WO2015178087A1 - 機電一体型モータ装置 - Google Patents

機電一体型モータ装置 Download PDF

Info

Publication number
WO2015178087A1
WO2015178087A1 PCT/JP2015/058258 JP2015058258W WO2015178087A1 WO 2015178087 A1 WO2015178087 A1 WO 2015178087A1 JP 2015058258 W JP2015058258 W JP 2015058258W WO 2015178087 A1 WO2015178087 A1 WO 2015178087A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
base frame
inverter unit
unit
power module
Prior art date
Application number
PCT/JP2015/058258
Other languages
English (en)
French (fr)
Inventor
翔太 埴岡
義浩 深山
渡辺 教弘
大穀 晃裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016520977A priority Critical patent/JP6081021B2/ja
Priority to CN201580020648.8A priority patent/CN106233589B/zh
Priority to US15/125,243 priority patent/US10211698B2/en
Priority to DE112015002343.7T priority patent/DE112015002343B4/de
Publication of WO2015178087A1 publication Critical patent/WO2015178087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles

Definitions

  • the present invention relates to an electromechanical integrated motor device in which a motor unit and an inverter unit are housed in the same base frame.
  • a plurality of heat sinks are attached to the outer peripheral surface of the center sleeve.
  • a plurality of substrates are accommodated in the center sleeve.
  • a power transistor is attached to the base of the heat sink. The terminal of the power transistor is connected to the substrate (see, for example, Patent Document 1).
  • the circuit components of the inverter are divided corresponding to the phases u, v, and w, and each phase is accommodated on a separate substrate.
  • substrate is attached to the inner surface of the cylinder which has a 3 or more surface highly heat-conductive surface (heat sink) (for example, refer patent document 2).
  • Patent Document 1 If the structure of the power amplifier shown in Patent Document 1 is applied to an electromechanically integrated motor device, the heat generated by the motor is transmitted to the inverter, and the cooling performance of the power module is reduced.
  • the present invention has been made in order to solve the above-described problems, and provides an electromechanically integrated motor device capable of simultaneously improving the assembly performance of the inverter unit and the cooling performance of the inverter unit.
  • the purpose is to obtain.
  • An electromechanically integrated motor device includes a cylindrical base frame having a motor unit storage portion and an inverter unit storage portion, a motor unit stored in the motor unit storage portion, a plurality of control boards, and a control board.
  • a cylindrical base frame having a motor unit storage portion and an inverter unit storage portion, a motor unit stored in the motor unit storage portion, a plurality of control boards, and a control board.
  • an inverter unit housed in the inverter unit housing section and a plurality of heat sinks for cooling the power module.
  • a plurality of openings are provided at intervals, rib portions are formed between adjacent openings, and a heat sink is attached to the base frame so as to cover the openings, and the power module and control
  • the substrate is disposed inside the heat sink.
  • the inverter unit housing portion is provided with a plurality of openings at intervals in the circumferential direction, rib portions are formed between the openings adjacent to each other, and a heat sink is provided. Since the power module and the control board are installed inside the heat sink so as to cover the opening, the improvement of the assembling of the inverter unit and the improvement of the cooling performance of the inverter unit are simultaneously performed. Can be achieved.
  • FIG. 1 It is a disassembled perspective view which shows the electromechanical integrated motor apparatus by Embodiment 1 of this invention. It is a disassembled perspective view which shows the frame unit of FIG.
  • FIG. 2 is an exploded perspective view showing the frame unit of FIG. 1 with the load side facing up.
  • FIG. 6 is a perspective view showing a state in which a connection plate unit is mounted on the stator unit of FIG. 5.
  • FIG. 1 is an exploded perspective view showing an electromechanical integrated motor device according to Embodiment 1 of the present invention.
  • the electromechanical integrated motor device of Embodiment 1 includes a two-group three-phase motor and an inverter device that drives the motor. It is a combination.
  • the electromechanically integrated motor device includes a frame unit 110, an inverter unit 120 and a motor unit 130 housed in the frame unit 110, and the inverter unit 120 and the motor unit 130 in the frame unit 110. It has the disc-shaped connection board unit 140 arrange
  • the frame unit 110 includes a cylindrical base frame 10, a plurality of (six in this case) heat sinks 11 attached to the outer peripheral surface of the base frame 10 at intervals in the circumferential direction, and a load-side lid. It has an end plate 2 and a front plate 3 which is a cover on the side opposite to the load.
  • the inverter unit 120 is disposed on the non-load side of the output shaft 63 of the motor unit 130.
  • the inverter unit 120 converts DC power supplied from an external DC power source into AC power and supplies the AC power to the motor unit 130.
  • the connection plate unit 140 is fitted into the frame unit 110 so that there is no gap between the connection plate unit 140 and the inner peripheral surface of the frame unit 110.
  • FIG. 2 is an exploded perspective view showing the frame unit 110 of FIG. 1 with the anti-load side facing up
  • FIG. 3 is an exploded perspective view showing the frame unit 110 of FIG. 1 with the load side facing up.
  • the base frame 10 includes a motor unit storage portion 17 in which the motor unit 130 is stored, and an inverter unit storage portion 16 in which the inverter unit 120 is stored.
  • a space in the frame unit 110 is partitioned into a motor unit storage portion 17 and an inverter unit storage portion 16 by a connection plate unit 140.
  • a plurality of openings (holes) 14 are provided in the inverter unit storage portion 16 of the base frame 10 at equal intervals in the circumferential direction.
  • the outer peripheral surface of the inverter unit housing portion 16 is substantially hexagonal, and an opening 14 is provided on each hexagonal surface.
  • the opening 14 of the first embodiment is a quadrangle (rectangle) having the same size.
  • a rib portion 29 parallel to the axial direction of the base frame 10 is formed between the openings 14 adjacent to each other.
  • the heat sink 11 is attached to the base frame 10 so as to cover the opening 14.
  • the peripheral edge of each opening 14 is flat.
  • a plurality of screw holes 18 for attaching the heat sink 11 are provided on the peripheral edge of each opening 14.
  • the inverter unit 120 includes six sets of module units 121 including a single-phase (one leg) power module 30 and a control board 31 that controls the single-phase power module 30, and a plurality of electrical components (such as capacitors). (Not shown).
  • Each heat sink 11 has an arc-shaped heat radiation surface 12 and a power module mounting surface 13 processed flat.
  • Each of the heat sinks 11 has a plurality of heat radiation fins 24 on the radially outer side. That is, the heat radiating surface 12 is provided with a plurality of grooves along the circumferential direction, thereby forming heat radiating fins 24.
  • Each heat sink 11 is provided with a plurality of screw insertion holes 23 corresponding to the screw holes 18.
  • Each heat sink 11 is fastened and fixed to the base frame 10 with a plurality of screws so that the heat radiating surface 12 faces radially outward.
  • the heat sinks 11 are arranged at equal intervals in the circumferential direction of the base frame 10.
  • One power module 30 is closely attached and fixed to the power module mounting surface 13 of each heat sink 11 via a gel with good thermal conductivity (for example, heat dissipation silicone gel). Thereby, the heat sink 11 cools the power module 30.
  • the control board 31 is attached to the heat sink 11 together with the power module 30. That is, the power module 30 and the control board 31 are disposed inside the heat sink 11. Thus, each opening 14 is fitted with a heat sink assembly in which the power module 30 and the control board 31 corresponding to each heat sink 11 are attached.
  • the area of the power module 30 and the control board 31 when the opening 14 is viewed from the center of the inverter unit housing portion 16 is smaller than the area of the opening 14. Further, regarding the cross section perpendicular to the axial direction of the base frame 10, the total cross sectional area of the rib portions 29 is smaller than the cross sectional area of the motor unit housing portion 17.
  • the cross-sectional shape of the outer peripheral surface of the motor unit storage portion 17 is circular.
  • the outer peripheral surface of the motor unit housing portion 17 is provided with a plurality of grooves along the circumferential direction in order to effectively dissipate heat generated when the motor is driven to the outside. 21 is formed. 2, when the cooling channel is provided in the circumferential direction, the radiating fins 21 and 24 are provided along the circumferential direction. However, when the cooling channel is in the axial direction, the axial direction Radiating fins 21 and 24 are provided along the line.
  • a plurality of screw holes 28 are provided on the end face 27 on the non-load side of the base frame 10.
  • the front plate 3 is provided with a plurality of screw insertion holes 6 corresponding to the screw holes 28.
  • the front plate 3 is fastened and fixed to the base frame 10 with a plurality of screws.
  • the front plate 3 is provided with a notch 4 for passing a DC line for supplying power to the power module 30 and a signal line for sending an electric signal to the control board 31.
