WO2015180521A1 - 核反应堆压力容器无损检测机器人及其检测方法 - Google Patents

核反应堆压力容器无损检测机器人及其检测方法 Download PDF

Info

Publication number
WO2015180521A1
WO2015180521A1 PCT/CN2015/073926 CN2015073926W WO2015180521A1 WO 2015180521 A1 WO2015180521 A1 WO 2015180521A1 CN 2015073926 W CN2015073926 W CN 2015073926W WO 2015180521 A1 WO2015180521 A1 WO 2015180521A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
joint
sleeve
nuclear reactor
disposed
Prior art date
Application number
PCT/CN2015/073926
Other languages
English (en)
French (fr)
Inventor
李明
林戈
陈怀东
吴健荣
洪茂成
马官兵
王贤彬
王可庆
肖学柱
吕天明
金国栋
张鹏飞
曾晨明
刘金宏
林忠元
Original Assignee
中广核检测技术有限公司
苏州热工研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51277359&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015180521(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中广核检测技术有限公司, 苏州热工研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核检测技术有限公司
Priority to EP15799213.2A priority Critical patent/EP3151246B1/en
Publication of WO2015180521A1 publication Critical patent/WO2015180521A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • G21C17/01Inspection of the inner surfaces of vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/207Assembling, maintenance or repair of reactor components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of non-destructive testing of nuclear reactor pressure vessels, in particular to a non-destructive testing robot for a CEPR type nuclear reactor pressure vessel and a detecting method thereof.
  • Nuclear reactor pressure vessels are one of the most important components of nuclear power plants. They are used to fix, support and contain the core and all internal components. It is the only large non-replaceable part of the nuclear power plant.
  • the quality of nuclear reactor pressure vessels is the key to ensuring the normal and safe operation of nuclear power systems.
  • mandatory requirements for non-destructive testing are proposed for each weld and other parts of the pressure vessel, and are designated before being put into operation and operated separately. Pre-service and in-service inspections of pressure vessels are performed after a certain time interval.
  • the main body of the nuclear reactor pressure vessel is a cylinder.
  • the upper part of the cylinder is connected with a hemispherical upper head by a bolt assembly, a flange is welded, a transition ring section is welded to the lower part of the cylinder, and a hemispherical lower head is welded to the transition ring section.
  • the inlet body and the outlet nozzle are welded at a radial interval on the cylinder body, and the inlet nozzle and the outlet nozzle are respectively welded with a safety end, and the safety end is welded to the main pipe.
  • the nuclear reactor in-service inspection scope includes: the internal weld overlay of the reactor pressure vessel, the joint weld between the transition ring section of the reactor pressure vessel and the internal radial guide block, and the bolt hole thread of the flange.
  • non-destructive testing of nuclear reactor pressure vessels mainly includes ultrasonic testing technology, video detecting technology and radiation detecting technology.
  • the contact type conventional ultrasonic inspection requires that the ultrasonic probe must be adhered to the surface of the pressure vessel, and the ultrasonic waves of the various angles are respectively applied to the weld seam from both sides.
  • an object of the present invention is to provide a nuclear reactor pressure vessel non-destructive testing robot and a detecting method thereof, the inspection scope of which covers all the inspection items specified in the pre-service/in-service inspection outline of the nuclear reactor pressure vessel, and only needs to be discharged once. Complete all inspections with high reliability.
  • the technical solution adopted by the present invention is:
  • a nuclear reactor pressure vessel non-destructive testing robot has a cylinder, a lower head, a nozzle portion, a flange with a bolt hole and a bolt hole ligament region, and includes:
  • each of the support legs is fixedly coupled to the column assembly, the other end is detachably coupled to the pressure vessel, and the central axis of the column assembly is pressurized
  • the axis of the container coincides;
  • a first robot arm provided with a first probe assembly for scanning a barrel of the pressure vessel
  • a second robot arm provided with a second probe assembly for scanning a lower head of the pressure vessel
  • a third robot arm provided with a third probe assembly for scanning a nozzle portion of the pressure vessel
  • a fourth robot arm provided with a fourth probe assembly for scanning the bolt hole thread of the pressure vessel flange and a fifth probe assembly for scanning the bolt hole ligament region of the pressure vessel flange;
  • main rotary joint rotatably coupled to a lower portion of the column assembly about an axial direction of the column assembly, wherein the second robot arm is rotatably coupled by a swing joint about a direction perpendicular to an axial direction of the column assembly
  • the main rotating joint and the other mechanical arms are detachably coupled to the main rotating joint;
  • each mechanical arm has a distal rotating joint rotatable about its own axis
  • the first mechanical arm and the second mechanical arm each have a first telescopic joint
  • the first mechanical arm a telescopic joint is located between the main rotary joint and the end rotary joint
  • the first telescopic joint of the second mechanical arm is located between the swing joint and the end rotary joint thereof
  • the third mechanical arm and the fourth mechanical arm are both located a second telescopic joint between the main rotary joint and the end rotary joint
  • the axial end of the end rotary joint of the fourth mechanical arm is parallel to the axial direction of the pressure vessel and connected to the lower portion of the second telescopic joint
  • the first probe component, the second probe component, the third probe component, and the fourth probe component are respectively mounted on the end rotary joints of the robot arms
  • the fifth probe component is mounted on the second telescopic arm of the fourth robot arm
  • the joint and its axial direction are perpendicular to the axial direction of the pressure vessel.
  • the end rotary joint includes a fixed seat having an inner cavity detachably coupled to the first telescopic joint or the second telescopic joint, and is rotatably disposed on the fixed seat and driven by a first motor.
  • a worm gear that cooperates with the worm and is located in the inner cavity
  • a first rotating shaft coaxially coupled to the worm wheel
  • two first timing pulleys that are driven by a timing belt
  • the first The rotating shaft is disposed in the inner cavity
  • the inner cavity is filled with gas
  • a plurality of bearings and a dynamic seal assembly are disposed between the first rotating shaft and the fixed seat, and the first probe component/second probe component/ a third probe assembly/fourth probe assembly mounted on the first rotating shaft, wherein one first timing pulley is coaxially connected to the first rotation shaft, and the other first timing pulley is connected for picking And a first encoder for feeding back angular position information of the first rotating shaft, wherein the first motor is provided with a second encoder for
  • the first telescopic joint comprises three first-layer sleeves that are sleeved with each other, two first steel wire ropes, a first screw nut that is driven to rotate by a second motor, and the first screw nut a mating first screw screw, the first sleeve having opposite first and second ends, the second end of the first sleeve of the outer layer of the first telescopic joint of the first robot arm being coupled to the a primary rotating joint, a second end of the first sleeve of the outer layer of the first telescopic joint of the second robot arm is coupled to the swing joint, and a first end of the first sleeve of the inner layer is fixedly coupled to the first One end of the screw screw and the axial direction of the two are parallel, and a first segment thereof is also coupled to the end rotary joint, the first end and the second end of the first sleeve between the outer layer and the inner layer A first pulley is rotatably disposed, and the two first wire ropes
  • the second telescopic joint comprises three layers of second sleeves interposed with each other, two second steel cords, a second screw screw driven by a third motor, and the second screw screw a mating second lead screw nut, the second sleeve having opposite first and second ends, a middle portion of the second sleeve of the outer layer being coupled to the main rotating joint, and a second sleeve of the inner layer
  • the first end is connected to the end rotary joint
  • the second screw screw is rotatably disposed on the second sleeve of the outer layer about its own axis and the axial directions of the two are parallel, in the middle of the outer layer and the inner layer
  • a second sleeve is fixedly connected to the second lead screw nut, and a second pulley is rotatably disposed on the first end and the second end of the second sleeve of the inner layer, and the two second steel wires are respectively wound Provided on a second pulley and fixed at both ends of the second
  • the swing joint includes a driving sprocket driven by a fourth motor, a driven sprocket driven by the chain to the driving sprocket, and a worm gear reducer driven by the driven sprocket.
  • the output shaft of the worm gear reducer is detachably coupled to the second robot arm.
  • the swing joint further includes a second timing pulley that is driven by the worm gear reducer, and the second timing pulley is coupled with a rotation angle information for picking up and feeding back the output shaft of the worm gear reducer.
  • the fifth encoder is a second timing pulley that is driven by the worm gear reducer, and the second timing pulley is coupled with a rotation angle information for picking up and feeding back the output shaft of the worm gear reducer.
  • the main rotary joint includes a mount having a cavity detachably coupled to a lower end of the post assembly, a fifth motor disposed on the mount, and a drive gear driven to rotate by the fifth motor a main gear that meshes with the drive gear, and a second rotating shaft that is coaxially coupled to the main gear.
  • the second rotating shaft is disposed in the cavity and has a mechanical arm connected to a lower end thereof.
  • the main rotary joint further includes a backlash gear that meshes with the main gear, and information about the rotation angle of the fifth motor and the rotation speed information connected to the elimination of the backlash gear.
  • a sixth encoder at least two second proximity switches disposed on the mount for calibrating an initial position and a maximum stroke position of the second rotating shaft.
  • the drive gear and the main gear are both helical gears.
  • the nuclear reactor pressure vessel non-destructive testing robot further comprises a hoisting mechanism for driving the column assembly to expand and contract.
  • the column assembly comprises two sleeves of oppositely disposed third sleeves having opposite upper and lower ends, one end of the support legs being fixedly coupled to the third sleeve of the outer layer, the hoisting mechanism comprising a bracket
  • the upper end of the outer third sleeve is fixedly connected to the bracket of the hoisting mechanism
  • the upper end of the inner third sleeve is located below the hoisting structure and is rotatably provided with a third pulley, and the wire rope of the hoisting mechanism is below It is wound around the third pulley and the end is fixedly connected to the upper end of the third sleeve of the outer layer.
  • the hoisting mechanism includes a bracket and has two wire ropes for lowering and pulling up, respectively, and the upper end of the B (1) is fixedly connected to the bracket of the hoisting mechanism, wherein The end of a wire rope is fixedly connected to the lower end of B (1) and is thus wound around the lower end of B (2), ... B (2i-1) upper end, On the lower end of B(2i) and the third pulley on the upper end of B(2i+1), the end of the other wire rope is fixedly connected to the lower end of B(1) and is thus wound around the upper end of B(2), ... B(2i- 1) The lower end, On the upper end of B (2i) and the third pulley on the upper end of B (2i + 1), the winding directions of the two steel cords on each of the third sleeves are opposite.
  • the hoisting mechanism further includes a first reel and a second reel which are arranged on the bracket and are driven to rotate by the sixth motor, and are respectively wound on the first reel and the second reel for respectively a lower and pulled wire rope, a multi-stage speed reduction mechanism located in the sixth motor and the first reel and the second reel holder, the winding directions of the first reel and the second reel are identical but Rotating in opposite directions, the wire rope is passed between the first reel and the second reel and connected to the column assembly, the hoisting mechanism further comprising a seventh encoder disposed on the multi-stage speed reduction mechanism, For picking up and feeding back the rotation angle information of the first reel and the second reel.
  • it further comprises a first camera assembly disposed on the lower portion of the main rotary joint for monitoring each of the robot arms, and a second camera assembly disposed on the second robot arm for inspecting the entire inner wall of the pressure vessel.
  • an extension block is connected between the first telescopic joint and the end rotary joint of the second robot arm, and the second camera assembly is disposed on the extension block.
  • the supporting legs are three, and a part of the threaded holes of the pressure vessel flange is provided with a guiding column, the guiding column has an axial direction parallel to the axial direction of the column assembly, wherein the two supporting legs are opened and The guiding column is matched with the through hole, and the two supporting legs are respectively disposed on the two guiding columns to support the column assembly.
  • the fourth robot arm further comprises a connecting block detachably connected to the second telescopic joint thereof, the connecting block has three ends and the first end thereof is connected to the second telescopic joint, the second The end portion is provided with the fifth probe assembly, and the third end portion is connected to the end rotary joint.
  • the above method for detecting a nuclear reactor pressure vessel nondestructive testing robot comprises the following steps in sequence:
  • the two supporting legs are placed on two guiding columns of the pressure vessel, and the lower head is inspected in sequence, the ring weld between the transition ring barrel and the lower head is ultrasonically scanned, and the ultrasonic scanning matrix is scanned. Scanning of the joint zone between the metal and the internal weld overlay, joint weld between the nozzle section and the nozzle, ultrasonic scanning of the flange bolt hole ligament zone outside the area where the support leg is located, ultrasonic scanning Thread of the flange bolt hole except the area where the support leg is located;
  • the two support legs are placed on the other two guide posts, and the threads of the flange bolt holes that are not scanned in step A are ultrasonically scanned in sequence, and the flange bolts that are not scanned in the ultrasonic scanning step A are scanned.
  • the present invention adjusts the axial position of each probe assembly by the expansion and contraction of the column assembly along its axial direction, and is adjusted by the expansion and contraction of each mechanical arm along the respective axial directions.
  • the position of each probe assembly along the radial direction of the pressure vessel is adjusted by the main rotary joint along the circumferential direction of the pressure vessel, the angle of the probe assembly is adjusted by the main rotary joint, and the lower head is swept by the swing joint to scan the probe assembly under the seal
  • the axial position inside the head can realize the comprehensive coverage of the inspection part of the nuclear reactor pressure vessel, and all the inspection items specified in the in-service inspection outline of the reactor pressure vessel can be completed only by one water discharge.
  • Figure 1 is a schematic view showing the structure of a nuclear reactor pressure vessel
  • Figure 2 is a schematic view of the structure of the present invention.
  • FIG. 3 is a schematic diagram of the principle of the present invention.
