WO2015182497A1 - タングステン耐熱合金、摩擦攪拌接合工具、および製造方法 - Google Patents

タングステン耐熱合金、摩擦攪拌接合工具、および製造方法 Download PDF

Info

Publication number
WO2015182497A1
WO2015182497A1 PCT/JP2015/064705 JP2015064705W WO2015182497A1 WO 2015182497 A1 WO2015182497 A1 WO 2015182497A1 JP 2015064705 W JP2015064705 W JP 2015064705W WO 2015182497 A1 WO2015182497 A1 WO 2015182497A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
powder
resistant alloy
carbonitride
friction stir
Prior art date
Application number
PCT/JP2015/064705
Other languages
English (en)
French (fr)
Inventor
あゆ里 辻
繁一 山崎
明彦 池ヶ谷
上西 昇
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to US15/314,671 priority Critical patent/US10465266B2/en
Priority to EP15799231.4A priority patent/EP3141625A4/en
Priority to EP20204667.8A priority patent/EP3792370A1/en
Priority to JP2016523461A priority patent/JP6208863B2/ja
Publication of WO2015182497A1 publication Critical patent/WO2015182497A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product

Definitions

  • the present invention relates to a tungsten heat-resistant alloy suitable for a plastic working tool used in a high-temperature environment, particularly a friction stir welding tool, a friction stir welding tool using the same, and a method for producing a tungsten heat-resistant alloy.
  • FSW friction stir welding
  • Friction stir welding is a method in which a rotating tool is pressed against a joining portion of a metal member, and a material to be joined that has been softened by the frictional heat is plastically flowed and joined. Friction stir welding has already been put into practical use in joining low melting point, soft materials such as aluminum and magnesium, and its application range is expanding. However, at present, there is a demand for the development of a tool having a practical life with improved high-temperature strength and wear resistance in order to be applied to a material to be bonded having a higher melting point and harder.
  • the temperature of the tool when the material to be joined is softened by frictional heat, the temperature of the tool generally rises to around 70% of the melting point of the material to be joined, although there are differences depending on the joining conditions and the material to be joined. Because there are things. In other words, this temperature is about 400 ° C. for low melting point aluminum, whereas it reaches 1000 to 1200 ° C. for steel materials. Therefore, the tool material is a high temperature that can cause the material to be joined to plastically flow even in this temperature range. Strength, toughness and wear resistance are required. This is a problem common to tools used in FSW, FSJ (Friction Spot Joining) and friction stir application technology.
  • the heat-resistant materials that have been proposed so far include W and Mo-based heat-resistant alloys, but the inventors have also found that an alloy exhibiting excellent high-temperature characteristics can be obtained by adding TiCN to Mo, and earnestly developed it. As a result, by adjusting the amount of TiCN added, it was possible to develop a material with a balance of hardness, strength and toughness (Patent Document 1).
  • W which is also known as a high melting point material, shows from the state diagram that it does not form an intermetallic compound in the tool operating temperature range. Even if it is a system material, formation of an intermetallic compound phase can be prevented.
  • Patent Document 2 As a tool for friction stir welding of high melting point materials, W-based alloys have already attracted attention.
  • W-Re materials Patent Document 2
  • W-PcBN combined materials of W-Re alloys and hard materials
  • Patent Literature 3 Patent Literature 3
  • Other examples include Co-based alloys (Patent Documents 4 and 5), W—TiCN alloys (Patent Documents 6 and 3), Ni-based superalloys (Patent Document 7), Ir alloys (Patent Document 8) and silicon knights.
  • Patent Document 9 A friction stir welding tool for a ride has been developed.
  • W-Re has excellent toughness but is easily worn
  • PcBN has excellent wear resistance but has a drawback of being easily broken
  • W-Re / PcBN is a very excellent material having both fracture resistance and wear resistance, but it is expensive and has a problem of poor practicality.
  • Co-based alloys are effective for joining titanium alloys, but there is a problem that they cannot be applied to stainless steel joints because of insufficient wear resistance.
  • Ni-base superalloys were insufficient as wear-resistant materials because of their low hardness at high temperatures.
  • the Ir alloy has a problem that it is difficult to put it to practical use because the high melting point alloy material Ir is expensive.
  • silicon nitride is effective for joining stainless steel thin plates, there is a problem that when a thick plate exceeding 5 mm is joined, there is a high possibility of breakage because the probe length becomes long.
  • W-TiCN alloy is an excellent material in that the addition of TiCN can improve room temperature hardness and high temperature strength without reducing ductility.
  • the conventional friction stir welding tool material still has room for improvement when iron-based materials are to be joined.
  • the present invention has been made in view of the above problems, and its object is to provide a tungsten heat-resistant alloy for plastic working tools that satisfies both physical properties such as proof stress and hardness corresponding to the workpiece and practicality. There is.
  • the present inventor reexamined the W—TiCN alloy.
  • the inventors added ductility of Ti, Zr, and Hf as hard particles to W at a predetermined ratio, and further added carbide of at least one element of Group 5A element of the periodic table to obtain ductility. It has been found that a heat-resistant material capable of achieving high strength and high hardness can be obtained without significantly impairing the above, and has led to the present invention.
  • the first aspect of the present invention includes a first phase containing W as a main component and a carbonitride of at least one element of Ti, Zr, and Hf. And a second phase having a carbide of at least one element of Group 5A element of the periodic table and having the carbide as a main component when W is excluded.
  • the Vickers hardness at room temperature is 550 Hv or more
  • the displacement (hereinafter referred to as fracture bending) that leads to breaking by a three-point bending test at 1200 ° C. is 1 mm or more, and 0.2% by a three-point bending test at 1200 ° C. It is a tungsten heat-resistant alloy having a proof stress of 900 MPa or more.
  • a second aspect of the present invention is a friction stir welding tool having the tungsten heat-resistant alloy described in the first aspect.
  • a third aspect of the present invention is a friction stir welding apparatus having the friction stir welding tool according to the second aspect.
  • a powder containing W powder, carbonitride powder, and a carbide containing a group 5A element is mixed (a), and the mixed powder obtained by (a) is formed at room temperature (b). And (c) which heats and sinters the molded body obtained by (b) at 1800 ° C. or more and 2000 ° C. or less in an atmosphere of normal pressure, according to the first aspect.
  • a manufacturing method for manufacturing an alloy is described in detail.
  • tungsten heat-resistant alloy for a tool for plastic working, which satisfies both physical properties such as proof stress and hardness and practicality corresponding to higher melting point of a workpiece to be processed than before.
  • the tungsten heat-resistant alloy of the present application has a first phase mainly composed of W and a carbonitride of at least one element of Ti, Zr, and Hf, and when the W is removed, the carbonitride is a major component. And a second phase having a carbide of at least one element of Group 5A element of the periodic table and having W as a main component when the W is removed, and at room temperature It is a tungsten heat-resistant alloy having a Vickers hardness of 550 Hv or more, a breaking deflection by a three-point bending test at 1200 ° C. of 1 mm or more, and a 0.2% proof stress by a three-point bending test at 1200 ° C. of 900 MPa or more.
  • “Vickers hardness at room temperature” refers to Vickers hardness at 20 ° C.
  • the tungsten heat-resistant alloy preferably has a Vickers hardness at 1000 ° C. of 190 Hv or more. By setting it to 190 Hv or more, wear and deformation during continuous use when used as a friction stir welding tool can be further suppressed.
  • the tungsten heat-resistant alloy preferably has a Ti, Zr, and Hf carbonitride content of 5% by volume or more and 25% by volume or less. By setting it as 5 volume% or more, room temperature hardness and the 0.2% yield strength in high temperature can be improved. Moreover, the high temperature strength can be increased. By setting it as 25 volume% or less, the fall of ductility can be suppressed.
  • the tungsten heat-resistant alloy preferably has a total content of V, Nb, and Ta carbides of 0.5 volume% or more and 15 volume% or less. By setting it as 0.5 volume% or more, room temperature hardness and the 0.2% yield strength in high temperature can be improved. Moreover, the high temperature strength can be increased. By setting it as 15 volume% or less, the fall of ductility can be suppressed.
  • the tungsten heat-resistant alloy preferably has an average crystal grain size of 0.1 ⁇ m or more and 10 ⁇ m or less in the first phase, the second phase, and the third phase.
  • the thickness By setting the thickness to 0.1 ⁇ m or more, a decrease in ductility can be suppressed.
  • the friction stir welding tool of the present application is a friction stir welding tool having the above-described tungsten heat-resistant alloy.
  • the friction stir welding apparatus of the present application is a friction stir welding apparatus having the friction stir welding tool described above.
  • W powder, carbonitride powder, and carbide containing 5A group element are mixed (a), and the mixed powder obtained by (a) is formed at room temperature (b) And (c) heating and sintering the molded body obtained by (b) at 1800 ° C. or more and 2000 ° C. or less in an atmosphere of normal pressure. It is.
  • FIG. 1 is a schematic diagram of each phase in a tungsten heat-resistant alloy according to an embodiment of the present invention.
  • the tungsten heat-resistant alloy used in the friction stir welding tool includes a first phase 1 mainly composed of W and at least one element of Ti, Zr, and Hf. It has carbonitride, and when W is excluded, it has a second phase 2 mainly composed of the carbonitride and a carbide of at least one element of Group 5A element of the periodic table, and W is excluded. And a third phase 3 mainly composed of the carbide, having a Vickers hardness at room temperature of 550 Hv or more, a breaking deflection by a three-point bending test at 1200 ° C. of 1 mm or more, and 3 at 1200 ° C.
  • the 0.2% proof stress by the point bending test is 900 MPa or more.
  • FIG. 1 also shows a fourth phase 4 that is a solid solution formed around the second phase 2 and the third phase 3.
  • the first phase 1 is a phase mainly composed of W.
  • the main component here means a component having the largest content (mass%) (the same applies hereinafter).
  • the first phase 1 is composed of, for example, W and inevitable impurities, but depending on the content of carbonitrides and carbides to be described later, the elements constituting the carbonitrides and carbides in the first phase 1 May be dissolved.
  • W in the first phase 1 has a high melting point, high hardness and excellent strength at high temperature, and is essential for imparting physical properties as a metal to the tungsten heat-resistant alloy.
  • the second phase 2 is a phase having at least one carbonitride of Ti, Zr, and Hf and containing carbonitride as a main component when W is removed. Specifically, it is composed of, for example, the above-described carbonitride, W, and inevitable impurities.
  • the carbonitride of Ti, Zr, and Hf in the second phase 2 is indispensable because it can increase room temperature hardness and 0.2% proof stress at high temperature, as will be described later, by adding to W. is there.
  • TiCN as representative of carbonitrides
  • TiC x N 1-x (x 0.3 ⁇ 0.7) and becomes what is mentioned, specifically thereof include TiC 0.3 N 0.7, TiC 0.5 N 0.5, like TiC 0.7 N 0.3.
  • TiC 0.5 N 0.5 is known as a typical one, but titanium carbonitride, zirconium carbonitride, and hafnium carbonitride having other compositions are also TiC 0.5 N 0.5. The same effect can be obtained.
  • the third phase 3 is a phase containing carbide of at least one element of Group 5A element of the periodic table and having the carbide as a main component when W is removed. Specifically, it is composed of, for example, the above-described carbide, W, and inevitable impurities. Specific examples of Group 5A elements of the periodic table include V, Nb, and Ta.
  • the addition of the carbonitride elements is simply increased compared to the case of addition.
  • Room temperature hardness and high-temperature strength can be improved while suppressing a decrease in ductility. Therefore, the 5A group element is essential.
  • the carbonitride is TiCN.
  • the purpose is to improve the characteristics (strength) of the W-TiCN alloy
  • the TiCN added amount is increased and the Ti content exceeds 25% by volume, the ductility decreases.
  • the case where the carbonitride is ZrCN or HfCN is the same as the case where the carbonitride is TiCN.
  • the fourth phase 4 is a layer formed around at least one of the second phase 2 and the third phase 3, and W of the first phase 1 and carbonitride of the second phase 2 or third
  • the main component is a solid solution with the carbide of phase 3 and this and inevitable impurities.
