WO2015180660A1 - 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 - Google Patents

一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 Download PDF

Info

Publication number
WO2015180660A1
WO2015180660A1 PCT/CN2015/080035 CN2015080035W WO2015180660A1 WO 2015180660 A1 WO2015180660 A1 WO 2015180660A1 CN 2015080035 W CN2015080035 W CN 2015080035W WO 2015180660 A1 WO2015180660 A1 WO 2015180660A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
biosoluble
felt
fiber mat
adhesive
Prior art date
Application number
PCT/CN2015/080035
Other languages
English (en)
French (fr)
Inventor
杨胜利
林琦海
陈艳华
张昆明
Original Assignee
福建赛特新材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建赛特新材股份有限公司 filed Critical 福建赛特新材股份有限公司
Publication of WO2015180660A1 publication Critical patent/WO2015180660A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/488Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with bonding agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs

Definitions

  • the present invention relates to a heat insulating material, a method of producing the same, and a heat insulating product using the heat insulating material.
  • the core material 12 is the core of the VIP, which is stacked by the multilayer felt 121, plays the role of skeleton support, reduces heat transfer and facilitates degassing;
  • the getter 13 is mainly a calcium oxide type getter or alloy type.
  • a getter or calcium oxide and alloy type getter is an important part of VIP. It acts as a residual gas (including moisture, air, etc.) in the bag, and the bag leaks into the bag (including moisture, air). Etc.) to maintain or further increase the vacuum inside the bag and reduce the effect of gas heat transfer on the overall performance of the VIP.
  • the thermal conductivity is a key indicator to measure the overall thermal insulation performance of VIP. The thermal conductivity is high, the adiabatic is poor, and vice versa, the thermal insulation is good.
  • Biosoluble fiber refers to a form that can be dissolved, degraded, and the like in a circulating physiological lung fluid or body fluid, and the product of such a shape is absorbed by the organism or excreted by the organism's own circulation system without being biologically A type of fiber that produces harm to the body.
  • the biosoluble fiber may be a biosoluble organic fiber, a biosoluble inorganic fiber, a biosoluble composite fiber or the like, and may be in the form of cotton (floc) or short bundle.
  • the weight percentage of each component of inorganic fibers (including mineral wool, rock wool, glass wool, glass fiber, refractory fiber, ceramic fiber, etc.) in biosoluble fibers is generally present (Na 2 O+K 2 O+CaO+MgO+BaO) > 18 wt% and / or [(Na 2 O + K 2 O + CaO + MgO + BaO + B 2 O 3 )-2 * (Al 2 O 3 )] > 40 wt%.
  • Such biosoluble inorganic fibers are mostly biosoluble, and can be quickly dissolved and removed when entering a human body or a living body, and the harm to the human body or the living body is minimized.
  • KI [(Na 2 O+K 2 O+CaO+MgO+BaO+B 2 O 3 )-2*(Al 2 O 3 )]*100, wherein each oxide is a weight percentage, so KI>40 The same meaning as [(Na 2 O+K 2 O+CaO+MgO+BaO+B 2 O 3 )-2*(Al 2 O 3 )]>40% by weight.
  • German RAL certification requirements can be certified by the German RAL certification body GGM (Gutetician Mineralwolle EV (GGM) of Frankfurt (Association for the quality of mineral wool, http://www.ral-mineralwolle.de )). Fiber is not a possible carcinogen and does not pose a hazard to the organism.
  • the biosoluble effect can be determined by the dissolution rate constant K dis (specifically as described below). When K dis ⁇ 100 ng / (cm 2 .hr), it means that the fiber is not a possible carcinogen and does not pose a hazard to the organism.
  • the biosoluble effect can be characterized by the dissolution rate constant K dis of the fiber in the simulated human lung fluid.
  • the dissolution rate constant is calculated as follows:
  • d 0 is the initial diameter of the fiber
  • is the initial density of the fiber
  • M is the mass remaining after the fiber is dissolved
  • t is the measurement time.
  • the dissolution rate constant K dis (unit: ng / (cm 2 .hr)) can be obtained experimentally by the above formula (1), and the residence time of the fiber in the lung fluid can be estimated from the calculated K dis .
  • the mathematical relationship between the half-disappearing period t 0.5 and K dis can be obtained as follows:
  • the selected chemical reagents are all chemically pure
  • the experimental device for the solubility of fibers in the simulated human lung fluid (Gamble solution) is shown in Figure 2.
  • a container containing a simulated human lung fluid (Gamble solution) is placed in a water-filled sink.
  • One end of the first pipe extends into the bottom of the container, and the other end communicates with the inlet of the electronic peristaltic pump, and the outlet of the electronic peristaltic pump communicates with the inlet of the test tube bottle containing the fiber (fiber powder) to be tested.
  • a filter cotton is placed at the outlet of the test tube and connected to the container via a second conduit.
  • the test fiber (fiber powder) in the simulation of human lung fluid (Gamble solution) test process the measured fiber (fiber powder) (for longer fibers after grinding into a critical particle size of 100 ⁇ m powder) 1g into the test tube
  • the fiber was immersed in the Gamble solution, the temperature of the solution was controlled to be 36.5 to 37.5 ° C, and the flow rate was controlled at 15 ml/h to carry out the solubility test of the fiber.
  • the experimental time was 72h. 10 ml of Gamble solution was collected every 24 h during the dissolution process, and the ion concentration in the solution was measured by inductively coupled plasma optical emission spectrometry (ICP-AES). After the end of the experiment, the fibers in the test tube were subjected to filtration and calcination, and the mass after dissolution was accurately determined.
  • ICP-AES inductively coupled plasma optical emission spectrometry
  • test object can be confirmed as a non-carcinogen as long as one of the following four conditions is met.
  • Inhalation short-term biological persistence test shows that the semi-disappearing period of fibers with a length of 20 ⁇ m or more is less than 10 days;
  • the tracheal drip method short-term biological durability test shows that the fiber with a length of 20 ⁇ m or more has a semi-disappearing period of less than 40 days;
  • a lung injection residual experiment method may be specifically adopted: 2 mg of fibers having a length of 20 ⁇ m or more or WHO fibers (L>5 ⁇ m, D ⁇ 3 ⁇ m, L/D>3/1) are injected into each mouse by intratracheal instillation. In vivo, the residual fiber-related data within 3 months after the instillation was collected for analysis, and the semi-disappearing period of the fiber in the lung of the experimental mouse was obtained.
  • WHO is the English abbreviation for World Health Organization
  • L is the fiber length
  • D is the fiber diameter
  • the invention aims to provide a bio-soluble fiber mat, which can effectively avoid or effectively reduce the harm of the fiber dust generated in the manufacturing process, the application process and the recycling process, and can reduce the cost and improve the human body. Performance effect.
  • Another object of the present invention is to provide a process for the preparation of the above biosoluble fiber mat.
  • the forms are intertwined or overlapped or interlaced and form inter-connected voids; the adhesive is dispersed between the monofilaments and bonded tightly thereto, and does not exist alone; the average fiber diameter of the biosoluble fibers is ⁇ 30 ⁇ m, and the average fiber length is ⁇ 250mm; biosoluble fiber refers to the dissolution rate constant in the simulated human lung fluid K dis ⁇ 100ng / (cm 2 .hr); inorganic fibers in the biosoluble fiber (including mineral wool, rock wool, glass wool, glass fiber, Refractory fiber, ceramic fiber, etc.) Weight percent of each component (Na 2 O+K 2 O+CaO+MgO+BaO)>18wt% and/or [(Na 2 O+K 2 O+CaO+MgO+BaO+B 2 O 3 )-2*(Al 2 O 3 )]>40% by weight.
  • the biosoluble fiber can be obtained by centrifugation or flame method or wire drawing or spinning.
  • Centrifugal method generally takes the molten or concentrated solution liquid out of the discharge port and then trickles through the centrifuge, and then is vertically sprayed by the high-speed airflow to finally cool into finer fibers.
  • the flame method generally melts the molten or concentrated solution liquid from the discharge port and then cools it into coarse fibers, and then is vertically sprayed by a high-speed flame to finally cool into finer fibers.
  • the fibers obtained by centrifugation and flame method are non-continuous fibers, the shape of the fibers is generally irregular, and the products are mostly cotton-like, so it is called centrifugal cotton and flame cotton.
  • the drawing method is generally characterized in that the molten or concentrated solution is discharged from the discharge port. A certain speed pulls down the gravitational pull and eventually cools into a finer continuous fiber, a continuous fiber.
  • the spinning method generally means that the molten or concentrated solution flows out of the discharge port and is solidified into finer continuous fibers during the stretching process or by air or by water or by a coagulation bath or hot air or hot inert gas. .
  • continuous fibers can be formed by a plurality of monofilaments together to form fiber bundles (or fiber strands, raw yarns), which is advantageous for stable production and increased yield.
  • Monofilament as the name implies, means the meaning of a single fiber. Short-cut fibers are cut from continuous fibers by a cutting machine to a certain length, and others are called "short-cut yarns".
  • the biosoluble fiber can be obtained by the above method to obtain a biosoluble chopped fiber or cotton fiber having an average fiber diameter of ⁇ 30 ⁇ m and an average fiber length of ⁇ 250 mm. If the average fiber diameter of the fiber is more than 30 ⁇ m, the number of fiber layers in the same thickness fiber felt is reduced, the heat transfer path is shortened, the heat transfer of the skeleton is increased, and the gap between the fibers is significantly increased, and the probability of collision between gas molecules is increased, and the total Insulation performance is deteriorated. If the fiber length is more than 250 mm, it is difficult to disperse the felt into a monofilament, and the fiber utilization rate is lowered.
  • Biosoluble Fibers It is also possible to add a small amount of sizing agent during the manufacturing process of the above method to facilitate the manufacture and application of fibers (raw filaments) (including fiber mats).
  • the sizing agent acts or combines with the surface of the fiber to protect the fiber from breaking filaments or filaments or loose filaments.
  • Most of the sizing agents are relatively expensive, and the inclusion of the adhesive component is disadvantageous for fiber dispersion, and therefore the sizing agent generally accounts for no more than 2.5% by weight of the fiber.
  • biosoluble property of biosoluble fibers refers to the behavior that fibers can be dissolved, degraded, etc. in the circulating physiological lung fluid or body fluid, and the products of such behavior are absorbed by the organism or eliminated by the organism's own circulation system. Performance that is harmful in vitro without causing damage to the organism. Biosoluble fibers have good biosolubility.
  • the biosoluble fiber has good biosoluble property, can be quickly dissolved, decomposed and finally removed from the body after entering the living body, and preferably has less crystallization, easy fiber formation, low brittleness and The fiber felt is not easy to be hydrolyzed or dissolved during the manufacturing process.
  • the adhesive is generally bonded to the biosoluble fiber, and does not exist alone; and the biosoluble fiber bonded with the adhesive is inhaled by the human body, most of which is due to the content of the binder on the surface of the biosoluble fiber. It is so low that the bond strength between fibers is poor and it is easy to be knocked down by external force.
  • This biosoluble fiber is continuously dissolved and broken into finer fibers or fragments due to a large part of the surface of the fiber that is not covered with the adhesive. Removed from the body by the body.
  • the weight percentage of each component of inorganic fibers is also consistent with (Na 2 O+K 2 O+CaO+MgO+BaO) >18 wt% and [(Na 2 O+K 2 O+CaO+MgO+BaO+B 2 O 3 )-2*(Al 2 O 3 )]>40 wt%. Therefore, the felt of the invention can effectively avoid or effectively reduce the harm to the human health caused by the fiber dust generated in the manufacturing process, the application process and the recycling process.
  • the adhesive is one or a combination of one of a liquid type adhesive or a powder type adhesive.
  • the adhesive can be an inorganic or organic adhesive.
  • the liquid type adhesive is preferably compatible with water or solvent, has good fluidity and concentration adjustability, and can meet the requirements of uniformity, permeability, operability and circulation; at normal temperature Both have a long shelf life, are relatively stable, and have good practicality.
  • the powder type adhesive is preferably such that the powder particles are finer and the particle size is preferably 1 mm or less, so that the powder is easily dispersed uniformly in the fiber mat.
  • the total volatile organic compound (TVOC) content of the adhesive is preferably 120 g/L or less, the total of benzene, toluene, ethylbenzene, and xylene is 300 mg/kg or less, and the free formaldehyde is 100 mg/kg or less.
  • the total volatile organic compounds can be removed quickly during the curing process of the adhesive and during the VIP manufacturing process to avoid or minimize re-release in the VIP, thereby ensuring optimal and stable performance of the VIP.
  • the preparation method of the biosoluble fiber mat can be a dry centrifugation method or a dry carding method or a wet acid method or a wet gel method.
  • Step 1 After the biosoluble molten or concentrated solution liquid flows out from the discharge port, it enters the high-speed rotating centrifugal head and is thrown out from the fine hole of the centrifugal head; the rotation speed of the centrifugal head is preferably above 500r/min to ensure The liquid has sufficient force to be pulled out from the pores on the centrifugal head; the pore size of the centrifuge head is preferably 0.5 mm or more, so that the flow resistance of the liquid on the pores is not too small and is easy to be thinned from the centrifugal head. Hole out
  • Step 2 The liquid discharged is vertically sprayed by the high-speed airflow around the pores, and the liquid is further blown to be finer; the high-speed airflow may be a high-speed flame or high-speed hot air;
  • Step 3 The finer liquid is cooled to obtain bio-soluble fibers during the flying process; during the cooling process, the adhesive and/or the sizing agent are applied; the cooling may be performed by natural cooling or air cooling or spraying;
  • Step 4 The biosoluble fiber is collected by the negative pressure cotton mesh belt directly opposite the centrifugation head to collect the biosoluble fiber mat, and then the fiber mat is pressed (1-50 Kg/cm 2 ) to shape or heat (100-500). °C) Pressurization (1 ⁇ 50Kg / cm 2 ) to obtain a more dense biosoluble fiber mat;
  • the biosoluble fiber is collected into a biosoluble fiber mat by a negative pressure cotton mesh belt directly opposite the centrifugation head, and then sent to a sizing system, which is applied by spraying, leaching and impregnation, and passed through a negative Pressing the air to adjust the content of the adhesive on the fiber mat, pressurizing the fiber mat and/or entering the drying tunnel to heat (dry) the shape, and finally pressurizing the shape or heating and pressurizing to obtain a dense bio-dissolvable Fiber mat; heating temperature is 100-500 ° C, pressurizing pressure is 1-50 Kg/cm 2 , drying tunnel temperature is 100-400 ° C; adhesive is liquid adhesive or powder adhesive. The addition of the adhesive will exist between the fibers and be tightly bonded to the fibers, so that the fiber structure can be locked to a large extent, and the fiber felt which is easy to rebound after heating and pressing can be significantly improved.