  • a plurality of screw holes 26 are provided in the load side end face 25 of the base frame 10.
  • the end plate 2 is provided with a plurality of screw insertion holes 7 corresponding to the screw holes 26.
  • the end plate 2 is fastened and fixed to the base frame 10 by a plurality of screws.
  • the end plate 2 is provided with a shaft insertion hole 8 through which the output shaft 63 is passed.
  • a load-side bearing (not shown) is fitted in the shaft insertion hole 8.
  • the frame unit 110 is preferably made of a good heat conductive material such as aluminum, and can enhance the cooling effect. Moreover, the cooling performance of the power module 30 can be improved by making the material of the heat sink 11 into a material (for example, copper) with especially excellent thermal conductivity.
  • FIG. 4 is an exploded perspective view showing the motor unit 130 and the connection plate unit 140 of FIG.
  • the motor unit 130 has a cylindrical stator unit 50 and a rotor unit 60 inserted into the stator unit 50.
  • the stator unit 50 has a stator core 51 and a winding 53.
  • the cross-sectional shape of the inner peripheral surface of the motor unit housing portion 17 is circular, and the stator core 51 is fitted and fixed inside the motor unit housing portion 17.
  • the stator core 51 has an annular yoke portion 56 and twelve teeth portions 52 that protrude radially inward from the yoke portion 56.
  • the winding 53 is attached to the tooth portion 52 from the inside of the stator core 51. Further, the end of the winding 53 is drawn out to the anti-load side.
  • the rotor unit 60 has a rotor core 61 and 20 permanent magnets 65.
  • the rotor core 61 is provided with 20 magnet insertion holes 66 along the circumferential direction.
  • the permanent magnet 65 is inserted into the magnet insertion hole 66 so that the poles are alternately directed to the outside in the radial direction by N ⁇ N ⁇ S ⁇ S.
  • the output shaft 63 attached to the inner diameter of the rotor unit 60 is rotatably supported by the load side bearing described above and an anti-load side bearing (not shown) supported by the connection plate unit 140.
  • FIG. 5 is a perspective view showing a state where the connection plate unit 140 is mounted on the stator unit 50 of FIG. In the connection plate unit 140, the ends of the windings 53 are connected for each phase, and a plurality of connection terminals 55 for connecting to the output terminals of the power module 30 are configured.
  • step S2 the winding 53 is mounted on the stator core 51.
  • step S2 the connection plate unit 140 is mounted on the stator unit 50, and the lead wires 54 from the windings 53 of each phase are connected by the connection plate unit 140.
  • stator unit 50 and the connecting plate unit 140 are fixed by press-fitting or shrink-fitting into the motor unit housing portion 17 of the base frame 10 (step S3).
  • the rotor unit 60 is inserted into the stator unit 50 (step S4).
  • the output shaft 63 is inserted into the anti-load side bearing.
  • step S5 the end plate 2 is fixed to the base frame 10, and the load side of the base frame 10 is covered (step S5).
  • the output shaft 63 is inserted into the load side bearing. Thereby, the attachment to the base frame 10 of the motor unit 130 and the connection board unit 140 is completed.
  • control board 31 is attached to the power module 30 and a control line (not shown) connected to the power module 30 is wired to assemble the module unit 121.
  • the module unit 121 is attached to the heat sink 11 outside the base frame 10 (step S6). At this time, the heat radiation surface of the power module 30 is brought into close contact with the heat sink 11.
  • the heat sink 11 to which the module unit 121 is attached is attached to the outer wall surface of the inverter unit housing portion 16 of the base frame 10 (step S7).
  • step S8 the output terminal of the power module 30 and the connection terminals 55 for the six phases of the connection plate unit 140 are connected (step S8). And the electrical connection between the electrical components of the inverter unit 120 is performed. Finally, the front plate 3 is fixed to the opposite end portion of the base frame 10 (step S9). This completes all assembly operations.
  • the inverter unit housing portion 16 is provided with the openings 14 at intervals in the circumferential direction, and the rib portion 29 is formed between the openings 14 adjacent to each other.
  • the heat sink 11 is attached to the base frame 10 so as to cover the opening 14, and the power module 30 and the control board 31 are disposed inside the heat sink 11. Improvement of the cooling performance of the inverter unit 120 can be achieved at the same time.
  • the frame unit 110 is divided into the base frame 10 provided with the opening 14 and the heat sink 11, the power module 30 and the control board 31 can be attached to the heat sink 11 outside the base frame 10.
  • the module unit 121 has to be attached from the inside in the radial direction of the base frame 10, but in the first embodiment, even if the heat sink 11 is attached from the outside in the radial direction of the base frame 10, the module is attached to the inner wall surface of the frame as before.
  • the unit 121 is arranged, and the mounting property of the module unit 121 is improved.
  • the inverter unit storage portion 16 is constituted by the bone-shaped rib portion 29, the thermal resistance of the inverter unit storage portion 16 can be made larger than that of the motor unit storage portion 17. Thereby, the heat generated when the motor is driven is hardly transmitted to the inverter unit 120, and the cooling performance of the inverter unit 120 is improved.
  • the total cross-sectional area of the rib portion 29 is smaller than the cross-sectional area of the motor unit storage portion 17, so the thermal resistance of the inverter unit storage portion 16 can be more reliably It can be made larger than the motor unit storage portion 17.
  • the cooling performance of the inverter unit 120 can be achieved by providing a spacer between the base frame 10 and the heat sink 11 so as not to be in close contact with each other, or by fixing a material having a relatively low thermal conductivity such as plastic or epoxy resin. Is improved.
  • the control board 31 is also attached to the heat sink 11 outside the base frame 10. It becomes possible to attach and assemble from the outside of the base frame 10, and the assemblability can be further improved. Further, the heat sink 11 and the base frame 10 can be separated without increasing the size.
  • control board 31 can be arranged as close as possible to the power module 30, the switching operation of the power module 30 is not delayed by the stray capacitance of the signal line connected from the control board 31 to the power module 30.
  • the inverter unit housing portion 16 is provided with the opening 14, the output terminal of the power module 30 can be separated from the base frame 10, and eddy current loss generated in the base frame 10 can be reduced.
  • the heat sink 11 can be formed relatively thin, and the effective volume inside the frame unit 110 can be increased.
  • the inverter unit 120 is disposed in the axial direction of the motor unit 130, the lead wire 54 from the motor unit 130 can be easily wired to the inverter unit 120.
  • the base frame 10 is formed by integrating the inverter unit storage portion 16 and the motor unit storage portion, a member for connecting the inverter unit storage portion 16 and the motor unit storage portion is not required, and the size is further reduced. Is possible.
  • the base unit 10 is formed by integrating the inverter unit storage unit 16 and the motor unit storage unit, the rigidity of the entire drive device is increased.
  • the number of heat sinks 11 is not limited to six as shown in FIG.
  • the number of openings 14 is equal to the number of heat sinks 11.
  • FIG. 7 is a perspective view showing a main part of an electromechanical integrated motor device according to Embodiment 2 of the present invention.
  • the flange portion 15 is provided at the peripheral edge of each heat sink 11, and the flange portion 15 is screwed to the inner wall surface of the inverter unit storage portion 16.
  • the module unit 121 is attached to the heat sink 11 outside the base frame 10, the heat sink 11 is inserted from the side opposite to the load of the base frame 10, and the flange portion 15 is fixed to the inner wall surface of the base frame 10 around the opening 14.
  • Other configurations and assembly methods are the same as those in the first embodiment.
  • the heat sink 11 may be fixed to the inner wall surface of the base frame 10, and the same effect as in the first embodiment can be obtained.
  • FIG. 8 is an exploded perspective view showing an electromechanical integrated motor device according to Embodiment 3 of the present invention
  • FIG. 9 is a schematic sectional view of the electromechanical integrated motor device of FIG. 8, and FIG.
  • the configuration in the part 16 is omitted.
  • the inner frame 112 is configured by the base frame 10 and the six heat sinks 11.
  • a cylindrical outer frame 113 is fitted on the radially outer side of the inner frame 112.
  • a coolant flow path 70 is formed between the inner frame 112 and the outer frame 113.
  • the liquid cooling frame 111 includes an inner frame 112 and an outer frame 113.
  • an inlet nipple 5a for supplying a coolant and an outlet nipple 5b for discharging are attached.
  • the coolant supplied from the inlet side nipple 5a circulates in the coolant flow path 70 in the circumferential direction and is discharged from the outlet side nipple 5b.
  • Each has a seal structure (watertight structure).
  • the load side end 112a of the inner frame 112 has a structure extending radially outward.
  • An annular groove is provided in the load side end 112a of the inner frame 112, and an annular seal member 72a is fitted in the groove.
