WO2015178391A1 - 樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途 - Google Patents

樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途 Download PDF

Info

Publication number
WO2015178391A1
WO2015178391A1 PCT/JP2015/064367 JP2015064367W WO2015178391A1 WO 2015178391 A1 WO2015178391 A1 WO 2015178391A1 JP 2015064367 W JP2015064367 W JP 2015064367W WO 2015178391 A1 WO2015178391 A1 WO 2015178391A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
depression
meth
band
acrylate
Prior art date
Application number
PCT/JP2015/064367
Other languages
English (en)
French (fr)
Inventor
早川 誠一郎
渡邉 朗
周平 山本
久保田 哲哉
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to JP2015525681A priority Critical patent/JPWO2015178391A1/ja
Priority to KR1020167029664A priority patent/KR20170009833A/ko
Priority to CN201580021452.0A priority patent/CN106232323A/zh
Publication of WO2015178391A1 publication Critical patent/WO2015178391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Definitions

  • the present invention is a resin sheet made of a cross-linked resin having a band-like depression for folding, and is excellent in optical characteristics and thermomechanical characteristics, and is useful as a folding display or a lighting base material.
  • the present invention relates to applications such as protective plates, electrode substrates, touch panel substrates, and protective plates for illumination.
  • a flat glass plate has been often used as a base material for a display.
  • a flat glass substrate is used for a protective plate (cover) which is the forefront of the display, a liquid crystal display, an organic EL display, a touch panel, and the like.
  • a foldable display has been proposed as a next generation display.
  • This display is folded at the center of the display when not in use, and is expanded to about twice the size when used to display an image on the entire surface.
  • it is compact and portable, it can be used for large screens, easily recognize characters, and display moving images using the original high definition.
  • each member constituting the display must be bent 180 °.
  • an outermost protective plate cover film / sheet
  • touch panel touch panel
  • display device and the like.
  • these base materials are made of resin, and so are electrode materials and display materials.
  • electrodes constituting touch panel sensors can be made flexible with organic conductive materials such as metal nanowires and PEDOT, and display materials can be made flexible with organic EL and E-Ink. .
  • the protection plate that protects the internal touch panel and display device was not flexible enough to be foldable.
  • the protective plate is required to have a surface hardness comparable to that of glass in order to prevent scratches, but in the case of a foldable display, it is also necessary to be soft enough to bend 180 °. Both performances are in conflict with each other, and in order to achieve both, one side or both sides of the soft base film had to be hard coated with a thick thickness.
  • a thick hard coat layer can only obtain a pencil hardness of about 5H, and the hard hard coat layer is cracked when folded 180 °, so that it is impossible to manufacture a foldable display. It is.
  • Patent Documents 1 and 2 a resin molded body with high hardness can be obtained, but when it is extremely thin, cracking occurs during handling as in the case of thin glass, making it difficult to manufacture.
  • the folding portion In the case of a foldable display, the folding portion needs to be bent with a radius of curvature of 3 mm or less, and in the case of a portable terminal, it is desired to endure folding more than 10,000 times.
  • the present invention provides a resin sheet that can meet the demands for high hardness, excellent optical properties and thermomechanical properties, and excellent foldability, lightweight and thin, and a folding display. It is intended.
  • the present inventors have made extensive studies in view of such circumstances, and as a result, in a transparent resin sheet made of a crosslinked resin having a thickness of 0.1 to 1 mm and a pencil hardness of 3H or more, the resin is unidirectionally in the plane. It was found that by forming a band-like depression for folding a sheet, it was excellent in optical properties and thermomechanical properties with high hardness, and it was also excellent in foldability, and the present invention was completed.
  • the gist of the present invention is a transparent resin sheet made of a crosslinked resin (A) having a thickness of 0.1 to 1 mm and a pencil hardness of 3H or more, for folding the resin sheet in one direction in the plane.
  • the present invention relates to a resin sheet in which at least one band-like depression is formed on one side or both sides.
  • the present invention relates to a resin sheet in which the band-like depression is filled with a transparent soft crosslinked resin so that the folding band-like depression cannot be recognized. That is, the present invention relates to a resin sheet in which a band-like depression for folding the resin sheet is filled with a crosslinked resin (B) having the same refractive index as that of the resin sheet.
  • a resin sheet in which a band-like depression for folding the resin sheet is filled with a crosslinked resin (B) having the same refractive index as that of the resin sheet.
  • folding means that the folding portion has a radius of curvature of 3 mm or less, and the radius of curvature (m) is the reciprocal of the curvature.
  • the resin sheet can be used for applications such as a resin sheet with an adhesive layer, a protective plate for display, an electrode substrate, a touch panel substrate, a protective plate for organic EL lighting, and a light guide plate. .
  • the resin sheet of the present invention is a resin sheet that has high hardness and excellent optical properties and thermomechanical properties, is also excellent in foldability, is lightweight and thin, can respond to demands such as folding displays, a protective plate for folding displays, Suitable for electrode substrates, touch panel substrates, and the like.
  • (meth) acrylate is a generic term for acrylate and methacrylate
  • (meth) acryl is a generic term for acrylic and methacrylic
  • polyfunctional here means having two or more (meth) acryloyl groups in the molecule.
  • the crosslinked resin (A) used in the present invention is a crosslinked resin obtained by polymerizing and curing (crosslinking) a light and / or thermosetting composition.
  • a light and / or thermosetting composition for example, (meth) acrylic composition, epoxy composition, photocurable composition such as thiol / ene addition system, (meth) acrylic composition, epoxy composition, allyl composition, styrene composition , Thermosetting compositions such as amide-based compositions, imide-based compositions, urethane-based compositions, and thiourethane-based compositions. These may be used alone or in combination of two or more.
  • a photocurable composition (a) at the point of mass-productivity, More preferably, it contains the following component (a1) and (a2) at the point of the optical characteristic of a resin sheet.
  • Examples of the polyfunctional (meth) acrylate compound (a1) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, nonanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) ) Acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene
  • pentadecane di (meth) acrylate, 2,2-bis [4- ( ⁇ - (meth) acryloyloxyethoxy) cyclohexyl] propane, 1,3-bis ((meth) acryloyloxymethyl) cyclohexane, 1,3-bis ((meth) acryloyloxyethyloxymethyl) cyclohexane, 1,4-bis ((meth) acryloyloxymethyl) cyclohexane, 1,4-bis ((meth) acryloyloxyethyloxymethyl) cyclohexane, etc.
  • Polyfunctional urethane (meth) acrylate, polyfunctional epoxy (meth) acrylate, polyfunctional polyester (meth) acrylate, polyfunctional polyether (meth) acrylate, etc. may be mentioned. These may be used alone or in combination of two or more.
  • bis (hydroxy) tricyclo [5.2.1.0 2,6 ] decane di (meth) acrylate, bis (hydroxymethyl) tricyclo [5.2.1] in terms of the surface hardness of the resin sheet.
  • 0.0 2,6 ] decane di (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate and polyfunctional urethane (meth) acrylate are preferred, especially in terms of viscosity. It is preferable to use (meth) acrylate and polyfunctional urethane (meth) acrylate together. Such polyfunctional urethane (meth) acrylate has a urethane bond, and can increase the surface hardness of the resin sheet and increase the strength when folded.
  • the polyfunctional urethane (meth) acrylate suitably used in the present invention is obtained, for example, by reacting polyisocyanate with a hydroxyl group-containing (meth) acrylate using a catalyst such as dibutyltin dilaurate as necessary. It is preferable that
  • polyisocyanate examples include aliphatic polyisocyanates such as ethylene diisocyanate and hexamethylene diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) tricyclo [5.2.1.0 2,6 ] decane, and norbornene diisocyanate.
  • hydroxyl group-containing (meth) acrylate examples include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3- (meth) Examples include acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol tri (meth) acrylate. These may be used alone or in combination of two or more. Of these, pentaerythritol tri (meth) acrylate and dipentaerythritol tri (meth) acrylate are preferred in terms of the surface hardness of the resin sheet.
  • Polyfunctional urethane (meth) acrylate obtained by reaction of polyisocyanate and hydroxyl group-containing (meth) acrylate may be used in combination of two or more.
  • acrylate compounds are preferable from the viewpoint of curing speed, and 2-9 functions, particularly 2-6 functions, are particularly preferable from the viewpoint of surface hardness and flexural modulus.
  • the content ratio (weight ratio) is in terms of thermomechanical properties of the resin sheet.
  • the polyfunctional (meth) acrylate / urethane (meth) acrylate (weight ratio) is preferably 95/5 to 40/60, more preferably 90/10 to 50/50, particularly 80/20 to 60/40. Preferably there is. If the content ratio of the polyfunctional urethane (meth) acrylate is too small, the surface hardness tends to decrease, and if it is too large, the water absorption rate tends to increase.
  • the photocurable composition (a) used in the present invention may contain a monofunctional (meth) acrylate.
  • the monofunctional (meth) acrylate include methyl (meth) acrylate and ethyl.
  • alicyclic skeletons such as cyclohexyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecyloxymethyl (meth) acrylate, isobornyl (meth) acrylate, norbornyl (meth) acrylate, and adamantyl (meth) acrylate (Meth) acrylate is preferred in terms of low cure shrinkage.
  • the content thereof is 50% in terms of heat resistance with respect to 100 parts by weight of the polyfunctional (meth) acrylate compound.
  • the amount is preferably 30 parts by weight or less, more preferably 30 parts by weight or less, and particularly preferably 10 parts by weight or less. If the content is too large, the heat resistance tends to decrease.
  • the photopolymerization initiator (a2) used in the present invention is not particularly limited as long as it can generate radicals by irradiation with active energy rays, and various photopolymerization initiators can be used.
  • examples include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2,6-dimethylbenzoyl diphenylphosphine oxide, 2,4,6-trimethylbenzoyl diphenylphosphine oxide, and the like.
  • photopolymerization initiators such as 1-hydroxycyclohexyl phenyl ketone and 2,4,6-trimethylbenzoyldiphenylphosphine oxide are particularly preferable. These photopolymerization initiators may be used alone or in combination of two or more.
  • photopolymerization initiators (a2) are polyfunctional (meth) acrylate compounds (a1) (when monofunctional (meth) acrylates are contained, polyfunctional (meth) acrylate compounds (a1) and monofunctional ( It is preferably used in a proportion of usually 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, particularly 0.2 to 3 parts by weight, based on 100 parts by weight of the total of (meth) acrylate. Is preferred. If the amount used is too small, the polymerization rate tends to decrease and polymerization does not proceed sufficiently. If the amount is too large, the light transmittance of the resulting resin sheet tends to decrease (yellowing).
  • thermal polymerization initiator may be used in combination with the photopolymerization initiator (a2).
  • known compounds can be used, such as hydroperoxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, and the like.
  • Hydroperoxides dialkyl peroxides such as di-t-butyl peroxide and dicumyl peroxide, t-butyl peroxybenzoates, peroxyesters such as t-butylperoxy (2-ethylhexanoate), benzoyl Examples include peroxides such as diacyl peroxides such as peroxides, peroxycarbonates such as diisopropylperoxycarbonate, peroxyketals, and ketone peroxides. These may be used alone or in combination of two or more.
  • the photocurable composition (a) used in the present invention includes a chain transfer agent, an oxidation agent, as appropriate. You may contain auxiliary components, such as an inhibitor, a ultraviolet absorber, a thickener, an antistatic agent, a flame retardant, an antifoamer, a coloring agent, and various fillers.
  • chain transfer agent examples include polyfunctional mercaptan compounds such as pentaerythritol tetrakisthioglycolate and pentaerythritol tetrakisthiopropionate. These may be used alone or in combination of two or more. These polyfunctional mercaptan compounds are preferably used at a ratio of usually 10 parts by weight or less, more preferably 5 parts by weight or less, particularly 100 parts by weight of the polyfunctional (meth) acrylate compound (a1). Is preferably 3 parts by weight or less. When there is too much this usage-amount, there exists a tendency for the heat resistance and rigidity of the resin sheet obtained to fall.
  • polyfunctional mercaptan compounds such as pentaerythritol tetrakisthioglycolate and pentaerythritol tetrakisthiopropionate. These may be used alone or in combination of two or more. These polyfunctional mercaptan compounds are preferably used at a ratio
  • antioxidants examples include 2,6-di-t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,4,6-tri-t-butylphenol, and 2,6-di- t-butyl-4-s-butylphenol, 2,6-di-t-butyl-4-hydroxymethylphenol, n-octadecyl- ⁇ - (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) ) Propionate, 2,6-di-t-butyl-4- (N, N-dimethylaminomethyl) phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 2,4 -Bis (n-octylthio) -6- (4-hydroxy-3 ', 5'-di-t-butylanilino) -1,3,5-triazine, 4,4-methylene-bis (2,6-di-)
  • the ultraviolet absorber is not particularly limited as long as it is soluble in the photocurable composition (a), and various ultraviolet absorbers can be used. Specific examples include salicylic acid ester, benzophenone, triazole, hydroxybenzoate, and cyanoacrylate. These ultraviolet absorbers may be used alone or in combination. Among these, in terms of compatibility with the photocurable composition (a), benzophenone or triazole, specifically, (2-hydroxy-4-octyloxy-phenyl) -phenyl-methanone, 2-benzo UV absorbers such as triazol-2-yl-4-tert-octyl-phenol are preferred.
  • the content of the ultraviolet absorber is usually preferably 0.001 to 1% by weight, particularly preferably 0.01 to 0.1% by weight, based on the photocurable composition (a). If the amount of the ultraviolet absorber is too small, the light resistance of the resin sheet tends to decrease, and if it is too large, the light transmittance of the resin sheet tends to decrease.
  • the photocurable composition (a) obtained above is cured (crosslinked) to obtain a transparent resin sheet. It is also possible to further heat cure after photocuring.
  • the photocuring will be described. However, it is not limited to the following method.
  • the photocurable composition (a) is filled in a void of a mold composed of two flat plates at least one of which is transparent and a spacer for controlling the thickness.
  • a glass plate is particularly preferable.
  • the glass plate preferably has a thickness of 1 to 10 mm from the viewpoint of the strength of the mold, and more preferably, from the viewpoint of the surface smoothness of the resin sheet, at least one glass surface in contact with the photocurable composition (a) is optical. It is preferably polished. In particular, the surface roughness Ra is preferably 50 nm or less.
  • the glass plate may be chemically strengthened from the viewpoint of such strength. If the glass plate is too thick, the weight of the glass increases and the load on the equipment increases. In order to improve the demoldability of the resin sheet, the surface of the glass plate may be treated with a release agent.
  • fine irregularities may be formed on the surface of the flat plate in contact with the photocurable composition (a).
  • a resin sheet having a lens function, an antiglare function, or an anti-Newton ring function can be obtained.
  • the spacer controls the thickness of the resin sheet, but the material is not particularly limited, and a known material such as a resin is used. Among the resins, rubbery materials such as silicon resin are preferable.
  • a light source to be used a general ultraviolet lamp can be used, but a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, an LED lamp, etc. are used because of the availability and price of the irradiation device. .
  • the amount of irradiation light is preferably 0.1 to 100 J / cm 2 , more preferably 1 to 50 J / cm 2 , still more preferably 2 to 30 J / cm 2 , and particularly preferably 3 to 20 J / cm 2 . If the amount of irradiation light is too small, curing tends not to proceed sufficiently, and if too much, the resin sheet tends to yellow.
  • the illuminance is preferably 10 to 100,000 mw / cm 2 , more preferably 50 to 10,000 mw / cm 2 in terms of fast light curing, and even more preferably 100 to 1000 mw / cm 2 in terms of curing to the inside of the resin sheet. 2 .
  • Light irradiation can be performed from one side or both sides. It is also possible to divide it into multiple times.
  • the thickness of the resin sheet of the present invention is 0.1 to 1 mm (excluding the band-like depression).
  • the thickness is preferably 0.1 to 0.5 mm, more preferably 0.12 to 0.5 mm, and particularly preferably 0.15 to 0.3 mm. If the thickness is too thin, the rigidity of the display substrate tends to decrease, and if it is too thick, it tends to be difficult to reduce the weight and thickness of the display.