  • This step results in a fiber mat having an average fiber diameter of ⁇ 30 ⁇ m, an average fiber length of ⁇ 250 mm, an adhesive content of ⁇ 15 wt%, and an sizing agent content of ⁇ 2.5 wt%.
  • the evacuation device is connected below the cotton collecting belt, and the evacuation device is preferably arranged and adjusted in order to form a uniform distribution of negative pressure above the mesh belt, and the obtained biosoluble fiber felt has a uniform thickness and a flat surface.
  • the negative pressure under the mesh belt is preferably below 5000Pa, which is beneficial to ensure a relatively obvious negative pressure above the mesh belt.
  • the fiber mat After the comparison test, in the above step four, it is preferable to pressurize the fiber mat (1 to 50 kg/cm 2 ) or press (100 to 500 ° C) to press (1 to 50 kg/cm 2 ) to obtain the shape.
  • the biosoluble fiber mat is denser and has a more regular shape, and the fiber mat has better strength.
  • the relatively dense fiber felt is relatively free of fluffy fiber felt, and the thickness is obviously reduced by more than 1/3, which can effectively save the size of the VIP barrier bag; the dense fiber felt has a better shape and strength at the same time, which is beneficial to the fiber felt application.
  • VIP packaging operation and follow-up application of VIP is a better shape and strength at the same time, which is beneficial to the fiber felt application.
  • Dry combing involves the following steps:
  • Step 1 Put the biosoluble fiber (cotton) into the unpacking machine and open the unit for coarse opening of the fiber; the opener can open the bundled fiber; the opening unit can include a pre-opening machine and a fine opening machine, which can be The fiber is further opened; the opening unit is preferably equipped with a slag removal system, which can remove slag balls or impurities which may be contained in the fiber to ensure the quality of the product;
  • Step 2 the coarsely-opened bio-soluble fiber can be sent to the carding machine by the cotton feeding machine to carry out the thin layered bio-soluble fiber felt which is completely opened and combed uniformly;
  • the cotton feeding machine can be a vibration feeding machine Or air pressure feeding machine, the coarse opening fiber can be further opened and mixed to deliver a uniform felt layer (cotton layer);
  • the carding machine can be a single cylinder double doffer carding machine or a double cylinder double doffer carding machine, which can The fiber is combed into a single fiber state;
  • the cotton feeder or the carding machine is preferably equipped with a slag removing system, which can remove the slag balls or impurities which may be contained in the fiber to ensure the quality of the product; and steps 3 and 4 can be further performed;
  • Step 3 transferring the thin layered fiber felt to a laying machine for laying the net to obtain a biosoluble fiber mat laminated with more than 2 layers;
  • the laying machine may be a clamping laying machine or a cross laying machine;
  • the density of needling or spunlacing is preferably 100 thorns/cm 2 or less, so that in addition to obtaining sufficient strength for the fiber mat to facilitate subsequent application, the fibers in the fiber mat are not excessively distributed and interwoven in the thickness direction, thereby It can control the heat transfer of less fiber in the thickness direction, ensuring the thermal insulation performance of the fiber mat in VIP.
  • Acupuncture or spun density refers to the number of times the fiber mat is needled or spun in every square centimeter (cm 2 ). The greater the density of the needle or spunlace, the more the distribution and interlacing of the fiber in the thickness direction, and then the fiber The easier the heat transfer in the thickness direction, the better the thermal insulation performance of the fiber mat.
  • step one and/or step two it is of course also conceivable to add the adhesive in step one and/or step two, so that the adhesive can be more evenly dispersed between the fibers, and then the fiber mat is heated and pressed to form and/or enter the drying tunnel for heating (drying). Shaped to obtain a denser biosoluble fiber mat.
  • the needles and the teeth are opened frequently in the opening machine or the carding machine, and the adhesive is easily solidified or melted in advance to cause the fibers and the opening needle. If the teeth and other components are bonded, the opening effect of the opening machine or the carding machine is deteriorated or blocked, so it is best not to add the adhesive in the first step and/or the second step.
  • the fiber mat is denser and more regular in shape, and the strength of the fiber mat is also better.
  • the relatively dense fiber felt is relatively free of fluffy fiber felt, and the thickness is obviously reduced by more than 1/3, which can effectively save the size of the VIP barrier bag; the dense fiber felt has a better shape and strength at the same time, which is beneficial to the fiber felt application.
  • VIP packaging operation and follow-up application of VIP is preferable to pressurize the fiber mat (1 to 50 Kg/cm 2 ) or press (100 to 500 ° C) to press (1 to 50 kg/cm 2 ).
  • the wet acid process consists of the following steps:
  • Step 1 Put the biosoluble fiber (cotton) into the white water in the beater for beating to obtain a slurry with uniform dispersion;
  • the pH of the white water is 2 to 4;
  • the white water contains sulfuric acid or hydrochloric acid to adjust the pH;
  • the pulping concentration It is preferably below 10% by weight, which is advantageous for fiber dispersion and opening;
  • Step 2 further diluting the slurry or feeding the molding machine through the slag remover for on-line molding, and performing forced vacuum dehydration to obtain a semi-wet or light-wet biosoluble fiber mat; the fiber after further dilution of the slurry
  • the concentration is preferably 2% by weight or less to facilitate the molding effect and stability; the moisture content of the fiber mat is preferably less than 75 wt%, which is advantageous for reducing the cost and energy saving of the drying equipment;
  • the molding machine is a slanting net forming machine or a cylinder forming machine;
  • the slag remover is generally centrifugally slag, which can remove slag balls or impurities which may be contained in the fiber to ensure the quality of the product;
  • Step 3 The semi-wet or light-wet bio-soluble fiber felt is conveyed to an oven (dao) for drying to obtain a bio-soluble fiber mat; the temperature of the oven (channel) is preferably 100-400 °C.
  • the wet glue method consists of the following steps:
  • Step 1 The biosoluble fiber (cotton) is put into the white water in the beater for beating to obtain a uniformly dispersed slurry; the viscosity of the white water is ⁇ 60mpa.s; the white water contains (thickener, dispersant, defoaming) One or more of the agent, the preservative and the adhesive; the active ingredient content of each additive in the white water is preferably 0 to 1 wt% thickener, 0 to 0.2 wt% defoamer, 0 to 1 wt% dispersant 0 ⁇ 0.2wt% preservative and 0 ⁇ 1wt% adhesive;
  • Step 2 further diluting the slurry or feeding the molding machine through the slag remover for on-line molding, and performing forced vacuum dehydration to obtain a semi-wet or light-wet biosoluble fiber mat; the fiber after further dilution of the slurry
  • concentration is preferably less than 2wt%, in order to facilitate the molding effect and stability;
  • the moisture content of the fiber mat is preferably less than 75wt%, which is beneficial to reduce the cost and energy saving of the drying equipment;
  • the slag remover is generally centrifugally slag, and the fiber can be removed. Possible slag balls or impurities to ensure product quality;
  • the adhesive is added, mixed uniformly, or fed to a molding machine through a slag remover for on-line molding, and subjected to forced vacuum dehydration to obtain a semi-wet or light-wet biosoluble fiber mat;
  • the fiber concentration after further dilution of the slurry is preferably 2 wt% or less to facilitate the molding effect and stability;
  • the moisture content of the fiber mat is preferably less than 75 wt%, which is advantageous for reducing the cost and energy saving of the drying equipment;
  • the slag remover is generally centrifuged Deslagging removes slag balls or impurities that may be contained in the fiber to ensure product quality;
  • the slurry is further diluted or fed into a molding machine through a slag cleaner for on-line molding, and subjected to forced vacuum dewatering and setting, and then sent to a sizing system for sizing to obtain a semi-wet or light-wet bio-soluble fiber felt.
  • the fiber concentration after further dilution of the slurry is preferably 2 wt% or less to facilitate the molding effect and stability; the moisture content of the fiber mat is preferably less than 75 wt%, which is advantageous for reducing the cost and energy saving of the drying equipment; Centrifugal slag removal can remove slag balls or impurities that may be contained in the fiber to ensure product quality;
  • the forming machine is a slanting net forming machine or a cylinder forming machine;
  • the sizing system can perform leaching liquid, dipping Glue, spray glue, spray (sprinkle) rubber powder method;
  • the sizing system contains a forced negative pressure evacuation device, which can adjust the content of the biosoluble fiber felt glue, and also enable the glue to penetrate the felt layer Infiltrating each fiber and distributing it more evenly in the fiber mat;
  • Step 3 The semi-wet or light-wet bio-soluble fiber felt is conveyed to an oven (dao) for drying to obtain a bio-soluble fiber felt.
  • the temperature of the oven (channel) is preferably from 100 to 400 °C.
  • the core material is laminated by a plurality of layers of felt; the felt is a fiber mat containing biosoluble fibers; wherein the biosoluble fiber is 85 to 100% by weight, cured 0 to 15% by weight of the adhesive; the biosoluble fibers are entangled or lapped or interlaced in a monofilament form and form interconnected voids; the adhesive is dispersed between the filaments and bonded tightly thereto, not alone;
  • the average fiber diameter of the soluble fiber is ⁇ 30 ⁇ m, the average fiber length is ⁇ 250mm, the average fiber diameter of the selected biosoluble fiber is 0.5 ⁇ m ⁇ 15 ⁇ m; the average fiber length is 3mm ⁇ L ⁇ 100mm;
  • the biosoluble fiber refers to K dis dissolution rate constant in simulated lung fluid of humans ⁇ 100ng / (cm 2 .hr); biosoluble inorganic fibers in the fiber (including mineral wool, rock wool, glass wool, glass fibers, refractory fibers, ceramic fibers, etc.) Weight percent of
  • a packaging bag; the film of the barrier bag may be one or more of (polymer film, coated polymer film, aluminum foil).
  • the vacuum value in the barrier bag is preferably below 25 Pa, so that the thermal insulation performance of the vacuum insulation panel can be minimized by the heat transfer effect of the gas.
  • the core material can be obtained by feeding the continuous dry felt prepared by the above dry centrifugation method or dry carding method or wet acid method or wet gel method into a cutting machine and cutting into a dry mat according to a required specification. Then, the dry mat is stacked in a prescribed number of layers and arranged into a desired core material for the vacuum insulation panel.
  • the invention relates to a method for manufacturing a felt for a vacuum insulation panel, which firstly prepares a biosoluble fiber (cotton) raw yarn according to the method for preparing a fiber felt as described above (dry centrifugation or dry combing or wet acid or wet gel) Method) dispersing, dissolving, or containing slag of the raw silk, completing the monofilament of the raw silk and allowing the fibers to be entangled or lapped or interwoven to form a fiber mat, and the adhesive may be added during the preparation according to the strength requirement. The adhesive is cured between the fibers to give or obtain a dry felt of suitable strength to the adhesive.
  • the vacuum insulation board of the invention adopts the above-mentioned felt, which can effectively avoid or effectively reduce the harm to the human health caused by the fiber dust (including MMMF) generated in the manufacturing process, the application process and the recycling process.
  • the green environmental effect is substantially improved and the thermal conductivity is not affected or even lower.
  • Figure 1-1 is a schematic cross-sectional view of the A-A direction of Figure 1.
  • Figure 2 is a schematic diagram of a biosoluble fiber solubility test apparatus.
  • Figure 4 is a micrograph of the biosoluble fiber dissolved in a Gamble solution.
  • Figure 6 is a microstructural view of a biosoluble fiber mat prepared by a wet acid process.
  • Figure 7 is a microstructural view of a biosoluble fiber mat prepared by a wet gel process.
  • Figure 8 is a magnified 1500x micrograph of a biosoluble fiber mat prepared using biodissolvable chopped fibers.
  • Figure 9 is a magnified 250-fold microstructure of a biosoluble fiber mat prepared using biodissolvable chopped fibers.
  • Step 1 Biosoluble melt liquid [Preparation ratio of feed liquid: 58wt% SiO 2 , 20wt% CaO, 18wt% MgO, 2.5wt% Na 2 O, 0.5wt% K 2 O, 0.8wt% ZrO 2 , 0.2 wt% Al 2 O 3 and other impurities] from the spout, enter 2500r / min spinning head rotates at high speed, and 2.5mm away from the heart of the pores 20 to be thrown into a fine stream of 30 ⁇ m, yet fiberizing The temperature of the centrifugal head is controlled at 950 ⁇ 1000 ° C;
  • Step 2 The liquid material (fine stream) is blown vertically by the high-speed flame airflow around the pores, and the liquid is further blown into a finer (wire strand); the flame current velocity is 200 m/s, and the flame temperature is 1200 °. 1500 ° C;
  • Step 3 The finer liquid (wire strand) is further cooled by the wind in the process of flying to obtain biosoluble fiber;
  • Step 4 The bio-soluble fiber is collected by a negative-pressure net under the mesh belt directly opposite the centrifugal head at a collecting cotton belt of 200-500 Pa, and then the fiber mat is heated (200-250 ° C). (56 Kg/cm 2 ) was shaped to obtain a relatively dense continuous biosoluble fiber mat having an average fiber diameter of 6 ⁇ m, an average fiber length of 30 mm, and a slag content of 0.5 wt%.
  • the lower part of the cotton collecting belt is connected with the evacuation device, and the evacuation device is divided into three zones, and at the same time, a cotton blower is arranged above the cotton collecting belt to perform high-pressure wind adjustment to further spread the flying fiber evenly, so that the obtained biosoluble fiber is obtained.
  • the felt has a uniform thickness and a flat surface.
  • the fiber mat has a density of 200 to 250 kg/m 3 and a thickness of 2 to 3 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • the first type does not put the VIP of the getter.
  • the continuous dry felt is fed into the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (6 layers), and the required materials are prepared.
  • the core material of VIP was taken and baked at 105 ° C for 30 min. After baking, it is taken out and stacked, and then placed in a barrier bag made of a five-layer film of nylon, polyethylene terephthalate (PET), aluminum foil, nylon, polyethylene (PE).
  • the gas in the barrier bag is evacuated, and the vacuum degree outside the barrier bag (ie, in the vacuum sealing device) reaches 0.045 Pa.
  • the vacuum sealing device is vacuumed to remove the barrier.
  • the bag, the edge of the package will be VIP.
  • the vacuum inside this VIP is about 1 Pa.
  • the continuous dry felt is fed into the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (6 layers), and the required materials are prepared.
  • the core material of VIP Take the core material (6 layers of 300mm ⁇ 300mm ⁇ 2mm dry felt) and open a circular blind hole with a getter size ( ⁇ 30mm, thickness 8mm) on the side (as shown in Figure 1, the blind hole 13 The distance from the center to the edge of the core material 12 was 35 mm), and the core material was baked at 105 ° C for 30 min.