  • the end surface on the load side of the outer frame 113 is in contact with the seal member 72a.
  • the load side end 112a of the inner frame 112 is provided with a plurality of screw insertion holes 73a.
  • the screw insertion hole 73a is disposed on the outer side in the radial direction than the seal member 72a.
  • the load side end 113a of the outer frame 113 is provided with a plurality of screw holes 74a corresponding to the screw insertion holes 73a.
  • An annular groove is provided on the opposite end 112b of the inner frame 112, and an annular seal member 72b is fitted in the groove.
  • the anti-load side end 113b of the outer frame 113 is extended radially inward so as to cover the seal member 72b, and is in contact with the seal member 72b.
  • a plurality of screw holes 73b are provided on the end 112b of the inner frame 112 opposite to the load.
  • the screw hole 73b is disposed radially inward of the seal member 72b.
  • a plurality of screw insertion holes 74b corresponding to the screw holes 73b are provided on the opposite end 113b of the outer frame 113.
  • the surface of the outer frame 113 that contacts the seal member 72a of the load side end 113a is formed flat so that pressure is evenly applied to the seal member 72a.
  • the surface of the outer frame 113 that contacts the seal member 72b of the non-load side end 113b is formed flat so that pressure is evenly applied to the seal member 72b.
  • load-side seal structure and the anti-load-side seal structure between the inner frame 112 and the outer frame 113 may be interchanged.
  • the screw insertion hole 7 of the end plate 2 is arranged corresponding to the screw insertion hole 73a.
  • the end plate 2 is screwed and fixed to the outer frame 113 together with the inner frame 112.
  • the screw insertion hole 6 of the front plate 3 is arranged corresponding to the screw insertion hole 74b.
  • the front plate 3 is screwed and fixed to the inner frame 112 together with the outer frame 113.
  • a substantially rectangular groove is provided around each opening 14 of the base frame 10, and a seal member 80 is fitted in the groove.
  • a seal member 80 is interposed between each heat sink 11 and the base frame 10.
  • the power module mounting surface 13 of the heat sink 11 is flat and is formed so as to cover the seal member 80.
  • a screw hole 18 (FIG. 2) for fixing the heat sink 11 to the base frame 10 is disposed outside the seal member 80. Further, the screw hole 18 is formed so as not to penetrate the base frame 10. Other configurations and assembly methods are the same as those in the first embodiment.
  • the outer frame 113 is fitted to the outer side of the inner frame 112 in the radial direction, and the seal member 80 is interposed between each heat sink 11 and the base frame 10.
  • the coolant flow path 70 can be formed between the inner frame 112 and the outer frame 113 while preventing liquid leakage into the frame 10. Further, since the base frame 10 and the heat sink 11 are in contact with each other via the seal member 80, the heat transferred from the motor unit 130 to the base frame 10 is prevented from being transferred to the power module 30 attached to the heat sink 11. Therefore, the cooling performance of the inverter unit 120 is improved.
  • the cooling performance of the motor unit 130 and the inverter unit 120 can be improved by allowing a fluid (for example, water) having high thermal conductivity to flow into the coolant flow path 70 using a pump or the like. Thereby, the maximum output density and torque density of the inverter unit 120 can be increased.
  • a fluid for example, water
  • the screw hole 18 is formed so as not to penetrate the base frame 10, liquid leakage does not occur in the base frame 10 from the coolant flow path 70 through the screw hole 18.
  • the inverter unit 120 is disposed in the axial direction of the motor unit 130, the lead wire 54 from the motor unit 130 can be easily wired to the inverter unit 120.
  • the motor unit 130 and the inverter unit 120 can be cooled by the same liquid passage 70, there is no need to configure a plurality of cooling flow paths, and piping is excellent, and the pressure loss of the flow paths is reduced.
  • the base frame 10 is formed by integrating the inverter unit storage portion 16 and the motor unit storage portion, a member for connecting the inverter unit storage portion 16 and the motor unit storage portion is not required, and the size is further reduced. Is possible. Furthermore, since the base unit 10 is formed by integrating the inverter unit storage portion 16 and the motor unit storage portion, a member for sealing the inverter unit storage portion 16 and the motor unit storage portion is not necessary, and the parts Points can be reduced and water tightness can be improved. Moreover, since the inverter unit storage part 16 and the motor unit storage part are united and the base frame 10 is formed, the rigidity as the whole drive device becomes high.
  • FIG. 10 is a perspective view showing a main part of an electromechanical integrated motor device according to Embodiment 4 of the present invention.
  • the fourth embodiment is a combination of the third embodiment and the second embodiment. That is, a groove is formed in the flange portion 15 of the heat sink 11, and the seal member 84 is fitted in the groove.
  • the flange portion 15 is screwed to the inner wall surface of the inverter unit housing portion 16.
  • the seal member 84 is interposed between the flange portion 15 and the inner wall surface of the base frame 10. Further, the seal member 84 is disposed outside the screw insertion hole 23.
  • Other configurations and assembly methods are the same as those in the third embodiment.
  • FIG. 11 is a perspective view showing a main part of an electromechanical integrated motor device according to Embodiment 5 of the present invention.
  • the motor unit housing portion 17 of the base frame 10 has two openings 14, and the two heat sinks 11 are assembled so as to cover the openings 14.
  • power modules 30 for three single phases (one leg) are attached at equal intervals in the circumferential direction.
  • control board for driving the power module 30 for three phases is attached to each heat sink 11.
  • Each control board is connected to the power module 30 by a signal line (not shown) and constitutes a three-phase inverter device.
  • Other configurations and assembly methods are the same as those in the first, second, third, or fourth embodiment.
  • the number of heat sinks 11 can be reduced even in the inverter unit 120 having a large number of power modules 30. That is, even when a multi-group multi-phase motor is used, it is not necessary to prepare the same number of heat sinks 11 as the power modules 30, the number of parts can be reduced, and the assemblability is also improved.
  • the motor unit 130 having a multi-group winding structure is used by attaching the N-phase power module 30 to each heat sink 11.
  • the power module 30 of each group can be connected to the DC line and the control signal line of the control board outside the base frame 10, so that the assemblability is further improved.
  • liquid cooling is also possible by providing a seal structure as in the third and fourth embodiments.
  • the base unit 10 is formed by integrating the inverter unit storage unit 16 and the motor unit storage unit, a member for sealing the inverter unit storage unit 16 and the motor unit storage unit is not required, and the number of parts is reduced. And water tightness can be improved.
  • FIG. 12 is a perspective view showing a main part of an electromechanical integrated motor device according to Embodiment 6 of the present invention, and an arrow in the figure indicates a direction in which a coolant flows.
  • the area of the heat radiating surface 12 in the heat sink 11f at the end is formed larger than the area of the heat radiating surface 12 in the heat sink 11a at the start end of the coolant flow path 70.
  • the area of the heat radiating surface 12 gradually increases in the circumferential direction from the start to the end. That is, the circumferential width of the heat sink 11 on the end side is larger than the circumferential width of the heat sink 11 on the start end side of the coolant channel 70. As a result, the area in contact with the coolant in the heat sink 11 on the end side is larger than the area in contact with the coolant in the heat sink 11 on the start end side of the coolant channel 70 (FIG. 9).
  • Other configurations and assembling methods are the same as those in the third or fourth embodiment.
  • the cooling performance by the heat sink 11 at the end portion of the coolant flow path 70 does not deteriorate even when the temperature of the coolant is higher than the start end at the end of the coolant flow path 70.
  • the cooling performance of the power module 30 arranged in the circumferential direction can be ensured evenly.
  • FIG. 13 is a perspective view showing a main part of an electromechanical integrated motor device according to Embodiment 7 of the present invention, and an arrow in the figure indicates a direction in which a coolant flows.
  • the number of radiating fins 24 in the heat sink 11f on the end side is larger than the number of radiating fins 24 in the heat sink 11a on the starting end side of the coolant channel 70.
  • the number of the heat radiation fins 24 of the heat sink 11a at the start end of the coolant flow path 70 is six, and the number of the heat radiation fins 24 of the heat sink 11f at the end of the coolant flow path 70 is nine.
  • the area in contact with the coolant in the heat sink 11 on the end side is larger than the area in contact with the coolant in the heat sink 11 on the start end side of the coolant channel 70 (FIG. 9).
  • Other configurations and assembling methods are the same as those in the third or fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Inverter Devices (AREA)

