WO2015181917A1 - 高乳化性卵白加水分解物 - Google Patents

高乳化性卵白加水分解物 Download PDF

Info

Publication number
WO2015181917A1
WO2015181917A1 PCT/JP2014/064169 JP2014064169W WO2015181917A1 WO 2015181917 A1 WO2015181917 A1 WO 2015181917A1 JP 2014064169 W JP2014064169 W JP 2014064169W WO 2015181917 A1 WO2015181917 A1 WO 2015181917A1
Authority
WO
WIPO (PCT)
Prior art keywords
egg white
hydrolyzate
minutes
white hydrolyzate
sample
Prior art date
Application number
PCT/JP2014/064169
Other languages
English (en)
French (fr)
Inventor
一 八田
麻祐子 高木
咲子 荘
早希 永田
伊勢 俊太郎
泰美 堀本
ワング,ユ
Original Assignee
天野エンザイム株式会社
一 八田
イセ食品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社, 一 八田, イセ食品株式会社 filed Critical 天野エンザイム株式会社
Priority to BR112016027575-6A priority Critical patent/BR112016027575A2/ja
Priority to US15/313,592 priority patent/US20170150737A1/en
Priority to CN201480080774.8A priority patent/CN106572680B/zh
Priority to PCT/JP2014/064169 priority patent/WO2015181917A1/ja
Priority to JP2016523032A priority patent/JP6462676B2/ja
Priority to EP14892965.6A priority patent/EP3155902B1/en
Publication of WO2015181917A1 publication Critical patent/WO2015181917A1/ja
Priority to US17/342,726 priority patent/US20210289811A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/08Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from eggs
    • A23J1/09Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from eggs separating yolks from whites
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/08Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from eggs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof
    • A23L15/25Addition or treatment with microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L35/00Food or foodstuffs not provided for in groups A23L5/00 – A23L33/00; Preparation or treatment thereof
    • A23L35/10Emulsified foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use