  • Figure 4 is a schematic structural view of a hoisting mechanism of the present invention.
  • Figure 5 is a schematic structural view of a column assembly of the present invention.
  • FIG. 6 is a schematic structural view of a column assembly according to another embodiment of the present invention.
  • Figure 7 is a schematic structural view of a main rotary joint of the present invention.
  • Figure 8 is a schematic structural view of a swing joint of the present invention.
  • Figure 9 is a schematic structural view of a first telescopic joint of the present invention.
  • Figure 10 is a schematic structural view of a second telescopic joint of the present invention.
  • Figure 11 is a schematic view showing the structure of an end rotary joint of the present invention.
  • hoisting mechanism 200, bracket; 201, sixth motor; 202, multi-stage speed reduction mechanism; 203, first gear; 204, second gear; 205, first reel; 206, second reel; a seventh encoder; 208, a brake mechanism; 209, an emergency recovery mechanism;
  • 24a a first probe assembly
  • 24b a second probe assembly
  • 24c a third probe assembly
  • 24d a fourth probe assembly
  • 24e a fifth probe assembly
  • 25a a first robot arm; 251a, an extension block; 25b, a second robot arm; 251b, an extension block; 25c, a third robot arm; 25d, a fourth robot arm; 252, a connection block;
  • a first telescopic joint 271, a first sleeve; 272, a first wire rope; 273, a second motor; 274, a first screw nut; 275, a first screw; 276, a first pulley;
  • 30a a first camera assembly
  • 30b a second camera assembly
  • FIG. 1 is a schematic view showing the structure of a CEPR type nuclear reactor pressure vessel 1 in the prior art.
  • the pressure vessel 1 includes a cylinder 10, a flange 11, a hemispherical lower head 12, and a nozzle 13.
  • the cylinder 10 is composed of a nozzle segment cylinder 101, a core segment cylinder 102 and a transition ring segment cylinder 103 which are welded in sequence from top to bottom.
  • the upper portion of the nozzle segment cylinder 101 is welded to the flange 11, and the upper end surface of the flange 11 is provided with a ring bolt hole 111 along the circumferential direction thereof, and the bolt hole 111 is used for connecting the hemispherical upper head and detecting
  • the flange 11 has a ring of bolt hole ligament regions 112 facing the bolt hole 111 of the ring.
  • the nozzle segment cylinders 101 are circumferentially spaced apart from each other with a plurality of nozzles 13 for communicating with the main inlet conduit (not shown) and for the other portion of the nozzles 13 for effluent
  • the main pipe (not shown) is in communication, and the end of the nozzle 13 is welded with a safety end 14, the safety end 14 is welded to the inlet/outlet main pipe, and the safety end 14 and the nozzle 13 are welded by dissimilar metals.
  • a plurality of guide blocks 16 are circumferentially spaced apart from the inner wall of the transition ring segment cylinder 103, and the guide block 16 is welded to the transition ring segment cylinder 103.
  • the pre-service/in-service inspection items of the entire pressure vessel 1 include: a, internal weld overlay scanning; b, joint weld scan between the transition ring segment and each guide block 16; c, flange 11 bolt Hole 111 thread scan; d, joint weld scan between nozzle section cylinder 101 and nozzle 13; e, scanning of dissimilar metal joint weld between nozzle 13 and safety end 14; Between the nozzle cylinder 101 and the core barrel 102, the ring weld between the core barrel 102 and the transition ring barrel 103; g, the transition ring barrel 103 and the lower head 12 Between the gap weld scan; h, the joint zone between the base metal and the internal weld overlay; i, the bolt hole ligament zone 112 of the flange 11 scan.
  • a non-destructive testing robot for a CEPR type nuclear reactor pressure vessel 1 includes:
  • each of the support legs 22 is fixedly connected to the column assembly 21, and the other end is detachably mounted on the pressure vessel 1 and the column assembly is
  • the central axis of 21 coincides with the axial line of the pressure vessel 1;
  • a second probe assembly 24b for scanning the lower head 12 of the pressure vessel 1 can also be used to scan the cylinder 10 of the pressure vessel 1;
  • a fourth probe assembly 24d for scanning the bolt hole 111 of the flange 11 of the pressure vessel 1;
  • a fifth probe assembly 24e for scanning the bolt hole ligament region 112 of the flange 11 of the pressure vessel 1;
  • the first probe assembly 24a, the second probe assembly 24b, the third probe assembly 24c, the fourth probe assembly 24d, and the fifth probe assembly 24e are respectively disposed At the ends of the five robot arms, or the first probe assembly 24a, the second probe assembly 24b, the third probe assembly 24c, and the fourth probe assembly 24d are respectively disposed at the ends of the four robot arms, and the fifth probe assembly 24e is disposed at the On the end of one of the four robot arms;
  • a main rotary joint 23 rotatably coupled to a lower portion of the column assembly 21 about an axial direction of the column assembly 21, wherein the mechanical arm provided with the second probe assembly 24b is wound by a swing joint 26 perpendicular to the
  • the column assembly 21 is rotatably coupled to the main rotary joint 23 in the axial direction, and the other mechanical arms are detachably coupled to the main rotary joint 23.
  • the mechanical arm includes a first mechanical arm 25a rotatably disposed with the first probe assembly 24a, and a second mechanical arm 25b rotatably disposed with the second probe assembly 24b.
  • a third robot arm 25c rotatably provided with the third probe assembly 24c
  • a fourth robot arm 25d rotatably provided with the fourth probe assembly 24d, the first probe assembly 24a and the second probe assembly 24b, the third probe assembly 24c is respectively rotated about the axial direction of each of the mechanical arms (25a, 25b, 25c)
  • the fourth probe assembly 25d is connected to the lower portion of the end of the fourth mechanical arm 25d and is wound parallel to the axis of the pressure vessel 1 Rotating in the direction, the fifth probe assembly 24e is fixedly disposed on the fourth robot arm 25d.
  • the first probe assembly 24a, the second probe assembly 24b, the third probe assembly 24c, the fourth probe assembly 24d, and the fifth probe assembly 24e are all ultrasonically detected, each of which includes a probe holder coupled to each of the robot arms and disposed at One or more ultrasonic probes on the probe holder.
  • the structures of the first probe component 24a, the second probe component 24b, and the third probe component 24c are respectively found in Chinese patents CN101894593, CN101894592, CN2014100255602.
  • the probe of the fifth probe assembly 24e is disposed opposite the bolt hole ligament region 112 of the flange 11, which does not need to adjust the angle during the scanning process, as long as the axis is adjusted by the second telescopic joint of the main rotary joint 23 and the fourth mechanical arm 25d. Just position and radial position.
  • the first mechanical arm 25a, the second mechanical arm 25b, the end of the third mechanical arm 25c and the lower end of the fourth mechanical arm 25d have a distal rotating joint 29, the first mechanical arm 25a and the second mechanical arm
  • Each of the 25bs further has a first telescopic joint 27, the first telescopic joint 27 of the first robot arm 25a is located between the main rotary joint 23 and the end rotary joint 29, and the first telescopic joint 27 of the second mechanical arm 25b
  • the third mechanical arm 25c and the fourth mechanical arm 25d each have a second telescopic joint 28 between the main rotary joint 23 and the end rotary joint 29,
  • the axis of the end rotary joint (29) of the fourth robot arm (25d) is parallel to the axial direction of the pressure vessel and is connected to the lower portion of the second telescopic joint (28), and the fourth robot arm (25d) is further A connection block (252) detachably coupled to a second telescopic joint (28) thereof, the
  • the nuclear reactor pressure vessel non-destructive testing robot includes three vertical moving joints, such as a column assembly 21, two first telescopic joints 27, and two second telescopic joints 28, including a main rotating joint 23 and a swing.
  • the joint 26 and the four end rotary joints 29 are three kinds of rotary joints, and the joints and the column assembly 21 are modularly arranged, and any two joints are detachably connected to facilitate disassembly and smooth assembly. .
  • the column assembly 21 is used for adjusting the depth position of each probe assembly in the axial direction of the pressure vessel 1, referred to as the axial position; the main rotary joint 23 is used for adjusting the position of each probe assembly within 360 degrees of the circumferential direction of the pressure vessel 1, referred to as a circumferential position; the swing joint 26 is used to adjust the position of the second probe assembly 24b in the lower head 12; the first telescopic joint 27 is used to adjust the first probe assembly 24a and the second probe assembly 24b in the barrel 10 and the lower head
  • the radially inner position of 12, referred to as the radial position, the second telescopic joint 28 is used to adjust the position of the third probe assembly 24c within the nozzle 13 and the fourth probe assembly 24d and the fifth probe assembly 24e are on the flange 11.
  • the position of the first telescopic joint 27 is shorter than the stroke of the second telescopic joint 28.
  • the joints are described one by one below.
  • the nuclear reactor pressure vessel non-destructive testing robot further includes a hoisting mechanism 20 for driving the column assembly 21 to expand and contract.
  • the hoisting mechanism 20 mainly realizes the retracting of the wire rope, and includes a first reel 205 and a second reel 206 which are arranged on the bracket 200 and are driven to rotate by the sixth motor 201, and are respectively wound around The wire rope for lowering and pulling up on the first reel 205 and the second reel 206, the multi-stage deceleration in the sixth motor 201 and the first reel 205 and the second reel 206 bracket 200
  • the mechanism 202, the winding direction of the wire rope of the first reel 205 and the second reel 206 is the same but the rotation direction is opposite, and the wire rope is passed between the first reel 205 and the second reel 206 and connected to the column On component 21.
  • the hoisting mechanism 20 further includes a seventh encoder 207 disposed on the multi-stage speed reduction mechanism 202 for picking up and feeding back rotation angle information of the first reel 205 and the second reel 206.
  • the multi-stage speed reduction mechanism 202 includes a first-stage speed reducer, a second-stage speed reducer, a third-stage speed reducer, a first gear 203, and a second gear 204 that are sequentially driven in phase, wherein the first gear 203 and the second gear 204 mesh with each other.
  • the first reel 205 is coaxially connected to the first gear 203
  • the second reel 206 is coaxially connected to the second gear 204
  • the first reel 205 and the second reel 206 are rotated to drive one wire rope to be lowered, and the other wire rope pull up.
  • the hoisting mechanism 20 further includes a brake mechanism 208 and an emergency recovery mechanism 209.
  • the brake mechanism 208 holds the rotating shaft of the sixth motor 201 to keep the wire rope stationary.
  • the emergency recovery mechanism 209 can retract the wire rope when the motor fails.
  • the seventh encoder 207 is arranged to measure the rotation angle of the first reel 205 on the secondary speed reducer, and the controller of the non-destructive detection robot receives the information fed back by the seventh encoder 207, and can calculate the output of the steel wire rope by conversion. length.
  • the column assembly 21 includes five sleeves having opposite upper and lower ends, and the third sleeve from the outer layer to the inner layer is sequentially recorded as B(1). , ... B (5), (211 ⁇ 215), the upper end of B (1) is fixedly connected to the upper and lower ends of the hoisting mechanism 20, B (2), B (3), B (4) and B (5) )
  • the upper end of the wire is rotatably disposed with a third pulley 216, and the upper end of the B (1) is fixedly coupled to the bracket 200 of the hoisting mechanism 20, wherein the end of one of the wire ropes is fixedly connected to the lower end of the B (1) and is thereby wound around B (2) lower end, B (3) upper end, B (4) lower end and B (5) upper end of the third pulley 216, the other end of the wire rope is fixedly connected to the lower end of B (1) and is thereby wound around On the third pulley 216 of the upper end of B (2), the lower end of B (3), the upper end of B
  • the post assembly 21 includes two sleeves having opposite upper and lower ends, and one end of the support leg 22 is fixedly coupled to the outer layer.
  • the hoisting mechanism 20 includes a bracket 200, and the upper end of the outer third sleeve is fixedly coupled to the bracket 200 of the hoisting mechanism 20, and the upper end of the inner third sleeve is located below the hoisting structure and rotates
  • a third pulley 216 is disposed, and the wire rope of the hoisting mechanism 20 is wound from the lower side to the third pulley 216 and the end is fixedly coupled to the upper end of the outer third sleeve.
  • the stroke of the column assembly 21 of this configuration is substantially shorter than the stroke of the column assembly 21 of the five-layer third sleeve described above.
  • the main rotary joint 23 is used to realize the overall rotation of all the lower mechanical arms, and includes a lower end of a third sleeve (B (5)) detachably coupled to the innermost layer of the column assembly 21.
  • a mounting seat 230 having a cavity
  • a fifth motor 231 disposed on the mounting seat 230
  • a driving gear 232 driven to rotate by the fifth motor 231
  • a main gear 233 meshing with the driving gear 232
  • the second rotating shaft 234 is coaxially connected to the main gear 233.
  • the second rotating shaft 234 is disposed in the cavity and has a mechanical arm connected to a lower end thereof.
  • a plurality of bearings are disposed between the mounting seat 230 and the second rotating shaft 234 for dynamic sealing of the cavity.
  • the drive gear 232 and the main gear 233 are both helical gears.
  • the main rotary joint 23 further includes a backlash gear 235 that meshes with the main gear 233, and is connected to the canceling backlash gear 235 for picking up and feeding back the rotation angle information and the rotation speed of the fifth motor 231.
  • a sixth encoder 236 for information, a pair of second proximity switches 237 disposed on the mounting bracket 230 for calibrating the initial position and the maximum stroke position of the second rotating shaft 234 (ie, 0 to 380 degrees)
  • the main gear A sensor is disposed on the 233, and when it is rotated to a position facing the second proximity switch 237, the second proximity switch 237 detects a signal, and the controller of the non-destructive detecting robot receives the above signal and further converts it.
  • the angle of rotation and the speed of rotation of the main rotating joint is calibrating the initial position and the maximum stroke position of the second rotating shaft 234 (ie, 0 to 380 degrees)
  • the main gear A sensor is disposed on the 233, and when it is rotated to a
  • the swing joint 26 includes a drive sprocket 262 that is rotated by a fourth motor 261, a driven sprocket 264 that is driven by the chain 263 and the drive sprocket 262, and the driven chain.
  • the wheel 264 phase drives the worm gear reducer 265, and the output shaft 2650 of the worm gear reducer is coupled to the second robot arm 25b.
  • the axial center line of the output shaft 2650 of the worm gear reducer is perpendicular to the axial direction of the pressure vessel, and the axial direction of the second mechanical arm 25b, that is, the axial direction of the first telescopic joint thereof is perpendicular to the axial center of the output shaft 2650 of the worm gear reducer. line.
  • the swing joint 26 further includes a second timing pulley 266 that is coupled to the worm gear reducer, and the second timing pulley 266 is coupled to a rotation angle information for picking up and feeding back the output shaft 2650 of the worm gear reducer.
  • the fifth encoder 267 After receiving the feedback information, the controller of the non-destructive testing robot further converts the swing angle of the swing joint 26 to control the angle of the second robot arm 25b to change the position of the second probe assembly 24b within the lower head 12.