Abstract

 機電一体型モータ装置において、筒状のベースフレームは、インバータユニット収納部を有している。インバータユニットは、複数の制御基板と、制御基板に設けられている複数のパワーモジュールとを有している。インバータユニット収納部には、周方向に互いに間隔をおいて複数の開口が設けられている。互いに隣り合う開口の間には、リブ部が形成されている。開口は、複数のヒートシンクにより覆われている。パワーモジュール及び制御基板は、ヒートシンクの内側に配置されている。

Description

機電一体型モータ装置
 この発明は、同一のベースフレーム内にモータユニットとインバータユニットとが収納されている機電一体型モータ装置に関するものである。
 従来のパワーアンプでは、センタスリーブの外周面に複数のヒートシンクが取り付けられている。また、センタスリーブ内には、複数の基板が収容されている。ヒートシンクの基部には、パワートランジスタが取り付けられている。パワートランジスタの端子は、基板に接続されている(例えば、特許文献1参照)。
 また、従来のエンジン用電動ターボチャージャの冷却構造では、インバータの回路部品が、u、v、wの各相に対応して分割されており、相毎に別個の基板に収容されている。また、基板は、3面以上の良伝熱性面(ヒートシンク)を有する筒の内面に取り付けられている(例えば、特許文献2参照)。
特開2001-135962号公報 特開2009-162091号公報
 特許文献1に示されたパワーアンプの構造を機電一体型モータ装置に適用しようとすると、モータで発生した熱がインバータに伝わり、パワーモジュールの冷却性能が低下する。
 また、特許文献2に示された冷却構造を機電一体型モータ装置に適用しようとすると、筒状のフレームの内壁面にインバータ装置を取り付ける際、フレームの内側からフレーム内周面に対して垂直にねじ止め作業を行う必要があり、作業スペースが狭く、組み付け作業が難しい。
 この発明は、上記のような課題を解決するためになされたものであり、インバータユニットの組立性の改善と、インバータユニットの冷却性能の改善とを同時に達成することができる機電一体型モータ装置を得ることを目的とする。
 この発明に係る機電一体型モータ装置は、モータユニット収納部とインバータユニット収納部とを有する筒状のベースフレーム、モータユニット収納部に収納されているモータユニット、複数の制御基板と、制御基板に設けられている複数のパワーモジュールとを有しており、インバータユニット収納部に収納されているインバータユニット、及びパワーモジュールを冷却する複数のヒートシンクを備え、インバータユニット収納部には、周方向に互いに間隔をおいて複数の開口が設けられており、互いに隣り合う開口の間には、リブ部が形成されており、ヒートシンクは、開口を覆うようにベースフレームに取り付けられており、パワーモジュール及び制御基板は、ヒートシンクの内側に配置されている。
 この発明の機電一体型モータ装置は、インバータユニット収納部に、周方向に互いに間隔をおいて複数の開口が設けられており、互いに隣り合う開口の間にリブ部が形成されており、ヒートシンクが、開口を覆うようにベースフレームに取り付けられており、パワーモジュール及び制御基板が、ヒートシンクの内側に配置されているので、インバータユニットの組立性の改善と、インバータユニットの冷却性能の改善とを同時に達成することができる。
この発明の実施の形態1による機電一体型モータ装置を示す分解斜視図である。 図1のフレームユニットを、反負荷側を上にして示す分解斜視図である。 図1のフレームユニットを、負荷側を上にして示す分解斜視図である。 図1のモータユニット及び結線板ユニットを示す分解斜視図である。 図5のステータユニットに結線板ユニットを装着した状態を示す斜視図である。 図1の機電一体型モータ装置の組立方法を示すフローチャートである。 この発明の実施の形態2による機電一体型モータ装置の要部を示す斜視図である。 この発明の実施の形態3による機電一体型モータ装置を示す分解斜視図である。 図8の機電一体型モータ装置の概略の断面図である。 この発明の実施の形態4による機電一体型モータ装置の要部を示す斜視図である。 この発明の実施の形態5による機電一体型モータ装置の要部を示す斜視図である。 この発明の実施の形態6による機電一体型モータ装置の要部を示す斜視図である。 この発明の実施の形態7による機電一体型モータ装置の要部を示す斜視図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1による機電一体型モータ装置を示す分解斜視図であり、実施の形態1の機電一体型モータ装置は、二群三相モータとそれを駆動するインバータ装置とを組み合わせたものである。
 図1において、機電一体型モータ装置は、フレームユニット110と、フレームユニット110内に収納されているインバータユニット120及びモータユニット130と、フレームユニット110内でインバータユニット120とモータユニット130との間に配置されている円板状の結線板ユニット140とを有している。
 フレームユニット110は、筒状のベースフレーム10と、ベースフレーム10の外周面に周方向に互いに間隔をおいて取り付けられている複数(ここでは6枚)のヒートシンク11と、負荷側の蓋であるエンドプレート2と、反負荷側の蓋であるフロントプレート3とを有している。
 インバータユニット120は、モータユニット130の出力軸63の反負荷側に配置されている。また、インバータユニット120は、外部の直流電源から供給される直流電力を交流電力に変換してモータユニット130に供給する。結線板ユニット140は、フレームユニット110の内周面との間に隙間がないようにフレームユニット110内に嵌め合わされている。
 図2は図1のフレームユニット110を、反負荷側を上にして示す分解斜視図、図3は図1のフレームユニット110を、負荷側を上にして示す分解斜視図である。ベースフレーム10は、モータユニット130が収納されるモータユニット収納部17と、インバータユニット120が収納されるインバータユニット収納部16とを有している。フレームユニット110内の空間は、結線板ユニット140によりモータユニット収納部17とインバータユニット収納部16とに仕切られている。
 ベースフレーム10のインバータユニット収納部16には、周方向に互いに等間隔をおいて複数の開口(孔)14が設けられている。インバータユニット収納部16の外周面は、略六角形となっており、六角形の各面に開口14が設けられている。実施の形態1の開口14は、同じ大きさの四角形(長方形)である。
 互いに隣り合う開口14の間には、ベースフレーム10の軸方向に平行なリブ部29が形成されている。ヒートシンク11は、開口14を覆うようにベースフレーム10に取り付けられている。各開口14の周縁部は、平坦になっている。そして、各開口14の周縁部には、ヒートシンク11を取り付けるための複数のねじ穴18が設けられている。
 インバータユニット120は、単相(1レグ)分のパワーモジュール30と単相のパワーモジュール30を制御する制御基板31とで構成される6組のモジュールユニット121と、コンデンサなどの複数の電気部品(図示せず)とを有している。
 各ヒートシンク11は、円弧状の放熱面12と、平坦に加工されたパワーモジュール取り付け面13とを有している。また、ヒートシンク11のそれぞれは、径方向外側に複数の放熱フィン24を有している。即ち、放熱面12には、周方向に沿って複数の溝が設けられており、これにより放熱フィン24が形成されている。また、各ヒートシンク11には、ねじ穴18に対応する複数のねじ挿入穴23が設けられている。各ヒートシンク11は、放熱面12が径方向外側を向くように、複数のねじによりベースフレーム10に締結され固定されている。
 さらに、ヒートシンク11は、ベースフレーム10の周方向に互いに等間隔をおいて配置されている。各ヒートシンク11のパワーモジュール取り付け面13には、熱伝導性の良いゲル(例:放熱シリコーンゲル)を介して、1つのパワーモジュール30が密着され固定されている。これにより、ヒートシンク11は、パワーモジュール30を冷却する。
 制御基板31は、パワーモジュール30とともにヒートシンク11に取り付けられている。即ち、パワーモジュール30及び制御基板31は、ヒートシンク11の内側に配置されている。このように、各開口14には、各ヒートシンク11に対応するパワーモジュール30と制御基板31とが取り付けられてなるヒートシンク組立体が嵌め合わされている。
 インバータユニット収納部16の中心から開口14を見たときのパワーモジュール30及び制御基板31の面積は、開口14の面積よりも小さくなっている。また、ベースフレーム10の軸方向に直角な断面について、リブ部29の断面積の合計は、モータユニット収納部17の断面積よりも小さくなっている。
 モータユニット収納部17の外周面の断面形状は円形である。また、モータユニット収納部17の外周面には、モータ駆動時に発生する熱を外部に効果的に放熱するために、周方向に沿って複数の溝が設けられており、これにより複数の放熱フィン21が形成されている。
 なお、図2の冷却流路90のように、周方向に冷却流路を設ける場合は周方向に沿って放熱フィン21,24を設けるが、冷却流路が軸方向である場合は、軸方向に沿って放熱フィン21,24を設ける。
 ベースフレーム10の反負荷側の端面27には、複数のねじ穴28が設けられている。フロントプレート3には、ねじ穴28に対応する複数のねじ挿入穴6が設けられている。フロントプレート3は、複数のねじによりベースフレーム10に締結され固定されている。
 また、フロントプレート3には、パワーモジュール30に電力を供給するDC線と、制御基板31に電気信号を送るための信号線とを通すための切欠4が設けられている。
 ベースフレーム10の負荷側端面25には、複数のねじ穴26が設けられている。エンドプレート2には、ねじ穴26に対応する複数のねじ挿入穴7が設けられている。エンドプレート2は、複数のねじによりベースフレーム10に締結され固定されている。
 また、エンドプレート2には、出力軸63を通すための軸挿入穴8が設けられている。軸挿入穴8には、負荷側軸受(図示せず)が嵌め合わされている。