  • the pencil hardness of the resin sheet of the present invention is 3H or more. Preferably it is 5H or more, Most preferably, it is 6H or more. If the pencil hardness is too low, the surface hardness as the protective plate tends to decrease.
  • a method of appropriately controlling the kind of the above-described photocurable composition (a) and the content of the components can be used.
  • a polyfunctional (meth) acrylate compound (a1), particularly a polyfunctional urethane (meth) acrylate having 3 to 6 functional groups may be used.
  • the upper limit of pencil hardness is usually 10H.
  • the greatest feature of the present invention is that at least one band-like depression for folding the resin sheet is formed on one side or both sides in one direction within the plane.
  • Examples of the arrangement of the band-like depressions include the following cases (1) to (6). (1) Only one on the resin sheet surface (see FIGS. 1 and 7) (2) Two on the resin sheet surface (see Fig. 2) (3) Three on the resin sheet surface (see Fig. 3) (4) One piece at the same position on one side and the other side of the resin sheet (see FIGS. 4 and 8) (5) One by one in a form perpendicular to one side and the other side of the resin sheet (see FIGS. 5 and 9) (6) Two or more on one side and the other side of the resin sheet (see FIGS. 6 and 10)
  • Case (1) corresponds to a display that can be folded at the center of the surface (see FIGS. 12 and 13). Cases (2) and (4) can be folded more smoothly.
  • the case (3) corresponds to a display that can be folded at both ends.
  • Case (5) corresponds to a display that can be folded vertically or horizontally.
  • Case (6) corresponds to a display that can be wound.
  • the case (1) to (3) formed only on one side is preferable from the viewpoint of the smoothness of the outermost surface of the display, and the case (1) is more preferable because of ease of manufacturing.
  • the thickness T (mm) of the resin sheet and the depth D (mm) of the band-shaped depression (when formed in the same place on both sides as shown in FIG. Further, it is preferable that the depth D is the depth of the deepest place in the cross section of the belt-like depression) and the width W (mm) of the belt-like depression satisfies the following conditions (1) and (2). (1) 0.05 ⁇ (TD) ⁇ 0.2 (2) 0.5 ⁇ W ⁇ 50
  • the shape of the belt-like depression can be observed with a laser microscope equipped with a three-dimensional shape measurement function.
  • the shape of the belt-shaped recess satisfies the following condition (3).
  • the width W of the band-shaped depression need not be uniform and may be in the above-described range. When a plurality of band-shaped depressions are formed in the resin sheet surface, each width W may be different. Further, the band-shaped depression need not be strictly a straight line and may meander in a range of several mm or less.
  • the shape of the belt-like recess satisfies the following condition (I) in terms of foldability. It is preferable. (I) 0.2 ⁇ T ⁇ D ⁇ 0.8 ⁇ T More preferably, the following condition (I ′) is satisfied. (I ′) 0.3 ⁇ T ⁇ D ⁇ 0.7 ⁇ T Particularly preferred is the following condition (I ′′). (I ′′) 0.35 ⁇ T ⁇ D ⁇ 0.65 ⁇ T
  • the depth D (mm) of the band-shaped depression is the depth of the deepest place in the section of the band-shaped depression.
  • the depth D may be different, but the depth D in the band direction in the band-like depression is preferably uniform.
  • Deflection ⁇ D (mm) of the depth D is obtained by measuring the cross-sectional shape of the band-shaped depression along the band direction, and from the obtained maximum depth Dmax (mm) and minimum depth Dmin (mm), Desired.
  • Depth deflection ⁇ D (mm) Dmax (mm)-Dmin (mm)
  • the depth deflection ⁇ D (mm) is preferably 0.05 mm or less. More preferably, it is 0.03 mm or less, Most preferably, it is 0.02 mm or less.
  • the depth deviation ⁇ D (mm) increases, the foldability tends to decrease.
  • the laser is accurately focused, the laser oscillator and the mirror are moved smoothly during processing, and the level of the work (resin sheet) installation table is increased. And improving the flatness and thickness accuracy of the resin sheet.
  • both ends of the band-shaped depression need not be vertically cut, and it is preferable that the band-shaped depression is gently inclined from the center to the original surface layer.
  • the boundary of each step is inclined gently.
  • the width W of the belt-like depression is a distance between two points at which the depression starts.
  • examples of the method for forming the band-like depression include mold transfer, NC processing, sand blasting, water jet, laser ablation, etc.
  • NC processing and laser ablation are preferable from the viewpoint of productivity.
  • Laser ablation is more preferable from the viewpoint of foldability, and laser ablation is more preferable from the viewpoint of energy efficiency, more preferably from an infrared laser, especially an infrared laser having a wavelength of 9 to 11 ⁇ m. Particularly preferable is the availability of the apparatus. Then, laser ablation using a carbon dioxide laser with a wavelength of 9.3 ⁇ m or 10.6 ⁇ m.
  • the carbon dioxide laser is not particularly limited as long as it is a commercially available apparatus, but the ablation of the crosslinked resin is carried out using a laser output of 10 to 100 W while adjusting the laser irradiation conditions according to the composition of the crosslinked resin.
  • recommended laser irradiation conditions are as follows.
  • Laser output 20-60W (Duty: 10-90%)
  • Laser focal length 10-100mm
  • Laser spot diameter 0.05 to 0.3 mm
  • Irradiation speed 50 to 200 mm / sec
  • Irradiation pitch 0.05 to 0.3 mm
  • the laser spot diameter means a diameter, and the same applies to the following.
  • Duty is the output efficiency (%), and is a numerical value representing the percentage of the laser beam emitted toward the workpiece when the output of the laser body is 100%.
  • Such duty can be set by an output setting device mounted as a standard function on a normal laser irradiation machine. For example, when the duty is set to 10% with a laser irradiator having a laser output of 50 W, an output of 5 W can be obtained.
  • the laser focal length is a value determined by the condenser lens attached to the laser irradiation machine.
  • the work (resin sheet) surface is usually set at the focal length to perform ablation processing.
  • the focal position of the laser beam is shifted in the range of 0.5 to 10 mm upward or downward from the irradiation surface of the resin sheet.
  • the thickness is preferably 0.7 to 5 mm, more preferably 1 to 3 mm. Since the laser spot diameter (irradiation area) irradiated to the workpiece is expanded by such defocusing, laser irradiation in the defocused state is an advantageous method when forming a wide band-shaped depression.
  • the relationship between the laser spot diameter (R) and the pitch (P) is preferably the following formula. 0.1 ⁇ P / R ⁇ 1 More preferably, 0.2 ⁇ P / R ⁇ 0.8 Particularly preferably, 0.3 ⁇ P / R ⁇ 0.7 It is.
  • the laser output X (W) is large, it is necessary to adjust the irradiation energy by decreasing the duty Y (%) or increasing the irradiation speed (mm / second).
  • the optimum irradiation energy depends on the shape of the band-shaped depression, but the irradiation energy needs to be increased as the depth D of the band-shaped depression increases.
  • the laser beam scanning mechanism may move the laser oscillator itself, or the irradiation position may be moved using a plurality of reflection mirrors.
  • the stage on which the workpiece (resin sheet) is installed may be moved with the laser fixed.
  • a plurality of lasers may be installed to form a plurality of band-like depressions at once on a large-area work (resin sheet).
  • the depth D (mm) of the band-like depression can be controlled by adjusting the duty (%) and the irradiation speed, but from the viewpoint of productivity, the irradiation speed is set to the duty ( %) Is preferably adjusted.
  • the width W (mm) of the band-like depression can be controlled by lens specifications such as defocusing the laser beam or diffusing widely by a cylindrical lens or a diffraction grating. From the point of controlling the shape of the linear depression described later, It is preferable to control by irradiating a plurality of times while gradually shifting the position of laser irradiation. That is, it is preferable to set the irradiation pitch and scan the laser a plurality of times.
  • a plurality of linear depressions are further formed in the belt-like depression in view of reducing the radius of curvature (see FIG. 11). More preferably, the depth d (mm) and the width w (mm) of the linear depression satisfy the following conditions (4) and (5). (4) 0.001 ⁇ d ⁇ 0.05 (5) 0.01 ⁇ w ⁇ 0.5
  • the depth d and width w of the linear depression need not be uniform and may be in the above-described range. When a plurality of linear depressions are formed in the band-like depression, each of the depth d and the width w may be different. Further, the linear recess need not be strictly a straight line, and may be meandering within a range of 1 mm or less.
  • the depth d (mm) of the linear depression can be controlled by adjusting the laser irradiation pitch together with the laser irradiation conditions described above. That is, it becomes flat if the irradiation pitch is shortened, and conversely, it can be deepened if the irradiation pitch is long.
  • the width w (mm) of the linear depression can be controlled by adjusting the laser spot diameter, it is preferable to control it by adjusting the irradiation pitch as well as the depth.
  • a laser beam may be divided into two or more beams by a diffraction grating to form a plurality of linear depressions at a time.
  • the laser duty is set to 100%, and the laser light emitted from the transmitter is divided into 10 beams by the diffraction grating (each beam corresponds to a duty of 10%).
  • the number of divisions is preferably 2 to 20 if it is one-dimensional. It is also possible to divide into two dimensions.
  • the plurality of divided laser beams can be converted into parallel beams by attaching a condenser lens. In this case, the division pitch is preferably 0.1 to 1 mm.
  • the resin sheets of the present invention may be manufactured one by one, but after forming a band-like depression in a long original fabric or a wide original fabric, it can be cut into a desired size and multi-faceted.
  • a belt-shaped depression is continuously formed by irradiating a laser beam from a fixed laser device at the center of a long raw material to be conveyed, and then cut perpendicularly to the conveying direction. do it. If necessary, it is also possible to take up the raw material before cutting.
  • the cleaning method include known methods such as brushing, showering, rinsing, and dipping.
  • the dip method is preferable in that the entire resin sheet can be washed, more preferably the dip method using an organic solvent, and more preferably the dip method is more preferable in terms of removing the laser decomposition product deposited in the indentation.
  • Sonic cleaning is preferred. Particularly preferred is dip-type ultrasonic cleaning using a polar solvent such as 1-acetoxypropane, acetone or isopropyl alcohol as the organic solvent.
  • the foldable resin sheet of the present invention is obtained.
  • the radius of curvature (bendable radius) of the folded portion when the resin sheet is folded satisfies 3 mm or less, more preferably 2 mm or less, particularly Preferably it is 1 mm or less. If the radius of curvature is too large, the foldability tends to decrease.
  • the lower limit of the radius of curvature is usually 0.1 mm.
  • the light transmittance of the resin sheet of the present invention is preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more. If the light transmittance is too small, the brightness of the display tends to decrease.
  • the upper limit of the light transmittance is usually 99%.
  • the surface roughness Ra of the resin sheet of the present invention is preferably 20 nm or less, more preferably 15 nm or less, and particularly preferably 10 nm or less. If the surface roughness Ra is too large, the protective plate loses a high-class feeling, and the electrode substrate and the touch panel substrate tend to crack the conductive film.
  • the lower limit of the surface roughness Ra is usually 1 nm.
  • the glass transition temperature of the resin sheet of the present invention is preferably 150 ° C. or higher from the viewpoint of heat resistance.
  • a preferable range of the glass transition temperature is 180 to 400 ° C, particularly preferably 200 to 300 ° C.
  • a method of appropriately controlling the kind of the above-described photocurable composition (a) and the content of the components can be mentioned.
  • the technique of raising the functional group number of a polyfunctional (meth) acrylate type compound (a1) is mentioned.
  • the bending elastic modulus of the resin sheet of the present invention is preferably 3 to 5 GPa. More preferably, it is 3.5 to 4.5 GPa. If the flexural modulus is too low, it tends to be difficult to maintain the shape of the display. On the other hand, if the flexural modulus is too high, the foldability is lowered and cracks tend to occur during processing.
  • a method of appropriately controlling the type of the photocurable composition (a) and the content of the components described above can be used.
  • polyfunctional (meth) acrylate compounds (a1) in particular, those having 2 to 6 functionalities as urethane (meth) acrylate may be used.
  • a resin sheet [II] that is flat on both sides can be obtained by filling a band-like depression for folding the resin sheet with a transparent resin, particularly a crosslinked resin (B) ( (See FIG. 14).
  • a transparent resin particularly a crosslinked resin (B) (See FIG. 14).
  • the method of filling with a transparent resin include die coating, dip coating, spin coating, spray coating, bar coating, screen printing, and ink jet.
  • the refractive index of such a transparent resin is preferably the same as that of the resin sheet from the viewpoint of reducing the interface reflection between the resin and the band-shaped depression.
  • the belt-like depression for folding the resin sheet is a resin sheet filled with a resin having the same refractive index as that of the resin sheet, particularly a crosslinked resin (B).
  • a resin sheet in which the resin is not filled in the belt-like depression may be referred to as a resin sheet [I]
  • a resin sheet in which the belt-like depression is filled with a resin may be referred to as a resin sheet [II].
  • [I] and [II] are not attached, it may mean a general term for the resin sheets [I] and [II].
  • the same refractive index means that the refractive index difference between the resin sheet and the transparent resin is within ⁇ 0.1.
  • the refractive index difference is preferably within ⁇ 0.01, particularly preferably the refractive index difference is within ⁇ 0.005.
  • the glass transition temperature of the transparent resin is usually 150 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. In general, the lower limit is ⁇ 100 ° C. If the glass transition temperature is too high, the folding property tends to be lowered.
  • the resin examples include a urethane resin, a silicon resin, an acrylic resin, a light and / or a thermosetting resin, and the crosslinked resin (B) is preferable in terms of simplicity of the embedding process, and the crosslinked resin (B).
  • a photocurable resin is preferable from the viewpoint of productivity.
  • the band-shaped depression can be filled with the liquid photocurable composition (b), and can be planarized by photocuring.
  • only the belt-like depression may be filled with resin, or the belt-like depression and its periphery, or the entire surface having the belt-like depression may be covered with resin.
  • there are a method of applying a resin amount corresponding to the volume of the belt-shaped indentation, a method of removing resin with a squeegee etc. after applying resin to the belt-shaped recess and its periphery, etc. Can be mentioned.
  • the photocurable composition (b) is not particularly limited and can be appropriately selected from those described in the description of the photocurable composition (a). Particularly preferred is a (meth) acrylic composition comprising a polyfunctional (meth) acrylate compound (a1) and a photopolymerization initiator (a2), and more preferred is polyfunctional (
  • the meth) acrylate compound (a1) is a polyfunctional urethane (meth) acrylate compound, more preferably a monofunctional (meth) acrylate compound, and particularly preferably butyl (meth) acrylate. It is preferable that an aliphatic (meth) acrylate having 1 to 20 carbon atoms in the alkyl group such as the above is included from the viewpoint of improving the adhesion to the band-like depression.
  • butyl (meth) acrylate When butyl (meth) acrylate is contained, the content of butyl (meth) acrylate is preferably 10 to 100 parts by weight when the polyfunctional (meth) acrylate compound (a1) is 100 parts by weight.
  • the photocurable composition (b) preferably contains the same photopolymerization initiator as described above.
  • the refractive index of the photocurable composition (b) is blended with a fluorinated alkyl group-containing monomer in the case of lowering the refractive index, and conversely, in the case of increasing the refractive index, an aromatic ring-containing monomer or sulfur-containing monomer is used. It can be adjusted by blending. Moreover, it can adjust also by mix
  • the radius of curvature (bendable radius) of the folded portion when folded is 3 mm or less, more preferably 2 mm or less, and particularly preferably 1 mm or less. If the radius of curvature is too large, the foldability tends to decrease.
  • the lower limit of the radius of curvature is usually 0.1 mm.
  • the resin sheet with the pressure-sensitive adhesive layer in which the pressure-sensitive adhesive layer is formed on one side of the resin sheet [I] or the resin sheet [II] can be bonded to the internal device.
  • the pressure-sensitive adhesive layer is preferably formed on one side of the resin sheet, and in the case of a surface having a band-shaped depression, the band-shaped depression is filled with the pressure-sensitive adhesive, and the pressure-sensitive adhesive composition is applied to a portion other than the band-shaped depression, It is preferable to form an adhesive layer (see FIG. 15). From this point, it is preferable that the refractive index of the adhesive also coincides with the refractive index of the resin sheet [I].
