WO2015182219A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015182219A1
WO2015182219A1 PCT/JP2015/057723 JP2015057723W WO2015182219A1 WO 2015182219 A1 WO2015182219 A1 WO 2015182219A1 JP 2015057723 W JP2015057723 W JP 2015057723W WO 2015182219 A1 WO2015182219 A1 WO 2015182219A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
radiator
heating mode
air
Prior art date
Application number
PCT/JP2015/057723
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
秀憲 武居
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to CN201580026852.0A priority Critical patent/CN106414126B/zh
Priority to DE112015002489.1T priority patent/DE112015002489T5/de
Priority to US15/313,458 priority patent/US10611213B2/en
Publication of WO2015182219A1 publication Critical patent/WO2015182219A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3276Cooling devices output of a control signal related to a condensing unit
    • B60H2001/3277Cooling devices output of a control signal related to a condensing unit to control the air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3282Cooling devices output of a control signal related to an evaporating unit to control the air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator
  • a heating mode in which the refrigerant radiated in the radiator absorbs heat in the outdoor heat exchanger
  • a dehumidifying heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant radiated in the radiator absorbs heat in the heat absorber.
  • the outdoor heat exchanger is provided with a dehumidifying solenoid valve (open / close valve) in parallel, and when switching from the heating mode to the dehumidifying heating mode, the dehumidifying solenoid valve is opened in the heating mode.
  • a dehumidifying solenoid valve open / close valve
  • the refrigerant discharged from the radiator is decompressed and flows into the heat absorber, but the pressure difference before and after the solenoid valve at the time of this switching is so large that it suddenly flows into the heat absorber when the solenoid valve is opened. A relatively large noise is generated by the refrigerant.
  • an outdoor expansion valve for reducing the refrigerant flowing into the outdoor heat exchanger is provided in front of the outdoor heat exchanger, and further, a bypass electromagnetic valve (open / close valve) is provided in parallel to the outdoor expansion valve.
  • this bypass solenoid valve When switching from the heating mode or dehumidifying heating mode to the cooling mode, this bypass solenoid valve is opened, but the pressure difference before and after the solenoid valve at the time of this switching is also very large. Similarly, there was a problem that a large noise was generated by the refrigerant rapidly flowing into the outdoor heat exchanger.
  • the present invention has been made to solve the conventional technical problems, and in a so-called heat pump type vehicle air conditioner, eliminates noise generated when the on-off valve is opened when the operation mode is switched. Or it aims at reducing.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • a dehumidifying on-off valve connected in parallel to the outdoor heat exchanger, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, After depressurizing the radiated refrigerant, the heating mode is configured to absorb heat in the outdoor heat exchanger, and the open / close valve is opened in the heating mode, and at least a part of the refrigerant discharged from the radiator is depressurized.
  • the control means when switching from the heating mode to the dehumidifying heating mode, reduces the pressure of the radiator or the pressure difference before and after the on-off valve to a predetermined value or less, Noise improvement control for opening the on-off valve is executed.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger a bypass on-off valve connected in parallel to the outdoor expansion valve, and a control means, the control means At least, the refrigerant discharged from the compressor is dissipated by the radiator, and after the decompressed refrigerant is decompressed, the heating mode in which the heat is absorbed by the outdoor heat exchanger, and in the heating mode state, the refrigerant has come out of the radiator.
  • the control means performs switching between the heating mode and the cooling mode from the dehumidifying heating mode to the cooling mode, or the pressure difference before and after the on-off valve. Then, noise reduction control for opening the on-off valve is executed after the value is reduced to a predetermined value or less.
  • the vehicle air conditioner according to a third aspect of the invention is characterized in that, in each of the above inventions, the control means reduces the rotational speed of the compressor in the noise improvement control.
  • a vehicle air conditioner comprising: an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger in the above invention; and the control means opens the outdoor expansion valve in the noise improvement control. It is characterized by expanding the degree.
  • an air conditioner for a vehicle includes an outdoor expansion valve for depressurizing the refrigerant flowing into the outdoor heat exchanger according to the first aspect of the invention, and the control means is configured to control the compressor in the noise improvement control. While reducing the number of rotations, the valve opening degree of the outdoor expansion valve is controlled so that the degree of supercooling of the refrigerant of the radiator is below a predetermined value, the pressure of the radiator, or the pressure difference before and after the on-off valve, or The on-off valve is opened after the degree of supercooling drops below a predetermined value.
  • an air conditioner for a vehicle wherein an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger and a bypass connected in parallel to the outdoor expansion valve are provided.
  • the control means lowers the rotational speed of the compressor, increases the valve opening of the outdoor expansion valve, opens the bypass on-off valve, and After the pressure or the pressure difference before and after the dehumidifying on-off valve drops below a predetermined value, the dehumidifying on-off valve is opened.
  • a vehicle air conditioner according to the second aspect of the present invention, wherein the on-off valve is an electromagnetic valve that opens in a non-energized state, and the control means is the heating mode, the dehumidifying heating mode, or the outdoor.
  • the valve opening degree of the outdoor expansion valve is increased, or until the pressure of the radiator decreases to a predetermined value or less, or a predetermined time from the stop of the compressor The on-off valve is closed until the time has elapsed.
  • An air conditioner for a vehicle includes an indoor fan for feeding air to the air flow passage in the invention of the second aspect or the above invention, and an outdoor fan for ventilating the outside air to the outdoor heat exchanger.
  • the control means increases the air volume of the indoor blower and / or the outdoor blower immediately before opening the on-off valve.
  • an air conditioning apparatus for a vehicle wherein the control means has a predetermined value of the pressure of the radiator or a predetermined value of the pressure difference before and after the on-off valve as the vehicle speed increases, or The predetermined value of the degree of supercooling of the refrigerant is increased.
  • the vehicle air conditioner according to the invention of claim 10 is characterized in that, in each of the above inventions, the control means stops the compressor in the noise improvement control.
  • An air conditioner for a vehicle includes an indoor blower for supplying air to the air flow passage in each of the above-described inventions, and the control means increases the pressure of the radiator as the air volume of the indoor blower decreases. Or a predetermined value of the pressure difference before and after the on-off valve, or a predetermined value of the degree of supercooling of the refrigerant in the radiator is lowered.
  • An air conditioner for a vehicle includes an indoor blower for supplying air to the air flow passage in each of the above inventions, and the control means has a vehicle speed equal to or higher than a predetermined value and / or When the air volume of the indoor blower is equal to or greater than a predetermined value, the noise improvement control is not executed.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the heating mode in which heat is absorbed by the outdoor heat exchanger, and the on-off valve is opened in the state of the heating mode, and at least a part of the refrigerant discharged from the radiator is decompressed and then absorbed by the heat absorber.
  • the control means switches from the heating mode to the dehumidifying heating mode, after the pressure of the radiator or the pressure difference before and after the on-off valve is reduced to a predetermined value or less, the on-off valve Since the noise improvement control is performed to release the refrigerant, when switching from the heating mode to the dehumidifying heating mode, when the on / off valve for dehumidification is opened, drastic suppression of the refrigerant flowing into the heat absorber or Can be eliminated.
  • the compressor for compressing the refrigerant, the air flow passage through which the air to be supplied to the vehicle interior flows, and the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage are heated.
  • a heat sink for absorbing the refrigerant, cooling the air supplied to the vehicle interior from the air flow passage, and an outdoor heat exchanger for dissipating or absorbing heat from the vehicle provided outside the vehicle compartment An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, a bypass on-off valve connected in parallel to the outdoor expansion valve, and a control means.
  • a heating mode in which the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized and then absorbed by an outdoor heat exchanger, and the refrigerant discharged from the radiator in the heating mode is At least partially reduced
  • the control means switches from the heating mode or the dehumidifying heating mode to the cooling mode, the pressure of the radiator or the pressure difference before and after the on-off valve is calculated.
  • the open / close valve for bypass is opened when switching from the heating mode or the dehumidifying / heating mode to the cooling mode.
  • control means reduces the rotational speed of the compressor in the noise improvement control as in the invention of claim 3, the pressure of the radiator or the pressure difference before and after the on-off valve is reduced in the noise improvement control. It can be effectively reduced.
  • control means increases the valve opening degree of the outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger in the noise improvement control as in the invention of the fourth aspect, it is quicker.
  • the pressure of the radiator or the pressure difference before and after the on-off valve can be reduced.
  • the control means reduces the number of revolutions of the compressor in the noise improvement control, and the supercooling degree of the refrigerant of the radiator is not more than a predetermined value.
  • the opening degree of the outdoor expansion valve for reducing the refrigerant flowing into the outdoor heat exchanger the pressure of the radiator, the pressure difference before and after the on-off valve, or the degree of supercooling is a predetermined value. You may make it open an on-off valve after falling below. By reducing the degree of supercooling of the radiator, the density of the refrigerant is reduced, so that noise can be eliminated or reduced more effectively.
  • a bypass opening / closing valve connected in parallel to the outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger. If the control means, in the noise improvement control, after reducing the rotational speed of the compressor and increasing the valve opening of the outdoor expansion valve, open the bypass on-off valve, the pressure of the radiator, or The dehumidifying on-off valve may be opened after the pressure difference before and after the dehumidifying on-off valve drops below a predetermined value. In this case, the pressure of the radiator or the pressure difference before and after the dehumidifying on / off valve can be reduced more quickly by the on / off valve for bypass.
  • the control means includes a heating mode, a dehumidifying heating mode, or
  • the valve opening of the outdoor expansion valve is expanded, or until the pressure of the radiator decreases to a predetermined value or less, or from the stop of the compressor
  • control means has an outdoor fan for supplying air to the air flow passage and / or an outdoor heat exchanger for ventilating the outdoor air immediately before opening the on-off valve.
  • the air volume of the blower may be increased.
  • the pressure of a heat radiator falls because the air volume of an indoor fan increases.
  • the pressure of the outdoor heat exchanger increases as the air volume of the outdoor blower increases, the pressure of the radiator or the pressure difference before and after the on-off valve can be effectively reduced in any case. Become.
  • the control means as in the ninth aspect of the invention increases the predetermined value of the pressure of the radiator, the predetermined value of the pressure difference before and after the on-off valve, or the predetermined degree of supercooling of the refrigerant of the radiator You may make it raise a value.
  • the predetermined value of the pressure of the radiator, the predetermined value of the pressure difference before and after the on-off valve, or the radiator Even if the predetermined value of the degree of supercooling of the refrigerant is increased, noise can be eliminated or reduced.
  • the on-off valve can be opened early so that the operation mode can be switched quickly.
  • control means stops the compressor in the noise improvement control as in the invention of claim 10, the pressure of the radiator or the pressure difference before and after the on-off valve can be reduced more quickly. become able to.
  • control means according to the invention of claim 11 decreases the air volume of the indoor blower for supplying air to the air flow passage, the predetermined value of the pressure of the radiator or the pressure difference before and after the on-off valve is reduced. If the predetermined value or the predetermined value of the supercooling degree of the refrigerant of the radiator is lowered, the generation of noise is more reliably eliminated in the situation where the air volume of the indoor fan is small and the pressure of the radiator is high, Alternatively, it can be reduced.
  • the improvement control is not executed, the amount of outdoor air flowing into the outdoor heat exchanger increases and the pressure increases, and / or the air flow of the indoor fan is large and the pressure of the radiator does not increase. In the situation, the noise improvement control is not performed, and the on-off valve is opened immediately, so that both the generation of noise and the delay of the operation mode switching can be avoided.
  • FIG. 3 is a timing chart of each device for explaining noise improvement control executed by the controller of FIG. 2 (Example 1).
  • FIG. It is a timing chart explaining operation
  • movement of the compressor in FIG. 3 and the electromagnetic valve for dehumidification.
  • movement of the compressor in FIG. 3 and the electromagnetic valve for dehumidification.
  • movement of the compressor in FIG. 3 and the electromagnetic valve for dehumidification.
  • movement of the compressor in FIG. 3 and the electromagnetic valve for dehumidification.
  • It is a timing chart explaining operation of a compressor, an outdoor expansion valve, and a solenoid valve for dehumidification in another noise improvement control.
  • FIG. 11 is still another timing chart of each device for explaining noise improvement control of another embodiment executed by the controller of FIG. 2 (Embodiment 4). It is a timing chart explaining operation
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • a heat exchanger 9 an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9.
  • Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 serves as an on-off valve for cooling that is opened during cooling. It is connected to the receiver dryer section 14 via the cooling electromagnetic valve 17, and the outlet of the supercooling section 16 is connected to the indoor expansion valve 8 via the check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D exchanges internal heat via a heating electromagnetic valve 21 as a heating on-off valve that is opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the downstream side of the vessel 19.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F has a dehumidifying electromagnetic valve 22 as a dehumidifying on-off valve that is opened during dehumidification.
  • the refrigerant pipe 13 ⁇ / b> B on the downstream side of the check valve 18 is connected in communication. That is, the electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7.
  • a bypass pipe 13J is connected in parallel to the outdoor expansion valve 6.
  • the bypass pipe 13J is opened in a cooling mode and bypasses the on-off valve for bypassing the outdoor expansion valve 6 to flow the refrigerant.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means composed of a microcomputer.
  • the input of the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and the outside air humidity of the vehicle.
  • An outside air humidity sensor 34 to detect, an HVAC intake temperature sensor 36 to detect the temperature of air sucked into the air flow passage 3 from the intake port 25, an inside air temperature sensor 37 to detect the temperature of the air (inside air) in the passenger compartment, An inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the passenger compartment, and an outlet temperature that detects the temperature of the air blown into the passenger compartment from the outlet 29 A sensor 41, a discharge pressure sensor 42 that detects the discharge refrigerant pressure of the compressor 2, and a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2.
  • a suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2
  • a radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4, or the temperature of the radiator 4 itself)
  • a radiator pressure sensor 47 for detecting the refrigerant pressure of the radiator 4 (inside the radiator 4 or the pressure of the refrigerant immediately after exiting the radiator 4) and the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9)
  • a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 itself
  • a heat absorption for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or just after leaving the heat absorber 9).
  • Pressure sensor 49 photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, set temperature and operation mode Air conditioning (air conditioner) operation unit 53 for setting switching
  • An outdoor heat exchanger temperature sensor 54 that detects the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself), and the outdoor heat exchange
  • Each output of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure (the pressure in the outdoor heat exchanger 7 or the refrigerant pressure immediately after coming out of the outdoor heat exchanger 7) of the outdoor unit 7 is connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet damper 31, and the outdoor expansion valve. 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20 and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • FIG. 1 the compressor 2
  • the outdoor blower 15 the indoor blower (blower fan) 27
  • the suction switching damper 26 the air mix damper 28
  • the outlet damper 31 the outdoor expansion valve.
  • the indoor expansion valve 8 the electromagnetic valves 22, 17, 21, 20 and the evaporation capacity control valve 11 are connected.
  • the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the cooling solenoid valve 17 and the bypass solenoid valve 20 described above are so-called normally open solenoid valves that are opened when the power is not supplied.
  • the heating solenoid valve 21 and the dehumidification solenoid valve 22 described above are so-called normally closed solenoid valves that are closed when no power is supplied, so that even when the power is cut off, the discharge side of the compressor 2 ⁇ Consideration is made so that an annular refrigerant circuit communicating with the suction side of the radiator 4 -the outdoor heat exchanger 7 -the heat absorber 9 -the compressor 2 is constructed.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • (1) Heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21, and the electromagnetic valve 17, the electromagnetic valve 22, and the electromagnetic valve 20 are turned on. close. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump, and the outdoor heat exchanger 7 functions as a refrigerant evaporator.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and the temperature of the radiator 4 detected by the radiator temperature sensor 46. And the valve opening degree of the outdoor expansion valve 6 is controlled based on the refrigerant
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on the above, the opening degree of the outdoor expansion valve 6 is controlled.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position) and also closes the electromagnetic valves 20 and 21. Since the outdoor expansion valve 6 and the electromagnetic valves 20 and 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented. All the condensed refrigerant flowing through the refrigerant pipe 13E through the vessel 4 flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
  • the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. And the refrigerant pressure of the radiator 4 (radiator pressure PCI) is controlled.
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)).
  • the air mix damper 28 may be in a state in which the amount of air flow is controlled including the state in which no air is passed through the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and when it is ventilated, it is radiated to the air.
  • the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 does not pass through the radiator 4 or passes through it slightly and is blown out from the air outlet 29 into the vehicle interior, thereby cooling the vehicle interior.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the controller 32 selects an operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowing temperature TAO at the time of activation. In addition, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions.
  • Noise improvement control (1) an example of noise improvement control executed by the controller 32 when switching from the heating mode to the dehumidifying heating mode will be described with reference to FIGS. 3 and 4.
  • the electromagnetic valve 22 for dehumidification is closed in the heating mode, but the electromagnetic valve 22 is opened in the dehumidification heating mode.
  • the solenoid valve 22 is opened, the upstream side (the radiator 4 side) of the solenoid valve 22 is at a high pressure. Therefore, when the solenoid valve 22 is opened, the refrigerant flows into the heat absorber 9 all at once, causing severe noise. There was an inconvenience that occurred.
  • the controller 32 when switching the operation mode from the heating mode to the dehumidifying heating mode, the controller 32 first closes the dehumidifying electromagnetic valve 22 (that is, still in the heating mode) and sets the rotation speed Nc of the compressor 2. It is lowered (in the embodiment, it is lowered at a predetermined inclination angle).
  • the rotational speed Nc of the compressor 2 decreases, the pressure (high pressure, radiator pressure PCI) of the radiator 4 decreases as shown in FIG. Thereby, the pressure difference before and behind the solenoid valve 22 (the refrigerant upstream side and the downstream side) also decreases.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 After opening the solenoid valve 22, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the dehumidifying heating mode. As described above, when the operation mode is switched from the heating mode to the dehumidifying heating mode, the controller 32 executes the noise improvement control for opening the electromagnetic valve 22 for dehumidification after reducing the radiator pressure PCI to a predetermined value or less. When switching from the heating mode to the dehumidifying heating mode, the refrigerant no longer flows into the heat absorber 9 when the electromagnetic valve 22 is opened. Thereby, at the time of switching from the heating mode to the dehumidifying heating mode, noise generated when the electromagnetic valve 22 for dehumidification is opened can be eliminated or reduced.
  • the controller 32 since the controller 32 reduces the rotation speed Nc of the compressor 2 in the noise improvement control, the controller 32 can effectively reduce the pressure difference between the radiator pressure PCI and the pressure before and after the electromagnetic valve 22 in the noise improvement control. become able to.
  • the electromagnetic valve 22 for dehumidification is opened when the radiator pressure PCI drops to a predetermined value, but a pressure sensor for detecting the refrigerant pressure downstream of the electromagnetic valve 22 is provided.
  • the solenoid valve 22 is opened when the pressure difference ⁇ Px drops below a predetermined value based on the pressure difference ⁇ Px before and after the solenoid valve 22 (radiator pressure PCI ⁇ refrigerant pressure downstream of the refrigerant). (The same applies to the following examples).
  • Noise improvement control (part 2) Next, another example of the noise improvement control executed by the controller 32 when switching from the heating mode to the dehumidifying heating mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode to the dehumidifying heating mode, the controller 32 first keeps the dehumidifying electromagnetic valve 22 closed (that is, still in the heating mode), and the rotational speed of the compressor 2. While Nc is decreased (in the embodiment, it is decreased at a predetermined inclination angle), the outdoor expansion valve 6 is fully opened (the upper limit of the opening indicated by the broken line in the figure), or the valve opening of the outdoor expansion valve 6 is increased. It is enlarged to a predetermined opening (shown by a solid line in the figure) (in the embodiment, it is enlarged at a predetermined inclination angle).
  • the pressure of the radiator 4 decreases as described above. Further, since the radiator pressure PCI also decreases by increasing the valve opening degree of the outdoor expansion valve 6, the radiator pressure PCI rapidly decreases as shown in FIG. Thereby, the pressure difference before and after the solenoid valve 22 (the refrigerant upstream side and the downstream side) also quickly decreases.
  • the controller 32 opens the dehumidifying electromagnetic valve 22. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 After opening the solenoid valve 22, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the dehumidifying heating mode. Moreover, the valve opening degree of the outdoor expansion valve 6 is also set to an appropriate control state in the dehumidifying heating mode. Even in this way, when switching from the heating mode to the dehumidifying heating mode, when the solenoid valve 22 is opened, the refrigerant will not flow into the heat absorber 9 abruptly, and at the time of switching from the heating mode to the dehumidifying heating mode, the dehumidification is performed. This makes it possible to eliminate or reduce noise generated when the electromagnetic valve 22 is opened.
  • the controller 32 increases the valve opening degree of the outdoor expansion valve 6 in addition to lowering the rotational speed Nc of the compressor 2 in the noise improvement control.
  • the pressure difference before and after the electromagnetic valve 22 can be reduced.
  • the pressure difference ⁇ Px drops below a predetermined value based on the pressure difference ⁇ Px before and after the solenoid valve 22 (heatsink pressure PCI ⁇ downstream refrigerant pressure).
  • the electromagnetic valve 22 may be opened.
  • Noise improvement control (part 3) Next, another example of noise improvement control executed by the controller 32 when switching from the heating mode to the dehumidifying heating mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode to the dehumidifying heating mode, the controller 32 first keeps the dehumidifying electromagnetic valve 22 closed (that is, still in the heating mode), and the rotational speed of the compressor 2. While decreasing Nc (decreasing at a predetermined inclination angle in the embodiment), the valve of the outdoor expansion valve 6 is set so that the degree of supercooling SC of the refrigerant in the radiator 4 becomes a predetermined value (predetermined low value) or less.
  • Control is performed so that the opening is fully opened (opening at the upper limit of control indicated by a broken line in the drawing) or is expanded to a predetermined opening (shown by a solid line in the drawing) (in the embodiment, it is enlarged at a predetermined inclination angle).
  • the pressure of the radiator 4 decreases as described above. Further, since the radiator pressure PCI also decreases when the supercooling degree SC of the radiator 4 decreases, the synergistic action of these causes the radiator pressure PCI to rapidly decrease as shown in FIG. Thereby, the pressure difference before and after the solenoid valve 22 (the refrigerant upstream side and the downstream side) also quickly decreases. Moreover, the density of the high-pressure refrigerant
  • the controller 32 opens the dehumidifying electromagnetic valve 22. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 After opening the solenoid valve 22, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the dehumidifying heating mode. Further, the control of the degree of supercooling SC of the radiator 4 by the valve opening degree of the outdoor expansion valve 6 is also set to an appropriate control state in the dehumidifying heating mode. Even in this way, when switching from the heating mode to the dehumidifying heating mode, when the solenoid valve 22 is opened, the refrigerant will not flow into the heat absorber 9 abruptly, and at the time of switching from the heating mode to the dehumidifying heating mode, the dehumidification is performed. This makes it possible to eliminate or reduce noise generated when the electromagnetic valve 22 is opened.
  • the controller 32 reduces the rotational speed Nc of the compressor 2 and controls the outdoor expansion valve 6 so that the degree of supercooling SC of the refrigerant in the radiator 4 becomes a predetermined value or less. Since the valve opening degree is controlled and the on-off valve 22 is opened after the radiator pressure PCI has dropped below a predetermined value, the supercooling degree SC of the radiator 4 is lowered in addition to the above embodiments. As a result, the density of the high-pressure side refrigerant is reduced, so that noise can be more effectively eliminated or reduced.
  • the electromagnetic valve 22 may be opened. In the case of this embodiment, the electromagnetic valve 22 may be opened based on the fact that the supercooling degree SC of the radiator 4 has decreased to a predetermined value or less.
  • Noise improvement control (part 4)
  • the controller 32 when switching the operation mode from the heating mode to the dehumidifying heating mode, the controller 32 first keeps the dehumidifying electromagnetic valve 22 closed (that is, still in the heating mode), and the rotational speed of the compressor 2.
  • the valve opening of the outdoor expansion valve 6 is fully opened (the upper limit of the control indicated by the broken line in the figure), or the outdoor expansion valve 6
  • the valve opening is increased to a predetermined opening (indicated by a solid line in the figure) (in the embodiment, it is expanded at a predetermined inclination angle).
  • radiator pressure PCI high pressure, radiator pressure PCI
  • the controller 32 opens the bypass solenoid valve 20.
  • the fall of the radiator pressure PCI becomes quicker, and the pressure difference between before and after the solenoid valve 22 (the refrigerant upstream side and the downstream side) is also reduced.