Definitions

  • the present invention relates to an egg white hydrolyzate having high emulsifiability, emulsification stability and heat coagulation property, and a production method thereof. Moreover, it is related with the emulsifier and the emulsion stabilizer containing the said egg white hydrolyzate, and various processed foods.
  • Chicken eggs have long been used as food and food ingredients (processed eggs). Mankind has developed a number of egg dishes and egg-based foods that have been used for a rich diet. This is because the egg has excellent nutritional properties and the egg has various functional characteristics suitable for cooking and food processing.
  • the main functional characteristics of processed eggs used in the food field include heat coagulation and foaming of egg white and emulsification of egg yolk.
  • heat coagulation and foaming of egg white and emulsification of egg yolk When physical operations such as heating, foaming, and emulsification are applied to eggs, structural changes occur in the egg white protein or egg yolk lipoprotein, and the respective functional properties are expressed.
  • Egg white is composed of 90% water, 10% protein and trace amounts of vitamins and minerals, and does not contain lipids.
  • Egg white is composed of about 40 kinds of proteins, of which ovalbumin is 54%, the main protein, followed by ovotransferrin 12%, ovomucoid 11%, G2 globulin and G3 globulin 4% each. It contains 3.5% ovomucin, 3.4% lysozyme, 1.5% ovoinhibitor, and 1.0% ovoglycoprotein.
  • These egg white proteins have a high nutritional value, an amino acid score of 100, and protein utilization efficiency (PER) and biological value (BV)% are comparable to those of breast milk.
  • egg white as a processed egg has excellent heat coagulation and foaming properties, but has little emulsifying properties.
  • an amphiphilic substance having a hydrophilic group and a hydrophobic group in a molecule has excellent emulsifying properties.
  • milk casein and wheat gluten are known as amphiphiles and exhibit strong emulsifying properties.
  • These proteins have a good balance of hydrophilic amino acids and hydrophobic amino acids on the molecular surface, and exhibit excellent emulsifying properties.
  • egg white protein is also an amphiphilic substance containing hydrophilic and hydrophobic amino acids.
  • hydrophobic amino acids are localized inside the molecule and hydrophilic amino acids are localized on the surface of the molecule, forming a colloidal state as a stable water-soluble protein. Therefore, there is almost no emulsifiability. However, if egg white protein is denatured and the localization of hydrophilic and hydrophobic amino acids in the molecule is disrupted, emulsification may occur.
  • egg white protein ovalbumin is denatured at a dilute concentration of 0.5% or less, at an alkaline pH away from its isoelectric point, or under low ionic strength and does not gel by heating, and the hydrophobicity inside is exposed to the surface. It has been reported that when the surface hydrophobicity of ovalbumin is increased, the foaming properties and emulsifying properties are remarkably increased (Non-patent Document 1).
  • the egg white protein is also heat-denatured, the hydrophobicity of the protein molecule surface is increased, and an excellent emulsifiability may be obtained.
  • it starts to become cloudy from 60 ° C., starts to solidify softly, and hardens to gel at 80 ° C. or higher. Since the heat denaturation of egg white protein is accompanied by gelation, even if the egg white gel is ground, the protein is insolubilized, so that improvement in emulsifying power cannot be expected.
  • Patent Documents 1 to 3 In recent years, attention has been paid to the preparation of peptides with good digestibility and bioactivity by hydrolyzing egg white protein with protease (Patent Documents 1 to 3).
  • the egg white protein is hydrolyzed and does not solidify even when heated, and the water-soluble peptide obtained therefrom has emulsifying properties due to an amphiphilic structure.
  • the emulsifying property is not strong, and at most it is about twice as much as the egg white liquid before hydrolysis, and the emulsifying stability is poor.
  • egg yolk In addition to the characteristics of egg white, egg yolk is often used as processed egg, and it is used in mayonnaise and confectionery. Its consumption is increasing, while egg white consumption is decreasing due to sluggish demand for fish paste products. Currently, a large amount of excess egg white is stored frozen. The frozen storage cost is a great burden on the egg processor, and new utilization development of egg white is desired.
  • the present inventors have intensively studied in view of the above problems, and when hydrolyzing the egg white liquor with protease, if it decomposes to such an extent that the heat coagulation property is completely lost, the emulsifiability is not so strong and the heat coagulation property is weak.
  • the present invention was completed.
  • the present invention provides the following.
  • the absorbance (500 nm) when the egg white hydrolyzate is emulsified with an equal amount of oil and the emulsion immediately after emulsification and after 1 hour has been diluted 200 times with 0.1% SDS solution is 0.1 or more.
  • the egg white decomposition product of the present invention has not only a low bitter taste but good flavor, and also has emulsifying properties, emulsifying stability and heat coagulation properties, and is a highly safe natural product-derived material such as food, drink, feed, cosmetics, pharmaceuticals, etc. Can be advantageously used.
  • egg white base mayonnaise and dressing, egg white ice cream and egg white mousse can be prepared, and a non-fat or low fat, low cholesterol, high protein emulsified food can be produced.
  • the emulsifier in the present invention has not only excellent emulsifiability but also extremely high safety, so it can be used for foods, beverages, feed, feed for seafood and ornamental fish, cosmetics, pharmaceuticals, and other various objects that require emulsifiability.
  • As an emulsifier for the product it can be used alone or in combination with other emulsifiers.
  • the breaking deformation curve of egg white is shown.
  • rupture deformation curve of the sample 1 is shown.
  • rupture deformation curve of the sample 2 is shown.
  • rupture deformation curve of the sample 3 is shown.
  • rupture deformation curve of the sample 4 is shown.
  • the molecular weight distribution of the protein of the egg white hydrolyzate prepared in Preparation Example 1 in polyacryl gel electrophoresis is shown.
  • the molecular weight distribution of the protein of the egg white hydrolyzate prepared in Preparation Examples 2 and 4 in polyacryl gel electrophoresis is shown.
  • the present invention is obtained by hydrolyzing egg white with a protease, and drying the precipitate when 9 times the amount of 0.4 M trichloroacetic acid (TCA) is added to the obtained egg white hydrolyzate to cause precipitation. It relates to an egg white hydrolyzate characterized in that the weight is 60% or more of the dry weight when the egg white is treated in the same manner (hereinafter sometimes referred to as the egg white hydrolyzate of the present invention).
  • the egg white usually includes raw egg white liquid isolated from chicken eggs, heat sterilized egg white liquid, frozen egg white liquid, sterilized frozen egg white liquid, powdered egg white and the like.
  • the use of raw egg white liquid or heat sterilized egg white liquid is preferred from the viewpoint of processability.
  • the use of egg white liquor in which the egg white liquor has been liquefied homogeneously by high-pressure homogenizer treatment and the heating coagulation temperature is increased is also preferable from the viewpoint of enzyme hydrolysis temperature.
  • the protease is one or two known enzymes such as pepsin, (chymo) trypsin, cathepsin and other animal origin enzymes, plant origin enzymes such as papain, bromelin and ficin, and various microorganism-derived proteases. Used in combination.
  • protease inhibitors such as ovomucoid, ovoinhibitor, ovostatin and the like in egg white, it is preferable to use a heat-resistant protease that works at a temperature at which the protease inhibitory activity of these egg white proteins does not work, that is, 55 to 75 ° C.
  • proteases derived from microorganisms are preferred, and since less bitter amino acids and peptides are produced, proteases derived from microorganisms belonging to the genus Bacillus and proteases derived from microorganisms belonging to the genus Aspergillus are preferred. More preferably, a protease derived from Bacillus stearothermophilus or a protease derived from Aspergillus oryzae can be used.
  • the method for extracting protease from cells used in the present invention is not particularly limited, and general enzyme extraction methods can be applied, and various commercially available protease preparations may be used.
  • the amount of protease added is appropriately determined depending on the type of enzyme and the enzyme activity.
  • an agent from the viewpoint of obtaining a desired degree of decomposition, it is usually 0.1 to 0.8% by weight, preferably 0.1 to 0.4% by weight, more preferably 0.1% by weight based on the total egg white weight.
  • Add ⁇ 0.2 wt% is usually 0.1 to 0.8% by weight, preferably 0.1 to 0.4% by weight, more preferably 0.1% by weight based on the total egg white weight.
  • thermostable protease preparation (Samoase PC10 Amano Enzyme, 90,000 units / g) extracted from the cells of Bacillus stearothermophilus
  • it is usually 0.1 to 0.8% by weight based on the total egg white weight.
  • 0.1 to 0.4% by weight, more preferably 0.1 to 0.2% by weight is added.
  • an acidic protease preparation derived from Aspergillus oryzae (Protease M “Amano” SD, 40,000 units / g)
  • 0.05 to 0.5% by weight preferably 0, based on the total egg white weight. Add 1-0.2% by weight.
  • the hydrolysis treatment of egg white with protease is performed as follows.
  • the temperature at which the protease is added to the egg white is a temperature at which the egg white protease inhibitor is difficult to work and the egg white is not heated and coagulated, usually 45-60 ° C, preferably 50-60 ° C.
  • protease is added at 50 to 55 ° C.
  • hydrolysis is performed for 10 minutes to 1 hour, preferably 10 minutes to 30 minutes.
  • the hydrolysis described above may be performed by preheating the hydrolysis described above and further heating the egg white liquid temperature.
  • the heating temperature at this time is, for example, 60 to 80 ° C., preferably 60 to 70 ° C., more preferably 63 to 67 ° C.
  • a known method can be applied, but an indirect heating method using a jacketed tank, a plate heater, a shell and tube heat exchanger, a direct heating method using a Joule heating type device, or the like is used.
  • a shell-and-tube heat exchanger or a Joule heating device from the viewpoint of precise control of egg white liquid temperature.
  • the pH of the hydrolysis may be the optimum pH of the enzyme used, but in order to increase the solubility of egg white protein, the pH near the isoelectric point (around pH 5) is avoided, and alkali denaturation of egg white protein is suppressed.
  • the pH is usually 6 to 9, preferably 6 to 8.5, more preferably 6 to 8, and most preferably 6 to 7.5.
  • hydrochloric acid, carbonic acid, phosphoric acid, acetic acid, citric acid, sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, etc. are usually used, preferably citric acid, phosphoric acid and their sodium salts are used. It is done.
  • the hydrolysis treatment time is preferably 0.5 to 4.0 hours, preferably 0.5 to 2 hours at the optimum temperature of the enzyme used from the viewpoints of emulsifying properties, emulsion stability and heat coagulation properties. 5 to 1 hour is more preferable.
  • preheated egg white is heated at 50 to 55 ° C, protease is added, hydrolyzed for 10 to 30 minutes, further heated to 63 to 67 ° C, and hydrolyzed for 0.5 to 1 hour. To do.
  • the temperature for inactivating the enzyme is, for example, 75 ° C. to 100 ° C., preferably 80 ° C.
  • the treatment time for enzyme deactivation is, for example, 5 to 30 minutes, preferably 5 to 20 minutes, and more preferably 5 to 10 minutes.
  • the egg white hydrolyzate of the present invention thus obtained has a white cream-like or slurry-like form.
  • the egg white hydrolyzate of the present invention may be subjected to a homogenization treatment at a higher pressure, or a dried egg white hydrolyzate that has been subjected to a drying treatment such as freeze drying or spray drying to form a powder or granules. Is included.
  • the egg white hydrolyzate of the present invention is a precipitate in which the dry weight of the precipitate when the egg white hydrolyzate is precipitated by adding 9 times the amount of 0.4M trichloroacetic acid (TCA) is the same as the egg white. It is characterized by being 60% or more of the dry weight of the product. Specifically, when 9 parts by weight of 0.4M TCA is added to 1 part by weight of the egg white hydrolyzate of the present invention to cause precipitation, the dry weight of the precipitate is based on the dry weight of the whole egg white precipitate. And 60 wt% or more, preferably 65 to 85 wt%, more preferably 70 to 80 wt%.
  • the egg white used as an index here is egg white liquid.
  • Precipitation under such conditions is a hydrolyzate of egg white protein having a molecular weight of about 5,000 or more.
  • the egg white hydrolyzate of the present invention is 60% by weight or more, preferably 65 to 85% by weight of the egg white protein, more preferably 70 to A gel that contains 80% by weight of egg white protein, remains gelled at 90 ° C., and is self-supporting, and the gel breaking strength can be measured with a gel compression tester.