  • a getter combined with calcium oxide powder and lithium-lithium alloy is placed in the corresponding blind hole of the core material.
  • the core material with a getter is placed in a barrier bag made of a five-layer film of nylon, polyethylene terephthalate, aluminum foil, nylon, polyethylene, etc., and then sent to a vacuum sealing device.
  • the equipment includes the gas in the barrier bag, and the vacuum degree outside the barrier bag (ie, in the vacuum sealing device) reaches 0.045Pa. After the barrier bag is sealed, the vacuum sealing device breaks the vacuum to take out the barrier bag, and the edge is obtained.
  • VIP The vacuum inside this VIP is about 1 Pa.
  • the above two control VIPs were made according to the above specifications and parameters.
  • the thermal insulation performance of the two control VIPs was tested by the above method.
  • the thermal conductivity of the first control VIP was 3.26 mw/(m). k); the thermal conductivity of the second control VIP is 3.14 mw/(m ⁇ k). It can be seen that the thermal conductivity of the first VIP can be reduced by 1.71 mw / (m ⁇ k) than the first control VIP; the thermal conductivity of the second VIP can be reduced by 1.64 mw / (m ⁇ k) than the second control VIP.
  • the improvement in thermal insulation performance is quite obvious.
  • biosoluble fiber mat of the present invention comprising 85 wt% biosoluble fiber and 15 wt% cured adhesive, wherein: the biosoluble fiber is a biosoluble inorganic fiber, specifically biosoluble glass wool,
  • the glass composition is: 79 wt% SiO 2 , 12 wt% CaO, 4 wt% MgO, 2.5 wt% Na 2 O, 0.5 wt% K 2 O, 0.8 wt% ZrO 2 , 0.2 wt% Al 2 O 3 , 1 wt% other impurities,
  • the average fiber diameter is 3 ⁇ m
  • the average fiber length is 250 mm
  • the slag ball content is 0.75 wt%.
  • the dissolution rate constant K dis in the simulated human lung fluid is 155 ng/(cm 2 .hr), in line with European Parliament and Council of Europe No. 1272/2008. Regulations (Classification, labeling and packaging regulations for substances and mixtures) Note Q requirements, the content of fiber (Na 2 O+K 2 O+CaO+MgO+BaO) is 19wt%; the adhesive is pure acrylic emulsion, grade S-05 The solid content is 50% by weight. It is manufactured by Nantong Shengda Chemical Company.
  • the felt is prepared by dry centrifugation, and the process is as follows:
  • the biosoluble melt liquid is prepared in a ratio of 79 wt% SiO 2 , 12 wt% CaO, 4 wt% MgO, 2.5 wt% Na 2 O, 0.5 wt% K 2 O, 0.8 wt% ZrO 2 , 0.2. Wt%Al 2 O 3 , 1wt% other impurities, after flowing out of the discharge port, enter the 2500r/min high-speed rotating centrifugal head, and is taken out from the 2.5mm pores of the centrifugal head into a fine stream of 20-30 ⁇ m. Not yet fibrillated; the temperature of the centrifuge head is controlled at 950 ⁇ 1000 ° C;
  • Step 3 The finer liquid (wire strand) is further cooled by the wind in the process of flying to obtain biosoluble fiber;
  • the lower part of the cotton collecting belt is connected with the evacuation device, and the evacuation device is divided into three zones, and at the same time, a cotton blower is arranged above the cotton collecting belt to perform high-pressure wind adjustment to further spread the flying fiber evenly, so that the obtained biosoluble fiber is obtained.
  • the felt has a uniform thickness and a flat surface.
  • the fiber mat has a density of 180 to 230 Kg/m 3 and a thickness of 2.5 to 3.5 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • biosoluble fiber mat of the present invention consisting only of biosoluble fibers
  • the biosoluble fiber is a biosoluble inorganic fiber, specifically biosoluble rock wool [Rockwool] , model RIF 41001], average fiber diameter 2 ⁇ m, average fiber length 50mm, slag ball content 1.5wt%, simulated dissolution rate constant K dis in human lung fluid is 305ng / (cm 2 .hr), in line with the European Parliament and the European Council Regulation No. 1272/2008 (Regulations on the Classification, Labelling and Packaging of Substances and Mixtures) notes the requirements of Q and complies with the German RAL certification requirements.
  • Step 1 Put the biosoluble rock wool into the unpacking machine to open the bundled fiber, and then transfer it to the pre-opening machine and the fine opening machine equipped with the slag removal system for coarse opening and slag removal;
  • the cotton buds were basically opened and broken, and the larger slag balls in the rock wool were also removed;
  • Step 2 feeding the coarsely opened fiber mat into a vibrating cotton machine equipped with a slag removing system to further loosen and mix the slag and transport a uniform felt layer, and then sent to the double cylinder with the slag removal system.
  • Doffer carding machine for more complete opening, slag removal and combing A thin layered biosoluble fiber mat with uniform distribution; at this time, the rock wool is well separated and smoothed, and most of the slag balls or impurities are removed, and the fibers are intertwined or overlapped or interwoven and form each other. Interconnected voids, but the fiber mat is relatively fluffy and soft, and the thickness of the felt is 3.5 mm;
  • Step 4 The 6-layer laminated bio-soluble fiber felt is fed into the 600-time/min medium-speed upper needle punching machine and the medium speed lower needle punching machine by a drafting machine to perform acupuncture setting, and the needle density is controlled to be 50 thorns/cm. 2 , after entering two two-roll hot rolling mills for heating (220 ° C) pressurization (10Kg / cm 2 ) stereotypes, to obtain a more dense, uniform thickness of continuous bio-soluble fiber mat.
  • the fiber mat has a density of 180 to 220 kg/m 3 and a thickness of 3 to 4 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • biosoluble rock wool still belongs to the MMMF category, but it is not the traditional bio-soluble or bio-insoluble glass wool or mineral (rock) cotton, which is obtained from the rock wool fiber.
  • the filamentized forms are distributed and interpenetrated or overlapped or interwoven and form interconnected voids.
  • the fiber felt of this example was used to prepare a VIP which did not contain a getter.
  • the continuous dry felt is sent to the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (3 layers), and the required materials are arranged.
  • the core material of VIP Take the core material (3 layers of 300mm ⁇ 300mm ⁇ 4mm dry felt), dry it at 105 ° C, and then put it on both sides of nylon, polyethylene terephthalate, aluminum foil, nylon, polyethylene, etc.
  • the barrier film compounded by the layer film is then sent into the vacuum sealing device, and the gas in the barrier bag is evacuated in the device, and the vacuum degree outside the barrier bag (ie, in the vacuum sealing device) reaches 0.045 Pa, and the barrier bag is sealed.
  • the vacuum sealing device is vacuumed to take out the barrier bag, and the edge is VIP.
  • the vacuum inside this VIP is about 1 Pa.
  • the felt is prepared by dry carding, and the process is as follows:
  • Step 3 transferring the thin layered fiber felt to the clamping and laying machine for laying the net to obtain two layers of the biosoluble fiber mat;
  • biosoluble rock wool still belongs to the MMMF category, but it is not the traditional bio-soluble or bio-insoluble glass wool or mineral (rock) cotton, which is obtained from the rock wool fiber.
  • the filamentized forms are distributed and interpenetrated or overlapped or interwoven and form interconnected voids.
  • the fiber felt of this example was used to prepare a VIP which did not contain a getter.
  • the continuous dry felt is fed into the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (8 layers), and the required materials are prepared.
  • the core material of VIP The core material (8 layers of 300 mm ⁇ 300 mm ⁇ 1.5 mm dry felt) was taken and dried at 105 ° C, and then placed on both sides of nylon, polyethylene terephthalate, aluminum foil, nylon, polyethylene, etc.
  • the test method is the same as the first embodiment.
  • the test results the thermal conductivity of 1.81mw / (m ⁇ k), can be reduced by 1.45mw / (m ⁇ k) than the first control VIP; the improvement of thermal insulation performance is quite obvious.
  • the felt is prepared by a wet acid process as follows:
  • Step 2 further diluting the slurry, feeding the slag-removing device to the inclined mesh forming machine for on-line molding, and performing forced vacuum dehydration to obtain the bio-soluble fiber felt; the fiber concentration after further dilution of the slurry is 0.8 wt. %; fiber felt The moisture content is 35 to 45 wt%;
  • Step 3 The semi-moist biosoluble fiber mat is conveyed to an oven (dao) of 200-300 ° C for drying to obtain a continuous bio-soluble fiber mat; the fiber mat is a dry felt, and the water content is 0.7 wt%.
  • the fiber mat has a density of 180 to 220 kg/m 3 and a thickness of 1 to 2 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • Fig. 6 is a microscopic real effect diagram obtained by magnifying 500 times under an electron microscope, and it can be seen that the fibers are distributed in a monofilament form, and are interpenetrated or overlapped or interlaced to form mutually interconnected voids.
  • the core material (12 layers of 300 mm ⁇ 300 mm ⁇ 1 mm dry felt) was taken and dried at 105 ° C, and then placed on both sides of nylon, polyethylene terephthalate (PET), aluminum foil, nylon, and poly
  • PET polyethylene terephthalate
  • a barrier bag composed of five layers of film such as ethylene (PE) is sent into a vacuum sealing device, and the gas in the barrier bag is evacuated in the device, and the vacuum degree outside the barrier bag (ie, in the vacuum sealing device) reaches 0.045. Pa, after the barrier bag is sealed, the vacuum sealing device is vacuumed to take out the barrier bag, and the edge is VIP.
  • the vacuum inside this VIP is about 1 Pa.
  • biosoluble fiber mat of the present invention comprising 95% by weight of biosoluble fiber and 5% by weight of a cured adhesive
  • 95% by weight of the biosoluble fiber is a biosoluble inorganic fiber, in particular a biosoluble glass Fiber [Dahua Yuntong Fiberglass Company, size 22tex], average fiber diameter 11 ⁇ m, average fiber length 15mm, sizing agent content 0.1wt%, simulated dissolution rate constant K dis in human lung fluid is 275ng / (cm 2 .hr ), Germany KI is 43
  • the felt is prepared by a wet glue process as follows:
  • Step 2 further diluting the slurry, feeding the slag remover to the inclined mesh forming machine for on-line molding, and performing forced vacuum dehydration shaping, and then feeding into the sizing system to perform sizing of the sizing solution to obtain semi-wet or light
  • Step 3 The semi-wet biosoluble fiber mat is conveyed to an oven (channel) of 200-300 ° C for drying to obtain a continuous bio-soluble fiber mat; the fiber mat is a dry felt, the water content is 0.7 wt%, and the adhesive content is It is 5 wt%.
  • the fiber mat has a density of 250 to 300 kg/m 3 and a thickness of 0.5 to 1.5 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • Fig. 7 is a microscopic real effect diagram obtained by magnifying 500 times under an electron microscope, and it can be seen that the fibers are distributed in a monofilament form, and are interpenetrated or overlapped or interlaced to form mutually interconnected voids.
  • the fiber felt of this example was used to prepare a VIP which did not contain a getter.
  • the continuous dry felt is fed into the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (24 layers) to be finished.
  • the core material of VIP Take the core material (24 layers of 300mm ⁇ 300mm ⁇ 0.5mm dry felt), dry it at 105 ° C, and then insert double-sided nylon, polyethylene terephthalate, aluminum foil, nylon, polyethylene, etc.
  • the test method is the same as the first embodiment.
  • the test results showed a thermal conductivity of 1.67 mw/(m ⁇ k); the thermal conductivity of the first VIP was reduced by 1.59 mw/(m ⁇ k) compared to the first control VIP.
  • the improvement in thermal insulation performance is quite obvious.
  • biosoluble fiber mat of the present invention consisting of 99 wt% biosoluble fiber and 1 wt% cured adhesive, wherein: 99 wt% biosoluble fiber is 30 wt% biosoluble organic fiber and 39 wt% biore Dissolved inorganic fiber and 30wt% biosoluble composite fiber; 30wt% biosoluble organic fiber specifically 15wt% biosoluble (cotton linters) regenerated cellulose fiber [Hubei Chemical Fiber Group Co., Ltd., specification 20tex] and 15wt% biosoluble Polyglycolide (PGA) fiber [Cyananid, USA, trade name Dexon], is a chopped fiber, average fiber diameter 15 ⁇ m, average fiber length 10mm; 39wt% biosoluble inorganic fiber, specifically 20wt% biosoluble refractory fiber [ British Thermal Ceramics, model Superwool 607] and 19wt% biosoluble ceramic fiber [Foshan Yi Nai Energy Saving Materials Co., Ltd., size 1260], average fiber diameter 3 ⁇ m, average fiber length 50mm,
  • the felt is prepared by a wet glue process as follows:
  • Step 1 The biosoluble glass fiber is put into the white water in the beater for beating to obtain a uniformly dispersed slurry; the viscosity of the white water is 25 mPa.s; the white water contains 1 wt% thickener (methyl cellulose), 1 wt. % dispersant (brand 5040), 0.2 wt% defoamer (brand 3496); beating concentration of 5 wt%;
  • Step 2 after further diluting the slurry, adding 10% by weight of the fiber weight of the adhesive, mixing uniformly, feeding the cylindrical slagizer to the cylinder forming machine for on-line molding, and performing forced vacuum dehydration to obtain a semi-wet bio-availability Dissolving fiber mat;
  • the fiber concentration after further dilution of the slurry is 1 wt%;
  • the moisture content of the fiber mat is 50 to 55 wt%;
  • the adhesive is: an aqueous solution of an amphoteric acrylic resin;
  • Step 3 The semi-moist biosoluble fiber mat is conveyed to an oven (channel) of 200-250 ° C for drying to obtain a continuous bio-soluble fiber mat; the fiber mat is a dry felt, and the water content is 0.2 wt%, and is cured.
  • the adhesive content was 1% by weight.
  • the fiber mat has a density of 240 to 290 Kg/m 3 and a thickness of 1 to 2 mm, and the density and thickness are both measured at a pressure of 100 KPa.
  • Fig. 8 is a microscopic real effect diagram obtained by magnifying 1500 times under an electron microscope. It can be seen that the biosoluble fibers 81 and 82 are mostly distributed in a monofilament form, and are entangled, overlapped, and interlaced with each other. It is dispersed in a solidified form between biosoluble 81, 82 filaments and bonded tightly to them, not alone. Fig.
  • FIG. 9 is a slightly macroscopic effect diagram obtained by magnifying 250 times under an electron microscope, and it can be seen that the biosoluble fibers 91 and 92 are cross-distributed in a three-dimensional space to form a fiber mat, which shows a good performance. Practicality.
  • the fiber felt of this example was used to prepare a VIP which did not contain a getter.
  • the continuous dry felt is fed into the cutting machine and cut into dry mats according to the required specifications (300mm ⁇ 300mm), and then the dry mats are stacked in a specified number of layers (12 layers) to be finished.
  • the core material of VIP Take the core material (12 layers of 300mm ⁇ 300mm ⁇ 1mm dry felt), dry it at 105 ° C, and then put it on both sides of nylon, polyethylene terephthalate, aluminum foil, nylon, polyethylene, etc.
  • the test method for testing the above VIP insulation performance is the same as the first embodiment.
  • the test results the thermal conductivity of 1.79mw / (m ⁇ k), can be reduced by 1.47mw / (m ⁇ k) than the first control VIP; the improvement of thermal insulation performance is quite obvious.
  • the fiber felt prepared by the bio-soluble fiber of the invention is made into a vacuum insulation board, which not only has good environmental protection performances such as no harm to the environment and the living body, but also has high-efficiency heat insulation performance and strength. Good, suitable for continuous large-scale industrial production, is an excellent thermal insulation material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板,该毡是含有生物可溶解纤维的纤维毡;其中生物可溶解纤维85-100wt%、固化的胶粘剂0-15wt%;生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布且少数的延伸方向靠近该毡厚度方向;胶粘剂分散在单丝间并与它们粘结紧密,不单独存在;生物可溶解纤维平均纤维直径为≤30μm、平均纤维长度为≤250μm。能有效避免或减少纤维毡制备和使用过程中所产生的纤维粉尘对人体的危害。

