WO2017002546A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2017002546A1
WO2017002546A1 PCT/JP2016/066849 JP2016066849W WO2017002546A1 WO 2017002546 A1 WO2017002546 A1 WO 2017002546A1 JP 2016066849 W JP2016066849 W JP 2016066849W WO 2017002546 A1 WO2017002546 A1 WO 2017002546A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
limit
value
air
Prior art date
Application number
PCT/JP2016/066849
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to DE112016002968.3T priority Critical patent/DE112016002968T5/de
Priority to US15/738,746 priority patent/US10703166B2/en
Priority to CN201680037892.XA priority patent/CN107735626B/zh
Publication of WO2017002546A1 publication Critical patent/WO2017002546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3225Cooling devices using compression characterised by safety arrangements, e.g. compressor anti-seizure means or by signalling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator
  • a heating mode in which the refrigerant radiated in the radiator absorbs heat in the outdoor heat exchanger
  • a dehumidifying heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant radiated in the radiator absorbs heat in the heat absorber.
  • FIG. 10 is a diagram for explaining the conventional low-pressure protection control.
  • the lower limit suction temperature TLL is a suction pressure of the compressor (suction refrigerant pressure): for example, a suction refrigerant temperature corresponding to 0.01 MPaG, and is a value set in consideration of the durability of the compressor and the low-pressure side parts It is.
  • the limit target value TGTs is a target value of the suction refrigerant temperature that limits the rotation speed of the compressor.
  • the present invention has been made to solve the conventional technical problem, and an object of the present invention is to provide a vehicle air conditioner with improved reliability by accurately performing low-pressure protection. .
  • An air conditioner for a vehicle is provided with a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and the air flow passage for radiating the refrigerant to dissipate the refrigerant.
  • a heat radiator that heats the air supplied to the vehicle, an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant, a detection unit that detects a suction refrigerant temperature or a suction refrigerant pressure of the compressor, and a control unit.
  • the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized, the heat is absorbed by an outdoor heat exchanger, and the vehicle interior is heated.
  • the means adjusts the rotation speed of the compressor based on the detection value of the detection means and the limit target value set for the suction refrigerant temperature or the suction refrigerant pressure of the compressor so that the detection value does not fall below the limit target value.
  • Low pressure protection function It has a fixed limit lower limit value and a predetermined limit upper limit value higher than that, and when starting up the compressor, adjusts the rotation speed of the compressor using the limit target value as the limit upper limit value, and the detected value drops to the limit upper limit value. In this case, the limit target value is gradually lowered toward the limit lower limit value.
  • the control means when the detected value decreases to the upper limit limit, the control means reduces the target limit value to the lower limit limit with a predetermined first-order time constant. It is characterized by.
  • an air conditioning apparatus for a vehicle comprising auxiliary heating means provided on the upstream side of the radiator with respect to the air flow in the air flow passage in each of the above inventions.
  • the auxiliary heating means generates heat during startup.
  • the control means includes an outside air temperature and an upper limit rotation speed of the compressor at which the suction refrigerant temperature or the suction refrigerant pressure does not fall below a lower limit limit at the outside air temperature.
  • the upper limit number of rotations of the compressor is changed based on the outside air temperature with reference to the rotation number limitation data.
  • a vehicle air conditioner is the air conditioning apparatus for a vehicle according to the first to third aspects of the present invention, wherein the control means is the upper limit rotational speed of the compressor for a predetermined time after the start of the compressor or when the high pressure is low. It is characterized by lowering.
  • an air conditioner for a vehicle comprising: a compressor that compresses a refrigerant; an air flow passage through which air supplied to the vehicle interior circulates; A radiator that heats the air supplied to the vehicle, auxiliary heating means provided on the upstream side of the radiator with respect to the air flow in the air flow passage, and outdoor heat exchange that is provided outside the vehicle cabin and absorbs the refrigerant , A detecting means for detecting the suction refrigerant temperature or the suction refrigerant pressure of the compressor, and a control means, and by this control means, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant After the pressure is reduced, the vehicle interior is heated by absorbing heat with an outdoor heat exchanger, and the control means is set with respect to the detection value of the detection means and the suction refrigerant temperature or suction refrigerant pressure of the compressor. Based on the limit target value And has a low-pressure protection function of
  • an air conditioning apparatus for a vehicle, comprising: a compressor that compresses a refrigerant; an air flow passage through which air supplied to the vehicle interior circulates; A heat radiator that heats the air supplied to the vehicle, an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant, a detection unit that detects a suction refrigerant temperature or a suction refrigerant pressure of the compressor, and a control unit.
  • the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized, the heat is absorbed by an outdoor heat exchanger, and the vehicle interior is heated.
  • the means adjusts the rotation speed of the compressor based on the detection value of the detection means and the limit target value set for the suction refrigerant temperature or the suction refrigerant pressure of the compressor so that the detection value does not fall below the limit target value.
  • It has rotation speed limit data indicating the relationship between the air temperature and the upper limit rotation speed of the compressor at which the suction refrigerant temperature or the suction refrigerant pressure does not fall below the limit target value at the outside air temperature, referring to this rotation speed limit data, The upper limit number of rotations of the compressor is changed based on the outside air temperature.
  • An air conditioner for a vehicle is provided with a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and the air flow passage for radiating the refrigerant to dissipate the refrigerant.
  • a heat radiator that heats the air supplied to the vehicle, an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant, a detection unit that detects a suction refrigerant temperature or a suction refrigerant pressure of the compressor, and a control unit.
  • the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized, the heat is absorbed by an outdoor heat exchanger, and the vehicle interior is heated.
  • the means adjusts the rotation speed of the compressor based on the detection value of the detection means and the limit target value set for the suction refrigerant temperature or the suction refrigerant pressure of the compressor so that the detection value does not fall below the limit target value.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air flow passage are provided to dissipate the refrigerant and are supplied to the vehicle interior.
  • a heat dissipator that heats the air an outdoor heat exchanger that is provided outside the passenger compartment and absorbs the refrigerant, a detection unit that detects the suction refrigerant temperature or the suction refrigerant pressure of the compressor, and a control unit.
  • the vehicle air conditioner that heats the vehicle interior by causing the refrigerant discharged from the compressor to dissipate heat with a radiator, depressurize the dissipated refrigerant, and then absorb heat with an outdoor heat exchanger.
  • the low pressure for adjusting the rotation speed of the compressor so that the detection value does not fall below the limit target value With protection function, It has a fixed limit lower limit value and a predetermined limit upper limit value higher than that, and when starting up the compressor, adjusts the rotation speed of the compressor using the limit target value as the limit upper limit value, and the detected value drops to the limit upper limit value.
  • the limit target value is gradually decreased toward the limit lower limit value, by setting the limit lower limit value to the value of the conventional limit target value described above, the compressor starts more than that.
  • the control means adjusts the rotational speed of the compressor using the high limit upper limit as the limit target value.
  • the control means gradually lowers the limit target value toward the limit lower limit value. It is possible to realize low-pressure protection.
  • the control means lowers the limit target value to the lower limit limit with a predetermined time constant of first order delay, the actual suction The limit target value can be accurately reduced in accordance with the decrease in the refrigerant temperature or the suction refrigerant pressure.
  • the auxiliary heating means when the auxiliary heating means is provided on the upstream side of the radiator with respect to the air flow in the air flow passage as in the invention of claim 3, the auxiliary heating means generates heat when the compressor is started by the control means. By doing so, the high pressure is increased and the low pressure is also increased. Further, since the rotation speed of the compressor does not increase, it is possible to suppress a rapid decrease in the suction refrigerant temperature or the suction refrigerant pressure at the time of starting the compressor and further improve the reliability.
  • the control means controls the rotational speed limit data indicating the relationship between the outside air temperature and the upper limit rotational speed of the compressor at which the suction refrigerant temperature or the suction refrigerant pressure does not fall below the lower limit limit at the outside air temperature. If the upper limit rotation speed of the compressor is changed based on the outside air temperature with reference to the rotation speed limit data, the upper limit rotation speed of the compressor is changed according to the outside air temperature, and more reliably. It is possible to prevent the suction refrigerant temperature or the suction refrigerant pressure from falling below the lower limit limit.