  • the egg white hydrolyzate of the present invention is a dried product
  • a product obtained by adding 9 parts by weight of water to 1 part by weight of the dried product is used for the above measurement.
  • the egg white hydrolyzate and the powdered egg white can be measured as a sample by dissolving the egg white hydrolyzate and the powdered egg white in a 9-fold amount of a solvent such as water using a dried product such as powdered egg white.
  • the amount of 0.4M TCA is appropriately changed according to the water content. Or what added 9 weight part of water to 1 weight part of dry goods obtained by removing a water
  • the amount of precipitate can be measured by the following method. After adding 9 g of 0.4M trichloroacetic acid (TCA) solution to 1 g of egg white hydrolyzate of the present invention and stirring well, the mixture is centrifuged for 20 minutes at a centrifugal force of 10,000 ⁇ g. The supernatant is discarded, the precipitate is collected and dried, and the weight of the obtained dry matter is measured. The ratio of 0.4 mol TCA precipitate dry weight of egg white hydrolyzate is calculated with the 0.4 MTCA precipitate dry weight in 1 g of egg white liquid used as a control as 100%.
  • TCA trichloroacetic acid
  • the egg white hydrolyzate of the present invention has a molecular weight of 5,000 to 45 as measured by SDS-PAGE on a polyacrylamide gel concentration gradient of 5 to 20% in the presence of a reducing agent (2-mercaptoethanol) according to a known method. It is a mixture of various protein hydrolysates exhibiting 1,000,000 Daltons, and egg white protein ovotransferrin disappears completely, and ovalbumin disappears by 40% or more and contains a protein degradation product reduced in molecular weight.
  • the amount of protein degradation products should be large in the molecular weight range of 37,000 to 20,000 daltons and 15,000 to 5,000 daltons.
  • An egg white hydrolyzate containing a protein having a molecular weight in this range has heat coagulation properties, and excellent emulsifiability and emulsification stability can be obtained.
  • the method for producing an egg white hydrolyzate according to the present invention includes a step of hydrolyzing egg white with a protease at 55 to 65 ° C. for 0.5 to 4.0 hours at pH 6 to 9. The method further includes the step of heating the hydrolyzed egg white at 85 to 95 ° C.
  • the egg white hydrolyzate obtained by obtaining such a process has heat coagulation properties and has excellent emulsifiability and emulsification stability.
  • the definition of the hydrolysis conditions is the same as described above.
  • the production method of the present invention avoids the growth of miscellaneous bacteria during the hydrolysis reaction, makes it difficult for the egg white protease inhibitor to work and heats the egg white at a temperature at which the heat coagulation of the egg white does not start.
  • the egg white hydrolyzate of the present invention forms a self-supporting heated gel.
  • the breaking strength of normal egg white liquor heated gel is 70 to 100 g / cm 2 , but the egg white hydrolyzate of the present invention is 5 to 30 g / cm 2 , preferably 5 to 20 g / cm 2 . 5 to 10 g / cm 2 is more preferable.
  • the breaking strength of the heated gel is determined by cutting a self-supporting gel prepared in a sausage shape using a heat-resistant casing tube into a certain thickness and using a cylindrical plunger with a food gel compression tester at a constant speed. Is compressed as the force (g / cm 2 ) required to break the gel structure, and is an indicator of gel hardness. The larger this value, the harder the gel.
  • the breaking strength of the heated gel can be obtained from a gel breaking curve obtained by plotting the compressive deformation rate of the gel on the horizontal axis and the stress (load) applied to the plunger on the vertical axis using a normal food gel compression tester.
  • a gel breaking curve obtained by plotting the compressive deformation rate of the gel on the horizontal axis and the stress (load) applied to the plunger on the vertical axis using a normal food gel compression tester.
  • an egg white hydrolyzate is filled in a vinylidene chloride casing tube (folding width 30 mm), heated at 90 ° C. for about 10 to 30 minutes, and then cooled using a food gel compression tester with a cylindrical plunger. The curve is measured, and the force (g / cm 2 ) required to break the gel structure is measured as the breaking strength.
  • egg white hydrolyzate of the present invention is shaken and emulsified, and a sample is taken from the bottom of the emulsion immediately after emulsification and after 1 hour, and the absorbance (500 nm) of the emulsion diluted 200 times with 0.1% SDS solution is 0.1 or more.
  • the emulsifying activity is obtained by emulsifying the egg white hydrolyzate of the present invention and oil such as salad oil by adding equal amounts, and diluting the sample immediately after preparation of the emulsion 200 times with 0.1% SDS solution (0.5% emulsion).
  • the turbidity (absorbance at a wavelength of 500 nm) when the protein hydrolyzate is dissolved and the salad oil is micellized is shown. Higher absorbance means higher emulsifying activity.
  • the egg white hydrolyzate is a dried product, it can be measured in the same manner by emulsifying 1 part by weight of the dried product with 9 parts by weight of water with an equal amount of oil of salad oil.
  • the egg white hydrolyzate having a water content of less than 90% can be measured as described above.
  • the emulsification stability is evaluated by the turbidity of a 0.5% emulsion prepared in the same manner by allowing the emulsion to stand at a constant temperature for a certain time, collecting a sample from the bottom of the emulsion. It means that the higher the turbidity is, or the higher the ratio to the turbidity immediately after emulsification, or the higher the turbidity is maintained for a long time after the preparation, the higher the emulsification stability.
  • oil is not specifically limited, vegetable oils, such as salad oil, corn oil, and cottonseed oil, are preferable.
  • the absorbance of 500 nm can be measured by a known method.
  • the egg white hydrolyzate of the present invention was collected from the bottom of the emulsion immediately after preparation of the emulsion, after standing for 1 hour at room temperature, and after standing for 2 hours at room temperature, and a 0.1% SDS solution.
  • the absorbance after 200-fold dilution may be measured.
  • the absorbance immediately after the preparation of the emulsion is usually 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.5 or more, and most preferably 0.8 or more. preferable.
  • the absorbance immediately after the preparation of the emulsion is taken as 100%, and the absorbance after standing for 1 hour at room temperature is, for example, 45% or more, preferably 50% or more, more preferably 60% or more. 70% or more is most preferable.
  • the emulsifier may be the egg white hydrolyzate of the present invention itself, and may contain other additives as long as it is contained as an active ingredient. Moreover, you may contain another emulsifier.
  • Other additives include protein materials such as egg white, soybean protein, casein, milk protein, plasma protein, collagen and gelatin, thickening polysaccharides such as carrageenan and dextrin, salts such as sodium nitrite and sodium chloride, sugar , Sugars such as starch, seasonings, phosphates and the like.
  • emulsifiers include synthetic emulsifiers such as glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and natural emulsifiers such as soybean lecithin, egg yolk lecithin, quilla saponin, and sodium caseinate. And physical emulsifiers.
  • the emulsifier in the present invention is not only excellent in emulsifying properties but also extremely safe, so that it is used alone as an emulsifying agent for foods, beverages, feeds, feed for seafood, cosmetics, pharmaceuticals and other various objects requiring emulsifying properties. Or with other emulsifiers.
  • the amount of the emulsifier added to various objects in the present invention is not particularly limited.
  • the egg white hydrolyzate (dry weight) of the present invention is preferably added in an amount of 1 to 20 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of food.
  • the emulsion stabilizer may be the egg white hydrolyzate of the present invention itself, and if it is contained as an active ingredient, it contains other food materials such as starch, dextrin, gelatin, collagen, skim milk powder and whey protein. May be. Moreover, you may contain other thickening stabilizers, such as gum arabic, carrageenan, pectin, xanthan gum, gellan gum, guar gum, locust bean gum.
  • the amount of the emulsion stabilizer in the present invention added to various objects includes the same amount as the above emulsifier.
  • Processed foods containing the egg white hydrolyzate of the present invention are also included in the present invention.
  • the processed food in the present invention include processed foods utilizing the emulsifiability, emulsification stability and heat coagulation properties of egg white hydrolyzate.
  • seasonings such as mayonnaise, dressing, io sauce, orlandale sauce, desserts such as ice cream, mousse, yogurt, jelly, baking products such as cakes, bread, cream puffs, cookies, beverages such as soups and drinks, curry And food such as stew, ham and sausage, salmon and chikuwa.
  • the egg white hydrolyzate of the present invention has an emulsifying action that is not usually found in egg white but in egg yolk, it can be widely applied to various processed foods as a substitute for whole egg.
  • functional lipids having polyunsaturated fatty acids such as DHA and EPA, steroid hormones, eicosanoids, fat-soluble vitamins, carotenoids, fat-soluble physiologically active substances such as lecithin and coenzyme Q10, etc. are arbitrarily added to the egg white degradation product of the present invention. Can be blended.
  • the egg white decomposition product of the present invention since the egg white decomposition product of the present invention has high-quality nutrition comparable to the protein of breast milk and has an emulsion stabilizing action, it is mixed and emulsified with multivitamins, minerals, dietary fibers and functional lipids for a long time. It can also be applied to foods that are completely preserved and stable.
  • the temperature of the egg white liquor was immediately raised to 90 ° C. and maintained for 10 minutes to inactivate the enzyme.
  • the egg white hydrolyzate after enzyme deactivation was stirred and homogenized to obtain egg white hydrolyzate samples 1 to 4.
  • the same operation was performed without adding an enzyme with respect to egg white liquid, and it was set as the heated egg white sample.
  • the solution temperature was lowered to 40 ° C. with respect to the egg white hydrolysis sample 4 separately prepared with the above-mentioned Samoaase addition amount 0.8%, and Amano protease P (300,000 units / g) was added at 0.5%, and hydrolysis was further continued at pH 7 for 1 hour.
  • the reaction solution was heated at 90 ° C. for 10 minutes to deactivate the enzyme, and used as an egg white hydrolyzate sample 5.
  • Test Example 1 Measurement of Emulsification A sample of egg white hydrolyzate 1 to 5 prepared in Preparation Example 1, a heated egg white sample, and 10 g of raw egg white liquid and 10 g of salad oil were placed in a centrifuge tube with a 50 ml capacity plastic cap. And emulsified by shaking 100 times up and down vigorously. Immediately after emulsification and after 60 minutes, 120 minutes, and 240 minutes, 0.5 ml of the emulsion was collected from the bottom of each centrifuge tube, diluted 200 times with 0.1% SDS solution, and then turbidity at an absorbance of 500 nm. (Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978). In addition, what emulsified 10 g of water and 10 g of salad oil was used as a control. The results are shown in Table 1.
  • the emulsifying power is evaluated by turbidity (absorbance 500 nm) immediately after emulsification, that is, at rest 0 minutes. That is, the more oil is in the emulsion collected from the bottom of the tube, the more micelles are formed in the presence of 0.1% SDS and the turbidity becomes higher. Distilled water had no emulsifying power, and the other samples had the ability to retain oil, that is, the emulsifying power, although the degree was slightly different.
  • the emulsion stability can be evaluated by setting the amount of oil in the emulsion collected over time from the bottom of the emulsion to stand as the value of turbidity.
  • Test Example 2 Evaluation of Heat-Gelability About 30 g of each egg white solution enzymatically decomposed at 65 ° C. for 20 minutes during the process of Preparation Example 1 was immediately collected from each tube tube made of polyvinylidene chloride having a folding width of 30 mm (Kureha Plastic Co. Company DB577R) was immersed in warm water set at 90 ° C., and it was confirmed that the liquid temperature reached 90 ° C. and held for 10 minutes. Thereafter, the sample was cooled in running water to obtain samples 1 to 4 for measurement of heat gelation property. A control sample obtained by coagulating egg white liquid under similar heating conditions was used.
  • the prepared samples 1 to 4 for measuring the heat gelation property and the casing tube of the control sample were cut off at both ends with a cutter knife, and further cut into the tube to take out the sausage-shaped heated gel.
  • This egg white gel was cut into a thickness of 10 mm, and it was examined whether the cylindrical gel was self-supporting.