 なお、フレームユニット110は、アルミニウムなどの良熱伝導材料で作られていることが望ましく、冷却効果を高めることができる。また、ヒートシンク11の材料を、熱伝導性が特に優れた材料(例えば銅)にすることで、パワーモジュール30の冷却性能を向上させることができる。
 図4は図1のモータユニット130及び結線板ユニット140を示す分解斜視図である。モータユニット130は、円筒状のステータユニット50と、ステータユニット50内に挿入されているロータユニット60とを有している。
 ステータユニット50は、ステータコア51と巻線53とを有している。モータユニット収納部17の内周面の断面形状は円形であり、ステータコア51は、モータユニット収納部17の内側に嵌め合わされて固定されている。
 ステータコア51は、環状のヨーク部56と、ヨーク部56から径方向内側へ突出した12個のティース部52とを有している。巻線53は、ステータコア51の内側からティース部52に装着されている。また、巻線53の端部は、反負荷側に引き出されている。
 ロータユニット60は、ロータコア61と20個の永久磁石65とを有している。ロータコア61には、周方向に沿って20個の磁石挿入穴66が設けられている。永久磁石65は、極がN→N→S→Sと2極ずつ交互に径方向外側を向くように磁石挿入穴66に挿入されている。
 ロータユニット60の内径に取り付けられた出力軸63は、上記の負荷側軸受と、結線板ユニット140に支持されている反負荷側軸受(図示せず)とにより回転自在に支持されている。
 図5は図4のステータユニット50に結線板ユニット140を装着した状態を示す斜視図である。結線板ユニット140では、巻線53の端部が相毎に結線されており、パワーモジュール30の出力端子と接続するための複数の接続端子55が構成されている。
 次に、図6のフローチャートを用いて、実施の形態1の機電一体型モータ装置の組立方法について説明する。図6の方法では、まず、ステータコア51に巻線53を装着する(ステップS1)。そして、ステータユニット50に結線板ユニット140を装着し、各相の巻線53からの引出線54を結線板ユニット140で結線する(ステップS2)。
 この後、ステータユニット50及び結線板ユニット140をベースフレーム10のモータユニット収納部17に圧入又は焼き嵌めして固定する(ステップS3)。続いて、ステータユニット50にロータユニット60を挿入する(ステップS4)。このとき、出力軸63を反負荷側軸受に挿入する。
 次に、エンドプレート2をベースフレーム10に固定し、ベースフレーム10の負荷側に蓋をする(ステップS5)。このとき、出力軸63を負荷側軸受に挿入する。これにより、モータユニット130及び結線板ユニット140のベースフレーム10への取り付けが完了する。
 続いて、制御基板31をパワーモジュール30に取り付けるとともに、パワーモジュール30に接続される制御線(図示せず)を配線してモジュールユニット121を組み立てる。そして、ベースフレーム10の外部で、モジュールユニット121をヒートシンク11に取り付ける(ステップS6)。このとき、パワーモジュール30の放熱面をヒートシンク11に密着させる。
 次に、モジュールユニット121が取り付けられたヒートシンク11、即ちヒートシンク組立体を、ベースフレーム10のインバータユニット収納部16の外壁面に取り付ける(ステップS7)。
 この後、パワーモジュール30の出力端子と、結線板ユニット140の6相分の接続端子55とを結線する(ステップS8)。そして、インバータユニット120の電気部品間の電気的接続を行う。最後に、フロントプレート3をベースフレーム10の反負荷側端部に固定する(ステップS9)。これにより、全ての組立作業が完了する。
 上記のような機電一体型モータ装置では、インバータユニット収納部16に、周方向に互いに間隔をおいて開口14が設けられており、互いに隣り合う開口14の間にリブ部29が形成されており、ヒートシンク11が、開口14を覆うようにベースフレーム10に取り付けられており、パワーモジュール30及び制御基板31が、ヒートシンク11の内側に配置されているので、インバータユニット120の組立性の改善と、インバータユニット120の冷却性能の改善とを同時に達成することができる。
 具体的には、フレームユニット110は、開口14が設けられたベースフレーム10とヒートシンク11とに分かれているため、パワーモジュール30及び制御基板31をベースフレーム10外部でヒートシンク11に取り付けることが可能である。従来は、ベースフレーム10の径方向内側からモジュールユニット121を取り付ける必要があったが、実施の形態1では、ベースフレーム10の径方向外側からヒートシンク11を取り付けても、従来通りフレーム内壁面にモジュールユニット121が配置される構造となっており、モジュールユニット121の取り付け性が改善される。
 また、インバータユニット収納部16が骨状のリブ部29により構成されているため、インバータユニット収納部16の熱抵抗をモータユニット収納部17よりも大きくすることができる。これにより、モータ駆動時に発生した熱がインバータユニット120に伝達しにくくなり、インバータユニット120の冷却性能が改善される。
 ベースフレーム10の軸方向に直角な断面について、リブ部29の断面積の合計が、モータユニット収納部17の断面積よりも小さくなっているので、インバータユニット収納部16の熱抵抗をより確実にモータユニット収納部17よりも大きくすることができる。さらに、ベースフレーム10とヒートシンク11との間に、スペーサを設けて密着させない、もしくは、比較的熱伝導率の低いプラスチック又はエポキシ樹脂などの物質を介して固定することで、インバータユニット120の冷却性能が改善される。
 さらにまた、インバータユニット収納部16の中心から開口14を見たときのパワーモジュール30及び制御基板31の面積が開口14の面積よりも小さいので、制御基板31もベースフレーム10の外側でヒートシンク11に取り付け、ベースフレーム10の外側から組み付けることが可能になり、組立性をさらに改善することができる。また、大型化することなく、ヒートシンク11とベースフレーム10とを分離することができる。
 また、制御基板31をパワーモジュール30のできるだけ近くに配置することができるため、制御基板31からパワーモジュール30に接続される信号線の浮遊容量により、パワーモジュール30のスイッチング動作が遅れることがない。
 さらに、インバータユニット収納部16に開口14が設けられていることで、パワーモジュール30の出力端子をベースフレーム10から離すことができ、ベースフレーム10で生じる渦電流損失を低減することができる。
 さらにまた、モジュールユニット121をヒートシンク11に埋め込む必要がなく、ヒートシンク11を比較的薄く形成することができ、フレームユニット110内部の有効体積を増加させることができる。
 また、インバータユニット120がモータユニット130の軸方向に配置されるため、モータユニット130からの引出線54をインバータユニット120への配線が容易になる。
 さらに、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、インバータユニット収納部16とモータユニット収納部とを結合する部材が必要なくなり、より小型化が可能となる。
 さらにまた、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、駆動装置全体としての剛性が高くなる。
 なお、ヒートシンク11の数は、図1に示す6枚に限らず、2個以上の複数あればよい。開口14の数は、ヒートシンク11の数と等しい。
 実施の形態2.
 次に、図7はこの発明の実施の形態2による機電一体型モータ装置の要部を示す斜視図である。実施の形態2では、各ヒートシンク11の周縁部にフランジ部15が設けられており、フランジ部15がインバータユニット収納部16の内壁面にねじ止めされている。組立においては、ベースフレーム10の外部でヒートシンク11にモジュールユニット121を取り付け、ヒートシンク11をベースフレーム10の反負荷側から挿入し、開口14の周囲のベースフレーム10内壁面にフランジ部15を固定する。他の構成及び組立方法は、実施の形態1と同様である。
 このように、ヒートシンク11をベースフレーム10の内壁面に固定してもよく、実施の形態1と同様の効果を得ることができる。
 実施の形態3.
 次に、図8はこの発明の実施の形態3による機電一体型モータ装置を示す分解斜視図、図9は図8の機電一体型モータ装置の概略の断面図であり、図9ではインバータユニット収納部16内の構成等を省略している。実施の形態3では、ベースフレーム10及び6個のヒートシンク11により、インナフレーム112が構成されている。インナフレーム112の径方向外側には、筒状のアウタフレーム113が嵌め合わされている。これにより、インナフレーム112とアウタフレーム113との間には、冷却液流路70が形成されている。液冷フレーム111は、インナフレーム112及びアウタフレーム113により構成されている。
 アウタフレーム113の反負荷側端部113bには、冷却液を供給するための入口側ニップル5aと、排出するための出口側ニップル5bとが取り付けられている。入口側ニップル5aから供給された冷却液は、冷却液流路70内を周方向に循環して出口側ニップル5bから排出される。
 インナフレーム112の負荷側端部112aとアウタフレーム113の負荷側端部113aとの間、及びインナフレーム112の反負荷側端部112bとアウタフレーム113の反負荷側端部113bとの間には、それぞれシール構造(水密構造)が設けられている。
 具体的には、インナフレーム112の負荷側端部112aは、径方向外側に延長された構造となっている。また、インナフレーム112の負荷側端部112aには、円環状の溝が設けられており、その溝内には円環状のシール部材72aが嵌め込まれている。シール部材72aには、アウタフレーム113の負荷側の端面が当たっている。