  • the fourth phase 4 when the fourth phase 4 is formed around the second phase 2, the abundance of carbonitride is a solid solution higher than that of the first phase 1, and is formed around the third phase 3. In this case, the carbide is present in a solid solution having a higher proportion than that of the first phase 1.
  • the fourth phase 4 is not an essential configuration.
  • the content of Ti, Zr and Hf carbonitrides in the alloy is preferably 5% by volume or more and 25% by volume or less. If the amount is less than 5% by volume, the effect of increasing the room temperature hardness and the 0.2% proof stress at high temperatures may not be sufficiently obtained. If the amount exceeds 25% by volume, the effect of suppressing the reduction in ductility is sufficient. This is because when used as the above-mentioned tool, it may be easily lost or cracked. In addition, from the viewpoint of greatly suppressing the decrease in ductility, it is more preferable that the content is 5% by volume or more and 20% by volume or less in the above range.
  • the content of the group 5A carbide is preferably 0.5% by volume or more and 15% by volume or less. If the content of the group 5A carbide is less than 0.5% by volume, the effect of increasing the room temperature hardness by adding the group 5A and the 0.2% proof stress at high temperature may not be sufficiently obtained, and exceeds 15% by volume. There is a possibility that the effect of suppressing the decrease in ductility cannot be obtained sufficiently. In order to further enhance these effects, the content is more preferably 1% by volume or more and 13% by volume or less in the above range.
  • the content (volume%) of Ti, Zr, Hf carbonitride and 5A group carbide is a value calculated by the following method. First, the element contents (mass) of W, Ti, Zr, Hf, and group 5A elements contained in the tungsten heat-resistant alloy sample are measured. Next, from the measured masses, W is the total amount as metal, Ti, Zr, and Hf are all as carbonitride, and the 5A group element is all as carbide in the sample.
  • W, Ti, Zr, and Hf carbonitrides and 5A group element carbides are calculated using their respective densities, and the sum of these volumes is the total volume of the sample, and Ti, Zr, and Hf carbonitrides and The volume ratio (volume%) of the 5A group element carbide is calculated.
  • a method of measuring the element content (mass) for example, a method of measuring by ICP (Inductively Coupled Plasma) emission spectroscopic analysis can be used.
  • the “content of carbonitrides of Ti, Zr, and Hf” in the present invention is converted to TiC 0.5 N 0.5 , ZrC 0.5 N 0.5 , and HfC 0.5 N 0.5 The content when it is done.
  • the tungsten heat-resistant alloy forming the friction stir welding tool according to the present invention may contain inevitable impurities in addition to the above-described essential components.
  • Inevitable impurities include metal components such as Fe, Ni, and Cr, and C, N, and O.
  • the first phase 1, the second phase 2, and the third phase 3 (and the fourth phase 4 if present) desirably have an average crystal grain size of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • Hardness and strength can be increased by reducing the average crystal grain size of the first phase 1, which is the main phase of the tungsten heat-resistant alloy, but if it is less than 0.1 ⁇ m, the ductility tends to decrease, and the ductility There is a possibility that the effect of suppressing the decrease in the temperature cannot be sufficiently obtained.
  • a method of making the grain size of the raw material powder is general, but the fine raw material powder for making the average crystal grain size less than 0.1 ⁇ m is: In practice, it is difficult to avoid agglomeration, and it may be difficult to obtain the effect of increasing hardness and strength.
  • the average crystal grain size of the first phase 1 is desirably 0.1 ⁇ m or more and 10 ⁇ m or less. Furthermore, in order to further enhance the effect of increasing the hardness and strength while suppressing the decrease in ductility, it is more preferable that the thickness is 0.5 ⁇ m or more and 8 ⁇ m or less in the above range.
  • the average crystal grain size of the second phase 2 and the third phase 3 is also a phase constituting a part of the tungsten heat-resistant alloy
  • the first phase 1 The same can be said. That is, the average crystal grain size of these phases is also preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 8 ⁇ m or less.
  • an intercept method is mentioned as a method of measuring a crystal grain diameter. This is because an enlarged photograph with a magnification of 1000 times is taken with respect to the cross section to be measured, and a straight line is arbitrarily drawn on the photograph, and individual crystal grains that cross this linear shape are the target grains of the crystal grain that the straight line crosses. This is a method of measuring the particle size of the grains and calculating the sum.
  • the visual field for measurement is, for example, about 120 ⁇ m ⁇ 90 ⁇ m, and the number of particles to be measured is, for example, 50 or more.
  • the composition of the observed crystal grains can be specified by line analysis using EPMA (Electron Probe Micro Analyzer), for example.
  • the strength of the tungsten heat-resistant alloy according to the embodiment of the present invention is such that the Vickers hardness (room temperature hardness) at room temperature is 550 Hv or higher, and the breaking deflection by a three-point bending test at 1200 ° C. is 1 mm or more.
  • the 2% proof stress is 900 MPa or more.
  • the tungsten heat-resistant alloy is applied to heat-resistant members that require high melting point and high strength, such as friction stir welding members for Fe-based, FeCr-based, Ti-based, etc. can do.
  • the 0.2% proof stress (equivalent to bending) here refers to the stress when the permanent strain amount is 0.2% after a bending test. Equivalent) ”.
  • the present invention is a tungsten “heat-resistant” alloy
  • the room temperature hardness is a condition for the following reasons.
  • the wear amount of the tool is closely related to the hardness of the tool material, and the higher the hardness, the more effective the tool wear amount can be reduced.
  • friction stir welding since a high load is applied to the tool when the tool is inserted, wear during insertion appears significantly. At the time of insertion, both the tool and the work still generate little heat, and the temperature of both is not high. Therefore, the wear amount of the tool depends on the hardness at room temperature.
  • the tungsten heat-resistant alloy according to the embodiment of the present invention may be used as a friction stir welding tool itself, in many cases, it is used as a friction stir welding tool base material, and the periodic table IVa, Va, VIa, IIIb is used.
  • a film containing at least one element selected from the group consisting of Group IV elements and Group IVb elements other than C, or a carbide, nitride or carbonitride of at least one element selected from these element groups The surface is coated and used as a tool.
  • the base material has a high room temperature hardness (550 Hv or more) so that the base material is not deformed or broken at the initial stage of rotation or peeling between the base material and the coating film.
  • the tungsten heat-resistant alloy preferably has a Vickers hardness at 1000 ° C. of 190 Hv or more. By setting it as 190 Hv or more, the wear at the time of continuous use when using as a friction stir welding tool can be suppressed more.
  • the above is the conditions for the tungsten heat-resistant alloy.
  • the tungsten heat-resistant alloy according to the embodiment of the present invention and the method for producing a friction stir welding tool using the same are not particularly limited as long as the friction stir welding tool that satisfies the above conditions can be produced.
  • a method as shown in FIG. 2 can be exemplified.
  • the raw material powder is mixed at a predetermined ratio to generate a mixed powder (S1 in FIG. 2).
  • Examples of the raw material include W powder and TiCN powder (or carbonitride powders such as titanium carbonitride, zirconium carbonitride, hafnium carbonitride, etc.) and 5A group carbide powder. explain.
  • W powder having a purity of 99.99% by mass or more and an Fsss (Fisher Sub-Sieve Sizer) average particle size of 0.1 ⁇ m to 5.0 ⁇ m is preferably used.
  • the W powder purity is obtained by a tungsten material analysis method described in JIS H 1403, and includes Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Si, and Sn. It means the pure metal part excluding the value.
  • the carbonitride powder preferably has a purity of 99.9% or more and an Fsss average particle diameter of 2 ⁇ m to 3 ⁇ m.
  • carbide powder having a purity of 99.9% or more and an Fsss average particle diameter of 2 ⁇ m to 3 ⁇ m.
  • the purity of the carbonitride powder referred to here means a pure content excluding Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Si, and Sn.
  • the apparatus and method used for mixing the powder are not particularly limited, and for example, a known mixer such as a mortar, a V-type mixer, or a ball mill can be used.
  • the obtained mixed powder is compression molded to form a molded body (S2 in FIG. 2).
  • the apparatus used for compression molding is not particularly limited, and a known molding machine such as a uniaxial pressing machine or CIP (Cold Isostatic Pressing) may be used.
  • a condition at the time of compression the temperature at the time of compression may be room temperature (20 ° C.).
  • the molding pressure is preferably 98 to 294 MPa (room temperature). This is because if the molding pressure is less than 98 MPa, the molded body cannot obtain a sufficient density, and if it exceeds 294 MPa, the compression device and the mold become large, which is disadvantageous in terms of cost.
  • the sintering temperature is 1800 ° C. or higher and 2000 ° C. or lower in normal pressure sintering.
  • HIP hot isostatic pressing
  • the material of the friction stir welding tool thus obtained is subjected to processing such as cutting, grinding / polishing and coating (S5 in FIG. 2) to produce a friction stir welding tool.
  • the tungsten heat-resistant alloy forming the friction stir welding tool according to the embodiment of the present invention has the above-described configuration.
  • the friction stir welding tool using the tungsten heat-resistant alloy according to the embodiment of the present invention is used. The configuration will be briefly described with reference to FIG.
  • FIG. 3 is a side view showing the friction stir welding tool 101 according to the embodiment of the present invention.
  • the friction stir welding tool 101 includes a shank 102 connected to a main shaft (not shown) of the joining device, a shoulder portion 103 that comes into contact with the surface of the object to be joined at the time of joining, and is inserted into the object to be joined at the time of joining.
  • the pin portion 104 is provided.
  • At least the base material of the shoulder portion 103 and the pin portion 104 is formed of the tungsten heat-resistant alloy according to the present invention.
  • the periodic table IVa, Va, VIa, IIIb group elements and IVb other than C are applied to the surface of the tungsten heat-resistant alloy so that the friction stir welding tool is not oxidized or welded to the object to be joined by the temperature during use.
  • the surface is coated with at least one element selected from the group consisting of group elements, or a carbide, nitride, or carbonitride of at least one element selected from these element groups. preferable.
  • the thickness of the coating layer is preferably 1 to 20 ⁇ m. When the thickness of the coating layer is less than 1 ⁇ m, the effect of providing the coating layer cannot be expected. On the other hand, when the thickness of the coating layer is 20 ⁇ m or more, an excessive stress is generated and the film may be peeled off, which may extremely deteriorate the yield.
  • the composition ratio of each element of the coating layer can be arbitrarily set.
  • the method for forming the coating layer is not particularly limited, and a film can be formed by a known method.
  • Typical methods include PVD (Physical Vapor Deposition) such as arc ion plating and sputtering, CVD (Chemical Vapor Deposition) that coats by chemical reaction, and plasma CVD that decomposes and ionizes gaseous elements by plasma.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • plasma CVD that decomposes and ionizes gaseous elements by plasma.
  • any method can be used to process from a single layer film to a multilayer film, and excellent adhesion can be exhibited when the tungsten heat-resistant alloy of the present invention is used as a base material.
  • the tungsten heat-resistant alloy according to the embodiment of the present invention has the first phase 1 mainly composed of W and the carbonitride of at least one element of Ti, Zr, and Hf, and excludes W.
  • a second phase 2 mainly containing the carbonitride and a carbide of at least one element of Group 5A element of the periodic table, and when W is removed, And a Vickers hardness at room temperature of 550 Hv or more, a breaking deflection by a three-point bending test at 1200 ° C. of 1 mm or more, and a 0.2% proof stress by a three-point bending test at 1200 ° C. of 900 MPa. That's it.
  • the friction stir welding tool using the tungsten heat-resistant alloy according to the embodiment of the present invention has both physical properties and practicality such as proof stress and hardness corresponding to the higher melting point of the object to be joined (working object) than before. Satisfy.
  • Example 1 First, an alloy containing 10% by volume of TiCN as carbonitride and 2.5% by volume of NbC as 5A group carbide was prepared in W, and hardness measurement and a bending test were performed. The specific procedure is as follows.