  • a cylindrical gel plunger with a cross-sectional area of 1.0 cm 2 was examined with a food gel compression tester (Texograph), and the fracture deformation curve was examined under the condition of a plunger descending speed of 0.8 mm / sec. The breaking strength of was determined.
  • Breaking deformation curves of the control egg white gel and the prepared enzyme addition amounts of 0.1%, 0.2%, 0.4%, and 0.8% are shown in FIGS. .
  • Table 2 shows the breaking strength of each heated gel.
  • the egg white hydrolyzate sample 5 prepared in Preparation Example 1 could not be measured because it did not gel and became self-supporting when heated at 90 ° C. for 10 minutes.
  • Test Example 3 Molecular Weight Measurement by SDS-PAGE Polyacrylic acid in the presence of sodium dodecyl sulfate (SDS) using the egg white hydrolyzate samples 1 to 5 prepared in Preparation Example 1, the heated egg white sample and the control sample (raw egg white liquid)
  • SDS sodium dodecyl sulfate
  • the molecular weight distribution of each protein was examined by gel electrophoresis (PAGE).
  • the electrophoresis apparatus is AE7350 manufactured by ATTO Corporation, and c-PAGEEL (5 to 20%) gradient gel is used as the gel, and the method of Laemnli et al. (Nature, 227, 680-685 (1970)). It went according to. Samples were prepared with a protein concentration of 0.33%, applied to each lane of gel at 2 ⁇ L, run at 21 mA for 30 minutes, and then stained with Coomassie brilliant blue dye.
  • Preparation Example 2 Large-scale preparation of egg white hydrolyzate 1
  • 100 kg of egg white liquid pH 7.8
  • 200 g of Samoaase PC10 was added and dissolved at 55 ° C.
  • the mixture was stirred for 10 minutes.
  • the liquid temperature was raised to 65 ⁇ 2 ° C. and stirred for 30 minutes.
  • the liquid temperature was maintained at 95 ⁇ 2 ° C. for 5 minutes, and the enzyme was deactivated also for heat sterilization.
  • the prosthesis-treated hydrolyzed egg white was stirred and homogenized with a homomixer to prepare 97.2 kg of egg white hydrolyzate (Sample 6).
  • Preparation Example 3 Large-scale preparation of egg white hydrolyzate 2 Using a hot water circulation jacket tank (200 L capacity) as a balance tank, 200 kg of egg white liquid (pH 8.5) was circulated at a flow rate of 150 kg for the shell & tube heat exchanger STD type (Iwai Machine). When the liquid temperature reached 55 ° C., 200 g of Samoaze PC10 was added and dissolved, and maintained at 55 ⁇ 2 ° C. and circulated for 10 minutes. Thereafter, the liquid temperature was quickly raised to 65 ° C., maintained at 65 ⁇ 2 ° C., and circulated for 30 minutes. Finally, the liquid temperature was maintained at 95 ⁇ 2 ° C. for 5 minutes, and the enzyme was deactivated also for heat sterilization. And it cooled immediately and 193 kg of egg white hydrolyzate was prepared (sample 7).
  • Preparation Example 4 Large-scale preparation of egg white hydrolyzate 3 Using a hot water circulation jacket tank (200 L capacity) as a balance tank, 200 kg of egg white liquid (pH 8.5) is circulated at a flow rate of 150 kg per hour to the Joule heating type sterilizer (Iwai Machine), and the liquid temperature in the balance tank is 55 When the temperature reached 0 ° C., 200 g of Samoaase PC10 was added and dissolved, and maintained at 55 ⁇ 2 ° C. and circulated for 10 minutes. Thereafter, the liquid temperature was quickly raised to 65 ° C., maintained at 65 ⁇ 2 ° C., and circulated for 30 minutes. Finally, the liquid temperature was maintained at 95 ⁇ 2 ° C. for 5 minutes, and the enzyme was deactivated also for heat sterilization. And it cooled immediately and the egg white hydrolyzate 198Kg was prepared (sample 8).
  • Test Example 4 Measurement of Emulsification of Mass Preparation Sample Emulsification was measured in the same manner as in Test Example 1 using Samples 6 to 8 obtained in Preparation Examples 2 to 4 prepared as a mass preparation of egg white hydrolyzate. . The results are shown in Table 3.
  • Test Example 5 Evaluation of heat gelation property A part of the egg white hydrolyzate samples 6 to 8 obtained in Preparation Examples 2 to 4 were further collected at the end of the enzyme treatment at 65 ⁇ 2 ° C. for 30 minutes. Table 4 shows the results of the evaluation of the gelation property by heating in the same manner.
  • Test Example 6 Molecular Weight Measurement by SDS-PAGE Using the egg white hydrolyzate prepared in Preparation Example 2 and Preparation Example 4 (Sample 6, Sample 8), the sample collected in each step and the control sample (raw egg white liquid), In the same manner as in Test Example 3, the molecular weight distribution of each protein was examined. The result is shown in FIG. In sample 6 and sample 8, the egg white proteins ovotransferrin and ovoalbuin disappeared completely at the end of the enzyme reaction at 65 ° C., and are characterized by a molecular weight of between 37,000 and 20,000 and 5,000 to 15,000 instead. Stained bands from several hydrolysates appeared. In the egg white hydrolyzate heated at 90 ° C.
  • Test Example 7 Determination of Trichloroacetic Acid Precipitate Amount Samples of egg white hydrolyzate 1 to 5 prepared in Preparation Example 1, heated egg white sample, egg white hydrolyzate samples 6 to 8 obtained in Preparation Examples 2 to 4, and a control Each 1 g of raw egg white liquor was accurately measured into a 15 mL plastic centrifuge tube, 9 g of 0.4 molar trichloroacetic acid (TCA) solution was added and stirred well, and then centrifuged at 10,000 ⁇ g centrifugal force to 20 Centrifuged for minutes. The supernatant was discarded, the precipitate was collected, dried at 105 ° C. for 3 hours, and the weight of the obtained dried product was measured. And the ratio of 0.4 mol TCA precipitate dry weight of each sample was calculated by setting the 0.4 mol TCA precipitate dry weight in 1 g of egg white liquid used as a control as 100%. The results are shown in Table 5.
  • Sample 15 (55 ° C, treated for 10 minutes) ⁇ (65 ° C, treated for 30 minutes)
  • Sample 16 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (80 ° C., 10 minutes treatment)
  • Sample 17 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (90 ° C., 10 minutes treatment)
  • Sample 18 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (100 ° C., 10 minutes treatment)
  • Preparation Example 7 Preparation of egg white hydrolyzate 2 (examination of enzyme deactivation temperature) Egg white hydrolyzate samples 19 to 22 were prepared in the same manner as in Preparation Example 6 with the addition amount of proteolytic enzyme (Samoase PC10F: 90,000 units / g Amano Enzyme Co., Ltd.) being 0.4%. The sample processing conditions are briefly shown below.
  • Sample 19 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment)
  • Sample 20 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (80 ° C., 10 minutes treatment)
  • Sample 21 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (90 ° C., 10 minutes treatment)
  • Sample 22 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (100 ° C., 10 minutes treatment)
  • Preparation Example 8 Preparation of egg white hydrolyzate 3 (examination of enzyme deactivation temperature) Egg white hydrolyzate samples 23 to 26 were prepared in the same manner as in Preparation Example 6 with the addition amount of proteolytic enzyme (Samoase PC10F: 90,000 units / g Amano Enzyme Co., Ltd.) being 0.8%. The sample processing conditions are briefly shown below.
  • Sample 23 (55 ° C, 10 minutes treatment) ⁇ (65 ° C, 30 minutes treatment)
  • Sample 24 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (80 ° C., 10 minutes treatment)
  • Sample 25 (55 ° C, 10 minutes treatment) ⁇ (65 ° C, 30 minutes treatment) ⁇ (90 ° C, 10 minutes treatment)
  • Sample 26 (55 ° C., 10 minutes treatment) ⁇ (65 ° C., 30 minutes treatment) ⁇ (100 ° C., 10 minutes treatment)
  • Test Example 8 Emulsification measurement (examination of enzyme deactivation temperature) Emulsions of egg white hydrolyzate samples 15 to 26 prepared in Preparation Examples 6 to 8 were each placed in a centrifuge tube with a plastic cap of 2 g, 3 g of olive oil, and 1 g of water, and shaken vigorously up and down 100 times. I let you. Immediately after emulsification and after 120 minutes of standing, 0.5 ml of the emulsion was collected from the bottom of each centrifuge tube, diluted 200-fold with 0.1% SDS solution, and turbidity was measured at an absorbance of 500 nm (Pearce KN and Kinsella JE). : J. Agric. Food Chem., 26, 716-723, 1978). In addition, 2 g of raw egg white, 1 g of water, and 3 g of olive oil were used as a control. The results are shown in Table 7.
  • the emulsifiability was 120 minutes after emulsification, compared to the sample in which the enzyme was not inactivated.
  • Sample 27 (50 ° C., 30 minutes treatment) ⁇ (75 ° C., 5 minutes treatment)
  • Sample 28 (50 ° C, 45 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Sample 29 (50 ° C., 60 minutes treatment) ⁇ (75 ° C., 5 minutes treatment)
  • Sample 30 (50 ° C, 90 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Preparation Example 10 Preparation of egg white hydrolyzate 2 (Examination of enzyme reaction time) Protease M “Amano” SD (40,000 units / g Amano Enzyme) was added as a proteolytic enzyme, and egg white hydrolyzate samples 31 to 34 were prepared in the same manner as in Preparation Example 9.
  • the sample processing conditions are briefly shown below.
  • Sample 31 (50 ° C, 30 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Sample 32 (50 ° C, 45 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Sample 33 (50 ° C, 60 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Sample 34 (50 ° C, 90 minutes treatment) ⁇ (75 ° C, 5 minutes treatment)
  • Test Example 9 Emulsification measurement (examination of enzyme reaction time) Place 0.8 g of egg white hydrolyzate samples 27 to 34 prepared in Preparation Examples 9 to 10, 3 g of olive oil, and 1 g of water in a centrifuge tube with a 50 ml plastic cap and shake vigorously up and down 100 times. Was emulsified. Immediately after emulsification, 0.5 ml of the emulsion was collected from the bottom of each centrifuge tube, diluted 200-fold with 0.1% SDS solution, and turbidity was measured at an absorbance of 500 nm (Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978). The results are shown in Table 8.
  • sample 35 (50 ° C, 60 minutes treatment) ⁇ (80 ° C, 5 minutes treatment)
  • Sample 36 (50 ° C, 60 minutes treatment) ⁇ (85 ° C, 5 minutes treatment)
  • Sample 37 (50 ° C., 60 minutes treatment) ⁇ (90 ° C., 5 minutes treatment)
  • Preparation Example 12 Preparation of egg white hydrolyzate 2 (examination of enzyme deactivation temperature) Protease M “Amano” SD (40,000 units / g Amano Enzyme Co., Ltd.) 0.2% was added as a proteolytic enzyme, and egg white hydrolyzate samples 38 to 40 were prepared in the same manner as in Preparation Example 9.
  • the sample processing conditions are briefly shown below.
  • Sample 39 (50 ° C, 60 minutes treatment) ⁇ (85 ° C, 5 minutes treatment)
  • Sample 40 (50 ° C, 60 minutes treatment) ⁇ (90 ° C, 5 minutes treatment)
  • Test Example 10 Measurement of emulsification (examination of enzyme deactivation time) Place 0.8 g of egg white hydrolyzate samples 35 to 40 prepared in Preparation Examples 11 to 12, 3 g of olive oil, and 1 g of water into a centrifuge tube with a 50 ml plastic cap and shake vigorously 100 times up and down. Was emulsified. Immediately after emulsification, 0.5 ml of the emulsion was collected from the bottom of each centrifuge tube, diluted 200-fold with 0.1% SDS solution, and turbidity was measured at an absorbance of 500 nm (Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978). The results are shown in Table 9.
  • Egg White Mayonnaise 50 g of vinegar is added to and mixed with 250 g of the egg white hydrolyzate prepared in Preparation Example 2, 10 g of salt, 5 g of mustard and 2.5 g of pepper are mixed therein, and 550 g of salad oil is added little by little. While adding, the mixture was emulsified with stirring to prepare egg white mayonnaise using egg white hydrolyzate as an emulsifier.
  • Egg Ice Cream 80 g of raw egg yolk and 100 g of sugar were put in a stainless bowl and mixed well until it turned whitish. While homogenizing the egg white hydrolyzate prepared in Preparation Example 2 with a homomixer, the volume was foamed 1.5 to 2.0 times. Add a mixture of egg yolk and sugar and heat until the egg yolk odor disappears on low heat (until it reaches about 80 ° C). After cooling, add a few drops of vanilla essence and place it in a freezer at -20 ° C. The egg ice cream was prepared by freezing with stirring once per hour.
  • Sterilized egg liquid for egg over rice Shelled eggs are separated from egg white without breaking the yolk membrane with a cracking apparatus, and 1 piece of raw egg yolk (about 20 g) is placed in a sterilized plastic container, 40 g of the egg white hydrolyzate prepared in Preparation Example 4 kept at 80 ° C. was added, and immediately a plastic seal was thermally welded to a plastic container and the cap was capped.
  • the bacteria on the yolk membrane were sterilized by heating with an egg white hydrolyzate at 80 ° C. to prepare a sterilized liquid egg for egg over rice containing the whole egg yolk.
  • This gel base is mixed with 300 g of milk to form a thickened gel, and an egg white nutrition gel prepared based on egg white hydrolyzate having excellent digestibility and absorbability by heat denaturation using a good quality amino acid as a constituent component is obtained.
  • an egg white nutrition gel prepared based on egg white hydrolyzate having excellent digestibility and absorbability by heat denaturation using a good quality amino acid as a constituent component is obtained.
  • a flavor it is also possible to add and mix various beverages, jams, and boiled zuki bean on a timely basis.