 インナフレーム112の負荷側端部112aには、複数のねじ挿入穴73aが設けられている。ねじ挿入穴73aは、シール部材72aよりも径方向外側に配置されている。アウタフレーム113の負荷側端部113aには、ねじ挿入穴73aに対応する複数のねじ穴74aが設けられている。
 インナフレーム112の反負荷側端部112bには、円環状の溝が設けられており、その溝内には円環状のシール部材72bが嵌め込まれている。アウタフレーム113の反負荷側端部113bは、シール部材72bを覆うように径方向内側に延長されており、シール部材72bに当たっている。
 インナフレーム112の反負荷側端部112bには、複数のねじ穴73bが設けられている。ねじ穴73bは、シール部材72bよりも径方向内側に配置されている。アウタフレーム113の反負荷側端部113bには、ねじ穴73bに対応する複数のねじ挿入穴74bが設けられている。
 アウタフレーム113の負荷側端部113aのシール部材72aに接触する面は、シール部材72aに均等に圧力がかかるように平坦に形成されている。アウタフレーム113の反負荷側端部113bのシール部材72bに接触する面は、シール部材72bに均等に圧力がかかるよう平坦に形成されている。
 なお、インナフレーム112及びアウタフレーム113間の負荷側のシール構造と反負荷側のシール構造とを入れ替えてもよい。
 エンドプレート2のねじ挿入穴7は、ねじ挿入穴73aに対応して配置されている。そして、エンドプレート2は、インナフレーム112とともにアウタフレーム113にねじ止めされ固定されている。
 フロントプレート3のねじ挿入穴6は、ねじ挿入穴74bに対応して配置されている。そして、フロントプレート3は、アウタフレーム113とともにインナフレーム112にねじ止めされ固定されている。
 ベースフレーム10の各開口14の周囲には、略四角形の溝が設けられており、その溝内にはシール部材80が嵌め込まれている。各ヒートシンク11とベースフレーム10との間には、シール部材80が介在している。ヒートシンク11のパワーモジュール取り付け面13は、平坦であり、シール部材80を覆うように形成されている。
 ヒートシンク11をベースフレーム10に固定するためのねじ穴18(図2)は、シール部材80の外側に配置されている。また、ねじ穴18は、ベースフレーム10を貫通しないように形成されている。他の構成及び組立方法は、実施の形態1と同様である。
 このような機電一体型モータ装置では、インナフレーム112の径方向外側にアウタフレーム113が嵌め合わされており、各ヒートシンク11とベースフレーム10との間にはシール部材80が介在しているので、ベースフレーム10内への液漏れを防止しつつ、インナフレーム112とアウタフレーム113との間に冷却液流路70を形成することができる。さらに、ベースフレーム10とヒートシンク11とがシール部材80を介して接触しているため、モータユニット130からベースフレーム10へ伝わった熱が、ヒートシンク11に取り付けられているパワーモジュール30へ伝わることを妨げるため、インバータユニット120の冷却性能が向上する。
 そして、ポンプ等を用いて、冷却液流路70内に熱伝導率の高い流体(例えば水)を流入させることで、モータユニット130及びインバータユニット120の冷却性能を向上させることができる。これにより、インバータユニット120の最大出力密度及びトルク密度を増大させることができる。
 また、インナフレーム112の負荷側端部112aとアウタフレーム113の負荷側端部113aとの間、及びインナフレーム112の反負荷側端部112bとアウタフレーム113の反負荷側端部113bとの間には、それぞれシール構造が設けられているため、液漏れを防止することができる。
 さらに、ねじ穴18はベースフレーム10を貫通しないように形成されているため、ねじ穴18を通じて冷却液流路70からベースフレーム10内に液漏れが生じることもない。
 また、インバータユニット120がモータユニット130の軸方向に配置されるため、モータユニット130からの引出線54をインバータユニット120への配線が容易になる。
 さらに、モータユニット130及びインバータユニット120を同じ液路70で冷却できるため、複数の冷却流路を構成して配管する必要がなく、配管性に優れ、流路の圧力損失も低減される。
 さらに、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、インバータユニット収納部16とモータユニット収納部とを結合する部材が必要なくなり、より小型化が可能となる。
 さらにまた、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、インバータユニット収納部16とモータユニット収納部とをシール構造する部材が必要なくなり、部品点数を削減でき、水密性を向上できる。
 また、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、駆動装置全体としての剛性が高くなる。
 実施の形態4.
 次に、図10はこの発明の実施の形態4による機電一体型モータ装置の要部を示す斜視図である。実施の形態4は、実施の形態3と実施の形態2とを組み合わせたものである。即ち、ヒートシンク11のフランジ部15には溝が形成されており、その溝内にシール部材84が嵌め込まれている。
 フランジ部15は、インバータユニット収納部16の内壁面にねじ止めされている。シール部材84は、フランジ部15とベースフレーム10の内壁面との間に介在している。また、シール部材84は、ねじ挿入穴23の外側に配置されている。他の構成及び組立方法は、実施の形態3と同様である。
 このように、ベースフレーム10の内壁面で水密を確保してもよく、実施の形態3と同様の効果が得られる。
 実施の形態5.
 次に、図11はこの発明の実施の形態5による機電一体型モータ装置の要部を示す斜視図である。実施の形態5では、ベースフレーム10のモータユニット収納部17に2つの開口14があり、開口14を覆うように2枚のヒートシンク11が組み付けられている。各ヒートシンク11には、3つの単相(1レグ)分のパワーモジュール30が周方向に等間隔で取り付けられている。
 また、各ヒートシンク11には、三相分のパワーモジュール30を駆動するための制御基板(図示せず)が取り付けられている。各制御基板は、パワーモジュール30と信号線(図示せず)で結線されており、三相インバータ装置を構成している。他の構成及び組立方法は、実施の形態1、2、3又は4と同様である。
 このように、1つのヒートシンク11に2つ以上のパワーモジュール30を取り付けることにより、パワーモジュール30の数が多いインバータユニット120でも、ヒートシンク11の数を削減できる。即ち、多群多相モータを用いる場合であっても、パワーモジュール30と同数のヒートシンク11を用意する必要がなく、部品点数を削減することができ、組立性も改善される。
 また、インバータユニット120がN相駆動インバータ装置(Nは2以上の整数)であるとき、各ヒートシンク11にN相分のパワーモジュール30を取り付けることにより、多群巻線構造のモータユニット130を用いる場合に、ベースフレーム10の外部で各群のパワーモジュール30と制御基板のDC線及び制御信号線の結線が可能になるので、組立性がさらに改善される。また、各群のパワーモジュール30の制御基板を1つにすることが可能である。さらに、実施の形態3、4と同様にシール構造を設けることで、液冷も可能である。
 さらに、インバータユニット収納部16とモータユニット収納部とが一体となってベースフレーム10が形成されているため、インバータユニット収納部16とモータユニット収納部とをシール構造する部材が必要なくなり、部品点数を削減でき、水密性を向上できる。
 実施の形態6.
 次に、図12はこの発明の実施の形態6による機電一体型モータ装置の要部を示す斜視図であり、図中の矢印は冷却液の流れる方向を示している。実施の形態6では、冷却液流路70の始端のヒートシンク11aにおける放熱面12の面積よりも終端のヒートシンク11fにおける放熱面12の面積の方が大きく形成されている。
 具体的には、始端から終端へ向けて放熱面12の面積が周方向に徐々に大きくなっている。即ち、冷却液流路70の始端側のヒートシンク11における周方向幅よりも終端側のヒートシンク11における周方向幅の方が大きくなっている。これにより、冷却液流路70(図9)の始端側のヒートシンク11における冷却液と接触する面積よりも終端側のヒートシンク11における冷却液と接触する面積の方が大きくなっている。他の構成及び組立方法は、実施の形態3又は4と同様である。
 このような機電一体型モータ装置では、冷却液流路70の終端で冷却液の温度が始端よりも高くなっていても、冷却液流路70の終端部のヒートシンク11による冷却性能が落ちず、周方向に配置されたパワーモジュール30の冷却性能を均等に確保することができる。
 実施の形態7.
 次に、図13はこの発明の実施の形態7による機電一体型モータ装置の要部を示す斜視図であり、図中の矢印は冷却液の流れる方向を示している。実施の形態7では、冷却液流路70の始端側のヒートシンク11aにおける放熱フィン24の数よりも終端側のヒートシンク11fにおける放熱フィン24の数の方が多くなっている。
 具体的には、冷却液流路70の始端のヒートシンク11aの放熱フィン24の数が6本で、冷却液流路70の終端のヒートシンク11fの放熱フィン24の数が9本である。これにより、冷却液流路70(図9)の始端側のヒートシンク11における冷却液と接触する面積よりも終端側のヒートシンク11における冷却液と接触する面積の方が大きくなっている。他の構成及び組立方法は、実施の形態3又は4と同様である。
 このような構成によっても、周方向に配置されたパワーモジュール30の冷却性能を均等に確保することができる。
 10 ベースフレーム、11 ヒートシンク、14 開口、16 インバータユニット収納部、17 モータユニット収納部、29 リブ部、30 パワーモジュール、31 制御基板、70 冷却液流路、80,84 シール部材、112 インナフレーム、113 アウタフレーム、120 インバータユニット、130 モータユニット。