  • the first telescopic joint 27 includes a three-layer first sleeve 271 that is sleeved with each other, two first wire ropes 272, and a first screw nut 274 that is driven to rotate by a second motor 273, and
  • the first screw nut 274 cooperates with the first screw screw 275, and the first sleeve 271 has opposite first and second ends (corresponding to the left and right sides of the paper in FIG.
  • the second end of the first sleeve 271 of the outer layer of the first telescopic joint 27 of the mechanical arm 25a is detachably coupled to the second rotating shaft 234 of the main rotary joint 23, and the first telescopic movement of the second mechanical arm 25b a second end of the first sleeve 271 of the outer layer of the joint 27 is coupled to an output shaft of the worm gear reducer of the swing joint 26, and a first end of the first sleeve 271 of the inner layer is fixedly coupled to the first end
  • One end of a screw screw 275 is axially parallel, and the first end thereof is also coupled to the end rotary joint 29 and is drivable by the end rotary joint 29, the first set between the outer layer and the inner layer
  • a first pulley 276 is rotatably disposed on the first end and the second end of the cylinder 271, and the two first wire ropes 272 are respectively wound Provided on a first pulley 276 and fixed at both ends of the first sle
  • the second motor 273 is provided with a third encoder for picking up and feeding back the rotation angle information and the rotation speed information of the second motor 273.
  • the first sleeve 271 of the first telescopic joint 27 is further provided with a first sleeve 271.
  • a first proximity switch for calibrating an initial position and an end position of the inner first sleeve 271, the first sleeve of the outer layer being detachably coupled to the inductor mated with the first proximity switch.
  • the controller of the non-destructive testing robot After receiving the feedback information, the controller of the non-destructive testing robot further converts the linear motion distance of the first telescopic joint 27 to control the degree of expansion and contraction of the first/second robot arm (25a, 25b) to change the first/second probe.
  • the radial position of the assembly (24a, 24b).
  • the output shaft of the second motor after being decelerated is connected to the gear, and the gear transmits the rotation to the nut.
  • the second telescopic joint 28 includes a three-layer second sleeve 281 that is sleeved with each other, two second wire ropes 282, and a second screw screw 284 that is driven to rotate by a third motor 283, and
  • the second lead screw 284 is mated with a second lead screw nut 285, and the second sleeve 281 has opposite first and second ends (corresponding to the left and right sides of the paper in FIG.
  • a middle portion of the second sleeve 281 of the layer is detachably coupled to the second rotation shaft 234 of the main rotary joint 23 to maintain gravity balance, and a first end of the second sleeve 281 of the inner layer is coupled to the end rotary joint 29, the second screw screw 284 is rotatably disposed on the second sleeve 281 of the outer layer by a pair of supports, and the axial direction of the two is parallel, and the middle of the outer layer and the inner layer
  • the second sleeve 281 is fixedly connected to the second lead screw nut 285, and the second sleeve 286 is rotatably disposed on the first end and the second end of the second sleeve 281 of the inner layer, and the two second steel cords 282 Firstly wound around a second pulley 286 and fixed at both ends of the second sleeve 281 of the outer layer And the second end of the second sleeve 281 of the inner layer, the winding directions of the
  • the third motor 283 is provided with a fourth encoder for picking up and feeding back the rotation angle information and the rotation speed information of the third motor 283.
  • the controller of the non-destructive testing robot After receiving the feedback information, the controller of the non-destructive testing robot further converts the linear motion distance of the second telescopic joint 28 to control the degree of expansion and contraction of the third/fourth robot arm (25e, 25d) to change the third/fourth/ The radial position of the fifth probe assembly.
  • the end rotary joint 29 includes a first telescopic joint 27 (first end of the first sleeve 271 of the inner layer) or a second telescopic joint 28 (the inner layer) a fixed seat 291 having a cavity of the first end of the second sleeve 281, and a worm 293 movably disposed on the fixed seat 291 and driven by a first motor 292, cooperates with the worm 293 and is located a worm wheel 294 in the inner cavity, a first rotating shaft 295 coaxially coupled to the worm wheel 294, and two first timing pulleys 296 driven through the belt phase, the first rotating shaft 295 being disposed In the cavity, the inner cavity is filled with gas, and a plurality of bearings and dynamic seal assemblies are disposed between the first rotating shaft 295 and the fixed seat 291, and the first probe assembly 24a/second probe assembly 24b/third The probe assembly 24c / the fourth probe assembly 24d is mounted on the first rotating shaft 295.
  • the bearing is used for supporting, and a plurality of dynamic sealing components are arranged on the outer side of the bearing.
  • a multi-layer oil seal is used for dynamic sealing at the bearing, and air pressure is inserted into the inner cavity of the fixed seat 291. Hermetic seal.
  • One of the two first timing pulleys 296 is coaxially coupled to the first rotation shaft 295, and the other first timing pulley 296 is coupled to a first position for picking up and feeding back angular position information of the first rotation shaft 295.
  • An encoder 297 is provided with a second encoder for picking up and feeding back the rotation angle information and the rotational speed information of the first motor 292.
  • the second encoder is redundant, on the one hand to improve the accuracy of the measurement, and on the other hand, when one of them is faulty, it can be detected and fed back by means of the other.
  • the first encoder 297 and the second encoder are both electrically connected to the controller of the non-destructive detecting robot, and when the controller receives the information fed back by the first encoder 297 and/or the second encoder, by controlling the first The rotational speed of the motor 292 adjusts the position and speed of the end rotary joint 29.
  • the first mechanical arm 25a is composed of a first telescopic joint 27, an elongated block 251a and a distal rotating joint 29 from the beginning to the end thereof, and the first sleeve 271 of the outer layer of the first telescopic joint 27 is The second end is detachably coupled to the lower portion of the second rotating shaft 234 of the main rotary joint 23, the first end of the inner sleeve 271 is detachably coupled to one end of the extension block 251a, and the other end of the extension block 251a is Disassembledly coupled to the fixed seat 291 of the end rotary joint 29, the first rotating shaft 295 of the end rotating joint 29 is provided with a first probe assembly 24a;
  • the second mechanical arm 25b is composed of a first telescopic joint 27, an elongated block 251b and a distal rotating joint 29 from the beginning to the end thereof.
  • the second end of the first sleeve 271 of the outer layer of the first telescopic joint 27 can be The output shaft of the worm gear 294 worm reducer detachably coupled to the swing joint 26, and the second end of the inner sleeve first sleeve 271 are detachably coupled to the lower portion and the inner layer of the second rotating shaft 234 of the main rotary joint 23
  • the first end of the first sleeve 271 is detachably coupled to one end of the extension block 251b, and the other end of the extension block 251b is detachably coupled to the fixing seat 291 of the end rotary joint 29, and the first rotation axis of the end rotary joint 29 295 is provided with a second probe assembly 24b;
  • the third mechanical arm 25c is composed of a second telescopic joint 28 and a distal rotating joint 29 from the beginning to the end thereof, and the middle portion of the second sleeve 281 of the outer layer of the second telescopic joint 28 is detachably coupled to the main rotating joint.
  • the lower end of the second rotating shaft 234 of the second, the first end of the second sleeve 281 of the inner layer is detachably coupled to the fixed seat 291 of the end rotary joint 29, and the third rotating shaft 295 of the end rotary joint 29 is provided with a third Probe assembly 24c;
  • the fourth robot arm 25d is composed of a second telescopic joint 28, a connecting block 252, and a distal rotating joint 29 from the beginning to the end thereof.
  • the middle portion of the second sleeve 281 of the outer layer of the second telescopic joint 28 is detachably A lower end of the second rotating shaft 234 connected to the main rotary joint 23, a first end of the second sleeve 281 of the inner layer is detachably coupled to one end of the connecting block 252, and a lower portion of the connecting block 252 is detachably coupled to the end rotating
  • a fourth probe assembly 24d is disposed on the first rotating shaft 295 of the distal rotating joint 29, and a fifth probe assembly 24e is disposed on the other end of the connecting block 252.
  • the axial direction of the fifth probe assembly 24e should be perpendicular to the axial direction (ie, horizontal) of the pressure vessel so as to face the flange bolt ligament region, and the axial direction of the fourth probe assembly 24d should be parallel to the axial direction of the pressure vessel and the bolt.
  • the axial direction (i.e., vertical) of the holes is arranged to facilitate the fourth probe assembly 24e to be close to the bolt holes and to perform a scan.
  • the third mechanical arm 25c and the fourth mechanical arm 25d are axially symmetrically disposed along the central axis of the column assembly 21, and are located above the first mechanical arm 25a and the second mechanical arm 25b, and when one of the mechanical arms fails, the When the on-site processing is completed, the scanning of the flange 11 or the nozzle 13 can be realized by recombination of another mechanical arm; the first mechanical arm 25a and the second mechanical arm 25b are substantially symmetrically arranged, and when one of the mechanical arms is first When the telescopic joint 27 or the end rotary joint 29 fails and cannot be processed in the field, the first telescopic joint 27 or the distal rotary joint 29 of the other robot arm can be quickly combined to realize the scanning of the cylinder 10 or the lower head 12.
  • FIG. 2 it further includes a first camera assembly 30a for monitoring each of the robot arms disposed at a lower portion of the main rotary joint 23. It also includes a second camera assembly 30b disposed on the second robot arm 25b for inspecting the entire inner wall of the pressure vessel 1.
  • An extension block 251b is connected between the first telescopic joint 27 and the end rotary joint 29 of the second mechanical arm 25b, and the second camera assembly is disposed on the extension block 251b.
  • the cameras of the first camera assembly and the second camera assembly are both rotatably arranged to capture a wide range of video images.
  • the support legs 22 are three, and a guide post is disposed in a part of the threaded holes of the flange 11 of the pressure vessel 1.
  • the axial direction of the guide post is parallel to the axial direction of the column assembly 21, and the two support legs 22 are opened.
  • the arrangement of the support legs 22 of the present invention can be found in the article "Design and Reliability Study of the Supporting Legs 22 of the Reactor Pressure Vessel 1 Inspection Machine" published in “Non-Destructive Testing", Issue 11, 2013.
  • the invention discloses a nuclear reactor pressure vessel non-destructive testing robot for detecting a CEPR type nuclear reactor pressure vessel, which comprises the following steps in sequence:
  • the two supporting legs are placed on two guiding columns of the pressure vessel, and the lower head is inspected in sequence, the ring weld between the transition ring barrel and the lower head is ultrasonically scanned, and the ultrasonic scanning matrix is scanned. Scanning of the joint zone between the metal and the internal weld overlay, joint weld between the nozzle section and the nozzle, ultrasonic scanning of the flange bolt hole ligament zone outside the area where the support leg is located, ultrasonic scanning Thread of the flange bolt hole except the area where the support leg is located;
  • the two support legs are placed on the other two guide posts, and the threads of the flange bolt holes that are not scanned in step A are ultrasonically scanned in sequence, and the flange bolts that are not scanned in the ultrasonic scanning step A are scanned.
  • the specific detection process is as follows.
  • the first probe assembly 24a and the second probe assembly 24b are mainly positioned by the swing joint 26, the first telescopic joint 25a and the first telescopic joint 27 of the second robot arm 25b and the end rotary joint 29
  • a full range scan is achieved by the combined movement of the column assembly 21 and the main rotary joint 23.
  • the innermost surfacing layer has a deepest position along the axial direction of the pressure vessel of 10532.5 mm, a maximum scanning radius of 2442.5 mm, and a circumferential scanning angle of 361 degrees (with an overlap of 1 degree).
  • the range of motion travel of the column assembly 21 and the main rotary joint 23 can cover the inspection area.
  • connection weld scan between the transition ring segment and each guide block 16 the scanning method is similar to item a, mainly consisting of the swing joint 26, the first robot arm 25a and the first telescopic joint 27 of the second robot arm 25b.
  • the end probe assembly 29 positions the first probe assembly 24a and the second probe assembly 24b to a designated position and state, and a full range scan is achieved by the combined movement of the column assembly 21 and the main rotary joint 23.
  • the guide block 16 is connected to the weld seam along the axial deepest position of the pressure vessel by less than 9 meters, the maximum radius is 2442.5 mm, and the circumferential scanning angle is 361 degrees (with an overlap of 1 degree).
  • the range of motion of the column assembly 21 and the main rotary joint 23 can cover the inspection area, and the first telescopic joint 27 has sufficient stroke to ensure that the first/second probe assembly 24b can be contracted toward each other, and does not interfere with the guide block 16 to achieve avoidance. barrier.
  • Flange bolt hole 111 thread scanning There are four (A, B, C, D) bolt holes 111 in the EPR reactor pressure vessel flange with guide posts installed to ensure that all bolt holes 111 can be It was checked that the robot was inspected by means of two installations, positive and negative.
  • the support legs 22 are disposed on the guide posts of the bolt holes 111A, B, and the bolt holes 111C, D, etc. can be inspected; when the reverse position is mounted, the support legs 22 are disposed on the guide posts of the bolt holes 111C, D. , the bolt holes 111A, B, etc. can be inspected.
  • the inspection is mainly performed by the fourth probe assembly 24d on the fourth robot arm 25d.
  • the column assembly 21 and the second telescopic joint 28 are kept fixed, and the main rotary joint 23 and the end rotary joint 29 are used for scanning motion, and the range of motion exceeds 361. Degree, to meet the scope of the scan.
  • the column assembly 21 and the main rotary joint 23 remain stationary for positioning prior to scanning, and the second telescopic joint 28 and the end rotary joint 29 are used to effect scanning in both the axial and circumferential directions of the nozzle.
  • the girth weld scan between the transition ring segment cylinder and the lower head mainly by the second probe assembly 24b on the second robot arm 25b, by the column assembly 21, the first telescopic joint 27 and the end rotation
  • the joint 29 is positioned to the specified position and state for pre-scanning positioning, and then the main rotation joint 23 and the swing joint 26 are combined to realize full-range scanning.
  • the bolt hole ligament region 112 of the flange 11 is scanned: mainly by the fifth probe assembly 24e of the fourth robot arm 25d.
  • the positioning before the scanning is first performed by the column assembly 21 and the second telescopic joint 28, and then the scanning motion is performed by the main rotary joint 23.