Abstract

 乳化性、乳化安定性及び熱凝固性を有する卵白加水分解物を提供することを課題とする。卵白をプロテアーゼを用いて加水分解することにより得られる卵白加水分解物であって、当該卵白加水分解物に対して9倍量の0.4Mトリクロロ酢酸(TCA)を加えて沈殿させたときの沈殿物の重量が卵白を同様に処理した時の乾燥重量の60%以上である卵白加水分解物。

Description

高乳化性卵白加水分解物
 本発明は、高い乳化性、乳化安定性及び加熱凝固性を有する卵白加水分解物及びその製造方法に関する。また当該卵白加水分解物を含有する乳化剤および乳化安定剤、ならびに各種加工食品に関する。
 鶏卵は古くから食品および食品素材(加工卵)として利用されている。人類は数多くの卵料理や卵利用食品を開発し、豊かな食生活に役立ててきた。これは、卵が優れた栄養性を有することと、卵が調理や食品加工に適する種々の機能特性を有するためである。
 食品分野で利用される加工卵の主要な機能特性としては、卵白の加熱凝固性と起泡性、および卵黄の乳化性があげられる。卵に加熱、起泡、乳化などの物理操作を加えると、その卵白蛋白質あるいは卵黄リポ蛋白に構造変化が起こり、それぞれの機能特性が発現する。
 これらの機能特性は加工卵の水を保持する特性、空気を保持する特性、および油を保持する特性として現される。現在、食品分野においては、卵白の加熱凝固性が主に水産練り製品、畜産練り製品、麺などに、卵白の起泡性がケーキやメレンゲなどに、卵黄の乳化性はマヨネーズやドレッシングなどに利用されている。
 卵白は水分90%、蛋白質10%と微量のビタミンやミネラルからなり、脂質は含まない。卵白は約40種類の蛋白質からなり、その中でもオボアルブミンが54%と主要な蛋白質で、次いでオボトランスフェリンが12%、オボムコイドが11%、G2グロブリンとG3グロブリンがそれぞれ4%。オボムチンが3.5%、リゾチームが3.4%、オボインヒビターが1.5%、オボグリコプロテインが1.0%含まれている。それら卵白蛋白質の栄養価は高く、そのアミノ酸スコアーは100で、蛋白質利用効率(PER)や生物価(BV)%は母乳のそれら値に匹敵する。
 また卵白の加工卵としての機能は、優れた加熱凝固性と起泡性があるが、乳化性はほとんどない。
 従来、分子内に親水基と疎水基を有する両親媒性物質が優れた乳化性を有することが知られている。食品の蛋白質では、ミルクカゼインや小麦グルテンが両親媒性物質として知られ、強い乳化性を示す。これら蛋白質は分子表面の親水性アミノ酸と疎水性アミノ酸のバランスがよく、優れた乳化性を示す。一方、卵白蛋白質も親水性や疎水性アミノ酸を含む両親媒性物質である。しかし、通常は分子内部に疎水性アミノ酸が、分子表面に親水性アミノ酸が局在し、安定な水溶性蛋白質としてコロイド状態を形成している。そのため乳化性はほとんどない。しかし、卵白蛋白質が変性し分子内の親水性と疎水性アミノ酸の局在性がくずれた場合、乳化性が生じる可能性がある。
 例えば卵白蛋白質のオボアルブミンを0.5%以下の希薄な濃度やその等電点から離れたアルカリpH、あるいは低イオン強度で加熱ゲル化しない条件で変性させ、その内部の疎水性を表面に露出させ、オボアルブミンの表面疎水性を高めると、起泡性や乳化性が格段に高まることが報告されている(非特許文献1)。
 以上の知見から、卵白蛋白質も加熱変性させれば、蛋白質分子表面の疎水性が高まり、優れた乳化性が得られる可能性がある。しかし、通常の卵白を加熱すると60℃から白濁し始め、柔らかく凝固が始まり、80℃以上で固くゲル化する。卵白蛋白質の加熱変性はゲル化を伴うので、卵白ゲルをすりつぶしたとしても、蛋白質は不溶化しているので、乳化力の向上は期待できない。
 近年、卵白蛋白質をプロテアーゼで加水分解して、消化吸収性のよいペプチドや生理活性を有するペプチドの調製が注目されている(特許文献1~3)。この場合、卵白蛋白質は加水分解されて加熱しても凝固性がなく、そこから得られる水溶性ペプチドは両親媒性構造による乳化性が生じる。しかし、その乳化性は強いものではなく、せいぜい加水分解前の卵白液の2倍程度で、しかも乳化安定性が悪い。
 このような卵白の特徴に加え、加工卵としては卵黄の需要が多く、マヨネーズや洋菓子に使用され、その消費量は増加傾向にある一方、水産練り製品の需要低迷に伴い、卵白の消費量は低下し、現在多量の余剰卵白が冷凍保存されている。その冷凍保存コストは鶏卵加工業者の大きな負担であり、卵白の新しい利用開発が望まれている。
特開2005-117915号公報 特開2007-167041号公報 特許第4138889号公報
Kato, A et al.: J. Agric. Food Chem., 33, 931, 1985
 卵白の機能性を改変して新たに乳化性や乳化安定性を付与した卵白加工品及びその製造方法、卵白加工品を含有する乳化剤や乳化安定剤、またそれら使用した加工食品を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意検討し、卵白液をプロテアーゼで加水分解する際に、加熱凝固性を完全に消失させるほどに分解すると、乳化性はそれほど強くなく、加熱凝固性を弱いながらも若干残す程度に分解すると、意外にも驚くべき乳化性と乳化安定性が得られる事を見出し、これらの知見に基づいて更に研究を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は以下を提供するものである。
[1]卵白をプロテアーゼを用いて加水分解することにより得られる卵白加水分解物であって、当該卵白加水分解物に対して9倍量の0.4Mトリクロロ酢酸(TCA)を加えて沈殿させたときの沈殿物の乾燥重量が卵白を同様に処理した時の乾燥重量の60%以上であることを特徴とする卵白加水分解物。
[2]プロテアーゼがBacillus属微生物又はAspergillus属微生物より抽出されるプロテアーゼである[1]に記載の卵白加水分解物。
[3]Bacillus属微生物がBacillus stearothermophilusである、[2]に記載の卵白加水分解物。
[4]Aspergillus属微生物がAspergillus oryzaeである、[2]に記載の卵白加水分解物。
[5]当該卵白加水分解物を等量の油で乳化させ、乳化直後及び1時間経過後の乳化液を0.1%SDS液で200倍希釈した時の吸光度(500nm)が0.1以上であることを特徴とする[1]~[4]のいずれか1項に記載の卵白加水分解物。
[6]有効成分として[1]~[5]のいずれか1項に記載の卵白加水分解物を含有することを特徴とする乳化剤。
[7]有効成分として[1]~[5]のいずれか1項に記載の卵白加水分解物を含有することを特徴とする乳化安定剤。
[8][1]~[5]のいずれか1項に記載の卵白加水分解物を配合することを特徴とする加工食品。
[9]卵白をプロテアーゼを用いて45~70℃で0.5~2時間、pH6~9で加水分解する工程を含む卵白加水分解物の製造方法。
[10]さらに加水分解された卵白を75~100℃で5~30分間加熱する工程を含む[9]に記載の製造方法。
 本発明の卵白分解物は、苦味が少なく風味が良いだけでなく、乳化性、乳化安定性および熱凝固性を併せ持ち、安全性の高い天然物由来の素材として飲食品、飼料、化粧品、医薬品等に有利に利用できる。
 また、卵白ベースのマヨネーズやドレッシング、卵白アイスクリームや卵白ムースなどの調製が可能となり、無脂肪又は低脂肪、低コレステロールで高蛋白質の乳化食品を製造することができる。
 本発明における乳化剤は、乳化性にすぐれているだけでなく、安全性がきわめて高いので、食品、飲料、飼料、魚介用や観賞魚用餌料、化粧品、医薬品その他、乳化性を必要とする各種対象物の乳化剤として単独であるいは他の乳化剤とともに安心して使用することができる。
卵白の破断変形曲線を示す。 試料1の破断変形曲線を示す。 試料2の破断変形曲線を示す。 試料3の破断変形曲線を示す。 試料4の破断変形曲線を示す。 ポリアクリルゲル電気泳動における調製例1で調製した卵白加水分解物の蛋白質の分子量分布を示す。 ポリアクリルゲル電気泳動における調製例2及び4で調製した卵白加水分解物の蛋白質の分子量分布を示す。
 本発明は、卵白をプロテアーゼで加水分解することにより得られ、得られた卵白加水分解物に対して9倍量の0.4Mトリクロロ酢酸(TCA)を加えて沈殿させたときの沈殿物の乾燥重量が卵白を同様に処理した時の乾燥重量の60%以上であることを特徴とする卵白加水分解物に関する(以下本発明の卵白加水分解物と省略することもあります)。
 本発明において、卵白は、通常は、鶏卵から分離された生卵白液、加熱殺菌卵白液、冷凍卵白液、殺菌冷凍卵白液、粉末卵白等が挙げられる。好ましくは、加工性の点から生卵白液、加熱殺菌卵白液の利用が好ましい。また、高圧ホモジナイザー処理などで、卵白液を均質液化し、加熱凝固温度を高めた卵白液の利用は、酵素加水分解温度の観点からも好ましい。
 本発明において、プロテアーゼは、ペプシン、(キモ)トリプシン、カテプシン等の動物起源の酵素、パパイン、ブロメリン、フィシン等の植物起源の酵素、各種微生物由来のプロテアーゼ等の既知の酵素が1種又は2種以上組み合わせて使用される。なお、卵白中にはオボムコイド、オボインヒビター、オボスタチン等のプロテアーゼインヒビターが存在するため、これら卵白蛋白質のプロテアーゼ阻害活性が働きにくい温度、すなわち55~75℃で働く耐熱性プロテアーゼの利用が好ましい。
 なかでも微生物由来のプロテアーゼが好ましく、苦みアミノ酸やペプチドの生成が少ないことから、Bacillus属微生物由来のプロテアーゼ、Aspergillus属微生物由来のプロテアーゼが好ましい。より好ましくはBacillus stearothermophilus由来のプロテアーゼ、Aspergillus oryzae由来のプロテアーゼを用いることができる。
 本発明で用いる菌体からのプロテアーゼの抽出方法については特に限定されるものでなく、一般的な酵素抽出法が適用でき、市販の各種プロテアーゼ製剤を用いても良い。
 プロテアーゼの添加量は、酵素の種類と酵素活性によって適宜決められるが、例えば市販のプロテアーゼ製剤で、通常のミルクカゼインを基質として測定される酵素活性が50,000~100,000単位/gの酵素剤の場合、所望の分解の程度を得る観点から、全卵白重量に対して、通常0.1~0.8重量%、好ましくは0.1~0.4重量%、より好ましくは0.1~0.2重量%を添加する。
 例えば、Bacillus stearothermophilusの菌体より抽出された耐熱性プロテアーゼ製剤(サモアーゼPC10天野エンザイム製、90,000単位/g)の場合は、全卵白重量に対して、通常0.1~0.8重量%、好ましくは0.1~0.4重量%、より好ましくは0.1~0.2重量%を添加する。また、Aspergillus oryzae由来の酸性プロテアーゼ製剤(プロテアーゼM「アマノ」SD、40,000単位/g)の場合は、全卵白重量に対して、例えば、0.05~0.5重量%、好ましくは0.1~0.2重量%を添加する。
 本発明において、卵白のプロテアーゼによる加水分解処理は以下のように行われる。
 卵白にプロテアーゼを添加する温度は、雑菌の増殖温度をさけて、卵白プロテアーゼインヒビターが働きにくい温度でかつ卵白の加熱凝固が始まらない温度、通常は45~60℃、好ましくは50~60℃、より好ましくは50~55℃でプロテアーゼを添加し、10分間~1時間、好ましくは10分間~30分間の加水分解を行う。上述の加水分解を予備加水分解として、さらに卵白液温を加温し、加水分解を行ってもよい。このときの加温における温度は例えば60~80℃、好ましくは60~70℃、より好ましくは63~67℃である。
 加熱の手段としては、公知の方法を適用できるが、ジャケット付きタンク、プレートヒーター、シェルアンドチューブ式熱交換器などを用いた間接加熱方式、およびジュール加熱式装置を用いた直接加熱方式などを使用することができるが、卵白液温の緻密な制御の観点からシェルアンドチューブ式熱交換器やジュール加熱装置を用いるのが好ましい。
 加水分解のpHは、用いる酵素の至適pHで行えばよいが、卵白蛋白質の溶解性を高めるためにも等電点付近(pH5前後)のpHをさけ、かつ卵白蛋白質のアルカリ変性を抑制する観点から、通常pH6~9、好ましくは6~8.5、より好ましくは6~8、最も好ましくは6~7.5で行う。
 pHの調節は、通常、塩酸、炭酸、リン酸、酢酸、クエン酸、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムなどが使用され、好ましくはクエン酸やリン酸およびそれらのナトリウム塩の利用が挙げられる。
 加水分解の処理時間としては、乳化性、乳化安定性および加熱凝固性の観点から、用いる酵素の至適温度で、通常0.5~4.0時間、0.5~2時間が好ましく、0.5~1時間がより好ましい。
 具体的には、予め温めた卵白を50~55℃で加温しプロテアーゼを添加し、10~30分加水分解し、さらに63~67℃に温度を上げて、0.5~1時間加水分解する。その後さらに、加温により酵素を失活させて本発明の卵白加水分解物を得る方法が挙げられる。酵素を失活させるための加温は例えば75℃~100℃、好ましくは80℃~100℃、さらに好ましくは80℃~95℃、最も好ましくは80~90℃である。酵素失活の処理時間としては例えば5~30分、好ましくは5~20分、より好ましくは5~10分である。
 このようにして得られた本発明の卵白加水分解物は、白色のクリーム状又はスラリー状の形態を有する。本発明の卵白加水分解物は、さらに高圧化で均質化処理を施してもよく、またはフリーズドライ、スプレードライ等の乾燥処理を施して粉末状または顆粒状にした乾燥卵白加水分解物も本発明に包含される。
 本発明の卵白加水分解物は、当該卵白加水分解物に対して9倍量の0.4Mトリクロロ酢酸(TCA)を加えて沈殿させたときの沈殿物の乾燥重量が卵白を同様に操作した沈殿物の乾燥重量の60%以上であることを特徴とする。
 具体的には、本発明の卵白加水分解物1重量部に0.4M TCA9重量部を加えて沈殿させた場合には、その沈殿物の乾燥重量は、卵白の全沈殿物の乾燥重量に対して、60重量%以上、好ましくは、65~85重量%、より好ましくは70~80重量%である。ここで指標となる卵白は卵白液が挙げられる。
 このような条件で沈殿するのは、分子量約5,000以上の卵白蛋白質の加水分解物である。この沈殿物の量が少ないほど低分子化されていることを意味し、本発明の卵白加水分解物は、卵白蛋白質の60重量%以上、好ましくは、65~85重量%、より好ましくは70~80重量%の卵白蛋白質を含有し、90℃での加熱ゲル化性が残存し自立するゲルが得られ、ゲル圧縮試験機でゲルの破断強度の測定が可能である。
 当該沈殿量が前記特定範囲に調整されていることにより、優れた乳化性、乳化安定性および加熱凝固性が得られる。
 また本発明の卵白加水分解物が乾燥品の場合には、該乾燥品1重量部に水9重量部を加えたものを上記測定に使用する。または比較の卵白を粉末卵白などの乾燥品を使用して、卵白加水分解物及び粉末卵白を9倍量の水などの溶媒に溶解して試料として測定することができる。
 さらに水分量が90%未満の卵白加水分解物においては、その水分量に応じて0.4MのTCAの量を適宜変更して測定する。または水分を除去して得られた乾燥品1重量部に水9重量部を加えたものを上記測定に使用する。
 沈殿物量は、以下の方法で測定することができる。