  • control means reduces the upper limit number of revolutions of the compressor for a predetermined time after the start of the compressor or if the high pressure is low, the control means as in the invention of claim 5 at the start or high pressure When the pressure is low, it is possible to eliminate the inconvenience that the rotational speed of the compressor excessively increases and the suction refrigerant temperature or the suction refrigerant pressure rapidly decreases and falls below the lower limit limit.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air flow passage are provided to dissipate the refrigerant and are supplied to the vehicle interior.
  • a radiator that heats the air auxiliary heating means provided upstream of the radiator with respect to the air flow in the air flow passage, an outdoor heat exchanger that is provided outside the passenger compartment and absorbs the refrigerant, and compression
  • the control means is a limit set for the detection value of the detection means and the suction refrigerant temperature or suction refrigerant pressure of the compressor Based on the target value, the detected value is the limit target
  • the auxiliary heating means generates heat when the compressor is started up. The pressure will also increase.
  • the rotation speed of the compressor since the rotation speed of the compressor does not increase, it is possible to suppress a sudden drop in the suction refrigerant temperature or the suction refrigerant pressure at the time of starting the compressor and improve the reliability.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air flow passage are provided to dissipate the refrigerant and are supplied to the vehicle interior.
  • a heat dissipator that heats the air an outdoor heat exchanger that is provided outside the passenger compartment and absorbs the refrigerant, a detection unit that detects the suction refrigerant temperature or the suction refrigerant pressure of the compressor, and a control unit.
  • the vehicle air conditioner that heats the vehicle interior by causing the refrigerant discharged from the compressor to dissipate heat with a radiator, depressurize the dissipated refrigerant, and then absorb heat with an outdoor heat exchanger.
  • the low pressure for adjusting the rotation speed of the compressor so that the detection value does not fall below the limit target value With protection function, It has rotation speed limit data indicating the relationship between the air temperature and the upper limit rotation speed of the compressor at which the suction refrigerant temperature or the suction refrigerant pressure does not fall below the limit target value at the outside air temperature, referring to this rotation speed limit data, Since the upper limit rotation speed of the compressor is changed based on the outside air temperature, the upper limit rotation speed of the compressor is changed according to the outside air temperature so that the suction refrigerant temperature or the suction refrigerant pressure does not fall below the target limit value. Can be improved.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air flow passage are provided to dissipate the refrigerant and are supplied to the vehicle interior.
  • a heat dissipator that heats the air an outdoor heat exchanger that is provided outside the passenger compartment and absorbs the refrigerant, a detection unit that detects the suction refrigerant temperature or the suction refrigerant pressure of the compressor, and a control unit.
  • the vehicle air conditioner that heats the vehicle interior by causing the refrigerant discharged from the compressor to dissipate heat with a radiator, depressurize the dissipated refrigerant, and then absorb heat with an outdoor heat exchanger.
  • the low pressure for adjusting the rotation speed of the compressor so that the detection value does not fall below the limit target value With protection function, When the compressor starts up for a predetermined time or when the high pressure is low, the upper limit number of revolutions of the compressor is reduced. Therefore, the number of revolutions of the compressor increases excessively at startup or when the high pressure is low. It is possible to eliminate the disadvantage that the suction refrigerant temperature or the suction refrigerant pressure rapidly decreases and falls below the limit target value, and the reliability can be improved.
  • FIG. 3 is a diagram for explaining low-pressure protection control executed by the controller of FIG. 2 (Example 1). It is a timing chart explaining the low voltage
  • Example 4 which is a figure explaining the other example of the low voltage
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • a heat exchanger 9 an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9.
  • Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 serves as an on-off valve for cooling that is opened during cooling. It is connected to the receiver dryer section 14 via the cooling electromagnetic valve 17, and the outlet of the supercooling section 16 is connected to the indoor expansion valve 8 via the check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the evaporation capacity control valve 11 may be installed downstream of the internal heat exchanger 19.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D exchanges internal heat via a heating electromagnetic valve 21 as a heating on-off valve that is opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the downstream side of the vessel 19.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F has a dehumidifying electromagnetic valve 22 as a dehumidifying on-off valve that is opened during dehumidification.
  • the refrigerant pipe 13 ⁇ / b> B on the downstream side of the check valve 18 is connected in communication. That is, the electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7.
  • a bypass pipe 13J is connected in parallel to the outdoor expansion valve 6.
  • the bypass pipe 13J is opened in a cooling mode and bypasses the on-off valve for bypassing the outdoor expansion valve 6 to flow the refrigerant.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, and the outside air humidity of the vehicle.
  • ECU controller
  • An outside air humidity sensor 34 that detects air temperature
  • an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, and an inside air temperature sensor 37 that detects the temperature of air (inside air) in the vehicle interior
  • the inside air humidity sensor 38 for detecting the humidity of the air in the passenger compartment, the indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the passenger compartment, and the outlet for detecting the temperature of the air blown from the outlet 29 into the passenger compartment
  • a temperature sensor 41; a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2; and a discharge refrigerant temperature of the compressor 2
  • the discharge temperature sensor 43, the suction temperature sensor 44 (detection means) for detecting the temperature of the refrigerant sucked by the compressor 2 (intake refrigerant temperature Ts: detection value), and the temperature of the radiator 4 (heat radiator temperature TCI) are detected.
  • a radiator temperature sensor 46 A radiator temperature sensor 46, a radiator pressure sensor 47 that detects the refrigerant pressure (radiator pressure PCI) of the radiator 4, a heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (heat absorber temperature Te), A heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9, a photosensor type solar sensor 51 for detecting the amount of solar radiation into the passenger compartment, and a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle.
  • the outputs of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure 7 are connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20 and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • (1) Heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21, and the electromagnetic valve 17, the electromagnetic valve 22, and the electromagnetic valve 20 are turned on. close. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump, and the outdoor heat exchanger 7 functions as a refrigerant evaporator.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the radiator pressure sensor 47, and at the same time the temperature of the radiator 4 detected by the radiator temperature sensor 46 (the radiator temperature TCI). ) And the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47, the valve opening degree of the outdoor expansion valve 6 is controlled, and the degree of refrigerant subcooling at the outlet of the radiator 4 is controlled. To do.
  • FIG. 3 is a control block diagram of the controller 32 for determining the target rotational speed (compressor target rotational speed) TGNC of the compressor 2 for the heating mode.
  • the F / F manipulated variable TGNCff of the compressor target rotational speed is calculated based on the compressor temperature TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4.
  • TAO is a target outlet temperature which is a target value of the air temperature from the outlet 29
  • TH is the temperature of the radiator 4 (heat radiator temperature) obtained from the radiator temperature sensor 46
  • Te is obtained from the heat absorber temperature sensor 48.
  • the air mix damper opening SW changes in the range of 0 ⁇ SW ⁇ 1, and the air mix fully closed state in which the ventilation to the radiator 4 is 0 and 1 is 1 The air mix is fully opened when all the air in the air flow passage 3 is ventilated to the radiator 4.
  • the target radiator pressure PCO is calculated based on the target supercooling degree TGSC and the target radiator temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 60 calculates the F / B manipulated variable TGNCfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. Then, the F / F manipulated variable TGNCff computed by the F / F manipulated variable computing unit 58 and the TGNCfb computed by the F / B manipulated variable computing unit 60 are added by an adder 61, and this added value (TGNCff + TGNCfb) is low-pressure protection controlled.
  • the controller 32 After being limited by the unit 62 (low pressure protection function of the controller 32), it is determined as the compressor target rotational speed TGNC. In the heating mode, the controller 32 controls the rotational speed Nc of the compressor 2 based on the compressor target rotational speed TGNC.
  • the restriction control of the compressor target rotational speed TGNC for low pressure protection performed by the low pressure protection control unit 62 will be described in detail later.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 and expands outdoors based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the valve opening degree of the valve 6 is controlled.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position) and also closes the electromagnetic valves 20 and 21. Since the outdoor expansion valve 6 and the electromagnetic valves 20 and 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented. All the condensed refrigerant flowing through the refrigerant pipe 13E through the vessel 4 flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
  • the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. And the refrigerant pressure of the radiator 4 (radiator pressure PCI) is controlled.
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)).
  • the air mix damper 28 may be in a state in which the amount of air flow is controlled including the state in which no air is passed through the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and when it is ventilated, it is radiated to the air.