Abstract

一种核反应堆压力容器(1)无损检测机器人及其检测方法。该机器人包括多个支撑腿(22),各支撑腿(22)两端分别连接于立柱组件(21)和压力容器(1)上以将立柱组件(21)的中轴线与压力容器(1)的轴心线相重合设置;多个机械臂(25a,25b,25c,25d),设置有用于扫查各部件的多组探头组件(24a,24b,24c,24d);主旋转关节(23),其可绕该立柱组件(21)的轴向转动地连接于立柱组件(21)的下部,第二机械臂(25b)通过一摆动关节(26)绕一垂直于该立柱组件(21)轴向的方向转动地连接于该主旋转关节(23)、其它的机械臂可拆卸地连接于主旋转关节(23)。

Description

核反应堆压力容器无损检测机器人及其检测方法
技术领域
本发明涉及核反应堆压力容器无损检测领域,特别涉及一种用于CEPR型核反应堆压力容器的无损检测机器人及其检测方法。
背景技术
核反应堆压力容器是核电站最为重要的部件之一,用来固定、支承和包容堆芯及所有堆内构件,是核电厂整个寿期内唯一不可更换的大型部件。核反应堆压力容器的质量是保证核动力系统正常、安全运行的关键。为确定核反应堆压力容器的质量,核电厂和核动力装置的检验规范和大纲中,对压力容器上的各焊缝及其它部位提出了无损检测的强制性要求,并指定分别在投入运行前和运行一定时间间隔后对压力容器实施役前和在役检查。
核反应堆压力容器的主体为一圆筒,圆筒上部通过螺栓组件连接有半球形上封头、焊接有法兰,圆筒下部焊接有过渡环段,过渡环段焊接有半球形下封头,圆筒筒体上径向间隔焊接有进水管嘴和出水管嘴,进水管嘴和出水管嘴分别焊接有一安全端,安全端再与主管道相焊接。以中国台山CEPR堆型为例,核反应堆在役检查范围包括:反应堆压力容器内部堆焊层、反应堆压力容器过渡环段与内部径向导向块之间的连接焊缝、法兰的螺栓孔螺纹、管嘴段筒体与管嘴的连接焊缝、管嘴与安全端之间的异种金属焊缝、反应堆压力容器各部分筒体之间的环焊缝(管嘴段筒体和堆芯段筒体之间、堆芯段筒体和过渡环段之间)、过渡环段与下封头之间的环焊缝、核反应堆压力容器内部堆焊层与基体金属结合区、法兰的螺栓孔韧带区、堆芯中子强辐照区内表面堆焊层等。
通常对核反应堆压力容器的无损检测主要有超声检测技术、视频检测技术和射线检测技术。其中,接触式常规超声检查要求超声探头必须与压力容器表面保持贴合,并使多种角度的探头超声波分别从两侧打到焊缝上。
由于反应堆压力容器检查占用核电站大修关键路径,检查设备的效率和可靠性至关重要。现有技术中的检查设备一般不能实现所有检查部分的全覆盖,检查中需要多次出水。
发明内容
针对上述问题,本发明的目的是提供一种核反应堆压力容器无损检测机器人及其检测方法,其检查范围覆盖核反应堆压力容器役前/在役检查大纲所规定的全部检查项,仅需出水一次即可完成所有检查,具有高可靠性。
为解决上述技术问题,本发明采用的技术方案为:
一种核反应堆压力容器无损检测机器人,所述压力容器具有筒体、下封头、管嘴部、带有螺栓孔和螺栓孔韧带区的法兰,它包括:
立柱组件,其可沿其轴向伸缩;
多个支撑腿,其用于支撑所述立柱组件,各所述支撑腿的一端固定连接于所述立柱组件、另一端可拆卸地连接于压力容器上并使所述立柱组件的中轴线与压力容器的轴心线相重合;
第一机械臂,其设置有用于扫查压力容器的筒体的第一探头组件;
第二机械臂,其设置有用于扫查压力容器的下封头的第二探头组件;
第三机械臂,其设置有用于扫查压力容器的管嘴部的第三探头组件;
第四机械臂,其设置有用于扫查压力容器法兰的螺栓孔螺纹的第四探头组件及用于扫查压力容器法兰的螺栓孔韧带区的第五探头组件;
主旋转关节,其可绕所述立柱组件的轴向转动地连接于立柱组件的下部,其中,所述第二机械臂通过一摆动关节绕一垂直于所述立柱组件轴向的方向转动地连接于所述主旋转关节、其它的机械臂可拆卸地连接于所述主旋转关节;
其中,各机械臂的末端均具有一可绕自身轴心线转动的末端旋转关节,所述第一机械臂、第二机械臂还均具有一第一伸缩关节,所述第一机械臂的第一伸缩关节位于主旋转关节与其末端旋转关节之间,所述第二机械臂的第一伸缩关节位于摆动关节与其末端旋转关节之间,所述第三机械臂、第四机械臂还均具有位于所述主旋转关节与其末端旋转关节之间的第二伸缩关节,所述第四机械臂的末端旋转关节的轴心线与压力容器的轴向相平行且连接于第二伸缩关节的下部,所述第一探头组件、第二探头组件、第三探头组件、第四探头组件分别安装于各机械臂的末端旋转关节上,所述第五探头组件安装于所述第四机械臂的第二伸缩关节上且其轴向与压力容器的轴向相垂直。
优选地,所述末端旋转关节包括可拆卸地连接于所述第一伸缩关节或第二伸缩关节的具有内腔的固定座、活动地设置于所述固定座上的由一第一电机驱动转动的蜗杆、与所述蜗杆相配合且位于所述内腔中的蜗轮、同轴地连接于所述蜗轮的第一转动轴、两个通过同步带传动的第一同步带轮,所述第一转动轴穿设在内腔中,所述内腔中充满气体,所述第一转动轴与固定座之间设置有多个轴承和动密封组件,所述第一探头组件/第二探头组件/第三探头组件/第四探头组件安装于所述第一转动轴上,其中一个第一同步带轮同轴地连接于所述第一转动轴、另一个第一同步带轮连接有一用于拾取并反馈第一转动轴的角度位置信息的第一编码器,所述第一电机上设置有一用于拾取并反馈第一电机转动角度信息和转动速度信息的第二编码器。
优选地,所述第一伸缩关节包括相互套设的三层第一套筒、两个第一钢丝绳、由一第二电机驱动旋转的第一丝杠螺母、与所述第一丝杠螺母相配合的第一丝杠螺杆,所述第一套筒具有相对的第一端和第二端,第一机械臂的第一伸缩关节的外层的第一套筒的第二端连接于所述主旋转关节,第二机械臂的第一伸缩关节的外层的第一套筒的第二端连接于所述摆动关节,内层的第一套筒的第一端固定连接于所述第一丝杠螺杆的一端且二者的轴向相平行、且其第一段也连接于所述末端旋转关节,位于外层和内层之间的第一套筒的第一端和第二端上均可转动地设置有一第一滑轮,两个第一钢丝绳分别绕设于一个第一滑轮上且其两端均分别固定连接于外层的第一套筒的第一端和内层的第一套筒的第二端,两个第一钢丝绳的绕设方向相反,所述第二电机上设置有一用于拾取并反馈第二电机转动角度信息和转动速度信息的第三编码器,所述第一伸缩关节上还设置一用于标定内层第一套筒的初始位置和终止位置的第一接近开关。
优选地,所述第二伸缩关节包括相互套设的三层第二套筒、两个第二钢丝绳、由一第三电机驱动旋转的第二丝杠螺杆、与所述第二丝杠螺杆相配合的第二丝杠螺母,所述第二套筒具有相对的第一端和第二端,外层的第二套筒的中部连接于所述主旋转关节,内层的第二套筒的第一端连接于所述末端旋转关节,所述第二丝杠螺杆可绕自身轴线转动地设置于外层的第二套筒上且二者的轴向相平行,位于外层和内层中间的第二套筒与所述第二丝杠螺母相固定连接,内层的第二套筒的第一端和第二端上均可转动地设置有一第二滑轮,两个第二钢丝绳分别绕设于一个第二滑轮上且其两端均分别固定连接于外层的第二套筒的第一端和内层的第二套筒的第二端,两个第二钢丝绳的绕设方向相反,所述第三电机上设置有一用于拾取并反馈第三电机转动角度信息和转动速度信息的第四编码器。
优选地,所述摆动关节包括由第四电机驱动转动的主动链轮、通过链条与所述主动链轮相传动的从动链轮、与所述从动链轮相传动的蜗轮蜗杆减速器,所述蜗轮蜗杆减速器的输出轴与第二机械臂相可拆卸地连接。
更优选地,所述摆动关节还包括与所述蜗轮蜗杆减速器相传动的第二同步带轮,所述第二同步带轮连接有一用于拾取并反馈蜗轮蜗杆减速器输出轴的转动角度信息的第五编码器。
优选地,所述主旋转关节包括可拆卸地连接于所述立柱组件下端的具有空腔的安装座、设置于所述安装座上的第五电机、由所述第五电机驱动转动的驱动齿轮、与所述驱动齿轮相啮合的主齿轮、同轴地连接于所述主齿轮的第二转动轴,所述第二转动轴穿设于所述空腔中且其下端连接有各机械臂。
更优选地,所述主旋转关节还包括一与所述主齿轮相啮合的消侧隙齿轮、连接于所述消侧隙齿轮上的用于拾取并反馈第五电机转动角度信息和转动速度信息的第六编码器、设置于所述安装座上的至少两个用于标定第二转动轴的初始位置和最大行程位置的第二接近开关。
更优选地,所述驱动齿轮和主齿轮均为斜齿轮。
优选地,该核反应堆压力容器无损检测机器人还包括一用于带动所述立柱组件伸缩的卷扬机构。
更优选地,所述立柱组件包括相套设的两层具有相对的上端和下端的第三套筒,所述支撑腿的一端固定连接于外层第三套筒上,所述卷扬机构包括支架,外层第三套筒的上端固定连接于所述卷扬机构的支架,内层第三套筒的上端位于卷扬结构的下方且转动地设置有一第三滑轮,所述卷扬机构的钢丝绳由下方绕设于第三滑轮上且末端固定连接于外层第三套筒的上端。
更优选地,所述立柱组件包括相套设的多层具有相对的上端和下端的第三套筒,自外层至内层的所述第三套筒依次记为B(1),B(2),…B(2i+1),其中i=1,2,…,B(1)的上端固定连接于所述卷扬机构,B(2),B(3),…B(2i-1),B(2i)的上端和下端以及B(2i+1) 的上端均转动地设置有一第三滑轮,所述卷扬机构包括支架且具有两个分别用于下放和上拉的两个钢丝绳,B(1)的上端固定连接于所述卷扬机构的支架,其中一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)下端,…B(2i-1)上端, B(2i)下端以及B(2i+1)上端的第三滑轮上,另一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)上端,…B(2i-1)下端, B(2i)上端端以及B(2i+1)上端的第三滑轮上,两个钢丝绳在每个第三套筒上的绕设方向均相反。
进一步地,所述卷扬机构还包括设置于支架上的由第六电机驱动旋转的第一卷筒和第二卷筒、分别卷绕于所述第一卷筒和第二卷筒上的用于下放和上拉的钢丝绳、位于所述第六电机与第一卷筒和第二卷筒支架内的多级减速机构,所述第一卷筒和第二卷筒的钢丝绳的卷绕方向一致但旋转方向相反,钢丝绳均从第一卷筒和第二卷筒之间穿过并连接于立柱组件上,所述卷扬机构还包括设置于所述多级减速机构上的第七编码器,其用于拾取并反馈第一卷筒和第二卷筒的旋转角度信息。
优选地,它还包括设置于所述主旋转关节下部的用于监控各机械臂的第一摄像头组件、设置于所述第二机械臂上的用于检查压力容器整个内壁的第二摄像头组件。
更优选地,所述第二机械臂的第一伸缩关节和末端旋转关节之间连接有一延长块,所述第二摄像头组件设置于所述延长块上。
优选地,所述支撑腿为三个,压力容器法兰的部分螺纹孔中设置有导向柱,所述导向柱的轴向与立柱组件的轴向相平行,其中两个支撑腿上开设有与所述导向柱相配合的通孔,所述两个支撑腿分别穿设在两个导向柱上以支撑所述立柱组件。
优选地,所述第四机械臂还包括一可拆卸连接于其第二伸缩关节的连接块,所述连接块具有三个端部且其第一个端部连接于第二伸缩关节、第二个端部设置有所述第五探头组件、第三个端部连接于末端旋转关节。
一种上述的核反应堆压力容器无损检测机器人的检测方法,依次包括以下步骤:
A、将两个支撑腿穿设在压力容器的其中两个导向柱上,依次视频检查下封头、超声扫查过渡环段筒体与下封头之间的环焊缝、超声扫查基体金属与内部堆焊层之间的结合区扫查、管嘴段筒体与管嘴之间的连接焊缝、超声扫查除支撑腿所处区域外的法兰螺栓孔韧带区、超声扫查除支撑腿所处区域外的法兰螺栓孔的螺纹;
B、将两个支撑腿穿设在另两个导向柱上,依次超声扫查步骤A中未扫查到的法兰螺栓孔的螺纹、超声扫查步骤A中未扫查到的法兰螺栓孔韧带区、超声扫查管嘴与安全端之间的异种金属连接焊缝、超声扫查管嘴段筒体与堆芯段筒体之间及堆芯段筒体与过渡环段筒体之间的环焊缝、检查下封头;
C、无损检测机器人出水。
由于上述技术方案的运用,本发明与先有技术相比具有如下优点:本发明通过立柱组件沿其轴向的伸缩调整各探头组件的轴向位置,通过各机械臂沿各自轴向的伸缩调整各探头组件沿压力容器径向的位置,通过主旋转关节调整各探头组件沿压力容器周向的位置,通过主旋转关节调整探头组件的角度,通过摆动关节调整下封头扫查探头组件在下封头内的轴向位置,可以实现对核反应堆压力容器检查部位的全面覆盖,仅需出水一次即可完成反应堆压力容器在役检查大纲规定的所有检查项。
附图说明
图1为核反应堆压力容器的结构示意图;
图2为本发明的结构示意图;
图3为本发明的原理示意图;
图4为本发明的一种卷扬机构的结构示意图;
图5为本发明的一种立柱组件的结构示意图;
图6为本发明的另一些实施例中的一种立柱组件的结构示意图;
图7为本发明的一种主旋转关节的结构示意图;
图8为本发明的一种摆动关节的结构示意图;
图9为本发明的一种第一伸缩关节的结构示意图;
图10为本发明的一种第二伸缩关节的结构示意图;
图11为本发明的一种末端旋转关节的结构示意图。
其中:1、压力容器;10、筒体;101、管嘴段筒体;102、堆芯段筒体;103、过渡环段筒体;11、法兰;111、螺栓孔;112、螺栓孔韧带区;12、下封头;13、管嘴;14、安全端;16、导向块;
20、卷扬机构;200、支架;201、第六电机;202、多级减速机构;203、第一齿轮;204、第二齿轮;205、第一卷筒;206、第二卷筒;207、第七编码器;208、抱闸机构;209、紧急回收机构;
