WO2013131300A1 - 一种纤维毡、制备方法和用于真空绝热板的芯材 - Google Patents
一种纤维毡、制备方法和用于真空绝热板的芯材 Download PDFInfo
- Publication number
- WO2013131300A1 WO2013131300A1 PCT/CN2012/073503 CN2012073503W WO2013131300A1 WO 2013131300 A1 WO2013131300 A1 WO 2013131300A1 CN 2012073503 W CN2012073503 W CN 2012073503W WO 2013131300 A1 WO2013131300 A1 WO 2013131300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber mat
- fiber
- preparing
- mat according
- thickener
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/48—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
- D04H1/49—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
Definitions
- the present invention relates to a novel fiber mat, and a method and application for the preparation of the felt.
- Glass fiber chopped strand mat (referred to as chopped strand mat) is a main glass fiber non-woven reinforcing material, which is short-cut into continuous glass fiber to about 50mm, non-directional uniform distribution, with powder or emulsion as adhesive. It is made by sedimentation and felting. It is characterized by low cost, but it is easy to cause breakage during large-area construction, and thus becomes the largest reinforcing material in the glass fiber reinforced polymer hand lay-up process, and is also widely used in mechanical forming processes such as winding and molding.
- the vacuum insulation board is an upgraded product of the insulation material, and the core material is various, and a fiber or a porous medium material having excellent heat resistance is generally selected.
- the material of the core material there are glass fiber (glass fiber VIP), open-cell polyurethane foam (open hole PU-VIP), open-cell polystyrene foam (open-cell PS-VIP), open-cell phenolic foam (opening) PF-VIP), fumed silica powder (silicon powder VIP), aerogel (aerogel VIP).
- glass fiber VIP glass fiber
- open-cell polyurethane foam open hole PU-VIP
- open-cell polystyrene foam open-cell PS-VIP
- open-cell phenolic foam open-cell phenolic foam
- fumed silica powder silica powder
- aerogel aerogel
- the selection of the core material is very important. In addition to being used as a supporting material, it can also limit the movement space of some gas molecules remaining in the vacuum insulation panel, thereby preventing convection and gas conduction. . At the same time, the material of the core material and the arrangement of the internal structure will have different effects on the heat transfer of the solid. In addition, the core material can also absorb and scatter radiation such as infrared rays. In recent years, the successful development and large-scale commercialization is the vacuum insulation board with glass microfiber (also known as glass fiber cotton, referred to as glass wool) as the core material. The thermal conductivity of vacuum insulation board is generally 3.5 ⁇ 4. mW/m•K.
- Glass microfibers are a type of glass fiber and are artificial inorganic fibers produced by flame spraying a molten glass liquid.
- the average diameter of the glass microfiber fibers is not more than 4 micrometers (the product is not more than 6 micrometers). Due to the wide fiber size distribution, the shape distortion, the irregularity, etc., the internal fiber structure of the core material is disordered and disordered, and the thermal conductivity is hard to be obtained.
- finding or developing a new type of core material can not only achieve lower insulation effect, but also increase production cost, which not only improves the cost performance of the product, but also improves the market competitiveness of the enterprise, and meets the current international social energy conservation and emission reduction requirements. It has become an inevitable trend.
- the present invention aims to solve the above problems, and develops a fiber mat, provides a fiber felt preparation method, and opens up a new application field of fiber mat, that is, a core material for a vacuum insulation board, further providing a A vacuum insulation board.
- a fiber mat comprising 50 ⁇ 100 (weight ratio of fiber mat after drying, the same below) glass chopped strand, and other inorganic fibers, natural fibers, synthetic fibers, man-made fibers except glass chopped strands And one or several kinds of radiation-proof materials, the ratio of which is 0.1 ⁇ 30 other inorganic fibers except glass fiber, 0.1 ⁇ 30 of natural fiber, 0.1 ⁇ 30 of synthetic fiber, 0.1 ⁇ 30 of synthetic fiber, by acupuncture method, water Pricking, hot rolling, wet papermaking, wet papermaking thickener, wet papermaking, etc. are prepared.
- the glass fiber chopped strand according to the present invention (preferably having a length of 3 to 100 mm and a fiber diameter of 3 to 25 ⁇ m);
- glass microfibers average diameter not larger than 6 microns
- quartz glass fibers ceramic fibers
- slag wool rock wool
- high silica fibers alumina fibers, etc.
- Natural fibers include mineral fibers - asbestos, etc.
- Synthetic fibers include polyester fiber---polyester, polyamide fiber---nylon or nylon, polyvinyl alcohol fiber---vinylon, polyacrylonitrile fiber---acrylic fiber, polypropylene fiber---polypropylene, polyvinyl chloride Fiber---polyvinyl chloride, etc.;
- Man-made fibers include viscose fiber, regenerated cellulose fiber, regenerated starch fiber, etc.
- Radiation protection materials include carbon black, silicon carbide, fumed silica, hydrated precipitated silica, titanium dioxide, zirconium dioxide, and the like.
- the preparation method of the fiber mat provided by the invention includes the following:
- the laid fiber web is fed into the hot rolling mill for heating (100 ⁇ 200 °C) pressurization (1 ⁇ 50Kg/cm 2 ) hot rolling, and the fiber web is fixedly fixed to obtain the desired fiber mat.
- the wet fiber mat is sent to the sizing zone for sizing (binder).
- the optional sizing method is as follows:
- the special binder liquid is sprayed on the felt through the glue sprayer, and then suctioned under the suction belt to carry out vacuum suction, so that the emulsion droplets penetrate into the felt interior.
- the special binder powder is evenly sprayed on the felt through the duster, and then suctioned under the suction box to carry out vacuum suction, so that the binder powder penetrates into the felt interior.
- the glued fiber mat is conveyed to an oven for drying, and the desired fiber mat is obtained.
- the thickeners mentioned above are aqueous thickeners, including inorganic thickeners (such as bentonite, silicone gel, etc.), cellulose ethers (such as methylcellulose, hydroxypropylmethylcellulose, hydroxyethyl) Base cellulose, methyl hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, sodium carboxymethyl cellulose, etc.), natural polymers and derivatives thereof (such as starch, gelatin, sodium alginate, guar gum, Pectin, xanthan gum, casein, etc.), synthetic polymers (such as polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyacrylic acid, sodium polyacrylate, polyacrylate copolymer emulsion, (low molecular weight) Polyurethanes, etc.) and complexed organometallic compounds (such as amino alcohol complexed titanates)
- inorganic thickeners such as bentonite, silicone gel, etc.
- the binder mentioned above may be a thermoplastic compound (such as cellulose ester, polyvinyl acetate, polyvinyl alcohol, polyacrylate, polyamide, etc.), a thermosetting compound (such as epoxy resin, phenolic resin, three).
- the binder made of the above thermoplastic compound or thermosetting compound should be specially prepared, and the content of VOC (volatile organic compound) and free chemical component should be as low as possible so as to be removed upon curing.