  • W powder, TiCN powder, and NbC powder were prepared as raw materials. Specifically, W powder having a purity of 99.99% by mass or more and an average particle diameter measured by the Fsss method of 1.2 ⁇ m manufactured by Allied Material was used.
  • TiCN powder manufactured by Allied Materials Co., Ltd. having a purity of 99.9% by mass or more and an average particle diameter of 0.8 ⁇ m by the Fsss method was used as TiCN powder.
  • the NbC powder is a Wako first grade NbC powder manufactured by Wako Pure Chemical Industries, Ltd., and a powder having an average particle size of 1 ⁇ m to 3 ⁇ m was used.
  • the obtained molded body was heated at a temperature of 2000 ° C. in an atmospheric hydrogen atmosphere to obtain a sintered body having a relative density of 95% or more.
  • the sintered body was subjected to HIP treatment at a processing temperature of 1600 ° C. under an Ar atmosphere and a pressure of 202.7 MPa to produce a tungsten heat-resistant alloy having a relative density of about 99%.
  • FIG. 4 is a diagram simulating an electron micrograph.
  • the observed tissue composition is shown in Table 1.
  • a composition here shows the ratio of W, Ti, Nb, C, and N in each structure
  • the second phase here refers to a phase mainly composed of TiCN except for W
  • the third phase refers to a phase mainly composed of NbC except for W.
  • a method of confirming that TiCN is the main component in the second phase and NbC is the main component in the third phase a method of confirming that TiCN and NbC diffraction peaks are obtained using an X-ray diffractometer. Used to identify compound components.
  • the measurement conditions are as follows.
  • FIG. 5 shows an example of diffraction peaks obtained by X-ray diffraction. From this result, it was found that the main component of the second phase was TiCN and the main component of the third phase was NbC.
  • the produced tungsten heat-resistant alloy has a first phase 1 mainly composed of W and a second phase mainly composed of Ti carbonitride when Ti is removed and Ti is removed. 2 and Nb carbide, and when W was removed, the third phase 3 mainly composed of Nb carbide was formed.
  • Friction stir welding tools must be strong against rotational bending at high temperatures because they are joined by the lateral movement of the tool while rotating, but the high-temperature rotational bending test is special. Therefore, the high temperature strength was evaluated here by a simple bending test. Furthermore, since the friction stir welding tool is required to have deformation resistance, for the purpose of carrying out the evaluation with the same strain amount, the stress when 0.2% strain is generated for convenience, that is, 0.2% proof stress (bending) (Generally 0.2% proof stress is used for evaluation of materials with unclear yield points during tensile tests).
  • the 0.2% yield strength (equivalent to bending) was measured by the following procedure. First, a sample piece of tungsten heat-resistant alloy was processed to have a length: about 25 mm, a width: 2.5 mm, and a thickness: 1.0 mm, and the surface was polished using # 600 SiC polishing paper.
  • the sample piece 11 is set in an Instron high-temperature universal testing machine (model number: 5867 type) so that the distance between the pins 13 is 16 mm, and is placed in an Ar atmosphere. Then, at 1200 ° C., the head 15 was pressed against the sample at a crosshead speed of 1 mm / min, a three-point bending test was performed, and 0.2% yield strength (equivalent to bending) was measured.
  • Instron high-temperature universal testing machine model number: 5867 type
  • F test load (N)
  • L distance between fulcrums (mm)
  • b width of the test piece (mm)
  • h thickness of the test piece (mm)
  • s deflection amount (mm). .
  • the amount of deflection at the time of fracture was read and the toughness was evaluated.
  • the amount of deflection is within 6 mm, which is the device limit, and when it reaches 6 mm, the measurement was interrupted and it was decided to treat it as a full bend.
  • the Vickers hardness at room temperature is 550 Hv or more
  • the Vickers hardness at 1000 ° C. is 190 Hv or more
  • the bending deflection by the three-point bending test at 1200 ° C. is 1 mm or more, which was conventionally difficult, 0 It was found that a tungsten heat-resistant alloy having a 2% proof stress of 900 MPa or more can be obtained.
  • Example 1 A tungsten heat-resistant alloy was prepared and tested under the same conditions as in Example 1 except that the composition of the alloy was W-10.5% by volume TiCN-1.5% by volume HfC. That is, a tungsten heat-resistant alloy in which a carbide of a group 5A element was not added but a carbide of a group 4A element (Hf) was added instead was prepared and tested.
  • the HfC powder was a HfC powder manufactured by High-Purity Chemical Laboratory, and a powder having an average particle size of 0.9 ⁇ m by the Fsss method.
  • FIG. 8 shows a diagram simulating an electron micrograph.
  • composition of the observed tissue is shown in Table 2.
  • a composition here shows the ratio of W, Ti, Hf, C, and N in each structure
  • the second phase here refers to a phase mainly composed of TiCN except for W
  • the third phase refers to a phase mainly composed of HfC except for W.
  • Example 2 Alloys were produced with various compositions, and other conditions were the same as in Example 1, and a tungsten heat-resistant alloy was produced and tested. The results are shown in Table 3.
  • the first phase is W powder made by Allied Material (variety names A20, B20, C20, D10, D20, etc.)
  • the second phase is TiCN powder made by Allied Material ( Variety names 5OR08, 5MP15, 5MP30), and ZrCN powders of ZrCN powder made by Allied Material, product name, 5OV25 and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method were used.
  • the HfCN powder a powder produced by the applicant of the present invention and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method was used.
  • the third phase uses VC powder (variety name OR10), NbC powder made by Nippon Shin Metals, TaC powder, or powder prepared by classifying the powder, and adjusting the sintering time to obtain granules.
  • the method was performed by controlling the progress of growth.
  • all the tungsten heat-resistant alloys except for sample numbers 1 and 15 include the first phase 1 mainly composed of W and at least one of Ti, Zr, and Hf.
  • the third phase 3 mainly composed of the carbide was formed.
  • the table shows the following points. First, even if any carbon nitride of 4A group Ti, Zr, or Hf was added, almost the same physical properties of the tungsten heat-resistant alloy were obtained.
  • the volume% of the group 4A carbonitride is 5% by volume or more and 25% by volume or less from the viewpoint of increasing the room temperature hardness, high temperature strength and ductility of the tungsten heat-resistant alloy, and further from the viewpoint of increasing high temperature strength. It has been found that it is desirable that the content be 5% by volume or more and 20% by volume or less.
  • the volume% of any one of V, Nb, and Ta in the group 5A is set to 0.00% from the viewpoint of increasing the room temperature hardness, high temperature strength and ductility of the tungsten heat-resistant alloy, and from the viewpoint of increasing the high temperature strength. It was found that the content is preferably 5% by volume or more and 15% by volume or less, and more preferably 1% by volume or more and 13% by volume or less.
  • the average grain size of each phase crystal is 0.1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of increasing the room temperature hardness, high temperature strength and ductility of the tungsten heat-resistant alloy, and further from the viewpoint of increasing the high temperature strength. It was found that the thickness is preferably 0.5 ⁇ m or more and 8 ⁇ m or less.
  • the composition is expressed by volume%, but it can also be expressed by mass%.
  • the following examples are for the case where the composition is expressed by mass%.
  • W powder as a base material was prepared as a raw material, and TiCN powder, ZrCN powder, and HfCN powder as carbonitride were prepared. Specifically, W powder having a purity of 99.99% by mass or more and an average particle diameter measured by the Fsss method of 1.2 ⁇ m manufactured by Allied Material was used.
  • TiCN powder manufactured by Allied Materials Co., Ltd. having a purity of 99.9% by mass or more and an average particle diameter of 0.8 ⁇ m by the Fsss method was used as TiCN powder.
  • ZrCN powder ZrCN powder made by Allied Material, product name, 5OV25, and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method was used.
  • HfCN powder a powder produced by the applicant of the present invention and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method was used.
  • TiCN powder, ZrCN powder, or HfCN powder was added to W powder at a ratio shown in Table 4.
  • these powders were mixed in a mortar to produce a mixed powder, and compression molded under the conditions of a temperature of 20 ° C. and a molding pressure of 3 ton / cm 3 using a uniaxial press machine to obtain a molded body.
  • the obtained molded body was heated at a temperature of 1900 ° C. in a hydrogen atmosphere (atmospheric pressure) to obtain a sintered body having a relative density of 90% or more.
  • the sintered body was subjected to HIP treatment at a treatment temperature of 1600 ° C. under an Ar atmosphere and a pressure of 202.7 MPa to produce a tungsten heat-resistant alloy having a relative density of about 98%.
  • content of each element in the produced sample was performed similarly to the Example.
  • the hardness of the alloy is about the same as the hardness of pure tungsten (about Hv400), and carbonitride is added. It turned out that the effect to do is not fully acquired.
  • the average particle diameter of the carbonitride of the sintered body obtained in these tests was 0.7 ⁇ m, and the average particle diameter of tungsten was 0.8 ⁇ m.
  • ZrCN and HfCN were also used as carbonitrides, room temperature hardness and high temperature strength equivalent to TiCN were obtained.
  • W powder as the first phase 1 TiCN powder, ZrCN powder, HfCN powder as the carbonitride of the second phase 2, NbC powder, TaC powder as the carbide of the third phase 3 VC powder was prepared.
  • W powder having a purity of 99.99% by mass or more and an average particle diameter of 1.2 ⁇ m by the Fsss method was used.
  • TiCN powder manufactured by Allied Materials Co., Ltd. having a purity of 99.9% by mass or more and an average particle diameter of 0.8 ⁇ m by the Fsss method was used as TiCN powder.
  • ZrCN powder ZrCN powder made by Allied Material, product name, 5OV25, and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method was used.
  • HfCN powder a powder produced by the applicant of the present invention and having an average particle diameter of 2.0 ⁇ m to 3.0 ⁇ m by the Fsss method was used.
  • NbC powder a Wako primary NbC powder manufactured by Wako Pure Chemical Industries, Ltd., having an average particle diameter of 1 ⁇ m to 3 ⁇ m was used.
  • TaC powder TaC powder manufactured by High Purity Chemical Laboratory, having a purity of 99% and a particle diameter of 2 ⁇ m was used.
  • VC powder a powder having a mean particle size of 1.2 ⁇ m or less by the Fsss method using VC powder / variety name, OR10, manufactured by Allied Material, was used.
  • the above powder is mixed in a predetermined ratio using a mortar to produce a mixed powder, and compression molding is performed using a uniaxial press machine under the conditions of a temperature of 20 ° C. and a molding pressure of 294 MPa to obtain a molded body. It was.
  • the obtained molded body was heated at a temperature of 1900 ° C. or 2000 ° C. in a hydrogen atmosphere (atmospheric pressure) to obtain a sintered body having a relative density of 90% or more.
  • the sintered body was subjected to HIP treatment at a treatment temperature of 1600 ° C. under an Ar atmosphere and a pressure of 202.7 MPa, and a tungsten heat-resistant alloy having a relative density of about 99% was completed.
  • the composition is W-3 mass% TiCN-1 mass% NbC (sintering temperature 2000 ° C. or 1900 ° C.), W-3 mass% TiCN-1 mass% HfC (sintering temperature 1900 ° C.)
  • the sample was subjected to a structure observation by an electron microscope and a composition analysis of the structure by EPMA.
  • the measurement conditions are as follows. Analysis conditions for line analysis by EPMA Apparatus: EPMA1720H (manufactured by Shimadzu Corporation) Acceleration voltage: 15 kV Beam current: 20 nA Beam size: 1 ⁇ m Measurement magnification: 5000 times Integration time: 20 s / point
  • FIG. 9 shows electron micrographs of samples having a composition of W-3 mass% TiCN-1 mass% HfC (sintering temperature 1900 ° C.).
  • Table 6 shows the composition of the tissue observed in the above sample.
  • a composition here shows the ratio of W, Ti, Nb, C, and N in each structure
  • composition of this phase was an intermediate composition between the composition of the first phase 1 and the second phase 2 or the third phase 3, and thus was found to correspond to the fourth phase 4.
  • the present invention is not limited to this, and a glass melting jig, a high-temperature industrial furnace member, Heat resistance used in high temperature environments such as hot extrusion dies, seamless pipe piercer plugs, injection molding hot runner nozzles, casting insert molds, resistance heating vapor deposition containers, aircraft jet engines and rocket engines It can be applied to members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の課題は、従来よりも加工対象物の高融点化に対応した耐力や硬度等の物性を充足する、塑性加工用工具用の耐熱合金を提供することにある。本発明のタングステン耐熱合金は、Wを主成分とする第1の相と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相と、を有し、室温におけるビッカース硬度が550Hv以上であり、1200℃における3点曲げ試験により破断に至る変位が1mm以上であり、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である。