  • the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 does not pass through the radiator 4 or passes through it slightly and is blown out from the air outlet 29 into the vehicle interior, thereby cooling the vehicle interior.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the controller 32 selects an operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowing temperature TAO at the time of activation. In addition, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions.
  • the low pressure protection control unit 62 of the controller 32 is limited to the addition value (TGNCff + TGNCfb) of the F / F operation amount TGNCff calculated by the F / F operation amount calculation unit 58 and the TGNCfb calculated by the F / B operation amount calculation unit 60.
  • the low-pressure protection control unit 62 determines a difference (Ts ⁇ TGTs) between the suction refrigerant temperature Ts that is a detection value detected by the suction temperature sensor 44 (detection means) from the limit target value TGTs for low-pressure protection.
  • the value obtained by adding the previous compressor target rotational speed TGNCpst to the value multiplied by the gain and the smaller one (MIN) of the addition values (TGNCff + TGNCfb) are selected and determined as the compressor target rotational speed TGNC.
  • a value obtained by multiplying the difference (Ts ⁇ TGTs) by a predetermined gain is always negative, and therefore the predetermined gain is added to the difference (Ts ⁇ TGTs).
  • the value obtained by adding the previous compressor target speed TGNCpst to the multiplied value is lower than the previous compressor target speed TGNCpst.
  • the value obtained by adding a predetermined gain to the difference (Ts ⁇ TGTs) and the previous compressor target rotational speed TGNCpst is smaller than the added value (TGNCff + TGNCfb), the value is larger. Since the addition value (TGNCff + TGNCfb) is selected, the compressor target rotational speed TGNC becomes lower in any case when the suction refrigerant temperature Ts becomes lower than the limit target value TGTs.
  • the low pressure protection control unit 62 of the controller 32 adjusts the rotation speed of the compressor 2 so that the suction refrigerant temperature Ts, which is a detection value detected by the suction temperature sensor 44, does not fall below the limit target value TGTs. (Low-pressure protection function) Further, the controller 32 changes the limit target value TGTs when starting the compressor 2 in the heating mode.
  • FIG. 4 shows a conceptual diagram of variable control of the limited target value TGTs by the controller 32.
  • the controller 32 preliminarily sets a predetermined limit lower limit value TGTsL (the fixed value of the conventional limit target value TGTs in FIG. 10 described above: TLS + 3 deg) and a limit upper limit value that is higher than the limit lower limit value TGTsL by a predetermined value (for example, 3 deg).
  • TGTsH TGTsL + 3deg.
  • the controller 32 decreases the target limit value TGTs toward the lower limit limit TGTsL.
  • the controller 32 indicates a limit upper limit value TGTsH (lower row of FIG. 4 from TGTs (0% of the broken line shown with variable) to a lower limit value TGTsL of 100% (lower row of FIG. 4 shown with TGTs (no variable)).
  • the limit target value TGTs is lowered as shown by the broken line TGTs (variable present) in the lower part of FIG. 4 with a first-order lag time constant that decreases to 63.6% in 30 to 60 seconds.
  • FIG. 4 and the uppermost part of FIG. 5 show changes in the suction refrigerant temperature Ts detected by the suction temperature sensor 44, and the lower part of FIG. 4 and the middle part of FIG. 5 show changes in the above-described limit target value TGTs. ing. Further, the solid line (with variable) at the bottom of FIG. 5 shows the change in the rotational speed Nc of the compressor 2 due to the variable control of the limited target value TGTs.
  • the limit target value TGTs is set to the limit upper limit value TGTsH so that the rotation speed Nc of the compressor 2 is limited from an early stage, and then gradually reaches the limit lower limit value TGTsL.
  • the rotational speed Nc of the compressor 2 is limited from the time when the suction refrigerant temperature Ts decreases to the limit upper limit value TGTsH as shown by a solid line (variable) in FIG. Disappear.
  • the suction refrigerant temperature Ts gradually decreases as shown in each drawing with variable values, and the temperature of the refrigerant actually sucked into the compressor 2 also gradually decreases, resulting in overshoot.
  • the controller 32 sets the limit target value that is set with respect to the suction refrigerant temperature Ts that is the detection value of the suction temperature sensor 44 and the temperature of the refrigerant sucked into the compressor 2 (suction refrigerant temperature).
  • TGTs Based on TGTs, it has a low-pressure protection function that adjusts the rotational speed Nc of the compressor 2 so that the suction refrigerant temperature Ts (detected value) does not fall below the limit target value TGTs, and a predetermined limit lower limit value TGTsL
  • the compressor 2 has a high predetermined upper limit limit TGTsH, and when the compressor 2 is started, the limit target value TGTs is set as the upper limit limit TGTsH, and the rotation speed Nc of the compressor 2 is adjusted, and the suction refrigerant temperature Ts (detected value) is the upper limit limit.
  • the limit target value TGTs is gradually decreased toward the limit lower limit value TGTsL.
  • the controller 32 adjusts the rotational speed Nc of the compressor 2 by using the limit upper limit value TGTsH higher than the limit upper limit value TGTsH when the compressor 2 is started. Become so.
  • the controller 32 gradually lowers the limit target value TGTs toward the limit lower limit value TGTsL. Accurate low pressure protection can be realized without unnecessarily limiting.
  • the controller 32 decreases the target limit value TGTs to the lower limit limit value TGTsL with a predetermined first-order time constant.
  • the limit target value TGTs can be accurately reduced in accordance with a decrease in the temperature of the refrigerant sucked into the refrigerant (intake refrigerant temperature).
  • an auxiliary heat source 40 as an auxiliary heating means is provided on the upstream side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3.
  • the auxiliary heat source 40 is constituted by a PTC heater (electric heater).
  • the controller 32 heats (operates) the auxiliary heat source 40 and heats the air in the air flow passage 3 flowing into the radiator 4 to heat the radiator 4.
  • the auxiliary heat source 40 is operated even when the compressor 2 is started up.
  • FIG. 7 shows a timing chart of the suction refrigerant temperature Ts detected by the suction temperature sensor 44 in that case, the rotational speed Nc of the compressor 2, and the operating state of the auxiliary heat source 40.
  • the controller 32 when the compressor 2 is started in the heating mode, the controller 32 first heats (operates) the auxiliary heat source 40 before starting the compressor 2, and the indoor blower 17 also starts operation. Thereafter, the controller 32 activates the compressor 2. At this time, the air flowing into the radiator 4 is heated by the auxiliary heat source 40 and the temperature rises, so that the high pressure of the refrigerant circuit R is increased. As a result, the low pressure increases.
  • the suction refrigerant temperature Ts at the time of starting the compressor 2 does not decrease rapidly.
  • the solid line at the top of FIG. 7 shows the suction refrigerant temperature Ts when the auxiliary heat source 40 is heated (the auxiliary heat source is operating), and the broken line shows the suction refrigerant when no heat is generated (the auxiliary heat source is not operated). This is a change in temperature Ts.
  • the suction refrigerant temperature Ts and the temperature of the refrigerant actually sucked into the compressor 2 greatly decrease and overshoot as shown by the broken line.
  • the suction refrigerant temperature Ts gradually decreases after the compressor 2 is started, and the temperature of the refrigerant actually sucked into the compressor 2 (suction refrigerant temperature) does not overshoot.
  • the controller 32 stops the heat generation of the auxiliary heat source 40 when the suction refrigerant temperature Ts is stabilized.
  • the compressor 2 is started after the auxiliary heat source 40 starts to generate heat.
  • the auxiliary heat source 40 may be started simultaneously with the start of the compressor 2.
  • the operation of the auxiliary heat source 40 of the second embodiment may be combined with the low pressure protection control of the first embodiment. That is, when the compressor 2 is started in the heating mode, in addition to variably controlling the limit target value TGTs, if the compressor 2 is started while generating heat from the auxiliary heat source 40, the so-called actual suction refrigerant temperature is called. Overshoot can be further effectively suppressed, and the reliability of the compressor 2 and the low-pressure side parts can be improved.
  • the controller 32 sets the upper limit rotational speed on the control of the compressor 2, that is, the upper limit rotational speed TGNCh of the target compressor rotational speed TGNC. It may be lowered.
  • the rotational speed Nc of the compressor 2 when the compressor 2 is started or when the high pressure is low is the above-described F / B manipulated variable calculation unit 60.