- a new field of application of the fiber mat developed by the present invention means that the product of the present invention is used for a core material of a vacuum insulation panel, and further provides a vacuum insulation panel.
- the present invention provides a vacuum insulation panel comprising a core material provided by the present invention and a getter or adsorbent, a closed high barrier packaging bag, the core material being composed of a plurality of sheet-like fiber mat laminates.
- a vacuum insulation panel is prepared as follows: firstly, the fiber mat prepared by the wet method is placed in a heat treatment furnace and heated, the maximum temperature is 100-300 ° C; when the temperature rises to a set value of 100-300 ° C After heat preservation for 30-240min, then open the heat treatment furnace to take out the fiber mat; put the laminated fiber mat into the high-barrier packaging bag according to the thickness requirement, and place the getter to a specific position, then place the high-barrier packaging with the fiber felt The bag is placed in a pre-set vacuum sealing machine for sealing to obtain a vacuum insulation panel, and finally the vacuum sealing machine is opened, and the vacuum insulation panel is taken out.
- the fiber felt of the present invention is used for the core material of the vacuum insulation board, and the thermal conductivity of the vacuum insulation board produced by the same production method is reduced by 25 % ⁇ 65%.
- the fiber mat of the present invention and the existing glass microfiber mat are also used for the core material of the vacuum insulation board, and the thermal conductivity of the vacuum insulation board thus obtained has Significant differences.
- the main reason is that the glass fiber chopped strand in the main raw material of the fiber mat of the invention is a long yarn of non-twisted glass fiber (formed by a plurality of monofilaments on the drain plate), and is cut into a certain length by a cutting machine, so the chopped strand
- the aspect ratio is stable, and a relatively uniform core structure can be obtained; and the glass microfiber fibers in the main raw material of the existing glass microfiber mat are often blown by flame method, and the glass fiber obtained by the method is long.
- the diameter ratio fluctuates greatly and is unstable, resulting in a messy core structure.
- the traditional glass chopped strand mat can not be used as the core of the vacuum insulation board, because the preparation process generally adopts the sizing process to increase the strength of the felt, and the glue used is mostly easy to deflate under vacuum, which seriously affects The thermal resistance and life of the VIP are used.
- the fiber mat of the present invention uses the glass chopped strand as the skeleton, and the microfibers and the like as the reinforcing ribs, so that the overall strength and stiffness of the felt are significantly improved without affecting the felt.
- the main structure inside, so the obtained vacuum insulation board can still obtain better initial value and retention without adding a getter.
- Figure 1 is a front view of a glass microfiber mat structure, wherein 1 is a glass microfiber filament
- 2 is a schematic cross-sectional view of a glass microfiber mat structure, wherein 1 is a glass microfiber filament
- Figure 3 is a front elevational view of the fiber mat structure of the present invention, wherein 2 is a glass chopped strand, 3 is other fibers, and 4 is a radiation resistant material.
- Figure 4 is a schematic cross-sectional view of the fiber mat structure of the present invention, wherein 2 is a glass chopped strand, 3 is other fibers, and 4 is a radiation protection material.
- Figure 5 is a schematic cross-sectional view of a vacuum insulation panel using the fiber mat of the present invention as a core material, wherein 5 is a new fiber felt, 6 is a barrier bag, and 7 is a getter.
- the fiber felt of the present invention has a needle punching process as follows:
- Glass fiber chopped strands (preferably having a length of 75 mm and a fiber diameter of 9 ⁇ m) of 25 kg, glass microfibers (average diameter of not more than 6 ⁇ m) of 3 kg and carbon black of 280 g are weighed and put into a rough opening machine. Coarse opening, through the mixed box into the fine open machine for fine opening, and then thoroughly mixed by vibrating cotton box, and then sent to the carding machine to completely open, evenly comb and distribute the fiber filament;
- the needle density is 8 ⁇ 12 needles/cm 2 , that is, the required fiber felt is obtained, and the thickness thereof is 5 mm.
- the fiber felt of the present invention has a needle punching process as follows:
- the wet fiber felt is conveyed to an oven for drying, and the desired fiber mat is obtained, and the thickness thereof is 10 mm.
- the fiber felt of the present invention has a needle punching process as follows:
- the fiber mat of the present invention has a wet papermaking acid preparation process as follows:
- the fiber mat of the present invention has a wet papermaking thickener preparation process as follows:
- Whitener water is prepared with water thickener (methylcellulose), dispersant (brand 5040), defoamer (brand 3496), etc., with a viscosity of 5 ⁇ 8mpa.s and a gas content of 10 ⁇ 15% ( Volume ratio);
- the fiber mat of the present invention has a wet paper making process as follows:
- the wet fiber felt is sent to the sizing zone, and the sizing is performed by the spray method: a special binder liquid (E570 epoxy resin, viscosity 100-200 mPa.s) is sprayed on the felt through the glue sprayer. After that, the suction box is used to carry out vacuum suction under the suction box, so that the droplets of the adhesive penetrate into the interior of the felt.
- a special binder liquid E570 epoxy resin, viscosity 100-200 mPa.s
- the wet fiber felt is conveyed to an oven, dried, and taken out to obtain a desired fiber mat having a thickness of 1.5 mm.