 本発明の卵白加水分解物1gに0.4M濃度のトリクロロ酢酸(TCA)溶液9gを加えてよく撹拌した後、10,000 x gの遠心力で20分間遠心分離する。その上清は廃棄し、沈殿物を回収し、乾燥して、得られた乾燥物重量を測定する。対照として用いた卵白液1g中の0.4MTCA沈殿物乾燥重量を100%として、卵白加水分解物の0.4モル TCA沈殿物乾燥重量の割合を計算する。
 本発明の卵白加水分解物は、公知の方法に従い還元剤(2-メルカプトエタノール)存在下、ポリアクリルアミドゲル濃度5~20%のグラジエントゲルでSDS-PAGEを行い測定した分子量、5,000~45,000ダルトンを示す多種の蛋白質加水分解物の混合物であり、卵白蛋白質のオボトランスフェリンが完全に消失し、オボアルブミンは40%以上消失して低分子化された蛋白質分解物を含有する。好ましくは、分子量37,000~20,000ダルトンと15,000~5,000ダルトンの範囲に蛋白質分解物が多い方がよい。
 分子量がこの範囲の蛋白質を含む卵白加水分解物であれば、加熱凝固性を有し、優れた乳化性、乳化安定性が得られる。
 本発明の卵白加水分解物の製造方法は、卵白をプロテアーゼを用いて55~65℃で0.5~4.0時間、pH6~9で加水分解する工程を含む。
 さらに加水分解された卵白を85~95℃で加熱する工程を含む。
 このような工程を得て得られた卵白加水分解物は、加熱凝固性を有し、優れた乳化性、乳化安定性を有する。
 上記加水分解の条件の定義は上述と同じものが適用される。
 具体的には、本発明の製造方法は、加水分解反応中の雑菌の増殖をさけて、卵白プロテアーゼインヒビターが働きにくくし、かつ卵白の加熱凝固が始まらない温度するために、プロテアーゼを添加する前に卵白を45~60℃に加温する工程、上記卵白の加水分解を行う工程、さらに殺菌と酵素を失活させるために、85~95℃で10~30分間の加熱処理をする工程等を含む。
 本発明の卵白加水分解物は自立性の加熱ゲルを形成する。通常の卵白液加熱ゲルの破断強度は、70~100g/cmであるが、本発明の卵白加水分解物は、5~30g/cmであり、好ましくは5~20g/cmであり、5~10g/cmがより好ましい。
 加熱ゲルの破断強度は、耐熱性ケーシングチューブを用いてソーセージ状に調製した自立性のあるゲルを一定の厚さに切り、食品ゲル圧縮試験機で円筒形プランジャーを用いて、一定速度でゲルを圧縮するとき、ゲル組織を破壊するに必要な力(g/cm)と定義され、ゲルの固さの指標となる。この値が大きいほど固いゲルである。
 加熱ゲルの破断強度は、通常の食品ゲル圧縮試験機を用いて、ゲルの圧縮変形率を横軸に、プランジャーにかかる応力(荷重)を縦軸にプロットしたゲル破断曲線から求めることができる。
 例えば、卵白加水分解物を塩化ビニリデン製ケーシングチューブ(折幅30mm)に充填し、90℃で10分~30分程度加熱後に冷却した試料を食品ゲル圧縮試験機で円筒形プランジャーを用いて破断曲線を測定し、ゲル組織を破壊するに必要な力(g/cm)を破断強度として測定する。
 本発明の卵白加水分解物は、Pearce(Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978)の方法に従い、卵白加水分解物と等量のサラダ油を激しく上下に震盪して乳化させ、乳化直後及び1時間経過後に乳化液の底部から試料を採取し、0.1%SDS溶液で200倍希釈した乳化液の吸光度(500nm)が0.1以上であることを特徴とする。 
 乳化活性は、本発明の卵白加水分解物とサラダ油等の油を等量加え乳化させ、乳化液の調製直後のサンプルを0.1%SDS溶液で200倍希釈し(0.5%乳化液)、蛋白加水分解物を溶解させ、サラダ油をミセル化させた時の濁度(波長500nmにおける吸光度)で示される。この吸光度が高いほど乳化活性が高いことを意味する。
 上記卵白加水分解物が乾燥品の場合には、該乾燥品1重量部に水9重量部を加えたものを等量のサラダ油の油で乳化させて同様に測定することができる。また水分量が90%未満の卵白加水分解物は上記で述べたようにして測定することができる。
 乳化安定性は、乳化液を一定温度で一定時間静置し、その乳化液の最底部からサンプルを採取し、同様に調製した0.5%乳化液の濁度で評価する。この濁度が高いほど、または乳化直後の濁度に対する比率が大きいほど、あるいは調製後、長時間に渡り高い濁度を維持するほど乳化安定性が高いことを意味する。
 また油は特に限定されないが、サラダ油、コーン油、綿実油等の植物油が好ましい。
 吸光度500nmは公知の方法によって測定することができる。
 本発明の卵白加水分解物は、乳化液の調製直後、静置して室温で1時間後、静置して室温で2時間後に乳化液の底部から試料を採取し、0.1%SDS溶液で200倍希釈した吸光度を測定してもよい。乳化液の調製直後の吸光度は通常は0.1以上であり、好ましくは0.2以上、より好ましくは0.3以上であり、さらに好ましくは0.5以上であり、0.8以上が最も好ましい。乳化安定性においては乳化液の調製直後の吸光度を100%として、静置して室温で1時間後の吸光度が例えば45%以上であり、好ましくは50%以上であり、より好ましくは60%以上であり、70%以上が最も好ましい。
 本発明において乳化剤は、本発明の卵白加水分解物そのものであってもよく、有効成分として含有すれば他の添加剤を含有してもよい。また他の乳化剤を含有してもよい。
 上記他の添加剤としては、卵白、大豆蛋白質、カゼイン、乳蛋白質、血漿蛋白質、コラーゲン、ゼラチン等の蛋白質素材、カラギーナン、デキストリン等の増粘多糖類、亜硝酸ナトリウム、塩化ナトリウム等の塩類、砂糖、デンプン等の糖類、調味料、リン酸塩等が挙げられる。
 また他の乳化剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル等の合成乳化剤、また、ダイズレシチンや卵黄レシチン、キラヤサポニン、カゼインナトリウムなどの天然物乳化剤が挙げられる。
 本発明における乳化剤は、乳化性にすぐれているだけでなく、安全性がきわめて高いので、食品、飲料、飼料、魚介用餌料、化粧品、医薬品その他乳化性を必要とする各種対象物の乳化剤として単独であるいは他の乳化剤とともに安心して使用することができる。
 本発明における乳化剤の各種対象物への添加量は特に限定されるものではない。
 例えば、本発明の卵白加水分解物(乾燥重量)として、食品100重量部に対して1~20重量部添加するのが好ましく、1~10重量部添加するのがより好ましい。
 また本発明において乳化安定剤は、本発明の卵白加水分解物そのものであってもよく、有効成分として含有すればデンプンやデキストリン、ゼラチンやコラーゲン、脱脂粉乳や乳清蛋白質など他の食品素材を含有してもよい。また、アラビアガム、カラギーナン、ペクチン、キサンタンガム、ジェランガム、グアーガム、ローカストビーンガムなど他の増粘安定剤を含有してもよい。
 本発明における乳化安定剤の各種対象物への添加量は、上記乳化剤と同じ量が挙げられる。
 本発明の卵白加水分解物を配合した加工食品も本発明に包含される。
 本発明における加工食品としては、卵白加水分解物の有する乳化性、乳化安定性および加熱凝固性を利用した加工食品が挙げられる。
 例えば、マヨネーズ、ドレッシング、アイオリソース、オランデールソースなどの調味料、アイスクリーム、ムース、ヨーグルト、ゼリーなどのデザート類、ケーキ、パン、シュークリーム、クッキーなどの焼成製品、スープやドリンクなどの飲料、カレーやシチュー、ハムやソーセージ、蒲鉾やちくわなどの食品が挙げられる。
 特に、本発明の卵白加水分解物は、通常卵白にはなく卵黄にはある乳化作用を有することから、全卵の代替物として各種加工食品に広く応用することができる。
 また、本発明の卵白分解物にDHAやEPAなどの多価不飽和脂肪酸を有する機能性脂質やステロイドホルモンやエイコサノイド、脂溶性ビタミンやカロテノイドやレシチンやコエンザイムQ10などの脂溶性生理活性物質などを任意に配合できる。また、本発明の卵白分解物は母乳の蛋白質に匹敵する良質な栄養性を有し、かつ乳化安定化作用を有することから、マルチビタミンやミネラル、食物繊維や機能性脂質を混合乳化し、長期に保存にも安定な完全栄養サプリメント食品にも適用できる。
 以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。
調製例1 卵白加水分解物の調製(加水分解程度の検討)
 卵白液(pH9.0)3Lに対して10%クエン酸溶液(24ml)を添加しpH7.5に調整したもの各500gを55℃に加温し、耐熱性の蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))をそれぞれ0.1%、0.2%、0.4%、0.8%添加し、55℃で10分間撹拌しながら酵素分解を行った。次いで、卵白液の温度を65℃に上げて、さらに30分間撹拌しながら酵素分解を行った後、直ちに卵白液温を90℃まで上げて10分間保持し酵素失活を行った。酵素失活後の卵白加水分解物をそれぞれ撹拌均質化して、卵白加水分解物試料1~4とした。なお、卵白液に対して酵素を添加しないで、同様の操作を行い、加熱卵白試料とした。また、さらに加水分解の程度を上げるため、上記のサモアーゼ添加量0.8%で別に調製した卵白加水分解試料4に対して、液温を40℃に下げ、天野プロテアーゼP(300,000単位/g)を0.5%添加し、pH7でさらに1時間加水分解を進めた。その反応液を90℃で10分加熱して酵素失活したものを卵白加水分解物試料5とした。
試験例1 乳化性の測定
 調製例1で調製した卵白加水分解物1~5の試料と加熱卵白試料、および生卵白液のそれぞれ10gとサラダオイル10gを50ml容量のプラスチック製キャップ付き遠心チューブに入れて、激しく上下に100回振ることにより乳化させた。乳化直後および静置60分後、120分後、および240分後に各遠心チューブの底から乳化液を0.5ml採取し、0.1%SDS溶液で200倍希釈したのち、吸光度500nmで濁度を測定した(Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978)。なお、水10gとサラダオイル10gを乳化させたものを対照として用いた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本試験法で乳化力は、乳化直後すなわち静置0分の濁度(吸光度500nm)で評価する。すなわち、チューブの底から採取した乳化液に油が多いほど、0.1%SDS存在下では多くのミセルを形成し濁度が高くなる。蒸留水には乳化力は無く、それ以外の試料は、程度は若干異なるが油を保持する力すなわち乳化力を有した。また、乳化安定性は乳化液を静置し、その底部から経時的に採取した乳化液中の油量を濁度の値として評価できる。生卵白や加熱卵白および試料5では60分の静置後以降、濁度はほとんど消失し、乳化安定性がないことが示された。一方、試料1~4は4時間の静置でも濁度はほとんど変化なく、優れた乳化安定性を有する事が示された。
 また、乳化物の目視観察の結果では、生卵白や加熱卵白および試料5では乳化2時間後から乳化物表面に油の分離が見られたが、試料1~4の乳化物は1日後でもそれら乳化物の表面に油の分離が見られなかった。
試験例2 加熱ゲル化性の評価
 調製例1の工程中、65℃で20分間酵素分解した各卵白液から約30g採取し、直ちにそれぞれを折幅30mmのポリ塩化ビニリデン製ケーシングチューブ(クレハプラスチック株式会社 DB577R)に詰め、90℃に設定した温水中に浸けて、液温が90℃になったのを確認し10分間保持した。その後、流水中で冷却し、加熱ゲル化性測定用の試料1~4とした。なお、対照試料としては卵白液を同様の加熱条件で凝固させたものを用いた。なお、調製例1で調製した試料5の天野プロテアーゼP処理後の加水分解液約30gも同様にケーシングチューブに詰め、90℃まで加熱し10分間保持した後、同様に冷却し、加熱ゲル化性測定用の試料5とした。
 調製した加熱ゲル化性測定用試料1~4および対照試料のケーシングチューブ両端をカッターナイフで切り落とし、さらにチューブに切れ目を入れてソーセージ状の加熱ゲルを取り出した。この卵白ゲルを厚さ10mmに切り、その円筒ゲルが自立するか調べた。自立するゲルについては、食品ゲル圧縮試験機(テキソグラフ)で断面積1.0cmの円筒形プランジャーを用い、プランジャー降下速度0.8mm/秒の条件で破断変形曲線を調べ、それぞれのゲルの破断強度を求めた。対照の卵白ゲル、調製した酵素添加量0.1%、0.2%、0.4%、および0.8%(試料1~4)のゲルの破断変形曲線を図1~図5に示す。また、それぞれの加熱ゲルの破断強度を表2に示す。なお、調製例1で調製した卵白加水分解物試料5は、同様に90℃で10分間加熱してもゲル化せず自立するゲルが得られなかったため測定できなかった。
Figure JPOXMLDOC01-appb-T000002
試験例3 SDS-PAGEによる分子量測定
 調製例1で調製した卵白加水分解物試料1~5並びに加熱卵白試料および対照試料(生卵白液)を用い、ドデシル硫酸ナトリウム(SDS)存在下でのポリアクリルゲル電気泳動(PAGE)で、それぞれの蛋白質の分子量分布を調べた。電気泳動装置はATTO株式会社のAE7350で、ゲルは同社の既製ゲルであるc-PAGEL(5~20%)グラジエンドゲルを用い、Laemnliらの方法(Nature, 227,680-685 (1970))に準じて行った。なお、試料は蛋白質濃度0.33%にそろえて調製し、ゲルの各レーンに2μLづつアプライし、21mAで30分間泳動後、クマシーブリリアントブルー色素で染色した。
 結果を図6に示す。卵白液の蛋白質は高分子側から分子量7.7万のオボトランスフェリン、分子量4.5万のオボアルブミン、および分子量1.43万のリゾチームに由来する明確な染色バンドが観察された。一方、加熱卵白試料は同様の蛋白質に由来する染色バンドが見られるが、染色像が薄くぼやけた。卵白加水分解物試料1~4は卵白蛋白質のオボトランスフェリンが完全に消失し、オボアルブミンも50%以上消失し、代わりに分子量3.7万から2万の間と1.0~1.5万に特徴的な数本の加水分解物由来の染色バンドが現れた。加水分解程度がもっとも高い試料5は染色バンドが見られなかった。
調製例2 卵白加水分解物の大量調製1
 温水循環ジャケットタンク(200L容量)で卵白液(pH7.8)100Kgを加温し、55℃でサモアーゼPC10を200g添加溶解して10分間撹拌した。次いで液温を65±2℃に上げて、30分間撹拌した。その後、液温を95±2℃に5分間保持して加熱殺菌を兼ねて酵素の失活を行った。そして、プロテーゼ処理加水分解卵白をホモミキサーで撹拌して均質化し、卵白加水分解物97.2Kgを調製した(試料6)。
調製例3 卵白加水分解物の大量調製2
 温水循環ジャケットタンク(200L容量)をバランスタンクとして、シェル&チューブ式熱交換器STD型(岩井機械)に対して卵白液(pH8.5)200Kgを時間150Kgの流量で循環させ、バランスタンク内の液温が55℃になった時にサモアーゼPC10を200g添加溶解して、55±2℃を保持し10分間循環させた。その後、速やかに液温を65℃に上昇させ、65±2℃を保持して、30分間循環させた。最後に、液温を95±2℃に5分間保持して加熱殺菌を兼ねて酵素の失活を行った。そして、直ちに冷却して卵白加水分解物193Kgを調製した(試料7)。
調製例4 卵白加水分解物の大量調製3