Description

一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 技术领域
本发明涉及一种绝热材料及其制备方法和使用该绝热材料的绝热产品。
背景技术
真空绝热板(英文全称Vacuum Insulation Panel,以下简称VIP)主要由芯部材料(以下简称芯材)、阻隔袋和吸气剂组成,其结构如图1和图1-1所示。阻隔袋11主要为高分子薄膜与特殊镀层薄膜或铝箔复合组成的包装袋,是VIP的关键部件,起着阻隔空气、水气等气体进入袋内,以达到真空绝热的目的;阻隔袋11的边缘有封边10。芯材12是VIP的核心,它由多层毡121叠置而成,起着骨架支撑、减少传热及有利于脱气等作用;吸气剂13主要为氧化钙型吸气剂或合金型吸气剂或氧化钙与合金型吸气剂,是VIP的重要部件,起着吸收袋内残留气体(包括水气、空气等)、包装袋渗漏入袋内的气体(包括水气、空气等),以维持或进一步提高袋内真空度,减少气体传热对VIP整体性能的影响。其中,导热系数是用来衡量VIP整体绝热性能的关键指标,导热系数高则绝热差,反之,则绝热好。
目前VIP的芯材中,毡由生物不溶解或较难溶解的纤维(主要以人造无机纤维为主,如玻璃棉、矿(岩)棉等)通过湿式法或干式法制造而成,由于耐温较高、质硬、防火、成本较低、导热系数较好等而得到业界高度重视及应用。尤其以人造矿物质纤维(英文全称Man Made Mineral Fibres,简称MMMF)中传统的玻璃棉及或传统的矿(岩)棉为主要骨架构建材料通过湿法成型工艺进行生产制造这种毡。
传统的玻璃棉、矿(岩)棉均属于非连续玻璃纤维。非连续玻璃纤维是指熔融的玻璃液从熔池或熔炉流出后被外力(如气吹、辊甩等)作用并最终冷却成更细的线段式玻璃态纤维。然而,从传统的玻璃棉、矿(岩)棉的制造、二次加工、湿法成型过程、芯材切割、包装等工序都产生了大量的纤维粉尘,这些纤维粉尘将在一定时间内悬浮在操作区及附近的空气当中。由于这些纤维粉尘的线径大多在3μm以下,极有可能被生物体(包括人体)吸入。这些纤维粉尘也大多在生物体内不溶解或较难溶解,很容易引起生物体炎症及病变等,隶属于世界卫生组织(WHO)的国际癌症研究机构(IARC)将MMMF分类为致癌危险程度分组的2B组(可能致癌物)。
生物可溶解纤维是指能够在循环的生理肺液或体液中较快地发生溶解、降解等形为以及这种形为的产物被生物体吸收利用或通过生物体自身循环体系排除体外而不对生物体产生危害的一类纤维。生物可溶解纤维可以为生物可溶解有机纤维、生物可溶解无机纤维及生物可溶解复合纤维等,其存在形式可为棉(絮)状或短束状。
生物可溶解纤维中无机纤维(包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维等)各成分的重量百分数一般存在着(Na2O+K2O+CaO+MgO+BaO)>18wt%和/或[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%。这样的生物可溶解无机纤维大多生物可 溶解性能较好,当进入人体或生物体后能够较快溶解而被清除,对人体或生物体产生的危害性会最小。生物可溶解无机纤维(Na2O+K2O+CaO+MgO+BaO)>18wt%在Regulation(EC)No 1272 2008、Directive 67/548/EEC、Directive 97/69/EC及德国RAL认证机构(Gutegemeinschaft Mineralwolle E.V.(GGM)of Frankfurt(Association for the quality of mineral wool,http://www.ral-mineralwolle.de))均有被提及;(Na2O+K2O+CaO+MgO+BaO)>18wt%代表着纤维为非致癌物而是可能致癌物或不分类为致癌物。同时,在德国相关法规TRGS 905,section 2.3中指出,生物可溶解无机纤维只要[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%即可确认为不分类为致癌物。在TRGS 905中定义
KI=[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]*100,式中各氧化物均为重量百分数,故KI>40与[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%为同一意思。
为了判断纤维类物质是否可能致癌,国际上通行以其是否符合Directive 97/69/EC及欧洲议会和欧洲理事会第1272/2008号法规(物质和混合物的分类、标签和包装法规)中注解Q的要求和/或符合德国RAL认证要求和/或生物可溶解性效果作为判断标准。是否符合欧洲议会和欧洲理事会第1272/2008号法规(物质和混合物的分类、标签和包装法规)注解Q的要求可由EUCEB(European Certification Board For Mineral Wool Products,矿棉产品欧洲认证委员会)进行认证,如果符合即表示纤维不属于可能致癌物,对生物体不构成危害。是否符合德国RAL认证要求可由德国RAL认证机构GGM(Gutegemeinschaft Mineralwolle E.V.(GGM)of Frankfurt(Association for the quality of mineral wool,http://www.ral-mineralwolle.de))进行认证,如果通过即表示纤维不属于可能致癌物,对生物体不构成危害。生物可溶解性效果可由溶解速率常数Kdis(具体如下所述)来判定,当Kdis≥100ng/(cm2.hr)即表示纤维不属于可能致癌物,对生物体不构成危害。
生物可溶解性效果可通过纤维在模拟人体肺液中的溶解速率常数Kdis来表征,溶解速率常数计算公式如下:
Figure PCTCN2015080035-appb-000001
式中:d0为纤维初始直径;
ρ为纤维初始密度;
M0为纤维初始质量;
M为纤维溶解后剩余的质量;
t为测定时间。
溶解速率常数Kdis(单位:ng/(cm2.hr))可以通过以上公式(1)用实验手段获得,根据计算出的Kdis就可以估算纤维在肺液中的停留时间。通过线性回归法,可得到半消失期t0.5与Kdis的数学关系式如下:
t0.5=e5.79×Kdis -0.708--------(2)
通过公式(2)计算出半消失期t0.5,与欧盟标准中的半消失期比较,评估纤维的生物可溶解性。
模拟人体肺液通常采用Gamble溶液,其组成详见表1。配制溶液时控制溶液的PH值为7.35~7.45(人体肺液的PH值),根据PH值的要求,可以对这种溶液进行适当的改性。
表1标准Gamble溶液的化学组成(1000ml)
化学组成 质量(g) 纯度(%)
MgCl2·6H2O 0.212 ≥98.0
NaCl 6.415 ≥99.5
Na2HPO4 0.148 ≥99.0
Na2SO4·2H2O 0.179 ≥99.0
CaCl2·4H2O 0.318 ≥96.0
NaHCO3 2.703 ≥99.8
酒石酸钠 0.180 ≥98.0
柠檬酸钠 0.186 ≥99.0
乳酸钠 0.175 50.0~60.0
丙酮酸钠 0.172 ≥99.0
甘氨酸 0.118 ≥99.0
所选用化学试剂均为化学纯
纤维在模拟人体肺液(Gamble溶液)的溶解性实验装置如图2所示。盛有水的水槽中放置盛有模拟人体肺液(Gamble溶液)的容器。第一管道的一端伸入容器的底部,另一端连通电子蠕动泵的进口,电子蠕动泵的出口连通装被测纤维(纤维粉)的试管瓶的进口。试管瓶的出口处设过滤棉并经第二管道连通到容器。
被测纤维(纤维粉)在模拟人体肺液(Gamble溶液)的测试过程为:将被测纤维(纤维粉)(为较长纤维经研磨成临界粒度为100μm粉末状后)取1g放入试管瓶中,使纤维浸在Gamble溶液中,控制溶液温度为36.5~37.5℃,流速控制在15ml/h进行纤维的溶解性实验。实验时间分别为72h。溶解过程中每隔24h收集Gamble溶液10ml,用电感耦合等离子体发射光谱仪(ICP-AES)测定溶液中的离子浓度。实验结束后,将试管瓶中的纤维经过滤煅烧后,精确测定溶解后的质量。
生物可溶解纤维在Gamble溶液中浸泡后表现出明显的溶解性能,图3和图4显示了溶解前、后的真实效果。
生物可溶解纤维是否符合德国RAL认证要求是由德国RAL认证机构GGM按照GGM矿棉产品质量认证与测试程序第2.1部分(Quality assurance and test specifications of the Gütegemeinschaft Mineralwolle e.V.for products made of mineral wool,section 2.1)要求进行确认的。《Quality assurance and test specifications of the Gütegemeinschaft Mineralwolle e.V.for products made of mineral wool》可在其官方网站 http://www.ral-mineralwolle.de查得。
欧洲议会和欧洲理事会第1272/2008号法规(REGULATION(EC)No 1272/2008OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL)(物质和混合物的分类、标签和包装法规)注解Q(Note Q)的要求:只要符合以下四种情况之一即可确认所测物为非致癌物。
一、吸入性短期生物持久性试验显示长度20μm以上的纤维的半消失期小于10天;
二、气管滴注法短期生物持久性试验显示长度20μm以上的纤维的半消失期小于40天;
三、合适的腹腔内试验显示无额外的致癌性;
四、合适的长期吸入性试验显示无相关致病性或癌变。
上述情况二具体可采取肺部注入残留实验法:通过气管内滴注法将2mg长度20μm以上的纤维或WHO纤维(L>5μm,D<3μm,L/D>3/1)注入每只老鼠体内,收集滴注后3个月内的残留纤维相关数据进行分析,即可得到纤维在实验鼠肺中的半消失期。(注:WHO为世界卫生组织的英文缩写,L为纤维长度,D为纤维直径)
由此可见,这些被人体吸入的纤维粉尘极有可能对人体健康构成潜在风险,及导致呼吸道、肺部及其它脏器或组织发生病变的可能性增加。因而,寻找一种健康环保的纤维毡,既可做为VIP用的芯材,又能在其制造过程、应用过程及回收拆解过程中所产生的纤维粉尘均能有效避免或有效减少对人体健康造成危害,将是该行业以人为本、大规模生产面临的较为凸出的问题。
发明内容
本发明旨在提供一种生物可溶解纤维毡,能有效避免或有效减少在制造过程、应用过程及回收拆解过程中所产生的纤维粉尘对人体健康造成的危害,又能达到降低成本、提高性能的效果。
本发明另一目的是提供上述生物可溶解纤维毡的制备方法。
本发明再一目的是提供一种使用上述毡的真空绝热板。
本发明的技术方案是:一种生物可溶解纤维毡,含有生物可溶解纤维的纤维毡;其中生物可溶解纤维85~100wt%、固化的胶粘剂0~15wt%;生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成相互连通的空隙;胶粘剂分散在单丝间并与它们粘结紧密,不单独存在;生物可溶解纤维平均纤维直径为≤30μm、平均纤维长度为≤250mm;生物可溶解纤维指在模拟人体肺液中的溶解速率常数Kdis≥100ng/(cm2.hr);生物可溶解纤维中无机纤维(包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维等)各成分的重量百分数(Na2O+K2O+CaO+MgO+BaO)>18wt%和/或[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%。
生物可溶解纤维可以由离心法或火焰法或拉丝法或纺丝法制得。离心法一般是将熔融或浓溶料液从出料口流出后经离心机甩细流,再被高速气流垂直喷吹最终冷却成更细纤维。火焰法一般是将熔融或浓溶料液从出料口流出后先冷却成粗纤维,再被高速火焰垂直喷吹最终冷却成更细纤维。离心法和火焰法制得的纤维为非连续纤维,纤维形状一般不规则,制品大多呈棉絮状,故有离心棉、火焰棉之称。拉丝法一般是熔融或浓溶的料液从出料口流出后被 一定速度的向下拉引力牵伸作用并最终冷却成更细的连续式纤维,即连续纤维。纺丝法一般是指熔融或浓溶的料液从出料口流出后在被拉伸过程中或经空气或经水或经凝固浴或热空气或热惰性气体冷却固化成较细的连续纤维。连续纤维在制造过程中可以由多根单丝并在一起形成纤维束(或称纤维股、原丝),这样利于稳定生产及提高产量。单丝,顾名思义,是指单独一根纤维的意思。短切纤维是由连续纤维经切断机器按一定长度切断而成,也有人称之为“短切丝”。
生物可溶解纤维可以由上述方法制得生物可溶解短切纤维或棉纤维,其平均纤维直径≤30μm、平均纤维长度为≤250mm。如果纤维的平均纤维直径大于30μm,相同厚度纤维毡制品中纤维层数减少,传热路径变短,骨架传热增加,同时纤维间的空隙明显增大,气体分子间相互碰撞机率增加,总的隔热性能变差。如果纤维长度大于250mm,制毡过程分散成单丝有困难,纤维利用率下降。
生物可溶解纤维中渣球含量最好在10wt%以下。渣球是指纤维(棉)中粒径大于0.25mm的未被制成纤维的粒状、块状及棒状物等。渣球含量应尽量低,如果渣球含量在10%以上,生产过程使用除渣器难以完全去除,仍然会有一部分残留在纤维毡制品中,并在以后制造VIP的工序中极有可能刺穿或刺伤芯材外面的阻隔包装袋,影响VIP的隔热性能。
生物可溶解纤维由上述方法制造过程中还有可能加入少量浸润剂,以利于纤维(原丝)制造及应用(包括制成纤维毡)。浸润剂会与纤维表面发生作用或结合,保护纤维不易形成断丝或毛丝或散丝。浸润剂大多较贵,且含有胶粘剂成分对纤维分散不利,故而浸润剂占纤维的含量一般不超过2.5wt%。
生物可溶解纤维可以为生物可溶解有机纤维或生物可溶解无机纤维或生物可溶解复合纤维。生物可溶解有机纤维如生物可溶解再生纤维素纤维、生物可溶解聚乙交酯(PGA)纤维、生物可溶解甲壳素及其衍生物纤维等。生物可溶解无机纤维如生物可溶解岩棉、生物可溶解玻璃棉、生物可溶解玻璃纤维、生物可溶解耐火纤维、生物可溶解陶瓷纤维等。生物可溶解复合纤维如生物可溶解无机-聚合物混合纤维、生物可溶解无机外覆聚合物纤维等。
生物可溶解纤维的生物可溶解性是指纤维能够在循环的生理肺液或体液中较快地发生溶解、降解等行为以及这种行为的产物被生物体吸收利用或通过生物体自身循环体系排除体外而不对生物体产生危害的性能。生物可溶解纤维均具备较好的生物可溶解性。
该生物可溶解纤维除了具备较好的生物可溶解性能,能在进入生物体内后被快速的溶解、分解最后被清除出体外,最好还应具有析晶少、易成纤、脆性低及在纤维毡制造过程中不易水解、溶断等特点。
本发明的毡中虽然可能存在一定胶粘剂,也不会对人体健康构成危害。因为:胶粘剂一般都与生物可溶解纤维粘结,不单独存在;且,粘结有胶粘剂的生物可溶解纤维被人体吸入后,其绝大多数是由于生物可溶解纤维表面上粘结剂的含量极少以致纤维间粘结强度差、易被外力撞落,而这种生物可溶解纤维会因为纤维表面很大部分未覆盖胶粘剂的裸露区域不断被溶解、断裂成更细短的纤维或碎片最终被人体清除出体内。
本发明的毡中的生物可溶解纤维在模拟人体肺液Gamble溶液中的溶解速率常数优选Kdis≥100ng/(cm2.hr),较容易溶解于生物体液中,不至于对生物体构成危害。生物可溶解纤维中无机纤维(包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维等)各成分的重量百分数也符合(Na2O+K2O+CaO+MgO+BaO)>18wt%和[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%。所以,本发明的毡能有效避免或有效减少在制造过程、应用过程及回收拆解过程中所产生的纤维粉尘对人体健康造成的危害。
生物可溶解纤维对毡的制造起着骨架的关键作用,胶粘剂的存在会使毡更利于制造和应用但不是必要的。当生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成足够强度的纤维毡,并能满足制造和应用所需,可不需要添加胶粘剂。当生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成纤维毡的强度不能满足制造和应用所需,则需要添加胶粘剂以提高纤维毡的最终强度。胶粘剂在毡中所占的比例应在满足生产强度的情况下尽量低,以减少胶粘剂在毡内部纤维间粘接处形成的热传导及避免或减少胶粘剂中可能存在的不稳定成分在真空下释放出来所导致气体传热。我们经大量的辛苦实验发现,胶粘剂占毡的比例大于15wt%时,胶粘剂在毡内部纤维间粘接处的覆盖面积和胶粘剂的体积都增加,以及胶粘剂中可能存在的不稳定成分在真空下更多释放,使得毡在真空下隔热性能明显下降。
所述胶粘剂为液态型胶粘剂或粉末型胶粘剂中的一种或一种以上的组合。胶粘剂可以是无机胶粘剂或有机胶粘剂。液态型胶粘剂最好是能与水或溶剂再进行互配,具有较好的流动性及浓度可调节性,能兼具均匀性、浸透性、操作性和循环性等方面需求;在常温下一般都有较长的贮存期,较稳定,生产实用性好。粉末型胶粘剂最好是粉末颗粒较细,颗粒大小在1mm以下最好,这样粉末就很容易均匀地分散在纤维毡中。
所述胶粘剂的总挥发性有机化合物(TVOC)含量最好为120g/L以下,苯、甲苯、乙苯、二甲苯总和为300mg/Kg以下,游离甲醛为100mg/Kg以下。这样,总挥发性有机化合物可以在胶粘剂固化过程及VIP制造过程较快地除去,以避免或尽量减少在VIP内再释放,从而保证VIP的性能最佳与稳定。
生物可溶解纤维毡的制备方法,可以为干式离心法或干式梳理法或湿式酸法或湿式胶法。
干式离心法包含以下步骤:
步骤一、生物可溶解熔融或浓溶料液从出料口流出后,进入高速旋转的离心头,并从离心头的细孔被甩出;离心头转速最好在500r/min以上,以保证料液有足够的力被从离心头上的细孔甩出;离心头的细孔大小最好在0.5mm以上,这样料液在细孔上流阻不致太小而便于被从离心头上的细孔甩出;