- the fiber mat of the invention is used for the core material of the vacuum insulation board, and the preparation process of the vacuum insulation board is as follows:
- Vacuum insulation board of the embodiment Glass microfiber felt core vacuum insulation board Thermal conductivity (mW/m.k) 1.4 ⁇ 2.0 3.5 ⁇ 4.0
- the fiber mat provided by the invention adopts the same production mode, and the thermal insulation coefficient of the vacuum insulation board using the fiber felt made by the invention as the core material is reduced by 25% to 65%, and a more ultra-efficient heat preservation is obtained. Thermal insulation effect.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Nonwoven Fabrics (AREA)
Abstract
一种纤维毡,包括50~100(占烘干后纤维毡的重量比,下同)玻璃纤维短切原丝,及除玻璃纤维短切原丝外的其它无机纤维、天然纤维、合成纤维、人造纤维和防辐射材料的一种或数种,其比例为除玻璃纤维短切原丝外的其它无机纤维0.1-30、天然纤维0.1-30、合成纤维0.1-30、人造纤维0.1-30,通过针刺法、水刺法、热轧法、湿式抄造酸法、湿式抄造增稠剂法、湿式抄造胶法制备。提供了纤维毡的制备方法。在采用相同方式前提下,采用本发明制得的纤维毡作为芯材的真空绝热板的导热系数降幅达到了25%~65%,获得了较好的保温绝热效果。
Description
本发明涉及一种新型纤维毡,以及该毡的制备方法和应用。
玻璃纤维短切原丝毡(简称短切毡)是一种主要的玻璃纤维无纺增强材料,它是将连续玻璃纤维短切成50mm左右,无定向均匀分布,以粉末或乳液为粘接剂,经沉降铺毡而成。其特点是价廉,但在大面积施工时易造成断裂,因而成为玻璃纤维增强聚合物手糊工艺中用量最大的增强材料,也被大量使用于缠绕、模压等机械成型工艺之中。
真空绝热板是保温材料的升级换代产品,其芯材多种多样,一般选择具有优异热阻性能的纤维或多孔介质材料。根据芯材材质的不同,分别有玻璃纤维(玻纤VIP)、开孔聚氨酯泡沫(开孔PU-VIP)、开孔聚苯乙烯泡沫(开孔PS-VIP)、开孔酚醛泡沫(开孔PF-VIP)、气相二氧化硅粉末(硅粉VIP)、气凝胶(气凝胶VIP)。目前,已有多个专利提出了不同的方案,如:专利号为ZL
200410058742.6、ZL 00106049.X、ZL 200710031196.0等。
在真空绝热板中,其芯材的选择非常重要,它除了作为支撑材料外,还可以限制残余在真空绝热板中的一些气体分子的运动空间,因而可以阻止对流以及气体传导这两种传热。同时,芯材的材质和内部结构的排布都将对固体传热起着不同程度的影响。此外芯材还可以起到对红外等辐射进行吸收、散射的作用。近年开发成功并大规模商业化的是以玻璃微纤维(亦称玻璃纤维棉,简称玻璃棉)为芯材的真空绝热板,真空绝热板导热系数一般在3.5~4
mW/m•K。玻璃微纤维属于玻璃纤维中的一个类别,是一种将熔融状玻璃液用火焰喷吹法制成的人造无机纤维。玻璃微纤维纤维平均直径不大于4微米(制品不大于6微米),由于存在纤维尺寸分布宽、形态扭曲、不规则等,使得芯材内部纤维结构杂乱无序,导热系数很难得到更低。
因此,寻找或开发一种新型芯材,既能获得更低保温效果,又不增加生产成本,既提升了产品的性价比,提高了企业的市场竞争力,又符合当前国际社会节能减排要求,已经成为一种必然的趋势。
本发明旨在针对上述问题,开发出了一种纤维毡,提供了一种纤维毡制备方法,并开辟了纤维毡的新的应用领域,即用于真空绝热板的芯材,进一步提供了一种真空绝热板。
一种纤维毡,包括50~100(占烘干后纤维毡的重量比,下同)玻璃纤维短切原丝,及除玻璃纤维短切原丝外的其它无机纤维、天然纤维、合成纤维、人造纤维和防辐射材料的一种或数种,其比例为除玻璃纤维外的其它无机纤维0.1~30、天然纤维0.1~30、合成纤维0.1~30、人造纤维0.1~30,通过针刺法、水刺法、热轧法、湿式抄造酸法、湿式抄造增稠剂法、湿式抄造胶法等制备得到。
本发明所述的玻璃纤维短切原丝(优选长度在3~100mm,纤维直径在3~25µm);
除玻璃纤维短切原丝外的其它无机纤维,包括玻璃微纤维(平均直径不大于6微米)、石英玻璃纤维、陶瓷纤维、矿渣棉、岩棉、高硅氧纤维、氧化铝纤维等);
天然纤维包括矿物纤维---石棉等;
合成纤维包括聚酯纤维---涤纶、聚酰胺纤维---锦纶或尼龙、聚乙烯醇纤维---维纶、聚丙烯腈纤维---腈纶、聚丙烯纤维---丙纶、聚氯乙烯纤维---氯纶等;
人造纤维包括黏胶纤维、再生纤维素纤维、再生淀粉纤维等.
防辐射材料包括炭黑、碳化硅、气相法二氧化硅、水合沉淀法二氧化硅、二氧化钛、二氧化锆等等。
本发明提供的纤维毡的制备方法,包括以下几种:
一、针刺法:
(1)将以上各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入预针刺机、主针刺机进行针刺定型,即得所需纤维毡。
二、水刺法:
(1)将以上各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入水刺机组进行高压喷头水刺定型;
(4)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
三、热轧法:
(1)将以上各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入热轧机组进行加温(100~200℃)加压(1~50Kg/ cm2
)热轧,纤维网被加固定型,即得所需纤维毡。
四、湿式抄造酸法:
(1)将以上各种原料按比例配料投入到打浆机中,进行打浆分散,调节浆液的PH值为2~4;
(2)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(3)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
五、湿式抄造增稠剂法:
(1)将增稠剂、分散剂、消泡剂等按一定比例与水配制白水,调节白水的粘度在2~40mpa.s,含气量在0.1%~50%(体积比);
(2)将以上各种原料按比例配料后,并与一定比例增稠剂、分散剂、消泡剂等,投入到打浆机中,进行打浆分散;
(3)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(4)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
六、湿式抄造胶法:
(1)将增稠剂、分散剂、消泡剂等按一定比例与水配制白水,调节白水的粘度在2~40mpa.s,含气量在0.1%~50%(体积比);
(2)将以上各种原料按比例配料后,并与一定比例增稠剂、分散剂、消泡剂等,投入到打浆机中,进行打浆分散;
(3)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(4)将湿的纤维毡送至施胶区进行施胶(粘结剂),可选用的施胶方法如下:
①淋液法:将专用粘结剂液体通过施胶器饱和浸透于毡上,后经施胶网带下抽吸箱将多余的粘结剂吸走
②喷液法:将专用粘结剂液体通过喷胶器喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使乳液液滴渗透入毡内部
③喷粉法:将专用粘结剂粉末通过洒粉器均匀喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使粘结剂粉末渗透入毡内部