 温水循環ジャケットタンク(200L容量)をバランスタンクとして、ジュール加熱式殺菌装置(岩井機械)に対して卵白液(pH8.5)200Kgを時間150Kgの流量で循環させ、バランスタンク内の液温が55℃になった時にサモアーゼPC10を200g添加溶解して、55±2℃を保持し10分間循環させた。その後、速やかに液温を65℃に上昇させ、65±2℃を保持して、30分間循環させた。最後に、液温を95±2℃に5分間保持して加熱殺菌を兼ねて酵素の失活を行った。そして、直ちに冷却して卵白加水分解物198Kgを調製した(試料8)。
試験例4 大量調製試料の乳化性の測定
 卵白加水分解物の大量調製として行った調製例2~4で得た試料6~8を用いて、試験例1と同様に乳化性の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
試験例5 加熱ゲル化性の評価
 調製例2~4で得られた卵白加水分解物試料6~8を、更に65±2℃、30分間の酵素処理終了時に一部試料採取し、試験例2と同様の方法で加熱ゲル化性の評価を行った結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
試験例6 SDS-PAGEによる分子量測定
 調製例2および調製例4で調製した卵白加水分解物(試料6、試料8)、それぞれの各工程で採取した試料および対照試料(生卵白液)を用い、試験例3と同様の方法で、それぞれの蛋白質の分子量分布を調べた。その結果を図7に示す。試料6と試料8では65℃の酵素反応終了時で卵白蛋白質のオボトランスフェリンとオボアルブンが完全に消失し、代わりに分子量3.7万から2万の間と5000から1.5万に特徴的な数本の加水分解物由来の染色バンドが現れた。そして、90℃で5分間加熱し酵素を失活させた卵白加水分解物では、試料6の方が、加水分解が進み、卵白蛋白質の低分子化がみられた。これは、大量調製時における熱履歴の違いであると言える。すなわち、バッチ式では昇温に時間を要し、その分耐熱性プロテアーゼがより作用するのではないかと考えられる。
試験例7 トリクロロ酢酸沈殿物量の測定
 調製例1で調製した卵白加水分解物1~5の試料と加熱卵白試料、および調製例2~4で得られた卵白加水分解物試料6~8、ならびに対照として生卵白液のそれぞれ1gを15mL容量のプラスチック遠心管に精密に計り、0.4モル濃度のトリクロロ酢酸(TCA)溶液9gを加えてよく撹拌した後、10,000 x gの遠心力で20分間遠心分離した。その上清は廃棄し、沈殿物を回収し、105℃、3時間乾燥して、得られた乾燥物重量を測定した。そして対照として用いた卵白液1g中の0.4モルTCA沈殿物乾燥重量を100%として、各試料の0.4モルTCA沈殿物乾燥重量の割合を計算した。
 その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
調製例5 卵白加水分解物の調製(加水分解時間の検討)
 卵白液1000mlに10%クエン酸溶液を8ml加えpH7.5に調整し、55℃に加温し、耐熱性の蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))を0.4%添加し、55℃で10分間撹拌しながら酵素分解を行った。次いで、卵白液の温度を65℃に上げて、加水分解時間を0分、30分、1時間、2時間、4時間、8時間と変えて、撹拌しながら酵素分解を行った後、各酵素反応時間毎に卵白加水分解液30gを、それぞれ折幅30mmのポリ塩化ビニリデン製ケーシングチューブ(クレハプラスチック株式会社 DB577R)に詰め、90℃に設定した温水中に浸けて、液温が90℃になったのを確認し10分間保持した。その後、流水中で冷却し、卵白加水分解物の試料9~14とした。
 試料9~14と対照として生卵白液を用い、試験例2と同様の方法で、各試料の破断強度を測定した。次いで、試験例1と同じ方法で乳化性および乳化安定性を評価した。また、試験例7と同じ方法で各試料の0.4モルTCA沈殿物乾燥重量の割合を計算した。表6に結果をまとめた。
Figure JPOXMLDOC01-appb-T000006
 蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))を0.4%添加し、65℃での加水分解時間を検討した結果、加水分解時間が4時間までは、90℃での加熱ゲル化性があるが、その破断ゲル強度は加水分解時間とともに弱くなった。8時間加水分解したものは、90℃での加熱ゲル化性が消失し、なお、また、加水分解時間が長くなると、TCA沈殿物も85.7%から61.3%まで低下した。卵白蛋白質の加水分解が進み、0.4%TCAで沈殿しない低分子のペプチドやアミノ酸が多くなった結果である。なお、乳化安定性は、加水分解時間4時間までは少しずつ低下したが、8時間加水分解した試料は乳化安定性が激減した。
調製例6 卵白加水分解物の調製1(酵素失活温度の検討)
 卵白液(pH9.0)3Lに対して10%クエン酸溶液(24ml)を添加しpH7.5に調整したもの各500gを55℃に加温し、耐熱性の蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))を0.2%添加し、55℃で10分間撹拌しながら酵素分解を行った。次いで、卵白液の温度を65℃に上げて、さらに30分間撹拌しながら酵素分解を行った(これを卵白加水分解物試料15とする。)。これをさらに加温し、卵白液温をそれぞれ80℃、90℃、100℃まで上げて10分間保持し酵素失活を行った。酵素失活後の卵白加水分解物をそれぞれ撹拌均質化して、卵白加水分解物試料16~18とした。試料の処理条件を簡単に以下に示す。
 試料15:(55℃、10分処理)→(65℃、30分処理)
 試料16:(55℃、10分処理)→(65℃、30分処理)→(80℃、10分処理)
 試料17:(55℃、10分処理)→(65℃、30分処理)→(90℃、10分処理)
 試料18:(55℃、10分処理)→(65℃、30分処理)→(100℃、10分処理)
調製例7 卵白加水分解物の調製2(酵素失活温度の検討)
 蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))の添加量を0.4%とし、調製例6と同様に卵白加水分解物試料19~22を調製した。試料の処理条件を簡単に以下に示す。
 試料19:(55℃、10分処理)→(65℃、30分処理)
 試料20:(55℃、10分処理)→(65℃、30分処理)→(80℃、10分処理)
 試料21:(55℃、10分処理)→(65℃、30分処理)→(90℃、10分処理)
 試料22:(55℃、10分処理)→(65℃、30分処理)→(100℃、10分処理)
調製例8 卵白加水分解物の調製3(酵素失活温度の検討)
 蛋白分解酵素(サモアーゼPC10F:90,000単位/g天野エンザイム(株))の添加量を0.8%とし、調製例6と同様に卵白加水分解物試料23~26を調製した。試料の処理条件を簡単に以下に示す。
 試料23:(55℃、10分処理)→(65℃、30分処理)
 試料24:(55℃、10分処理)→(65℃、30分処理)→(80℃、10分処理)
 試料25:(55℃、10分処理)→(65℃、30分処理)→(90℃、10分処理)
 試料26:(55℃、10分処理)→(65℃、30分処理)→(100℃、10分処理)
試験例8 乳化性の測定(酵素失活温度の検討)
 調製例6~8で調製した卵白加水分解物試料15~26をそれぞれ2gとオリーブオイル3g、水1gとを50ml容量のプラスチック製キャップ付き遠心チューブに入れて、激しく上下に100回振ることにより乳化させた。乳化直後および静置120分後に各遠心チューブの底から乳化液を0.5ml採取し、0.1%SDS溶液で200倍希釈した後、吸光度500nmで濁度を測定した(Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978)。なお、生卵白2gと水1g、オリーブオイル3gを乳化させたものを対照として用いた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 酵素を失活させた試料では、酵素を失活させない試料と比べて乳化後120分の乳化性が良好であった。また酵素の添加量を0.2%、0.4%にした場合の乳化性は、添加量0.8%の乳化性と比べて良好であった。
調製例9 卵白加水分解物の調製1(酵素反応時間の検討)
 卵白液(pH9.0)3Lに対して10%クエン酸溶液(24ml)を添加しpH6.0に調整したもの各500gを50℃に加温し、蛋白分解酵素としてプロテアーゼM「アマノ」SD(40,000単位/g天野エンザイム(株))を0.1%添加し、50℃でそれぞれ30分、45分、60分、90分間酵素分解を行った。これをさらに加温し、卵白液温を75℃まで上げて5分間保持し酵素失活を行い、卵白加水分解物試料27~30を調製した。試料の処理条件を簡単に以下に示す。
 試料27:(50℃、30分処理)→(75℃、5分処理)
 試料28:(50℃、45分処理)→(75℃、5分処理)
 試料29:(50℃、60分処理)→(75℃、5分処理)
 試料30:(50℃、90分処理)→(75℃、5分処理)
調製例10 卵白加水分解物の調製2(酵素反応時間の検討)
 蛋白分解酵素としてプロテアーゼM「アマノ」SD(40,000単位/g天野エンザイム(株))を0.2%添加し、調製例9と同様に卵白加水分解物試料31~34を調製した。試料の処理条件を簡単に以下に示す。
 試料31:(50℃、30分処理)→(75℃、5分処理)
 試料32:(50℃、45分処理)→(75℃、5分処理)
 試料33:(50℃、60分処理)→(75℃、5分処理)
 試料34:(50℃、90分処理)→(75℃、5分処理)
試験例9 乳化性の測定(酵素反応時間の検討)
 調製例9~10で調製した卵白加水分解物試料27~34をそれぞれ0.8gとオリーブオイル3g、水1gとを50ml容量のプラスチック製キャップ付き遠心チューブに入れて、激しく上下に100回振ることにより乳化させた。乳化直後に各遠心チューブの底から乳化液を0.5ml採取し、0.1%SDS溶液で200倍希釈したのち、吸光度500nmで濁度を測定した(Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978)。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
調製例11 卵白加水分解物の調製1(酵素失活温度の検討)
 卵白液(pH9.0)3Lに対して10%クエン酸溶液(24ml)を添加しpH6.0に調整したもの各500gを50℃に加温し、蛋白分解酵素としてプロテアーゼM「アマノ」SD(40,000単位/g天野エンザイム(株))を0.1%添加し、50℃でそれぞれ60分間酵素分解を行った。これをさらに加温し、卵白液温をそれぞれ80℃、85℃、90℃まで上げて5分間保持し酵素失活を行い、卵白加水分解物試料35~37を調製した。試料の処理条件を簡単に以下に示す。
 試料35:(50℃、60分処理)→(80℃、5分処理)
 試料36:(50℃、60分処理)→(85℃、5分処理)
 試料37:(50℃、60分処理)→(90℃、5分処理)
調製例12 卵白加水分解物の調製2(酵素失活温度の検討)
 蛋白分解酵素としてプロテアーゼM「アマノ」SD(40,000単位/g天野エンザイム(株))を0.2%添加し、調製例9と同様に卵白加水分解物試料38~40を調製した。試料の処理条件を簡単に以下に示す。
 試料38:(50℃、60分処理)→(80℃、5分処理)
 試料39:(50℃、60分処理)→(85℃、5分処理)
 試料40:(50℃、60分処理)→(90℃、5分処理)
試験例10 乳化性の測定(酵素失活時間の検討)
 調製例11~12で調製した卵白加水分解物試料35~40をそれぞれ0.8gとオリーブオイル3g、水1gとを50ml容量のプラスチック製キャップ付き遠心チューブに入れて、激しく上下に100回振ることにより乳化させた。乳化直後に各遠心チューブの底から乳化液を0.5ml採取し、0.1%SDS溶液で200倍希釈したのち、吸光度500nmで濁度を測定した(Pearce KN and Kinsella JE: J. Agric. Food Chem., 26, 716-723, 1978)。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
食品例1 卵白マヨネーズ
 調製例2で調製した卵白加水分解物250gに対してお酢50gを加えて混合し、そこへ食塩10gとマスタード5gとコショウ2.5gを混合し、さらにサラダ油550gを少しずつ加えながら撹拌乳化し、卵白加水分解物を乳化剤として用いた卵白マヨネーズを作成した。
食品例2 卵アイスクリーム
 ステンレスのボールに生卵黄80gと砂糖100gを入れて、白っぽくなるまでよく混合した。調製例2で調製した卵白加水分解物300gをホモミキサーで均質化しながら体積が1.5~2.0倍に起泡させた。これに卵黄と砂糖の混合物を加え、弱火で卵黄の生臭みが消えるまで加熱し(約80℃になるまで)、冷却した後、バニラエッセンスを数滴添加し、-20℃の冷凍庫に入れて1時間に1回撹拌しながら冷凍させ、卵アイスクリームを作成した。
食品例3 卵かけご飯用殺菌卵液
 殻付き卵を割卵装置で卵黄膜を割らずに卵白から分離し、その生卵黄1個(約20g)を殺菌済みのプラスチック容器に入れ、その上から80℃に保温した調製例4で調製した卵白加水分解物40gを加え、直ちに無菌的にプラスチック容器にプラスチックシールを熱溶着して蓋をした。この方法により、卵黄膜上の細菌を80℃の卵白加水分解物で加熱殺菌し、卵黄が丸ごと入っている卵かけご飯用殺菌液卵を作成した。
食品例4 卵白栄養食品(ドリンクベース)
 調製例4で調製した卵白加水分解物600gをホモミキサーで撹拌均質化しながら90℃まで加熱し、それに砂糖20gと食物繊維(グアーガム酵素分解物)66gを混合溶解した。この混合液を室温まで冷却し、ビタミンプレミックスタイプRD-2001(マルチビタミン)1gを添加混合し、卵白栄養食品のドリンクベースを作成した。
 このドリンクベースにフレーバーとして、各種飲料やスープや出汁やブイヨンなど、または機能性素材として不飽和脂肪酸を含むオリーブオイルや精製魚油などを等量から半分量添加し、撹拌均質化することにより、良質なアミノ酸を構成成分とし、加熱変性により消化吸収性の優れた卵白加水分解物をベースに調製した栄養ドリンクが得られる。
食品例5 卵白栄養食品(ゲルベース)
 調製例4で調製した卵白加水分解物600gをホモミキサーで撹拌均質化しながら90℃まで加熱し、それに砂糖20gと低メトキシルペクチン6g、食物繊維(グアーガム酵素分解物)60gを混合溶解した。この混合液を室温まで冷却し、ビタミンプレミックスタイプRD-2001(マルチビタミン)1gを添加混合し、卵白栄養食品のゲルベースを作成した。
 このゲルベースに牛乳300gを混合して増粘ゲル化させて、良質なアミノ酸を構成成分とし、加熱変性により消化吸収性の優れた卵白加水分解物をベースに調製した卵白栄養ゲルが得られる。なお、フレーバーとして、各種飲料やジャムやゆであずきを適時添加混合することも可能である。
食品例6 たまごホイップクリーム
 調製例3で調製した卵白加水分解物2Kgに対して卵黄1Kgを添加し混合乳化した後、トレハロース150gとバニラエッセンスを数滴添加し、さらにホモミキサーで均質化しながら体積が1.5~2.0倍になるまで起泡させ、ショートケーキやロールケーキやシュークリーム用たまごホイップクリーム3.15Kgを調製した。