  • the controller 32 opens the dehumidifying electromagnetic valve 22. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 After opening the solenoid valve 22, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the dehumidifying heating mode. Moreover, the valve opening degree of the outdoor expansion valve 6 is also set to an appropriate control state in the dehumidifying heating mode. Furthermore, the solenoid valve 20 is also closed. Even in this way, when switching from the heating mode to the dehumidifying heating mode, when the solenoid valve 22 is opened, the refrigerant will not flow into the heat absorber 9 abruptly, and at the time of switching from the heating mode to the dehumidifying heating mode, the dehumidification is performed. This makes it possible to eliminate or reduce noise generated when the electromagnetic valve 22 is opened.
  • the controller 32 decreases the rotational speed Nc of the compressor 2 and increases the valve opening degree of the outdoor expansion valve 6, then opens the bypass solenoid valve 20 to dissipate heat. Since the solenoid valve 20 is opened after the radiator pressure PCI drops below a predetermined value, the pressure difference between the radiator pressure PCI and the solenoid valve 22 can be lowered more quickly by the bypass solenoid valve 20. It becomes like this. Further, since the electromagnetic valve 20 is opened when the radiator pressure PCI is reduced, noise when the electromagnetic valve 20 is opened can be avoided.
  • the solenoid valve 20 is opened due to the decrease in the pressure difference ⁇ Px. Further, the electromagnetic valve 22 may be opened when the pressure falls below a predetermined value.
  • Noise improvement control (10) Noise improvement control (part 5)
  • the controller 32 instead of reducing the rotational speed Nc of the compressor 2. Stop.
  • the radiator pressure PCI rapidly decreases as shown in FIG. Thereby, the pressure difference before and behind the solenoid valve 22 (the refrigerant upstream side and the downstream side) also quickly decreases.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 After opening the solenoid valve 22, the controller 32 activates the compressor 2 and sets the rotation speed Nc to an appropriate control state in the dehumidifying heating mode. Even in this way, when switching from the heating mode to the dehumidifying heating mode, when the solenoid valve 22 is opened, the refrigerant will not flow into the heat absorber 9 abruptly, and at the time of switching from the heating mode to the dehumidifying heating mode, the dehumidification is performed. This makes it possible to eliminate or reduce noise generated when the electromagnetic valve 22 is opened.
  • the controller 32 stops the compressor 2 in the noise improvement control, the radiator pressure PCI and the pressure difference before and after the electromagnetic valve 22 can be reduced more quickly.
  • the pressure difference ⁇ Px is reduced to a predetermined value or less based on the pressure difference ⁇ Px before and after the solenoid valve 22 (heat radiator pressure PCI ⁇ downstream refrigerant pressure).
  • the electromagnetic valve 22 may be opened.
  • Noise improvement control (part 6)
  • the controller 32 replaces the compressor 2 instead of reducing the rotational speed Nc. Stop.
  • the radiator pressure PCI rapidly decreases as shown in FIG. 9 due to a synergistic effect with the increase in the valve opening degree of the outdoor expansion valve 6.
  • the pressure difference before and behind the solenoid valve 22 also quickly decreases.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 activates the compressor 2 and sets the rotation speed Nc to an appropriate control state in the dehumidifying heating mode. Also, the control of the valve opening degree of the outdoor expansion valve 6 is set to an appropriate control state in the dehumidifying heating mode. Even in this way, when switching from the heating mode to the dehumidifying heating mode, when the solenoid valve 22 is opened, the refrigerant will not flow into the heat absorber 9 abruptly, and at the time of switching from the heating mode to the dehumidifying heating mode, the dehumidification is performed. This makes it possible to eliminate or reduce noise generated when the electromagnetic valve 22 is opened.
  • the controller 32 stops the compressor 2 in the noise improvement control, so that the radiator pressure PCI and the pressure difference before and after the electromagnetic valve 22 can be reduced more quickly.
  • the pressure difference ⁇ Px is reduced to a predetermined value or less based on the pressure difference ⁇ Px before and after the solenoid valve 22 (heat radiator pressure PCI ⁇ downstream refrigerant pressure).
  • the electromagnetic valve 22 may be opened.
  • Noise improvement control (7) still another example of the noise improvement control executed by the controller 32 when switching from the heating mode to the dehumidifying heating mode will be described with reference to FIG.
  • the controller 32 replaces the compressor 2 instead of reducing the rotational speed Nc. Stop.
  • the radiator pressure PCI rapidly decreases as shown in FIG. 10 due to a synergistic effect with the decrease in the supercooling degree SC of the refrigerant in the radiator 4 by the valve opening control of the outdoor expansion valve 6. To go.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification. As a result, the operation mode is switched to the dehumidifying and heating mode.
  • the controller 32 activates the compressor 2 and sets the rotation speed Nc to an appropriate control state in the dehumidifying heating mode.
  • the control of the degree of supercooling SC of the radiator 4 by the valve opening degree of the outdoor expansion valve 6 is also an appropriate control state in the dehumidifying heating mode.
  • the controller 32 stops the compressor 2 in the noise improvement control, so that the radiator pressure PCI and the pressure difference before and after the electromagnetic valve 22 can be reduced more quickly.
  • the pressure difference ⁇ Px is reduced to a predetermined value or less based on the pressure difference ⁇ Px before and after the solenoid valve 22 (heat radiator pressure PCI ⁇ downstream refrigerant pressure).
  • the electromagnetic valve 22 may be opened.
  • Noise improvement control (10) Noise improvement control (8)
  • the controller 32 controls the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Px, the excess of the refrigerant in the radiator 4 in the noise improvement control of each control example (Example 1) described above.
  • the predetermined value of the degree of cooling SC is changed according to the vehicle speed.
  • the controller 32 linearly functions as a predetermined value of the radiator pressure PCI or a predetermined value of the pressure difference ⁇ Px before and after the electromagnetic valve 22 as shown in FIG.
  • the predetermined value of the degree of supercooling SC of the vessel 4 is increased.
  • the amount of outside air flowing into the outdoor heat exchanger 7 increases, and the refrigerant pressure in the outdoor heat exchanger 7 increases. Therefore, a predetermined value of the radiator pressure PCI or around the electromagnetic valve 22 Even if the predetermined value of the pressure difference ⁇ Px or the predetermined value of the degree of supercooling SC of the radiator 4 is increased, noise can be eliminated or reduced. As a result, the electromagnetic valve 22 can be opened early to quickly switch to the dehumidifying and heating mode.
  • the predetermined values are increased in a linear function as the vehicle speed increases.
  • the present invention is not limited to this, and the vehicle speed is set to be low when the vehicle speed is equal to or higher than the predetermined value. It may be made higher than sometimes.
  • Noise improvement control (9) Next, still another example of the noise improvement control executed by the controller 32 when switching from the heating mode to the dehumidifying heating mode will be described with reference to FIG.
  • the controller 32 controls the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Px, the excess of the refrigerant in the radiator 4 in the noise improvement control of each control example (Example 1) described above.
  • the predetermined value of the degree of cooling SC is changed according to the air volume of the indoor fan 27.
  • the controller 32 has a linear function as shown in FIG. 12 or a predetermined value of the radiator pressure PCI or around the electromagnetic valve 22 as the air volume of the indoor fan 27 decreases (from MAX to MIN).
  • the predetermined value of the pressure difference ⁇ Px or the predetermined value of the degree of supercooling SC of the radiator 4 is lowered.
  • the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Px before and after the electromagnetic valve 22, or the radiator 4 By lowering the predetermined value of the degree of supercooling SC, noise can be more reliably eliminated or reduced in a situation where the radiator pressure PCI is increased.
  • Noise improvement control (part 10) Next, an example of noise improvement control executed by the controller 32 when switching from the heating mode or the dehumidifying heating mode to the cooling mode will be described with reference to FIGS.
  • the bypass solenoid valve 20 connected in parallel to the outdoor expansion valve 6 is closed in the heating mode and the dehumidifying heating mode, but the solenoid valve 20 is opened in the cooling mode.
  • the solenoid valve 20 is opened, the upstream side (the radiator 4 side) of the solenoid valve 20 is at a high pressure, so when the solenoid valve 20 is opened, the refrigerant flows into the outdoor heat exchanger 7 at once. There was an inconvenience that intense noise was generated.
  • the controller 32 first switches the bypass solenoid valve 20 when switching the operation mode from the heating mode to the cooling mode (FIG. 13) and when switching from the dehumidifying heating mode to the cooling mode (FIG. 14). While closed (that is, still in the heating mode / dehumidifying heating mode), the rotational speed Nc of the compressor 2 is decreased (in the embodiment, it is decreased at a predetermined inclination angle). When the rotational speed Nc of the compressor 2 decreases, the pressure (high pressure, radiator pressure PCI) of the radiator 4 decreases as shown in FIG. Thereby, the pressure difference before and behind the solenoid valve 20 (the refrigerant upstream side and the downstream side) also decreases. When the radiator pressure PCI detected by the radiator pressure sensor 47 becomes a predetermined value (for example, 0.5 MPa) or less, the controller 32 opens the bypass solenoid valve 20. As a result, the operation mode is switched to the cooling mode.
  • a predetermined value for example, 0.5 MPa
  • the controller 32 After opening the solenoid valve 20, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the cooling mode. As described above, when the controller 32 switches the operation mode from the heating mode and the dehumidifying heating mode to the cooling mode, the noise reduction that opens the bypass solenoid valve 20 after the radiator pressure PCI is lowered to a predetermined value or less. Since the control is executed, when switching from the heating mode and the dehumidifying heating mode to the cooling mode, the refrigerant does not flow into the outdoor heat exchanger 7 suddenly when the electromagnetic valve 20 is opened. Thereby, at the time of switching from the heating mode and the dehumidifying heating mode to the cooling mode, noise generated when the bypass solenoid valve 20 is opened can be eliminated or reduced.
  • the controller 32 since the controller 32 reduces the rotation speed Nc of the compressor 2 in the noise improvement control, the controller 32 can effectively reduce the pressure difference between the radiator pressure PCI and the pressure before and after the electromagnetic valve 20 in the noise improvement control. become able to.
  • the bypass solenoid valve 20 is opened when the radiator pressure PCI drops to a predetermined value.
  • the outdoor heat exchanger 7 that is the refrigerant pressure on the downstream side of the solenoid valve 20 is used.
  • the pressure difference ⁇ Pbp is less than a predetermined value. You may make it open the solenoid valve 20 when it falls.
  • the noise improvement control is executed when switching from the heating mode and the dehumidifying heating mode to the cooling mode.
  • the noise improvement control is executed when switching from the heating mode or the dehumidifying heating mode to the cooling mode. (The same applies to the following examples).
  • Noise improvement control (11) Next, another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode / dehumidification heating mode to the cooling mode, the controller 32 first keeps the bypass solenoid valve 20 closed (that is, still heating mode / dehumidification heating mode).
  • the rotational speed Nc of the compressor 2 is decreased (in the embodiment, it is decreased at a predetermined inclination angle), and the outdoor expansion valve 6 is fully opened (opening of the control upper limit indicated by a broken line in the drawing) or outdoor expansion
  • the valve opening of the valve 6 is increased to a predetermined opening (indicated by a solid line in the figure) (in the embodiment, it is increased at a predetermined inclination angle).
  • radiator pressure PCI high pressure, radiator pressure PCI
  • the radiator pressure PCI also decreases by increasing the valve opening degree of the outdoor expansion valve 6, the radiator pressure PCI decreases rapidly as shown in FIG. Thereby, the pressure difference before and behind the solenoid valve 20 (the refrigerant upstream side and the downstream side) also quickly decreases.
  • the controller 32 opens the bypass solenoid valve 20. As a result, the operation mode is switched to the cooling mode.
  • the controller 32 After opening the solenoid valve 20, the controller 32 sets the control of the rotational speed Nc of the compressor 2 to an appropriate control state in the cooling mode.
  • the valve opening degree of the outdoor expansion valve 6 is also fully opened (control upper limit value) in the cooling mode. Even in this way, when switching from the heating mode / dehumidifying heating mode to the cooling mode, when the solenoid valve 20 is opened, the refrigerant does not suddenly flow into the outdoor heat exchanger 7. At the time of switching to the cooling mode, noise generated when the bypass solenoid valve 20 is opened can be eliminated or reduced.
  • the controller 32 increases the valve opening degree of the outdoor expansion valve 6 in addition to lowering the rotational speed Nc of the compressor 2 in the noise improvement control.
  • the pressure difference before and after the electromagnetic valve 20 can be reduced.