21、立柱组件;211、B(1);212、B(2);213、B(3);214、B(4);215、B(5);216、第三滑轮。
22、支撑腿;220、通孔;
23、主旋转关节;230、安装座;231、第五电机;232、驱动齿轮;233、主齿轮;234、第二转动轴;235、消侧隙齿轮;236、第六编码器;237、第二接近开关;
24a、第一探头组件;24b、第二探头组件;24c、第三探头组件;24d、第四探头组件;24e、第五探头组件;
25a、第一机械臂;251a、延长块;25b、第二机械臂;251b、延长块;25c、第三机械臂;25d、第四机械臂;252、连接块;
26、摆动关节;261、第四电机;262、主动链轮;263、链条;264、从动链轮;265、蜗轮蜗杆减速器;2650、输出轴;266、第二同步带轮;267、第五编码器;
27、第一伸缩关节;271、第一套筒;272、第一钢丝绳;273、第二电机;274、第一丝杠螺母;275、第一丝杠螺杆;276、第一滑轮;
28、第二伸缩关节;281、第二套筒;282、第二钢丝绳;283、第三电机;284、第二丝杠螺杆;2840、支座;285、第二丝杠螺母;286、第二滑轮;
29、末端旋转关节;291、固定座;292、第一电机;293、蜗杆;294、蜗轮;295、第一转动轴;296、第一同步带轮;297、第一编码器;
30a、第一摄像头组件;30b、第二摄像头组件。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解,从而对本发明的保护范围作出更为清楚明确的界定。本发明中提及的上端和下端分别对应于图2中纸面的上和下,立柱组件的轴向和压力容器1的轴向对应于图2中的纸面的上下方向。
图1所示为现有技术中CEPR型核反应堆压力容器1的结构示意图。结合图1所示,压力容器1包括筒体10、法兰11、半球形的下封头12、管嘴13。其中,筒体10由自上至下依次相焊接的管嘴段筒体101、堆芯段筒体102以及过渡环段筒体103组成。管嘴段筒体101的上部与所述法兰11相焊接,法兰11的上端面上沿其周向开设有一圈螺栓孔111,螺栓孔111用于连接半球形的上封头以及在检测时用于插设导向柱,法兰11具有与该圈螺栓孔111正对的一圈螺栓孔韧带区112。管嘴段筒体101沿其周向间隔地开设有多个管嘴13,部分管嘴13用于与进水主管道(图中未示出)相连通、另一部分管嘴13用于与出水主管道(图中未示出)相连通,管嘴13的末端焊接有一圈安全端14,安全端14与进水/出水主管道相焊接,安全端14与管嘴13为异种金属焊接。过渡环段筒体103的内壁上沿其轴向间隔地开设有多个导向块16,导向块16与过渡环段筒体103相焊接。压力容器1的基体金属的所有内壁上均焊接有一层用于防腐内部堆焊层。整个压力容器1的役前/在役的检查项包括:a、内部堆焊层扫查;b、过渡环段与各导向块16之间的连接焊缝扫查;c、法兰11的螺栓孔111螺纹扫查;d、管嘴段筒体101与管嘴13之间的连接焊缝扫查;e、管嘴13与安全端14之间的异种金属连接焊缝扫查;f、管嘴段筒体101与堆芯段筒体102之间、堆芯段筒体102与过渡环段筒体103之间的环焊缝扫查;g、过渡环段筒体103与下封头12之间的环焊缝扫查;h、基体金属与内部堆焊层之间的结合区扫查;i、法兰11的螺栓孔韧带区112扫查。
结合图2、图3所示,一种用于CEPR型核反应堆压力容器1的无损检测机器人,它包括:
立柱组件21,其可沿其轴向伸缩;
多个支撑腿22,其用于支撑所述立柱组件21,各所述支撑腿22的一端固定连接于所述立柱组件21、另一端可拆卸地安装于压力容器1上并使所述立柱组件21的中轴线与压力容器1的轴心线相重合;
第一探头组件24a,其用于扫查压力容器1的筒体10;
第二探头组件24b,其用于扫查压力容器1的下封头12也可用于扫查压力容器1的筒体10;
第三探头组件24c,其用于扫查压力容器1的管嘴13部;
第四探头组件24d,其用于扫查压力容器1法兰11的螺栓孔111螺纹;
第五探头组件24e,其用于扫查压力容器1法兰11的螺栓孔韧带区112;
机械臂,其为多个且均可沿各自的轴向伸缩,所述第一探头组件24a、第二探头组件24b、第三探头组件24c、第四探头组件24d、第五探头组件24e分别设置于五个机械臂的末端,或第一探头组件24a、第二探头组件24b、第三探头组件24c、第四探头组件24d分别设置于四个机械臂的末端且第五探头组件24e设置于所述四个机械臂中的一个的末端上;
主旋转关节23,其可绕所述立柱组件21的轴向转动地连接于立柱组件21的下部,其中,设置有所述第二探头组件24b的机械臂通过一摆动关节26绕一垂直于所述立柱组件21轴向的方向转动地连接于所述主旋转关节23、其它的机械臂可拆卸地连接于所述主旋转关节23。
具体到本实施例中,所述机械臂包括可转动地设置有所述第一探头组件24a的第一机械臂25a、可转动地设置有所述第二探头组件24b的第二机械臂25b、可转动地设置有所述第三探头组件24c的第三机械臂25c、可转动地设置有所述第四探头组件24d的第四机械臂25d,所述第一探头组件24a、第二探头组件24b、第三探头组件24c分别绕各机械臂(25a、25b、25c)的轴向转动,所述第四探头组件25d连接于第四机械臂25d末端的下部且绕一平行于压力容器1轴向的方向转动,所述第五探头组件24e固定设置于所述第四机械臂25d上。第一探头组件24a、第二探头组件24b、第三探头组件24c、第四探头组件24d及第五探头组件24e均采用超声波探测的方式,其均包括与各机械臂连接的探头架及设置在探头架上的一或多个超声波探头。其中第一探头组件24a、第二探头组件24b、第三探头组件24c的结构分别见中国专利CN101894593、CN101894592、CN2014100255602。第五探头组件24e的探头正对法兰11的螺栓孔韧带区112设置,其在扫查过程中无需调节角度,只要通过主旋转关节23和第四机械臂25d的第二伸缩关节调整其轴向位置和径向位置即可。
所述第一机械臂25a、第二机械臂25b、第三机械臂25c的末端及第四机械臂25d末端的下部均具有一末端旋转关节29,所述第一机械臂25a、第二机械臂25b还均具有一第一伸缩关节27,所述第一机械臂25a的第一伸缩关节27位于主旋转关节23与末端旋转关节29之间,所述第二机械臂25b的第一伸缩关节27位于摆动关节26与末端旋转关节29之间,所述第三机械臂25c、第四机械臂25d还均具有位于所述主旋转关节23与末端旋转关节29之间的第二伸缩关节28,所述第四机械臂(25d)的末端旋转关节(29)的轴心线与压力容器的轴向相平行且连接于第二伸缩关节(28)的下部,所述第四机械臂(25d)还包括一可拆卸地连接于其第二伸缩关节(28)的连接块(252),所述连接块具有三个端部且其第一个端部连接于第二伸缩关节(28)、第二个端部设置有所述第五探头组件(24e)、第三个端部连接于末端旋转关节(29),第四机械臂25d的末端旋转关节的轴向与压力容器的轴向相平行,所述第一探头组件24a、第二探头组件24b、第三探头组件24c、第四探头组件24d分别安装于各机械臂的末端旋转关节29上。
结合图3所示,该核反应堆压力容器无损检测机器人包括一个立柱组件21、两个第一伸缩关节27、两个第二伸缩关节28等三种直线运动关节,包括一个主旋转关节23、一个摆动关节26、四个末端旋转关节29等三种旋转关节,上述各关节和立柱组件21均为模块化设置,任意两个连接的方式均为相可拆卸地连接,以便于拆卸更滑和从新组装。其中立柱组件21用于调整各探头组件在压力容器1轴向上的深度位置,简称轴向位置;主旋转关节23用于调整各探头组件在压力容器1周向360度范围内的位置,简称周向位置;摆动关节26用于调整第二探头组件24b在下封头12内的位置;第一伸缩关节27用于调整第一探头组件24a及第二探头组件24b在筒体10及下封头12内沿径向的位置,简称径向位置,第二伸缩关节28用于调整第三探头组件24c在管嘴13内的位置及第四探头组件24d和第五探头组件24e在法兰11上的位置,且第一伸缩关节27的行程要短于第二伸缩关节28的行程。下面对各关节逐一进行描述。
该核反应堆压力容器无损检测机器人还包括一用于带动所述立柱组件21伸缩的卷扬机构20。结合图4所示,所述卷扬机构20主要实现钢丝绳的收放,其包括设置于支架200上的由第六电机201驱动旋转的第一卷筒205和第二卷筒206、分别卷绕于所述第一卷筒205和第二卷筒206上的用于下放和上拉的钢丝绳、位于所述第六电机201与第一卷筒205和第二卷筒206支架200内的多级减速机构202,所述第一卷筒205和第二卷筒206的钢丝绳的卷绕方向一致但旋转方向相反,钢丝绳均从第一卷筒205和第二卷筒206之间穿过并连接于立柱组件21上。所述卷扬机构20还包括设置于所述多级减速机构202上的第七编码器207,其用于拾取并反馈第一卷筒205和第二卷筒206的旋转角度信息。所述多级减速机构202包括依次相传动的一级减速器、二级减速器、三级减速器、第一齿轮203、第二齿轮204,其中第一齿轮203和第二齿轮204相啮合,第一卷筒205与第一齿轮203相同轴地连接,第二卷筒206与第二齿轮204相同轴地连接,第一卷筒205和第二卷筒206转动带动一个钢丝绳下放、另一个钢丝绳上拉。为安全起见,卷扬机构20还包括抱闸机构208和紧急回收机构209,当第六电机201无动作时,抱闸机构208抱紧第六电机201的转轴,使钢丝绳保持静止。紧急回收机构209在电机失效时,可将钢丝绳收回。第七编码器207设置在二级减速器上测量第一卷筒205的旋转角度,无损检测机器人的控制器在收到第七编码器207反馈的信息后通过换算可以计算的出钢丝绳收放的长度。
结合图5所示,所述立柱组件21包括相套设的五层具有相对的上端和下端的第三套筒,自外层至内层的所述第三套筒依次记为B(1),…B(5),(211~215),B(1)的上端固定连接于所述卷扬机构20,B(2),B(3),B(4)的上端和下端以及B(5) 的上端均转动地设置有一第三滑轮216,B(1)的上端固定连接于所述卷扬机构20的支架200,其中一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)下端、B(3)上端、B(4)下端以及B(5)上端的第三滑轮216上,另一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)上端、B(3)下端、B(4)上端以及B(5)上端的第三滑轮216上,两个钢丝绳在每个第三套筒上的绕设方向均相反且在均是从B(2)、B(3)、B(4)的两个滑轮的外侧绕过,此处的外侧是相对内侧而言,内侧是指同一个第三套筒上下端的两个第三滑轮216之间。
在另一些实施方式中,结合图6所示,所述立柱组件21包括相套设的两层具有相对的上端和下端的第三套筒,所述支撑腿22的一端固定连接于外层第三套筒上,所述卷扬机构20包括支架200,外层第三套筒的上端固定连接于所述卷扬机构20的支架200,内层第三套筒的上端位于卷扬结构的下方且转动地设置有一第三滑轮216,所述卷扬机构20的钢丝绳由下方绕设于第三滑轮216上且末端固定连接于外层第三套筒的上端。这种结构的立柱组件21的行程大大地短于上述的五层第三套筒的立柱组件21的行程。
结合图7所示,所述主旋转关节23用于实现下部所有机械臂的整体旋转,它包括可拆卸连接于所述立柱组件21的最内层的第三套筒(B(5))下端的具有空腔的安装座230、设置于所述安装座230上的第五电机231、由所述第五电机231驱动转动的驱动齿轮232、与所述驱动齿轮232相啮合的主齿轮233、同轴地连接于所述主齿轮233的第二转动轴234,所述第二转动轴234穿设于所述空腔中且其下端连接有各机械臂。安装座230与第二转动轴234之间设置有多个轴承用于对空腔进行动密封。所述驱动齿轮232和主齿轮233均为斜齿轮。
所述主旋转关节23还包括一与所述主齿轮233相啮合的消侧隙齿轮235、连接于所述消侧隙齿轮235上的用于拾取并反馈第五电机231转动角度信息和转动速度信息的第六编码器236、设置于所述安装座230上的一对用于标定第二转动轴234的初始位置和最大行程位置(即0~380度)的第二接近开关237,主齿轮233上设置有一个感应器,当其转动到正对第二接近开关237的位置时,第二接近开关237检测到信号,无损检测机器人的控制器接受到上述信号后,通过进一步的换算得出主旋转关节的旋转角度和旋转速度。
结合图8所示,所述摆动关节26包括由第四电机261驱动转动的主动链轮262、通过链条263与所述主动链轮262相传动的从动链轮264、与所述从动链轮264相传动的蜗轮蜗杆减速器265,所述蜗轮蜗杆减速器的输出轴2650与第二机械臂25b相连接。蜗轮蜗杆减速器的输出轴2650的轴心线垂直于压力容器的轴向,第二机械臂25b的轴向即其第一伸缩关节的轴向垂直于蜗轮蜗杆减速器的输出轴2650的轴心线。