(5)将施过胶的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
上述中提到的增稠剂为水相增稠剂,包括无机增稠剂(如膨润土、硅凝胶等)、纤维素醚(如甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素、甲基羟乙基纤维素、乙基羟乙基纤维素、羧甲基纤维素钠等)、天然高分子及其衍生物(如淀粉、明胶、海藻酸钠、瓜尔胶、果胶、黄原胶、干酪素等)、合成高分子(如聚丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮、聚氧化乙烯、聚丙烯酸、聚丙烯酸钠、聚丙烯酸酯共聚乳液、(低分子量)聚氨酯等)以及络合型有机金属化合物(如氨基醇络合型钛酸酯等)
上述中提到的粘结剂可为热塑性类化合物(如纤维素酯、聚乙酸乙烯酯、聚乙烯醇、聚丙烯酸酯、聚酰胺等)、热固性类化合物(如环氧树脂、酚醛树脂、三聚氰-甲醛树脂、有机硅树脂、呋喃树脂、不饱和聚酯、丙烯酸树脂、聚酰亚胺、聚苯并咪唑等)以及上述增稠剂等制成的粉末和一定浓度液体。
上述热塑性类化合物、热固性类化合物制成的粘结剂,应为特制,其VOC(挥发性有机化合物)、游离化学成分等含量应尽量低,以便在固化时即可除去。
本发明开辟的纤维毡的新的应用领域是指本发明产品用于真空绝热板的芯材,进一步提供了一种真空绝热板。
本发明提供了一种真空绝热板,由本发明提供的芯材和吸气剂或吸附剂、封闭的高阻隔包装袋所构成,所述的芯材由多层片状的纤维毡层叠组成。此类真空绝热板是按如下步骤制备的:首先将采用湿法制备的纤维毡置于热处理炉中并加温,最高温度为100-300℃;当温度升至设定的数值100-300℃后保温30-240min,然后打开热处理炉将纤维毡取出;按照厚度要求将层叠的纤维毡装入高阻隔包装袋,并将吸气剂放置到特定位置,然后将放有纤维毡的高阻隔包装袋放入到预先设置好的真空封口机中进行封口,得到真空绝热板,最后打开真空封口机,取出真空绝热板。
与现有的真空绝热板相比,将本发明所述的纤维毡用于真空绝热板的芯材,在采用相同生产方式前提下,所制得的真空绝热板的导热系数,则降低了25%~65%。
与现有的玻璃微纤维毡相比,将本发明所述的纤维毡和现有的玻璃微纤维毡同样用于真空绝热板的芯材,由此所制得的真空绝热板的导热系数有明显差异。主要在于:本发明的纤维毡主要原料中玻璃纤维短切原丝为无捻度玻璃纤维长纱(由漏板上众多单丝经集束形成)经裁切机切成一定长度制得,因此短切丝的长径比是稳定的,可以获得较为均一的芯材结构;而现有的玻璃微纤维毡主要原料中玻璃微纤维纤维常为火焰法吹制而成,这种方法制得的玻璃纤维长径比波动很大,很不稳定,得到的是较杂乱的芯材结构。
另外,传统的玻璃纤维短切原丝毡是无法用做真空绝热板芯材的,因为其制备过程普遍采用了施胶工艺增加毡的强度,所用的胶大多在真空下极易放气,严重影响了VIP的阻热性能和寿命;而本发明的纤维毡采用的是以玻璃纤维短切原丝为骨架,微纤维等做为加强筋,使毡整体强度和挺度得到显著提高,又不影响毡内部的主要结构,故所得真空绝热板在不加吸气剂的情况下仍能获得较好的初始值和保持性。
应当理解,以下示意图是本发明的一个特例,仅为了说明本发明,而不是为了限制本发明的保护范围。
图1是玻璃微纤维毡结构正面示意图,其中1为玻璃微纤维丝
图2是玻璃微纤维毡结构剖面示意图,其中1为玻璃微纤维丝
图3是本发明的纤维毡结构正面示意图,其中2为玻璃纤维短切原丝,3为其他纤维,4为防辐射材料
图4是本发明纤维毡结构剖面示意图,其中2为玻璃纤维短切原丝,3为其他纤维,4为防辐射材料
图5是采用本发明纤维毡作为芯材的真空绝热板剖面示意图,其中5为新型纤维毡,6为阻隔袋,7为吸气剂
以下以实施例对本发明作进一步说明。应当理解,实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
实施例1
本发明所述的纤维毡,其针刺法制备过程如下:
(1)将玻璃纤维短切原丝(优选长度在75mm,纤维直径在9µm)25Kg、玻璃微纤维(平均直径不大于6微米)3Kg和炭黑280g经称重配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入预针刺机、主针刺机进行针刺定型,针刺密度为8~12针/ cm2
,即得所需纤维毡,其厚度为5mm。
实施例2
本发明所述的纤维毡,其针刺法制备过程如下:
(1)将玻璃纤维短切原丝(优选长度在50mm,纤维直径在13µm)50Kg、玻璃微纤维(平均直径不大于6微米)5Kg和涤纶纤维(1.8tex,38mm)1Kg经称重配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入水刺机组进行高压喷头水刺定型,水刺压力10~20bar
(4)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡,其厚度为10mm。
实施例3
本发明所述的纤维毡,其针刺法制备过程如下:
(1)将玻璃纤维短切原丝(优选长度在65mm,纤维直径在18µm)50Kg、岩棉(平均直径不大于4微米)5Kg和丙纶纤维(1.2tex,70mm)0.5Kg经称重配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱等充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;
(2)后转至铺网机进行铺网;
(3)将铺出纤维网喂入热轧机组进行加温(150~200℃)加压(5~10Kg/ cm2
)热轧,纤维网被加固定型,取出即得所需纤维毡,其厚度为7mm。
实施例4
本发明所述的纤维毡,其湿式抄造酸法制备过程如下:
(1)将玻璃纤维短切原丝(优选长度在9mm,纤维直径在11µm)50Kg、玻璃微纤维(平均直径不大于4微米)5Kg和矿渣棉(平均直径不大于2微米)0.5Kg经称重配料后,投入到打浆机中,进行打浆分散,调节浆液的PH值为2.5~3;
(2)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(3)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡,其厚度为3mm。
实施例5
本发明所述的纤维毡,其湿式抄造增稠剂法制备过程如下:
(1)将增稠剂(甲基纤维素)、分散剂(牌号5040)、消泡剂(牌号3496)等与水配制白水,粘度在5~8mpa.s,含气量在10~15%(体积比);
(2)将玻璃纤维短切原丝(优选长度在9mm,纤维直径在13µm)70Kg、玻璃微纤维(平均直径不大于4微米)5Kg和二氧化钛75g经称重配料后,并与增稠剂1Kg、分散剂1Kg、消泡剂100g等,投入到打浆机中,进行打浆分散;
(2)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(3)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡,其厚度为1.5mm。
实施例6
本发明所述的纤维毡,其湿式抄造胶法制备过程如下:
(1)将增稠剂(羧甲基纤维素钠)、分散剂(牌号5040)、消泡剂(牌号3496)等与水配制白水,粘度在5~8mpa.s,含气量在10~15%(体积比);
(2)将玻璃纤维短切原丝(优选长度在9mm,纤维直径在13µm)70Kg、玻璃微纤维(平均直径不大于4微米)7Kg经称重配料后,并与增稠剂0.5Kg、分散剂0.5Kg、消泡剂50g等,投入到打浆机中,进行打浆分散;
(2)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;
(3)将湿的纤维毡送至施胶区,采用喷液法进行施胶:将专用粘结剂液体(E570环氧树脂液,粘度100~200mPa.s)通过喷胶器喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使粘结剂液滴渗透入毡内部
(4)将湿的纤维毡输送至烘箱中,烘干,取出即得所需纤维毡,其厚度为1.5mm。
本发明所述的纤维毡,用于真空绝热板的芯材,其真空绝热板的制备过程如下:
(1)将上述纤维毡切片、叠齐后,置于热处理炉中并加温,最高温度为150℃;
(2)当温度升至设定的数值150℃后保温60min,打开热处理炉将纤维毡取出;
(3)按照厚度要求将层叠的纤维毡装入高阻隔包装袋,并将吸气剂放置到特定位置;
(4)将放有纤维毡的高阻隔包装袋放入到预先设置好的真空封口机中进行封口,得到真空绝热板;
(5)打开真空封口机,取出真空绝热板。
本真空绝热板关键指标—导热系数对比如下:
项目 | 本实施例真空绝热板 | 玻璃微纤维毡芯材真空绝热板 |
导热系数( mW/m.k ) | 1.4~2.0 | 3.5 ~ 4.0 |
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
本发明提供的纤维毡,在采用相同生产方式前提下,采用本发明所制得的纤维毡作芯材的真空绝热板的导热系数降幅达到了25%~65%,获得了更加超效的保温绝热效果。
Claims (45)
- 一种纤维毡,包括50~100(占烘干后纤维毡的重量比,下同)玻璃纤维短切原丝,及除玻璃纤维短切原丝外的其它无机纤维、天然纤维、合成纤维、人造纤维的一种或数种,其比例为除玻璃纤维短切原丝外的其它无机纤维0.1~30、天然纤维0.1~30、合成纤维0.1~30、人造纤维0.1~30,通过针刺法或水刺法或热轧法或湿式抄造酸法或湿式抄造增稠剂法或湿式抄造胶法制备得到。
- 如权利要求1所述的一种纤维毡,其特征在于玻璃纤维短切原丝为长度在3~100mm,纤维直径在3~25µm。
- 如权利要求1所述的一种纤维毡,其特征在于所述的除玻璃纤维短切原丝外的其它无机纤维为玻璃微纤维、石英玻璃纤维、陶瓷纤维、矿渣棉、岩棉、高硅氧纤维、氧化铝纤维。
- 如权利要求3所述的一种纤维毡,其特征在于所述的玻璃微纤维平均直径不大于6微米。
- 如权利要求1所述的一种纤维毡,其特征在于所述的天然纤维为矿物纤维---石棉。
- 如权利要求1所述的一种纤维毡,其特征在于所述的合成纤维为聚酯纤维---涤纶、聚酰胺纤维---锦纶或尼龙、聚乙烯醇纤维---维纶、聚丙烯腈纤维---腈纶、聚丙烯纤维---丙纶、聚氯乙烯纤维---氯纶。
- 如权利要求1所述的一种纤维毡,其特征在于所述的人造纤维为黏胶纤维、再生纤维素纤维、再生淀粉纤维。
- 如权利要求1所述的一种纤维毡,其特征在于还包括比例为(重量比)0-20的防辐射材料,并且为炭黑、碳化硅、气相法二氧化硅、水合沉淀法二氧化硅、二氧化钛、二氧化锆的一种或数种。
- 一种纤维毡的制备方法,其特征在于所述的针刺法是:(1)按权利1所述的各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;(2)然后转至铺网机进行铺网;(3)将铺出纤维网喂入预针刺机、主针刺机进行针刺定型,即得所需纤维毡。
- 如权利要求9所述的一种纤维毡的制备方法,其特征在于步骤(3)中提到的芯材是通过预针刺机、主针刺机进行针刺定型。
- 一种纤维毡的制备方法,其特征在于水刺法是:(1)按权利1所述的各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;(2)然后转至铺网机进行铺网;(3)将铺出纤维网喂入水刺机组进行高压喷头水刺定型;(4)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
- 如权利要求11所述的一种纤维毡的制备方法,其特征在于步骤(3)中提到的芯材是通过水刺机组进行高压喷头水刺定型。
- 一种纤维毡的制备方法,其特征在于热轧法:(1)按权利1所述的各种原料按比例配料后,投入粗开松机进行粗开松,经混棉箱进入精开松机进行精开松,再经振动棉箱充分混合后,送入梳理机进行纤维丝等完全开松、均匀梳理、分布;(2)然后转至铺网机进行铺网;(3)将铺出纤维网喂入热轧机组进行加温(100~200℃)加压(1~50Kg/cm2 )热轧,纤维网被加固定型,即得所需纤维毡。
- 如权利要求13所述的一种纤维毡的制备方法,其特征在于步骤(3)中提到的芯材是通过热轧机组进行加温(100~200℃)加压(1~50Kg/cm2 )热轧定型。
- 一种纤维毡的制备方法,其特征在于湿式抄造酸法:(1)按权利1所述的各种原料按比例配料投入到打浆机中,进行打浆分散,调节浆液的PH值为2~4;(2)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;(3)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
- 如权利要求15所述的一种纤维毡的制备方法,其特征在于步骤(1)中提到调节浆液的PH值,其值为2~4。
- 一种纤维毡的制备方法,其特征在于湿式抄造增稠剂法:(1)将增稠剂、分散剂、消泡剂与水配制白水,调节白水的粘度在2~40mpa.s,含气量在0.1%~50%(体积比);(2)将权利要求1各种原料按比例配料后,并与由增稠剂、分散剂、消泡剂调配成的白水,投入到打浆机中,进行打浆分散;(3)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;(4)将湿的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
- 如权利要求17所述的一种纤维毡的制备方法,其特征在于所述的步骤(1)所述的白水的粘度在3~30mpa.s,含气量在0.~40%(体积比)。
- 如权利要求17所述的一种纤维毡的制备方法,其特征在于所述的步骤(2)所述加入一定比例增稠剂、分散剂、消泡剂,该比例为增稠剂0.1%~20%(占纤维总投料重量的比值,后同)、分散剂0.1%~20%、消泡剂0.0001%~1%。
- 如权利要求17所述的一种纤维毡的制备方法,其特征在于步骤(1)(2)中所述的增稠剂为水相增稠剂,包括无机增稠剂、纤维素醚、天然高分子及其衍生物、合成高分子以及络合型有机金属化合物。
- 如权利要求20所述的一种纤维毡的制备方法,其特征在于所述的无机增稠剂为膨润土、硅凝胶。
- 如权利要求20所述的一种纤维毡的制备方法,其特征在于所述的纤维素醚为甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素、甲基羟乙基纤维素、乙基羟乙基纤维素、羧甲基纤维素钠。
- 如权利要求20所述的一种纤维毡的制备方法,其特征在于所述的天然高分子及其衍生物为淀粉、明胶、海藻酸钠、瓜尔胶、果胶、黄原胶、干酪素。
- 如权利要求20所述的一种纤维毡的制备方法,其特征在于所述的合成高分子为聚丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮、聚氧化乙烯、聚丙烯酸、聚丙烯酸钠、聚丙烯酸酯共聚乳液、(低分子量)聚氨。
- 如权利要求20所述的一种纤维毡的制备方法,其特征在于所述的络合型有机金属化合物为氨基醇络合型钛酸酯。
- 一种纤维毡的制备方法,其特征在于湿式抄造胶法:(1)将增稠剂、分散剂、消泡剂按一定比例与水配制白水,调节白水的粘度在2~40mpa.s,含气量在0.1%~50%(体积比);(2)按权利1各种原料按比例配料后,并与增稠剂、分散剂、消泡剂,投入到打浆机中,进行打浆分散;(3)将料浆进一步稀释后通过输送设备均匀布置在单网成型机的过滤网上,然后进行强制负压脱水定型后得到湿的纤维毡;(4)将湿的纤维毡送至施胶区进行施胶(粘结剂);(5)将施过胶的纤维毡输送至烘箱中烘干,取出即得所需纤维毡。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于步骤(1)所述的白水的粘度在3~30mpa.s,含气量在0~40%(体积比)。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于步骤(2)所述加入增稠剂、分散剂、消泡剂,该比例为增稠剂0.1%~20%(占纤维总投料重量的比值,后同)、分散剂0.1%~20%、消泡剂0.0001%~1%。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于步骤(1)(2)中所述的增稠剂为水相增稠剂,包括无机增稠剂、纤维素醚、天然高分子及其衍生物、合成高分子以及络合型有机金属化合物。