  • the pressure difference ⁇ Pbp drops below a predetermined value based on the pressure difference ⁇ Pbp before and after the solenoid valve 20 (heatsink pressure PCI ⁇ outdoor heat exchanger pressure PXO).
  • the electromagnetic valve 20 may be opened.
  • Noise improvement control (part 12) Next, another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode / dehumidification heating mode to the cooling mode, the controller 32 first keeps the bypass solenoid valve 20 closed (that is, still heating mode / dehumidification heating mode). Just before switching, the air volume of the indoor fan 27 and the air volume (operation rate) of the outdoor fan 15 are increased.
  • the radiator pressure PCI decreases as the air volume of the indoor fan 27 increases. Further, the outdoor heat exchanger pressure PXO increases due to the increase in the air volume of the outdoor fan 15. With these synergistic effects, the radiator pressure PCI and the pressure difference Pbp before and after the solenoid valve 20 can be reduced effectively.
  • the controller 32 opens the bypass solenoid valve 20. As a result, the operation mode is switched to the cooling mode.
  • the controller 32 After opening the solenoid valve 20, the controller 32 sets the control of the indoor blower 27 and the outdoor blower 15 to an appropriate control state in the cooling mode. Even in this way, when switching from the heating mode / dehumidifying heating mode to the cooling mode, when the solenoid valve 20 is opened, the refrigerant does not suddenly flow into the outdoor heat exchanger 7. At the time of switching to the cooling mode, noise generated when the bypass solenoid valve 20 is opened can be eliminated or reduced.
  • the electromagnetic valve 20 may be opened.
  • the air volume of both the indoor fan 27 and the outdoor fan 15 is increased, but either one may be increased.
  • Noise improvement control (13) still another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 switches the predetermined value of the radiator pressure PCI of FIG. 15 or FIG. 16 or the predetermined value of the pressure difference ⁇ Pbp before and after the electromagnetic valve 20 according to the vehicle speed (FIG. 18). Is an example applied to the example of FIG.
  • each predetermined value is set to a high predetermined value B, and when the vehicle speed is low (lower than 40 km / h), each predetermined value is set to a low predetermined value A. To do.
  • the outdoor heat exchanger pressure PXO increases. Therefore, noise can be eliminated or reduced even if the predetermined value of the radiator pressure PCI or the predetermined value of the pressure difference Pdp before and after the electromagnetic valve 20 is switched from the low predetermined value A to the high predetermined value B. As a result, the electromagnetic valve 20 can be opened early to quickly switch to the cooling mode.
  • the supercooling degree SC of the refrigerant in the radiator 4 may be lowered also in the noise improvement control in this case.
  • the predetermined value of the degree of supercooling SC may be switched in the same manner as the above predetermined values.
  • Noise improvement control (14) Next, still another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode / dehumidification heating mode to the cooling mode in the noise improvement control (No. 10), instead of decreasing the rotational speed Nc of the compressor 2.
  • the compressor 2 is stopped.
  • the radiator pressure PCI rapidly decreases as shown in FIG. Thereby, the pressure difference before and behind the solenoid valve 20 (the refrigerant upstream side and the downstream side) also quickly decreases.
  • the controller 32 opens the bypass solenoid valve 20. As a result, the operation mode is switched to the cooling mode.
  • the controller 32 After opening the solenoid valve 20, the controller 32 activates the compressor 2 and sets the rotation speed Nc to an appropriate control state in the cooling mode. Even in this way, when switching from the heating mode / dehumidifying heating mode to the cooling mode, when the solenoid valve 20 is opened, the refrigerant does not suddenly flow into the outdoor heat exchanger 7. At the time of switching to the cooling mode, noise generated when the bypass solenoid valve 20 is opened can be eliminated or reduced.
  • the controller 32 stops the compressor 2 in the noise improvement control, the radiator pressure PCI and the pressure difference before and after the electromagnetic valve 20 can be reduced more quickly.
  • the pressure difference ⁇ Pbp was reduced to a predetermined value or less based on the pressure difference ⁇ Pbp before and after the solenoid valve 20 (radiator pressure PCI ⁇ outdoor heat exchanger pressure PXO).
  • the electromagnetic valve 20 may be opened.
  • Noise improvement control (15) Next, still another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 when switching the operation mode from the heating mode / dehumidification heating mode to the cooling mode in the noise improvement control (part 11) described above, instead of reducing the rotational speed Nc of the compressor 2.
  • the compressor 2 is stopped.
  • the radiator pressure PCI rapidly decreases as shown in FIG. 20 due to a synergistic effect with the increase in the valve opening degree of the outdoor expansion valve 6.
  • the controller 32 opens the bypass solenoid valve 20. As a result, the operation mode is switched to the cooling mode.
  • the controller 32 After opening the solenoid valve 20, the controller 32 activates the compressor 2 and sets the rotation speed Nc to an appropriate control state in the cooling mode.
  • the valve opening of the outdoor expansion valve 6 is fully opened. Even in this way, when switching from the heating mode / dehumidifying heating mode to the cooling mode, when the solenoid valve 20 is opened, the refrigerant does not suddenly flow into the outdoor heat exchanger 7. At the time of switching to the cooling mode, noise generated when the bypass solenoid valve 20 is opened can be eliminated or reduced.
  • the controller 32 stops the compressor 2 in the noise improvement control, so that the radiator pressure PCI and the pressure difference before and after the electromagnetic valve 20 can be reduced more quickly.
  • the pressure difference ⁇ Pbp was reduced to a predetermined value or less based on the pressure difference ⁇ Pbp before and after the solenoid valve 20 (radiator pressure PCI ⁇ outdoor heat exchanger pressure PXO).
  • the electromagnetic valve 20 may be opened.
  • Noise improvement control (16) Next, still another example of the noise improvement control executed by the controller 32 when switching from the heating mode / dehumidifying heating mode to the cooling mode will be described with reference to FIG.
  • the controller 32 controls the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Pbp in the noise improvement control of each control example (embodiment 2), and the excess of the refrigerant in the radiator 4.
  • the predetermined value of the degree of cooling SC is changed according to the vehicle speed.
  • the controller 32 linearly functions as a predetermined value of the radiator pressure PCI or a predetermined value of the pressure difference ⁇ Pbp before and after the electromagnetic valve 20 or heat dissipation as shown in FIG.
  • the predetermined value of the degree of supercooling SC of the vessel 4 is increased.
  • the predetermined value of the radiator pressure PCI or the pressure around the solenoid valve 20 Noise can be eliminated or reduced even if the predetermined value of the difference ⁇ Pbp or the predetermined value of the degree of supercooling SC of the radiator 4 is increased.
  • the electromagnetic valve 20 can be opened early to quickly switch to the cooling mode.
  • the predetermined values are increased in a linear function as the vehicle speed increases.
  • the present invention is not limited to this, and the vehicle speed is set to be low when the vehicle speed is equal to or higher than the predetermined value. It may be made higher than sometimes.
  • Noise improvement control (part 17)
  • the controller 32 controls the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Pbp in the noise improvement control of each control example (embodiment 2), and the excess of the refrigerant in the radiator 4.
  • the predetermined value of the degree of cooling SC is changed according to the air volume of the indoor fan 27.
  • the controller 32 has a linear function as shown in FIG. 22 or a predetermined value of the radiator pressure PCI or around the solenoid valve 20 as the air volume of the indoor fan 27 decreases (MAX to MIN).
  • the predetermined value of the pressure difference ⁇ Pbp or the predetermined value of the supercooling degree SC of the radiator 4 is lowered.
  • the predetermined value of the radiator pressure PCI, the predetermined value of the pressure difference ⁇ Pbp around the electromagnetic valve 20, or the radiator 4 By lowering the predetermined value of the degree of supercooling SC, noise can be more reliably eliminated or reduced in a situation where the radiator pressure PCI is increased.
  • the noise improvement control may not be performed when the vehicle speed is equal to or higher than a predetermined value and / or when the air volume of the indoor blower 27 is equal to or higher than the predetermined value. That is, in a situation where the vehicle speed is high and the amount of outside air flowing into the outdoor heat exchanger 7 increases and the pressure increases, and / or in a situation where the air flow of the indoor blower 27 is large and the radiator pressure PCI does not increase. Does not implement noise improvement control. As a result, the electromagnetic valve 22 and the electromagnetic valve 20 can be immediately opened to avoid both noise generation and operation mode switching delay.
  • the controller 32 stops the operation from the heating mode / dehumidifying heating mode / defrost mode (the compressor 2 is stopped), the valve opening degree of the outdoor expansion valve 6 is fully opened (control upper limit value), or a predetermined value is set. Expand to opening. As a result, the radiator pressure PCI decreases. However, until the radiator pressure PCI decreases to a predetermined value (for example, 0.5 MPa or the like) or less, or from the stop of the compressor 2 for a predetermined time (for example, 30 seconds to 30 seconds). The bypass solenoid valve 20 is closed (energization) until 60 seconds elapses. And after satisfy
  • a predetermined value for example, 0.5 MPa or the like
  • the controller 32 when the controller 32 stops from the heating mode, the dehumidifying heating mode, or the defrosting mode for defrosting the outdoor heat exchanger 7, the controller 32 increases the valve opening degree of the outdoor expansion valve 6, and the radiator pressure Noise generated by opening the solenoid valve 20 for bypass when the solenoid valve 20 is closed by closing the solenoid valve 20 until the PCI drops below a predetermined value or until a predetermined time elapses after the compressor 2 is stopped. Can be eliminated or suppressed.
  • the valve opening degree of the outdoor expansion valve 6 is increased.
  • the present invention is not limited to this, and without increasing, the radiator pressure PCI decreases to a predetermined value or from the stop of the compressor 2. It is also effective to keep the solenoid valve 20 closed (energization) until a predetermined time has elapsed.