所述摆动关节26还包括与所述蜗轮蜗杆减速器相传动的第二同步带轮266,所述第二同步带轮266连接有一用于拾取并反馈蜗轮蜗杆减速器输出轴2650的转动角度信息的第五编码器267。无损检测机器人的控制器接收到上述反馈信息后,进一步换算出摆动关节26的摆动角度从而控制第二机械臂25b的角度以改变第二探头组件24b在下封头12内的位置。
结合图9所示,所述第一伸缩关节27包括相互套设的三层第一套筒271、两个第一钢丝绳272、由一第二电机273驱动旋转的第一丝杠螺母274、与所述第一丝杠螺母274相配合的第一丝杠螺杆275,所述第一套筒271具有相对的第一端和第二端(对应于图9中纸面的左和右),第一机械臂25a的第一伸缩关节27的外层的第一套筒271的第二端可拆卸地连接于所述主旋转关节23的第二转动轴234,第二机械臂25b的第一伸缩关节27的外层的第一套筒271的第二端连接于所述摆动关节26的蜗轮蜗杆减速器的输出轴,内层的第一套筒271的第一端固定地连接于所述第一丝杠螺杆275的一端且二者的轴向相平行、且其第一端也连接于所述末端旋转关节29且可由末端旋转关节29驱动,位于外层和内层之间的第一套筒271的第一端和第二端上均可转动地设置有一第一滑轮276,两个第一钢丝绳272分别绕设于一个第一滑轮276上且其两端均分别固定连接于外层的第一套筒271的第一端和内层的第一套筒271的第二端,两个第一钢丝绳272的绕设方向相反。内层的第一套筒271的第一端与后端的延长块相可拆卸地连接。
所述第二电机273上设置有一用于拾取并反馈第二电机273转动角度信息和转动速度信息的第三编码器,所述第一伸缩关节27的内层第一套筒271上还设置一用于标定内层第一套筒271的初始位置和终止位置的第一接近开关,外层的第一套筒上可拆卸地连接有与第一接近开关相配合的感应器。无损检测机器人的控制器接收到上述反馈信息后,进一步换算出第一伸缩关节27的直线运动距离进而控制第一/第二机械臂(25a、25b)的伸缩程度以改变第一/第二探头组件(24a、24b)的径向位置。第二电机经减速后的输出轴与齿轮相连,齿轮再将旋转传递给螺母。
结合图10所示,所述第二伸缩关节28包括相互套设的三层第二套筒281、两个第二钢丝绳282、由一第三电机283驱动旋转的第二丝杠螺杆284、与所述第二丝杠螺杆284相配合的第二丝杠螺母285,所述第二套筒281具有相对的第一端和第二端(对应于图10中纸面的左和右),外层的第二套筒281的中部可拆卸地连接于所述主旋转关节23的第二转动轴234以保持重力平衡,内层的第二套筒281的第一端连接于所述末端旋转关节29,所述第二丝杠螺杆284通过一对支座可绕自身轴线转动地设置于外层的第二套筒281上且二者的轴向相平行,位于外层和内层中间的第二套筒281与所述第二丝杠螺母285固定连接,内层的第二套筒281的第一端和第二端上均可转动地设置有一第二滑轮286,两个第二钢丝绳282分别绕设于一个第二滑轮286上且其两端均分别固定连接于外层的第二套筒281的第一端和内层的第二套筒281的第二端,两个第二钢丝绳282的绕设方向相反。
所述第三电机283上设置有一用于拾取并反馈第三电机283转动角度信息和转动速度信息的第四编码器。无损检测机器人的控制器接收到上述反馈信息后,进一步换算出第二伸缩关节28的直线运动距离进而控制第三/第四机械臂(25e、25d)的伸缩程度以改变第三/第四/第五探头组件的径向位置。
结合图11所示,所述末端旋转关节29包括可拆卸地连接于所述第一伸缩关节27(内层的第一套筒271的第一端)或第二伸缩关节28(内层的第二套筒281的第一端)的具有内腔的固定座291、活动地设置于所述固定座291上的由一第一电机292驱动转动的蜗杆293、与所述蜗杆293相配合且位于所述内腔中的蜗轮294、同轴地连接于所述蜗轮294的第一转动轴295、两个通过皮带相传动的第一同步带轮296,所述第一转动轴295穿设在内腔中,所述内腔中充满气体,所述第一转动轴295与固定座291之间设置有多个轴承和动密封组件,所述第一探头组件24a/第二探头组件24b/第三探头组件24c/第四探头组件24d安装于所述第一转动轴295上。轴承用于支撑,轴承外侧设置多个动密封组件,为保证末端旋转关节29能够在水下应用,在轴承处采用多层油封进行动密封,同时在固定座291的内腔中接入气压进行气密封。
两个第一同步带轮296中的一个同轴地连接于所述第一转动轴295、另一个第一同步带轮296连接有一用于拾取并反馈第一转动轴295的角度位置信息的第一编码器297,所述第一电机292上设置有一用于拾取并反馈第一电机292转动角度信息和转动速度信息的第二编码器。第二编码器为冗余配置,一方面是为了提高测量的精度,另一方面是当其中一个有故障时,可借助另一个来检测并反馈。第一编码器297和第二编码器均与该无损检测机器人的控制器相电连,当控制器接收到由第一编码器297和/或第二编码器反馈的信息时,通过控制第一电机292的转速来调整末端旋转关节29的位置和速度。
综上,第一机械臂25a自其始端至末端依次由一个第一伸缩关节27、一个延长块251a及一个末端旋转关节29组成,第一伸缩关节27的外层的第一套筒271的第二端可拆卸地连接于主旋转关节23的第二转动轴234的下部、内层的第一套筒271的第一端可拆卸地连接于延长块251a的一端,延长块251a的另一端可拆卸地连接于末端旋转关节29的固定座291,末端旋转关节29的第一转动轴295上设置有第一探头组件24a;
第二机械臂25b自其始端至末端依次由一个第一伸缩关节27、一个延长块251b及一个末端旋转关节29组成,第一伸缩关节27的外层的第一套筒271的第二端可拆卸地连接于摆动关节26的蜗轮294蜗杆293减速器的输出轴、内层的第一套筒271的第二端可拆卸地连接于主旋转关节23的第二转动轴234的下部、内层的第一套筒271的第一端可拆卸地连接于延长块251b的一端,延长块251b的另一端可拆卸地连接于末端旋转关节29的固定座291,末端旋转关节29的第一转动轴295上设置有第二探头组件24b;
第三机械臂25c自其始端至末端依次由一个第二伸缩关节28、一个末端旋转关节29组成,第二伸缩关节28的外层的第二套筒281的中部可拆卸地连接于主旋转关节23的第二转动轴234的下部、内层的第二套筒281的第一端可拆卸地连接于末端旋转关节29的固定座291,末端旋转关节29的第一转动轴295上设置第三探头组件24c;
第四机械臂25d自其始端至末端依次由一个第二伸缩关节28、一个连接块252、一个末端旋转关节29组成,第二伸缩关节28的外层的第二套筒281的中部可拆卸地连接于主旋转关节23的第二转动轴234的下部、内层的第二套筒281的第一端可拆卸地连接于连接块252的一端,连接块252的下部可拆卸地连接于末端旋转关节29的固定座291,末端旋转关节29的第一转动轴295上设置第四探头组件24d,连接块252的另一端上设置第五探头组件24e。第五探头组件24e的轴向应垂直于压力容器的轴向(即水平)设置以便于正对法兰螺栓孔韧带区,第四探头组件24d的轴向应平行于压力容器的轴向以及螺栓孔的轴向(即竖直)设置以便于第四探头组件24e靠近螺栓孔并进行扫查。
其中,第三机械臂25c和第四机械臂25d沿立柱组件21的中轴线呈轴对称设置,且位于第一机械臂25a和第二机械臂25b的上方,当其中一个机械臂发生故障不能在现场处理完成时,可以利用另一个机械臂重新快速组合实现法兰11或管嘴13的扫查;第一机械臂25a和第二机械臂25b基本呈对称设置,当其中一个机械臂的第一伸缩关节27或末端旋转关节29发生故障不能在现场完成处理时,可以利用另一个机械臂的第一伸缩关节27或末端旋转关节29快速组合实现筒体10或下封头12的扫查。
结合图2所示,它还包括设置于所述主旋转关节23下部的用于监控各机械臂的第一摄像头组件30a。它还包括设置于所述第二机械臂25b上的用于检查压力容器1整个内壁的第二摄像头组件30b。所述第二机械臂25b的第一伸缩关节27和末端旋转关节29之间连接有一延长块251b,所述第二摄像头组件设置于所述延长块251b上。第一摄像头组件及第二摄像头组件的摄像头均为可旋转地设置以便于获取较广范围内的视频图像。
所述支撑腿22为三个,压力容器1法兰11的部分螺纹孔中设置有导向柱,所述导向柱的轴向与立柱组件21的轴向相平行,其中两个支撑腿22上开设有与所述导向柱相配合的通孔220,所述两个支撑腿22分别穿设在两个导向柱上以支撑所述立柱组件21。本发明的支撑腿22的设置方式见《无损检测》2013年11期中刊登的《反应堆压力容器1检查机支撑腿22设计及可靠性研究》一文。
一种本发明的核反应堆压力容器无损检测机器人对于CEPR型核反应堆压力容器的检测方法,依次包括以下步骤:
A、将两个支撑腿穿设在压力容器的其中两个导向柱上,依次视频检查下封头、超声扫查过渡环段筒体与下封头之间的环焊缝、超声扫查基体金属与内部堆焊层之间的结合区扫查、管嘴段筒体与管嘴之间的连接焊缝、超声扫查除支撑腿所处区域外的法兰螺栓孔韧带区、超声扫查除支撑腿所处区域外的法兰螺栓孔的螺纹;
B、将两个支撑腿穿设在另两个导向柱上,依次超声扫查步骤A中未扫查到的法兰螺栓孔的螺纹、超声扫查步骤A中未扫查到的法兰螺栓孔韧带区、超声扫查管嘴与安全端之间的异种金属连接焊缝、超声扫查管嘴段筒体与堆芯段筒体之间及堆芯段筒体与过渡环段筒体之间的环焊缝、检查下封头;
C、无损检测机器人出水。
具体的检测过程如下。
a、内部堆焊层扫查:主要由摆动关节26、第一机械臂25a及第二机械臂25b的第一伸缩关节27和末端旋转关节29将第一探头组件24a和第二探头组件24b定位至指定位置和状态,通过立柱组件21和主旋转关节23联合运动实现全范围扫查。内部堆焊层沿压力容器轴向的最深位置为10532.5mm,扫查半径最大值为2442.5mm,周向扫查角度361度(其中有1度的重叠区域)。立柱组件21和主旋转关节23的运动行程范围可覆盖检查区域。
b、过渡环段与各导向块16之间的连接焊缝扫查:扫查方法类似于a项,主要由摆动关节26、第一机械臂25a及第二机械臂25b的第一伸缩关节27和末端旋转关节29将第一探头组件24a和第二探头组件24b定位至指定位置和状态,通过立柱组件21和主旋转关节23联合运动实现全范围扫查。导向块16连接焊缝沿压力容器的轴向最深位置小于9米,半径最大值为2442.5mm,周向扫查角度361度(其中有1度的重叠区域)。立柱组件21和主旋转关节23的运动行程范围可覆盖检查区域,第一伸缩关节27具有足够的行程,确保第一/第二探头组件24b可相向收缩,与导向块16互不干涉,实现避障。
c、法兰的螺栓孔111螺纹扫查:EPR反应堆压力容器法兰的螺栓孔111中有四个(A、B、C、D)内安装有导向柱,为确保所有的螺栓孔111都能被检查到,机器人采用正、反位两次安装的方式进行检查。正位安装时,支撑腿22穿设在螺栓孔111A、B的导向柱上,可检查螺栓孔111C、D等;反位安装时,支撑腿22穿设在螺栓孔111C、D的导向柱上,可检查螺栓孔111A、B等。主要由第四机械臂25d上的第四探头组件24d实施检查,立柱组件21、第二伸缩关节28保持固定,主旋转关节23和末端旋转关节29用于扫查运动,其运动范围均超过361度,满足扫查范围。
d、管嘴段筒体与管嘴之间的连接焊缝扫查:该焊缝主要在压力容器R=2843.5mm的位置,主要由第三机械臂25c上的第三探头组件24c完成检查。立柱组件21和主旋转关节23保持固定不动用于扫查前的定位,第二伸缩关节28和末端旋转关节29用于实现沿管嘴轴向和周向两个方向的扫查。
e、管嘴与安全端14之间的异种金属连接焊缝扫查:该焊缝主要在压力容器R=3735mm的位置,扫查方法类似于d。主要由第三机械臂25c上的第三探头组件24c完成检查。立柱组件21和主旋转关节23保持固定不动用于扫查前的定位,第二伸缩关节28和末端旋转关节29用于实现沿管嘴轴向和周向两个方向的扫查。
f、管嘴段筒体与堆芯段筒体之间、堆芯段筒体与过渡环段筒体之间的环焊缝扫查:由摆动关节26、第一机械臂25a及第二机械臂25b的第一伸缩关节和末端旋转关节29定位至指定位置和状态进行扫查前的定位,然后由立柱组件21和主旋转关节23联合运动实现全范围扫查。
g、过渡环段筒体与下封头之间的环焊缝扫查:主要由第二机械臂25b上的第二探头组件24b来完成,由立柱组件21、第一伸缩关节27和末端旋转关节29定位至指定位置和状态进行扫查前定位,然后由主旋转关节23、摆动关节26联合运动实现全范围扫查。
h、基体金属与内部堆焊层之间的结合区扫查:与a的扫查方法相同。另外,堆芯中子强辐照区内表面堆焊层的扫查方法也与a相同。
i、法兰11的螺栓孔韧带区112扫查:主要由第四机械臂25d的第五探头组件24e来进行检查。先由立柱组件21、第二伸缩关节28实现扫查前的定位,然后由主旋转关节23进行扫查运动。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (18)