步骤二、甩出的料液被细孔外围的高速气流垂直喷吹,料液被进一步吹制成更细;高速气流可以是高速火焰或高速热空气;
步骤三、更细的料液在飞飘的过程冷却得生物可溶解纤维;在冷却过程中或施以胶粘剂和/或浸润剂;冷却可以采用自然冷却或风冷或喷雾;
步骤四、生物可溶解纤维被与离心头正对面的负压集棉网带收集得生物可溶解纤维毡,再对纤维毡进行加压(1~50Kg/cm2)定型或加热(100~500℃)加压(1~50Kg/cm2)定型,得到较为密实的生物可溶解纤维毡;
或者,生物可溶解纤维被与离心头正对面的负压集棉网带收集得生物可溶解纤维毡,后送入施胶系统,采用喷洒、淋浸及含浸等方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量,再对纤维毡进行加压定型和/或进入烘道加热(烘干)定型,最后再进行加压定型或加热加压定型,得到较为密实的生物可溶解纤维毡;加热温度为100~500℃,加压压力为1~50Kg/cm2,烘道温度为100~400℃;胶粘剂为液态型胶粘剂或粉末型胶粘剂。胶粘剂的加入会存在于纤维间,并与纤维粘结紧密,从而能较大程度地锁定纤维结构,对于加热加压后仍易反弹的纤维毡能起到明显改善作用。
本步骤得到到纤维毡,平均纤维直径≤30μm,平均纤维长度为≤250mm,胶粘剂含量≤15wt%,浸润剂含量≤2.5wt%。集棉网带的下方连接抽空装置,抽空装置最好有做分区布置与调节,以使网带上方形成分布均匀的负压,所得的生物可溶解纤维毡厚度均匀、表面较平整。网带下方的负压最好在5000Pa以下,这样有利于保证网带上方形成较明显的负压。
经过比对试验,在以上步骤四中最好再对纤维毡进行加压(1~50Kg/cm2)定型或加热(100~500℃)加压(1~50Kg/cm2)定型,这样得到的生物可溶解纤维毡较为密实,形状较规矩,纤维毡的强度也较好。较为密实的纤维毡相对自由蓬松的纤维毡,厚度明显减少1/3以上,能有效节省VIP阻隔袋的大小;较为密实的纤维毡同时形状也较规矩、强度也较好,有利于纤维毡应用VIP的封装操作及VIP的后续应用。
干式梳理法包含以下步骤:
步骤一、将生物可溶解纤维(棉)投入开包机、开松机组进行纤维粗开松;开包机可开松捆包纤维;开松机组可以包括预开松机和精开松机,可对纤维做进一步开松;开松机组最好配有除渣系统,这样可去除纤维中可能含有的渣球或杂质,以保证制品质量;
步骤二、将粗开松后的生物可溶解纤维可由给棉机送入梳理机进行较完全开松、梳理得分布均匀的薄层状生物可溶解纤维毡;给棉机可以是振动给棉机或气压给棉机,可将粗开松纤维进一步开松混合并输送出均匀的毡层(棉层);梳理机可以是单锡林双道夫梳理机或双锡林双道夫梳理机,可将纤维分梳成单纤维状态;给棉机或梳理机最好配有除渣系统,这样可去除纤维中可能含有的渣球或杂质,以保证制品质量;也可再进行步骤三和步骤四;
步骤三、将薄层状纤维毡转至铺网机进行铺网,得到2层以上层叠的生物可溶解纤维毡;铺网机可以为夹持铺网机或交叉铺网机;
步骤四、将2层以上层叠的生物可溶解纤维毡由牵伸机送入针刺机组进行针刺定型,或水刺系统进行水刺定型,或热压(轧)机组进行加热(100~500℃)加压(1~50Kg/cm2)定型,得到较为密实的生物可溶解纤维毡;牵伸机可以提高铺网后毡的输出速度;针刺机可以是低速针刺机或中速针刺机或高速针刺机,针刺频率最好在1500次/min以下;水刺系统中包括水刺机组、脱水箱及烘干装置;热压(轧)机可以为双辊热轧机。针刺或水刺密度最好为 100刺/cm2以下,这样纤维毡除了能获得足够的强度以利于后续应用外,纤维毡内纤维还不至于在厚度方向上形成过多分布与交织,从而能控制较少纤维往厚度方向的传热,保证了纤维毡在VIP内绝热性能。针刺或水刺密度是指纤维毡在每平方厘米(cm2)被针刺或水刺的次数,针刺或水刺密度越大表示纤维在厚度方向的分布与交织越厉害,继而纤维往厚度方向的传热越容易,纤维毡的保温隔热性能也将变差。
步骤四也可这样完成:将2层及以上层叠的生物可溶解纤维毡送入施胶系统,采用喷洒、淋浸及含浸等方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量,再对纤维毡进行加压定型和/或进入烘道加热(烘干)定型,最后再进行加压定型或加热加压定型,得到较为密实的生物可溶解纤维毡;加热温度为100~500℃,加压压力为1~50Kg/cm2,烘道温度为100~400℃;胶粘剂为液态型胶粘剂或粉末型胶粘剂。胶粘剂的加入会存在于纤维间,并与纤维粘结紧密,从而能较大程度地锁定纤维结构,对于加热加压后仍易反弹的纤维毡能起到明显改善作用。
当然也可以考虑将胶粘剂在步骤一和/或步骤二中加入,这样胶粘剂能较均匀的分散在纤维之间,然后再对纤维毡进行加热加压定型和/或进入烘道加热(烘干)定型,得到较为密实的生物可溶解纤维毡。但由于纤维在步骤一、步骤二的开松过程中较频繁地与开松机或梳理机中开松针、齿等器件发生剧烈的摩擦发热,容易使胶粘剂提前固化或熔化而致纤维与开松针、齿等器件粘结,最终造成开松机或梳理机开松效果变差或堵塞等,因此最好不要在步骤一和/或步骤二中加入胶粘剂。
同样的,经过比对试验,在以上步骤四中最好再对纤维毡进行加压(1~50Kg/cm2)定型或加热(100~500℃)加压(1~50Kg/cm2)定型,这样得到的生物可溶解纤维毡较为密实,形状较规矩,纤维毡的强度也较好。较为密实的纤维毡相对自由蓬松的纤维毡,厚度明显减少1/3以上,能有效节省VIP阻隔袋的大小;较为密实的纤维毡同时形状也较规矩、强度也较好,有利于纤维毡应用VIP的封装操作及VIP的后续应用。
湿式酸法包含以下步骤:
步骤一、将生物可溶解纤维(棉)投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的PH值为2~4;白水含有硫酸或盐酸,以调节PH值;打浆浓度最好在10wt%以下,利于纤维分散、开解;
步骤二、将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度最好为2wt%以下,以利于成型效果及稳定;纤维毡的含湿率最好在75wt%以下,利于减少烘干设备成本及节能;成型机为斜网成型机或圆筒成型机;除渣器一般为离心除渣,可去除纤维中可能含有的渣球或杂质,以保证制品质量;
步骤三、将半湿或轻湿的生物可溶解纤维毡输送至烘箱(道)中烘干,得生物可溶解纤维毡;烘箱(道)的温度范围最好为100~400℃。
湿式胶法包含以下步骤:
步骤一、生物可溶解纤维(棉)投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的粘度≤60mpa.s;所述的白水含有(增稠剂、分散剂、消泡剂、防腐剂和胶粘剂)中的一种或一种以上;白水中各添加剂的有效成分含量最好为0~1wt%增稠剂、0~0.2wt%消泡剂、0~1wt%分散剂、0~0.2wt%防腐剂和0~1wt%胶粘剂;
步骤二、将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度最好为2wt%以下,以利于成型效果及稳定;纤维毡的含湿率最好在75wt%以下,利于减少烘干设备成本及节能;除渣器一般为离心除渣,可去除纤维中可能含有的渣球或杂质,以保证制品质量;
或者,将浆料进一步稀释后,再加入胶粘剂,混合均匀后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度最好为2wt%以下,以利于成型效果及稳定;纤维毡的含湿率最好在75wt%以下,利于减少烘干设备成本及节能;除渣器一般为离心除渣,可去除纤维中可能含有的渣球或杂质,以保证制品质量;
或者,将浆料与胶粘剂混合均匀后,再进一步稀释后,或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度最好为2wt%以下,以利于成型效果及稳定;纤维毡的含湿率最好在75wt%以下,利于减少烘干设备成本及节能;除渣器一般为离心除渣,可去除纤维中可能含有的渣球或杂质,以保证制品质量;
或者,将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型,再送入施胶系统进行施胶,得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度最好为2wt%以下,以利于成型效果及稳定;纤维毡的含湿率最好在75wt%以下,利于减少烘干设备成本及节能;除渣器一般为离心除渣,可去除纤维中可能含有的渣球或杂质,以保证制品质量;所述的成型机为斜网成型机或圆筒成型机;所述的施胶系统可进行淋胶液、浸胶液、喷胶液、喷(洒)胶粉法;所述的施胶系统含有强制负压抽空装置,可进行生物可溶解纤维毡胶液含量的调节,同时也使胶能穿透毡层、浸润每一根纤维、较均匀的分布在纤维毡中;
步骤三、将半湿或轻湿的生物可溶解纤维毡输送至烘箱(道)中烘干,得生物可溶解纤维毡。烘箱(道)的温度范围最好为100~400℃。
一种真空绝热板,由芯材、阻隔袋及吸气剂组成;芯材放置在阻隔袋内,吸气剂放置于芯材内部,阻隔袋内抽真空;吸气剂为干燥剂或复合吸气剂的一种或一种以上的组合;其特征在于:芯材由多层毡叠置而成;该毡是含有生物可溶解纤维的纤维毡;其中生物可溶解纤维85~100wt%、固化的胶粘剂0~15wt%;生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成相互连通的空隙;胶粘剂分散在单丝间并与它们粘结紧密,不单独存在;生物可溶解纤维平均纤维直径为≤30μm、平均纤维长度为≤250mm,选优的生物可溶解纤维平均纤维直径为0.5μm≤Φ≤15μm;平均纤维长度为3mm≤L≤100mm;生物可溶解纤维指在模拟人 体肺液中的溶解速率常数Kdis≥100ng/(cm2.hr);生物可溶解纤维中无机纤维(包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维等)各成分的重量百分数(Na2O+K2O+CaO+MgO+BaO)>18wt%和/或[(Na2O+K2O+CaO+MgO+BaO+B2O3)-2*(Al2O3)]>40wt%;所述胶粘剂为液态型胶粘剂或粉末型胶粘剂中的一种或一种以上的组合;阻隔袋为由至少2层以上薄膜复合而成的双面复合材料制成的包装袋;所述阻隔袋的薄膜可以是(高分子薄膜、镀膜高分子薄膜、铝箔)中的一种或一种以上。阻隔袋内的真空值最好在25Pa以下,这样真空绝热板的绝热性能受气体传热影响可以降到最小。所述芯材可以由以下方法获得:将上述干式离心法或干式梳理法或湿式酸法或湿式胶法制备的连续的干毡送入裁切机按所需规格裁切成干毡片,再将干毡片按规定的层数叠摞整齐,整理成所需的用于真空绝热板的芯材。
本发明用于真空绝热板的毡,由生物可溶解纤维或含胶粘剂作固定制备而成的毡,不仅具有对环境、生物体不构成危害等良好的绿色环保性能,又兼具高效的绝热保温性能,且强度好、适合连续大批量进行工业生产,是综合性能优秀的绝热材料。
本发明用于真空绝热板的毡的制造方法,先将生物可溶解纤维(棉)原丝按如上所述纤维毡的制备方法(干式离心法或干式梳理法或湿式酸法或湿式胶法)进行原丝的打散、疏解、或含除渣,完成原丝单丝化并使纤维相互穿绕或搭接或交织形成纤维毡,也可根据强度需要在制备过程中加入胶粘剂并使胶粘剂固化在纤维间,最终得到或含胶粘剂的强度适合的干毡。所以本方法能获得可有效避免或有效减少在制造过程、应用过程及回收拆解过程中所产生的纤维粉尘(包括MMMF)对人体健康危害的VIP所需的合格毡。本方法生产的毡中,生物可溶解纤维及可能添加的胶粘剂占毡比例均满足优选要求,所有纤维绝大多数以单丝化形式存在,可能添加的胶粘剂未单独存在而是粘附在纤维间及纤维上,毡厚度均匀、表面平整,毡强度完全满足自身连续生产及VIP制造所需,毡耐温性同样达到VIP制造及应用所需,最关键的是毡在具备高效绝热、保温性能的同时也具备了对生物体不构成危害的绿色环保特性。
本发明真空绝热板采用上述的毡,能有效避免或有效减少在制造过程、应用过程及回收拆解过程中所产生的纤维粉尘(包括MMMF)对人体健康造成的危害。相比于采用现有技术毡的真空绝热板,绿色环保效果得到本质的提升且导热系数未受到影响甚至更低。
附图说明
图1为真空绝热板的结构示意图。
图1-1为图1中A-A向的剖面结构示意图。
图2为生物可溶解纤维溶解性实验装置示意图。
图3为生物可溶解纤维溶解前的显微结构图。
图4为生物可溶解纤维在Gamble溶液中溶解后的显微结构图。
图5为采用干式离心法制备的生物可溶解纤维毡的显微结构图。
图6为采用湿式酸法制备的生物可溶解纤维毡的显微结构图。
图7为采用湿式胶法制备的生物可溶解纤维毡的显微结构图。
图8为采用生物可溶解短切纤维制备的生物可溶解纤维毡的放大1500倍的显微结构图。
图9为采用生物可溶解短切纤维制备的生物可溶解纤维毡的放大250倍的显微结构图。
具体实施方式
一、实施例一
本发明生物可溶解纤维毡的一个实施例,该毡仅由生物可溶解纤维组成,其中:生物可溶解纤维为生物可溶解无机纤维,具体为生物可溶解玻璃棉[玻璃成分为:58wt%SiO2,20wt%CaO,18wt%MgO,2.5wt%Na2O,0.5wt%K2O,0.8wt%ZrO2,0.2wt%Al2O3等杂质],平均纤维直径6μm,平均纤维长度30mm,渣球含量0.5wt%,模拟人体肺液中的溶解速率常数Kdis为225ng/(cm2.hr),符合欧洲议会和欧洲理事会第1272/2008号法规(物质和混合物的分类、标签和包装法规)注解Q的要求,符合德国RAL认证要求,纤维中(Na2O+K2O+CaO+MgO+BaO)含量为38wt%,德国KI为41。
采用干式离心法制备该毡,其过程如下:
步骤一、生物可溶解熔融料液[料液配制比例为:58wt%SiO2,20wt%CaO,18wt%MgO,2.5wt%Na2O,0.5wt%K2O,0.8wt%ZrO2,0.2wt%Al2O3等杂质]从出料口流出后,进入2500r/min高速旋转的离心头,并从离心头的2.5mm细孔被甩出成20~30μm的细流股,尚未成纤;离心头的温度控制在950~1000℃;
步骤二、甩出的料液(细流股)被细孔外围的高速火焰气流垂直喷吹,料液被进一步吹制成更细(丝股);火焰气流速度200m/s,火焰温度1200~1500℃;
步骤三、更细的料液(丝股)在飞飘的过程被进一步风吹冷却得生物可溶解纤维;
步骤四、生物可溶解纤维被与离心头正对面的网带下方负压在200~500Pa的集棉网带收集得生物可溶解纤维毡,再对纤维毡进行加热(200~250℃)加压(56Kg/cm2)定型得到较为密实的连续的生物可溶解纤维毡,其纤维平均纤维直径6μm,平均纤维长度为30mm,渣球含量0.5wt%。集棉网带的下方连接抽空装置,抽空装置均分三个区,同时集棉网带的上方有吹棉器进行高压风调节进一步对飞来的纤维吹散均匀,这样所得的生物可溶解纤维毡厚度均匀、表面较平整。该纤维毡的密度为200~250Kg/m3,厚度为2~3mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,主体材料生物可溶解玻璃棉仍属于MMMF类,但并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,其微观结构如图5。图5是在电子显微镜下放大200倍,得到的微观的真实效果图,能看得到玻璃棉纤维以单丝化形式分布存在,并相互穿绕或搭接或交织分布并形成相互连通的空隙。
采用本实施例纤维毡制备两种VIP,进行对比:
第一种,不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(6层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(6层300mm×300mm×2mm干毡),在105℃条件下烘烤30min。烘烤完毕,取出、叠齐后,装入双面由尼龙、聚对苯二甲酸乙二醇酯(PET)、铝箔、尼龙、聚乙烯(PE)等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
第二种,有放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(6层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(6层300mm×300mm×2mm干毡)于边侧开一个可放一个吸气剂大小(Ф30mm、厚8mm)的圆形盲孔(如图1所示,该盲孔13的中心与该芯材12边缘的距离L为35mm),在105℃条件下烘烤该芯材30min。烘烤完毕,取出、叠齐后,将一个由氧化钙粉末和钡锂合金结合的吸气剂放置于该芯材相应的盲孔中。将该带有吸气剂的芯材装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上两种VIP的绝热性能。测试方法为:采用国产JW-Ⅲ型热流计式(稳态)导热仪进行测试,设置其冷板温度5℃,热板温度35℃,测试时间1h,即得VIP导热系数。测试结果,第一种VIP的导热系数1.55mw/(m·k);第二种VIP的导热系数1.50mw/(m·k)。
采用传统玻璃棉制成的VIP芯材,按照上述规格和参数制成上述两种对照VIP,用上述方法测试这两种对照VIP的绝热性能,第一种对照VIP的导热系数3.26mw/(m·k);第二种对照VIP的导热系数3.14mw/(m·k)。可见,第一种VIP的导热系数比第一种对照VIP可降低1.71mw/(m·k);第二种VIP的导热系数比第二种对照VIP可降低1.64mw/(m·k)。绝热性能的提高相当明显。
二、实施例二
本发明生物可溶解纤维毡的一个实施例,该毡由85wt%生物可溶解纤维和15wt%固化的胶粘剂组成,其中:生物可溶解纤维为生物可溶解无机纤维,具体为生物可溶解玻璃棉,玻璃成分为:79wt%SiO2,12wt%CaO,4wt%MgO,2.5wt%Na2O,0.5wt%K2O,0.8wt%ZrO2,0.2wt%Al2O3,1wt%其它杂质,平均纤维直径3μm,平均纤维长度250mm,渣球含量0.75wt%,模拟人体肺液中的溶解速率常数Kdis为155ng/(cm2.hr),符合欧洲议会和欧洲理事会第1272/2008号法规(物质和混合物的分类、标签和包装法规)注解Q的要求,纤维中(Na2O+K2O+CaO+MgO+BaO)含量为19wt%;胶粘剂为纯丙乳液,牌号S-05,固含量50wt%。由南通生达化工公司制造。