  • FIG. 25 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

所謂ヒートポンプ方式の車両用空気調和装置において、運転モードの切換時に開閉弁を開放する際に生じる騒音を解消、若しくは、低減する。圧縮機(2)から吐出された冷媒を放熱器(4)にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器(7)にて吸熱させる暖房モードと、暖房モードの状態において電磁弁(22)を開放し、放熱器から出た冷媒の少なくとも一部を減圧した後、吸熱器(9)にて吸熱させる除湿暖房モードを実行する。コントローラは、暖房モードから除湿暖房モードに切り換える際、放熱器圧力、又は、開閉弁前後の圧力差を所定値以下に低下させた後、電磁弁(22)を開放する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
特許第3985384号公報
 ここで、室外熱交換器には並列に除湿用の電磁弁(開閉弁)が設けられており、上記暖房モードから除湿暖房モードに切り換える際、暖房モードの状態において前記除湿用の電磁弁を開放し、放熱器から出た冷媒を減圧して吸熱器に流入させるものであるが、この切り換えの際の電磁弁前後の圧力差は極めて大きいため、電磁弁の開放時に吸熱器に急激に流入する冷媒によって比較的大きな騒音が発生する。
 また、室外熱交換器の手前にはそれに流入する冷媒を減圧する室外膨張弁が設けられており、更に、この室外膨張弁には並列にバイパス用の電磁弁(開閉弁)が設けられ、上記暖房モード又は除湿暖房モードから冷房モードに切り換える際には、このバイパス用の電磁弁を開放するものであるが、この切り換えの際の電磁弁前後の圧力差も極めて大きいため、電磁弁の開放時に室外熱交換器に急激に流入する冷媒によって同様に大きい騒音が発生する問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂ヒートポンプ方式の車両用空気調和装置において、運転モードの切換時に開閉弁を開放する際に生じる騒音を解消、若しくは、低減することを目的とする。
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、この室外熱交換器に対して並列に接続された除湿用の開閉弁と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、この暖房モードの状態において開閉弁を開放し、放熱器から出た冷媒の少なくとも一部を減圧した後、吸熱器にて吸熱させる除湿暖房モードとを切り換えて実行するものであって、制御手段は、暖房モードから除湿暖房モードに切り換える際、放熱器の圧力、又は、開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、この室外膨張弁に対して並列に接続されたバイパス用の開閉弁と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、この暖房モードの状態において放熱器から出た冷媒の少なくとも一部を減圧した後、吸熱器にて吸熱させる除湿暖房モードと、開閉弁を開放し、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードとを切り換えて実行するものであって、制御手段は、暖房モード、又は、除湿暖房モードから冷房モードに切り換える際、放熱器の圧力、又は、開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御手段は、騒音改善制御において、圧縮機の回転数を低下させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、制御手段は、騒音改善制御において、室外膨張弁の弁開度を拡大させることを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項1の発明において室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、制御手段は、騒音改善制御において、圧縮機の回転数を低下させると共に、放熱器の冷媒の過冷却度が所定値以下となるように室外膨張弁の弁開度を制御し、放熱器の圧力、又は、開閉弁前後の圧力差、又は、過冷却度が所定値以下に低下した後、開閉弁を開放することを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項1の発明において室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、この室外膨張弁に対して並列に接続されたバイパス用の開閉弁を備え、制御手段は、騒音改善制御において、圧縮機の回転数を低下させ、室外膨張弁の弁開度を拡大させた後、バイパス用の開閉弁を開放し、放熱器の圧力、又は、除湿用の開閉弁前後の圧力差が所定値以下に低下した後、当該除湿用の開閉弁を開放することを特徴とする。
 請求項7の発明の車両用空気調和装置は、請求項2の発明において開閉弁は非通電状態で開放する電磁弁であると共に、制御手段は、暖房モード、又は、除湿暖房モード、又は、室外熱交換器を除霜する除霜モードから停止する際、室外膨張弁の弁開度を拡大させ、若しくは、放熱器の圧力が所定値以下に低下するまで、又は、圧縮機の停止から所定時間経過するまで、開閉弁を閉じておくことを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項2の発明又は上記発明において空気流通路に空気を送給するための室内送風機と、室外熱交換器に外気を通風するための室外送風機を備え、制御手段は、開閉弁を開放する直前に室内送風機、及び/又は、室外送風機の風量を増加させることを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御手段は、車速が高い程、放熱器の圧力の所定値、又は、開閉弁前後の圧力差の所定値、又は、放熱器の冷媒の過冷却度の所定値を高くすることを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記各発明において制御手段は、騒音改善制御において、圧縮機を停止することを特徴とする。
 請求項11の発明の車両用空気調和装置は、上記各発明において空気流通路に空気を送給するための室内送風機を備え、制御手段は、室内送風機の風量が少なくなる程、放熱器の圧力の所定値、又は、開閉弁前後の圧力差の所定値、又は、放熱器の冷媒の過冷却度の所定値を低くすることを特徴とする。
 請求項12の発明の車両用空気調和装置は、上記各発明において空気流通路に空気を送給するための室内送風機を備え、制御手段は、車速が所定値以上である場合、及び/又は、室内送風機の風量が所定値以上である場合、騒音改善制御を実行しないことを特徴とする。
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、この室外熱交換器に対して並列に接続された除湿用の開閉弁と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、この暖房モードの状態において開閉弁を開放し、放熱器から出た冷媒の少なくとも一部を減圧した後、吸熱器にて吸熱させる除湿暖房モードとを切り換えて実行する車両用空気調和装置において、制御手段が、暖房モードから除湿暖房モードに切り換える際、放熱器の圧力、又は、開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行するようにしたので、暖房モードから除湿暖房モードに切り換える際、除湿用の開閉弁を開放したときに、吸熱器に冷媒が急激に流入することを大幅に抑制またはなくすことが出来る。
 これにより、暖房モードから除湿暖房モードへの切換時に、除湿用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、請求項2の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、この室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、この室外膨張弁に対して並列に接続されたバイパス用の開閉弁と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、この暖房モードの状態において放熱器から出た冷媒の少なくとも一部を減圧した後、吸熱器にて吸熱させる除湿暖房モードと、開閉弁を開放し、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードとを切り換えて実行する車両用空気調和装置において、制御手段が、暖房モード、又は、除湿暖房モードから冷房モードに切り換える際、放熱器の圧力、又は、開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行するようにしたので、暖房モード、又は、除湿暖房モードから冷房モードに切り換える際、バイパス用の開閉弁を開放したときに、室外熱交換器に冷媒が急激に流入することを大幅に抑制またはなくすことが出来る。
 これにより、暖房モード、又は、除湿暖房モードから冷房モードへの切換時に、バイパス用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 これらの場合、請求項3の発明の如く制御手段が、騒音改善制御において圧縮機の回転数を低下させるようにすれば、騒音改善制御において放熱器の圧力、又は、開閉弁前後の圧力差を効果的に低下させることができるようになる。
 また、それに加えて請求項4の発明の如く制御手段が騒音改善制御において、室外熱交換器に流入する冷媒を減圧するための室外膨張弁の弁開度を拡大させるようにすれば、より迅速に放熱器の圧力、又は、開閉弁前後の圧力差を低下させることができるようになる。
 また、請求項5の発明の如く、請求項1の発明に加えて制御手段が、騒音改善制御において、圧縮機の回転数を低下させると共に、放熱器の冷媒の過冷却度が所定値以下となるように、室外熱交換器に流入する冷媒を減圧するための室外膨張弁の弁開度を制御し、放熱器の圧力、又は、開閉弁前後の圧力差、又は、過冷却度が所定値以下に低下した後、開閉弁を開放するようにしてもよい。放熱器の過冷却度を低下させることで、冷媒の密度が低下するため、より一層効果的に騒音の解消、若しくは、低減を実現することが可能となる。
 また、請求項6の発明の如く、請求項1の発明に加えて室外熱交換器に流入する冷媒を減圧するための室外膨張弁に対して並列に接続されたバイパス用の開閉弁を備えている場合、制御手段が、騒音改善制御において、圧縮機の回転数を低下させ、室外膨張弁の弁開度を拡大させた後、バイパス用の開閉弁を開放し、放熱器の圧力、又は、除湿用の開閉弁前後の圧力差が所定値以下に低下した後、当該除湿用の開閉弁を開放するようにしてもよい。その場合には、バイパス用の開閉弁によってより一層迅速に放熱器の圧力、又は、除湿用の開閉弁前後の圧力差を低下させることができるようになる。
 また、請求項7の発明の如くバイパス用の開閉弁が非通電状態で開放する電磁弁である場合に、請求項2の発明に加えて制御手段が、暖房モード、又は、除湿暖房モード、又は、室外熱交換器を除霜する除霜モードから停止する際、室外膨張弁の弁開度を拡大させ、若しくは、放熱器の圧力が所定値以下に低下するまで、又は、圧縮機の停止から所定時間経過するまで、開閉弁を閉じておくことにより、停止時にバイパス用の開閉弁が開いてしまうことによって生じる騒音を解消、若しくは、抑制することが可能となる。
 また、請求項8の発明の如く制御手段が、開閉弁を開放する直前に空気流通路に空気を送給するための室内送風機、及び/又は、室外熱交換器に外気を通風するための室外送風機の風量を増加させるようにしてもよい。室内送風機の風量が増加することで、放熱器の圧力が低下する。また、室外送風機の風量が増加することで室外熱交換器の圧力は上昇するので、何れの場合も効果的に放熱器の圧力、又は、開閉弁前後の圧力差を低下させることができるようになる。
 また、請求項9の発明の如く制御手段が、車速が高い程、放熱器の圧力の所定値、又は、開閉弁前後の圧力差の所定値、又は、放熱器の冷媒の過冷却度の所定値を高くするようにしてもよい。車速が高い程、室外熱交換器への外気の流入量が増加し、その圧力は高くなるため、放熱器の圧力の所定値、又は、開閉弁前後の圧力差の所定値、又は、放熱器の冷媒の過冷却度の所定値を高くしても騒音を解消、若しくは、低減することができる。これにより、開閉弁を早期に開放して運転モードの切り換えを迅速に行うことができるようになる。
 また、請求項10の発明の如く制御手段が、騒音改善制御において、圧縮機を停止するようにすれば、より一層迅速に放熱器の圧力、又は、開閉弁前後の圧力差を低下させることができるようになる。
 また、請求項11の発明の如く制御手段が、空気流通路に空気を送給するための室内送風機の風量が少なくなる程、放熱器の圧力の所定値、又は、開閉弁前後の圧力差の所定値、又は、放熱器の冷媒の過冷却度の所定値を低くするようにすれば、室内送風機の風量が少なく、放熱器の圧力が高くなる状況において、騒音の発生をより確実に解消、若しくは、低減することができるようになる。
 そして、請求項12の発明の如く制御手段が、車速が所定値以上である場合、及び/又は、空気流通路に空気を送給するための室内送風機の風量が所定値以上である場合、騒音改善制御を実行しないようにすれば、室外熱交換器への外気の流入量が増加し、その圧力は高くなる状況において、及び/又は、室内送風機の風量が多く、放熱器の圧力も高くならない状況においては騒音改善制御を実施せず、開閉弁を直ぐに開放して、騒音の発生と運転モード切換の遅延の双方を回避することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図2のコントローラが実行する騒音改善制御を説明する各機器のタイミングチャートである(実施例1)。 図3における圧縮機と除湿用の電磁弁の動作を説明するタイミングチャートである。 もう一つの騒音改善制御における圧縮機と室外膨張弁と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機と室外膨張弁と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御におけるバイパス用の電磁弁と圧縮機と室外膨張弁と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機と室外膨張弁と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機と室外膨張弁と除湿用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における車速と放熱器圧力等との関係を示す図である。 更にもう一つの騒音改善制御における室内送風機風量と放熱器圧力等との関係を示す図である。 図2のコントローラが実行する他の実施例の騒音改善制御を説明する各機器のタイミングチャートである(実施例2)。 図2のコントローラが実行する他の実施例の騒音改善制御を説明する各機器のもう一つのタイミングチャートである。 図13や図14における圧縮機とバイパス用の電磁弁の動作を説明するタイミングチャートである。 もう一つの騒音改善制御における圧縮機と室外膨張弁とバイパス用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における室内送風機と室外送風機とバイパス用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機とバイパス用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機とバイパス用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における圧縮機と室外膨張弁とバイパス用の電磁弁の動作を説明するタイミングチャートである。 更にもう一つの騒音改善制御における車速と放熱器圧力等との関係を示す図である。 更にもう一つの騒音改善制御における室内送風機風量と放熱器圧力等との関係を示す図である。 図2のコントローラが実行する他の実施例の騒音改善制御を説明する各機器の更にもう一つのタイミングチャートである(実施例4)。 図23における圧縮機と室外膨張弁とバイパス用の電磁弁の動作を説明するタイミングチャートである。 本発明を適用可能な他の実施形態の車両用空気調和装置の構成図である(実施例5)。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される冷房用の開閉弁としての冷房用電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される暖房用の開閉弁としての暖房用電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される除湿用の開閉弁としての除湿用電磁弁22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。即ち、電磁弁22は室外熱交換器7に対して並列に接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すためのバイパス用の開閉弁としてのバイパス用電磁弁20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、車両の外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と