  • an adhesive for example, an adhesive made of an acrylic resin and a crosslinking agent or an adhesive made of a photocurable composition can be used.
  • the resin sheet of the present invention can be bonded to another resin sheet [ ⁇ ] using an adhesive or an adhesive, or after the original resin sheet is bonded to the resin sheet [ ⁇ ]. It is also possible to form a band-like depression.
  • the resin sheet [ ⁇ ] is preferably a sheet made of a thermoplastic resin.
  • the thermoplastic resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polystyrene (PS), polyimide (PI), cycloolefin polymer (COP), Examples thereof include cycloolefin copolymer (COC) and triacetyl cellulose (TAC).
  • a resin sheet made of the crosslinked resin (A) may be formed on the resin sheet [ ⁇ ]
  • a band-shaped depression may be formed on the resin sheet side of the laminate made of the resin sheet [ ⁇ ] / resin sheet. .
  • the resin sheet of the present invention can be cut to a desired size by a known method such as laser cutting, CNC cutting, punching cutting, ultrasonic cutting, water jet cutting, scribe cutting, router cutting, dicing cutting.
  • the embedding process and the formation of the pressure-sensitive adhesive layer with a transparent resin, in particular the crosslinked resin (B), are performed immediately after laser ablation or after cleaning the band-like indentation in terms of adhesion. It is preferable to carry out.
  • the time is within a few days, more preferably within a few hours, and particularly preferably within a few minutes.
  • the improvement in adhesion is presumed to be caused by a chemical reaction between the surface of the band-like dent activated by laser ablation and the resin or adhesive.
  • a hard coat layer, a printing layer, a gas barrier film, and a transparent conductive film can be formed on the resin sheet of the present invention according to various uses.
  • Transparent conductive films include inorganic films such as indium and tin oxide (ITO), indium / gallium // zinc oxide (IGZO), and poly (3,4-ethylenedioxythiophene) (PEDOT).
  • ITO indium and tin oxide
  • IGZO indium / gallium // zinc oxide
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • An organic film is mentioned.
  • an ITO film is preferable in terms of conductivity and transparency.
  • the film thickness of such a transparent conductive film is usually 100 to 5000 mm, preferably 200 to 3000 mm, more preferably 300 to 2000 mm. If the film thickness is too thick, the substrate tends to swell, and if it is too thin, the conductivity tends to be insufficient.
  • the film forming temperature is preferably 50 to 300 ° C., more preferably 100 to 250 ° C., and still more preferably 130 to 200 ° C. If the film forming temperature is too low, the conductivity tends to be insufficient. Conversely, if the film forming temperature is too high, the light transmittance of the resin sheet tends to decrease.
  • the resistance value of the transparent conductive film obtained is preferably 500 ⁇ / ⁇ or less, more preferably 200 ⁇ / ⁇ or less, and even more preferably 100 ⁇ / ⁇ or less. If it is too high, the display performance of the display tends to deteriorate.
  • the resin sheet of the present invention can be produced with high productivity, and the obtained resin sheet is not only foldable, but also excellent in optical characteristics and thermomechanical characteristics, a protective plate for display and lighting, and an electrode substrate Suitable as a touch panel substrate.
  • Pencil hardness According to JIS K-5600, the pencil hardness of the flat surface of a resin sheet of 50 mm ⁇ 100 mm was measured.
  • Light transmittance (%) A 50 mm ⁇ 50 mm test piece was cut out from a 150 mm ⁇ 150 mm resin sheet, attached to a metal frame so as to be flat, and then the total light transmittance (%) was measured with a haze meter “NDH-2000” manufactured by Nippon Denshoku Co., Ltd. It was measured.
  • Resin sheet (S1) 0.2 mm thick resin sheet (“ORGA LT” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., pencil hardness 7H, light transmittance 92%, surface roughness Ra 7 nm, flexural modulus 4 GPa, glass transition temperature 250 ° C)
  • Resin sheet (S2) Resin sheet having a thickness of 0.2 mm (“ORGA DX” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., pencil hardness 3H, light transmittance 92%, surface roughness Ra 7 nm, bending elastic modulus 3 GPa, glass transition temperature 200 ° C)
  • Resin sheet (S3) PET sheet having a thickness of 0.1 mm, pencil hardness 3H, light transmittance 88%, surface roughness Ra 15 nm, bending elastic modulus 3 GPa, glass transition temperature 120 ° C.)
  • Laser system Protech carbon dioxide laser "LP-200A" (wavelength 10.6 ⁇ m) Laser output: 50W (Duty: 13.6%) Laser focal length: 38mm Laser spot diameter: 0.15 mm Irradiation speed: 80 mm / sec Irradiation pitch: 0.1 mm Number of irradiations: 10 times
  • the resin sheet was ultrasonically cleaned by a dipping method using 1-acetoxypropane as an organic solvent. Observation of the shape of the band-like depression and the linear depression of the obtained resin sheet [I] was as follows.
  • the curvature radius of the folding part of the obtained resin sheet [I] was 3 mm (diameter 6 mm), and had good folding properties.
  • the obtained resin sheet [II] had a bendable radius of curvature of 2 mm (diameter 4 mm), and had good foldability. Further, since the refractive index of the crosslinked resin (B) is close to the refractive index of 1.52 of the resin sheet (S1), the band-shaped indented portion was hardly visible.
  • the obtained resin sheet [II] had a bendable radius of curvature of 2 mm (diameter 4 mm), and had good foldability. Moreover, since the refractive index of the crosslinked resin (B) is the same as the refractive index 1.52 of the resin sheet (S1), the band-shaped indentation portion was not visible.
  • the band-like depression of the obtained resin sheet with the pressure-sensitive adhesive layer was flattened, and when the surface was bonded to a commercially available touch panel, there was no bubble and good bonding properties were obtained. Furthermore, reworkability is also good, and it is useful as a protective plate with an adhesive layer.
  • a transparent conductive film made of ITO having a thickness of 300 mm was formed by sputtering at 180 ° C. on the surface opposite to the band-shaped depression of the resin sheet [I] obtained above, and a substrate with a transparent conductive film was obtained.
  • the surface resistance value was 100 ⁇ / ⁇ , which was good.
  • Example 2 Resin sheet [I] was obtained in the same manner as in Example 1 except that the number of irradiations was 20 and the width W of the band-like depression was 2 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 3 Resin sheet [I] was obtained in the same manner as in Example 1, except that the number of irradiations was 40 and the width W of the band-like depression was 4 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 4 Resin sheet [I] was obtained in the same manner as in Example 1, except that the number of irradiations was 60 and the width W of the band-shaped depression was 6 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 5 Resin sheet [I] was obtained in the same manner as in Example 1, except that the number of irradiations was 80 and the width W of the band-shaped depression was 8 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 6 Resin sheet [I] was obtained in the same manner as in Example 1, except that the number of irradiations was set to 100 and the width W of the belt-like depression was set to 10 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 7 Resin sheet [I] was obtained in the same manner as in Example 1 except that the duty was 14%, the number of irradiations was 20 times, the depth D of the band-like depression was 0.09 mm, and the width W was 2 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Resin sheet [I] was obtained in the same manner as in Example 1 except that the duty was 14.5%, the number of irradiations was 20 times, the depth D of the belt-like depression was 0.1 mm, and the width W was 2 mm. It was.
  • Resin sheet [I] was obtained in the same manner as in Example 1, except that the duty was 15%, the number of irradiations was 20, the depth D of the band-like depression was 0.11 mm, and the width W was 2 mm.
  • Example 10 ⁇ Example 10> In Example 1, except that a resin sheet having a thickness of 0.15 mm (only the thickness of the resin sheet (S1) was adjusted) was used, and the number of irradiations was 20 times, and the width W of the belt-like depression was set to 2 mm. Similarly, resin sheet [I] was obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 11 In Example 1, the irradiation speed was 240 mm / second, the irradiation pitch was 0.05 mm, the number of irradiations was 40 times, the depth D of the belt-like depression was 0.15 mm, the width W was 2 mm, and the depth d of the linear depression. was less than 0.01 mm and the width w was 0.05 mm, to obtain a resin sheet [I]. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 12 In Example 1, the irradiation pitch was 0.15 mm, the number of irradiations was 12 times, the depth D of the belt-like recess was 0.05 mm, the width W was 2 mm, the depth d of the linear recess was 0.05 mm, and the width w Resin sheet [I] was obtained in the same manner except that the thickness was 0.15 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1. The effect of linear depression was developed, and the radius of curvature was reduced.
  • Example 13 In Example 1, using a resin sheet having a thickness of 0.3 mm (only the thickness of the resin sheet (S1) was adjusted), the duty D was 19%, the number of irradiations was 20 times, and the depth D of the belt-like depression was 0. Resin sheet [I] was obtained in the same manner except that the width W was set to 2 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 14 Resin sheet [I] was obtained in the same manner as in Example 1, except that the resin sheet (S2) was used, the number of irradiations was 20 times, and the width W of the belt-like depression was 2 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 15 In Example 1, the duty is 22%, the irradiation speed is 400 mm / second, the number of times of irradiation is 20 times, the depth D of the belt-like depression is 0.05 mm, the width W is 2 mm, and the depth d of the linear depression is 0.03 mm. Except that, resin sheet [I] was obtained in the same manner. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 16 In Example 1, using the following laser apparatus and laser irradiation conditions, resin sheet [I] was obtained in the same manner except that the indentation was changed to the following shape. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Laser device Laser processing machine “L706PCU” manufactured by Iida Kogyo Co., Ltd. (wavelength: 9.3 ⁇ m) Laser output: 20W (Duty: 30%) Laser focal length: 38mm Laser spot diameter: 0.15 mm Irradiation speed: 300 mm / sec Irradiation pitch: 0.1 mm Irradiation frequency: 20 times Depth of band-like depression D: 0.16 mm Band width W: 2mm Depth of linear depression d: 0.16mm The width w of the belt-like depression: 0.1 mm Depth deflection ⁇ D: ⁇ 0.01mm
  • Example 17 In Example 16, except that the duty is 10%, the number of irradiations is 40 times, the depth D of the belt-like depression is 0.05 mm, the width W is 4 mm, and the depth d of the linear depression is 0.05 mm, Resin sheet [I] was obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 18 Resin sheet [I] was obtained in the same manner as in Example 16 except that the number of irradiations was 40, and the width W of the band-like depression was 4 mm. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 19 In Example 16, in the same manner except that the workpiece (resin sheet surface) was defocused 1 mm away from the laser focus, the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. Obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 20 In Example 16, in the same manner except that the workpiece (resin sheet surface) was defocused 1 mm away from the laser focus, the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. Obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 21 In Example 16, in the same manner except that the workpiece (resin sheet surface) was defocused 1 mm away from the laser focus, the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. Obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 22 In Example 16, in the same manner except that the workpiece (resin sheet surface) was defocused 1 mm away from the laser focus, the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. Obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 23 In Example 16, in the same manner as in the defocused state in which the workpiece (resin sheet surface) is separated from the laser focal point by 1.5 mm, the laser irradiation is changed to the following conditions, and the indentation is changed to the following shape. ] was obtained.
  • the belt-like dent of this embodiment has a stepped shape as shown in FIG.
  • the obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • irradiation was continued under the following conditions after 20 times of irradiation.
  • irradiation was continued under the following conditions after a total of 80 irradiations.
  • Example 24 In Example 16, with the workpiece (resin sheet surface) in a defocused state 5 mm away from the laser focus, the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. Obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 25 ⁇ Example 25>
  • a cylindrical lens was attached to the laser device so that the laser beam was diffused broadly (see FIG. 17), the laser irradiation was changed to the following conditions, and the indentation was changed to the following shape. I] was obtained.
  • the obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 26 ⁇ Example 26>
  • a diffraction grating (branch DOE “DBS001” manufactured by Sumitomo Electric Industries, Ltd.) and a condenser lens are attached to a laser device to divide the laser light into eight parallel beams (division pitch 0.5 mm) (FIG. 18), the laser irradiation was changed to the following conditions, and the resin sheet [I] was obtained in the same manner except that the belt-like depression was changed to the following shape. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 27 In Example 1, in the same manner except that one belt-like depression is formed on both sides of the belt-like depression at the center in the longitudinal direction with an interval of 1 mm and a total of three belt-like depressions are formed. Resin sheet [I] was obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 28 In Example 1, 12 belt-like recesses (the shape is the same as that of Example 1) with a gap of 3 mm are formed on both sides of the belt-like recesses in the center in the longitudinal direction, and a total of 25 belt-like recesses are formed. Resin sheet [I] was obtained in the same manner except that the depressions were formed. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 29> In Example 1, the duty is set to 12.6%, the depth D of the belt-like depression is 0.05 mm, and the same is performed except that the belt-like depression is formed not only in the center in the long side direction but also in the center in the short side direction. Resin sheet [I] was thus obtained. The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 30 In Example 1, except that the duty is 12.6%, the depth D of the belt-like depression is 0.05 mm, and the belt-like depression is formed not only at the center in the long side direction but also at the center in the short side direction of the back surface. Similarly, resin sheet [I] was obtained (see FIG. 5). The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 31 a resin sheet [I] is obtained in the same manner except that the duty is 12.6%, the depth D of the belt-like depression is 0.05 mm, and the belt-like depression is formed at the center in the longitudinal direction of the back surface. (See FIG. 4). The obtained resin sheet [I] was evaluated in the same manner as in Example 1.
  • Example 33 On the surface of the resin sheet (S1), a band-like depression shown in the table was formed by NC processing to obtain a resin sheet [I]. There is no linear depression in the obtained resin sheet [I].
  • ⁇ Comparative example 2> By applying a hard coat agent comprising 100 parts of urethane acrylate and 5 parts of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) on the resin sheet (S3), and photocuring with a light amount of 1J A hard coat layer having a thickness of 0.1 mm was formed (total thickness 0.2 mm). The obtained resin sheet with a hard coat had a curvature radius of 30 mm, cracked in the hard coat layer, and could not be folded.
  • a hard coat agent comprising 100 parts of urethane acrylate and 5 parts of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) on the resin sheet (S3), and photocuring with a light amount of 1J A hard coat layer having a thickness of 0.1 mm was formed (total thickness 0.2 mm).
  • Tables 1 to 3 show the evaluation results of the examples and comparative examples.
  • a resin sheet having good foldability can be easily obtained, and the optical characteristics and mechanical characteristics of the obtained resin sheet are good, whereas in the comparative example, In either case, a foldable resin sheet could not be obtained and could not be put to practical use.
  • the foldable resin sheet obtained by the present invention can be advantageously used for various optical materials and electronic materials.
  • It can be used for storage / recording applications, energy applications such as thin film battery substrates and solar cell substrates, optical communication applications such as optical waveguides, functional films / sheets, and various optical films / sheets.
  • it can also be used in, for example, automotive materials, building materials, medical materials, stationery, and the like.
  • it is useful for applications such as a resin sheet with an adhesive layer, a protective plate for display, an electrode substrate, a touch panel substrate, a protective plate for organic EL lighting, a light guide plate, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Adhesive Tapes (AREA)
  • Polymerisation Methods In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 高硬度で光学特性や熱機械特性に優れるうえ、折り畳み性にも優れ、軽量薄型化、折り畳みディスプレイなどの要望に対応できる樹脂シートとして、架橋樹脂(A)よりなる厚さ0.1~1mmで鉛筆硬度が3H以上の透明な樹脂シートであって、面内の一方向に、樹脂シートを折り畳むための帯状くぼみが、片面または両面に少なくとも1本形成されていることを特徴とする樹脂シートを提供する。