1.一种核反应堆压力容器无损检测机器人,所述压力容器具有筒体(10)、下封头(12)、管嘴部(13,14,15)、带有螺栓孔(111)和螺栓孔韧带区(112)的法兰,其特征在于,所述机器人包括:
立柱组件(21),其可自身其轴向伸缩;
多个支撑腿(22),其用于支撑所述立柱组件(21),各所述支撑腿(22)的一端固定连接于所述立柱组件(21)、另一端可拆卸地连接于压力容器(1)上并使所述立柱组件(21)的中轴线与压力容器(1)的轴心线相重合;
第一机械臂(25a),其上设置有用于扫查压力容器的筒体(10)的第一探头组件(24a);
第二机械臂(25b),其上设置有用于扫查压力容器的下封头(12)的第二探头组件(24b);
第三机械臂(25c),其上设置有用于扫查压力容器的管嘴部(13,14,15)的第三探头组件(24b);
第四机械臂(25d),其上设置有用于扫查压力容器法兰的螺栓孔(111)螺纹的第四探头组件(24d)及用于扫查压力容器法兰的螺栓孔韧带区(112)的第五探头组件(24e);
主旋转关节(23),其可绕所述立柱组件(21)的轴向转动地连接于立柱组件(21)的下部,所述第二机械臂(25b)通过一摆动关节(26)绕一垂直于所述立柱组件(21)轴向的方向转动地连接于所述主旋转关节(23)、其它的机械臂(25a、25c、25d)固定连接于所述主旋转关节(23);
其中,各机械臂的末端均具有一可绕自身轴心线转动的末端旋转关节(29),所述第一机械臂(25a)、第二机械臂(25b)还均具有一第一伸缩关节(27),所述第一机械臂(25a)的第一伸缩关节(27)位于主旋转关节(23)与其末端旋转关节(29)之间,所述第二机械臂(25b)的第一伸缩关节(27)位于摆动关节(26)与其末端旋转关节(29)之间,所述第三机械臂(25c)、第四机械臂(25d)还均具有位于所述主旋转关节(23)与其末端旋转关节(29)之间的第二伸缩关节(28),所述第四机械臂(25d)的末端旋转关节(29)的轴心线与压力容器的轴向相平行且连接于第二伸缩关节(28)的下部,所述第一探头组件(24a)、第二探头组件(24b)、第三探头组件(24c)、第四探头组件(24d)分别安装于各机械臂的末端旋转关节(29)上,所述第五探头组件(24e)安装于所述第四机械臂(25d)的第二伸缩关节(28)上且正对压力容器法兰的螺栓孔韧带区(112)。
2.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述末端旋转关节(29)包括可拆卸地连接于所述第一伸缩关节(27)或第二伸缩关节(28)的具有一内腔的固定座、活动地设置于所述固定座上的由一第一电机驱动转动的蜗杆、与所述蜗杆相配合且位于所述内腔中的蜗轮、同轴地连接于所述蜗轮的第一转动轴、两个通过同步带传动的第一同步带轮,所述第一转动轴穿设在固定座的内腔中,所述内腔中充满气体,所述第一转动轴与固定座之间设置有多个轴承和动密封组件,所述第一探头组件(24a)/第二探头组件(24b)/第三探头组件(24c)/第四探头组件(24d)安装于所述第一转动轴上,其中一个第一同步带轮同轴地连接于所述第一转动轴、另一个第一同步带轮连接有一用于拾取并反馈第一转动轴的角度位置信息的第一编码器,所述第一电机上设置有一用于拾取并反馈第一电机转动角度信息和转动速度信息的第二编码器。
3.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述第一伸缩关节(27)包括相互套设的三层第一套筒、两个第一钢丝绳、由一第二电机驱动旋转的第一丝杠螺母、与所述第一丝杠螺母相配合的第一丝杠螺杆,所述第一套筒具有相对的第一端和第二端,第一机械臂(25a)的第一伸缩关节(27)的外层的第一套筒的第二端连接于所述主旋转关节(23),第二机械臂(25b)的第一伸缩关节(27)的外层的第一套筒的第二端连接于所述摆动关节(26),内层的第一套筒的第一端固定连接于所述第一丝杠螺杆的一端且二者的轴向相平行、且其第一端也连接于所述末端旋转关节(29),位于外层和内层之间的第一套筒的第一端和第二端上均可转动地设置有一第一滑轮,两个第一钢丝绳分别绕设于一个第一滑轮上且其两端均分别固定连接于外层的第一套筒的第一端和内层的第一套筒的第二端,两个第一钢丝绳的绕设方向相反,所述第二电机上设置有一用于拾取并反馈第二电机转动角度信息和转动速度信息的第三编码器,所述第一伸缩关节(27)上还设置一用于标定内层第一套筒的初始位置和终止位置的第一接近开关。
4.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述第二伸缩关节(28)包括相互套设的三层第二套筒、两个第二钢丝绳、由一第三电机驱动旋转的第二丝杠螺杆、与所述第二丝杠螺杆相配合的第二丝杠螺母,所述第二套筒具有相对的第一端和第二端,外层的第二套筒的中部连接于所述主旋转关节(23),内层的第二套筒的第一端连接于所述末端旋转关节(29),所述第二丝杠螺杆可绕自身轴线转动地设置于外层的第二套筒上且二者的轴向相平行,位于外层和内层中间的第二套筒与所述第二丝杠螺母相固定连接,内层的第二套筒的第一端和第二端上均可转动地设置有一第二滑轮,两个第二钢丝绳分别绕设于一个第二滑轮上且其两端均分别固定连接于外层的第二套筒的第一端和内层的第二套筒的第二端,两个第二钢丝绳的绕设方向相反,所述第三电机上设置有一用于拾取并反馈第三电机转动角度信息和转动速度信息的第四编码器。
5.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述摆动关节(26)包括由第四电机驱动转动的主动链轮、通过链条与所述主动链轮相传动的从动链轮、与所述从动链轮相传动的蜗轮蜗杆减速器,所述蜗轮蜗杆减速器的输出轴与第二机械臂(25b)相可拆卸地连接。
6.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述摆动关节(26)还包括与所述蜗轮蜗杆减速器相传动的第二同步带轮,所述第二同步带轮连接有一用于拾取并反馈蜗轮蜗杆减速器输出轴的转动角度信息的第五编码器。
7.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述主旋转关节(23)包括可拆卸地连接于所述立柱组件(21)下端的具有空腔的安装座、设置于所述安装座上的第五电机、由所述第五电机驱动转动的驱动齿轮、与所述驱动齿轮相啮合的主齿轮、同轴地连接于所述主齿轮的第二转动轴,所述第二转动轴穿设于所述空腔中且其下端连接有各机械臂。
8.根据权利要求7所述的核反应堆压力容器无损检测机器人,其特征在于:所述主旋转关节(23)还包括一与所述主齿轮相啮合的消侧隙齿轮、连接于所述消侧隙齿轮上的用于拾取并反馈第五电机转动角度信息和转动速度信息的第六编码器、设置于所述安装座上的至少两个用于标定第二转动轴的初始位置和最大行程位置的第二接近开关。
9.根据权利要求7所述的核反应堆压力容器无损检测机器人,其特征在于:所述驱动齿轮和主齿轮均为斜齿轮。
10.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:该核反应堆压力容器无损检测机器人还包括一用于带动所述立柱组件(21)伸缩的卷扬机构(20)。
11.根据权利要求10所述核反应堆压力容器无损检测机器人,其特征在于:所述立柱组件(21)包括相套设的两层具有相对的上端和下端的第三套筒,所述支撑腿的一端固定连接于外层第三套筒上,所述卷扬机构(20)包括支架,外层第三套筒的上端固定连接于所述卷扬机构(20)的支架,内层第三套筒的上端位于卷扬结构的下方且转动地设置有一第三滑轮,所述卷扬机构(20)的钢丝绳由下方绕设于第三滑轮上且末端固定连接于外层第三套筒的上端。
12.根据权利要求10所述核反应堆压力容器无损检测机器人,其特征在于:所述立柱组件(21)包括相套设的多层具有相对的上端和下端的第三套筒,自外层至内层的所述第三套筒依次记为B(1),B(2),…B(2i+1),其中i=1,2,…,B(1)的上端固定连接于所述卷扬机构(20),B(2),B(3),…B(2i-1),B(2i)的上端和下端以及B(2i+1) 的上端均转动地设置有一第三滑轮,所述卷扬机构(20)包括支架且具有两个分别用于下放和上拉的两个钢丝绳,B(1)的上端固定连接于所述卷扬机构(20)的支架,其中一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)下端,B(3)上端,…B(2i-1)上端, B(2i)下端以及B(2i+1)上端的第三滑轮上,另一个钢丝绳的末端固定连接于B(1)的下端并依此绕设于B(2)上端, B(3)下端,…B(2i-1)下端, B(2i)上端端以及B(2i+1)上端的第三滑轮上,两个钢丝绳在每个第三套筒上的绕设方向均相反。
13.根据权利要求12所述核反应堆压力容器无损检测机器人,其特征在于:所述卷扬机构(20)还包括设置于支架上的由第六电机驱动旋转的第一卷筒和第二卷筒、分别卷绕于所述第一卷筒和第二卷筒上的用于下放和上拉的钢丝绳、位于所述第六电机与第一卷筒和第二卷筒支架内的多级减速机构,所述第一卷筒和第二卷筒的钢丝绳的卷绕方向一致但旋转方向相反,钢丝绳均从第一卷筒和第二卷筒之间穿过并连接于立柱组件(21)上,所述卷扬机构(20)还包括设置于所述多级减速机构上的第七编码器,其用于拾取并反馈第一卷筒和第二卷筒的旋转角度信息。
14.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:它还包括设置于所述主旋转关节(23)下部的用于监控各机械臂的第一摄像头组件、设置于所述第二机械臂(25b)上的用于检查压力容器整个内壁的第二摄像头组件。
15.根据权利要求14所述的核反应堆压力容器无损检测机器人,其特征在于:所述第二机械臂(25b)的第一伸缩关节(27)和末端旋转关节(29)之间连接有一延长块,所述第二摄像头组件设置于所述延长块上。
16.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述支撑腿为三个,压力容器法兰的部分螺纹孔中设置有导向柱,所述导向柱的轴向与立柱组件(21)的轴向相平行,其中两个支撑腿上开设有与所述导向柱相配合的通孔,所述两个支撑腿分别穿设在两个导向柱上以支撑所述立柱组件(21)。
17.根据权利要求1所述的核反应堆压力容器无损检测机器人,其特征在于:所述第四机械臂(25d)还包括一可拆卸地连接于其第二伸缩关节(28)的连接块(252),所述连接块具有三个端部且其第一个端部连接于第二伸缩关节(28)、第二个端部设置有所述第五探头组件(24e)、第三个端部连接于末端旋转关节(29)。
18.一种如权利要求1-17中任一项所述的核反应堆压力容器无损检测机器人的检测方法,其特征在于,依次包括以下步骤:
A、将两个支撑腿穿设在压力容器的其中两个导向柱上,依次视频检查下封头、超声扫查过渡环段筒体与下封头之间的环焊缝、超声扫查基体金属与内部堆焊层之间的结合区扫查、管嘴段筒体与管嘴之间的连接焊缝、超声扫查除支撑腿所处区域外的法兰螺栓孔韧带区、超声扫查除支撑腿所处区域外的法兰螺栓孔的螺纹;
B、将两个支撑腿穿设在另两个导向柱上,依次超声扫查步骤A中未扫查到的法兰螺栓孔的螺纹、超声扫查步骤A中未扫查到的法兰螺栓孔韧带区、超声扫查管嘴与安全端之间的异种金属连接焊缝、超声扫查管嘴段筒体与堆芯段筒体之间及堆芯段筒体与过渡环段筒体之间的环焊缝、检查下封头;
C、无损检测机器人出水。
PCT/CN2015/073926 2014-05-29 2015-03-10 核反应堆压力容器无损检测机器人及其检测方法 WO2015180521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15799213.2A EP3151246B1 (en) 2014-05-29 2015-03-10 Nondestructive detection robot for pressure vessel of nuclear reactor, and detection method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410233953.2A CN103985424B (zh) 2014-05-29 2014-05-29 核反应堆压力容器无损检测机器人及其检测方法
CN201410233953.2 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015180521A1 true WO2015180521A1 (zh) 2015-12-03