- 如权利要求29所述的一种纤维毡的制备方法,其特征在于所述的无机增稠剂为膨润土、硅凝胶。
- 如权利要求29所述的一种纤维毡的制备方法,其特征在于所述的纤维素醚为甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素、甲基羟乙基纤维素、乙基羟乙基纤维素、羧甲基纤维素钠。
- 如权利要求29所述的一种纤维毡的制备方法,其特征在于所述的天然高分子及其衍生物为淀粉、明胶、海藻酸钠、瓜尔胶、果胶、黄原胶、干酪素。
- 如权利要求29所述的一种纤维毡的制备方法,其特征在于所述的合成高分子为聚丙烯酰胺、聚乙烯醇、聚乙烯吡咯烷酮、聚氧化乙烯、聚丙烯酸、聚丙烯酸钠、聚丙烯酸酯共聚乳液、(低分子量)聚氨等。
- 如权利要求29所述的一种纤维毡的制备方法,其特征在于所述的络合型有机金属化合物为氨基醇络合型钛酸酯。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于步骤(4)中所述施胶方法为如下之一:①淋液法:将专用粘结剂液体通过施胶器饱和浸透于毡上,后经施胶网带下抽吸箱将多余的粘结剂吸走;②喷液法:将专用粘结剂液体通过喷胶器喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使乳液液滴渗透入毡内部;③喷粉法:将专用粘结剂粉末通过洒粉器均匀喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使粘结剂粉末渗透入毡内部。
- 如权利要求35所述的一种纤维毡的制备方法,其特征在于淋液法:将专用粘结剂液体通过施胶器饱和浸透于毡上,后经施胶网带下抽吸箱将多余的粘结剂吸走。
- 如权利要求35所述的一种纤维毡的制备方法,其特征在于喷液法:将专用粘结剂液体通过喷胶器喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使乳液液滴渗透入毡内部。
- 如权利要求35所述的一种纤维毡的制备方法,其特征在于喷粉法:将专用粘结剂粉末通过洒粉器均匀喷洒于毡上,后经施胶网带下抽吸箱进行负压抽吸,使粘结剂粉末渗透入毡内部。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于步骤(4)中提到的粘结剂可为热塑性类化合物、热固性类化合物以及上述增稠剂制成的粉末和一定浓度液体。
- 如权利要求39所述的一种纤维毡的制备方法,其特征在于热塑性类化合物为纤维素酯、聚乙酸乙烯酯、聚乙烯醇、聚丙烯酸酯、聚酰胺。
- 如权利要求39所述的一种纤维毡的制备方法,其特征在于所述的热固性类化合物为环氧树脂、酚醛树脂、三聚氰-甲醛树脂、有机硅树脂、呋喃树脂、不饱和聚酯、丙烯酸树脂、聚酰亚胺、聚苯并咪唑。
- 如权利要求39所述的一种纤维毡的制备方法,其特征在于增稠剂制成的粉末和一定浓度液体为采用包括无机增稠剂、纤维素醚、天然高分子及其衍生物、合成高分子以及络合型有机金属化合物。
- 如权利要求26所述的一种纤维毡的制备方法,其特征在于由热塑性类化合物、热固性类化合物制成的粘结剂,其VOC(挥发性有机化合物)、游离化学成分含量低,以便在固化时即可除去。
- 如权利要求1所述的一种纤维毡,其特征在于用于真空绝热板的芯材。
- 如权利要求44所述的真空绝热板,其特征在于真空绝热板是由芯材和吸气剂或吸附剂、封闭的高阻隔包装袋所构成,所述的芯材由权利要求1制得的纤维毡切片、叠齐组成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100592503A CN103306048A (zh) | 2012-03-07 | 2012-03-07 | 一种纤维毡、制备方法和用于真空绝热板的芯材 |
CN201210059250.3 | 2012-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013131300A1 true WO2013131300A1 (zh) | 2013-09-12 |
Family
ID=49115895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073503 WO2013131300A1 (zh) | 2012-03-07 | 2012-04-03 | 一种纤维毡、制备方法和用于真空绝热板的芯材 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103306048A (zh) |
WO (1) | WO2013131300A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105586716A (zh) * | 2014-10-26 | 2016-05-18 | 天津开发区金衫包装制品有限公司 | 一种高含量海藻酸钠纳米纤维膜及其静电纺丝维制备方法 |
CN106245422A (zh) * | 2016-08-30 | 2016-12-21 | 苏州华泰空气过滤器有限公司 | 一种陶瓷纤维滤纸的制备方法 |
CN106473260A (zh) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | 一种可拆卸插板防辐射服 |
CN107142611A (zh) * | 2017-05-24 | 2017-09-08 | 深圳市华创化工有限公司 | 一种气凝胶复合纤维针刺毡及其制作方法 |
CN109023707A (zh) * | 2018-07-17 | 2018-12-18 | 宝鸡嘉鑫滤材科技有限公司 | 一种湿法骨架无纺布配方 |
CN109082772A (zh) * | 2018-10-04 | 2018-12-25 | 中山市奥创通风设备有限公司 | 一种用于制作竹原纤维制品的设备 |
CN111844961A (zh) * | 2020-07-07 | 2020-10-30 | 巩义市泛锐熠辉复合材料有限公司 | 一种隔热吸音板及其制备方法 |
CN112239816A (zh) * | 2020-11-11 | 2021-01-19 | 陕西省膜分离技术研究院有限公司 | 一种采集锂铷的恒温吸附的撬装平台及方法 |
CN112342787A (zh) * | 2020-11-27 | 2021-02-09 | 启源(西安)大荣环保科技有限公司 | 一种用于玻璃纤维毡的定型剂的制备方法及其应用 |
CN114671621A (zh) * | 2022-04-02 | 2022-06-28 | 陕西理工大学 | 一种利用高炉矿渣粉制备微晶玻璃纤维的方法和微晶玻璃纤维 |
CN115159831A (zh) * | 2022-05-05 | 2022-10-11 | 宜兴市锅炉密封工程有限公司 | 一种高铝型硅酸铝纤维板及其制备方法 |
CN115262081A (zh) * | 2022-07-25 | 2022-11-01 | 泰山玻璃纤维有限公司 | 一种高强度连续玻纤防火保温板的生产工艺和生产线 |
CN116334844A (zh) * | 2022-12-22 | 2023-06-27 | 福建建壹真空科技有限公司 | 真空绝热板超短玻璃纤维毡的均匀成网方法 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103726218A (zh) * | 2014-01-16 | 2014-04-16 | 常州中新天马玻璃纤维制品有限公司 | 一种防渗料的加筋玻璃纤维毡及其制备方法 |
CN103866599A (zh) * | 2014-02-28 | 2014-06-18 | 山东玻纤集团股份有限公司 | 一种用于生产玻璃纤维湿法毡的白水及其制备方法 |
CN104878662B (zh) * | 2014-02-28 | 2017-10-24 | 福建赛特新材股份有限公司 | 真空绝热板的毡及其制备方法和使用该毡的真空绝热板 |
CN105274728B (zh) * | 2014-05-28 | 2018-10-16 | 福建赛特新材股份有限公司 | 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 |