采用干式离心法制备该毡,其过程如下:
步骤一、生物可溶解熔融料液,料液配制比例为:79wt%SiO2,12wt%CaO,4wt%MgO,2.5wt%Na2O,0.5wt%K2O,0.8wt%ZrO2,0.2wt%Al2O3,1wt%其它杂质,从出料口流出后, 进入2500r/min高速旋转的离心头,并从离心头的2.5mm细孔被甩出成20~30μm的细流股,尚未成纤;离心头的温度控制在950~1000℃;
步骤二、甩出的料液(细流股)被细孔外围的高速火焰气流垂直喷吹,料液被进一步吹制成更细(丝股);火焰气流速度200m/s,火焰温度1200~1500℃;
步骤三、更细的料液(丝股)在飞飘的过程被进一步风吹冷却得生物可溶解纤维;
步骤四、生物可溶解纤维被与离心头正对面的网带下方负压在2000~5000Pa的集棉网带收集得生物可溶解纤维毡,后送入施胶机中,采用喷洒方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量至24~28wt%,再对纤维毡进行加压(1~3Kg/cm2)定型后,进入200~300℃烘箱(道)加热烘干、固化定型,最后再进行进一步加热(150~200℃)加压(3~6Kg/cm2),得到较为密实的连续的生物可溶解纤维毡,其纤维平均纤维直径3μm,平均纤维长度为250mm,渣球含量0.75wt%,固化的胶粘剂含量5wt%。集棉网带的下方连接抽空装置,抽空装置均分三个区,同时集棉网带的上方有吹棉器进行高压风调节进一步对飞来的纤维吹散均匀,这样所得的生物可溶解纤维毡厚度均匀、表面较平整。该纤维毡的密度为180~230Kg/m3,厚度为2.5~3.5mm,密度与厚度均在100KPa压力下测定。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(5层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(5层300mm×300mm×2.5mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP的绝热性能。测试方法同第一个实施例。测试结果,导热系数2.21mw/(m·k),比第一种对照VIP可降低1.05mw/(m·k);绝热性能的提高相当明显。
三、实施例三
本发明生物可溶解纤维毡的一个实施例,该毡仅由生物可溶解纤维组成,其中:生物可溶解纤维为生物可溶解无机纤维,具体为生物可溶解岩棉[Rockwool(洛科威)公司,型号RIF 41001],平均纤维直径2μm,平均纤维长度50mm,渣球含量1.5wt%,模拟人体肺液中的溶解速率常数Kdis为305ng/(cm2.hr),符合欧洲议会和欧洲理事会第1272/2008号法规(物质和混合物的分类、标签和包装法规)注解Q的要求,符合德国RAL认证要求。
采用干式梳理法制备该毡,其过程如下:
步骤一、将生物可溶解岩棉投入开包机进行捆包纤维开松,后转至配有除渣系统的预开松机和精开松机中进行纤维粗开松及除渣;这时岩棉团得到基本开松、打散,岩棉中的较大渣球也被剔除;
步骤二、将粗开松后的纤维毡送入配有除渣系统的振动给棉机进一步开松混合与除渣并输送出均匀的毡层,再送入配有除渣系统的双锡林双道夫梳理机进行较完全开松、除渣及梳 理得分布均匀的薄层状生物可溶解纤维毡;此时,岩棉得到较好的单丝化疏解,及去除大部分渣球或杂质,纤维相互穿绕或搭接或交织分布并形成相互连通的空隙,但纤维毡呈较蓬松状,也较软,毡的厚度3.5mm;
步骤三、将薄层状纤维毡转至夹持铺网机进行铺网,得到6层层叠的生物可溶解纤维毡;
步骤四、将6层层叠的生物可溶解纤维毡由牵伸机送入600次/min中速上针刺机和中速下针刺机进行针刺定型,控制针刺密度为50刺/cm2,后进入两台双辊热轧机进行加热(220℃)加压(10Kg/cm2)定型,得到较为密实、厚度均匀的连续的生物可溶解纤维毡。该纤维毡的密度为180~220Kg/m3,厚度为3~4mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,主体材料生物可溶解岩棉仍属于MMMF类,但并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,得到岩棉纤维以单丝化形式分布存在,并相互穿绕或搭接或交织分布并形成相互连通的空隙。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(3层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(3层300mm×300mm×4mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP的绝热性能。测试方法同第一个实施例。测试结果,导热系数1.91mw/(m·k),比第一种对照VIP可降低1.35mw/(m·k);绝热性能的提高相当明显。
四、实施例四
本发明生物可溶解纤维毡的一个实施例,该毡由90wt%生物可溶解纤维和10wt%固化的胶粘剂组成,其中:生物可溶解纤维为生物可溶解无机纤维,具体为生物可溶解岩棉[Rockwool(洛科威)公司,型号RIF 41001],平均纤维直径30μm,平均纤维长度75mm,渣球含量10wt%;胶粘剂为苯丙乳液,牌号7513B,固含量40wt%,由常熟新华化工公司制造。
采用干式梳理法制备该毡,其过程如下:
步骤一、将生物可溶解岩棉投入开包机进行捆包纤维开松,后转至配有除渣系统的预开松机和精开松机中进行纤维粗开松及除渣;这时岩棉团得到基本开松、打散,岩棉中的较大渣球也被剔除;
步骤二、将粗开松后的纤维毡送入配有除渣系统的振动给棉机进一步开松混合与除渣并输送出均匀的毡层,再送入配有除渣系统的双锡林双道夫梳理机进行较完全开松、除渣及梳理得分布均匀的薄层状生物可溶解纤维毡;此时,岩棉得到较好的单丝化疏解,及去除大部分渣球或杂质,纤维相互穿绕或搭接或交织分布并形成相互连通的空隙,但纤维毡呈较蓬松状,也较软,毡的厚度2.5mm;
步骤三、将薄层状纤维毡转至夹持铺网机进行铺网,得到2层层叠的生物可溶解纤维毡;
步骤四、将2层层叠的生物可溶解纤维毡由牵伸机送入后送入施胶机中,采用含浸方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量至20~24wt%,再对纤维毡进行加压(1~3Kg/cm2)定型后,进入200~280℃烘箱(道)加热烘干、固化定型,最后再进行进一步加热(175~200℃)加压(5~8Kg/cm2),得到较为密实的连续的生物可溶解纤维毡,其纤维平均纤维直径30μm,平均纤维长度为75mm,渣球含量1.25wt%(大部分已在开机及梳理过程中被去除),固化的胶粘剂含量10wt%。集棉网带的下方连接抽空装置,抽空装置均分三个区,同时集棉网带的上方有吹棉器进行高压风调节进一步对飞来的纤维吹散均匀,这样所得的生物可溶解纤维毡厚度均匀、表面较平整。该纤维毡的密度为170~210Kg/m3,厚度为1.5~2.5mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,主体材料生物可溶解岩棉仍属于MMMF类,但并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,得到岩棉纤维以单丝化形式分布存在,并相互穿绕或搭接或交织分布并形成相互连通的空隙。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(8层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(8层300mm×300mm×1.5mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP的绝热性能。测试方法同第一个实施例。测试结果,导热系数1.81mw/(m·k),比第一种对照VIP可降低1.45mw/(m·k);绝热性能的提高相当明显。
五、实施例五
本发明生物可溶解纤维毡的一个实施例,该毡仅由生物可溶解纤维组成,其中:生物可溶解纤维为生物可溶解无机纤维,具体为50wt%生物可溶解玻璃纤维[大华云通玻纤公司,规格11tex]和50wt%生物可溶解玻璃棉[玻璃成分为:58wt%SiO2,20wt%CaO,18wt%MgO,2.5wt%Na2O,0.5wt%K2O,0.8wt%ZrO2,0.2wt%Al2O3等杂质;或Saint-Gobain Isover(圣戈班-伊索维尔)公司,型号P];生物可溶解玻璃纤维,为短切纤维,其平均纤维直径5μm,平均纤维长度12mm;生物可溶解玻璃棉的平均纤维直径2μm,平均纤维长度10mm,渣球含量1.5wt%,模拟人体肺液中的溶解速率常数Kdis为250~350ng/(cm2.hr),纤维中(Na2O+K2O+CaO+MgO+BaO)含量为26~37wt%。
采用湿式酸法制备该毡,其过程如下:
步骤一、将生物可溶解玻璃纤维和生物可溶解玻璃棉投入到打浆机内PH值3~4白水中进行打浆20min,得分散均匀的浆料;白水含有硫酸;打浆浓度为5wt%;
步骤二、将浆料进一步稀释后经离心除渣器喂入斜网成型机进行上网成型,并进行强制负压脱水定型后得到生物可溶解纤维毡;浆料进一步稀释后的纤维浓度为0.8wt%;纤维毡的 含湿率35~45wt%;
步骤三、将半湿的生物可溶解纤维毡输送至200~300℃烘箱(道)中烘干,得到连续的生物可溶解纤维毡;纤维毡为干毡,含水率为0.7wt%。该纤维毡的密度为180~220Kg/m3,厚度为1~2mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,主体材料生物可溶解玻璃纤维和生物可溶解玻璃棉仍属于MMMF类,但并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,其微观结构如图6所示。图6是在电子显微镜下放大500倍,得到的微观的真实效果图,能看得到纤维以单丝化形式分布存在,并相互穿绕或搭接或交织分布并形成相互连通的空隙。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(12层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(12层300mm×300mm×1mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯(PET)、铝箔、尼龙、聚乙烯(PE)等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP的绝热性能。测试方法同第一个实施例。测试结果,导热系数1.98mw/(m·k),比第一种对照VIP可提高1.28mw/(m·k)。绝热性能的提高相当明显。
六、实施例六
本发明生物可溶解纤维毡的一个实施例,该毡由95wt%生物可溶解纤维和5wt%固化的胶粘剂组成,其中:95wt%生物可溶解纤维为生物可溶解无机纤维,具体为生物可溶解玻璃纤维[大华云通玻纤公司,规格22tex],平均纤维直径11μm,平均纤维长度15mm,浸润剂含量0.1wt%,模拟人体肺液中的溶解速率常数Kdis为275ng/(cm2.hr),德国KI为43;胶粘剂为:互配溶液(20wt%聚乙烯醇树脂水溶液:苯丙乳液=1:1),其中,聚乙烯醇树脂,牌号0388;苯丙乳液,牌号7513B,固含量40wt%。
采用湿式胶法制备该毡,其过程如下:
步骤一、生物可溶解玻璃纤维投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的粘度25mpa.s;所述的白水含有1wt%增稠剂、1wt%分散剂、0.2wt%消泡剂、0.2wt%防腐剂和0.01wt%胶粘剂;打浆浓度为5wt%;
步骤二、将浆料进一步稀释后经离心除渣器喂入斜网成型机进行上网成型,并进行强制负压脱水定型后,再送入施胶系统进行淋胶液施胶,得到半湿或轻湿的生物可溶解纤维毡;浆料进一步稀释后的纤维浓度为1wt%;纤维毡的含湿率50~55wt%;胶粘剂为:互配溶液(20wt%聚乙烯醇树脂水溶液:苯丙乳液=1:1);
步骤三、将半湿的生物可溶解纤维毡输送至200~300℃烘箱(道)中烘干,得到连续的生物可溶解纤维毡;纤维毡为干毡,含水率为0.7wt%,胶粘剂含量为5wt%。该纤维毡的密度 为250~300Kg/m3,厚度为0.5~1.5mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,主体材料生物可溶解岩棉仍属于MMMF类,但并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,其微观结构如图7所示。图7是在电子显微镜下放大500倍,得到的微观的真实效果图,能看得到纤维以单丝化形式分布存在,并相互穿绕或搭接或交织分布并形成相互连通的空隙。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(24层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(24层300mm×300mm×0.5mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP的绝热性能。测试方法同第一个实施例。测试结果,导热系数1.67mw/(m·k);第一种VIP的导热系数比第一种对照VIP可降低1.59mw/(m·k)。绝热性能的提高相当明显。
七、实施例七
本发明生物可溶解纤维毡的一个实施例,该毡由99wt%生物可溶解纤维和1wt%固化的胶粘剂组成,其中:99wt%生物可溶解纤维为30wt%生物可溶解有机纤维和39wt%生物可溶解无机纤维和30wt%生物可溶解复合纤维;30wt%生物可溶解有机纤维具体为15wt%生物可溶解(棉短绒)再生纤维素纤维[湖北化纤集团公司,规格20tex]和15wt%生物可溶解聚乙交酯(PGA)纤维[美国Cyananid公司,商品名Dexon],为短切纤维,平均纤维直径15μm,平均纤维长度10mm;39wt%生物可溶解无机纤维具体为20wt%生物可溶解耐火纤维[英国Thermal Ceramics公司,型号Superwool 607]和19wt%生物可溶解陶瓷纤维[佛山伊耐节能材料公司,规格1260],平均纤维直径3μm,平均纤维长度50mm,渣球含量1.5wt%;30wt%生物可溶解复合纤维具体为15wt%生物可溶解无机(二氧化硅)-聚合物(聚丙烯)混合纤维[中科院化学研究所,规格20tex]和15wt%生物可溶解无机(玻璃纤维)外覆聚合物(环氧树脂)纤维[大华云通玻纤公司,规格22tex],为短切纤维,平均纤维直径15μm,平均纤维长度30mm,模拟人体肺液中的溶解速率常数Kdis为200~400ng/(cm2.hr);胶粘剂为:两性丙烯酸树脂水溶液,牌号215M,固含量10wt%。
采用湿式胶法制备该毡,其过程如下:
步骤一、生物可溶解玻璃纤维投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的粘度25mpa.s;所述的白水含有1wt%增稠剂(甲基纤维素)、1wt%分散剂(牌号5040)、0.2wt%消泡剂(牌号3496);打浆浓度为5wt%;
步骤二、将浆料进一步稀释后,再加入10wt%纤维重量的胶粘剂,混合均匀后经离心除渣器喂入圆筒成型机进行上网成型,并进行强制负压脱水定型得到半湿的生物可溶解纤维毡; 浆料进一步稀释后的纤维浓度为1wt%;纤维毡的含湿率50~55wt%;胶粘剂为:两性丙烯酸树脂水溶液;
步骤三、将半湿的生物可溶解纤维毡输送至200~250℃烘箱(道)中烘干,得到连续的生物可溶解纤维毡;纤维毡为干毡,含水率为0.2wt%,固化的胶粘剂含量为1wt%。该纤维毡的密度为240~290Kg/m3,厚度为1~2mm,密度与厚度均在100KPa压力下测定。
这种健康环保的生物可溶解纤维毡,并非传统的生物难溶解或生物不溶解的玻璃棉或矿(岩)棉,其微观结构如图8、图9所示。图8是在电子显微镜下放大1500倍,得到的微观的真实效果图,能看得到生物可溶解纤维81、82大多以单丝化形式分布存在,并相互穿绕、搭接、交织,胶粘剂83以固化形式分散在生物可溶解81、82单丝间并与它们粘结紧密,不单独存在。图9是在电子显微镜下放大250倍,得到的稍宏观的真实效果图,能看得到生物可溶解纤维91、92单丝间在三维空间内相互交叉分布而构成纤维毡,显示了较好的实用性。
采用本实施例纤维毡制备不放吸气剂的VIP。将连续的干毡送入裁切机按所需规格(300mm×300mm)裁切成干毡片,再将干毡片按规定的层数(12层)叠摞整齐,整理得所需的用于VIP的芯材。取该芯材(12层300mm×300mm×1mm干毡),在105℃条件下烘干后,装入双面由尼龙、聚对苯二甲酸乙二醇酯、铝箔、尼龙、聚乙烯等五层薄膜复合而成的阻隔袋中后送入真空封口设备内,抽空该设备内包括阻隔袋中的气体,至阻隔袋外(即真空封口设备内)的真空度达到0.045Pa,对阻隔袋封口后,真空封口设备破真空取出阻隔袋,包边即得VIP。此VIP内真空度约为1Pa。
测试以上VIP绝热性能的测试方法同第一个实施例。测试结果,导热系数1.79mw/(m·k),比第一种对照VIP可降低1.47mw/(m·k);绝热性能的提高相当明显。
以上所述,仅为本发明较佳实施例,不以此限定本发明实施的范围,依本发明的技术方案及说明书内容所作的等效变化与修饰,皆应属于本发明涵盖的范围。
工业实用性
本发明由生物可溶解纤维制备而成的纤维毡并由此制成真空绝热板,不仅具有对环境、生物体不构成危害等良好的绿色环保性能,又兼具高效的绝热保温性能,且强度好、适合连续大批量进行工业生产,是综合性能优秀的绝热材料。

