaft Combustor apparatus in a gas turbine engine
US20150047360A1 (en) * 2013-08-13 2015-02-19 General Electric Company System for injecting a liquid fuel into a combustion gas flow field
US20150052905A1 (en) * 2013-08-20 2015-02-26 General Electric Company Pulse Width Modulation for Control of Late Lean Liquid Injection Velocity
US10139111B2 (en) * 2014-03-28 2018-11-27 Siemens Energy, Inc. Dual outlet nozzle for a secondary fuel stage of a combustor of a gas turbine engine
WO2015182154A1 (en) 2014-05-30 2015-12-03 Kawasaki Jukogyo Kabushiki Kaisha Combustor for gas turbine engine
EP3150918B1 (en) * 2014-05-30 2019-12-18 Kawasaki Jukogyo Kabushiki Kaisha Combustion device for gas turbine engine
EP2955445B1 (en) 2014-06-12 2019-11-27 Kawasaki Jukogyo Kabushiki Kaisha Multifuel gas turbine combustor
US20160047317A1 (en) * 2014-08-14 2016-02-18 General Electric Company Fuel injector assemblies in combustion turbine engines
JP6437099B2 (ja) * 2014-08-26 2018-12-12 シーメンス エナジー インコーポレイテッド タービンエンジンの燃焼器内における燃料ノズル用の冷却システム
JP6602004B2 (ja) 2014-09-29 2019-11-06 川崎重工業株式会社 燃料噴射器及びガスタービン
JP6440433B2 (ja) 2014-09-29 2018-12-19 川崎重工業株式会社 燃料噴射ノズル、燃料噴射モジュール、及びガスタービン
JP6463947B2 (ja) * 2014-11-05 2019-02-06 川崎重工業株式会社 バーナ、燃焼器、及びガスタービン
KR102066943B1 (ko) * 2014-12-09 2020-01-16 한화에어로스페이스 주식회사 연소기의 연료 노즐
US9797601B2 (en) * 2015-01-21 2017-10-24 United Technologies Corporation Bluff body fuel mixer
JP5993046B2 (ja) * 2015-02-13 2016-09-14 川崎重工業株式会社 マルチ燃料対応のガスタービン燃焼器
US10060629B2 (en) * 2015-02-20 2018-08-28 United Technologies Corporation Angled radial fuel/air delivery system for combustor
KR101853464B1 (ko) 2015-06-22 2018-06-04 두산중공업 주식회사 실링구조를 포함하는 연료공급노즐.
KR101845702B1 (ko) * 2015-06-29 2018-04-05 두산중공업 주식회사 나사 고정식 결합구조가 마련된 노즐 후단부를 포함하는 연료공급노즐.
US10436450B2 (en) * 2016-03-15 2019-10-08 General Electric Company Staged fuel and air injectors in combustion systems of gas turbines
US10739003B2 (en) * 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10738704B2 (en) * 2016-10-03 2020-08-11 Raytheon Technologies Corporation Pilot/main fuel shifting in an axial staged combustor for a gas turbine engine
US10508811B2 (en) * 2016-10-03 2019-12-17 United Technologies Corporation Circumferential fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10422533B2 (en) * 2017-01-20 2019-09-24 General Electric Company Combustor with axially staged fuel injector assembly
US10718523B2 (en) * 2017-05-12 2020-07-21 General Electric Company Fuel injectors with multiple outlet slots for use in gas turbine combustor
US20180340689A1 (en) * 2017-05-25 2018-11-29 General Electric Company Low Profile Axially Staged Fuel Injector
FR3067444B1 (fr) * 2017-06-12 2019-12-27 Safran Helicopter Engines Architecture de combustion de carburant de turbomachine comportant des moyens de deflexion
US20190178497A1 (en) * 2017-12-11 2019-06-13 General Electric Company Fuel injection assemblies for axial fuel staging in gas turbine combustors
US20190178498A1 (en) * 2017-12-11 2019-06-13 General Electric Company Axial fuel staging system for gas turbine combustors
US10816203B2 (en) * 2017-12-11 2020-10-27 General Electric Company Thimble assemblies for introducing a cross-flow into a secondary combustion zone
KR102152420B1 (ko) * 2019-08-23 2020-09-07 두산중공업 주식회사 연소기, 이를 포함하는 가스 터빈, 및 연소기의 구동 방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326481Y2 (ja) * 1973-06-05 1978-07-06
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
GB2073400B (en) * 1980-04-02 1984-03-14 United Technologies Corp Fuel injector
US5749219A (en) * 1989-11-30 1998-05-12 United Technologies Corporation Combustor with first and second zones
JP2794927B2 (ja) * 1990-10-08 1998-09-10 日本鋼管株式会社 ガスタービン燃焼器における予混合方法および予混合装置
US5406799A (en) * 1992-06-12 1995-04-18 United Technologies Corporation Combustion chamber