Description

樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途
 本発明は、折り畳み用の帯状くぼみを有する架橋樹脂よりなる樹脂シートであり、光学特性、熱機械特性に優れ、折り畳み式のディスプレイや照明用の基材として有用な樹脂シート、更には、ディスプレイ用の保護板、電極基板、タッチパネル基板、照明用の保護板等の用途に関するものである。
 従来、ディスプレイ用の基材としては平坦なガラス板が多く使われてきた。例えば、ディスプレイの最前面である保護板(カバー)や、液晶ディスプレイ、有機ELディスプレイ、タッチパネルなどには、平坦なガラス製の基材が使用されている。
 近年、携帯電話やスマートフォンなどの携帯情報端末の進展は著しい。これら携帯用途のディスプレイは軽量薄型化や割れにくさが必須であり、フレキシブルディスプレイ、曲面ディスプレイ、異形ディスプレイの製造のためにも樹脂製の基材が使用され始めている。
 更に、次世代ディスプレイとして、折り畳み式のディスプレイが提案されている。このディスプレイは、非使用時にはディスプレイ中央部で折り畳まれており、使用時に倍程度の大きさに広げて全面に画像を表示するものである。コンパクトな携帯サイズながら、大きな画面が可能となり、文字認識がしやすく、動画も本来の高精細性を活かした表示が可能となる。
 従来、広げた時に左右2画面あるいは上下2画面となって、異なる画像を表示するディスプレイは具現化されていた。しかし、この方式では本来の大画面化にはなっておらず、2つのディスプレイが必要となってコストアップに繋がる。また、紙のように折り畳むことができるディスプレイへの開発要望は強く、携帯用途だけではなく、コンパクトなパソコン、テレビ、車載用途など応用範囲は広がっている。
 かかる折り畳み式のディスプレイを可能にするためには、ディスプレイを構成する各部材が180゜折り曲がらなければならない。例えば、最外層の保護板(カバーフィルム/シート)、タッチパネル、表示デバイスなどである。これらの基材を樹脂製とするのは当然であるが、電極材料や表示材料も然りである。近年、タッチパネルセンサーを構成する電極は、金属ナノワイヤーやPEDOTなどの有機系導電材料でフレキシブル化が可能になっており、表示材料は有機ELやE-Inkなどでフレキシブル化が可能になっている。
 ところが、意外にも、内部のタッチパネルや表示デバイスを守る保護板が、折り畳み式に対応するだけのフレキシブル性が充分でなかった。保護板には、傷付き防止のためガラスに匹敵する表面硬度が求められるが、折り畳みディスプレイの場合は同時に180゜折り曲がる柔らかさも必要となる。両者は相反する性能であり、両立するためには柔らかいベースフィルムの片面もしくは両面を分厚くハードコート処理するしかなかった。ところが、柔らかいベースフィルムが下地では、分厚いハードコート層でも5H程度の鉛筆硬度しか得られず、かつ180゜折り曲げた時に硬いハードコート層が割れるため、これでは折り畳み式のディスプレイは製造できないのが実情である。
 一方、逆の発想で、柔らかいフィルムの表面をハードコートで硬くするのではなく、硬いフィルムを化学的もしくは物理的に折り畳めるようにすることも可能である。例えば、硬いフィルムを極薄く製造するとか、化学的な手法で軟化させるとか言った手法である。幸いガラスに匹敵する表面硬度を有する透明シートが知られており、例えば、光硬化により得られる樹脂シートが提案されている(例えば、特許文献1、2参照。)。
特開2006-193596号公報 特開2007-204736号公報
 しかしながら、特許文献1及び2の開示技術では、確かに高硬度な樹脂成形体は得られるものの、極薄い場合は、薄いガラス同様ハンドリング中に割れが生じ、製造も困難である。折り畳み式ディスプレイの場合、折り畳み部には、曲率半径3mm以下で折り曲げられることが必要であり、携帯端末の場合は1万回以上の折り畳みにも耐えることが望まれる。
 そこで、本発明は、このような背景下において、高硬度で光学特性や熱機械特性に優れるうえ、折り畳み性にも優れ、軽量薄型化、折り畳みディスプレイなどの要望に対応できる樹脂シートを提供することを目的とするものである。
 しかるに、本発明者等はかかる事情に鑑み鋭意研究を重ねた結果、架橋樹脂よりなる厚さ0.1~1mmで鉛筆硬度が3H以上の透明な樹脂シートにおいて、面内の一方向に、樹脂シートを折り畳むための帯状くぼみを形成することにより、高硬度で光学特性や熱機械特性に優れるうえ、折り畳み性にも優れることを見出し、本発明を完成した。
 即ち、本発明の要旨は、架橋樹脂(A)よりなる厚さ0.1~1mmで鉛筆硬度が3H以上の透明な樹脂シートであって、面内の一方向に、樹脂シートを折り畳むための帯状くぼみが、片面または両面に少なくとも1本形成されている樹脂シートに関するものである。
 更に、本発明は、折り畳み用の帯状くぼみが認識できないように、透明な柔らかい架橋樹脂で帯状くぼみを埋めた樹脂シートに関するものである。
 即ち、本発明は、前記樹脂シートを折り畳むための帯状くぼみが、該樹脂シートの屈折率と同一の屈折率を有する架橋樹脂(B)により充填されている樹脂シートに関するものである。かかる樹脂シートとすることにより、帯状くぼみ部分に充填された架橋樹脂とそれ以外の樹脂部分とが、あたかも単一の樹脂で製造された1枚の樹脂シートで構成されたものとして提供することができる。
 なお、本発明において、折り畳みとは、折り畳み部の曲率半径が3mm以下で折り曲げることを意味するものであり、曲率半径(m)は、曲率の逆数である。
 また、本発明においては、前記樹脂シートを用いて、粘着剤層付き樹脂シート、ディスプレイ用保護板、電極基板、タッチパネル基板、有機EL照明用の保護板、導光板等の用途に供することができる。
 本発明の樹脂シートは、高硬度で光学特性や熱機械特性に優れるうえ、折り畳み性にも優れ、軽量薄型化、折り畳みディスプレイなどの要望に対応できる樹脂シートであり、折り畳みディスプレイ用の保護板、電極基板、タッチパネル基板等に好適である。
帯状くぼみが片面に1本形成された本発明の樹脂シートの平面図である。 帯状くぼみが片面に2本形成された本発明の樹脂シートの平面図である。 帯状くぼみが片面に3本形成された本発明の樹脂シートの平面図である。 帯状くぼみが両面同位置に形成された本発明の樹脂シートの平面図である。 帯状くぼみが両面に直交して形成された本発明の樹脂シートの平面図である。 帯状くぼみが両面同位置に重ならないように、ずらして一定間隔で形成された本発明の樹脂シートの平面図である。 帯状くぼみが片面に1本形成された本発明の樹脂シートの断面図である。 帯状くぼみが両面同位置に形成された本発明の樹脂シートの断面図である。 帯状くぼみが両面に直交して形成された本発明の樹脂シートの断面図である。 帯状くぼみが両面同位置に重ならないように、ずらして一定間隔で形成された本発明の樹脂シートの断面図である。 本発明の帯状くぼみと線状くぼみの概念図である。 本発明の樹脂シートを折り曲げた図である。 本発明の樹脂シートを折り畳んだ図である。 本発明の樹脂シートの帯状くぼみを架橋樹脂で埋めた図である。 本発明の樹脂シートを粘着剤で内部デバイスと貼り合せた図である。 レーザー光を照射して帯状くぼみを作製する図である。 レーザー光をシリンドリカルレンズにより幅広に拡散させ帯状くぼみを作製する図である。 レーザー光を回折格子により分割して帯状くぼみを作製する図である。 本発明の樹脂シートを連続して作製する図である。 帯状くぼみ両端部を連続的に変化させた本発明の樹脂シートの断面図である。 帯状くぼみ両端部を段階的に変化させた本発明の樹脂シートの断面図である。
 以下、本発明につき詳細に説明する。なお、本発明において、「(メタ)アクリレート」は、アクリレートとメタクリレートの、「(メタ)アクリル」は、アクリルとメタクリルの総称である。更に、ここでいう「多官能」とは、分子内に2個以上の(メタ)アクリロイル基を有することを意味する。
 本発明で使用される架橋樹脂(A)は、光および/または熱硬化性組成物を重合硬化(架橋)して得られる架橋樹脂であり、かかる光および/または熱硬化性組成物としては、例えば、(メタ)アクリル系組成物、エポキシ系組成物、チオール・エン付加系等の光硬化性組成物、(メタ)アクリル系組成物、エポキシ系組成物、アリル系組成物、スチレン系組成物、アミド系組成物、イミド系組成物、ウレタン系組成物、チオウレタン系組成物等の熱硬化性組成物などが挙げられる。これらは単独でもしくは2種以上併せて用いられる。これらの中でも、量産性の点で、光硬化性組成物(a)であることが好ましく、より好ましくは、樹脂シートの光学特性の点で、下記成分(a1)及び(a2)を含有してなる(メタ)アクリル系組成物である。
(a1)多官能(メタ)アクリレート系化合物
(a2)光重合開始剤
 上記の多官能(メタ)アクリレート系化合物(a1)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェートジエステル等の脂肪族系化合物、ビス(ヒドロキシ)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシ)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、2,2-ビス[4-(β-(メタ)アクリロイルオキシエトキシ)シクロヘキシル]プロパン、1,3-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,3-ビス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン、1,4-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,4-ビス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン等の脂環式系化合物、フタル酸ジグリシジルエステルジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA(2,2’-ジフェニルプロパン)型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA(2,2’-ジフェニルプロパン)型ジ(メタ)アクリレート等の芳香族系化合物などの2官能(メタ)アクリレート、
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート等の脂肪族系化合物、1,3,5-トリス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,3,5-トリス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン等の脂環式系化合物などの3官能以上の(メタ)アクリレート、
 多官能ウレタン(メタ)アクリレート、多官能エポキシ(メタ)アクリレート、多官能ポリエステル(メタ)アクリレート、多官能ポリエーテル(メタ)アクリレートなどが挙げられる。これらは単独でもしくは2種以上併せて用いられる。
 これらの中でも、樹脂シートの表面硬度の点で、ビス(ヒドロキシ)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、多官能ウレタン(メタ)アクリレートが好ましく、特に、粘度の点で、多官能(メタ)アクリレートと多官能ウレタン(メタ)アクリレートを併用させることが好ましい。かかる多官能ウレタン(メタ)アクリレートはウレタン結合を有しており、樹脂シートの表面硬度を高めると共に、折り曲げた時の強度を高めることができる。
 本発明で好適に使用される多官能ウレタン(メタ)アクリレートとしては、例えば、ポリイソシアネートと水酸基含有(メタ)アクリレートを、必要に応じてジブチルチンジラウレートなどの触媒を用いて反応させて得られるものであることが好ましい。
 ポリイソシアネートの具体例としては、例えば、エチレンジイソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族系ポリイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)トリシクロ[5.2.1.02,6]デカン、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(4-イソシアナトシクロヘキシル)メタン、2,2-ビス(4-イソシアナトシクロヘキシル)プロパン、水添化キシリレンジイソシアネート、イソホロンジイソシアネートの3量体化合物などの脂環構造を有するポリイソシアネートや、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネートなどの芳香環を有するポリイソシアネートなどが挙げられる。これらは単独でもしくは2種以上併せて用いられる。これらの中でも、低硬化収縮の点で、イソホロンジイソシアネート、ノルボルネンジイソシアネートが好ましい。
 水酸基含有(メタ)アクリレートの具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。これらは単独でもしくは2種以上併せて用いられる。中でも樹脂シートの表面硬度の点で、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートが好ましい。
 ポリイソシアネートと、水酸基含有(メタ)アクリレートとの反応により得られる多官能ウレタン(メタ)アクリレートは、2種以上混合して用いても良い。これらの反応物の中でも、硬化速度の点からアクリレート系化合物が好ましく、特に表面硬度と曲げ弾性率の観点から2~9官能、特には2~6官能が好ましい。
 光硬化性組成物(a)として、多官能(メタ)アクリレート及び多官能ウレタン(メタ)アクリレートを含有する場合には、その含有割合(重量比)は、樹脂シートの熱機械特性の点で、多官能(メタ)アクリレート/ウレタン(メタ)アクリレート(重量比)=95/5~40/60であることが好ましく、更には90/10~50/50、特には80/20~60/40であることが好ましい。多官能ウレタン(メタ)アクリレートの含有割合が小さすぎると表面硬度が低下する傾向があり、大きすぎると吸水率が増大する傾向がある。
 また、本発明で用いられる光硬化性組成物(a)には、単官能(メタ)アクリレートを含んでいてもよく、かかる単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-エチルヘキシル(メタ)クリレート、グリシジル(メタ)クリレート、シクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデシルオキシメチル(メタ)アクリレート、トリシクロデシルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシメチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート、ノルボニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどが挙げられる。これらは単独でもしくは2種以上併せて用いられる。これらの中でも、シクロヘキシル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデシルオキシメチル(メタ)アクリレート、イソボニル(メタ)アクリレート、ノルボニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの脂環骨格(メタ)アクリレートが、低硬化収縮の点で好ましい。
 光硬化性組成物(a)として、単官能(メタ)アクリレートを含有する場合には、その含有量は、多官能(メタ)アクリレート系化合物100重量部に対して 耐熱性の点で、50重量部以下であることが好ましく、更には30重量部以下、特には10重量部以下であることが好ましい。かかる含有量が大きすぎると耐熱性が低下する傾向がある。
 本発明で用いられる光重合開始剤(a2)としては、活性エネルギー線の照射によってラジカルを発生し得るものであれば特に制限されず、各種の光重合開始剤を使用することができる。例えば、ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。これらの中でも、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドなどの光重合開始剤が特に好ましい。これらの光重合開始剤は単独で用いても、2種以上を併用してもよい。
 これらの光重合開始剤(a2)は、多官能(メタ)アクリレート系化合物(a1)(単官能(メタ)アクリレートを含有する場合は、多官能(メタ)アクリレート系化合物(a1)と単官能(メタ)アクリレートの合計)100重量部に対して、通常0.1~10重量部の割合で使用されることが好ましく、更には0.2~5重量部、特には0.2~3重量部が好ましい。かかる使用量が少なすぎると重合速度が低下し、重合が充分に進行しない傾向があり、多すぎると得られる樹脂シートの光線透過率が低下(黄変)する傾向がある。
 また、光重合開始剤(a2)と共に、熱重合開始剤を併用しても良い。熱重合開始剤としては、公知の化合物を用いることができ、例えば、ハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ(2-エチルヘキサノエート)等のパーオキシエステル、ベンゾイルパーオキシド等のジアシルパーオキサイド、ジイソプロピルパーオキシカーボネート等のパーオキシカーボネート、パーオキシケタール、ケトンパーオキサイド等の過酸化物が挙げられる。これらは単独でもしくは2種以上併せて用いられる。
 また、本発明で用いられる光硬化性組成物(a)には、上記の多官能(メタ)アクリレート系化合物(a1)及び光重合開始剤(a2)の他に、適宜、連鎖移動剤、酸化防止剤、紫外線吸収剤、増粘剤、帯電防止剤、難燃剤、消泡剤、着色剤、及び各種フィラーなどの補助成分を含有していても良い。
 連鎖移動剤としては、多官能メルカプタン系化合物が挙げられ、例えば、ペンタエリスルトールテトラキスチオグリコレート、ペンタエリスルトールテトラキスチオプロピオネートなどが挙げられる。これらは単独でもしくは2種以上併せて用いられる。これらの多官能メルカプタン系化合物は、多官能(メタ)アクリレート系化合物(a1)100重量部に対して、通常10重量部以下の割合で使用されることが好ましく、更には5重量部以下、特には3重量部以下が好ましい。かかる使用量が多すぎると、得られる樹脂シートの耐熱性や剛性が低下する傾向がある。