Description

タングステン耐熱合金、摩擦攪拌接合工具、および製造方法
 本発明は、高温環境下で用いられる塑性加工用工具、特に摩擦攪拌接合工具に適したタングステン耐熱合金とそれを用いた摩擦攪拌接合工具、およびタングステン耐熱合金の製造方法に関する。
 近年、熱間押出用ダイス、継目無製管用ピアサープラグ、射出成形用ホットランナノズル、などの高温環境下で用いられる塑性加工用工具の長寿命化に適する耐熱合金が要求されている。
 特に近年開発の進みつつある摩擦攪拌接合(Friction Stir Welding、以下FSWとも略す)に用いられる回転工具は、摩擦攪拌接合の適用範囲を拡大するため、高温強度および室温硬度の高い材料の開発が進んでいる。
 摩擦攪拌接合は、金属部材の接合部に回転工具を押し当て、その摩擦熱により軟化した被接合材を塑性流動させて接合する方法である。摩擦攪拌接合は既に、アルミニウム、マグネシウムなどの低融点、軟質材料の接合において実用化が進み適用範囲が拡大しつつある。しかし現在は、より高融点、硬質な被接合材への適用を図るために、高温強度、耐磨耗性を向上させた実用寿命を有する工具の開発が求められている。
 その理由として、FSWでは摩擦熱により被接合材を軟化させた際に、接合条件、被接合材による違いがあるものの、一般には工具の温度が被接合材の融点の70%前後にまで上昇することがあるためである。すなわち低融点のアルミニウムではこの温度が約400℃程度であるのに対し、鉄鋼材では1000~1200℃に達するため、工具材質にはこの温度域においても被接合材を塑性流動させることが出来る高温強度、靭性および耐摩耗性が要求される。これは、FSW、FSJ(Friction Spot Joining、摩擦点接合)および摩擦攪拌応用技術に使用される工具に共通の課題である。
 また、摩擦撹拌接合工具や、熱間加工用工具に用いられる材料は、耐摩耗性と耐欠損性が求められるため、高温での強度や硬度だけではなく、靭性も必要とされる。これまで提案されている耐熱材料として、W、Mo系の耐熱合金が挙げられるが、発明者らもMoにTiCNを添加することによって優れた高温特性を示す合金が得られることを見出し、鋭意開発した結果、TiCNの添加量を調整することによって、硬度、強度と靭性のバランスのとれた材料を開発することができた(特許文献1)。
 一方で、W、Mo系耐熱合金が工具材料として使用される用途は、加工対象として鉄系材料を想定しているケースが多く、特に炭素鋼やステンレス鋼は変形抵抗が高いため難加工材として位置づけられる。鉄系の材料を熱間塑性加工する場合、工具の使用中の温度が1000℃前後になるため、Mo系母材の工具を使用すると被処理材に主として含まれるFeと工具に主として含まれるMoとが反応し、Fe-Mo系の金属間化合物が工具表面に形成される場合がある。中でもFeMo(μ相)は、硬くて脆い性質があることが知られており(非特許文献1、2)、工具表面に形成されるとこの金属間化合物相が脱落するため、工具摩耗量を増大させる原因となり得るため、加工対象が鉄系材料である場合は、金属間化合物相を形成しない組成がより望ましい。
 これに対しては、同様に高融点材料として知られているWは、工具使用温度域では金属間化合物を形成しないことが状態図からわかるため、W系合金を用いることによって、加工対象が鉄系材料である場合でも金属間化合物相の形成を防ぐことができる。
 高融点材料を摩擦撹拌接合するための工具として、W基合金は既に着目されており、W-Re合金や硬質材料との複合材料であるW-Re材料(特許文献2)、W-PcBN(特許文献3)、などが開発されている。また他には、Co基合金(特許文献4、5)、W-TiCN合金(特許文献6、非特許文献3)、Ni基超合金(特許文献7)、Ir合金(特許文献8)シリコンナイトライド(特許文献9)の摩擦撹拌接合工具が開発されている。
特開2013-249512号公報 特開2004-358556号公報 特表2003-532543号公報 国際公開第2007/032293号明細書 特開2011-62731号公報 特開平06-279911号公報 特開2009-255170号公報 特開2004-90050号公報 国際公開第2005/105360号明細書
Intermetallics, Vol. 15 (2007) 1573-1581 Phase Diagrams of Binary Tungsten Alloys, Indian Institute of Metal(1991) 89 辻、山崎、瀧田、池ヶ谷「硬質粒子を添加したMoとW焼結合金の機械的特性の比較」粉体粉末冶金協会講演論文集、平成25年度秋季大会、紛体粉末冶金協会
 上記のように、接合対象が鉄系材料である摩擦攪拌接合工具材料として、種々の材料が開発されている。 
 しかしながら、上記材料には以下のような問題があった。
 まず、W-Reは靭性に優れるが摩耗しやすく、PcBNは耐摩耗性に優れるが折損しやすい欠点があった。W-Re/PcBNは耐欠損性と耐摩耗性を両立した非常に優れた材料であるが、高価であるため、実用性に乏しいという問題があった。
 一方、Co基合金はチタン合金の接合には有効であるが、ステンレスの接合には耐摩耗性が十分ではなく適用できないという問題があった。
 またNi基超合金は、高温での硬度が低いため耐摩耗材料として不十分であった。
 さらに、Ir合金は、高融点合金原料のIrが高価である点で実用化が難しいという問題があった。
 さらに、シリコンナイトライドは、ステンレスの薄板の接合には効果があるが、5mmを超える厚板を接合する場合には、プローブ長が長くなるため折損する可能性が高いという問題があった。
 一方、W-TiCN合金は、TiCNの添加により、延性を低下させることなく室温硬度、高温強度を改善できる点では優れた材料である。
 一方で、延性を低下させない範囲でのTiCNの添加量には限度があり、また、鉄系材料用の摩擦撹拌接合用工具としてW-TiCN合金を用いた場合、変形抵抗により工具が塑性変形してしまう場合があり、工具寿命が低下してしまう問題があった。
 このように、従来の摩擦攪拌接合工具材料は、鉄系材料を接合対象とした場合、未だ改善の余地があった。
 本発明は上記課題に鑑みてなされたものであり、その目的は加工対象物に対応した耐力や硬度等の物性と実用性の双方を充足する、塑性加工用工具用のタングステン耐熱合金を提供することにある。
 上記した課題を解決するため、本発明者は、W-TiCN合金について再度検討した。
 上記の通り、Wに、延性を低下させない範囲で添加可能なTiCNの量には限度があり、硬質粒子の添加により、これ以上の高強度化、高硬度を達成するのは困難と考えられていた。
 しかしながら、発明者らは、硬質粒子としてTi、Zr、Hfの炭窒化物を所定の割合でWに添加し、さらに周期律表5A族元素の少なくとも1つの元素の炭化物を添加することにより、延性を極端に損なうことなく、高強度化、高硬度を達成可能な耐熱材料を得られることを見出し、本発明をするに至った。
 即ち、本発明の第1の態様は、Wを主成分とする第1の相と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相と、を有し、室温におけるビッカース硬度が550Hv以上であり、1200℃における3点曲げ試験により破断に至る変位(以下、破断撓みという。)が1mm以上であり、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である、タングステン耐熱合金である。
 本発明の第2の態様は、第1の態様に記載のタングステン耐熱合金を有する摩擦攪拌接合工具である。
 本発明の第3の態様は、第2の態様に記載の摩擦攪拌接合工具を有する、摩擦攪拌接合装置である。
 本発明の第4の態様は、W粉末と炭窒化物粉末と5A族元素を含む炭化物を混合する(a)と、前記(a)により得られた混合粉を室温中で成形する(b)と、前記(b)により得られた成形体を常圧の雰囲気にて、1800℃以上、2000℃以下で加熱して焼結する(c)とを有する、第1の態様に記載のタングステン耐熱合金を製造する製造方法である。
 本発明によれば、従来よりも加工対象物の高融点化に対応した耐力や硬度等の物性と実用性の双方を充足する、塑性加工用工具用のタングステン耐熱合金を提供することができる。
本発明の実施形態に係るタングステン耐熱合金中の各相の模式図である。 本発明の実施形態に係る摩擦撹拌接合工具の製造方法を示すフローチャートである。 本発明の実施形態に係る摩擦攪拌接合工具を示す側面図である。 本発明の実施例に係るタングステン耐熱合金の断面の拡大写真を模した図である。 実施例1の試料に対してX線回折による測定を行うことにより得られた回折ピークの例である。 3点曲げ試験の概略を示す模式図である。 3点曲げ試験の概略を示す模式図である。 本発明の比較例に係るタングステン耐熱合金の断面の拡大写真を模した図である。 本発明の参考例に係るタングステン耐熱合金の断面の拡大写真を模した図である。
<本願の概要>
 まず、本願発明の実施形態を列記して説明する。
 本願のタングステン耐熱合金は、Wを主成分とする第1の相と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相と、を有し、室温におけるビッカース硬度が550Hv以上であり、1200℃における3点曲げ試験による破断撓みが1mm以上であり、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である、タングステン耐熱合金である。なお、本発明では、「室温におけるビッカース硬度」とは、20℃におけるビッカース硬度をいう。
 上記タングステン耐熱合金は、1000℃におけるビッカース硬度が190Hv以上であることが好ましい。190Hv以上とすることによって、摩擦攪拌接合工具として用いる場合の連続使用時の摩耗および変形をより抑制することができる。
 上記タングステン耐熱合金は、Ti、Zr、Hfの炭窒化物の含有量が5体積%以上、25体積%以下であることが好ましい。5体積%以上とすることによって、室温硬度、高温での0.2%耐力を高めることができる。また、高温強度を高めることができる。25体積%以下とすることによって、延性の低下を抑制することができる。
 また、上記タングステン耐熱合金は、V、Nb、Taの炭化物の含有量の合計が0.5体積%以上、15体積%以下であることが好ましい。0.5体積%以上とすることによって、室温硬度、高温での0.2%耐力を高めることができる。また、高温強度を高めることができる。15体積%以下とすることによって、延性の低下を抑制することができる。
 また、上記タングステン耐熱合金は、前記第1の相、前記第2の相、並びに前記第3の相の平均結晶粒径が、0.1μm以上、10μm以下であることが好ましい。0.1μm以上とすることによって、延性の低下を抑制することができる。10μm以下とすることによって、室温硬度、高温での0.2%耐力を高めることができる。また、高温強度を高めることができる。
 さらに、本願の摩擦攪拌接合工具は、上記したタングステン耐熱合金を有する摩擦攪拌接合工具である。
 また、本願の摩擦攪拌接合装置は、上記した摩擦攪拌接合工具を有する、摩擦攪拌接合装置である。
 一方、本願の製造方法は、W粉末と炭窒化物粉末と5A族元素を含む炭化物を混合する(a)と、前記(a)により得られた混合粉を室温中で成形する(b)と、前記(b)により得られた成形体を常圧の雰囲気にて、1800℃以上、2000℃以下で加熱して焼結する(c)と、を有する、上記タングステン耐熱合金を製造する製造方法である。
 次に、図面を参照して本発明に好適な実施形態を詳細に説明する。
<タングステン耐熱合金組成>
 まず、本発明の実施形態に係る摩擦攪拌接合工具(塑性加工用工具)に用いられるタングステン耐熱合金の組成について説明する。
 図1は、本発明の実施形態に係るタングステン耐熱合金中の各相の模式図である。