Family

ID=51277359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073926 WO2015180521A1 (zh) 2014-05-29 2015-03-10 核反应堆压力容器无损检测机器人及其检测方法

Country Status (3)

Country Link
EP (1) EP3151246B1 (zh)
CN (1) CN103985424B (zh)
WO (1) WO2015180521A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147972A (zh) * 2018-08-31 2019-01-04 中广核检测技术有限公司 反应堆控制棒导向筒导向卡无损检测装置
CN109341748A (zh) * 2018-11-09 2019-02-15 罗博特科智能科技股份有限公司 一种转盘式视觉检测装置
CN110988131A (zh) * 2019-12-19 2020-04-10 新昌县联航机械有限公司 一种轴承检测用超声表面探伤装置
CN111354487A (zh) * 2018-12-21 2020-06-30 核动力运行研究所 一种反应堆压力容器下封头堆焊层检测工具及方法
CN111380954A (zh) * 2018-12-28 2020-07-07 核动力运行研究所 一种高温气冷堆核反应堆压力容器超声自动检查装置
CN112233826A (zh) * 2020-09-29 2021-01-15 核动力运行研究所 一种压力容器接管内部复合式扫查装置
CN113793708A (zh) * 2021-06-11 2021-12-14 中国核工业第五建设有限公司 一种核电站下部堆内构件的就位调整装置及就位调整方法
CN113808767A (zh) * 2021-09-18 2021-12-17 中国核动力研究设计院 一种反应堆主泵接管焊缝检查装置
CN114043524A (zh) * 2021-12-10 2022-02-15 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂
CN114216918A (zh) * 2021-12-01 2022-03-22 淄博市特种设备检验研究院 一种基于射线检测技术的压力容器无损检测装置
CN115266729A (zh) * 2022-07-26 2022-11-01 淄博市特种设备检验研究院 一种压力容器检验检测装置及使用方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985424B (zh) * 2014-05-29 2017-02-15 中广核检测技术有限公司 核反应堆压力容器无损检测机器人及其检测方法
CZ2014752A3 (cs) * 2014-11-05 2016-07-07 Ĺ KODA JS a.s. Manipulační kontrolní zařízení
CN106935290B (zh) * 2015-12-30 2018-09-28 核动力运行研究所 一种反应堆压力容器法兰孔带手工检查工具
US20190134820A1 (en) * 2017-11-09 2019-05-09 Oceaneering International, Inc. Tank Cleaner
US10864640B1 (en) 2017-12-26 2020-12-15 AGI Engineering, Inc. Articulating arm programmable tank cleaning nozzle
US11031149B1 (en) 2018-02-13 2021-06-08 AGI Engineering, Inc. Nuclear abrasive slurry waste pump with backstop and macerator
US11413666B1 (en) 2018-02-13 2022-08-16 AGI Engineering, Inc. Vertical travel robotic tank cleaning system
US10786905B1 (en) 2018-04-16 2020-09-29 AGI Engineering, Inc. Tank excavator
US11577287B1 (en) 2018-04-16 2023-02-14 AGI Engineering, Inc. Large riser extended reach sluicer and tool changer
CN109927020A (zh) * 2018-05-04 2019-06-25 上海翼人机器人有限公司 一种核辐射环境下遥操作六自由度机器人
CA3103177A1 (en) 2018-06-11 2019-12-19 Alex G. Innes Programmable railcar tank cleaning system
US11571723B1 (en) 2019-03-29 2023-02-07 AGI Engineering, Inc. Mechanical dry waste excavating end effector
CN110790185B (zh) * 2019-11-06 2021-02-12 苏州热工研究院有限公司 用于转子焊缝检测机器人的输送装置
CN111510674A (zh) * 2020-04-13 2020-08-07 广东电网有限责任公司电力科学研究院 一种电力巡检装置
CN112432999B (zh) * 2020-10-30 2024-03-29 中广核检测技术有限公司 一种超声检查机器人扫查定位方法
CN112903006A (zh) * 2021-01-08 2021-06-04 常州天姆智能科技有限公司 一种用于智能基坑检测系统
CN113488216B (zh) * 2021-07-22 2024-02-13 中广核检测技术有限公司 一种反应堆压力容器螺栓孔视频扫查装置行走机构
CN113823425A (zh) * 2021-09-24 2021-12-21 中国核动力研究设计院 一种一体化反应堆压力容器超声波相控阵检查系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205379A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd 炉心解析プログラムおよび解析装置
CN103761998A (zh) * 2014-01-20 2014-04-30 中广核检测技术有限公司 反应堆压力容器管嘴检查探头架
CN103761996A (zh) * 2013-10-18 2014-04-30 中广核检测技术有限公司 基于虚拟现实技术的无损检测机器人智能检测方法
CN103817692A (zh) * 2013-10-18 2014-05-28 中广核检测技术有限公司 无损检测机器人进行智能检测的方法
CN103985424A (zh) * 2014-05-29 2014-08-13 中广核检测技术有限公司 核反应堆压力容器无损检测机器人及其检测方法
CN203839056U (zh) * 2014-05-29 2014-09-17 中广核检测技术有限公司 核反应堆压力容器无损检测机器人

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2242750B1 (zh) * 1973-08-27 1976-12-03 Commissariat Energie Atomique
FR2259419A1 (en) 1974-01-25 1975-08-22 Commissariat Energie Atomique Manipulator for inspection of nuclear reactor pressure vessel - vertical arm centralised by tripod with hydraulic position indicators
JP2010256076A (ja) * 2009-04-22 2010-11-11 Toshiba Corp 大型構造物用深孔部内径測定装置
TW201207864A (en) * 2010-02-15 2012-02-16 Toshiba Kk In-pipe work device
CN102509566B (zh) * 2011-10-17 2014-03-12 中广核检测技术有限公司 核反应堆压力容器管嘴安全端焊缝自动化射线检查设备
CN203465957U (zh) * 2013-09-23 2014-03-05 核动力运行研究所 一种核电站反应堆压力容器检查装置
CN103578587B (zh) * 2013-10-30 2015-09-30 核动力运行研究所 核反应堆压力容器筒体环焊缝超声检查装置
CN103558293B (zh) * 2013-10-30 2016-01-27 核动力运行研究所 核反应堆压力容器底封头环焊缝超声检查装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205379A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd 炉心解析プログラムおよび解析装置
CN103761996A (zh) * 2013-10-18 2014-04-30 中广核检测技术有限公司 基于虚拟现实技术的无损检测机器人智能检测方法
CN103817692A (zh) * 2013-10-18 2014-05-28 中广核检测技术有限公司 无损检测机器人进行智能检测的方法
CN103761998A (zh) * 2014-01-20 2014-04-30 中广核检测技术有限公司 反应堆压力容器管嘴检查探头架
CN103985424A (zh) * 2014-05-29 2014-08-13 中广核检测技术有限公司 核反应堆压力容器无损检测机器人及其检测方法
CN203839056U (zh) * 2014-05-29 2014-09-17 中广核检测技术有限公司 核反应堆压力容器无损检测机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151246A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147972A (zh) * 2018-08-31 2019-01-04 中广核检测技术有限公司 反应堆控制棒导向筒导向卡无损检测装置
CN109341748A (zh) * 2018-11-09 2019-02-15 罗博特科智能科技股份有限公司 一种转盘式视觉检测装置
CN111354487A (zh) * 2018-12-21 2020-06-30 核动力运行研究所 一种反应堆压力容器下封头堆焊层检测工具及方法
CN111380954A (zh) * 2018-12-28 2020-07-07 核动力运行研究所 一种高温气冷堆核反应堆压力容器超声自动检查装置
CN110988131B (zh) * 2019-12-19 2022-03-25 宁波川原精工机械有限公司 一种轴承检测用超声表面探伤装置
CN110988131A (zh) * 2019-12-19 2020-04-10 新昌县联航机械有限公司 一种轴承检测用超声表面探伤装置
CN112233826A (zh) * 2020-09-29 2021-01-15 核动力运行研究所 一种压力容器接管内部复合式扫查装置
CN113793708A (zh) * 2021-06-11 2021-12-14 中国核工业第五建设有限公司 一种核电站下部堆内构件的就位调整装置及就位调整方法
CN113793708B (zh) * 2021-06-11 2023-07-07 中国核工业第五建设有限公司 一种核电站下部堆内构件的就位调整装置及就位调整方法
CN113808767A (zh) * 2021-09-18 2021-12-17 中国核动力研究设计院 一种反应堆主泵接管焊缝检查装置
CN114216918A (zh) * 2021-12-01 2022-03-22 淄博市特种设备检验研究院 一种基于射线检测技术的压力容器无损检测装置
CN114216918B (zh) * 2021-12-01 2023-07-18 淄博市特种设备检验研究院 一种基于射线检测技术的压力容器无损检测装置
CN114043524A (zh) * 2021-12-10 2022-02-15 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂
CN114043524B (zh) * 2021-12-10 2023-12-26 上海锐数微医疗科技发展有限公司 一种可折叠且能够锁止的机械臂
CN115266729A (zh) * 2022-07-26 2022-11-01 淄博市特种设备检验研究院 一种压力容器检验检测装置及使用方法

Also Published As

Publication number Publication date
EP3151246A1 (en) 2017-04-05
CN103985424A (zh) 2014-08-13
CN103985424B (zh) 2017-02-15
EP3151246A4 (en) 2018-02-21
EP3151246B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2015180521A1 (zh) 核反应堆压力容器无损检测机器人及其检测方法
RU2750760C2 (ru) Системы и способы, используемые при сварке отрезков трубы в трубопроводе
US3809607A (en) Reactor vessel in-service inspection assembly
TWI406298B (zh) 在一核子反應器場所處之一核子反應器容器、一用過燃料池或一設備坑中之至少一者之水下環境中檢查或利用工具的方法
CN203839056U (zh) 核反应堆压力容器无损检测机器人
CN104015199A (zh) 一种机械臂及基于该机械臂的检测机器人
US20050135904A1 (en) BWR inspection manipulator
JP3514875B2 (ja) 遠隔炉内作業装置および方法
CN108227112A (zh) 一种大面积平面反射镜点光源装置
JP2010276491A (ja) 炉内機器の予防保全方法及びその装置
CN115872274A (zh) 一种塔筒吊装辅助机构
JPH08240690A (ja) シュラウド検査装置
JP2003337192A (ja) 原子炉圧力容器内構造物の点検予防保全装置および点検方法
JPH09159788A (ja) 原子炉内遠隔作業装置およびその作業方法
JP2000321255A (ja) 溶接部検査装置
KR101762829B1 (ko) 리프팅 지그
CN109371856A (zh) 具有固定双爪结构的缆索检索维护机器人及其使用方法
EP0605263B1 (fr) Dispositif et procédé de contrÔle de la surface intérieure d'une pièce tubulaire
JPH0372435B2 (zh)
CN111843317A (zh) 环绕焊接装置及焊接系统
JP2004317371A (ja) 炉内点検装置
KR101488712B1 (ko) 원자로 헤드 검사 및 정비 장치의 이동플랫폼
JPS59180396A (ja) 原子炉圧力容器の修理装置
CN211145990U (zh) 一种x射线探伤机的控制装置
CN219016143U (zh) 一种便于检测维修的x射线检测机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015799213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799213

Country of ref document: EP