、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 ここで、前述した冷房用の電磁弁17とバイパス用の電磁弁20は、非通電時に開放する所謂ノーマルオープンの電磁弁である。また、前述した暖房用の電磁弁21と除湿用の電磁弁22は、非通電時に閉じる所謂ノーマルクローズの電磁弁であり、これにより、電源が断たれた状態でも、圧縮機2の吐出側-放熱器4-室外熱交換器7-吸熱器9-圧縮機2の吸込側と連通する環状の冷媒回路が構成されるように配慮されている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モード
 コントローラ32により、或いは、空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなり、室外熱交換器7は冷媒の蒸発器として機能する。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁20、21も閉じる。この室外膨張弁6と電磁弁20、21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数Ncを制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態を含み通風量を制御する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4に空気流通路3内の空気が通風されない場合には、ここは通過するのみとなり、通風される場合には空気に放熱される。放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過することなく、あるいは若干通過し、吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数Ncを制御する。
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
 (6)騒音改善制御(その1)
 次に、図3、図4を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。前述したように暖房モードでは除湿用の電磁弁22は閉じられているが、除湿暖房モードでは電磁弁22は開放される。しかしながら、電磁弁22を開放する際には、電磁弁22の上流側(放熱器4側)は高圧となっているため、電磁弁22を開放すると一気に冷媒が吸熱器9に流入し、激しい騒音が発生する不都合があった。
 そこで、この実施例でコントローラ32は、運転モードを暖房モードから除湿暖房モードに切り換える際、先ず除湿用の電磁弁22を閉じたまま(即ち、未だ暖房モード)、圧縮機2の回転数Ncを低下させていく(実施例では所定の傾斜角度で低下させる)。この圧縮機2の回転数Ncが低下すると、図4に示す如く放熱器4の圧力(高圧。放熱器圧力PCI)は低下していく。これにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。このように、コントローラ32は運転モードを暖房モードから除湿暖房モードに切り換える際、放熱器圧力PCIを所定値以下に低下させた後、除湿用の電磁弁22を開放する騒音改善制御を実行するので、暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなる。これにより、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合コントローラ32は、騒音改善制御において圧縮機2の回転数Ncを低下させるので、騒音改善制御において放熱器圧力PCIと、電磁弁22の前後の圧力差を効果的に低下させることができるようになる。
 尚、上記実施例では放熱器圧力PCIが所定値に低下してときに除湿用の電磁弁22を開放するようにしたが、電磁弁22の下流側の冷媒圧力を検出する圧力センサが設けられる場合には、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-冷媒下流側の冷媒圧力)に基づき、圧力差ΔPxが所定値以下に低下したときに電磁弁22を開放するようにしてもよい(以下の実施例についても同じ)。
 (7)騒音改善制御(その2)
 次に、図5を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の他の例について説明する。この実施例の騒音改善制御でコントローラ32は、運転モードを暖房モードから除湿暖房モードに切り換える際、先ず除湿用の電磁弁22を閉じたまま(即ち、未だ暖房モード)、圧縮機2の回転数Ncを低下させていくと共に(実施例では所定の傾斜角度で低下させる)、室外膨張弁6を全開(図中破線で示す制御上限の開度)、若しくは、室外膨張弁6の弁開度を所定開度(図中実線で示す)に拡大させる(実施例では所定の傾斜角度で拡大させる)。
 圧縮機2の回転数Ncが低下すると、前述同様に放熱器4の圧力(高圧。放熱器圧力PCI)は低下する。また、室外膨張弁6の弁開度を拡大することでも放熱器圧力PCIは低下するので、これらの相乗作用で放熱器圧力PCIは図5に示す如く迅速に低下していく。それにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(前述同様に、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度も除湿暖房モードの適正な制御状態とする。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2の回転数Ncを低下させることに加えて、室外膨張弁6の弁開度を拡大させるので、より迅速に放熱器圧力PCIと、電磁弁22の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxが所定値以下に低下したときに電磁弁22を開放するようにしてもよい。
 (8)騒音改善制御(その3)
 次に、図6を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御のもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、運転モードを暖房モードから除湿暖房モードに切り換える際、先ず除湿用の電磁弁22を閉じたまま(即ち、未だ暖房モード)、圧縮機2の回転数Ncを低下させていくと共に(実施例では所定の傾斜角度で低下させる)、放熱器4の冷媒の過冷却度SCが所定値(所定の低い値)以下となるように室外膨張弁6の弁開度を全開(図中破線で示す制御上限の開度)、若しくは、所定開度(図中実線で示す)に拡大させる(実施例では所定の傾斜角度で拡大させる)制御を実行する。
 圧縮機2の回転数Ncが低下すると、前述同様に放熱器4の圧力(高圧。放熱器圧力PCI)は低下する。また、放熱器4の過冷却度SCが低下することでも放熱器圧力PCIは低下するので、これらの相乗作用で放熱器圧力PCIは図6に示す如く迅速に低下していく。それにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。また、放熱器4の過冷却度SCが低下することで、放熱器4を出た高圧冷媒の密度も低くなる。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(前述同様に、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度による放熱器4の過冷却度SCの制御も除湿暖房モードの適正な制御状態とする。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2の回転数Ncを低下させると共に、放熱器4の冷媒の過冷却度SCが所定値以下となるように、室外膨張弁6の弁開度を制御し、放熱器圧力PCIが所定値以下に低下した後、開閉弁22を開放するようにしているので、上記各実施例に加えて放熱器4の過冷却度SCを低下させることで、高圧側冷媒の密度が低下するため、より一層効果的に騒音の解消、若しくは、低減を実現することが可能となる。
 尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxが所定値以下に低下したときに電磁弁22を開放するようにしてもよい。また、この実施例の場合には放熱器4の過冷却度SCが所定値以下に低下したことに基づいて電磁弁22を開放するようにしてもよい。
 (9)騒音改善制御(その4)
 次に、図7を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、運転モードを暖房モードから除湿暖房モードに切り換える際、先ず除湿用の電磁弁22を閉じたまま(即ち、未だ暖房モード)、圧縮機2の回転数Ncを低下させていくと共に(実施例では所定の傾斜角度で低下させる)、室外膨張弁6の弁開度を全開(図中破線で示す制御上限の開度)、若しくは、室外膨張弁6の弁開度を所定開度(図中実線で示す)に拡大させる(実施例では所定の傾斜角度で拡大させる)。
 圧縮機2の回転数Ncが低下すると、前述同様に放熱器4の圧力(高圧。放熱器圧力PCI)は低下する。また、室外膨張弁6の弁開度が拡大することでも放熱器圧力PCIは低下するので、これらの相乗作用で放熱器圧力PCIは図7に示す如く迅速に低下していく。その後、或る程度放熱器圧力PCIが低下したところで、コントローラ32はバイパス用の電磁弁20を開放する。これにより、放熱器圧力PCIの低下は更に迅速なものとなり、電磁弁22の前後(冷媒上流側と下流側)の圧力差も低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(前述同様に、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度も除湿暖房モードの適正な制御状態とする。更に、電磁弁20も閉じる。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2の回転数Ncを低下させ、室外膨張弁6の弁開度を拡大させた後、バイパス用の電磁弁20を開放し、放熱器圧力PCIが所定値以下に低下した後、当該電磁弁20を開放するので、バイパス用の電磁弁20によってより一層迅速に放熱器圧力PCIと電磁弁22前後の圧力差を低下させることができるようになる。また、放熱器圧力PCIが低下したところで電磁弁20を開放するので、この電磁弁20の開放時の騒音も回避することができる。
 尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxの低下により電磁弁20を開放し、更に所定値以下に低下したときに電磁弁22を開放するようにしてもよい。
 (10)騒音改善制御(その5)
 次に、図8を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した騒音改善制御(その1)で運転モードを暖房モードから除湿暖房モードに切り換える際、圧縮機2の回転数Ncを低下させる代わりに圧縮機2を停止させる。圧縮機2が停止することで、図8に示す如く放熱器圧力PCIは迅速に低下していく。これにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2を起動し、その回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2を停止させるので、より一層迅速に放熱器圧力PCIや電磁弁22の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxが所定値以下に低下したことにより電磁弁22を開放するようにしてもよい。
 (11)騒音改善制御(その6)
 次に、図9を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した騒音改善制御(その2)で運転モードを暖房モードから除湿暖房モードに切り換える際、圧縮機2の回転数Ncを低下させる代わりに圧縮機2を停止させる。圧縮機2が停止することで、室外膨張弁6の弁開度の拡大との相乗作用で図9に示す如く放熱器圧力PCIは迅速に低下していく。これにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2を起動し、その回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度の制御も除湿暖房モードでの適正な制御状態とする。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例でもコントローラ32は騒音改善制御において、圧縮機2を停止させるので、より一層迅速に放熱器圧力PCIや電磁弁22の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxが所定値以下に低下したことにより電磁弁22を開放するようにしてもよい。
 (11)騒音改善制御(その7)
 次に、図10を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した騒音改善制御(その3)で運転モードを暖房モードから除湿暖房モードに切り換える際、圧縮機2の回転数Ncを低下させる代わりに圧縮機2を停止させる。圧縮機2が停止することで、室外膨張弁6の弁開度制御による放熱器4の冷媒の過冷却度SCの低下との相乗作用で図10に示す如く放熱器圧力PCIは迅速に低下していく。これにより、電磁弁22の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5~1.3MPa等)以下となったとき、コントローラ32は除湿用の電磁弁22を開放する。これにより運転モードは除湿暖房モードに切り換わる。
 電磁弁22を開放した後、コントローラ32は圧縮機2を起動し、その回転数Ncの制御を除湿暖房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度による放熱器4の過冷却度SCの制御も除湿暖房モードでの適正な制御状態とする。このようにしても暖房モードから除湿暖房モードに切り換える際、電磁弁22を開放したときに、吸熱器9に冷媒が急激に流入することが無くなり、暖房モードから除湿暖房モードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例でもコントローラ32は騒音改善制御において、圧縮機2を停止させるので、より一層迅速に放熱器圧力PCIや電磁弁22の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁22の前後の圧力差ΔPx(放熱器圧力PCI-下流側の冷媒圧力)に基づいて、当該圧力差ΔPxが所定値以下に低下したことにより電磁弁22を開放するようにしてもよい。
 (12)騒音改善制御(その8)
 次に、図11を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した各制御例(実施例1)の騒音改善制御での放熱器圧力PCIの所定値や圧力差ΔPxの所定値、放熱器4の冷媒の過冷却度SCの所定値を、車速に応じて変化させる。
 その場合、コントローラ32は車速が高い程、実施例では図11に示すように一次関数的に上記放熱器圧力PCIの所定値、又は、電磁弁22前後の圧力差ΔPxの所定値、又は、放熱器4の過冷却度SCの所定値を高くする。ここで、車速が高い程、室外熱交換器7への外気の流入量が増加し、室外熱交換器7の冷媒圧力は高くなるため、放熱器圧力PCIの所定値、又は、電磁弁22前後の圧力差ΔPxの所定値、又は、放熱器4の過冷却度SCの所定値を高くしても騒音を解消、若しくは、低減することができる。これにより、電磁弁22を早期に開放して除湿暖房モードへの切り換えを迅速に行うことができるようになる。
 尚、この実施例では車速の上昇に応じて一次関数的に上記各所定値が高くなるようにしたが、それに限らず、車速が所定値以上である場合に、上記各所定値を車速が低いときよりも高くするようにしてもよい。
 (13)騒音改善制御(その9)
 次に、図12を参照しながら、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した各制御例(実施例1)の騒音改善制御での放熱器圧力PCIの所定値や圧力差ΔPxの所定値、放熱器4の冷媒の過冷却度SCの所定値を、室内送風機27の風量に応じて変化させる。
 その場合、コントローラ32は室内送風機27の風量が少なくなる程(MAXからMINまで)、実施例では図12に示すように一次関数的に上記放熱器圧力PCIの所定値、又は、電磁弁22前後の圧力差ΔPxの所定値、又は、放熱器4の過冷却度SCの所定値を低くする。ここで、室内送風機27の風量が少なくなる程、放熱器圧力PCIは高くなるため、放熱器圧力PCIの所定値、又は、電磁弁22前後の圧力差ΔPxの所定値、又は、放熱器4の過冷却度SCの所定値を低くすることにより、放熱器圧力PCIが高くなる状況において、騒音の発生をより確実に解消、若しくは、低減することができるようになる。
 (14)騒音改善制御(その10)
 次に、図13~図15を参照しながら、暖房モード、又は、除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。前述したように暖房モードや除湿暖房モードでは室外膨張弁6に並列に接続されたバイパス用の電磁弁20は閉じられているが、冷房モードでは電磁弁20は開放される。しかしながら、電磁弁20を開放する際には、電磁弁20の上流側(放熱器4側)は高圧となっているため、電磁弁20を開放すると一気に冷媒が室外熱交換器7に流入し、激しい騒音が発生する不都合があった。