JP2607387Y2 (ja) * 1993-12-27 2001-07-09 三井造船株式会社 ガスタービン燃焼器
GB9410233D0 (en) * 1994-05-21 1994-07-06 Rolls Royce Plc A gas turbine engine combustion chamber
US5657632A (en) * 1994-11-10 1997-08-19 Westinghouse Electric Corporation Dual fuel gas turbine combustor
US5687571A (en) * 1995-02-20 1997-11-18 Asea Brown Boveri Ag Combustion chamber with two-stage combustion
JPH08261468A (ja) 1995-03-28 1996-10-11 Toshiba Corp ガスタービン燃焼器
US5950417A (en) * 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JPH10196909A (ja) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd 多段予混合ガス燃焼装置及び燃焼方法
GB9818160D0 (en) * 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
US6339923B1 (en) * 1998-10-09 2002-01-22 General Electric Company Fuel air mixer for a radial dome in a gas turbine engine combustor
US6530223B1 (en) * 1998-10-09 2003-03-11 General Electric Company Multi-stage radial axial gas turbine engine combustor
US6161387A (en) * 1998-10-30 2000-12-19 United Technologies Corporation Multishear fuel injector
JP3069347B1 (ja) * 1999-06-11 2000-07-24 川崎重工業株式会社 ガスタ―ビンの燃焼器用バ―ナ装置
US6481209B1 (en) * 2000-06-28 2002-11-19 General Electric Company Methods and apparatus for decreasing combustor emissions with swirl stabilized mixer
US8272219B1 (en) * 2000-11-03 2012-09-25 General Electric Company Gas turbine engine combustor having trapped dual vortex cavity
US6536216B2 (en) * 2000-12-08 2003-03-25 General Electric Company Apparatus for injecting fuel into gas turbine engines
US6735949B1 (en) * 2002-06-11 2004-05-18 General Electric Company Gas turbine engine combustor can with trapped vortex cavity
JP2004170010A (ja) * 2002-11-21 2004-06-17 Hitachi Ltd ガスタービン燃焼器及びガスタービン燃焼器の燃料供給方法
JP2005257255A (ja) * 2004-02-10 2005-09-22 Ebara Corp 燃焼装置
US8348180B2 (en) * 2004-06-09 2013-01-08 Delavan Inc Conical swirler for fuel injectors and combustor domes and methods of manufacturing the same
JP4670035B2 (ja) * 2004-06-25 2011-04-13 独立行政法人 宇宙航空研究開発機構 ガスタービン燃焼器
JP4894295B2 (ja) * 2006-02-28 2012-03-14 株式会社日立製作所 燃焼装置と燃焼装置の燃焼方法、及び燃焼装置の改造方法
WO2009022449A1 (ja) * 2007-08-10 2009-02-19 Kawasaki Jukogyo Kabushiki Kaisha 燃焼装置
US8707707B2 (en) 2009-01-07 2014-04-29 General Electric Company Late lean injection fuel staging configurations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531471A (ja) * 2012-10-01 2015-11-02 ターボメカTurbomeca 可変空気供給源を備えたタービンエンジン燃焼組立体

Also Published As

Publication number Publication date
JP2010216668A (ja) 2010-09-30
US20100229557A1 (en) 2010-09-16
EP2236938A3 (en) 2011-04-27
EP2236938B1 (en) 2016-10-19
US8656721B2 (en) 2014-02-25
EP2236938A2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4797079B2 (ja) ガスタービン燃焼器
JP5528756B2 (ja) 二次燃料ノズル用の管状燃料噴射器
JP5393745B2 (ja) ガスタービン燃焼器
US5836164A (en) Gas turbine combustor
US8240150B2 (en) Lean direct injection diffusion tip and related method
US8607568B2 (en) Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle
JP5156066B2 (ja) ガスタービン燃焼器
JP2006112776A (ja) 低コスト二元燃料燃焼器及び関連する方法
KR20050029676A (ko) 가스 터빈용 향류 연소기 및 NOx 배기가스를감소시키는 방법
JP2010230199A (ja) バーナ、燃焼器及びバーナの改造方法
JP6196868B2 (ja) 燃料ノズルとその組立方法
EP2993404B1 (en) Dilution gas or air mixer for a combustor of a gas turbine
JP4756078B2 (ja) ガスタービン燃焼器
JP6637905B2 (ja) バーナ、燃焼器、及びガスタービン
KR101110144B1 (ko) 녹스 저감을 위한 이중 혼합구조를 갖는 예혼합형 가스터빈 연소기
JP2016538454A (ja) 燃料ノズル用の液体燃料カートリッジ
JP5997440B2 (ja) ペグなし二次燃料ノズル
JP4854613B2 (ja) 燃焼装置及びガスタービン燃焼器
JPH0814565A (ja) ガスタービン燃焼器
US6193502B1 (en) Fuel combustion device and method
JP2014105886A (ja) 燃焼器
KR20200090883A (ko) 버너 장치 및 다관식 관류 보일러 장치
CN210425014U (zh) 燃烧器
US20190257521A1 (en) Swirler, combustor assembly, and gas turbine with improved fuel/air mixing
JP2008111639A (ja) 燃焼装置、およびこれを用いたボイラ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4797079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3