  • the temperature of the refrigerant sucked into the compressor 2 is drastically lowered, and the inconvenience of lowering the above-described limit target value TGTs can be solved.
  • reliability can be improved.
  • FIG. 8 is a diagram showing another example of the low-pressure protection control executed by the controller 32.
  • the configuration of the target vehicle air conditioner 1 is shown in FIG. 1, and the configuration shown in FIG. 6 is also effective.
  • FIG. 8 shows rotation speed limit data held by the controller 32.
  • the rotation speed limit data includes the outside air temperature Tam and the upper limit rotation speed TGNCh where the suction refrigerant temperature Ts does not fall below the limit target value TGTs corresponding to the above-described limit lower limit value TGTsL when the compressor 2 is operated at the outside air temperature Tam.
  • TGNCh the upper limit rotational speed TGNCh is set to TGNC1 when the outside air temperature Tam is ⁇ 20 ° C., for example, so that the suction refrigerant temperature Ts Means that it does not fall below the limit target value TGTs.
  • ( ⁇ 15, TGNC2) means that when the outside air temperature Tam is ⁇ 15 ° C., for example, by setting the upper limit rotational speed TGNCh to TGNC2, the suction refrigerant temperature Ts does not fall below the limit target value TGTs.
  • ⁇ 10, TGNC3 means that when the outside air temperature Tam is, for example, ⁇ 10 ° C., the upper limit rotational speed TGNCh is set to TGNC3, so that the suction refrigerant temperature Ts does not fall below the limit target value TGTs
  • ( ⁇ 5, TGNC4) means that when the outside air temperature Tam is, for example, ⁇ 5 ° C., the upper limit rotational speed TGNCh is set to TGNC4 so that the suction refrigerant temperature Ts does not fall below the limit target value TGTs.
  • the controller 32 When starting the compressor 2 in the heating mode, the controller 32 refers to the rotation speed limit data from the outside air temperature Tam detected by the outside air temperature sensor 33, and sets the upper limit rotation speed TGNCh corresponding to the outside air temperature Tam at that time.
  • the upper limit rotational speed for control is extracted and changed to the upper limit rotational speed TGNCh. Then, when calculating the compressor target rotational speed TGNC, the TGNC is suppressed to the changed upper limit rotational speed TGNCh.
  • the upper limit rotation speed TGNCh of the compressor 2 is changed based on the outside air temperature Tam, the upper limit rotation speed TGNCh of the compressor 2 is changed according to the outside air temperature Tam, and the suction refrigerant temperature Ts is The reliability can be improved so as not to fall below the limit target value TGTs.
  • change control of the upper limit rotational speed TGNCh may be combined with the low-pressure protection control of the first embodiment. That is, when starting up the compressor 2 in the heating mode, in addition to variably controlling the limit target value TGTs, if the upper limit rotational speed TGNCh of the compressor 2 is also changed according to the outside air temperature Tam, the actual suction refrigerant The so-called overshoot of temperature can be further effectively suppressed, and the reliability of the compressor 2 and the low-pressure side parts can be improved.
  • the rotation speed limit data includes the outside air temperature Tam and the upper limit rotation speed TGNCh that the suction refrigerant temperature Ts does not fall below the above-described limit lower limit value TGTsL when the compressor 2 is operated at the outside air temperature Tam.
  • the relationship is obtained in advance by experiments.
  • FIG. 9 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
  • the suction refrigerant temperature Ts detected by the suction temperature sensor 44 that detects the temperature of the refrigerant sucked into the compressor 2 is converted into pressure, and the low pressure protection control is executed.
  • the low pressure protection control may be realized directly by the suction refrigerant pressure.
  • the suction refrigerant temperature Ts in each of the above-described embodiments is replaced with the suction refrigerant pressure Ps detected by the suction pressure sensor, and each of the limit target value TGTs, the limit upper limit value TGTsH, and the limit lower limit value TGTsL is the limit target value.
  • the pressure values are replaced with the value TGPs, the limit upper limit value TGPsH, and the limit lower limit value TGPsL.
  • the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.

Abstract

低圧保護を的確に行うことにより、信頼性を向上させた車両用空気調和装置を提供する。コントローラは、吸込温度センサの検出値と、圧縮機2の吸込冷媒温度に対して設定される制限目標値TGTsに基づき、検出値が制限目標値TGTsより下がらないように圧縮機2の回転数Ncを調整する。所定の制限下限値TGTsLと、それよりも高い所定の制限上限値TGTsHを有し、圧縮機2の起動時には制限目標値TGTsを制限上限値TGTsHとして圧縮機2の回転数Ncを調整し、検出値が制限上限値TGTsHに低下した場合、制限目標値TGTsを制限下限値TGTsLに向けて徐々に低下させていく。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
特許第3985384号公報
 上記のような車両用空気調和装置では、冷媒回路の低圧圧力が低下し過ぎると、圧縮機や冷媒回路の低圧側部品に損傷を来す問題がある。特に、外気温度が低くなる季節に実行される暖房モードでの圧縮機起動時には、圧縮機の回転数が急激に上昇するため、低圧圧力が急激に低下することになる。そこで、従来よりこの種の車両用空気調和装置では、圧縮機の吸込冷媒温度に基づき、当該吸込冷媒温度が所定の制限目標値より下がらないように圧縮機の回転数を調整する低圧保護が行われている(吸込冷媒温度を吸込冷媒圧力に換算して判断する)。