Claims (14)

  1. 一种生物可溶解纤维毡,该毡是含有生物可溶解纤维的纤维毡;其中生物可溶解纤维85~100wt%、固化的胶粘剂0~15wt%;生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成相互连通的空隙;生物可溶解纤维平均纤维直径为≤30μm、平均纤维长度为≤250mm。
  2. 根据权利要求1所述的一种生物可溶解纤维毡,其特征在于:生物可溶解纤维指在模拟人体肺液中的溶解速率常数Kdis≥100ng/(cm2.hr);生物可溶解纤维中无机纤维包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维,各成分的重量百分数(Na2O+K2O+CaO+MgO+BaO)>18wt%和/或[(Na2O+K2O+CaO+MgO+BaO+B2O3)‐2*(Al2O3)]>40wt%。
  3. 根据权利要求1所述的一种生物可溶解纤维毡,其特征在于:所述生物可溶解纤维为生物可溶解有机纤维或生物可溶解无机纤维或生物可溶解复合纤维中的一种或一种以上的组合。
  4. 根据权利要求1所述的一种生物可溶解纤维毡,其特征在于:所述胶粘剂为液态型胶粘剂或粉末型胶粘剂中的一种或一种以上的组合。
  5. 一种如权利要求1~4所述之一的生物可溶解纤维毡的制备方法,其特征在于:包含以下步骤:
    一、生物可溶解熔融或浓溶料液从出料口流出后,进入高速旋转的离心头,并从离心头的细孔被甩出;
    二、甩出的料液被细孔外围的高速气流垂直喷吹,料液被进一步吹制成更细;
    三、更细的料液在飞飘的过程冷却得生物可溶解纤维;在冷却过程中或施以胶粘剂和/或浸润剂;
    四、生物可溶解纤维被与离心头正对面的负压集棉网带收集得生物可溶解纤维毡,再对纤维毡进行加压定型或加热加压定型和/或进入烘道加热(烘干)定型,得到较为密实的生物可溶解纤维毡;加热温度为100~500℃,加压压力为1~50Kg/cm2
    或者,生物可溶解纤维被与离心头正对面的负压集棉网带收集得生物可溶解纤维毡,后送入施胶系统,采用喷洒、淋浸及含浸等方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量,再对纤维毡进行加压定型和/或进入烘道加热(烘干)定型,最后再进行加压定型或加热加压定型,得到较为密实的生物可溶解纤维毡;加热温度为100~500℃,加压压力为1~50Kg/cm2,烘道温度为100~400℃。
  6. 根据权利要求5所述的一种生物可溶解纤维毡的制备方法,其特征在于: 步骤四中集棉网带的下方连接抽空装置,以使网带上方形成分布均匀的负压,所得的生物可溶解纤维毡厚度均匀、表面较平整。
  7. 一种如权利要求1~4所述之一的生物可溶解纤维毡的制备方法,其特征在于:包含以下步骤:
    一、将生物可溶解纤维(棉)投入开包机、开松机组进行纤维粗开松;
    二、将开松后的生物可溶解纤维可由给棉机送入梳理机进行较完全开松、梳理得分布均匀的薄层状生物可溶解纤维毡;或再进行步骤三和步骤四;
    三、将薄层状纤维毡转至铺网机进行铺网,得到2层及以上层叠的生物可溶解纤维毡;
    四、将2层及以上层叠的生物可溶解纤维毡送入针刺机组进行针刺定型,或水刺系统进行水刺定型,或热压(轧)机组进行加热加压定型,得到较为密实的生物可溶解纤维毡;水刺系统中包括水刺机组、脱水箱及烘干装置;针刺或水刺密度最好为100刺/cm2以下;
    或者,将2层及以上层叠的生物可溶解纤维毡送入施胶系统,采用喷洒、淋浸及含浸等方法施以胶粘剂,并通过负压抽空调节纤维毡上胶粘剂的含量,再对纤维毡进行加压定型和/或进入烘道加热(烘干)定型,最后再进行加压定型或加热加压定型,得到较为密实的生物可溶解纤维毡;加热温度为100~500℃,加压压力为1~50Kg/cm2,烘道温度为100~400℃。
  8. 一种如权利要求1~4所述之一的生物可溶解纤维毡的制备方法,其特征在于:包含以下步骤:
    一、将生物可溶解纤维(棉)投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的PH值为2~4;
    二、将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;成型机为斜网成型机或圆筒成型机;
    三、将半湿或轻湿的生物可溶解纤维毡输送至烘箱(道)中烘干,得生物可溶解纤维毡。
  9. 根据权利要求8所述的一种生物可溶解纤维毡的制备方法,其特征在于:所述白水含有由硫酸或盐酸。
  10. 一种如权利要求1~4所述之一的生物可溶解纤维毡的制备方法,其特征在于:包含以下步骤:
    一、生物可溶解纤维(棉)投入到打浆机内白水中进行打浆,得分散均匀的浆料;白水的粘度≤60mpa.s;
    二、将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制 负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;
    或者,将浆料进一步稀释后,再加入胶粘剂,混合均匀后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;
    或者,将浆料与胶粘剂混合均匀后,再进一步稀释后,或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型后得到半湿或轻湿的生物可溶解纤维毡;
    或者,将浆料进一步稀释后或经除渣器喂入成型机进行上网成型,并进行强制负压脱水定型,再送入施胶系统进行施胶,得到半湿或轻湿的生物可溶解纤维毡;所述的成型机为斜网成型机或圆筒成型机;
    三、将半湿或轻湿的生物可溶解纤维毡输送至烘箱(道)中烘干,得生物可溶解纤维毡。
  11. 根据权利要求10所述的一种生物可溶解纤维毡的制备方法,其特征在于:所述的白水含有增稠剂、分散剂、消泡剂、防腐剂和胶粘剂中的一种或一种以上;所述的施胶系统可进行淋胶液、浸胶液、喷胶液、喷(洒)胶粉法;所述的施胶系统含有强制负压抽空装置,可进行生物可溶解纤维毡胶液含量的调节。
  12. 一种真空绝热板,包括芯材、阻隔袋及吸气剂;芯材放置在阻隔袋内,吸气剂放置于芯材内部,阻隔袋内抽真空;吸气剂为干燥剂或复合吸气剂的一种或一种以上的组合;其特征在于:芯材由多层纤维毡叠置而成;该毡是含有生物可溶解纤维的纤维毡;其中生物可溶解纤维85~100wt%、固化的胶粘剂0~15wt%;生物可溶解纤维以单丝化形式相互穿绕或搭接或交织分布并形成相互连通的空隙;生物可溶解纤维平均纤维直径为0.5‐15μm、平均纤维长度为3‐100mm;阻隔袋为由至少2层以上薄膜复合而成的双面复合材料制成的包装袋;所述阻隔袋的薄膜是高分子薄膜、镀膜高分子薄膜、铝箔中的一种或一种以上。
  13. 根据权利要求12所述的一种真空绝热板,其特征在于:生物可溶解纤维指在模拟人体肺液中的溶解速率常数Kdis≥100ng/(cm2.hr);生物可溶解纤维中无机纤维包括矿棉、岩棉、玻璃棉、玻璃纤维、耐火纤维、陶瓷纤维等,各成分的重量百分数(Na2O+K2O+CaO+MgO+BaO)>18wt%和/或[(Na2O+K2O+CaO+MgO+BaO+B2O3)‐2*(Al2O3)]>40wt%。
  14. 根据权利要求12所述的一种真空绝热板,其特征在于:所述生物可溶解纤维为生物可溶解有机纤维或生物可溶解无机纤维或生物可溶解复合纤维中的一种或一种以上的组合;所述胶粘剂为液态型胶粘剂或粉末型胶粘剂中的一种或一种以上的组合。
PCT/CN2015/080035 2014-05-28 2015-05-28 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 WO2015180660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410229814.2A CN105274728B (zh) 2014-05-28 2014-05-28 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板
CN201410229814.2 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015180660A1 true WO2015180660A1 (zh) 2015-12-03