 本発明の実施形態に係る摩擦攪拌接合工具に用いられるタングステン耐熱合金は、図1に示すように、Wを主成分とする第1の相1と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相2と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相3と、を有し、室温におけるビッカース硬度が550Hv以上であり、1200℃における3点曲げ試験による破断撓みが1mm以上であり、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である。
 また、図1では、さらに、第2の相2と第3の相3の周囲に形成された固溶体である第4の相4も図示されている。
 以下、各相および各相を構成する材料について説明する。 
<第1の相>
 第1の相1はWを主成分とする相である。ここでいう主成分とは最も含有量(質量%)が多い成分であることを意味する(以下同様)。
 具体的には、第1の相1は例えばWと不可避不純物で構成されるが、後述する炭窒化物や炭化物の含有量によっては、第1の相1に炭窒化物や炭化物を構成する元素が固溶している場合もある。
 第1の相1におけるWは高融点、高硬度でかつ高温における強度に優れ、タングステン耐熱合金に金属としての物性をもたせるために、必須である。
<第2の相>
 第2の相2は、Ti、Zr、Hfの少なくとも1つの炭窒化物を有し、Wを除いた場合に炭窒化物を主成分とする相である。具体的には、例えば上記した炭窒化物、W、および不可避不純物で構成される。
 第2の相2におけるTi、Zr、Hfの炭窒化物は、Wに添加することにより、後述するように、室温硬度、および高温での0.2%耐力を高めることができるため、必須である。
 なお、炭窒化物の代表的なものとしてはTiCNが挙げられるが、TiCNの組成としては、例えばTiC1-x(x=0.3~0.7)となるものが挙げられ、具体的にはTiC0.30.7、TiC0.50.5、TiC0.70.3などが挙げられる。
 この中で代表的なものとしては、TiC0.50.5が知られているが、その他の組成の炭窒化チタン、炭窒化ジルコニウム、炭窒化ハフニウムも、TiC0.50.5と同様の効果が得られる。
<第3の相>
 第3の相3は、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする相である。具体的には、例えば上記した炭化物、W、および不可避不純物で構成される。 
 周期律表5A族元素の具体例としては、V、Nb、Taが挙げられる。
 このように、Ti、Zr、Hfの炭窒化物元素を添加するだけでなく、上記の炭化物を複合添加することにより、単純に炭窒化物元素の添加量を増やす場合と比較して、添加による延性の低下を抑制しつつ、室温硬度、高温強度を向上させることができる。そのため、5A族元素は必須である。
 この点について、より具体的に説明する。まず、炭窒化物がTiCNである場合を考える。この場合、W-TiCN合金の特性(強度)向上を目的とする場合、TiCN添加量の増量が考えられるが、TiCN添加量を増やしてTi含有量が25体積%を越える場合には延性が低下し、工具として使用した場合に欠損する問題が生じる恐れがある。そこで、TiCN以外の硬質粒子をさらに添加し、TiCNと複合添加することで、室温硬度、高温強度向上し、かつ延性を持つタングステン耐熱合金を得ることができる。なお炭窒化物がZrCN、HfCNの場合も炭窒化物がTiCNである場合と同様である。
<第4の相>
 第4の相4は第2の相2および第3の相3の少なくとも一方の周囲に形成される層であり、第1の相1のWと第2の相2の炭窒化物または第3の相3の炭化物との固溶体を主成分とし、これと不可避不純物で構成される。
 即ち、第4の相4は 第2の相2の周囲に形成される場合は炭窒化物の存在割合が、第1の相1よりも高い固溶体であり、第3の相3の周囲に形成される場合は炭化物の存在割合が、第1の相1よりも高い固溶体である。 
 なお第4の相4は必須の構成ではない。
<組成>
 合金中のTi、Zr、Hfの炭窒化物の含有量は5体積%以上、25体積%以下であるのが望ましい。これは、5体積%未満の場合は室温硬度、高温での0.2%耐力を高くする効果が十分に得られないおそれがあり、25体積%を超えると延性の低下を抑制する効果が十分に得られないおそれがあるため、上記工具として使用した場合に欠損したり亀裂を生じたりしやすくなるおそれがあるためである。なお、延性の低下の大幅な抑制という観点から、上記範囲の中でも、5体積%以上、20体積%以下であることがより望ましい。
 また、5A族炭化物の含有量は0.5体積%以上、15体積%以下であることが望ましい。5A族炭化物の含有量が0.5体積%未満の場合は5A族添加による室温硬度、高温での0.2%耐力を高くする効果が十分に得られないおそれがあり、15体積%を越えると延性の低下を抑制する効果が十分に得られないおそれがある。これらの効果をより高めるためには、上記範囲の中でも、1体積%以上、13体積%以下であることがより望ましい。
 また、本発明において、Ti、Zr、Hfの炭窒化物および5A族炭化物の含有量(体積%)とは、以下の方法により算出した値をいうものとする。まず、タングステン耐熱合金の試料中に含まれるW、Ti、Zr、Hfおよび5A族元素の元素含有量(質量)を測定する。次に、測定したそれぞれの質量から、Wは全量が金属として、Ti、Zr、Hfは全量が炭窒化物として、5A族元素は全量が炭化物として上記試料中に存在しているとした場合の、W金属およびTi、Zr、Hfの炭窒化物ならびに5A族元素炭化物の体積をそれぞれの密度を用いて算出し、それら体積の合計を試料全体の体積としてTi、Zr、Hfの炭窒化物および5A族元素炭化物の体積割合(体積%)を算出する。上記元素含有量(質量)を測定する方法としては、例えばICP(Inductively Coupled Plasma)発光分光分析により測定する方法を用いることができる。なお、本発明における「Ti、Zr、Hfの炭窒化物の含有量」とは、TiC0.50.5、ZrC0.50.5、HfC0.50.5に換算した場合の含有量をいう。
<不可避不純物>
 本発明に係る摩擦攪拌接合工具を形成するタングステン耐熱合金は、上記した必須の成分に加え、不可避不純物を含む場合がある。 
 不可避不純物としては、Fe、Ni、Cr、などの金属成分や、C、N、Oなどがある。
<結晶粒径>
 第1の相1、第2の相2、第3の相3(および存在する場合は第4の相4)は、平均結晶粒径が0.1μm以上、10μm以下であることが望ましい。
 タングステン耐熱合金の主となる相である第1の相1の平均結晶粒径を小さくすることにより硬度や強度を高めることができるが、0.1μm未満の場合は延性が低下しやすくなり、延性の低下を抑制する効果が十分に得られないおそれがある。また、焼結材料で結晶粒径を細かくするためには原料粉末の粒度を細かくする方法が一般的であるが、上記平均結晶粒径を0.1μm未満とするための細かな原料粉末は、実際には凝集を避けることが難しくなり、却って硬度や強度を高めるという効果が得られにくくなるおそれがある。上記第1の相1の平均結晶粒径を大きくすることにより、第1の相1の連続区間が長くなるため変形しやすくなり、延性の低下を抑制することができるが、10μmを超える場合は却って硬度や強度を高める効果が十分に得られないおそれがある。したがって、第1の相1の平均結晶粒径は0.1μm以上、10μm以下であることが望ましい。さらに、延性の低下を抑制しつつ硬度や強度を高めるという効果をより高めるためには、上記範囲の中でも、0.5μm以上、8μm以下であることがより望ましい。
 第2の相2、第3の相3(および存在する場合は第4の相4)の平均結晶粒径についても、タングステン耐熱合金の一部を構成する相ではあるものの、第1の相1と同様のことがいえる。すなわち、これらの相の平均結晶粒径についても、0.1μm以上、10μm以下であることが望ましく、0.5μm以上、8μm以下であることがより望ましい。
 なお、結晶粒径を測定する方法としては、インターセプト法が挙げられる。これは、測定箇所となる断面について倍率1000倍の拡大写真を撮り、この写真上において、任意に直線を引き、この直線が横切る対象となる結晶粒の粒子について、この直線状を横切る個々の結晶粒の粒径を測定し総和を算出する方法である。測定の視野は例えば120μm×90μm程度であり、測定する粒子数は例えば50個以上である。また、観察された結晶粒の組成は例えばEPMA(Electron Probe MicroAnalyser)による線分析で特定できる。
<物性>
 次に、本発明の実施形態に係る摩擦攪拌接合工具用のタングステン耐熱合金の物性について説明する。
 本発明の実施形態に係るタングステン耐熱合金の強度は、室温におけるビッカース硬度(室温硬度)が550Hv以上、1200℃における3点曲げ試験による破断撓みが1mm以上、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である。
 タングステン耐熱合金をこのような物性にすることにより、タングステン耐熱合金を例えばFe系、FeCr系、Ti系用等の摩擦攪拌接合部材のような、高融点、高強度が要求される耐熱部材に適用することができる。
 なお、ここでいう0.2%耐力(曲げ相当)とは、曲げ試験を行い、永久ひずみ量が0.2%となる場合の応力を示すものであり、以下「0.2%耐力(曲げ相当)」と記載する。
 なお、本発明がタングステン「耐熱」合金であるにも関わらず、室温硬度を条件にしているのは、以下の理由によるものである。
 本発明の実施形態に係るタングステン耐熱合金を摩擦攪拌接合工具として用いる場合、工具の摩耗量が工具材料の硬度と密接な関係にあり、硬度が高いほど工具摩耗量を少なくできる効果がある。摩擦攪拌接合の場合、ツールを挿入する際に工具への高い負荷が生じるため、挿入時の摩耗が顕著に現れる。挿入時はまだ工具もワークも発熱が少なく、両者の温度も高くはなっていないため、工具の摩耗量は、室温の硬度に依存することとなる。本発明の実施形態に係るタングステン耐熱合金は、摩擦攪拌接合工具そのものとして使用される場合もあるが、多くの場合は摩擦攪拌接合工具母材として使用され、周期律表IVa、Va、VIa、IIIb族元素およびC以外のIVb族元素よりなる群から選択される少なくとも1種以上の元素、またはこれら元素群から選択される少なくとも1種以上の元素の炭化物、窒化物あるいは炭窒化物を含む被膜が表面に被覆され工具とされる。ここで、実際に工具として使用する場合、まず室温にて工具を接合対象材料に強く押し込みながら回転させ、摩擦熱により接合対象物の温度を上昇させる。よって、回転初期の母材の変形、破壊または母材と被覆膜との剥離がないように、母材の室温硬度が高い(550Hv以上である)ことが必要である。
 また、上記タングステン耐熱合金は、1000℃におけるビッカース硬度が190Hv以上であることが好ましい。190Hv以上とすることによって、摩擦攪拌接合工具として用いる場合の連続使用時の摩耗をより抑制することができる。 
 以上がタングステン耐熱合金の条件である。
<製造方法>
 次に、本発明の実施形態に係るタングステン耐熱合金およびそれを用いた摩擦攪拌接合工具の製造方法について、図2を参照して説明する。
 本発明の実施形態に係るタングステン耐熱合金およびそれを用いた摩擦攪拌接合工具の製造方法については、上記した条件を満たす摩擦攪拌接合工具が製造できるものであれば、特に限定されるものではないが、図2に示すような方法を例示することができる。
 まず、原料粉末を所定の比率で混合して混合粉末を生成する(図2のS1)。
 原料としては、W粉末およびTiCN粉末(または炭窒化チタン、炭窒化ジルコニウム、炭窒化ハフニウム等の炭窒化物粉末)、5A族の炭化物粉末が挙げられるが、以下、各粉末の条件について、簡単に説明する。
 W粉末は純度99.99質量%以上、Fsss(Fisher Sub-Sieve Sizer)平均粒径0.1μm~5.0μmのものを用いるのが好ましい。