 そこで、この実施例でコントローラ32は、運転モードを暖房モードから冷房モードに切り換える際(図13)、及び、除湿暖房モードから冷房モードに切り換える際(図14)、先ずバイパス用の電磁弁20を閉じたまま(即ち、未だ暖房モード/除湿暖房モード)、圧縮機2の回転数Ncを低下させていく(実施例では所定の傾斜角度で低下させる)。この圧縮機2の回転数Ncが低下すると、図15に示す如く放熱器4の圧力(高圧。放熱器圧力PCI)は低下していく。これにより、電磁弁20の前後(冷媒上流側と下流側)の圧力差も低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5MPa等)以下となったとき、コントローラ32はバイパス用の電磁弁20を開放する。これにより運転モードは冷房モードに切り換わる。
 電磁弁20を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を冷房モードでの適正な制御状態とする。このように、コントローラ32は運転モードを暖房モード、及び、除湿暖房モードから冷房モードに切り換える際、放熱器圧力PCIを所定値以下に低下させた後、バイパス用の電磁弁20を開放する騒音改善制御を実行するので、暖房モード及び除湿暖房モードから冷房モードに切り換える際、電磁弁20を開放したときに、室外熱交換器7に冷媒が急激に流入することが無くなる。これにより、暖房モード及び除湿暖房モードから冷房モードへの切換時に、バイパス用の電磁弁20を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合コントローラ32は、騒音改善制御において圧縮機2の回転数Ncを低下させるので、騒音改善制御において放熱器圧力PCIと、電磁弁20の前後の圧力差を効果的に低下させることができるようになる。
 尚、上記実施例では放熱器圧力PCIが所定値に低下してときにバイパス用の電磁弁20を開放するようにしたが、電磁弁20の下流側の冷媒圧力である室外熱交換器7の圧力PXOを検出する室外熱交換器圧力センサ56の出力に基づき、電磁弁20の前後の圧力差ΔPbp(放熱器圧力PCI-室外熱交換器圧力PXO)に基づき、圧力差ΔPbpが所定値以下に低下したときに電磁弁20を開放するようにしてもよい。また、実施例では暖房モード及び除湿暖房モードから冷房モードに切り換える際に騒音改善制御を実行するようにしたが、暖房モード又は除湿暖房モードの何れか一方から冷房モードに切り換える際に実行するようにしてもよい(以下の実施例についても同じ)。
 (15)騒音改善制御(その11)
 次に、図16を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の他の例について説明する。この実施例の騒音改善制御でコントローラ32は、運転モードを暖房モード/除湿暖房モードから冷房モードに切り換える際、先ずバイパス用の電磁弁20を閉じたまま(即ち、未だ暖房モード/除湿暖房モード)、圧縮機2の回転数Ncを低下させていくと共に(実施例では所定の傾斜角度で低下させる)、室外膨張弁6を全開(図中破線で示す制御上限の開度)、若しくは、室外膨張弁6の弁開度を所定開度(図中実線で示す)に拡大させる(実施例では所定の傾斜角度で拡大させる)。
 圧縮機2の回転数Ncが低下すると、前述同様に放熱器4の圧力(高圧。放熱器圧力PCI)は低下する。また、室外膨張弁6の弁開度を拡大することでも放熱器圧力PCIは低下するので、これらの相乗作用で放熱器圧力PCIは図16に示す如く迅速に低下していく。それにより、電磁弁20の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(前述同様に、0.5MPa等)以下となったとき、コントローラ32はバイパス用の電磁弁20を開放する。これにより運転モードは冷房モードに切り換わる。
 電磁弁20を開放した後、コントローラ32は圧縮機2の回転数Ncの制御を冷房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度も冷房モードでの全開(制御上限値)とする。このようにしても暖房モード/除湿暖房モードから冷房モードに切り換える際、電磁弁20を開放したときに、室外熱交換器7に冷媒が急激に流入することが無くなり、暖房モード/除湿暖房モードから冷房モードへの切換時に、バイパス用の電磁弁20を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2の回転数Ncを低下させることに加えて、室外膨張弁6の弁開度を拡大させるので、より迅速に放熱器圧力PCIと、電磁弁20の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁20の前後の圧力差ΔPbp(放熱器圧力PCI-室外熱交換器圧力PXO)に基づいて、当該圧力差ΔPbpが所定値以下に低下したときに電磁弁20を開放するようにしてもよい。
 (16)騒音改善制御(その12)
 次に、図17を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御のもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、運転モードを暖房モード/除湿暖房モードから冷房モードに切り換える際、先ずバイパス用の電磁弁20を閉じたまま(即ち、未だ暖房モード/除湿暖房モード)、切り換える直前に、室内送風機27の風量と、室外送風機15の風量(稼働率)を増加させる。
 室内送風機27の風量が増加することで、放熱器圧力PCIが低下する。また、室外送風機15の風量が増加することで室外熱交換器圧力PXOは上昇する。それらの相乗効果で効果的に放熱器圧力PCI、及び、電磁弁20前後の圧力差Pbpを低下させることができるようになる。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(前述同様に、0.5MPa等)以下となったとき、コントローラ32はバイパス用の電磁弁20を開放する。これにより運転モードは冷房モードに切り換わる。
 電磁弁20を開放した後、コントローラ32は室内送風機27及び室外送風機15の制御を冷房モードでの適正な制御状態とする。このようにしても暖房モード/除湿暖房モードから冷房モードに切り換える際、電磁弁20を開放したときに、室外熱交換器7に冷媒が急激に流入することが無くなり、暖房モード/除湿暖房モードから冷房モードへの切換時に、バイパス用の電磁弁20を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 尚、前述した如くこの実施例の場合も、電磁弁20の前後の圧力差ΔPbp(放熱器圧力PCI-室外熱交換器圧力PXO)に基づいて、当該圧力差ΔPbpが所定値以下に低下したときに電磁弁20を開放するようにしてもよい。また、この実施例では室内送風機27と室外送風機15の双方の風量を増加させているが、何れか一方を増加させるようにしてもよい。
 (17)騒音改善制御(その13)
 次に、図18を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、図15や図16の放熱器圧力PCIの所定値、又は、電磁弁20の前後の圧力差ΔPbpの所定値を、車速に応じて切り換える(図18は図15の例に適用した例)。即ち、車速が所定値(例えば40km/h)以上である場合は各所定値を高い所定値Bとし、車速が低い場合(40km/hより低い場合)は、各所定値を低い所定値Aとする。
 車速が高い場合は室外熱交換器7への外気の流入量が増加するため、室外熱交換器圧力PXOが高くなる。従って、放熱器圧力PCIの所定値、又は、電磁弁20前後の圧力差Pdpの所定値を、低い所定値Aから高い所定値Bに切り換えても騒音を解消、若しくは、低減することができる。これにより、電磁弁20を早期に開放して冷房モードへの切り換えを迅速に行うことができるようになる。
 尚、前述した図10の例のように、この場合の騒音改善制御においても放熱器4の冷媒の過冷却度SCを下げるようにしてもよい。その場合の過冷却度SCの所定値も、上記各所定値と同様に切り換えてもよい。
 (18)騒音改善制御(その14)
 次に、図19を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した騒音改善制御(その10)で運転モードを暖房モード/除湿暖房モードから冷房モードに切り換える際、圧縮機2の回転数Ncを低下させる代わりに圧縮機2を停止させる。圧縮機2が停止することで、図19に示す如く放熱器圧力PCIは迅速に低下していく。これにより、電磁弁20の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5MPa等)以下となったとき、コントローラ32はバイパス用の電磁弁20を開放する。これにより運転モードは冷房モードに切り換わる。
 電磁弁20を開放した後、コントローラ32は圧縮機2を起動し、その回転数Ncの制御を冷房モードでの適正な制御状態とする。このようにしても暖房モード/除湿暖房モードから冷房モードに切り換える際、電磁弁20を開放したときに、室外熱交換器7に冷媒が急激に流入することが無くなり、暖房モード/除湿暖房モードから冷房モードへの切換時に、バイパス用の電磁弁20を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例ではコントローラ32は騒音改善制御において、圧縮機2を停止させるので、より一層迅速に放熱器圧力PCIや電磁弁20の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁20の前後の圧力差ΔPbp(放熱器圧力PCI-室外熱交換器圧力PXO)に基づいて、当該圧力差ΔPbpが所定値以下に低下したことにより電磁弁20を開放するようにしてもよい。
 (19)騒音改善制御(その15)
 次に、図20を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した騒音改善制御(その11)で運転モードを暖房モード/除湿暖房モードから冷房モードに切り換える際、圧縮機2の回転数Ncを低下させる代わりに圧縮機2を停止させる。圧縮機2が停止することで、室外膨張弁6の弁開度の拡大との相乗作用で図20に示す如く放熱器圧力PCIは迅速に低下していく。これにより、電磁弁20の前後(冷媒上流側と下流側)の圧力差も迅速に低下する。そして、放熱器圧力センサ47が検出する放熱器圧力PCIが所定値(例えば、0.5MPa等)以下となったとき、コントローラ32はバイパス用の電磁弁20を開放する。これにより運転モードは冷房モードに切り換わる。
 電磁弁20を開放した後、コントローラ32は圧縮機2を起動し、その回転数Ncの制御を冷房モードでの適正な制御状態とする。また、室外膨張弁6の弁開度は全開状態とする。このようにしても暖房モード/除湿暖房モードから冷房モードに切り換える際、電磁弁20を開放したときに、室外熱交換器7に冷媒が急激に流入することが無くなり、暖房モード/除湿暖房モードから冷房モードへの切換時に、バイパス用の電磁弁20を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 特に、この実施例でもコントローラ32は騒音改善制御において、圧縮機2を停止させるので、より一層迅速に放熱器圧力PCIや電磁弁20の前後の圧力差を低下させることができるようになる。尚、前述した如くこの実施例の場合も、電磁弁20の前後の圧力差ΔPbp(放熱器圧力PCI-室外熱交換器圧力PXO)に基づいて、当該圧力差ΔPbpが所定値以下に低下したことにより電磁弁20を開放するようにしてもよい。
 (20)騒音改善制御(その16)
 次に、図21を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した各制御例(実施例2)の騒音改善制御での放熱器圧力PCIの所定値や圧力差ΔPbpの所定値、放熱器4の冷媒の過冷却度SCの所定値を、車速に応じて変化させる。
 その場合、コントローラ32は車速が高い程、実施例では図21に示すように一次関数的に上記放熱器圧力PCIの所定値、又は、電磁弁20前後の圧力差ΔPbpの所定値、又は、放熱器4の過冷却度SCの所定値を高くする。ここで、車速が高い程、室外熱交換器7への外気の流入量が増加し、室外熱交換器圧力PXOは高くなるため、放熱器圧力PCIの所定値、又は、電磁弁20前後の圧力差ΔPbpの所定値、又は、放熱器4の過冷却度SCの所定値を高くしても騒音を解消、若しくは、低減することができる。これにより、電磁弁20を早期に開放して冷房モードへの切り換えを迅速に行うことができるようになる。
 尚、この実施例では車速の上昇に応じて一次関数的に上記各所定値が高くなるようにしたが、それに限らず、車速が所定値以上である場合に、上記各所定値を車速が低いときよりも高くするようにしてもよい。
 (21)騒音改善制御(その17)
 次に、図22を参照しながら、暖房モード/除湿暖房モードから冷房モードに切り換える際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。この実施例の騒音改善制御でコントローラ32は、前述した各制御例(実施例2)の騒音改善制御での放熱器圧力PCIの所定値や圧力差ΔPbpの所定値、放熱器4の冷媒の過冷却度SCの所定値を、室内送風機27の風量に応じて変化させる。
 その場合、コントローラ32は室内送風機27の風量が少なくなる程(MAXからMINまで)、実施例では図22に示すように一次関数的に上記放熱器圧力PCIの所定値、又は、電磁弁20前後の圧力差ΔPbpの所定値、又は、放熱器4の過冷却度SCの所定値を低くする。ここで、室内送風機27の風量が少なくなる程、放熱器圧力PCIは高くなるため、放熱器圧力PCIの所定値、又は、電磁弁20前後の圧力差ΔPbpの所定値、又は、放熱器4の過冷却度SCの所定値を低くすることにより、放熱器圧力PCIが高くなる状況において、騒音の発生をより確実に解消、若しくは、低減することができるようになる。
 尚、上記各実施例において、車速が所定値以上である場合、及び/又は、室内送風機27の風量が所定値以上である場合は、騒音改善制御を実施しないようにしてもよい。即ち、車速が高く、室外熱交換器7への外気の流入量が増加してその圧力が高くなる状況において、及び/又は、室内送風機27の風量が多く、放熱器圧力PCIも高くならない状況においては騒音改善制御を実施しない。これにより、電磁弁22や電磁弁20を直ぐに開放して、騒音の発生と運転モード切換の遅延の双方を回避することができるようになる。
 (22)騒音改善制御(その18)
 次に、図23、図24を参照しながら、暖房モード/除湿暖房モードから車両用空気調和装置1の運転を停止する際にコントローラ32が実行する騒音改善制御の更にもう一つの他の例について説明する。尚、コントローラ32は電磁弁20を開放して高温冷媒を室外熱交換器7に流入させ、室外熱交換器7の着霜を除去する除霜モードも有しているが、この除霜モードから運転を停止する際にも以下に説明する騒音改善制御を実行するものとする。
 この場合、コントローラ32は暖房モード/除湿暖房モード/除霜モードから運転を停止(圧縮機2は停止)する際、室外膨張弁6の弁開度を全開(制御上限値)、又は、所定の開度に拡大する。これにより、放熱器圧力PCIは低下していくが、この放熱器圧力PCIが所定値(例えば0.5MPa等)以下に低下するまで、又は、圧縮機2の停止から所定時間(例えば30秒~60秒等)経過するまで、バイパス用の電磁弁20を閉じておく(通電)。そして、これらの条件が満足した後、電磁弁20を非通電として開放する。
 このように、コントローラ32は暖房モード、又は、除湿暖房モード、又は、室外熱交換器7を除霜する除霜モードから停止する際、室外膨張弁6の弁開度を拡大させ、放熱器圧力PCIが所定値以下に低下するまで、又は、圧縮機2の停止から所定時間経過するまで、電磁弁20を閉じておくことにより、停止時にバイパス用の電磁弁20が開いてしまうことによって生じる騒音を解消、若しくは、抑制することが可能となる。
 尚、この実施例では室外膨張弁6の弁開度を拡大させているが、それに限らず、拡大させずに、放熱器圧力PCIが所定値に低下するまで、又は、圧縮機2の停止から所定時間経過するまで電磁弁20を閉じておく(通電)ものとしても有効である。
 次に、図25は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 尚、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁(開閉弁)
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 30 循環ポンプ(循環手段)
 32 コントローラ(制御手段)
 R 冷媒回路

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     該室外熱交換器に対して並列に接続された除湿用の開閉弁と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     該暖房モードの状態において前記開閉弁を開放し、前記放熱器から出た冷媒の少なくとも一部を減圧した後、前記吸熱器にて吸熱させる除湿暖房モードとを切り換えて実行する車両用空気調和装置において、
     前記制御手段は、前記暖房モードから前記除湿暖房モードに切り換える際、前記放熱器の圧力、又は、前記開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  2.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     該室外膨張弁に対して並列に接続されたバイパス用の開閉弁と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     該暖房モードの状態において前記放熱器から出た冷媒の少なくとも一部を減圧した後、前記吸熱器にて吸熱させる除湿暖房モードと、