CN104291685A (zh) * | 2014-09-24 | 2015-01-21 | 中材科技股份有限公司 | 耐辐照玻璃纤维以及利用其制成的针刺毡 |
CN105178090B (zh) * | 2015-09-13 | 2017-04-12 | 北京化工大学 | 一种短切纤维取向毡的制备方法 |
JP6843536B2 (ja) * | 2015-10-27 | 2021-03-17 | 三洋化成工業株式会社 | 鉱物繊維用水性バインダー |
CN106015838A (zh) * | 2015-11-23 | 2016-10-12 | 福建赛特新材股份有限公司 | 一种真空绝热板使用的内部芯材及真空绝热板 |
CN105386237B (zh) * | 2015-12-24 | 2018-09-21 | 南通大学 | 一种碳化硅纤维毡的制备方法及制备用湿法沉积装置 |
CN105603635A (zh) * | 2015-12-30 | 2016-05-25 | 芜湖馨源海绵有限公司 | 一种仪表盘用吸油毛毡垫及其制备工艺 |
CN106087437B (zh) * | 2016-06-15 | 2018-04-06 | 无锡市明江保温材料有限公司 | 船用矿物棉板的制作方法 |
CN106758481B (zh) * | 2016-11-25 | 2018-10-23 | 北京化工大学 | 一种制备短切纤维连续取向毡的方法及装置 |
CN106739383A (zh) * | 2016-12-01 | 2017-05-31 | 湖北硅金凝节能减排科技有限公司 | 一种纳米多孔二氧化硅气凝胶保冷毡的制备方法 |
CN106838547B (zh) * | 2017-03-03 | 2019-11-05 | 李光武 | 一种不掉粉尘的含纳米孔隙隔热材料的保温毡板及其制备方法 |
CN106835491A (zh) * | 2017-03-06 | 2017-06-13 | 常熟市东宇绝缘复合材料有限公司 | 环保型多层纤维复合材料毡 |
CN106917191A (zh) * | 2017-03-06 | 2017-07-04 | 常熟市东宇绝缘复合材料有限公司 | 玻璃纤维毡的制备方法 |
CN107606396B (zh) * | 2017-09-11 | 2019-07-05 | 福建农林大学 | 一种真空绝热板芯材、真空绝热板及其制备方法 |
CN107558290B (zh) * | 2017-09-30 | 2021-04-13 | 淄博中材金晶玻纤有限公司 | 一种真空绝热板用玻璃纤维薄毡及其制备方法 |
CN107827428A (zh) * | 2017-11-27 | 2018-03-23 | 无锡市明江保温材料有限公司 | 硅酸盐复合纤维毡的制作工艺 |
CN108130784B (zh) * | 2017-12-26 | 2019-12-06 | 陕西华特新材料股份有限公司 | 用于cem-3覆铜箔板的e玻璃纤维纸及其制作方法 |
CN108729016A (zh) * | 2018-07-10 | 2018-11-02 | 张瑜 | 一种玻纤合成保温棉毡及其制备方法 |
EP3830338A1 (fr) * | 2018-08-03 | 2021-06-09 | Saint-Gobain Isover | Procédé de fabrication d'un panneau ou d'un mat par voie humide, produits fabriqués par ce procédé, et utilisation des produits fabriqués par ce procédé |
CN109056188B (zh) * | 2018-08-20 | 2020-04-24 | 成都硕屋科技有限公司 | 一种保温纤维毡的生产工艺 |
CN109177228A (zh) * | 2018-09-26 | 2019-01-11 | 天长市正牧铝业科技有限公司 | 一种抗裂棒球杆的制备方法 |
CN111197199A (zh) * | 2018-11-16 | 2020-05-26 | 林秀美 | 玻璃纤维棉结构及其制造方法 |
CN109778426B (zh) * | 2019-03-06 | 2021-06-11 | 绍兴不忘初心机械设计有限公司 | 一种烤漆房漆雾毡及其制备方法 |
CN109825973B (zh) * | 2019-03-07 | 2021-06-18 | 福建省晋江市恒丰喷胶棉织造有限公司 | 一种蓬松隔热喷胶絮棉抗寒材料及其制备方法 |
CN110285289A (zh) * | 2019-06-28 | 2019-09-27 | 江西晖烁新材料有限公司 | 一种真空绝热板芯材及其制备方法以及一种真空绝热板 |
CN110777479A (zh) * | 2019-10-10 | 2020-02-11 | 郭德雨 | 一种玻璃纤维保温材料的制备方法 |
CA3183937A1 (en) * | 2020-07-17 | 2022-01-20 | Frederic TAILLAN | Fiberglass veils containing fire-retardant minerals and refractive particles, and high gloss and/or fire-retardant and/or non-combustible laminates containing such veils |
CN112430897B (zh) * | 2020-11-20 | 2022-03-11 | 杭州诺邦无纺股份有限公司 | 一种功能性无纺复合材料及制备方法 |
CN112779670A (zh) * | 2020-12-30 | 2021-05-11 | 杭州朝盛塑业有限公司 | 一种针刺隔热无纺布及其生产工艺 |
CN113373725A (zh) * | 2021-06-16 | 2021-09-10 | 苏州大学 | 一种湿法玻璃纤维掺杂热熔纤维复合毡的制备方法 |
CN113352709B (zh) * | 2021-07-06 | 2023-05-26 | 厦门点石新材料有限公司 | 一种不掉粉气凝胶毡及其生产方法 |
CN114164558A (zh) * | 2021-11-29 | 2022-03-11 | 通城县同力玻纤有限公司 | 一种无碱玻璃纤维无纺布及其制造方法 |
CN114380533A (zh) * | 2022-01-04 | 2022-04-22 | 浙江华恒复合材料有限公司 | 一种真空绝热板芯材的制作方法 |
CN115233375A (zh) * | 2022-08-25 | 2022-10-25 | 淄博雨程节能环保科技有限公司 | 一种纤维针刺毯及其制备方法 |
CN116180483B (zh) * | 2022-12-30 | 2024-05-31 | 苏州隆瑞绝热材料有限公司 | 超细玻璃纤维绝热毯配方及工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1515723A (zh) * | 2003-08-24 | 2004-07-28 | 樊福定 | 玻璃纤维薄毡的制备方法 |
CN101695614A (zh) * | 2009-10-23 | 2010-04-21 | 山东新力过滤材料有限公司 | 复合玻璃纤维针刺毡及其制造方法 |
CN102032421A (zh) * | 2009-09-29 | 2011-04-27 | 三菱电机株式会社 | 真空绝热材料和具有该真空绝热材料的绝热箱 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279059B2 (en) * | 2004-12-28 | 2007-10-09 | Owens Corning Intellectual Capital, Llc | Polymer/WUCS mat for use in automotive applications |