 酸化防止剤としては、例えば、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、2,4,6-トリ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-s-ブチルフェノール、2,6-ジ-t-ブチル-4-ヒドロキシメチルフェノール、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、2,6-ジ-t-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、4,4-メチレン-ビス(2,6-ジ-t-ブチルフェノール)、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-t-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-t-ブチルフェノール)、2,2-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナミド、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、カルシウム(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)モノエチルフォスフォネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス-2[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアネート、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスファイト-ジエチルエステル等の化合物が挙げられ、これらの化合物は、単独または二種以上併用してもよい。これらの中でも、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが、樹脂シートの黄変を抑制する点から好ましい。
 紫外線吸収剤としては、光硬化性組成物(a)に溶解するものであれば特に限定されず、各種紫外線吸収剤を使用することができる。具体的には、サリチル酸エステル系、ベンゾフェノン系、トリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系などが挙げられる。これらの紫外線吸収剤は単独でもしくは複数を組み合わせて用いてもよい。これらの中でも、光硬化性組成物(a)との相溶性の点で、ベンゾフェノン系またはトリアゾール系、具体的には、(2-ヒドロキシ-4-オクチロキシ-フェニル)-フェニル-メタノン、2-ベンゾトリアゾール-2-イル-4-tert-オクチル-フェノール等の紫外線吸収剤が好ましい。紫外線吸収剤の含有割合は、光硬化性組成物(a)に対して、通常0.001~1重量%であることが好ましく、特に好ましくは0.01~0.1重量%である。かかる紫外線吸収剤が少なすぎると樹脂シートの耐光性が低下する傾向があり、多すぎると樹脂シートの光線透過率が低下する傾向がある。
 本発明において、架橋樹脂(A)が光により硬化(架橋)されてなる場合、上記で得られた光硬化性組成物(a)を硬化(架橋)して透明な樹脂シートを得る。光硬化した後、更に熱硬化することも可能である。光硬化について説明する。但し、下記の方法に限定されるものではない。
 まず、光硬化性組成物(a)を、少なくとも片方が透明な2枚の平板と厚さ制御のためのスペーサからなる成形型の空隙に充填する。平板としては、とりわけガラス板が好ましい。
 ガラス板は、成形型の強度の点から厚さ1~10mmが好ましく、より好ましくは、樹脂シートの表面平滑性の点から、光硬化性組成物(a)が接する少なくとも片側のガラス表面が光学研磨されていることが好ましい。特には表面粗さRaが50nm以下であることが好ましい。ガラス板の厚さが薄すぎると、光硬化性組成物(a)が硬化する際に生じる収縮応力に耐えられず、ガラス板に割れや反りが発生する傾向にある。ガラス板は、かかる強度の観点から化学強化されていてもよい。ガラス板の厚さが厚過ぎると、ガラスの重量が増大し、設備への負荷が大きくなる。ガラス板は、樹脂シートの脱型性を向上させるため、表面を離型剤で処理してもよい。
 また、樹脂シートの表面に、レンズ機能、防眩機能、アンチニュートンリング機能などを付与するために、光硬化性組成物(a)が接する平板の表面に微細な凹凸を形成してもよい。かかる微細な凹凸が、樹脂シートに転写されることにより、レンズ機能、防眩機能、あるいはアンチニュートンリング機能をもつ樹脂シートを得ることができる。かかる場合、平板の表面に微細な凹凸を形成するために、サンドブラストやエッチングなどの手法を用いることが可能である。
 スペーサは、樹脂シートの厚さを制御するものであるが、材料は特に限定されず、樹脂など公知の材料が使用される。樹脂の中でも、シリコン樹脂などのゴム質材料が好ましい。
 光硬化性組成物(a)を成形型の空隙に充填した後、光照射を行う。使用される光源としては、一般的な紫外線ランプが使用できるが、照射装置の入手のし易さや価格などから、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、LEDランプ等が使用される。
 照射光量としては、0.1~100J/cmが好ましく、より好ましくは、1~50J/cm、更に好ましくは2~30J/cm、特に好ましくは、3~20J/cmである。照射光量が少なすぎると、硬化が充分に進行しない傾向があり、多すぎると樹脂シートが黄変する傾向にある。
 照度としては、10~100000mw/cmが好ましく、より好ましくは、速光硬化の点で、50~10000mw/cm、更に好ましくは、樹脂シートの内部まで硬化させる点で、100~1000mw/cmである。
 光照射は、片面もしくは両面から行うことができる。また複数回に分けて行うことも可能である。
 本発明の樹脂シートの厚さは0.1~1mmである(帯状くぼみ部を除く)。好ましくは0.1~0.5mm、より好ましくは0.12~0.5mm、特に好ましくは0.15~0.3mmである。厚さが薄すぎるとディスプレイ用基材としての剛性が低下する傾向にあり、厚すぎるとディスプレイの軽量薄型化が困難となる傾向がある。
 本発明の樹脂シートの鉛筆硬度は3H以上である。好ましくは5H以上、特に好ましくは6H以上である。鉛筆硬度が低すぎると保護板としての表面硬度が低下する傾向にある。かかる鉛筆を上記範囲に調整するに当たっては、上述した光硬化性組成物(a)の種類や成分の含有量を適宜コントロールする手法が挙げられる。例えば、多官能(メタ)アクリレート系化合物(a1)、とりわけ多官能ウレタン(メタ)アクリレートとして3~6官能等のものを使用するなどが挙げられる。なお、鉛筆硬度の上限としては通常10Hである。
 本発明の最大の特徴は、面内の一方向に、樹脂シートを折り畳むための帯状くぼみが片面または両面に少なくとも1本形成されている点である。該帯状くぼみの配置としては、例えば、次のケース(1)~(6)が挙げられる。
 (1)樹脂シート面に1本のみ(図1、図7参照)
 (2)樹脂シート面に2本(図2参照)
 (3)樹脂シート面に3本(図3参照)
 (4)樹脂シートの一方の面と他方の面で同じ位置に1本ずつ(図4、図8参照)
 (5)樹脂シートの一方の面と他方の面で直交する形で1本ずつ(図5、図9参照)
 (6)樹脂シートの一方の面と他方の面でそれぞれ2本以上(図6、図10参照)
 ケース(1)は面中央で折り畳めるディスプレイに対応する(図12、13参照)。ケース(2)と(4)はよりスムーズに折り畳めるものである。ケース(3)は両端部も折り畳めるディスプレイに対応する。ケース(5)は縦にも横にも折り畳めるディスプレイに対応する。ケース(6)は巻き取れるディスプレイに対応する。これらの中でも、ディスプレイ最表面の滑らかさの点で、片面のみに形成するケース(1)~(3)が好ましく、より好ましくは、製造の簡便さからケース(1)である。
 帯状くぼみの形状については、樹脂シートの厚さT(mm)、帯状くぼみの深さD(mm)(図4のように両面の同一場所に形成する場合は両面の深さの合計値であり、また、深さDは帯状くぼみ断面で最も深い場所の深さとする。)及び帯状くぼみの幅W(mm)が、下記条件(1)及び(2)を満足することが好ましい。
 (1)0.05≦(T-D)≦0.2
 (2)0.5≦W≦50 
 より好ましくは、下記条件(1’)及び(2’)であり、
 (1’)0.07≦(T-D)≦0.15
 (2’)1≦W≦20
 特に好ましくは、下記条件(1’’)及び(2’’)である。
 (1’’)0.08≦(T-D)≦0.13
 (2’’)2≦W≦10
 なお、帯状くぼみの形状は、3次元形状測定機能がついたレーザー顕微鏡などで観測できる。
 (T-D)が小さすぎると、樹脂シートが割れやすい傾向にあり、逆に、大きすぎると、折り畳みが困難となる傾向にある。Wが小さすぎると、折り畳みが困難な傾向にあり、逆に、大きすぎると、帯状くぼみ部の面積が増加し、画像の視認性が低下する傾向にある。
 更に、帯状くぼみの形状は、下記条件(3)を満足することが好ましい。
 (3)20×(T-D) ≦ W ≦ 200×(T-D)
より好ましくは、下記条件(3’)であり、
 (3’)15×(T-D) ≦ W ≦ 150×(T-D)
特に好ましくは下記条件(3’’)である。
 (3’’)30×(T-D) ≦ W ≦ 100×(T-D)
 Wが小さすぎても大きすぎても、樹脂シートを折り畳んだ時に割れやすい傾向にある。Wが小さすぎると、折り畳み部の幅が狭いため応力が集中しやすく、逆に、Wが大きすぎると、帯状くぼみの幅方向の中央部に応力が集中しやすいためと推測される。なお、帯状くぼみの幅Wは均一である必要はなく、上述した範囲であればよい。帯状くぼみを樹脂シート面内に複数形成する場合、それぞれの幅Wは異なっていてもよい。また、帯状くぼみは、厳密に直線である必要は無く、数mm以下の範囲で蛇行していてもよい。
 樹脂シートの厚さTが比較的薄い0.1~0.5mm、特には0.1~0.3mmの場合、帯状くぼみの形状は、折り畳み性の点で、下記条件(I)を満足することが好ましい。
 (I)0.2×T ≦ D ≦ 0.8×T
より好ましくは、下記条件(I’)である。
 (I’)0.3×T ≦ D ≦ 0.7×T
特に好ましくは下記条件(I’’)である。
 (I’’)0.35×T ≦ D ≦ 0.65×T
 帯状くぼみの深さD(mm)は、前述した通り、帯状くぼみ断面で最も深い場所の深さである。帯状くぼみを樹脂シート面内に複数形成する場合、それぞれの深さDは異なっていてもよいが、帯状くぼみ内の帯方向での深さDは均一であることが好ましい。深さDのふれΔD(mm)は、帯状くぼみの断面形状を帯方向に沿って測定し、得られた最大の深さDmax(mm)と最小の深さDmin(mm)から、下記式に従って求められる。
   深さのふれΔD(mm)=Dmax(mm)- Dmin(mm)
 深さのふれΔD(mm)は、0.05mm以下が好ましい。より好ましくは0.03mm以下、特に好ましくは0.02mm以下である。深さのふれΔD(mm)が大きくなると、折り畳み性が低下する傾向にある。かかるΔD(mm)を低減する手法としては、レーザーの焦点合わせを精度よく行うこと、加工時のレーザー発振器やミラーの移動をスムーズに行うこと、ワーク(樹脂シート)設置台の水平度を高めること、樹脂シートの平坦性や厚み精度を向上することなどが挙げられる。
 なお、帯状くぼみ部の両端は垂直に切り立っている必要は無く、帯状くぼみ中央部から本来の表層部まではゆるやかに傾斜していることが好ましい。特に、帯状くぼみの深さD(mm)を、くぼみ中央部が最も大きく、くぼみ両端部が小さくなるよう連続的または段階的に変化させることが好ましい(図20、21参照)。段階的に変化させる場合も、各段の境界がゆるやかに傾斜していることが好ましい。また、帯状くぼみの幅Wは、くぼみ始める2点間の距離とする。
 本発明において、帯状くぼみを形成する手法としては、例えば、型転写、NC加工、サンドブラスト、ウォータージェット、レーザーアブレーションなどが挙げられるが、これらの中でも、生産性の点からNC加工とレーザーアブレーションが好ましい。より好ましくは、折り畳み性の点からレーザーアブレーション、更に好ましくは、エネルギー効率の点で赤外線レーザー、とりわけ波長9~11μmの赤外線レーザーによるレーザーアブレーションであり、特に好ましくは、装置の入手しやすさの点で、波長9.3μmまたは10.6μmの炭酸ガスレーザーを用いたレーザーアブレーションである。
 波長10.6μmの炭酸ガスレーザーを例にとって、本発明におけるレーザーアブレーションの手法を説明する(図16参照)。
 炭酸ガスレーザーは、市販の装置であれば特に限定されないが、架橋樹脂のアブレーションにはレーザー出力10~100Wのものを用いて、架橋樹脂の組成に合わせてレーザー照射条件を調整しながら行う。本発明において、例えば、推奨されるレーザー照射条件は以下の通りである。
 レーザー出力:20~60W(デューティー:10~90%)
 レーザー焦点距離:10~100mm
 レーザースポット径:0.05~0.3mm
 照射スピード:50~200mm/秒
 照射ピッチ:0.05~0.3mm
 なお、レーザースポット径とは、直径を意味するものであり、以下も同様である。
 デューティーとは出力効率(%)のことであり、レーザー本体の出力を100%とした時に、その内の何%をワークに向けて出射するかの割合を表す数値である。かかるデューティーは、通常のレーザー照射機に標準機能として装着されている出力設定装置で設定することができる。例えば、レーザー出力50Wのレーザー照射機で、デューティーを10%に設定した場合、5W分の出力を得ることができる。
 レーザー焦点距離は、レーザー照射機に装着された集光レンズで決定される値である。レーザー照射の時は、通常、焦点距離にワーク(樹脂シート)表面を設置してアブレーション加工を行う。しかし、充分な照射エネルギーがあれば、デフォーカス状態でも加工は可能であり、かかる場合、レーザー光の焦点位置が、樹脂シートの照射面から上または下方向に0.5~10mmの範囲でずれていることが好ましく、特には0.7~5mm、更には1~3mmが好ましい。かかるデフォーカスにより、ワークに照射されるレーザースポット径(照射面積)が拡大するため、デフォーカス状態でのレーザー照射は、幅広の帯状くぼみを形成する時には有利な手法である。
 デフォーカスした場合、レーザースポット径(R)とピッチ(P)の関係は以下の式であることが好ましい。
  0.1≦P/R≦1 
更に好ましくは、
  0.2≦P/R≦0.8 
特に好ましくは、
  0.3≦P/R≦0.7 
である。
 当然のことながら、レーザー出力X(W)が大きい場合には、デューティーY(%)を下げるか、照射スピード(mm/秒)を上げて、照射エネルギーを調整する必要がある。最適な照射エネルギー(レーザー出力(W)×デューティー(%)/100)は、帯状くぼみの形状によるが、帯状くぼみの深さDが大きくなるほど、照射エネルギーを大きくする必要がある。
 なお、レーザー光を直線状に走査させる機構は、レーザー発振器自身が動いてもよいし、複数の反射ミラーを用いて照射位置を移動させてもよい。または、レーザーを固定してワーク(樹脂シート)が設置された台を動かしてもよい。更に、レーザーを複数個設置し、大面積なワーク(樹脂シート)に、一度に複数本の帯状くぼみを形成してもよい。
 本発明において、帯状くぼみの深さD(mm)は、デューティー(%)や照射スピードを調整することにより制御できるが、生産性の点から照射スピードは位置精度が確保できる最大値として、デューティー(%)を調整することが好ましい。
 帯状くぼみの幅W(mm)は、レーザー光をデフォーカスしたり、シリンドリカルレンズや回折格子により幅広に拡散するなどレンズの仕様でも制御できるが、後述する線状くぼみの形状を制御する点から、レーザー照射の位置を少しずつずらしながら複数回照射することで制御する方が好ましい。即ち、照射ピッチを設定して、レーザーを複数回走査させることが好ましい。
 本発明においては、帯状くぼみの中に、更に、線状くぼみが複数形成されていることが曲率半径を低減する点で好ましい(図11参照)。より好ましくは、線状くぼみの深さd(mm)と幅w(mm)が、下記条件(4)及び(5)を満足することである。
  (4)0.001≦d≦0.05
  (5)0.01≦w≦0.5
 より好ましくは、下記条件(4’)及び(5’)であり、
 (4’)0.003≦d≦0.015
 (5’)0.03≦w≦0.3
 特に好ましくは(4’’)及び(5’’)である。
 (4’’)0.005≦d≦0.01
 (5’’)0.05≦w≦0.2
 dが小さすぎると、折り畳み易さの効果に乏しい傾向にあり、逆に、大きすぎると、ハンドリング時に樹脂シートが割れやすい傾向にある。wが小さすぎても大きすぎても、折り畳み易さの効果に乏しい傾向にある。なお、線状くぼみの深さdや幅wは均一である必要はなく、上述した範囲であればよい。帯状くぼみ内に複数本の線状くぼみを形成する場合には、それぞれの深さdや幅wは異なっていてもよい。また、線状くぼみは、厳密に直線である必要は無く、1mm以下の範囲内であれば蛇行していてもよい。
 線状くぼみの深さd(mm)は、上述したレーザー照射条件と共に、レーザーの照射ピッチを調整することで制御できる。すなわち、照射ピッチを短くすれば平坦になり、逆に、照射ピッチを長くすれば深くできる。線状くぼみの幅w(mm)は、レーザースポット径を調節することで制御できるが、深さ同様、照射ピッチを調整することで制御することが好ましい。
 更に、線状くぼみの高速な形成方法として、レーザー光を回折格子により2本以上のビームに分割し、一度に複数本の線状くぼみを形成してもよい。例えば、レーザーのデューティーを100%に設定し、発信器から出射したレーザー光を回折格子により10本のビームに分割する(各ビームはデューティー10%に相当する)。分割する本数は、1次元状ならば2~20本が好ましい。なお、2次元状に分割することも可能である。分割された複数のレーザー光は、更に、集光レンズを取り付けることにより平行光にすることができる。その場合の分割ピッチは、0.1~1mmが好ましい。かかる手法により、レーザー装置の能力を充分に発揮することができる。