 なお、ここでいうW粉末純度とは、JIS H 1403記載のタングステン材料の分析方法により得たものであり、Al、Ca、Cr、Cu、Fe、Mg、Mn、Ni、Pb、Si、Snの値を除いた金属純分を意味する。
 炭窒化物粉末は、純度99.9%以上、Fsss平均粒径2μm~3μmのものを用いるのが好ましい。
 炭化物粉末も、純度99.9%以上、Fsss平均粒径2μm~3μmのものを用いるのが好ましい。
 なお、ここでいう炭窒化物粉末の純度とは、Al、Ca、Cr、Cu、Fe、Mg、Mn、Ni、Si、Snを除いた純分を意味する。
 また、粉末の混合に用いる装置や方法については特に限定されることはなく、例えば、乳鉢、V型ミキサー、ボールミルなど公知の混合機を使用することができる。
 次に、得られた混合粉末を圧縮成形し、成形体を形成する(図2のS2)。
 圧縮成形に用いる装置は特に限定されるものではなく、一軸式プレス機やCIP(Cold Isostatic Pressing)など公知の成形機を使用すればよい。圧縮の際の条件としては、圧縮の際の温度は室温(20℃)でよい。
 一方、成形圧はCIPの場合、98~294MPa(室温)であるのが好ましい。これは、成形圧が98MPa未満の場合は成形体が十分な密度を得られず、また、294MPaを超えると、圧縮装置と金型が大型化し、コスト面で不利になるためである。
 次に、得られた成形体を加熱し、焼結する(図2のS3)。
 具体的には、常圧焼結で、焼結温度を1800℃以上、2000℃以下とするのが望ましい。
 これは、加熱温度が1800℃未満の場合、焼結不十分となり焼結体の密度が低くなるためであり、また、加熱温度が2000℃より高いと、炭窒化物の分解が進行することにより巨大柱状結晶粒の成長へと至り、その結果タングステン耐熱合金の強度が低下してしまうためである。そのため、焼結する際には、1800℃以上、2000℃以下で焼結するのが好ましい。さらに、高温強度をより高めるという観点から、より好ましい焼結温度は、1900℃以上2000℃以下である。
 次に、得られた焼結体の相対密度が95%程度であった場合には、不活性雰囲気にて熱間等方圧加圧(Hot Isostatic Pressing 以降HIPとも呼ぶ)することが好ましい。(図2のS4)。ただし、得られた焼結体の相対密度が96%以上となっていれば、HIPを省略しても室温硬度や高温での0.2%耐力を低下させることはほとんどない。
 HIPを行う際の具体的な加圧条件としては、温度1400~1800℃、圧力152.0~253.3MPaの不活性雰囲気で、HIP処理を行うのが好ましい。これは、この範囲を下回ると密度が上がらなくなり、上回ると大型装置が必要となり製造コストに影響するためである。
 このようにして得られた摩擦攪拌接合工具の素材は、切削、研削・研磨、コーティング等の加工を経て(図2のS5)、摩擦攪拌接合工具が作製される。
 以上が本発明の実施形態に係るタングステン耐熱合金とそれを用いた摩擦攪拌接合工具の製造方法である。
<摩擦攪拌接合工具>
 本発明の実施形態に係る摩擦攪拌接合工具を形成するタングステン耐熱合金は、上記の構成を有するものであるが、ここで、本発明の実施形態に係るタングステン耐熱合金を用いた摩擦攪拌接合工具の構成について、図3を参照して簡単に説明する。
 図3は本発明の実施形態に係る摩擦攪拌接合工具101を示す側面図である。
 図3に示すように、摩擦攪拌接合工具101は、接合装置の図示しない主軸と連結されるシャンク102と、接合時に接合対象物の表面と接触するショルダー部103と、接合時に接合対象物に挿入されるピン部104を有している。
 このうち、少なくともショルダー部103とピン部104の母材は、本発明に係るタングステン耐熱合金で形成される。
 また、摩擦攪拌接合工具が使用中の温度によって酸化、また接合対象物と溶着することのないように、タングステン耐熱合金の表面に周期律表IVa、Va、VIa、IIIb族元素およびC以外のIVb族元素よりなる群から選択される少なくとも1種以上の元素、またはこれら元素群から選択される少なくとも1種以上の元素の炭化物、窒化物あるいは炭窒化物を含む被膜が表面に被覆されるのが好ましい。被膜層の厚さは、1~20μmが好ましい。被膜層の厚さが1μm未満の場合は、被膜層を設けたことによる効果が期待できない。一方で、被膜層の厚さが20μm以上の場合は、過大な応力が生じ、膜が剥離する恐れがあるため、極端に歩留まりが悪くなる可能性がある。
 このような被膜(コーティング層)としては、TiC、TiN、TiCN、ZrC、ZrN、ZrCN、VC、VN、VCN、CrC、CrN、CrCN、TiAlN、TiSiN、TiCrN、並びに少なくともこれらの内の2層以上を含む多層膜を有するものが挙げられる。ここで、コーティング層の各元素の組成比率は任意に設定できる。上記TiCNも本願発明に記載のTiC1-x(x=0.3~0.7)のX値に限定されるものではない。
 コーティング層の形成方法は、特に限定されることなく、公知の方法で被膜形成できる。代表的な方法として、アークイオンプレーティングやスパッタリングなどのPVD(Physical Vapor Deposition)処理、化学反応によりコーティングするCVD(Chemical Vapor Deposition)処理、ガス状元素をプラズマにより分解、イオン化しコーティングするプラズマCVD処理などがあるが、いずれの方法でも単層膜から多層膜まで処理可能であり、本願発明のタングステン耐熱合金を母材とした場合に、優れた密着性を発揮できる。
 このように、本発明の実施形態に係るタングステン耐熱合金はWを主成分とする第1の相1と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相2と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相3と、を有し、室温におけるビッカース硬度が550Hv以上であり、1200℃における3点曲げ試験による破断撓みが1mm以上であり、1200℃における3点曲げ試験による0.2%耐力が900MPa以上である。
 そのため、本発明の実施形態に係るタングステン耐熱合金を用いた摩擦攪拌接合工具は従来よりも接合対象物(加工対象物)の高融点化に対応した耐力や硬度等の物性と実用性の双方を充足する。
 以下、実施例に基づき、本発明をさらに詳細に説明する。
(実施例1)
 まず、Wに炭窒化物としてTiCNを10体積%、5A族炭化物としてNbCを2.5体積%配合した合金を作製し、硬度の測定および曲げ試験を行った。具体的な手順は以下の通りである。
<試料の作製>
 まず、原料として、W粉末、TiCN粉末、NbC粉末を用意した。具体的には、W粉末はアライドマテリアル製の純度99.99質量%以上、Fsss法による平均粒径が1.2μmのものを用いた。
 さらに、TiCN粉末には、株式会社アライドマテリアル製のTiCN粉末・品種名5OR08で、純度99.9質量%以上、Fsss法による平均粒径が0.8μmのものを用いた。
 また、NbC粉末は和光純薬工業製の和光一級NbC粉末で、平均粒径が1μm~3μmの粉末を用いた。
 次に、これらの粉末を乳鉢で混合して混合粉末を作製し、一軸式プレス機を用いて、温度20℃、成形圧294MPaの条件下で加圧して成形体を得た。
 次に、得られた成形体を常圧水素雰囲気下にて温度2000℃で加熱し、相対密度95%以上の焼結体を得た。
 さらに、焼結体を処理温度1600℃、Ar雰囲気下、圧力202.7MPaでHIP処理し、相対密度約99%のタングステン耐熱合金を製作した。
 次に、作製したタングステン耐熱合金について、電子顕微鏡による組織観察およびEPMAによる組織の組成分析を行った。測定条件は以下の通りである。 
 EPMAによる線分析の分析条件
 装置     :EPMA1720H(島津製作所製)
 加速電圧   :15kV
 ビーム電流  :20nA
 ビームサイズ :1μm
 測定倍率   :5000倍
 積分時間   :20s/point
 図4に電子顕微鏡写真を模した図を示す。
 また、観察された組織の組成を表1に示す。なお、ここでいう組成とは、各組織中のW、Ti、Nb、C、Nの割合を示す。なお、さらにここでいう第2の相とは、Wを除けばTiCNが主成分となる相をいい、第3の相とは、Wを除けばNbCが主成分となる相をいう。第2の相においてTiCN、第3の相においてNbCが主成分となっていることを確認する方法としては、X線回折装置を用いてTiCN,NbCの回折ピークが得られることを確認する方法を用いて、化合物成分の同定を行った。 
 測定条件は以下の通りである。 
 装置:PANalytical製X線回折装置(Empyrean)
 管球:Cu(KαX線回折)
 ソーラースリット:0.04rad
 発散スリットの開き角:1/2°
 散乱スリットの開き角1°
 管電流:40mA
 管電圧:45kV
 スキャンスピード:0.33°/min
 図5に、X線回折により得られた回折ピークの例を示す。この結果により、第2の相の主成分はTiCN、第3の相の主成分はNbCであることがわかった。
Figure JPOXMLDOC01-appb-T000001
 作製したタングステン耐熱合金には、Wを主成分とする第1の相1と、Tiの炭窒化物を有し、Wを除いた場合にTiの炭窒化物を主成分とする第2の相2と、Nbの炭化物を有し、Wを除いた場合にNbの炭化物を主成分とする第3の相3が形成されていた。
<硬度測定>
 次に、得られたタングステン耐熱合金の硬度測定を行った。
 具体的には(株)アカシ製マイクロビッカース硬度計(型番:AVK)を用い、測定圧子をダイヤモンドとし、大気中で20℃および1200℃にて測定荷重20kgを15秒間、試料に対して加えることにより、ビッカース硬度を測定した。測定点数は5点とし、平均値を算出した。結果は以下の通りである。 
 室温硬度:580Hv
 1000℃におけるビッカース硬度:220Hv
<高温強度測定>
 次に、得られた合金の高温強度を評価した。
 摩擦攪拌接合工具は、回転しながら工具の横移動により接合を実施するため、高温での回転曲げに対する強度が必要であるが、高温回転曲げ試験は特殊である。そのためここでは単純曲げ試験により高温強度を評価した。さらに摩擦攪拌接合工具は耐変形性が要求されるため、同じ歪量での評価を実施することを目的として便宜上0.2%の歪を生じた際の応力、すなわち0.2%耐力(曲げ相当)を用いた(一般に0.2%耐力は引張試験時、降伏点が不明瞭な材料の評価に使用される)。
 0.2%耐力(曲げ相当)は、以下の手順により測定した。 
 まず、タングステン耐熱合金の試料片を長さ:約25mm、幅:2.5mm、厚さ:1.0mmとなるように加工し、表面を#600のSiC研磨紙を用いて研磨した。
 次に、図6および図7に示す模式図のように試料片11をピン13の間隔が16mmとなるようにインストロン社製高温万能試験機(型番:5867型)にセットし、Ar雰囲気下で、1200℃で、クロスヘッドスピード1mm/minでヘッド15を試料に押し付けて、3点曲げ試験を行い、0.2%耐力(曲げ相当)を測定した。0.2%耐力(曲げ相当)は、3点曲げ試験における曲げ応力と歪みを下記の式を用いて算出して応力歪み線図を描き、0.2%の永久歪みが生じる応力を解析することによって求めた。 
曲げ応力=3FL/2bh
曲げ歪み=600sh/L
 ここで、F:試験荷重(N)、L:支点間距離(mm)、b:試験片の幅(mm)、h:試験片の厚さ(mm)、s:たわみ量(mm)である。
 さらに、上記測定で荷重とたわみ量との関係が得られるので、破断したときのたわみ量を読み取り、靭性を評価した。ただし、たわみ量は6mm以内が装置限界であり、6mmに達した場合は測定を中断しフルベンドとして扱うことにした。
 なお、曲げ試験での0.2%耐力が得られる前(破断撓み0.4mm以下)で破断した場合を脆性破断と規定する。 
 結果は以下の通りである。 
 1200℃における3点曲げ試験での0.2%耐力:1150MPa
 1200℃における3点曲げ試験での破断撓み:6mm以上(装置限界が6mm)