JP4713566B2 (ja) * | 2007-12-28 | 2011-06-29 | シャープ株式会社 | 真空断熱材用芯材、真空断熱材、および、これらの製造方法 |
-
2012
- 2012-03-07 CN CN2012100592503A patent/CN103306048A/zh active Pending
- 2012-04-03 WO PCT/CN2012/073503 patent/WO2013131300A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1515723A (zh) * | 2003-08-24 | 2004-07-28 | 樊福定 | 玻璃纤维薄毡的制备方法 |
CN102032421A (zh) * | 2009-09-29 | 2011-04-27 | 三菱电机株式会社 | 真空绝热材料和具有该真空绝热材料的绝热箱 |
CN101695614A (zh) * | 2009-10-23 | 2010-04-21 | 山东新力过滤材料有限公司 | 复合玻璃纤维针刺毡及其制造方法 |
Non-Patent Citations (2)
Title |
---|
XING, SHENGYUAN ET AL., NON WOVENS, June 2003 (2003-06-01), pages 17 - 23 * |
ZHANG, BIDONG ET AL.: "Fundamental process of continuous glass fibres", CHINA ARCHITECTURE & BUILDING PRESS, February 1988 (1988-02-01), pages 557 - 565 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105586716A (zh) * | 2014-10-26 | 2016-05-18 | 天津开发区金衫包装制品有限公司 | 一种高含量海藻酸钠纳米纤维膜及其静电纺丝维制备方法 |
CN106245422A (zh) * | 2016-08-30 | 2016-12-21 | 苏州华泰空气过滤器有限公司 | 一种陶瓷纤维滤纸的制备方法 |
CN106473260A (zh) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | 一种可拆卸插板防辐射服 |
CN107142611A (zh) * | 2017-05-24 | 2017-09-08 | 深圳市华创化工有限公司 | 一种气凝胶复合纤维针刺毡及其制作方法 |
CN109023707A (zh) * | 2018-07-17 | 2018-12-18 | 宝鸡嘉鑫滤材科技有限公司 | 一种湿法骨架无纺布配方 |
CN109082772A (zh) * | 2018-10-04 | 2018-12-25 | 中山市奥创通风设备有限公司 | 一种用于制作竹原纤维制品的设备 |
CN111844961A (zh) * | 2020-07-07 | 2020-10-30 | 巩义市泛锐熠辉复合材料有限公司 | 一种隔热吸音板及其制备方法 |
CN112239816B (zh) * | 2020-11-11 | 2023-10-17 | 陕西省膜分离技术研究院有限公司 | 一种采集锂铷的恒温吸附的撬装平台及方法 |
CN112239816A (zh) * | 2020-11-11 | 2021-01-19 | 陕西省膜分离技术研究院有限公司 | 一种采集锂铷的恒温吸附的撬装平台及方法 |
CN112342787A (zh) * | 2020-11-27 | 2021-02-09 | 启源(西安)大荣环保科技有限公司 | 一种用于玻璃纤维毡的定型剂的制备方法及其应用 |
CN114671621B (zh) * | 2022-04-02 | 2023-09-19 | 陕西理工大学 | 一种利用高炉矿渣粉制备微晶玻璃纤维的方法和微晶玻璃纤维 |
CN114671621A (zh) * | 2022-04-02 | 2022-06-28 | 陕西理工大学 | 一种利用高炉矿渣粉制备微晶玻璃纤维的方法和微晶玻璃纤维 |
CN115159831A (zh) * | 2022-05-05 | 2022-10-11 | 宜兴市锅炉密封工程有限公司 | 一种高铝型硅酸铝纤维板及其制备方法 |
CN115159831B (zh) * | 2022-05-05 | 2024-04-30 | 宜兴市锅炉密封工程有限公司 | 一种高铝型硅酸铝纤维板及其制备方法 |
CN115262081A (zh) * | 2022-07-25 | 2022-11-01 | 泰山玻璃纤维有限公司 | 一种高强度连续玻纤防火保温板的生产工艺和生产线 |
CN116334844A (zh) * | 2022-12-22 | 2023-06-27 | 福建建壹真空科技有限公司 | 真空绝热板超短玻璃纤维毡的均匀成网方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103306048A (zh) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013131300A1 (zh) | 一种纤维毡、制备方法和用于真空绝热板的芯材 | |
WO2015180660A1 (zh) | 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板 | |
CN108486769B (zh) | 一种单向透湿、保温复合材料及其制备方法 | |
CN105479829B (zh) | 一种低密度碳纤维硬质保温毡及其制备方法 | |
CN106222887B (zh) | 一种四层复合水刺非织造布的制造方法 | |
CN110130116A (zh) | 耐碱ptfe纤维、pps纤维混纺针刺毡的制备工艺 | |
CN101575768A (zh) | 竹原纤维针刺毡的制作方法 | |
CN107227559A (zh) | 热风无纺布的制造方法、设备及制得的热风无纺布 | |
CN107217390A (zh) | 一种利用高温熔融静电纺丝法制备拉胀长丝纤维的装置、方法及用途 | |
CN108950858A (zh) | 可降解、高吸水、可剥离湿法水刺非织造面膜基布 | |
CN102212934A (zh) | 建筑模板衬用无纺布生产工艺及无纺布 | |
CN108842296A (zh) | 多角度碳纤维预制体编制方法 | |
CN113862901A (zh) | 一种纤维毡及其制作工艺 | |
CN108543349A (zh) | 一种梯度过滤多层水刺针刺复合材料及其生产工艺 | |
CN207140488U (zh) | 一种改性耐高温涤纶针刺毡 | |
CN108004681B (zh) | 一种导电无纺布及其制备方法 | |
CN205364674U (zh) | 一种低密度碳纤维硬质保温毡 | |
CN104452102A (zh) | 一种天然木棉纤维热轧无纺布加工工艺 | |
CN109745774A (zh) | 适用于沥青拌合的针刺过滤毡的制作方法 | |
CN115748089A (zh) | 一种利用氧化铝纤维棉干法制备针刺毯的系统及方法 | |
CN114589998A (zh) | 一种阻燃透气针刺非织造材料及其制备方法 | |
CN107675356A (zh) | 一种高强度土工布及其制造方法 | |
CN103877788A (zh) | 一种无基布pps水刺毡滤料及其制备方法 | |
CN108739254B (zh) | 非织造布培养基及其制备方法和在浆砌滨岸带植物生态修复中的应用 | |
CN108823789B (zh) | 一种无网被及其加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12870430 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12870430 Country of ref document: EP Kind code of ref document: A1 |