 図10は係る従来の低圧保護制御を説明する図である。この図において下限吸込温度TLLは、圧縮機の吸込圧力(吸込冷媒圧力):例えば0.01MPaGに相当する吸込冷媒温度であり、圧縮機や低圧側部品の耐久性を考慮して設定された値である。また、保護停止値TLSは圧縮機を停止する吸込冷媒温度であり、この保護停止値TLSは圧縮機の吸込冷媒温度を検出する吸込温度センサの精度を考慮して下限吸込温度TLLに対し、例えば2degの余裕を見てそれより高い値(TLS=TLL+2deg)に設定される。
 また、制限目標値TGTsは圧縮機の回転数を制限する吸込冷媒温度の目標値であり、制御上のオーバーシュートや吸込温度センサの応答遅れを考慮して保護停止値TLSに対し、例えば3degの余裕を見てそれより高い値(TGTs=TLS+3degに固定)に設定される。そして、車両用空気調和装置のコントローラは、吸込温度センサが検出する吸込冷媒温度に基づき、この吸込冷媒温度が制限目標値TGTsより下がらないように圧縮機の回転数を調整する。即ち、吸込冷媒温度が制限目標値TGTsより下がろうとする場合には圧縮機の回転数を下げ、吸込冷媒温度を制限目標値TGTsにするように圧縮機の回転数を調整することで、できるだけ圧縮機の停止を発生させずに、圧縮機や低圧側部品の保護を行うように構成されていた。
 しかしながら、圧縮機の起動時等に吸込冷媒圧力(低圧圧力)が急激に低下すると、吸込温度センサの応答(検出)がそれについて行けなくなる。係る応答遅れが拡大すると、圧縮機の回転数調整が間に合わなくなり、従来の如く予め設定された制限目標値TGTsで圧縮機の回転数調整を行うだけでは、実際の吸込冷媒温度(吸込冷媒圧力)が制限目標値TGTsより大きく低下し、保護停止値TLSも超えて下限吸込温度TLLまで低下してしまう(オーバーシュート)。そして、従来では係る低い低圧圧力で圧縮機が運転されることにより、圧縮機や低圧側部品に損傷を来す問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、低圧保護を的確に行うことにより、信頼性を向上させた車両用空気調和装置を提供することを目的とする。
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御手段は、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、所定の制限下限値と、それよりも高い所定の制限上限値を有し、圧縮機の起動時には制限目標値を制限上限値として圧縮機の回転数を調整し、検出値が制限上限値に低下した場合、制限目標値を制限下限値に向けて徐々に低下させていくことを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、検出値が制限上限値に低下した場合、制限目標値を一次遅れの所定の時定数で制限下限値まで低下させることを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において空気流通路内の空気の流れに対して放熱器の上流側に設けられた補助加熱手段を備え、制御手段は、圧縮機の起動時には補助加熱手段を発熱させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御手段は、外気温度と、当該外気温度において吸込冷媒温度又は吸込冷媒圧力が制限下限値より下がらない圧縮機の上限回転数との関係を示す回転数制限データを有し、この回転数制限データを参照し、外気温度に基づいて圧縮機の上限回転数を変更することを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項1乃至請求項3の発明において制御手段は、圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、圧縮機の上限回転数を低下させることを特徴とする。
 請求項6の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、空気流通路内の空気の流れに対して放熱器の上流側に設けられた補助加熱手段と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御手段は、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、圧縮機を起動時には、補助加熱手段を発熱させることを特徴とする。
 請求項7の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御手段は、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、外気温度と、当該外気温度において吸込冷媒温度又は吸込冷媒圧力が制限目標値より下がらない圧縮機の上限回転数との関係を示す回転数制限データを有し、この回転数制限データを参照し、外気温度に基づいて圧縮機の上限回転数を変更することを特徴とする。
 請求項8の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御手段は、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、圧縮機の上限回転数を低下させることを特徴とする。
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御手段が、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、所定の制限下限値と、それよりも高い所定の制限上限値を有し、圧縮機の起動時には制限目標値を制限上限値として圧縮機の回転数を調整し、検出値が制限上限値に低下した場合、制限目標値を制限下限値に向けて徐々に低下させていくようにしたので、制限下限値を前述した従来の制限目標値の値とすることで、圧縮機の起動時にはそれよりも高い制限上限値を制限目標値として、制御手段により圧縮機の回転数が調整されるようになる。
 即ち、従来よりも早い段階から低圧保護が開始されることになるので、検出手段の応答遅れによる実際の吸込冷媒温度又は吸込冷媒圧力の所謂オーバーシュートを効果的に抑制し、圧縮機や低圧側部品の信頼性を向上させることができるようになる。また、制御手段は検出値が制限上限値に低下した場合、制限目標値を制限下限値に向けて徐々に低下させていくので、圧縮機の回転数を不必要に制限すること無く、的確な低圧保護を実現することが可能となるものである。
 この場合、請求項2の発明の如く検出値が制限上限値に低下した場合、制御手段が制限目標値を一次遅れの所定の時定数で制限下限値まで低下させるようにすれば、実際の吸込冷媒温度又は吸込冷媒圧力の低下に合わせて制限目標値を的確に低下させていくことができるようになる。
 また、請求項3の発明の如く空気流通路内の空気の流れに対して放熱器の上流側に補助加熱手段が設けられている場合は、制御手段により圧縮機の起動時に補助加熱手段を発熱させることで、高圧圧力が上がり、低圧圧力も上がることになる。また、圧縮機の回転数も上がらなくなるので、圧縮機起動時の吸込冷媒温度又は吸込冷媒圧力の急激な低下を抑制し、更なる信頼性の向上を図ることができるようになる。
 また、請求項4の発明の如く制御手段が、外気温度と、当該外気温度において吸込冷媒温度又は吸込冷媒圧力が制限下限値より下がらない圧縮機の上限回転数との関係を示す回転数制限データを有し、この回転数制限データを参照し、外気温度に基づいて圧縮機の上限回転数を変更するようにすれば、外気温度に応じて圧縮機の上限回転数を変更し、より確実に吸込冷媒温度又は吸込冷媒圧力が制限下限値より下がらないようにすることが可能となる。
 他方、請求項5の発明の如く制御手段が、圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、圧縮機の上限回転数を低下させるようにすれば、起動時に、又は、高圧圧力が低いときに圧縮機の回転数が過度に上昇して吸込冷媒温度又は吸込冷媒圧力が急激に低下し、制限下限値より下がる不都合を解消することが可能となる。
 請求項6の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、空気流通路内の空気の流れに対して放熱器の上流側に設けられた補助加熱手段と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御手段が、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、圧縮機を起動時には、補助加熱手段を発熱させるようにしたので、補助加熱手段の発熱により、高圧圧力が上がり、低圧圧力も上がることになる。また、圧縮機の回転数も上がらなくなるので、圧縮機起動時の吸込冷媒温度又は吸込冷媒圧力の急激な低下を抑制し、信頼性の向上を図ることができるようになる。
 請求項7の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御手段が、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、外気温度と、当該外気温度において吸込冷媒温度又は吸込冷媒圧力が制限目標値より下がらない圧縮機の上限回転数との関係を示す回転数制限データを有し、この回転数制限データを参照し、外気温度に基づいて圧縮機の上限回転数を変更するので、外気温度に応じて圧縮機の上限回転数を変更し、吸込冷媒温度又は吸込冷媒圧力が制限目標値より下がらないようにして信頼性の向上を図ることができるようになる。
 請求項8の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられ、冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御手段が、検出手段の検出値と、圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、検出値が制限目標値より下がらないように圧縮機の回転数を調整する低圧保護機能を有すると共に、圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、圧縮機の上限回転数を低下させるので、起動時に、又は、高圧圧力が低いときに圧縮機の回転数が過度に上昇して吸込冷媒温度又は吸込冷媒圧力が急激に低下し、制限目標値より下がる不都合を解消することが可能となり、信頼性の向上を図ることができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図2のコントローラの暖房モードにおける圧縮機の回転数制御の制御ブロック図である。 図2のコントローラが実行する低圧保護制御を説明する図である(実施例1)。 図4の低圧保護制御を説明するタイミングチャートである。 本発明を適用した他の実施形態の車両用空気調和装置の構成図である(実施例2)。 図6の車両用空気調和装置においてコントローラが実行する低圧保護制御を説明するタイミングチャートである。 図2のコントローラが実行する低圧保護制御の他の例を説明する図である(実施例4)。 本発明を適用可能な他の実施形態の車両用空気調和装置の構成図である(実施例5)。 従来の低圧保護制御を説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される冷房用の開閉弁としての冷房用電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。尚、蒸発能力制御弁11は内部熱交換器19の後流に設置する構成としてもよい。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される暖房用の開閉弁としての暖房用電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される除湿用の開閉弁としての除湿用電磁弁22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。即ち、電磁弁22は室外熱交換器7に対して並列に接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すためのバイパス用の開閉弁としてのバイパス用電磁弁20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度Tamを検出する外気温度センサ33と、車両の外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2が吸い込む冷媒の温度(吸込冷媒温度Ts:検出値)を検出する吸込温度センサ44(検出手段)と、放熱器4の温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モード