 本発明の樹脂シートは1枚ずつ製造されてもよいが、長尺の原反や幅広の原反に帯状くぼみを形成した後、所望サイズにカットして多面取りすることも可能である。例えば、図19のように、搬送される長尺の原反の中央部に、固定されたレーザー装置よりレーザー光を照射して、連続的に帯状くぼみを形成した後、搬送方向と垂直にカットすればよい。必要に応じて、カット前の原反を巻き取ることも可能である。
 レーザーアブレーションの後に、帯状くぼみ部を充分洗浄することが好ましい。洗浄の手法としては、例えば、ブラッシング、シャワー、リンス、ディップなどの公知の手法が挙げられる。これらの中でも、樹脂シート全体を洗浄できる点で、ディップ方式が好ましく、より好ましくはくぼみ部に堆積したレーザー分解物を除去する点で、有機溶剤を用いたディップ方式、更に好ましくはディップ方式で超音波洗浄することが好ましい。特に好ましくは、有機溶剤として、1-アセトキシプロパン、アセトン、イソプロピルアルコールなどの極性溶剤を用いたディップ方式の超音波洗浄である。かかる場合、有機溶剤の入った複数のディップ槽を用意して、順次、樹脂シートをより清浄な有機溶剤の入ったディップ槽に移行させながら洗浄することが好ましい。洗浄後に、エアナイフなどでくぼみ部に残存する有機溶剤を除去することも可能である。
 かくして、本発明の折り畳みが可能な樹脂シートが得られる。本発明の樹脂シートは、折り畳みディスプレイのインパクトの点で、樹脂シートを折り畳んだ際の折り畳み部の曲率半径(屈曲可能な半径)が3mm以下を満足することが好ましく、より好ましくは2mm以下、特に好ましくは1mm以下である。かかる曲率半径が大きすぎると折り畳み性が低下する傾向にある。なお、曲率半径の下限としては通常0.1mmである。
 以下、本発明の樹脂シートの物性に関して説明する。但し、かかる物性は帯状くぼみ部を除くものである。
 本発明の樹脂シートの光線透過率は、85%以上であることが好ましく、より好ましくは88%以上、特に好ましくは90%以上である。光線透過率が小さすぎるとディスプレイの輝度が低下する傾向にある。なお、光線透過率の上限としては通常99%である。
 本発明の樹脂シートの表面粗さRaは、20nm以下であることが好ましく、より好ましくは15nm以下、特に好ましくは10nm以下である。表面粗さRaが大きすぎると、保護板では高級感が失われ、電極基板やタッチパネル基板では導電膜にクラックが入りやすい傾向にある。なお、表面粗さRaの下限としては通常1nmである。
 本発明の樹脂シートのガラス転移温度は、150℃以上であることが、耐熱性の点から好ましい。ガラス転移温度の好ましい範囲は180~400℃、特に好ましくは200~300℃である。かかるガラス転移温度を上記範囲に調整するに当たっては、上述した光硬化性組成物(a)の種類や成分の含有量を適宜コントロールする手法が挙げられる。例えば、多官能(メタ)アクリレート系化合物(a1)の官能基数を上げるなどの手法が挙げられる。
 本発明の樹脂シートの曲げ弾性率は、3~5GPaであることが好ましい。更に好ましくは3.5~4.5GPaである。曲げ弾性率が低すぎると、ディスプレイの形状保持が困難となる傾向にある。逆に、曲げ弾性率が高すぎると、折り畳み性が低下し、また加工時に割れが発生しやすい傾向にある。かかる曲げ弾性率を上記範囲に調整するに当たっては、上述した光硬化性組成物(a)の種類や成分の含有量を適宜コントロールする手法が挙げられる。例えば、多官能(メタ)アクリレート系化合物(a1)、とりわけウレタン(メタ)アクリレートとして2~6官能等のものを使用するなどが挙げられる。
 本発明の樹脂シート[I]において、樹脂シートを折り畳むための帯状くぼみを透明な樹脂、とりわけ架橋樹脂(B)で埋めることにより、両面共に平坦である樹脂シート[II]とすることができる(図14参照)。
 透明な樹脂で埋める方法としては、ダイコート、ディップコート、スピンコート、スプレーコート、バーコート、スクリーン印刷、インクジェット等の方法が挙げられる。
 かかる透明な樹脂の屈折率は樹脂シートと一致していることが、樹脂と帯状くぼみ部との界面反射を低減する点で好ましい。
 即ち、樹脂シートを折り畳むための帯状くぼみが、該樹脂シートの屈折率と同一の屈折率を有する樹脂、とりわけ架橋樹脂(B)により充填されている樹脂シートとすることが好ましい。
 なお、以下の説明においては、帯状くぼみに樹脂が充填されていない樹脂シートを樹脂シート[I]、帯状くぼみが樹脂により充填されている樹脂シートを樹脂シート[II]と表記することがあり、[I]、[II]を付していない場合は、樹脂シート[I]と[II]の総称を意味することがある。
 ここで、屈折率が同一というのは、樹脂シートと透明樹脂の屈折率差が±0.1以内であることを意味する。好ましくは屈折率差が±0.01以内、特に好ましくは屈折率差が±0.005以内である。
 また、透明樹脂のガラス転移温度としては、通常150℃以下、好ましくは100℃以下、更に好ましくは80℃以下である。なお、通常下限値としては-100℃である。かかるガラス転移温度が高すぎると折り畳み性が低下する傾向がある。
 樹脂としては、例えば、ウレタン樹脂、シリコン樹脂、アクリル樹脂、光および/または熱硬化性樹脂等が挙げられるが、埋め込み工程の簡便さの点で架橋樹脂(B)が好ましく、架橋樹脂(B)の中でも、生産性の点から光硬化性樹脂が好ましい。帯状くぼみに液状の光硬化性組成物(b)を充填し、光硬化して平面化することができる。
 帯状くぼみを平面化するには、帯状くぼみ部のみに樹脂を充填してもよいし、帯状くぼみとその周辺、または帯状くぼみのある面全体を樹脂で被覆してもよい。帯状くぼみ部のみに樹脂を充填するには、帯状くぼみの容積に見合った樹脂量を塗布する手法、帯状くぼみとその周辺に樹脂を塗布した後、スキージなどで余分な樹脂を除去する手法などが挙げられる。
 かかる光硬化性組成物(b)としては、特に限定されず、光硬化性組成物(a)の説明で記載したもの等から適宜選択して用いることができる。特に好ましくは、多官能(メタ)アクリレート系化合物(a1)及び光重合開始剤(a2)を含有してなる(メタ)アクリル系組成物であり、より好ましくは、密着性の点で多官能(メタ)アクリレート系化合物(a1)が多官能ウレタン(メタ)アクリレート系化合物であり、更に好ましくは、単官能(メタ)アクリレート系化合物を含有させることが好ましく、殊に好ましくは、ブチル(メタ)アクリレート等のアルキル基の炭素数が1~20の脂肪族(メタ)アクリレートを含有させることが、帯状くぼみとの密着性が高まる点で好ましい。
 ブチル(メタ)アクリレートを含有する場合、ブチル(メタ)アクリレートの含有量は、多官能(メタ)アクリレート系化合物(a1)を100重量部とした時に、10~100重量部であることが好ましい。
 光硬化性組成物(b)には、上述と同様の光重合開始剤を含有させることが好ましい。かかる光硬化性組成物(b)の屈折率は、低屈折率化の場合はフッ素化アルキル基含有モノマーを配合し、逆に、高屈折率化の場合は芳香環含有モノマーや硫黄含有モノマーを配合することにより調整できる。また、低屈折率や高屈折率なフィラーを配合することでも調整できる。
 本発明において、樹脂シート[I]を折り畳むための帯状くぼみに、該樹脂シート[I]の屈折率と同一の屈折率を有する樹脂、とりわけ架橋樹脂(B)が充填されている樹脂シート[II]についても、折り畳んだ際の折り畳み部の曲率半径(屈曲可能な半径)が3mm以下を満足することが好ましく、より好ましくは2mm以下、特に好ましくは1mm以下である。かかる曲率半径が大きすぎると折り畳み性が低下する傾向にある。なお、曲率半径の下限としては通常0.1mmである。
 また、本発明において、樹脂シート[I]や樹脂シート[II]の片面に粘着剤層が形成されてなる粘着剤層付き樹脂シートとすることが内部デバイスと貼り合わせることが可能となる点で好ましい。粘着剤層は、樹脂シートの片面に形成することが好ましく、帯状くぼみがある面の場合には、粘着剤で帯状くぼみを埋めると共に、帯状くぼみ以外の部分にも粘着剤組成物を塗布し、粘着剤層を形成することが好ましい(図15参照)。この点から、粘着剤の屈折率も樹脂シート[I]の屈折率と一致していることが好ましい。
 かかる粘着剤として、例えば、アクリル系樹脂と架橋剤よりなる粘着剤や光硬化性組成物よりなる粘着剤を用いることができる。
 また、本発明の樹脂シートは、粘着剤や接着剤を用いて、他の樹脂シート[α]に貼り合わせることも可能であるし、樹脂シート原反を樹脂シート[α]と貼り合せた後に帯状くぼみを形成することも可能である。かかる場合、樹脂シート[α]としては、熱可塑性樹脂よりなるシートが好ましい。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、トリアセチルセルロース(TAC)などが挙げられる。
 更に、樹脂シート[α]の上で、架橋樹脂(A)よりなる樹脂シートを成形し、かかる樹脂シート[α]/樹脂シートよりなる積層体の樹脂シート側に帯状くぼみを形成してもよい。
 本発明の樹脂シートは、レーザーカット、CNCカット、打ち抜きカット、超音波カット、ウォータージェットカット、スクライブカット、ルーターカット、ダイシングカットなど公知の手法で所望サイズにカットすることも可能である。
 なお、レーザーアブレーションでくぼみ加工を行う場合、透明な樹脂、とりわけ架橋樹脂(B)による埋め込み工程や粘着剤層の形成は、密着性の点で、レーザーアブレーション後または帯状くぼみ部の洗浄後、速やかに行うことが好ましい。時間的には数日以内、より好ましくは数時間以内、特に好ましくは数分以内である。密着性の向上は、レーザーアブレーションにより活性化された帯状くぼみ表面と、樹脂や粘着剤とが化学反応を起こすためと推測される。
 また、本発明の樹脂シートには、種々の用途に応じて、ハードコート層、印刷層、ガスバリア膜、透明導電膜を形成することができる。
 透明導電膜としては、インジウムとスズの酸化物(ITO)、インジウム/ガリウム//亜鉛の酸化物(IGZO)などの無機膜や、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などの有機膜が挙げられる。これらの中でもITO膜が導電性と透明性の点で好ましい。かかる透明導電膜の膜厚は、通常100~5000Å、好ましくは200~3000Å、更に好ましくは300~2000Åである。かかる膜厚が厚すぎると基板にうねりが発生する傾向にあり、薄すぎると導電性が不充分となる傾向にある。
 透明導電膜を成膜するに当たっては、成膜温度は、好ましくは50~300℃、より好ましくは100~250℃、更に好ましくは130~200℃である。成膜温度が低すぎると導電性が不充分となる傾向にあり、逆に、高すぎると樹脂シートの光線透過率が低下する傾向にある。
 得られる透明導電膜の抵抗値は、好ましくは500Ω/□以下、より好ましくは200Ω/□以下、更に好ましくは100Ω/□以下であり、高すぎるとディスプレイの表示性能が低下する傾向にある。
 かくして、本発明の樹脂シートを生産性よく製造することができ、得られた樹脂シートは折り畳みが可能であるばかりか、光学特性や熱機械特性に優れ、ディスプレイや照明用の保護板、電極基板、タッチパネル基板として好適である。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 尚、例中「部」、「%」とあるのは、重量基準を意味する。
(1)樹脂シートの折り曲げ可能な曲率半径(mm)
 JIS K5600-5-1:1999 円筒形マンドレル法による耐屈曲性の試験(タイプ1の試験装置で、折り曲げ時間2秒、23℃、50%環境下で試験)に準じて、50mm×100mmの樹脂シートを、帯状くぼみ部に沿って折り曲げ(帯状くぼみが片面のみの場合は、帯状くぼみがある面を外側にした)、割れたりヒビが入らない曲率半径(mm)を1mm刻みで測定した。
(2)折り畳み性
 50mm×100mmの樹脂シートを手で180°折り畳み、先端の帯状くぼみ部の曲率半径を約3mm(直径6mm)にする試験を繰り返し行い(帯状くぼみが片面のみの場合は、帯状くぼみがある面を外側にした)、下記の通り評価した。
  ○・・・1万回繰り返しても割れたりヒビが入らなかった。
  △・・・1回目で割れたりヒビが入った。
  ×・・・1回目では割れたりヒビは入らなかったが1万回までに割れたりヒビが入った。
(3)くぼみの形状測定
 キーエンス社製、形状測定レーザーマイクロスコープ「VK-X110」を用いて測定した。
(4)帯状くぼみ深さDのふれΔD(mm)
 50mm×100mmの樹脂シートに形成された帯状くぼみの断面形状を、帯に沿って10箇所測定し、得られた最大の深さDmax(mm)と最小の深さDmin(mm)から、下記式に従って算出した。
   深さのふれΔD(mm)=Dmax(mm)- Dmin(mm)
(5)鉛筆硬度
 JIS K-5600に準じて、50mm×100mmの樹脂シートの平坦面の、鉛筆硬度を測定した。
(6)光線透過率(%)
 150mm×150mmの樹脂シートから50mm×50mmの試験片を切り出し、平坦となるよう金枠に取り付けた後、日本電色社製、ヘイズメーター「NDH-2000」で、全光線透過率(%)を測定した。
(7)表面粗さ
 JIS B0601:2001に準じて、東京精密社製「サーフコム570A」を用いて、樹脂シートの平坦面の表面粗さRa(nm)を測定した(カットオフ:0.8μm、測定長:1mm)。
(8)曲げ弾性率(GPa)
 長さ25mm×幅10mmの樹脂シートを用いて、島津製作所社製オートグラフ「AG-5kNE」(支点間距離20mm、0.5mm/分)で、平坦面の曲げ弾性率(GPa)を測定した。
(9)ガラス転移温度(℃)
 長さ20mm×幅5mmの樹脂シート(平坦面)を用い、レオロジー社製動的粘弾性装置「DVE-V4型 FTレオスペクトラー」の引っ張りモードを用いて、周波数10Hz、昇温速度3℃/分、歪0.025%で測定を行い、得られた複素弾性率の実数部(貯蔵弾性率)に対する虚数部(損失弾性率)の比(tanδ)を求め、このtanδの最大ピーク温度をガラス転移温度(℃)とした。
(10)表面抵抗値(Ω/□)
 三菱化学社製の4端子法抵抗測定器(ロレスターMP)を用いて、表面抵抗値(Ω/□)を測定した。
 また、実施例及び比較例に用いる樹脂シートとして、以下のものを用意した。
・樹脂シート(S1):厚さ0.2mmの樹脂シート(日本合成化学工業社製「ORGA LT」、鉛筆硬度7H、光線透過率92%、表面粗さRa7nm、曲げ弾性率4GPa、ガラス転移温度250℃)
・樹脂シート(S2):厚さ0.2mmの樹脂シート(日本合成化学工業社製「ORGA DX」、鉛筆硬度3H、光線透過率92%、表面粗さRa7nm、曲げ弾性率3GPa、ガラス転移温度200℃)
・樹脂シート(S3):厚さ0.1mmのPETシート、鉛筆硬度3H、光線透過率88%、表面粗さRa15nm、曲げ弾性率3GPa、ガラス転移温度120℃)
<実施例1>
〔樹脂シート[I]の作製〕
 樹脂シート(S1)を50mm×100mmに切断し、長手方向の中央にレーザーアブレーションにより帯状くぼみと線状くぼみを形成した。レーザー装置及びレーザー照射条件は以下のとおりである。
レーザー装置:プロテック製炭酸ガスレーザー「LP-200A」(波長10.6μm)
レーザー出力:50W(デューティー:13.6%)
レーザー焦点距離:38mm
レーザースポット径:0.15mm
照射スピード:80mm/秒
照射ピッチ:0.1mm
照射回数:10回
 次いで、樹脂シートを、有機溶剤として1-アセトキシプロパンを用いて、ディップ方式で超音波洗浄した。得られた樹脂シート[I]の帯状くぼみと線状くぼみの形状を観測したところ、以下の通りであった。
帯状くぼみの深さD:0.07mm
帯状くぼみの幅W:1mm
線状くぼみの深さd:0.01mm
帯状くぼみの幅w:0.1mm
深さのふれΔD:0.02mm
 得られた樹脂シート[I]の折り畳み部の曲率半径は3mm(直径6mm)であり、良好な折り畳み性を有していた。
〔樹脂シート[II]の作製1〕
 得られた樹脂シート[I]の帯状くぼみ部に、ディスペンサーを用いて、下記のウレタンアクリレート60部、ブチルアクリレート40部、1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ社製「Irgacure184」)1部よりなる光硬化性組成物(b)を、帯状くぼみが平坦になるよう塗布、充填し、スポットUV機を用いて光量1Jで光硬化を行って、両面共に平坦な樹脂シート[II]を得た。この架橋樹脂(B)の屈折率は1.49である。
 得られた樹脂シート[II]の折り曲げ可能な曲率半径は2mm(直径4mm)であり、良好な折り畳み性を有していた。また、架橋樹脂(B)の屈折率が樹脂シート(S1)の屈折率1.52に近いため、帯状くぼみ部はほぼ視認できなかった。
〔ウレタンアクリレート〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、ジシクロヘキシルメタンジイソシアナート373.0g(1.42モル)、ポリテトラメチレンエーテルグリコール(水酸基価173mgKOH/g)462.0g(0.71モル)、反応触媒としてジブチルスズジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が7.1%となった時点で、更に、2-ヒドロキシエチルアクリレート165.0g(1.42モル)、重合禁止剤としてハイドロキノンメチルエーテル0.01gを約1時間かけて滴下し、そのまま反応を継続し、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタンアクリレートを得た。
〔樹脂シート[II]の作製2〕
 得られた樹脂シート[I]の帯状くぼみ部に、ディスペンサーを用いて、上記のウレタンアクリレート34部、ブチルアクリレート15部、ビスフェノールA骨格ジアクリレート(新中村化学工業社製、NKエステル「A-BPE-4」)51部、1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ社製、「Irgacure184」)0.5部よりなる光硬化性組成物(b)を、帯状くぼみが平坦になるよう塗布、充填し、スポットUV機を用いて光量1Jで光硬化を行って、両面共に平坦な樹脂シート[II]を得た。この架橋樹脂(B)の屈折率は1.52である。また、架橋樹脂(B)のガラス転移温度は57℃である。
 得られた樹脂シート[II]の折り曲げ可能な曲率半径は2mm(直径4mm)であり、良好な折り畳み性を有していた。また、架橋樹脂(B)の屈折率が樹脂シート(S1)の屈折率1.52と同一であるため、帯状くぼみ部は視認できなかった。