Family

ID=54698119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080035 WO2015180660A1 (zh) 2014-05-28 2015-05-28 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板

Country Status (2)

Country Link
CN (1) CN105274728B (zh)
WO (1) WO2015180660A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821710A (zh) * 2016-04-22 2016-08-03 苏州派欧技术咨询服务有限公司 一种憎水性过滤纸及其制备方法
CN111662077A (zh) * 2020-07-07 2020-09-15 湖北烁砺新材料科技有限公司 1260℃生物可溶性环保型耐火纤维及其制备工艺
CN112321175A (zh) * 2020-10-21 2021-02-05 广州市塞姆消音材料有限公司 一种环保型固化剂组合物及其制备方法和应用
CN112553783A (zh) * 2020-11-27 2021-03-26 山东鲁阳节能材料股份有限公司 一种增韧型无机纤维毡及其制备方法
CN115679746A (zh) * 2022-11-02 2023-02-03 山东鲁阳节能材料股份有限公司 一种可溶纤维纸及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567188B (zh) * 2016-08-30 2018-08-03 长兴盟友耐火材料有限公司 一种荧光耐火纤维毡的制备方法
CN106367897B (zh) * 2016-08-30 2018-07-24 长兴盟友耐火材料有限公司 一种抗氧化镁钙锆碳耐火纤维毡的制备方法
CN106367898B (zh) * 2016-08-30 2018-07-06 长兴盟友耐火材料有限公司 一种抗菌耐火纤维毡的制备方法
CN106381611B (zh) * 2016-08-30 2018-08-17 长兴盟友耐火材料有限公司 一种有彩色可溶耐火纤维毡的制备方法
CN106367896B (zh) * 2016-08-30 2018-07-06 长兴盟友耐火材料有限公司 一种钙镁锆磷灰石复合可溶解耐火材料的制备方法
CN106400300B (zh) * 2016-08-30 2018-11-30 长兴盟友耐火材料有限公司 一种夜光耐火纤维针刺织物制备方法
CN106350939B (zh) * 2016-08-30 2018-11-30 长兴盟友耐火材料有限公司 一种低收缩肺液快溶解耐火纤维毡的制备方法
CN106431372B (zh) * 2016-08-30 2019-04-16 长兴盟友耐火材料有限公司 一种抗菌易溶解蛇纹石耐火纤维的制备方法
CN106396639B (zh) * 2016-08-30 2019-02-26 长兴盟友耐火材料有限公司 一种表面染色镁铝锆复合耐火纤维毡的制备方法
CN106396697B (zh) * 2016-08-30 2019-02-26 长兴盟友耐火材料有限公司 一种抗氧化氧化锆碳复合耐火纤维的制备方法
CN106350940A (zh) * 2016-08-30 2017-01-25 长兴盟友耐火材料有限公司 一种彩色钙镁可溶性耐火纤维针刺织物的制备方法
CN106431428B (zh) * 2016-08-30 2019-04-16 长兴盟友耐火材料有限公司 一种染色蛇纹石耐火纤维的制备方法
CN106884356A (zh) * 2017-02-15 2017-06-23 合肥华凌股份有限公司 芯材制造方法、芯材和真空绝热板
CN106838547B (zh) * 2017-03-03 2019-11-05 李光武 一种不掉粉尘的含纳米孔隙隔热材料的保温毡板及其制备方法
CN107012584A (zh) * 2017-03-06 2017-08-04 常熟市东宇绝缘复合材料有限公司 柔性纤维毡生产工艺
CN109721238A (zh) * 2019-02-20 2019-05-07 邹玉 一种超细玻璃棉的制备方法
CN111764050B (zh) * 2020-06-19 2021-08-10 北京卫星制造厂有限公司 一种保温板生产线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049834A (zh) * 1989-08-11 1991-03-13 伊索福圣戈班公司 能够在生理介质中分解的玻璃纤维
CN1385570A (zh) * 2002-06-06 2002-12-18 山东鲁阳股份有限公司 环保型陶瓷纤维针刺毯及其制备方法
CN1985032A (zh) * 2004-03-16 2007-06-20 帝人株式会社 超细聚乳酸系纤维、纤维结构体以及它们的制备方法
CN101387046A (zh) * 2008-09-23 2009-03-18 中国民航大学 可生物完全降解的无纺织物及其专用熔喷装置
EP2204484A1 (en) * 2007-10-26 2010-07-07 Kaneka Corporation Polyimide fiber mass, sound absorbing material, heat insulation material, flame-retardant mat, filter cloth, heat-resistant clothing, nonwoven fabric, heat insulation/sound absorbing material for aircraft, and heat-resistant bag filter
CN103306048A (zh) * 2012-03-07 2013-09-18 福建赛特新材股份有限公司 一种纤维毡、制备方法和用于真空绝热板的芯材
WO2014025152A1 (ko) * 2012-08-06 2014-02-13 주식회사 아모그린텍 단열 시트 및 그 제조방법
CN103774347A (zh) * 2013-12-12 2014-05-07 青岛无为保温材料有限公司 一种可降解非织造布制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551951B1 (en) * 1999-03-19 2003-04-22 Johns Manville International, Inc. Burn through resistant nonwoven mat, barrier, and insulation system
JP5059284B2 (ja) * 2001-10-09 2012-10-24 スリーエム イノベイティブ プロパティズ カンパニー 生体溶解性無機ファイバーと雲母バインダーとを含有する組成物
AU2009333811B2 (en) * 2009-01-05 2013-08-22 Unifrax I Llc High strength biosoluble inorganic fiber insulation mat
JP4726970B2 (ja) * 2009-04-07 2011-07-20 シャープ株式会社 真空断熱材とそれを備える機器
CN102720923B (zh) * 2012-06-13 2016-06-08 海尔集团公司 一种真空绝热板的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049834A (zh) * 1989-08-11 1991-03-13 伊索福圣戈班公司 能够在生理介质中分解的玻璃纤维
CN1385570A (zh) * 2002-06-06 2002-12-18 山东鲁阳股份有限公司 环保型陶瓷纤维针刺毯及其制备方法
CN1985032A (zh) * 2004-03-16 2007-06-20 帝人株式会社 超细聚乳酸系纤维、纤维结构体以及它们的制备方法
EP2204484A1 (en) * 2007-10-26 2010-07-07 Kaneka Corporation Polyimide fiber mass, sound absorbing material, heat insulation material, flame-retardant mat, filter cloth, heat-resistant clothing, nonwoven fabric, heat insulation/sound absorbing material for aircraft, and heat-resistant bag filter
CN101387046A (zh) * 2008-09-23 2009-03-18 中国民航大学 可生物完全降解的无纺织物及其专用熔喷装置
CN103306048A (zh) * 2012-03-07 2013-09-18 福建赛特新材股份有限公司 一种纤维毡、制备方法和用于真空绝热板的芯材
WO2014025152A1 (ko) * 2012-08-06 2014-02-13 주식회사 아모그린텍 단열 시트 및 그 제조방법
CN103774347A (zh) * 2013-12-12 2014-05-07 青岛无为保温材料有限公司 一种可降解非织造布制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821710A (zh) * 2016-04-22 2016-08-03 苏州派欧技术咨询服务有限公司 一种憎水性过滤纸及其制备方法
CN111662077A (zh) * 2020-07-07 2020-09-15 湖北烁砺新材料科技有限公司 1260℃生物可溶性环保型耐火纤维及其制备工艺
CN112321175A (zh) * 2020-10-21 2021-02-05 广州市塞姆消音材料有限公司 一种环保型固化剂组合物及其制备方法和应用
CN112553783A (zh) * 2020-11-27 2021-03-26 山东鲁阳节能材料股份有限公司 一种增韧型无机纤维毡及其制备方法
CN112553783B (zh) * 2020-11-27 2022-03-18 山东鲁阳节能材料股份有限公司 一种增韧型无机纤维毡及其制备方法
CN115679746A (zh) * 2022-11-02 2023-02-03 山东鲁阳节能材料股份有限公司 一种可溶纤维纸及其制备方法
CN115679746B (zh) * 2022-11-02 2024-04-05 山东鲁阳节能材料股份有限公司 一种可溶纤维纸及其制备方法

Also Published As

Publication number Publication date
CN105274728B (zh) 2018-10-16
CN105274728A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2015180660A1 (zh) 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板
WO2013131300A1 (zh) 一种纤维毡、制备方法和用于真空绝热板的芯材
JP2001524625A (ja) 一体化された無機繊維と有機繊維を有する繊維断熱材及びかかる繊維断熱材で断熱された建物構造体
CN102575397B (zh) 制备含有矿物纤维的部件的方法以及通过该方法制备的部件
CN103660478B (zh) 抗菌水刺淋膜三层复合非织造布及其制备方法
JP2001524612A (ja) 有機繊維と無機繊維から成るパックの製造方法
CN101392432B (zh) 制作熔喷非织物羽绒双组份保暖絮片的方法
US20160222560A1 (en) Breakable and degradalbe non-woven spunlace and fabrication methods and production line
CN101575768A (zh) 竹原纤维针刺毡的制作方法
EP0782638A1 (en) Processing methods and products for irregularly shaped bicomponent glass fibers
CN103210133A (zh) 用于对纤维进行纺织且特别是用于生产含有纤维的非纺织品的方法和设备
CN106042572A (zh) 一种高速列车座椅用面料及其制造方法
JP2001524613A (ja) 繊維状パックを製造する方法
CN106555277A (zh) 利用熔喷和静电纺丝制备复合超细纤维束的装置及方法
WO2016008419A1 (zh) 一种隔热箱及其所用的真空绝热板
CN102978831A (zh) 一种pet纤维/聚苯并咪唑纤维复合吸音棉及其制备方法
CN205974960U (zh) 一种四层复合水刺非织造布
CN1218072C (zh) 超吸湿纤维的非织造织物及其制造方法
CN109234911A (zh) 一种生物可降解医用敷料的制备方法
CN105172309A (zh) 一种利用废旧纺织纤维制备保温板的方法
CN112760827A (zh) 一种吸水芯体复合无纺布的生产线及其生产方法
CN107639920A (zh) 一种低导热系数复合干法热压真空绝热板芯材及其制备方法
JPH11200217A (ja) 不織布及びその製造方法
RU2469967C2 (ru) Композит из минеральной ваты и способ его изготовления
CN215850000U (zh) 一种三梳理水刺无纺布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799111

Country of ref document: EP

Kind code of ref document: A1