Claims (10)

  1.  卵白をプロテアーゼを用いて加水分解することにより得られる卵白加水分解物であって、当該卵白加水分解物に対して9倍量の0.4Mトリクロロ酢酸(TCA)を加えて沈殿させたときの沈殿物の乾燥重量が卵白を同様に処理した時の乾燥重量の60%以上であることを特徴とする卵白加水分解物。
  2.  プロテアーゼがBacillus属微生物、又はAspergillus属微生物より抽出されるプロテアーゼである請求項1に記載の卵白加水分解物。
  3.  Bacillus属微生物がBacillus stearothermophilusである、請求項2に記載の卵白加水分解物。
  4.  Aspergillus属微生物がAspergillus oryzaeである、請求項2に記載の卵白加水分解物。
  5.  当該卵白加水分解物を等量の油で乳化させ、乳化直後及び1時間経過後の乳化液を0.1%SDS液で200倍希釈した時の吸光度(500nm)が0.1以上であることを特徴とする請求項1~4のいずれか1項に記載の卵白加水分解物。
  6.  有効成分として請求項1~5のいずれか1項に記載の卵白加水分解物を含有することを特徴とする乳化剤。
  7.  有効成分として請求項1~5のいずれか1項に記載の卵白加水分解物を含有することを特徴とする乳化安定剤。
  8.  請求項1~5のいずれか1項に記載の卵白加水分解物を配合することを特徴とする加工食品。
  9.  卵白をプロテアーゼを用いて45~70℃で0.5~2時間、pH6~9で加水分解する工程を含む卵白加水分解物の製造方法。
  10.  さらに加水分解された卵白を75~100℃で5~30分間加熱する工程を含む請求項9に記載の製造方法。
PCT/JP2014/064169 2014-05-28 2014-05-28 高乳化性卵白加水分解物 WO2015181917A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112016027575-6A BR112016027575A2 (ja) 2014-05-28 2014-05-28 High emulsifiability egg white hydrolysis thing
US15/313,592 US20170150737A1 (en) 2014-05-28 2014-05-28 Highly emulsifiable albumen hydrolysate
CN201480080774.8A CN106572680B (zh) 2014-05-28 2014-05-28 高乳化性蛋清水解物
PCT/JP2014/064169 WO2015181917A1 (ja) 2014-05-28 2014-05-28 高乳化性卵白加水分解物
JP2016523032A JP6462676B2 (ja) 2014-05-28 2014-05-28 高乳化性卵白加水分解物
EP14892965.6A EP3155902B1 (en) 2014-05-28 2014-05-28 Process for producing a highly emulsifiable albumen hydrolysate
US17/342,726 US20210289811A1 (en) 2014-05-28 2021-06-09 Highly emulsifiable albumen hydrolysate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064169 WO2015181917A1 (ja) 2014-05-28 2014-05-28 高乳化性卵白加水分解物

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/313,592 A-371-Of-International US20170150737A1 (en) 2014-05-28 2014-05-28 Highly emulsifiable albumen hydrolysate
US17/342,726 Division US20210289811A1 (en) 2014-05-28 2021-06-09 Highly emulsifiable albumen hydrolysate

Publications (1)

Publication Number Publication Date
WO2015181917A1 true WO2015181917A1 (ja) 2015-12-03

Family

ID=54698297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064169 WO2015181917A1 (ja) 2014-05-28 2014-05-28 高乳化性卵白加水分解物

Country Status (6)

Country Link
US (2) US20170150737A1 (ja)
EP (1) EP3155902B1 (ja)
JP (1) JP6462676B2 (ja)
CN (1) CN106572680B (ja)
BR (1) BR112016027575A2 (ja)
WO (1) WO2015181917A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275712A (zh) * 2017-07-21 2019-01-29 内蒙古伊利实业集团股份有限公司 一种两吃酸奶及其制备方法
CN109645372A (zh) * 2019-01-29 2019-04-19 黑龙江中农兴和生物科技股份有限公司 一种高功能性全蛋粉的制备工艺和制备装置
CN110720617A (zh) * 2019-11-29 2020-01-24 湖北神丹健康食品有限公司 蛋花豆腐柴果冻及其制作方法
CN114507279B (zh) * 2022-01-25 2023-11-21 湖北瑞邦生物科技有限公司 一种抗氧化卵清蛋白肽的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132157A (ja) * 1984-11-30 1986-06-19 Q P Tamago Kk 耐熱性卵白の製造方法
JPH02135097A (ja) * 1988-11-14 1990-05-23 Terumo Corp 卵白加水分解物およびタンパク質加水分解物の製造法
JPH03249935A (ja) * 1990-02-28 1991-11-07 Q P Corp 乳化剤
JP2006101801A (ja) * 2004-10-07 2006-04-20 Q P Corp 耐熱性卵白
JP2006320315A (ja) * 2005-04-22 2006-11-30 Q P Corp 酸性水中油型乳化食品
JP2014103957A (ja) * 2012-11-29 2014-06-09 Hajime Hatta 高乳化性卵白加水分解物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970520A (en) * 1973-09-17 1976-07-20 General Foods Corporation Nutritionally improved foodstuffs
CA1198072A (en) * 1982-02-22 1985-12-17 Nicholas Melachouris Process for the preparation of protein hydrolysates
DD294855A5 (de) * 1990-06-07 1991-10-17 Berlin-Chemie,De Emulgator fuer nahrungsmittel und verfahren zu seiner herstellung
DK46793D0 (da) * 1993-04-26 1993-04-26 Novo Nordisk As Enzym
JP4741350B2 (ja) * 2004-12-06 2011-08-03 キユーピー株式会社 酸性水中油型乳化食品およびその製造方法、抗酸化材、ならびに呈味改善材
EP1867237A1 (en) * 2006-06-15 2007-12-19 Nestec S.A. Hypoallergenic Egg
US20130251851A1 (en) * 2010-11-30 2013-09-26 Kewpie Corporation Egg white hydrolysate and production method therefor
WO2012146717A1 (en) * 2011-04-29 2012-11-01 Dsm Ip Assets B.V. Preparation of an egg white composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132157A (ja) * 1984-11-30 1986-06-19 Q P Tamago Kk 耐熱性卵白の製造方法
JPH02135097A (ja) * 1988-11-14 1990-05-23 Terumo Corp 卵白加水分解物およびタンパク質加水分解物の製造法
JPH03249935A (ja) * 1990-02-28 1991-11-07 Q P Corp 乳化剤
JP2006101801A (ja) * 2004-10-07 2006-04-20 Q P Corp 耐熱性卵白
JP2006320315A (ja) * 2005-04-22 2006-11-30 Q P Corp 酸性水中油型乳化食品
JP2014103957A (ja) * 2012-11-29 2014-06-09 Hajime Hatta 高乳化性卵白加水分解物

Also Published As

Publication number Publication date
EP3155902B1 (en) 2023-09-06
CN106572680B (zh) 2020-03-17
JP6462676B2 (ja) 2019-01-30
EP3155902A4 (en) 2017-12-06
BR112016027575A2 (ja) 2018-01-30
EP3155902A1 (en) 2017-04-19
JPWO2015181917A1 (ja) 2017-04-20
US20210289811A1 (en) 2021-09-23
CN106572680A (zh) 2017-04-19
US20170150737A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US20210289811A1 (en) Highly emulsifiable albumen hydrolysate
KR100439291B1 (ko) 대두 단백질 가수분해물, 그 제조방법 및 용도
DK202300015Y3 (da) Ikke-animalsk baserede proteinkilder med funktionelle egenskaber
JP5593697B2 (ja) 新規大豆たん白素材及びその製造方法
JP5321028B2 (ja) 食品用物性改良剤
US20070065564A1 (en) Oil-in-water emulsified composition
JP6185713B2 (ja) 高乳化性卵白加水分解物
Asaithambi et al. Recent application of protein hydrolysates in food texture modification
Pathania et al. Stability of proteins during processing and storage
Nasrollahzadeh et al. Proteins in food industry
JP3417350B2 (ja) 大豆蛋白加水分解物及びその製造法並びにそれを使用した製品
Kempka et al. Functional properties of soy protein isolate of crude and enzymatically hydrolysed at different times.
AU2022348575A1 (en) Non-animal based protein sources with functional properties
JP5644211B2 (ja) 酸性水中油型乳化食品
RU2581911C2 (ru) Способ получения функциональной добавки на основе гидролизата казеина
JP7446049B2 (ja) 粉末油脂
JP2020043772A (ja) 加熱凝固卵白の製造方法
JP5298870B2 (ja) 酸性水中油型乳化食品の製造方法
JP5176972B2 (ja) 液卵の製造方法及び該液卵を用いた酸性水中油型エマルジョン食品の製造方法
JP2003038127A (ja) 卵加工食品
JPS62115258A (ja) 調理用乳化油脂
JP2001078684A (ja) 食品の物性改良剤及びその製造法
JP2001128625A (ja) 水中油型乳化組成物
JPH0449391B2 (ja)
JP2005323501A (ja) 食品用品質改良剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523032

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15313592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015606

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027575

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014892965

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892965

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016027575

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161124