     前記開閉弁を開放し、前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードとを切り換えて実行する車両用空気調和装置において、
     前記制御手段は、前記暖房モード、又は、前記除湿暖房モードから前記冷房モードに切り換える際、前記放熱器の圧力、又は、前記開閉弁前後の圧力差を所定値以下に低下させた後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  3.  前記制御手段は、前記騒音改善制御において、前記圧縮機の回転数を低下させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、
     前記制御手段は、前記騒音改善制御において、前記室外膨張弁の弁開度を拡大させることを特徴とする請求項3に記載の車両用空気調和装置。
  5.  前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁を備え、
     前記制御手段は、前記騒音改善制御において、前記圧縮機の回転数を低下させると共に、前記放熱器の冷媒の過冷却度が所定値以下となるように前記室外膨張弁の弁開度を制御し、前記放熱器の圧力、又は、前記開閉弁前後の圧力差、又は、前記過冷却度が所定値以下に低下した後、前記開閉弁を開放することを特徴とする請求項1に記載の車両用空気調和装置。
  6.  前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     該室外膨張弁に対して並列に接続されたバイパス用の開閉弁を備え、
     前記制御手段は、前記騒音改善制御において、前記圧縮機の回転数を低下させ、前記室外膨張弁の弁開度を拡大させた後、前記バイパス用の開閉弁を開放し、前記放熱器の圧力、又は、前記除湿用の開閉弁前後の圧力差が所定値以下に低下した後、当該除湿用の開閉弁を開放することを特徴とする請求項1に記載の車両用空気調和装置。
  7.  前記開閉弁は非通電状態で開放する電磁弁であると共に、
     前記制御手段は、前記暖房モード、又は、前記除湿暖房モード、又は、前記室外熱交換器を除霜する除霜モードから停止する際、前記室外膨張弁の弁開度を拡大させ、若しくは、前記放熱器の圧力が所定値以下に低下するまで、又は、前記圧縮機の停止から所定時間経過するまで、前記開閉弁を閉じておくことを特徴とする請求項2に記載の車両用空気調和装置。
  8.  前記空気流通路に空気を送給するための室内送風機と、前記室外熱交換器に外気を通風するための室外送風機を備え、
     前記制御手段は、前記開閉弁を開放する直前に前記室内送風機、及び/又は、前記室外送風機の風量を増加させることを特徴とする請求項2又は至請求項7のうちの何れかに記載の車両用空気調和装置。
  9.  前記制御手段は、車速が高い程、前記放熱器の圧力の所定値、又は、前記開閉弁前後の圧力差の所定値、又は、前記放熱器の冷媒の過冷却度の所定値を高くすることを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  10.  前記制御手段は、前記騒音改善制御において、前記圧縮機を停止することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
  11.  前記空気流通路に空気を送給するための室内送風機を備え、
     前記制御手段は、前記室内送風機の風量が少なくなる程、前記放熱器の圧力の所定値、又は、前記開閉弁前後の圧力差の所定値、又は、前記放熱器の冷媒の過冷却度の所定値を低くすることを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。
  12.  前記空気流通路に空気を送給するための室内送風機を備え、
     前記制御手段は、車速が所定値以上である場合、及び/又は、前記室内送風機の風量が所定値以上である場合、前記騒音改善制御を実行しないことを特徴とする請求項1乃至請求項11のうちの何れかに記載の車両用空気調和装置。
PCT/JP2015/057723 2014-05-26 2015-03-16 車両用空気調和装置 WO2015182219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580026852.0A CN106414126B (zh) 2014-05-26 2015-03-16 车用空调装置
DE112015002489.1T DE112015002489T5 (de) 2014-05-26 2015-03-16 Fahrzeugklimaanlagenvorrichtung
US15/313,458 US10611213B2 (en) 2014-05-26 2015-03-16 Vehicular air-conditioning device having a dehumidifying and heating mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014108306A JP6418787B2 (ja) 2014-05-26 2014-05-26 車両用空気調和装置
JP2014-108306 2014-05-26

Publications (1)

Publication Number Publication Date
WO2015182219A1 true WO2015182219A1 (ja) 2015-12-03

Family

ID=54698561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057723 WO2015182219A1 (ja) 2014-05-26 2015-03-16 車両用空気調和装置

Country Status (5)

Country Link
US (1) US10611213B2 (ja)
JP (1) JP6418787B2 (ja)
CN (1) CN106414126B (ja)
DE (1) DE112015002489T5 (ja)
WO (1) WO2015182219A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179597A1 (ja) * 2016-04-14 2017-10-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN108016404A (zh) * 2016-11-04 2018-05-11 上海汽车集团股份有限公司 挡风玻璃除雾控制方法、控制装置及除雾系统
JP2018095182A (ja) * 2016-12-16 2018-06-21 株式会社デンソー 冷凍サイクル装置
WO2018110211A1 (ja) * 2016-12-14 2018-06-21 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2018211958A1 (ja) * 2017-05-18 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020129495A1 (ja) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE112017002025B4 (de) 2016-04-14 2024-01-25 Sanden Corporation Klimaanlage für ein Fahrzeug

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2017149370A (ja) * 2016-02-26 2017-08-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6738156B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018091536A (ja) * 2016-12-01 2018-06-14 株式会社デンソー 冷凍サイクル装置
JP6853036B2 (ja) * 2016-12-27 2021-03-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN110254157B (zh) * 2018-03-12 2023-02-28 上海汽车集团股份有限公司 一种汽车用热泵空调系统的控制方法
DE102018125984A1 (de) * 2018-10-19 2020-04-23 Ipetronik Gmbh & Co. Kg Kältekreis-Ventilschalldämpfer
CN109515114A (zh) * 2018-11-27 2019-03-26 上海交通大学 一种汽车热泵空调系统
CN111288616B (zh) * 2018-12-07 2021-12-21 上海汽车集团股份有限公司 热泵空调系统的电磁阀控制方法
CN111380256A (zh) * 2018-12-28 2020-07-07 三花控股集团有限公司 热泵系统
JP2020142620A (ja) * 2019-03-06 2020-09-10 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2022220525A1 (ko) * 2021-04-12 2022-10-20 한온시스템 주식회사 차량용 히트펌프 시스템 및 이의 제어방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164868A (ja) * 1993-12-17 1995-06-27 Nippondenso Co Ltd 車両用空調装置
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2006069332A (ja) * 2004-09-01 2006-03-16 Calsonic Kansei Corp 車両用空調装置及び車両用空調装置の運転モード切替方法
JP2013180743A (ja) * 2012-03-05 2013-09-12 Honda Motor Co Ltd 車両用空調装置
JP2013193610A (ja) * 2012-03-21 2013-09-30 Denso Corp 車両用空調装置
JP2013256230A (ja) * 2012-06-13 2013-12-26 Sanden Corp 車両用空気調和装置
JP2014088151A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置
JP2014088154A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164867A (ja) * 1993-12-16 1995-06-27 Nissan Motor Co Ltd 電気自動車用空調装置の制御装置
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
WO2005123225A1 (ja) 2004-06-17 2005-12-29 Matsushita Electric Industrial Co., Ltd. 除湿装置
JP2007163074A (ja) * 2005-12-15 2007-06-28 Denso Corp 冷凍サイクル
JP2011126409A (ja) * 2009-12-17 2011-06-30 Denso Corp 車両用冷凍サイクル装置
JP5482728B2 (ja) * 2011-05-20 2014-05-07 株式会社デンソー 冷凍サイクル装置
JP6031931B2 (ja) * 2012-10-03 2016-11-24 株式会社デンソー 冷凍サイクル装置
CN103786547A (zh) * 2012-10-31 2014-05-14 三菱自动车工业株式会社 车辆空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164868A (ja) * 1993-12-17 1995-06-27 Nippondenso Co Ltd 車両用空調装置
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2006069332A (ja) * 2004-09-01 2006-03-16 Calsonic Kansei Corp 車両用空調装置及び車両用空調装置の運転モード切替方法
JP2013180743A (ja) * 2012-03-05 2013-09-12 Honda Motor Co Ltd 車両用空調装置
JP2013193610A (ja) * 2012-03-21 2013-09-30 Denso Corp 車両用空調装置
JP2013256230A (ja) * 2012-06-13 2013-12-26 Sanden Corp 車両用空気調和装置
JP2014088151A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置
JP2014088154A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179597A1 (ja) * 2016-04-14 2017-10-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US10946723B2 (en) 2016-04-14 2021-03-16 Sanden Automotive Climate Systems Corporation Vehicle air conditioner
DE112017002025B4 (de) 2016-04-14 2024-01-25 Sanden Corporation Klimaanlage für ein Fahrzeug
CN108016404A (zh) * 2016-11-04 2018-05-11 上海汽车集团股份有限公司 挡风玻璃除雾控制方法、控制装置及除雾系统
WO2018110211A1 (ja) * 2016-12-14 2018-06-21 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018095182A (ja) * 2016-12-16 2018-06-21 株式会社デンソー 冷凍サイクル装置
WO2018211958A1 (ja) * 2017-05-18 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11192428B2 (en) 2017-05-18 2021-12-07 Sanden Automotive Climate Systems Corporation Vehicle air-conditioning device
WO2020129495A1 (ja) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
CN106414126A (zh) 2017-02-15
JP6418787B2 (ja) 2018-11-07
CN106414126B (zh) 2019-01-01
US10611213B2 (en) 2020-04-07
US20170210202A1 (en) 2017-07-27
DE112015002489T5 (de) 2017-02-23
JP2015223880A (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6418787B2 (ja) 車両用空気調和装置
JP7095848B2 (ja) 車両用空気調和装置
JP6855281B2 (ja) 車両用空気調和装置
JP6590558B2 (ja) 車両用空気調和装置
JP6738157B2 (ja) 車両用空気調和装置
JP6571405B2 (ja) 車両用空気調和装置
WO2014192741A1 (ja) 車両用空気調和装置
WO2015170513A1 (ja) 車両用空気調和装置
WO2017146268A1 (ja) 車両用空気調和装置
JP6963405B2 (ja) 車両用空気調和装置
WO2015025905A1 (ja) 車両用空気調和装置
JP6496958B2 (ja) 車両用空気調和装置
WO2017002546A1 (ja) 車両用空気調和装置
WO2016208337A1 (ja) 車両用空気調和装置
JP6571430B2 (ja) 車両用空気調和装置
WO2017179594A1 (ja) 車両用空気調和装置
WO2017146266A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
WO2017179597A1 (ja) 車両用空気調和装置
WO2017146267A1 (ja) 車両用空気調和装置
WO2018159141A1 (ja) 車両用空気調和装置
JP6948179B2 (ja) 車両用空気調和装置
JP6754214B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002489

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798824

Country of ref document: EP

Kind code of ref document: A1