 コントローラ32により、或いは、空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなり、室外熱交換器7は冷媒の蒸発器として機能する。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI)に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 図3はこの暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(TH-Te)で得られるエアミックスダンパ28のエアミックスダンパ開度SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である目標放熱器温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNCffを演算する。
 尚、TAOは吹出口29からの空気温度の目標値である目標吹出温度、THは放熱器温度センサ46から得られる放熱器4の温度(放熱器温度)、Teは吸熱器温度センサ48から得られる吸熱器9の温度(吸熱器温度)であり、エアミックスダンパ開度SWは0≦SW≦1の範囲で変化し、0で放熱器4への通風をしないエアミックス全閉状態、1で空気流通路3内の全ての空気を放熱器4に通風するエアミックス全開状態となる。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標放熱器温度TCOに基づいて演算される。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNCfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCffとF/B操作量演算部60が演算したTGNCfbは加算器61で加算され、この加算値(TGNCff+TGNCfb)が低圧保護制御部62(コントローラ32の低圧保護機能)で制限された後、圧縮機目標回転数TGNCとして決定される。この暖房モードにおいては、コントローラ32はこの圧縮機目標回転数TGNCに基づいて圧縮機2の回転数Ncを制御する。尚、低圧保護制御部62にて行われる低圧保護のための圧縮機目標回転数TGNCの制限制御については後に詳述する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁20、21も閉じる。この室外膨張弁6と電磁弁20、21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数Ncを制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数Ncを制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態を含み通風量を制御する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4に空気流通路3内の空気が通風されない場合には、ここは通過するのみとなり、通風される場合には空気に放熱される。放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過することなく、あるいは若干通過し、吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数Ncを制御する。
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
 (6)コントローラによる低圧保護制御
 次に、図3~図5を参照しながら、前述した暖房モードにおけるコントローラ32による低圧保護の制御の一例を説明する。前述した如くコントローラ32の低圧保護制御部62ではF/F操作量演算部58が演算したF/F操作量TGNCffとF/B操作量演算部60が演算したTGNCfbの加算値(TGNCff+TGNCfb)に制限を加える。
 この場合、低圧保護制御部62は、低圧保護のための制限目標値TGTsからの吸込温度センサ44(検出手段)が検出する検出値である吸込冷媒温度Tsの差(Ts-TGTs)に所定のゲインをかけた値に前回の圧縮機目標回転数TGNCpstを加えた値と、前記加算値(TGNCff+TGNCfb)のうちの小さい方(MIN)を選択して圧縮機目標回転数TGNCとして決定する。
 即ち、吸込冷媒温度Tsが制限目標値TGTsより低くなった場合、差(Ts-TGTs)に所定のゲインをかけた値は必ずマイナスになるので、この差(Ts-TGTs)に所定のゲインをかけた値に前回の圧縮機目標回転数TGNCpstを加えた値は当該前回の圧縮機目標回転数TGNCpstより低くなる。そして、この差(Ts-TGTs)に所定のゲインをかけた値に前回の圧縮機目標回転数TGNCpstを加えた値が前記加算値(TGNCff+TGNCfb)よりも小さいときは当該値が、また、大きいときは加算値(TGNCff+TGNCfb)が選択されるので、何れにしても吸込冷媒温度Tsが制限目標値TGTsよりも低くなった場合には、圧縮機目標回転数TGNCは低くなることになる。
 これにより、コントローラ32の低圧保護制御部62は、吸込温度センサ44が検出する検出値である吸込冷媒温度Tsが制限目標値TGTsより下がらないように圧縮機2の回転数を調整するものであるが(低圧保護機能)、更にコントローラ32は暖房モードで圧縮機2を起動するとき、この制限目標値TGTsを変化させる。
 図4にコントローラ32による係る制限目標値TGTsの可変制御の概念図を示す。この場合コントローラ32は、予め所定の制限下限値TGTsL(前述した図10の従来の制限目標値TGTsの固定値:TLS+3deg)と、この制限下限値TGTsLよりも所定値(例えば3deg)高い制限上限値TGTsH(TGTsL+3deg)を有している。圧縮機2の起動時には先ず制限目標値TGTsを制限上限値TGTsHとする。従って、圧縮機2の起動時には、低圧保護制御部62は吸込温度センサ44が検出する吸込冷媒温度Tsがこの制限上限値TGTsHより下がらないように圧縮機目標回転数TGNCに制限を加えることになる。
 そして、吸込温度センサ44が検出する吸込冷媒温度Tsが制限上限値TGTsHまで低下した場合(Ts=TGTsH)、コントローラ32は制限目標値TGTsを制限下限値TGTsLに向けて低下させていく。この場合、コントローラ32は制限上限値TGTsH(図4の下段にTGTs(可変有で示す破線の0%)から制限下限値TGTsLまでを100%(図4の下段にTGTs(可変無)で示す破線)とした場合、例えば30秒~60秒で63.6%まで低下する一次遅れの時定数で図4の下段に破線TGTs(可変有)で示す如く制限目標値TGTsを低下させる。
 尚、図4の上段及び図5の最上段は吸込温度センサ44が検出する吸込冷媒温度Tsの変化を示し、図4の下段及び図5の中段には上述した制限目標値TGTsの変化を示している。また、図5の最下段の実線(可変有)には係る制限目標値TGTsの可変制御による圧縮機2の回転数Ncの変化を示している。
 従来(図10)の如く制限目標値TGTsをTLS+3degに固定とした場合、吸込温度センサ44の応答遅れにより圧縮機2の回転数Ncが図5に可変無(破線)で示すように起動から急激に上昇するため、吸込冷媒温度Tsは図4、図5に可変無で示すように各図における制限下限値TGTsLより大きく低下する。それにより、実際に圧縮機2に吸い込まれる冷媒の温度は吸込冷媒温度Tsよりも更に大きく低下してしまう所謂オーバーシュートが発生するようになる。
 一方、実施例のように圧縮機2の起動時には制限目標値TGTsを制限上限値TGTsHとして早くから圧縮機2の回転数Ncに制限を加え、そこから徐々に制限下限値TGTsLに向けて制限目標値TGTsを低下させていくことにより、圧縮機2の回転数Ncは図5に実線(可変有)で示すように吸込冷媒温度Tsが制限上限値TGTsHに低下した時点から制限され、急激に上昇しなくなる。それにより、吸込冷媒温度Tsも各図に可変有で示すようになだらかに低下していくようになり、実際に圧縮機2に吸い込まれる冷媒の温度も同様になだらかに低下していき、オーバーシュートは解消若しくは効果的に抑制されるようになる。そして、最終的に吸込温度センサ44が検出する吸込冷媒温度Ts及び実際に圧縮機2に吸い込まれる冷媒の温度は制限下限値TGTsLに収束していくことになる(図4、図5)。
 このように、この実施例ではコントローラ32が、吸込温度センサ44の検出値である吸込冷媒温度Tsと、圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度)に対して設定される制限目標値TGTsに基づき、吸込冷媒温度Ts(検出値)が制限目標値TGTsより下がらないように圧縮機2の回転数Ncを調整する低圧保護機能を有すると共に、所定の制限下限値TGTsLと、それよりも高い所定の制限上限値TGTsHを有し、圧縮機2の起動時には制限目標値TGTsを制限上限値TGTsHとして圧縮機2の回転数Ncを調整し、吸込冷媒温度Ts(検出値)が制限上限値TGTsHに低下した場合、制限目標値TGTsを制限下限値TGTsLに向けて徐々に低下させていくようにしたので、制限下限値TGTsLを前述した従来の制限目標値の値(TLS+3deg)とすることで、圧縮機2の起動時にはそれよりも高い制限上限値TGTsHを制限目標値TGTsとして、コントローラ32により圧縮機2の回転数Ncが調整されるようになる。
 即ち、従来よりも早い段階から低圧保護が開始されることになるので、吸込温度センサ44の応答遅れによる実際の吸込冷媒温度の所謂オーバーシュートを効果的に抑制し、圧縮機2や低圧側部品の信頼性を向上させることができるようになる。また、コントローラ32は吸込冷媒温度Ts(検出値)が制限上限値TGTsHに低下した場合、制限目標値TGTsを制限下限値TGTsLに向けて徐々に低下させていくので、圧縮機2の回転数を不必要に制限すること無く、的確な低圧保護を実現することが可能となる。
 この場合、コントローラ32は吸込冷媒温度Ts(検出値)が制限上限値TGTsHに低下した場合、制限目標値TGTsを一次遅れの所定の時定数で制限下限値TGTsLまで低下させるので、実際に圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度)の低下に合わせて制限目標値TGTsを的確に低下させていくことができるようになる。
 次に、図6及び図7に基づき、本発明の他の実施例の車両用空気調和装置1の構成図及びその場合のコントローラ32による低圧保護制御について説明する。尚、図6において図1中と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この場合、空気流通路3内の空気の流れに対して放熱器4の上流側(空気上流側)には補助加熱手段としての補助熱源40が設けられている。この補助熱源40は実施例ではPTCヒータ(電気ヒータ)にて構成されている。
 コントローラ32は本来暖房モードにおいて放熱器4による暖房能力が不足する場合、補助熱源40を発熱(稼働)させ、放熱器4に流入する空気流通路3内の空気を加熱して放熱器4の暖房能力を補完し、車室内の暖房に寄与するものであるが、この発明では圧縮機2の起動時にも補助熱源40を稼働させるものとする。