 この結果から、従来では困難とされていた、室温におけるビッカース硬度が550Hv以上であり、1000℃におけるビッカース硬度が190Hv以上であり、1200℃における3点曲げ試験による破断撓みが1mm以上であり、0.2%耐力が900MPa以上であるタングステン耐熱合金が得られることが分かった。
(比較例1)
 合金の組成をW-10.5体積%TiCN-1.5体積%HfCとし、その他の条件は実施例1と同様の条件でタングステン耐熱合金の作製および試験を行った。即ち、5A族元素の炭化物を添加せず、代わりに4A族元素(Hf)の炭化物を添加したタングステン耐熱合金の作製および試験を行った。HfC粉末は、高純度化学研究所製のHfC粉末で、Fsss法による平均粒径が0.9μmの粉末を用いた。 
 図8に電子顕微鏡写真を模した図を示す。
 また、観察された組織の組成を表2に示す。なお、ここでいう組成とは、各組織中のW、Ti、Hf、C、Nの割合を示す。なお、さらにここでいう第2の相とは、Wを除けばTiCNが主成分となる相をいい、第3の相とは、Wを除けばHfCが主成分となる相をいう。
Figure JPOXMLDOC01-appb-T000002
 一方で、図8に示すように、試料は粉末形状が維持されており、焼結が進んでいないことがわかった。これは、4A族の同族の元素であるTiとHfを、それぞれ炭窒化物と炭化物の状態で添加したことにより、TiCN中の窒素の拡散および4A族の元素の互いの拡散が阻害され、焼結の進行が阻害されたためだと考えられる。
(実施例2)
 種々の組成にて合金の作製を行いその他の条件は実施例1と同様の条件でタングステン耐熱合金の作製および試験を行った。結果を表3に示す。
 なお、各相の平均粒径の制御方法は、第1の相はアライドマテリアル製のW粉末(品種名A20、B20、C20、D10、D20等)、第2の相はアライドマテリアル製 TiCN粉末(品種名5OR08、5MP15、5MP30)、また、ZrCN粉末にはアライドマテリアル製のZrCN粉末・品種名、5OV25で、Fsss法による平均粒径が2.0μm~3.0μmのものを用いた。さらに、HfCN粉末は本出願人が試作した、Fsss法による平均粒径が2.0μm~3.0μmの粉末を用いた。
 第3の相はVC粉末(品種名OR10)、日本新金属製のNbC粉末、TaC粉末、またはそれを粉砕した粉末を分級処理して調整した粉末を使用し、焼結時間を調整して粒成長の進行を制御する方法で行った。
 また、表3に示したタングステン耐熱合金のうち、試料番号1、15を除いたすべてのタングステン耐熱合金には、Wを主成分とする第1の相1と、Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相2と、周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相3が形成されていた。
Figure JPOXMLDOC01-appb-T000003
 表より、以下の点が分かった。 
 まず、4A族のTi、Zr、Hfのいずれの炭窒化物を添加しても、タングステン耐熱合金の物性としてはほぼ同等のものが得られた。また、上記4A族の炭窒化物の体積%は、タングステン耐熱合金の室温硬度、高温強度および延性を高めるという観点から、さらには高温強度を高めるという観点から、5体積%以上、25体積%以下とするのが望ましく、5体積%以上、20体積%以下とするのがさらに望ましいことがわかった。
 次に、5A族のV、Nb、Taのいずれかの炭化物の体積%は、タングステン耐熱合金の室温硬度、高温強度および延性を高めるという観点から、さらには高温強度を高めるという観点から、0.5体積%以上、15体積%以下とするのが望ましく、1体積%以上、13体積%以下とするのがさらに望ましいことがわかった。
 次に、各相の結晶の平均粒径は、タングステン耐熱合金の室温硬度、高温強度および延性を高めるという観点から、さらには高温強度を高めるという観点から、0.1μm以上、10μm以下とすることが望ましく、0.5μm以上、8μm以下とするのがさらに望ましいことが分かった。
(参考例)
 これまでの実施例および比較例は組成を体積%で表してきたが、質量%で表すことも可能である。以下の例は質量%で組成を表した場合のものである。
(参考例1)
 まず、合金中の炭窒化物の含有量と合金の物性の関係を調べるために、予備試験として、Wに炭窒化物のみを添加したタングステン耐熱合金を作製し、室温硬度の測定および高温での曲げ試験を行った。具体的な手順は以下の通りである。
<試料の作製>
 まず、原料として、母材(第1の相1)としてのW粉末を、炭窒化物としてのTiCN粉末、ZrCN粉末、HfCN粉末を用意した。具体的には、W粉末はアライドマテリアル製の純度99.99質量%以上、Fsss法による平均粒径が1.2μmのものを用いた。
 さらに、TiCN粉末には、株式会社アライドマテリアル製のTiCN粉末・品種名5OR08で、純度99.9質量%以上、Fsss法による平均粒径が0.8μmのものを用いた。
 また、ZrCN粉末にはアライドマテリアル製のZrCN粉末・品種名、5OV25で、Fsss法による平均粒径が2.0μm~3.0μmのものを用いた。
 さらに、HfCN粉末は本出願人が試作した、Fsss法による平均粒径が2.0μm~3.0μmの粉末を用いた。
 成形性を促進するバインダーとしてパラフィンを用い、W粉末に対し、TiCN粉末、ZrCN粉末、HfCN粉末のいずれかを表4に示す割合で添加した。
 次に、これらの粉末を乳鉢で混合して混合粉末を作製し、一軸式プレス機を用いて、温度20℃、成形圧3ton/cmの条件下で圧縮成形し、成形体を得た。
 次に、得られた成形体を水素雰囲気下(大気圧)にて温度1900℃で加熱し、相対密度90%以上の焼結体を得た。
 さらに、焼結体を処理温度1600℃、Ar雰囲気下、圧力202.7MPaでHIP処理し、相対密度約98%のタングステン耐熱合金を製作した。 
 なお、作製した試料中の各元素の含有量は実施例と同様に行った。
<硬度測定>
 次に、得られたタングステン耐熱合金の硬度測定を実施例と同様の条件で行った。 
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、合金中の炭窒化物の含有量が増えるに従い、炭窒化物の構成元素の一つである金属元素の含有量が高くなり、室温硬度が高くなった。
 一方で、炭窒化物の構成元素の一つである金属元素の含有量が1質量%未満の場合、合金の硬度が純タングステンの硬度(Hv400程度)と同程度であり、炭窒化物を添加する効果が十分に得られないことが分かった。
<高温強度測定>
 次に、0.2%耐力(曲げ相当)、抗析力、たわみ量を、実施例と同様の手順により測定した。 
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、Wに7.6質量%を超えてTiを含有させると、脆性破断を起こすため、合金中のTiの含有量の上限は7.6質量%以下とするのがより望ましいことが分かった。
 なお、これらの試験で得られた焼結体の炭窒化物の平均粒径は0.7μm、タングステンの平均粒径は0.8μmであった。なお、炭窒化物としてZrCN、HfCNも用いた場合も、TiCNと同等の室温硬度と高温強度が得られた。
(参考例2)
 次に、炭窒化物に加えて5A族炭化物を添加してタングステン耐熱合金を作製し、合金の組織観察、各相の組成、物性測定を行った。具体的な手順は以下の通りである。
 まず、原料として、第1の相1としてのW粉末、第2の相2の炭窒化物としてのTiCN粉末、ZrCN粉末、HfCN粉末を、第3の相3の炭化物としてのNbC粉末、TaC粉末、VC粉末を用意した。
 具体的には、W粉末はアライドマテリアル製の純度99.99質量%以上、Fsss法による平均粒径が1.2μmのものを用いた。
 さらに、TiCN粉末には、株式会社アライドマテリアル製のTiCN粉末・品種名5OR08で、純度99.9質量%以上、Fsss法による平均粒径が0.8μmのものを用いた。
 また、ZrCN粉末にはアライドマテリアル製のZrCN粉末・品種名、5OV25で、Fsss法による平均粒径が2.0μm~3.0μmのものを用いた。
 さらに、HfCN粉末は本出願人が試作した、Fsss法による平均粒径が2.0μm~3.0μmの粉末を用いた。
 一方、NbC粉末としては和光純薬工業製の和光一級NbC粉末で、平均粒径が1μm~3μmの粉末を用いた。
 また、TaC粉末としては高純度化学研究所製TaC粉末で純度99%、粒径2μmのものを用いた。
 さらに、VC粉末としては、アライドマテリアル製のVC粉末・品種名、OR10で、Fsss法による平均粒径が1.2μm以下の粉末を用いた。
 次に、上記粉末を所定の割合で乳鉢を用いて混合して混合粉末を作製し、一軸式プレス機を用いて、温度20℃、成形圧294MPaの条件下で圧縮成形し、成形体を得た。
 次に、得られた成形体を水素雰囲気下(大気圧)で温度1900℃または2000℃で加熱し、相対密度90%以上の焼結体を得た。
 さらに、焼結体を処理温度1600℃、Ar雰囲気下、圧力202.7MPaでHIP処理し、相対密度約99%のタングステン耐熱合金が完成した。
 作製したタングステン耐熱合金のうち、組成がW-3質量%TiCN-1質量%NbC(焼結温度2000℃または1900℃)、W-3質量%TiCN-1質量%HfC(焼結温度1900℃)の試料について、電子顕微鏡による組織観察およびEPMAによる組織の組成分析を行った。測定条件は以下の通りである。 
 EPMAによる線分析の分析条件
 装置     :EPMA1720H(島津製作所製)
 加速電圧   :15kV
 ビーム電流  :20nA
 ビームサイズ :1μm
 測定倍率   :5000倍
 積分時間   :20s/point
 組成がW-3質量%TiCN-1質量%HfC(焼結温度1900℃)の試料の電子顕微鏡写真を図9に、それぞれ示す。
 上記試料で観察された組織の組成を表6に示す。なお、ここでいう組成とは、各組織中のW、Ti、Nb、C、Nの割合を示す。
Figure JPOXMLDOC01-appb-T000006
 図9および表6に示すように、試料には、第1の相1、第2の相2、第3の相3に加えて、第2の相2、第3の相3の周囲に別の相が観察された。
 この相の組成は第1の相1と第2の相2または第3の相3の組成の中間の組成であったため、第4の相4に該当することが分かった。
 次に、同じ組成で焼結温度2000℃の試料も作製したが、この試料では第4の相4に相当する相が観察されなかった。よって焼結温度を下げると第4の相4が現れやすくなると考えられる。
(参考例3)
 組成としてW-TiCN-NbCを選択し、TiCNの添加量を3質量%、NbCの添加量を0.1~1質量%、焼結温度を2000℃とし、他の条件は参考例2と同様の条件でタングステン耐熱合金を作製し、参考例1および参考例2と同じ条件で室温硬度および高温強度を測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 以上、本発明を実施形態および実施例に基づき説明したが、本発明は上記した実施形態に限定されることはない。
 当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。
 例えば、上記した実施形態では、タングステン耐熱合金を摩擦攪拌接合工具に適用した場合について説明したが、本発明は何らこれに限定されることはなく、ガラス溶融用治工具、高温工業炉用部材、熱間押出し用ダイス、継目無製管用ピアサープラグ、射出成形用ホットランナノズル、鋳造用入子金型、抵抗加熱蒸着用容器、航空機用ジェットエンジン及びロケットエンジンなどの高温環境下で用いられる耐熱性部材に適用することができる。
 1 第1の相
 2 第2の相
 3 第3の相
 4 第4の相
 11 試料片
 13 ピン
 15 ヘッド
 101  摩擦攪拌接合工具
 102  シャンク
 103  ショルダー部
 104  ピン部