〔粘着剤層付き樹脂シートの作製〕
 上記で得られた樹脂シート[I]の帯状くぼみ面に、アクリル系樹脂(日本合成化学工業社製、「コーポニール5740」)100部と架橋剤(トリレンジイソシアネートのトリメチロールプロパンアダクト体;日本ポリウレタン社製、商品名「コロネートL」)20部からなる粘着剤組成物を、乾燥後の厚さが0.1mmとなるように塗布し、乾燥させて粘着剤層付き樹脂シートを得た。得られた粘着剤層付き樹脂シートの帯状くぼみは平坦化されており、該面を市販のタッチパネルに貼り合わせたところ、気泡が入ることもなく、良好な貼り合わせ性を有していた。更に、リワーク性も良好であり、粘着剤層付き保護板として有用である。
〔タッチパネル基板の作製〕
 上記で得られた樹脂シート[I]の帯状くぼみとは逆面に、スパッタ法にて180℃で厚さ300ÅのITOよりなる透明導電膜を成膜し、透明導電膜付き基板を得たところ、表面抵抗値は100Ω/□であり良好であった。
<実施例2>
 実施例1において、照射回数を20回にして帯状くぼみの幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例3>
 実施例1において、照射回数を40回にして帯状くぼみの幅Wを4mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例4>
 実施例1において、照射回数を60回にして帯状くぼみの幅Wを6mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例5>
 実施例1において、照射回数を80回にして帯状くぼみの幅Wを8mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例6>
 実施例1において、照射回数を100回にして帯状くぼみの幅Wを10mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例7>
 実施例1において、デューティーを14%、照射回数を20回にして、帯状くぼみの深さDを0.09mm、幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例8>
 実施例1において、デューティーを14.5%、照射回数を20回にして、帯状くぼみの深さDを0.1mm、幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
<実施例9>
 実施例1において、デューティーを15%、照射回数を20回にして帯状くぼみの深さDを0.11mm、幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
<実施例10>
 実施例1において、厚さ0.15mmの樹脂シート(樹脂シート(S1)の厚みのみを調整した。)を用いることと、照射回数を20回にして帯状くぼみの幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例11>
 実施例1において、照射スピードを240mm/秒、照射ピッチを0.05mm、照射回数を40回にして、帯状くぼみの深さDを0.15mm、幅Wを2mm、線状くぼみの深さdを0.01mm未満、幅wを0.05mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例12>
 実施例1において、照射ピッチを0.15mm、照射回数を12回にして、帯状くぼみの深さDを0.05mm、幅Wを2mm、線状くぼみの深さdを0.05mm、幅wを0.15mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。線状くぼみの効果が発現し、曲率半径が小さくなった。
<実施例13>
 実施例1において、厚さ0.3mmの樹脂シート(樹脂シート(S1)の厚みのみを調整した。)を用い、デューティー19%、照射回数を20回にして、帯状くぼみの深さDを0.19mm、幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例14>
 実施例1において、樹脂シート(S2)を用い、照射回数を20回にして帯状くぼみの幅Wを2mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例15>
 実施例1において、デューティー22%、照射スピード400mm/秒、照射回数20回とし、帯状くぼみの深さDを0.05mm、幅Wを2mm、線状くぼみの深さdを0.03mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例16>
 実施例1において、以下のレーザー装置及びレーザー照射条件を用いて、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
レーザー装置:飯田工業社製レーザー加工機「L706PCU」(波長9.3μm)
レーザー出力:20W(デューティー:30%)
レーザー焦点距離:38mm
レーザースポット径:0.15mm
照射スピード:300mm/秒
照射ピッチ:0.1mm
照射回数:20回
帯状くぼみの深さD:0.16mm
帯状くぼみの幅W:2mm
線状くぼみの深さd:0.16mm
帯状くぼみの幅w:0.1mm
深さのふれΔD:≦0.01mm
<実施例17>
 実施例16において、デューティー10%、照射回数40回とし、帯状くぼみの深さDを0.05mm、幅Wを4mm、線状くぼみの深さdを0.05mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例18>
 実施例16において、照射回数40回とし、帯状くぼみの幅Wを4mmとした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例19>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から1mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:300mm/秒
照射ピッチ:0.1mm
照射回数:40回
帯状くぼみの深さD:0.09mm
帯状くぼみの幅W:4mm
線状くぼみの深さd:0.05mm
線状くぼみの幅w:0.1mm
深さのふれΔD:≦0.01mm
<実施例20>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から1mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:265mm/秒
照射ピッチ:0.1mm
照射回数:50回
帯状くぼみの深さD:0.10mm
帯状くぼみの幅W:5mm
線状くぼみの深さd:0.03mm
線状くぼみの幅w:0.1mm
深さのふれΔD:≦0.01mm
<実施例21>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から1mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:220mm/秒
照射ピッチ:0.1mm
照射回数:50回
帯状くぼみの深さD:0.12mm
帯状くぼみの幅W:5mm
線状くぼみの深さd:0.03mm
線状くぼみの幅w:0.1mm
深さのふれΔD:≦0.01mm
<実施例22>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から1mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:100回
帯状くぼみの深さD:0.10mm
帯状くぼみの幅W:5mm
線状くぼみの深さd:<0.01mm
線状くぼみの幅w:0.05mm
深さのふれΔD:≦0.01mm
<実施例23>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から1.5mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。本実施例の帯状くぼみは、図21で示されるような段階的な形状を有するものである。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:10回
さらに、上記照射10回後に、引き続き下記の条件で照射を行った。
デューティー:40%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:10回
さらに、上記照射合計20回後に、引き続き下記の条件で照射を行った。
デューティー:50%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:60回
さらに、上記照射合計80回後に、引き続き下記の条件で照射を行った。
デューティー:40%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:10回
さらに、上記照射合計90回後に、引き続下記の条件で照射を行った。
デューティー:30%
レーザースポット径:0.17mm
照射スピード:450mm/秒
照射ピッチ:0.05mm
照射回数:10回
加工の順番に、
帯状くぼみの深さD1:0.13mm
帯状くぼみの幅W1:0.5mm
線状くぼみの深さd1:<0.01mm
線状くぼみの幅w1:0.05mm
深さのふれΔD1:≦0.01mm
帯状くぼみの深さD2:0.19mm
帯状くぼみの幅W2:0.5mm
線状くぼみの深さd2:<0.01mm
線状くぼみの幅w2:0.05mm
深さのふれΔD2:≦0.01mm
帯状くぼみの深さD3:0.22mm
帯状くぼみの幅W3:3.0mm
線状くぼみの深さd3:<0.01mm
線状くぼみの幅w3:0.05mm
深さのふれΔD3:≦0.01mm
帯状くぼみの深さD4:0.19mm
帯状くぼみの幅W4:0.5mm
線状くぼみの深さd4:<0.01mm
線状くぼみの幅w4:0.05mm
深さのふれΔD4:≦0.01mm
帯状くぼみの深さD5:0.13mm
帯状くぼみの幅W5:0.5mm
線状くぼみの深さd5:<0.01mm
線状くぼみの幅w5:0.05mm
深さのふれΔD5:≦0.01mm
<実施例24>
 実施例16において、ワーク(樹脂シート表面)をレーザー焦点から5mm離したデフォーカス状態で、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:80%
レーザースポット径:0.62mm
照射スピード:200mm/秒
照射ピッチ:無し
照射回数:1回
帯状くぼみの深さD:0.1mm
帯状くぼみの幅W:0.6mm
線状くぼみ:無し
深さのふれΔD:≦0.01mm
<実施例25>
 実施例16において、レーザー装置にシリンドリカルレンズを取り付けてレーザー光を幅広に拡散させ(図17参照)、レーザー照射を下記条件に変更し、くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:80%
レーザースポット径:0.12mm(走査方向)×1mm
照射スピード:188mm/秒
照射ピッチ:1mm
照射回数:40回
帯状くぼみの深さD:0.1mm
帯状くぼみの幅W:40mm
線状くぼみの深さd:0.005mm
線状くぼみの幅w:1mm
深さのふれΔD:≦0.01mm
<実施例26>
 実施例16において、レーザー装置に回折格子(住友電工社製、分岐DOE「DBS001」)と集光レンズを取り付けてレーザー光を平行な8本のビームに分割し(分割ピッチ0.5mm)(図18参照)、レーザー照射を下記条件に変更し、帯状くぼみを下記形状にした以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
デューティー:80%
レーザー焦点距離130mm
照射スピード:38mm/秒
照射ピッチ:0.1mm
照射回数:5回
帯状くぼみの深さD:0.1mm
帯状くぼみの幅W:4mm
線状くぼみの深さd:0.01mm
帯状くぼみの幅w:0.1mm
深さのふれΔD:≦0.01mm
<実施例27>
 実施例1において、更に長手方向中央の帯状くぼみの両横それぞれの側に、1mmの間隔をあけて1本の帯状くぼみを形成し、計3本の帯状くぼみを形成すること以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例28>
 実施例1において、更に長手方向中央の帯状くぼみの両横それぞれの側に、3mmの間隔をあけた12本の帯状くぼみ(形状は実施例1と同様。)を形成し、計25本の帯状くぼみを形成すること以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例29>
 実施例1において、デューティーを12.6%、帯状くぼみの深さDを0.05mmとし、長辺方向の中央だけでなく、短辺方向の中央にも帯状くぼみを形成すること以外は同様にして、樹脂シート[I]を得た。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例30>
 実施例1において、デューティーを12.6%、帯状くぼみの深さDを0.05mmとし、長辺方向の中央だけでなく、裏面の短辺方向の中央にも帯状くぼみを形成すること以外は同様にして、樹脂シート[I]を得た(図5参照)。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例31>
 実施例1において、デューティーを12.6%、帯状くぼみの深さDを0.05mmとし、裏面の長手方向中央にも帯状くぼみを形成すること以外は同様にして、樹脂シート[I]を得た(図4参照)。
 得られた樹脂シート[I]について、実施例1と同様の評価を行った。
<実施例32>
 樹脂シート(S1)の表面に、サンドブラスト加工で表に示される帯状くぼみを形成し、樹脂シート[I]を得た。得られた樹脂シート[I]に線状くぼみは存在しない。
〔樹脂シート[II]の作製〕
 得られた樹脂シート[I]の帯状くぼみ部に、ディスペンサーを用いて、上記ウレタンアクリレート34部、ブチルアクリレート15部、ビスフェノールA骨格ジアクリレート(新中村化学工業社製、NKエステル「A-BPE-4」)51部、1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ社製「Irgacure184」)0.5部よりなる光硬化性組成物(b)を、帯状くぼみが平坦になるよう塗布、充填し、スポットUV機を用いて光量1Jで光硬化を行って、両面共に平坦な樹脂シート[II]を得た。
 得られた樹脂シート[II]について、実施例1と同様の評価を行った。
<実施例33>
 樹脂シート(S1)の表面に、NC加工で表に示される帯状くぼみを形成し、樹脂シート[I]を得た。得られた樹脂シート[I]に線状くぼみは存在しない。
〔樹脂シート[II]の作製〕
 得られた樹脂シート[I]の帯状くぼみ部に、ディスペンサーを用いて、上記ウレタンアクリレート34部、ブチルアクリレート15部、ビスフェノールA骨格ジアクリレート(新中村化学工業社製、NKエステル「A-BPE-4」)51部、1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ社製「Irgacure184」)0.5部よりなる光硬化性組成物(b)を、帯状くぼみが平坦になるよう塗布、充填し、スポットUV機を用いて光量1Jで光硬化を行って、両面共に平坦な樹脂シート[II]を得た。
 得られた樹脂シート[II]について、実施例1と同様の評価を行った。
<比較例1>
 帯状くぼみの無い樹脂シート(S1)について、実施例1と同様の評価を行った。
 結果は表に示されるとおり、折り畳みは困難であった。
<比較例2>
 樹脂シート(S3)上に、下記のウレタンアクリレート100部と1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ社製「Irgacure184」)5部よりなるハードコート剤を塗布し、光量1Jで光硬化することにより、0.1mm厚のハードコート層を形成した(総厚0.2mm)。得られたハードコート付き樹脂シートは、曲率半径30mmでハードコート層にクラックが入り、折り畳みは不可能であった。
〔ウレタンアクリレート〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート192.0g(0.86モル)と、ペンタエリスリトールトリアクリレート〔ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物(水酸基価120mgKOH/g)〕808.0g(1.73モル)を仕込み、重合禁止剤としてハイドロキノンメチルエーテル0.01g、反応触媒としてジブチルスズジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタンアクリレートを得た。
 実施例及び比較例の評価結果を表1~3に示す。
[規則26に基づく補充 05.06.2015] 
Figure WO-DOC-TABLE-1
[規則26に基づく補充 05.06.2015] 
Figure WO-DOC-TABLE-2
[規則26に基づく補充 05.06.2015] 
Figure WO-DOC-TABLE-3
 上記結果の通り、実施例においては、良好な折り畳み性を有する樹脂シートを容易に得ることができ、得られた樹脂シートの光学特性、機械特性ともに良好であるのに対して、比較例においては、いずれも折り畳み性を有する樹脂シートを得ることができず、実用に供することができなかった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明により得られる折り畳み性を有する樹脂シートは、様々な光学材料、電子材料に有利に利用できる。例えば、保護シート、タッチパネル、液晶基板、有機/無機EL用基板、PDP用基板、電子ペーパー用基板、導光板、位相差板、光学フィルター等、各種ディスプレイ用部材、照明部材、光ディスク基板を初めとする記憶・記録用途、薄膜電池基板、太陽電池基板などのエネルギー用途、光導波路などの光通信用途、更には機能性フィルム・シート、各種光学フィルム・シート用途に利用できる。また、光学材料、電子材料の他にも、例えば、自動車用材料、建材用材料、医療用材料、文房具などにも利用できる。とりわけ、粘着剤層付き樹脂シート、ディスプレイ用保護板、電極基板、タッチパネル基板、有機EL照明用の保護板、導光板等の用途に有用である。
 