 図7はその場合の吸込温度センサ44が検出する吸込冷媒温度Tsと圧縮機2の回転数Nc、補助熱源40の稼働状態のタイミングチャートを示している。実施例の場合コントローラ32は暖房モードにおける圧縮機2の起動時、圧縮機2を起動する以前に先ず補助熱源40を発熱させ(稼働)、室内送風機17も運転を開始する。その後、コントローラ32は圧縮機2を起動するものであるが、その際放熱器4に流入する空気は補助熱源40にて加熱されて温度が上昇した空気であるので、冷媒回路Rの高圧圧力が上がり、低圧圧力も上がることになる。
 また、放熱器圧力PCIの上昇により圧縮機2の回転数Ncも急激には上がらなくなるので(図7中段に示す)、圧縮機2の起動時の吸込冷媒温度Tsも急激に低下しなくなる。図7の最上段に実線で示すのが補助熱源40を発熱させた場合の吸込冷媒温度Ts(補助熱源稼働あり)であり、破線で示すのが発熱させない場合(補助熱源稼働なし)の吸込冷媒温度Tsの変化である。補助熱源40を発熱させない場合には、破線で示すように吸込冷媒温度Ts及び実際に圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度)は大きく低下し、オーバーシュートするが、補助熱源40を発熱させることにより、圧縮機2の起動後、吸込冷媒温度Tsはなだらかに低下していくようになり、実際に圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度)もオーバーシュートしなくなる。
 尚、補助熱源40による暖房の補完が不要な場合、コントローラ32は吸込冷媒温度Tsが安定したところで補助熱源40の発熱を停止させるものである。また、上記実施例2では補助熱源40の発熱を開始した後、圧縮機2を起動するようにしたが、圧縮機2の起動と同時に補助熱源40の稼働を開始するようにしてもよい。
 更に、前記実施例1の低圧保護制御に実施例2の補助熱源40の稼働を組み合わせても良い。即ち、暖房モードにおける圧縮機2の起動時には、制限目標値TGTsを可変制御するのに加えて、補助熱源40を発熱させながら圧縮機2を起動するようにすれば、実際の吸込冷媒温度の所謂オーバーシュートをより一層効果的に抑制し、圧縮機2や低圧側部品の信頼性を向上させることができるようになる。
 また、上記実施例1の制限目標値TGTsの可変による低圧保護制御、及び、実施例2の補助熱源40の稼働による低圧保護制御に加えて、或いは、それらとは別に、圧縮機2の起動後から所定時間、又は、高圧圧力(放熱器圧力PCI)が所定値より低い場合に、コントローラ32により圧縮機2の制御上の上限回転数、即ち、目標圧縮機回転数TGNCの上限回転数TGNChを低下させるようにしてもよい。
 目標圧縮機回転数TGNCの上限回転数TGNChを低下させることで、圧縮機2の起動時に、又は、高圧圧力が低いときに圧縮機2の回転数Ncが前述したF/B操作量演算部60によるフィードバック制御により過度に上昇しなくなるので、それにより、圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度)が急激に低下し、前述した制限目標値TGTsより下がる不都合を解消することが可能となり、信頼性の向上を図ることができるようになる。
 次に、図8はコントローラ32が実行する低圧保護制御のもう一つの他の例を示す図である。尚、対象とする車両用空気調和装置1の構成は図1であり、図6の構成でも有効である。図8は、コントローラ32が保有する回転数制限データであり、外気温度センサ33が検出する外気温度Tamと圧縮機2の制御上の上限回転数、即ち、目標圧縮機回転数TGNCの上限回転数TGNChとの関係を示すデータである。
 この回転数制限データは外気温度Tamと、当該外気温度Tamにおいて圧縮機2を運転したときに、吸込冷媒温度Tsが前述した制限下限値TGTsLに相当する制限目標値TGTsより下がらない上限回転数TGNChとの関係を予め実験により求めたものであり、図中の(-20、TGNC1)は、外気温度Tamが例えば-20℃のときは上限回転数TGNChをTGNC1とすることで、吸込冷媒温度Tsが制限目標値TGTsより下がらないことを意味している。
 同様に(-15、TGNC2)は、外気温度Tamが例えば-15℃のときは上限回転数TGNChをTGNC2とすることで、吸込冷媒温度Tsが制限目標値TGTsより下がらないことを意味し、(-10、TGNC3)は、外気温度Tamが例えば-10℃のときは上限回転数TGNChをTGNC3とすることで、吸込冷媒温度Tsが制限目標値TGTsより下がらないことを意味し、(-5、TGNC4)は、外気温度Tamが例えば-5℃のときは上限回転数TGNChをTGNC4とすることで、吸込冷媒温度Tsが制限目標値TGTsより下がらないことを意味している。尚、傾向としてTGNC1<TGNC2<TGNC3<TGNC4となる。
 そして、コントローラ32は暖房モードで圧縮機2を起動する場合、外気温度センサ33が検出した外気温度Tamからこの回転数制限データを参照し、そのときの外気温度Tamに対応する上限回転数TGNChを抽出して制御上の上限回転数を当該上限回転数TGNChに変更する。そして、圧縮機目標回転数TGNCを算出する際、変更された上限回転数TGNChにTGNCを抑えるものである。
 このように、この実施例では外気温度Tamに基づいて圧縮機2の上限回転数TGNChを変更するので、外気温度Tamに応じて圧縮機2の上限回転数TGNChを変更し、吸込冷媒温度Tsが制限目標値TGTsより下がらないようにして信頼性の向上を図ることができるようになる。
 尚、この場合も前記実施例1の低圧保護制御に上限回転数TGNChの変更制御を組み合わせても良い。即ち、暖房モードにおける圧縮機2の起動時には、制限目標値TGTsを可変制御するのに加え、外気温度Tamに応じて圧縮機2の上限回転数TGNChも変更するようにすれば、実際の吸込冷媒温度の所謂オーバーシュートをより一層効果的に抑制し、圧縮機2や低圧側部品の信頼性を向上させることができるようになる。但し、その場合には回転数制限データは外気温度Tamと、当該外気温度Tamにおいて圧縮機2を運転したときに、吸込冷媒温度Tsが前述した制限下限値TGTsLより下がらない上限回転数TGNChとの関係を予め実験により求めることになる。
 次に、図9は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 尚、上記各実施例では圧縮機2に吸い込まれる冷媒の温度を検出する吸込温度センサ44が検出する吸込冷媒温度Tsを圧力に換算して低圧保護制御を実行するようにしたが、圧縮機2に吸い込まれる冷媒の圧力を検出する吸込圧力センサが設けられる場合には、吸込冷媒圧力により直接低圧保護制御を実現するようにしてもよい。その場合は、前述した各実施例の吸込冷媒温度Tsが吸込圧力センサが検出する吸込冷媒圧力Psに置き換えられ、制限目標値TGTs、制限上限値TGTsH、制限下限値TGTsLの各値は、制限目標値TGPs、制限上限値TGPsH、制限下限値TGPsLの各圧力値に置き換えられることになる。
 また、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁(開閉弁)
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 コントローラ(制御手段)
 44 吸込温度センサ
 R 冷媒回路

Claims (8)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられ、冷媒を放熱させて前記車室内に供給される空気を加熱する放熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     前記圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御手段は、前記検出手段の検出値と、前記圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、前記検出値が前記制限目標値より下がらないように前記圧縮機の回転数を調整する低圧保護機能を有すると共に、
     所定の制限下限値と、それよりも高い所定の制限上限値を有し、前記圧縮機の起動時には前記制限目標値を前記制限上限値として前記圧縮機の回転数を調整し、
     前記検出値が前記制限上限値に低下した場合、前記制限目標値を前記制限下限値に向けて徐々に低下させていくことを特徴とする車両用空気調和装置。
  2.  前記制御手段は、前記検出値が前記制限上限値に低下した場合、前記制限目標値を一次遅れの所定の時定数で前記制限下限値まで低下させることを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記空気流通路内の空気の流れに対して前記放熱器の上流側に設けられた補助加熱手段を備え、
     前記制御手段は、前記圧縮機の起動時には前記補助加熱手段を発熱させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  前記制御手段は、外気温度と、当該外気温度において前記吸込冷媒温度又は吸込冷媒圧力が前記制限下限値より下がらない前記圧縮機の上限回転数との関係を示す回転数制限データを有し、
     該回転数制限データを参照し、外気温度に基づいて前記圧縮機の上限回転数を変更することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御手段は、圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、前記圧縮機の上限回転数を低下させることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  6.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられ、冷媒を放熱させて前記車室内に供給される空気を加熱する放熱器と、
     前記空気流通路内の空気の流れに対して前記放熱器の上流側に設けられた補助加熱手段と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     前記圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御手段は、前記検出手段の検出値と、前記圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、前記検出値が前記制限目標値より下がらないように前記圧縮機の回転数を調整する低圧保護機能を有すると共に、
     前記圧縮機を起動時には、前記補助加熱手段を発熱させることを特徴とする車両用空気調和装置。
  7.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられ、冷媒を放熱させて前記車室内に供給される空気を加熱する放熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     前記圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御手段は、前記検出手段の検出値と、前記圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、前記検出値が前記制限目標値より下がらないように前記圧縮機の回転数を調整する低圧保護機能を有すると共に、
     外気温度と、当該外気温度において前記吸込冷媒温度又は吸込冷媒圧力が前記制限目標値より下がらない前記圧縮機の上限回転数との関係を示す回転数制限データを有し、該回転数制限データを参照し、外気温度に基づいて前記圧縮機の上限回転数を変更することを特徴とする車両用空気調和装置。
  8.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられ、冷媒を放熱させて前記車室内に供給される空気を加熱する放熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     前記圧縮機の吸込冷媒温度又は吸込冷媒圧力を検出する検出手段と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御手段は、前記検出手段の検出値と、前記圧縮機の吸込冷媒温度又は吸込冷媒圧力に対して設定される制限目標値に基づき、前記検出値が前記制限目標値より下がらないように前記圧縮機の回転数を調整する低圧保護機能を有すると共に、