Claims (8)

  1.  Wを主成分とする第1の相と、
     Ti、Zr、Hfの少なくとも1つの元素の炭窒化物を有し、Wを除いた場合に前記炭窒化物を主成分とする第2の相と、
     周期律表5A族元素の少なくとも一つの元素の炭化物を有し、Wを除いた場合に前記炭化物を主成分とする第3の相と、
     を有し、
     室温におけるビッカース硬度が550Hv以上であり、
     1200℃における3点曲げ試験により破断に至る変位が1mm以上であり、
     1200℃における3点曲げ試験による0.2%耐力が900MPa以上である、
     タングステン耐熱合金。
  2.  1000℃におけるビッカース硬度が190Hv以上である、請求項1記載のタングステン耐熱合金。
  3.  Ti、Zr、Hfの炭窒化物の含有量が5体積%以上、25体積%以下である、請求項1または2に記載のタングステン耐熱合金。
  4.  前記周期律表5A族元素はV、Nb、Taの少なくとも1つであり、V、Nb、Taの炭化物の含有量の合計が0.5体積%以上、15体積%以下である、請求項1~3のいずれか1項に記載のタングステン耐熱合金。
  5.  前記第1の相、前記第2の相、並びに前記第3の相の平均結晶粒径が、0.1μm以上、10μm以下である、請求項1~4のいずれか1項に記載のタングステン耐熱合金。
  6.  請求項1~5のいずれか1項に記載のタングステン耐熱合金を有する摩擦攪拌接合工具。
  7.  請求項6に記載の摩擦攪拌接合工具を有する、摩擦攪拌接合装置。
  8.  W粉末と炭窒化物粉末と5A族元素を含む炭化物を混合する(a)と、
     前記(a)により得られた混合粉を室温中で成形する(b)と、
     前記(b)により得られた成形体を常圧の雰囲気にて、1800℃以上、2000℃以下で加熱して焼結する(c)と、
     を有する、請求項1~5のいずれか1項に記載のタングステン耐熱合金を製造する製造方法。
PCT/JP2015/064705 2014-05-30 2015-05-22 タングステン耐熱合金、摩擦攪拌接合工具、および製造方法 WO2015182497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/314,671 US10465266B2 (en) 2014-05-30 2015-05-22 Heat-resistant tungsten alloy, friction stir welding tool, and production method
EP15799231.4A EP3141625A4 (en) 2014-05-30 2015-05-22 Heat-resistant tungsten alloy, friction stir welding tool, and method for manufacturing same
EP20204667.8A EP3792370A1 (en) 2014-05-30 2015-05-22 Heat-resistant tungsten alloy, friction stir welding tool, and production method
JP2016523461A JP6208863B2 (ja) 2014-05-30 2015-05-22 タングステン耐熱合金、摩擦攪拌接合工具、および製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112846 2014-05-30
JP2014-112846 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182497A1 true WO2015182497A1 (ja) 2015-12-03

Family

ID=54698831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064705 WO2015182497A1 (ja) 2014-05-30 2015-05-22 タングステン耐熱合金、摩擦攪拌接合工具、および製造方法

Country Status (4)

Country Link
US (1) US10465266B2 (ja)
EP (2) EP3141625A4 (ja)
JP (1) JP6208863B2 (ja)
WO (1) WO2015182497A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450082B1 (en) 2017-08-31 2020-12-16 Mazak Corporation Devices and methods for increased wear resistance during low temperature friction stir processing
US11440133B2 (en) * 2018-05-04 2022-09-13 Mazak Corporation Low-cost friction stir processing tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229430A (ja) * 1983-05-13 1984-12-22 Mitsubishi Metal Corp 高硬度高靭性サ−メツトの製造法
WO2013089177A1 (ja) * 2011-12-16 2013-06-20 株式会社アライドマテリアル 耐熱合金およびその製造方法
WO2013089176A1 (ja) * 2011-12-16 2013-06-20 株式会社アライドマテリアル 耐熱合金およびその製造方法
JP2015067868A (ja) * 2013-09-30 2015-04-13 株式会社アライドマテリアル タングステン耐熱合金、摩擦攪拌接合工具、および製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022058B2 (ja) * 1982-01-29 1985-05-30 三菱マテリアル株式会社 高温特性のすぐれた切削工具用焼結材料およびその製造法
EP0376878B1 (en) * 1988-12-27 1994-03-09 Hitachi Metals, Ltd. Cermet alloy
JPH06279911A (ja) 1993-03-25 1994-10-04 Kyocera Corp TiCN基サーメット
AU2001261365A1 (en) 2000-05-08 2001-11-20 Brigham Young University Friction stir weldin of metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys using superabrasive tool
JP4219642B2 (ja) 2002-08-30 2009-02-04 株式会社フルヤ金属 白金又は白金基合金の摩擦攪拌接合法及びその接合構造
US20070034048A1 (en) * 2003-01-13 2007-02-15 Liu Shaiw-Rong S Hardmetal materials for high-temperature applications
US7032800B2 (en) 2003-05-30 2006-04-25 General Electric Company Apparatus and method for friction stir welding of high strength materials, and articles made therefrom
US20050129565A1 (en) * 2003-12-15 2005-06-16 Ohriner Evan K. Tungsten alloy high temperature tool materials
GB2439159B (en) 2004-04-30 2009-06-24 Tokyu Car Corp Method of connecting metal material
WO2007032293A1 (ja) 2005-09-15 2007-03-22 Japan Science And Technology Agency 高耐熱性、高強度Co基合金及びその製造方法
GB0616571D0 (en) * 2006-08-21 2006-09-27 H C Stark Ltd Refractory metal tooling for friction stir welding
JP5371139B2 (ja) 2008-03-27 2013-12-18 公立大学法人大阪府立大学 摩擦攪拌加工用ツール
JP5174775B2 (ja) 2009-09-17 2013-04-03 株式会社日立製作所 摩擦撹拌用ツール
EP2656959A4 (en) * 2010-12-22 2017-07-26 Sumitomo Electric Industries, Ltd. Rotating tool
WO2013018714A1 (ja) 2011-07-29 2013-02-07 国立大学法人東北大学 遷移金属炭化物入り合金の製造方法、遷移金属炭化物入りタングステン合金及び前記製造方法により製造された合金
JP6202787B2 (ja) 2012-05-31 2017-09-27 株式会社アライドマテリアル モリブデン耐熱合金、摩擦攪拌接合用工具、および製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229430A (ja) * 1983-05-13 1984-12-22 Mitsubishi Metal Corp 高硬度高靭性サ−メツトの製造法
WO2013089177A1 (ja) * 2011-12-16 2013-06-20 株式会社アライドマテリアル 耐熱合金およびその製造方法
WO2013089176A1 (ja) * 2011-12-16 2013-06-20 株式会社アライドマテリアル 耐熱合金およびその製造方法
JP2015067868A (ja) * 2013-09-30 2015-04-13 株式会社アライドマテリアル タングステン耐熱合金、摩擦攪拌接合工具、および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3141625A4 *

Also Published As

Publication number Publication date
EP3141625A4 (en) 2018-01-17
US10465266B2 (en) 2019-11-05
JP6208863B2 (ja) 2017-10-04
EP3141625A1 (en) 2017-03-15
US20170191148A1 (en) 2017-07-06
EP3792370A1 (en) 2021-03-17
JPWO2015182497A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
JP5905903B2 (ja) 耐熱合金およびその製造方法
JP2009543696A (ja) 高性能摩擦撹拌接合ツール
JP2008503650A (ja) 高性能超硬合金材料
JP5989930B1 (ja) サーメットおよび切削工具
JP6977776B2 (ja) 超硬合金複合材およびその製造方法ならびに超硬工具
JP5152770B1 (ja) 強靭超硬合金の製造方法
Shamsipoor et al. Influences of processing parameters on the microstructure and wear performance of Cr2AlC MAX phase prepared by spark plasma sintering method
JP5872590B2 (ja) 耐熱合金およびその製造方法
JP6208863B2 (ja) タングステン耐熱合金、摩擦攪拌接合工具、および製造方法
Franczak et al. Copper matrix composites reinforced with titanium nitride particles synthesized by mechanical alloying and spark plasma sintering
JP6178689B2 (ja) タングステン耐熱合金、摩擦攪拌接合工具、および製造方法
JP6202787B2 (ja) モリブデン耐熱合金、摩擦攪拌接合用工具、および製造方法
JP7255430B2 (ja) 複合部材の製造方法
JP6578532B2 (ja) 被覆層を有する耐熱合金製工具および加工装置
JP5268771B2 (ja) スパッタリングターゲットの製造方法、それを用いた硬質被膜の形成方法および硬質被膜被覆部材
JP7035820B2 (ja) 基材および切削工具
JP2019183201A (ja) 焼結体および回転ツール
JP2017166071A (ja) モリブデン耐熱合金、摩擦攪拌接合用工具、および製造方法
JP2017160539A (ja) モリブデン耐熱合金、摩擦攪拌接合用工具、および製造方法
JP5799969B2 (ja) セラミックス結晶粒子、セラミックス焼結体およびそれらの製造方法
JP6882416B2 (ja) サーメットおよび切削工具
WO2023037577A1 (ja) サーメット複合材及びその製造方法、並びにサーメット工具
JP2023048855A (ja) 硬質焼結体、硬質焼結体の製造方法、切削工具、耐摩耗工具および高温用部材
JP2013170315A (ja) 強靱超硬合金及び被覆超硬合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15314671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015799231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799231

Country of ref document: EP