 

Claims (24)

  1.  架橋樹脂(A)よりなる厚さ0.1~1mmで鉛筆硬度が3H以上の透明な樹脂シートであって、面内の一方向に、樹脂シートを折り畳むための帯状くぼみが、片面または両面に少なくとも1本形成されていることを特徴とする樹脂シート。
  2.  帯状くぼみが片面の中央に1本形成されていることを特徴とする請求項1記載の樹脂シート。
  3.  厚さが0.1~0.5mmであることを特徴とする請求項1または2記載の樹脂シート。
  4.  樹脂シートの厚さT(mm)、帯状くぼみの深さD(mm)及び帯状くぼみの幅W(mm)が、下記条件(1)及び(2)を満足することを特徴とする請求項1~3いずれか一項に記載の樹脂シート。
    (1)0.05≦(T-D)≦0.2
    (2)0.5≦W≦50
  5.  樹脂シートの厚さT(mm)、帯状くぼみの深さD(mm)及び帯状くぼみの幅W(mm)が、更に、下記条件(3)を満足することを特徴とする請求項1~4いずれか一項に記載の樹脂シート。
    (3)20×(T-D) ≦ W ≦ 200×(T-D)
  6.  帯状くぼみの深さD(mm)が、帯状くぼみ中央部が最も大きく、帯状くぼみ両端部が最も小さくなるよう連続的または段階的に変化していることを特徴とする請求項1~5いずれか一項に記載の樹脂シート。
  7.  帯状くぼみが、レーザーアブレーションにより形成されることを特徴とする請求項1~6いずれか一項に記載の樹脂シート。
  8.  帯状くぼみが、波長9~11μmの赤外線レーザーの照射で形成されることを特徴とする請求項1~7いずれか一項に記載の樹脂シート。
  9.  帯状くぼみの中に、更に、線状くぼみが複数形成されており、線状くぼみの深さd(mm)と幅w(mm)が、下記条件(4)及び(5)を満足することを特徴とする請求項1~8いずれか一項に記載の樹脂シート。
    (4)0.001≦d≦0.05
    (5)0.01≦w≦0.5
  10.  レーザー光の焦点位置が、樹脂シートの照射面から上または下方向に0.5~10mmの範囲でずれていることを特徴とする請求項1~9いずれか一項に記載の樹脂シート。
  11.  レーザー光がシリンドリカルレンズにより幅広に拡散されているか、または回折格子により2つ以上のビームに分割されていることを特徴とする請求項1~10いずれか一項に記載の樹脂シート。
  12.  架橋樹脂(A)が、光硬化性組成物(a)を硬化して得られることを特徴とする請求項1~11いずれか一項に記載の樹脂シート。
  13.  光硬化性組成物(a)が、下記成分(a1)及び(a2)を含有してなることを特徴とする請求項12記載の樹脂シート。
    (a1)多官能(メタ)アクリレート系化合物
    (a2)光重合開始剤
  14.  曲げ弾性率が3~5GPaであることを特徴とする請求項1~13いずれか一項に記載の樹脂シート。
  15.  帯状くぼみ以外の部分の表面粗さRaが20nm以下であることを特徴とする請求項1~14いずれか一項に記載の樹脂シート。
  16.  ガラス転移温度が150℃以上であることを特徴とする請求項1~15いずれか一項に記載の樹脂シート。
  17.  請求項1~16いずれか一項に記載の樹脂シートを折り畳むための帯状くぼみが、該樹脂シートの屈折率と同一の屈折率を有する架橋樹脂(B)により充填されていることを特徴とする樹脂シート。
  18.  樹脂シートを折り畳んだ際の折り畳み部の曲率半径が3mm以下を満足することを特徴とする請求項1~17いずれか一項に記載の樹脂シート。
  19.  請求項1~18いずれか一項に記載の樹脂シートの片面に粘着剤層が形成されてなることを特徴とする粘着剤層付き樹脂シート。
  20.  請求項1~18いずれか一項に記載の樹脂シート、または、請求項19記載の粘着剤層付き樹脂シートを用いてなることを特徴とするディスプレイ用保護板。
  21.  請求項1~18いずれか一項に記載の樹脂シートの少なくとも片面に導電膜が成膜されてなることを特徴とする電極基板。
  22.  請求項1~18いずれか一項に記載の樹脂シート、または、請求項19記載の粘着剤層付き樹脂シートを用いてなることを特徴とするタッチパネル基板。
  23.  請求項1~18いずれか一項に記載の樹脂シート、または、請求項19記載の粘着剤層付き樹脂シートを用いてなることを特徴とする有機EL照明用の保護板。
  24.  請求項1~18いずれか一項に記載の樹脂シートを用いてなることを特徴とする導光板。
PCT/JP2015/064367 2014-05-20 2015-05-19 樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途 WO2015178391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015525681A JPWO2015178391A1 (ja) 2014-05-20 2015-05-19 樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途
KR1020167029664A KR20170009833A (ko) 2014-05-20 2015-05-19 수지 시트, 점착제층을 갖는 수지 시트, 및 이들을 이용하여 이루어진 용도
CN201580021452.0A CN106232323A (zh) 2014-05-20 2015-05-19 树脂片、带粘合剂层的树脂片和使用它们的用途

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-104221 2014-05-20
JP2014104221 2014-05-20
JP2014133833 2014-06-30
JP2014-133833 2014-06-30
JP2014258404 2014-12-22
JP2014-258404 2014-12-22

Publications (1)

Publication Number Publication Date
WO2015178391A1 true WO2015178391A1 (ja) 2015-11-26

Family

ID=54554059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064367 WO2015178391A1 (ja) 2014-05-20 2015-05-19 樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途

Country Status (4)

Country Link
JP (1) JPWO2015178391A1 (ja)
KR (1) KR20170009833A (ja)
CN (1) CN106232323A (ja)
WO (1) WO2015178391A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204228A1 (ja) * 2016-05-24 2017-11-30 富士フイルム株式会社 積層体ならびにこれを有する画像表示装置の前面板、画像表示装置、画像表示機能付きミラ-、抵抗膜式タッチパネルおよび静電容量式タッチパネル
EP3301506A1 (en) * 2016-09-30 2018-04-04 LG Display Co., Ltd. Flexible display device
JP2018059070A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びその製造方法
JP2018093593A (ja) * 2016-11-30 2018-06-14 アイチエレック株式会社 回転機
JP2018188593A (ja) * 2017-05-11 2018-11-29 凸版印刷株式会社 フィルムの加工方法
CN108911495A (zh) * 2018-07-11 2018-11-30 东莞市银泰丰光学科技有限公司 一种玻璃导光板切割工艺
JP2018536903A (ja) * 2015-12-09 2018-12-13 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 色変換フォトニック結晶構造体及びそれを用いる色変換フォトニック結晶センサー
US10657850B2 (en) 2018-02-13 2020-05-19 Samsung Display Co., Ltd. Foldable display device
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
WO2021044877A1 (ja) 2019-09-03 2021-03-11 Agc株式会社 ガラス基体ユニット、カバーガラス組立体、及び、車載表示装置
JP2021131812A (ja) * 2020-02-21 2021-09-09 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器及びディスプレイアセンブリ
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
JP2023536175A (ja) * 2020-08-04 2023-08-23 エルジー イノテック カンパニー リミテッド 弾性部材及びこれを含むディスプレイ装置{elasticity member and display device having the same}

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106763042A (zh) * 2017-01-20 2017-05-31 维沃移动通信有限公司 一种粘接件和粘接方法
KR102595289B1 (ko) * 2017-08-29 2023-10-27 도아고세이가부시키가이샤 수지 시트 및 이를 제조하기 위한 경화형 조성물
US11287664B2 (en) * 2018-01-22 2022-03-29 Mitsubishi Electric Corporation Optical mux and demux module
KR102107425B1 (ko) * 2019-03-06 2020-05-07 에임트 주식회사 레이저를 사용한 pet 소재의 보냉 용기용 단열재 제조방법
KR20210150651A (ko) 2020-06-03 2021-12-13 삼성디스플레이 주식회사 커버 윈도우의 제조 방법, 커버 윈도우 및 이를 포함하는 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219486A (ja) * 2000-02-10 2001-08-14 Achilles Corp 合成樹脂シートの折り目線筋押し加工方法及び折り目線が筋押し加工された合成樹脂シート
JP2005144800A (ja) * 2003-11-13 2005-06-09 Mitsubishi Rayon Co Ltd 建材用積層フィルムまたはシート、及びこの建材用積層フィルムまたはシートを含む積層成形品
JP2006501071A (ja) * 2002-09-26 2006-01-12 インダストリアル オリガミ リミテッド ライアビリティ カンパニー 精密に折畳まれた高強度の耐疲労性構造部及びそのための薄板を設計及び製造する技術
JP2006193596A (ja) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The 樹脂成形体、その製造方法、及びその用途
JP2006342358A (ja) * 2003-01-10 2006-12-21 Mitsubishi Rayon Co Ltd アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品
JP2007204736A (ja) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The 樹脂成形体、樹脂成形体の製造方法、及びその用途
JP3170746U (ja) * 2011-07-15 2011-09-29 山口証券印刷株式会社 折畳みシート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576836B1 (fr) * 1985-02-05 1989-10-27 Dupuy Eng Sa Procede et dispositif pour le rainurage par laser de feuilles de matiere plastique
US5817271A (en) * 1996-12-18 1998-10-06 Congleton; Stephen D. Altering the surfaces of functional absorbent materials for use in absorbent articles
JP2006019359A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 半導体装置
JP2008036981A (ja) * 2006-08-08 2008-02-21 Matsumoto Seisakusho:Kk 折り曲げ線入りプラスチックシートおよびプラスチックシートへの折り曲げ線加工方法
JP5578759B2 (ja) * 2007-08-10 2014-08-27 日東電工株式会社 フィルム及びその製造方法
CN201552386U (zh) * 2009-11-20 2010-08-18 深圳市大族激光科技股份有限公司 一种激光器的扩束装置
CN103108722B (zh) * 2010-09-15 2015-12-02 住友电气工业株式会社 激光加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219486A (ja) * 2000-02-10 2001-08-14 Achilles Corp 合成樹脂シートの折り目線筋押し加工方法及び折り目線が筋押し加工された合成樹脂シート
JP2006501071A (ja) * 2002-09-26 2006-01-12 インダストリアル オリガミ リミテッド ライアビリティ カンパニー 精密に折畳まれた高強度の耐疲労性構造部及びそのための薄板を設計及び製造する技術
JP2006342358A (ja) * 2003-01-10 2006-12-21 Mitsubishi Rayon Co Ltd アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品
JP2005144800A (ja) * 2003-11-13 2005-06-09 Mitsubishi Rayon Co Ltd 建材用積層フィルムまたはシート、及びこの建材用積層フィルムまたはシートを含む積層成形品
JP2006193596A (ja) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The 樹脂成形体、その製造方法、及びその用途
JP2007204736A (ja) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The 樹脂成形体、樹脂成形体の製造方法、及びその用途
JP3170746U (ja) * 2011-07-15 2011-09-29 山口証券印刷株式会社 折畳みシート

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904097B2 (en) 2015-03-31 2024-02-20 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
JP2018536903A (ja) * 2015-12-09 2018-12-13 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 色変換フォトニック結晶構造体及びそれを用いる色変換フォトニック結晶センサー
US10919998B2 (en) 2015-12-09 2021-02-16 Korea Research Institute Of Chemical Technology Color-conversion photonic crystal structure and color-conversion photonic crystal sensor using same
WO2017204228A1 (ja) * 2016-05-24 2017-11-30 富士フイルム株式会社 積層体ならびにこれを有する画像表示装置の前面板、画像表示装置、画像表示機能付きミラ-、抵抗膜式タッチパネルおよび静電容量式タッチパネル
JPWO2017204228A1 (ja) * 2016-05-24 2019-04-18 富士フイルム株式会社 積層体ならびにこれを有する画像表示装置の前面板、画像表示装置、画像表示機能付きミラ−、抵抗膜式タッチパネルおよび静電容量式タッチパネル
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
JP7021887B2 (ja) 2016-09-30 2022-02-17 住友化学株式会社 光学フィルムの製造方法
EP3301506A1 (en) * 2016-09-30 2018-04-04 LG Display Co., Ltd. Flexible display device
JP2018059070A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びその製造方法
US10074824B2 (en) 2016-09-30 2018-09-11 Lg Display Co., Ltd. Flexible display device
JP2018093593A (ja) * 2016-11-30 2018-06-14 アイチエレック株式会社 回転機
JP2018188593A (ja) * 2017-05-11 2018-11-29 凸版印刷株式会社 フィルムの加工方法
JP7027700B2 (ja) 2017-05-11 2022-03-02 凸版印刷株式会社 フィルムの加工方法
US10657850B2 (en) 2018-02-13 2020-05-19 Samsung Display Co., Ltd. Foldable display device
CN108911495A (zh) * 2018-07-11 2018-11-30 东莞市银泰丰光学科技有限公司 一种玻璃导光板切割工艺
WO2021044877A1 (ja) 2019-09-03 2021-03-11 Agc株式会社 ガラス基体ユニット、カバーガラス組立体、及び、車載表示装置
JP2021131812A (ja) * 2020-02-21 2021-09-09 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器及びディスプレイアセンブリ
US11487329B2 (en) 2020-02-21 2022-11-01 Lenovo (Singapore) Pte Ltd Portable information device having a flexible display
JP2023536175A (ja) * 2020-08-04 2023-08-23 エルジー イノテック カンパニー リミテッド 弾性部材及びこれを含むディスプレイ装置{elasticity member and display device having the same}

Also Published As

Publication number Publication date
CN106232323A (zh) 2016-12-14
JPWO2015178391A1 (ja) 2017-04-20
KR20170009833A (ko) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015178391A1 (ja) 樹脂シート、粘着剤層付き樹脂シート、及びそれらを用いてなる用途
KR102588774B1 (ko) 고경도 성형용 수지 시트 및 그것을 이용한 성형품
KR101470463B1 (ko) 하드코팅 필름
KR101686644B1 (ko) 플라스틱 필름 적층체
KR101415838B1 (ko) 하드코팅 조성물
KR101470464B1 (ko) 하드코팅 필름
KR101671431B1 (ko) 플라스틱 필름
JP5078520B2 (ja) 防眩性ハードコートフィルム及びその製造方法
JP2016002764A (ja) 積層体及びその用途、並びに積層体の製造方法
JP5882815B2 (ja) 樹脂成形体、及びそれを用いてなる積層体
JP2009024168A (ja) 紫外線硬化型ハードコート樹脂組成物
JPWO2010090116A1 (ja) 活性エネルギー線硬化型ハードコート用樹脂組成物とその用途
KR20170103644A (ko) 하드코팅필름
JP6413423B2 (ja) 硬化性組成物
KR20070015163A (ko) 저반사부재
WO2015152289A1 (ja) ケイ素化合物、コーティング剤用樹脂組成物、成形体、画像表示装置
WO2015152288A1 (ja) コーティング剤用樹脂組成物、成形体、画像表示装置
JP5219363B2 (ja) 積層体
JP2015196748A (ja) ケイ素化合物、コーティング剤用樹脂組成物、成形体、画像表示装置
JP5057809B2 (ja) 樹脂基板の連続的製造方法
WO2015056660A1 (ja) 樹脂シート、及びその用途
KR101825295B1 (ko) 광경화성 수지 조성물, 이를 이용하여 제조된 디스플레이용 고경도 투명 플라스틱 기판
JP5241153B2 (ja) 樹脂基板の製造方法
JP2017008125A (ja) ケイ素化合物を含む組成物とその硬化膜
JP5628617B2 (ja) ハードコート層付き光学部材の製造方法、ハードコート層表面形成用フィルム、及びハードコート層付き光学部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525681

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167029664

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796956

Country of ref document: EP

Kind code of ref document: A1