     圧縮機の起動後から所定時間、又は、高圧圧力が低い場合、前記圧縮機の上限回転数を低下させることを特徴とする車両用空気調和装置。
PCT/JP2016/066849 2015-07-01 2016-06-07 車両用空気調和装置 WO2017002546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016002968.3T DE112016002968T5 (de) 2015-07-01 2016-06-07 Fahrzeugklimaanlage
US15/738,746 US10703166B2 (en) 2015-07-01 2016-06-07 Air conditioner for vehicle
CN201680037892.XA CN107735626B (zh) 2015-07-01 2016-06-07 车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132948A JP6619572B2 (ja) 2015-07-01 2015-07-01 車両用空気調和装置
JP2015-132948 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002546A1 true WO2017002546A1 (ja) 2017-01-05

Family

ID=57608220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066849 WO2017002546A1 (ja) 2015-07-01 2016-06-07 車両用空気調和装置

Country Status (5)

Country Link
US (1) US10703166B2 (ja)
JP (1) JP6619572B2 (ja)
CN (1) CN107735626B (ja)
DE (1) DE112016002968T5 (ja)
WO (1) WO2017002546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115451623A (zh) * 2022-08-31 2022-12-09 青岛海尔空调电子有限公司 空调器的压力调节方法、压力调节装置和定频空调

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6871745B2 (ja) * 2017-01-20 2021-05-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6917794B2 (ja) * 2017-06-14 2021-08-11 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019014299A (ja) * 2017-07-04 2019-01-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019174048A (ja) * 2018-03-28 2019-10-10 三菱重工サーマルシステムズ株式会社 制御装置、圧縮機、電動圧縮機、ベルト駆動型圧縮機、車両用空調装置及び制御方法
CN109140685A (zh) * 2018-08-21 2019-01-04 吉利汽车研究院(宁波)有限公司 一种电动压缩机转速控制方法与装置
KR20210034739A (ko) * 2019-09-20 2021-03-31 두원중공업(주) 차량용 전동압축기 이상 진단 방법
CN113007860A (zh) * 2021-04-19 2021-06-22 宁波奥克斯电气股份有限公司 一种低压保护控制方法、装置及空调器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230056A (ja) * 1989-03-02 1990-09-12 Daikin Ind Ltd 冷凍装置の運転制御装置
JPH06255354A (ja) * 1993-03-04 1994-09-13 Nippondenso Co Ltd 冷凍サイクル装置
JPH07186706A (ja) * 1993-12-27 1995-07-25 Zexel Corp 電気自動車用空調装置の制御装置
JPH08282253A (ja) * 1995-04-18 1996-10-29 Sanden Corp 車両用空気調和装置
JPH09126601A (ja) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2003200730A (ja) * 2002-01-07 2003-07-15 Denso Corp 車両用空調装置
JP2006064378A (ja) * 2005-11-21 2006-03-09 Daikin Ind Ltd 冷凍装置
JP2014062657A (ja) * 2012-09-20 2014-04-10 Fujitsu General Ltd ヒートポンプサイクル装置
JP2014172478A (ja) * 2013-03-07 2014-09-22 Denso Corp 冷凍サイクル装置
JP2014196893A (ja) * 2013-03-29 2014-10-16 株式会社コロナ ヒートポンプ装置
JP2014231262A (ja) * 2013-05-28 2014-12-11 サンデン株式会社 車両用空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696398B2 (ja) * 1989-06-22 1998-01-14 株式会社ゼクセル 車両用空調装置のコンプレッサ制御装置
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP3680619B2 (ja) 1999-03-10 2005-08-10 株式会社日立製作所 冷凍装置
JP2002061925A (ja) * 2000-08-23 2002-02-28 Daikin Ind Ltd 空気調和装置
JP4916383B2 (ja) * 2007-06-01 2012-04-11 サンデン株式会社 電動型スクロール圧縮機の起動制御装置及びその起動制御方法
JP4750092B2 (ja) 2007-10-09 2011-08-17 株式会社神戸製鋼所 冷凍装置および冷凍装置の運転方法
JP4608537B2 (ja) 2007-12-05 2011-01-12 株式会社神戸製鋼所 冷凍装置
JP2009229012A (ja) * 2008-03-24 2009-10-08 Daikin Ind Ltd 冷凍装置
JP6073651B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230056A (ja) * 1989-03-02 1990-09-12 Daikin Ind Ltd 冷凍装置の運転制御装置
JPH06255354A (ja) * 1993-03-04 1994-09-13 Nippondenso Co Ltd 冷凍サイクル装置
JPH07186706A (ja) * 1993-12-27 1995-07-25 Zexel Corp 電気自動車用空調装置の制御装置
JPH08282253A (ja) * 1995-04-18 1996-10-29 Sanden Corp 車両用空気調和装置
JPH09126601A (ja) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2003200730A (ja) * 2002-01-07 2003-07-15 Denso Corp 車両用空調装置
JP2006064378A (ja) * 2005-11-21 2006-03-09 Daikin Ind Ltd 冷凍装置
JP2014062657A (ja) * 2012-09-20 2014-04-10 Fujitsu General Ltd ヒートポンプサイクル装置
JP2014172478A (ja) * 2013-03-07 2014-09-22 Denso Corp 冷凍サイクル装置
JP2014196893A (ja) * 2013-03-29 2014-10-16 株式会社コロナ ヒートポンプ装置
JP2014231262A (ja) * 2013-05-28 2014-12-11 サンデン株式会社 車両用空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115451623A (zh) * 2022-08-31 2022-12-09 青岛海尔空调电子有限公司 空调器的压力调节方法、压力调节装置和定频空调
CN115451623B (zh) * 2022-08-31 2024-02-20 青岛海尔空调电子有限公司 空调器的压力调节方法、压力调节装置和定频空调

Also Published As

Publication number Publication date
US10703166B2 (en) 2020-07-07
DE112016002968T5 (de) 2018-04-12
US20180194191A1 (en) 2018-07-12
CN107735626B (zh) 2020-04-28
JP2017013652A (ja) 2017-01-19
JP6619572B2 (ja) 2019-12-11
CN107735626A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
JP6619572B2 (ja) 車両用空気調和装置
JP6418779B2 (ja) 車両用空気調和装置
JP6073653B2 (ja) 車両用空気調和装置
JP6418787B2 (ja) 車両用空気調和装置
JP6073651B2 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
JP6402424B2 (ja) 車両用空気調和装置
JP6571405B2 (ja) 車両用空気調和装置
CN110214092B (zh) 车用空调装置
JP6633303B2 (ja) 車両用空気調和装置
JP6339419B2 (ja) 車両用空気調和装置
WO2014192741A1 (ja) 車両用空気調和装置
US20190023100A1 (en) Vehicle Air Conditioner
WO2017002547A1 (ja) 車両用空気調和装置
JP2014094677A5 (ja)
WO2017014021A1 (ja) 車両用空気調和装置
WO2018147039A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
JP6247993B2 (ja) 車両用空気調和装置
WO2018043152A1 (ja) 車両用空気調和装置
WO2018123636A1 (ja) 車両用空気調和装置
WO2018110212A1 (ja) 車両用空気調和装置
JP2019073053A (ja) 車両用空気調和装置
WO2018159141A1 (ja) 車両用空気調和装置
WO2018225486A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002968

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817655

Country of ref document: EP

Kind code of ref document: A1