Claims (10)

  1.  モータユニット収納部とインバータユニット収納部とを有する筒状のベースフレーム、
     上記モータユニット収納部に収納されているモータユニット、
     複数の制御基板と、上記制御基板に設けられている複数のパワーモジュールとを有しており、上記インバータユニット収納部に収納されているインバータユニット、及び
     上記パワーモジュールを冷却する複数のヒートシンク
     を備え、
     上記インバータユニット収納部には、周方向に互いに間隔をおいて複数の開口が設けられており、
     互いに隣り合う開口の間には、リブ部が形成されており、
     上記ヒートシンクは、上記開口を覆うように上記ベースフレームに取り付けられており、
     上記パワーモジュール及び上記制御基板は、上記ヒートシンクの内側に配置されている機電一体型モータ装置。
  2.  上記ベースフレームの軸方向に直角な断面について、上記リブ部の断面積の合計は、上記モータユニット収納部の断面積よりも小さくなっている請求項1記載の機電一体型モータ装置。
  3.  各上記開口には、各上記ヒートシンクに少なくとも1つの上記パワーモジュールと少なくとも1枚の上記制御基板とが取り付けられてなるヒートシンク組立体が嵌め合わされている請求項1又は請求項2に記載の機電一体型モータ装置。
  4.  上記インバータユニット収納部の中心から上記開口を見たときの上記パワーモジュール及び上記制御基板の面積が上記開口の面積よりも小さい請求項3記載の機電一体型モータ装置。
  5.  上記ベースフレーム及び上記ヒートシンクにより構成されるインナフレームの径方向外側に嵌め合わされている筒状のアウタフレームをさらに備え、
     各上記ヒートシンクと上記ベースフレームとの間には、シール部材が介在している請求項1から請求項4までのいずれか1項に記載の機電一体型モータ装置。
  6.  少なくとも1つの上記ヒートシンクには、2つ以上の上記パワーモジュールが取り付けられている請求項1から請求項5までのいずれか1項に記載の機電一体型モータ装置。
  7.  Nが2以上の整数であり、上記インバータユニットがN相駆動インバータ装置であるとき、各上記ヒートシンクにN相分の上記パワーモジュールが取り付けられている請求項1から請求項6までのいずれか1項に記載の機電一体型モータ装置。
  8.  上記インバータユニット収納部の径方向外側には、上記ヒートシンクを冷却するための冷却液が流される冷却液流路が形成されており、
     上記冷却液流路の始端側の上記ヒートシンクにおける冷却液と接触する面積よりも終端側の上記ヒートシンクにおける冷却液と接触する面積の方が大きくなっている請求項1から請求項7までのいずれか1項に記載の機電一体型モータ装置。
  9.  上記冷却液流路の上記始端側の上記ヒートシンクにおける周方向幅よりも上記終端側の上記ヒートシンクにおける周方向幅の方が大きくなっている請求項8記載の機電一体型モータ装置。
  10.  上記ヒートシンクのそれぞれは、径方向外側に放熱フィンを有し、
     上記冷却液流路の上記始端側の上記ヒートシンクにおける上記放熱フィンの数よりも上記終端側の上記ヒートシンクにおける上記放熱フィンの数の方が多くなっている請求項8記載の機電一体型モータ装置。
PCT/JP2015/058258 2014-05-20 2015-03-19 機電一体型モータ装置 WO2015178087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016520977A JP6081021B2 (ja) 2014-05-20 2015-03-19 機電一体型モータ装置
CN201580020648.8A CN106233589B (zh) 2014-05-20 2015-03-19 机电一体型马达装置
US15/125,243 US10211698B2 (en) 2014-05-20 2015-03-19 Inverter integrated motor apparatus
DE112015002343.7T DE112015002343B4 (de) 2014-05-20 2015-03-19 Wechselrichterintegrierte Motorvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014104320 2014-05-20
JP2014-104320 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178087A1 true WO2015178087A1 (ja) 2015-11-26

Family

ID=54553764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058258 WO2015178087A1 (ja) 2014-05-20 2015-03-19 機電一体型モータ装置

Country Status (5)

Country Link
US (1) US10211698B2 (ja)
JP (1) JP6081021B2 (ja)
CN (1) CN106233589B (ja)
DE (1) DE112015002343B4 (ja)
WO (1) WO2015178087A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021047B1 (ja) * 2015-01-14 2016-11-02 株式会社安川電機 モータ
EP3573219A4 (en) * 2017-01-20 2019-11-27 Mitsubishi Electric Corporation ELECTRIC MOTOR, AIR CONDITIONER AND METHOD FOR MANUFACTURING ELECTRIC MOTOR
JP2023504625A (ja) * 2019-12-06 2023-02-06 珠海英搏爾電気股▲フン▼有限公司 積層バスバーユニット、モータ制御装置、駆動アセンブリ、及び交通機関
DE112021002717T5 (de) 2020-08-11 2023-03-09 Ihi Corporation Drehmaschine
DE112015002495B4 (de) 2014-05-28 2023-10-05 Mitsubishi Electric Corporation Elektrische Energie umwandelnde Vorrichtung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531912B (zh) * 2013-05-28 2019-05-03 奥的斯电梯公司 用于电梯系统的机器的冷却
WO2015093138A1 (ja) * 2013-12-16 2015-06-25 三菱電機株式会社 機電一体型駆動装置及びその製造方法
DE112015004094T5 (de) * 2014-10-08 2017-07-06 Remy Technologies Llc Radial anpassbare Phasenanschlussdrahtverbindung
FR3064842A1 (fr) * 2017-03-28 2018-10-05 Valeo Systemes De Controle Moteur Connecteur electrique, compresseur de suralimentation electrique le comprenant et procede de fabrication d'un tel connecteur electrique
TWI656717B (zh) 2017-11-30 2019-04-11 財團法人工業技術研究院 驅控器連結電動機之冷卻結構
TWI643432B (zh) * 2018-01-03 2018-12-01 東元電機股份有限公司 具有匯集斜槽之馬達框架
FR3084791B1 (fr) * 2018-07-31 2021-05-14 Safran Machine electrique polyphasee a electronique de puissance integree
FR3091063B1 (fr) * 2018-12-21 2021-01-15 Safran Module électronique de puissance pour moteur électrique intelligent
CN113728537B (zh) * 2019-04-25 2024-04-12 美国轮轴制造公司 电驱动模块
WO2020225132A1 (en) * 2019-05-08 2020-11-12 Universiteit Gent An electrical machine comprising a cooling device
CN112572120A (zh) * 2019-09-27 2021-03-30 罗伯特·博世有限公司 集成式电驱动系统和电动车辆
BR112023018671A2 (pt) 2021-03-15 2024-01-30 American Axle & Mfg Inc Unidade de acionamento elétrico
DE102021119212A1 (de) 2021-07-25 2023-01-26 Fachhochschule Kiel, Körperschaft des öffentlichen Rechts Leistungs-Modul-Aufnahme-System sowie zugehöriges Herstellungsverfahren
WO2023101925A1 (en) 2021-12-01 2023-06-08 American Axle & Manufacturing, Inc. Electric drive unit with motor assembly isolated from beaming loads transmitted through housing assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159454A (ja) * 2002-11-07 2004-06-03 Nissan Motor Co Ltd 機電一体型駆動装置
JP2004236470A (ja) * 2003-01-31 2004-08-19 Yaskawa Electric Corp パワーモジュールおよびパワーモジュール一体型モータ
JP2008125221A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 車両用駆動装置
JP2011030408A (ja) * 2009-06-24 2011-02-10 Denso Corp 電子回路内蔵型モータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932942A (en) * 1997-12-16 1999-08-03 Reliance Electric Industrial Company DC motor drive with improved thermal characteristics
JPH11356006A (ja) * 1998-06-03 1999-12-24 Tokyo R & D:Kk 電動モータ
JP2001135962A (ja) 1999-11-08 2001-05-18 Mechanical Research:Kk ヒートシンク
JP3664650B2 (ja) * 2000-12-18 2005-06-29 三菱電機株式会社 制御装置一体型電動機
JP2009027863A (ja) * 2007-07-20 2009-02-05 Toshiba Corp 車両用の駆動装置
JP2009162091A (ja) 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd エンジン用の電動ターボチャージャにおける回路部品冷却構造
JP5435286B2 (ja) * 2009-06-24 2014-03-05 株式会社デンソー 駆動装置
JP5312614B2 (ja) * 2010-01-29 2013-10-09 三菱電機株式会社 インバータ一体型駆動モジュール
JP5610284B2 (ja) 2010-09-28 2014-10-22 日本電産シンポ株式会社 発熱素子の放熱構造
JP5501257B2 (ja) 2011-01-12 2014-05-21 日立オートモティブシステムズ株式会社 回転電機ユニット
WO2015093138A1 (ja) 2013-12-16 2015-06-25 三菱電機株式会社 機電一体型駆動装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159454A (ja) * 2002-11-07 2004-06-03 Nissan Motor Co Ltd 機電一体型駆動装置
JP2004236470A (ja) * 2003-01-31 2004-08-19 Yaskawa Electric Corp パワーモジュールおよびパワーモジュール一体型モータ
JP2008125221A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 車両用駆動装置
JP2011030408A (ja) * 2009-06-24 2011-02-10 Denso Corp 電子回路内蔵型モータ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015002495B4 (de) 2014-05-28 2023-10-05 Mitsubishi Electric Corporation Elektrische Energie umwandelnde Vorrichtung
JP6021047B1 (ja) * 2015-01-14 2016-11-02 株式会社安川電機 モータ
EP3573219A4 (en) * 2017-01-20 2019-11-27 Mitsubishi Electric Corporation ELECTRIC MOTOR, AIR CONDITIONER AND METHOD FOR MANUFACTURING ELECTRIC MOTOR
JP2023504625A (ja) * 2019-12-06 2023-02-06 珠海英搏爾電気股▲フン▼有限公司 積層バスバーユニット、モータ制御装置、駆動アセンブリ、及び交通機関
JP7443522B2 (ja) 2019-12-06 2024-03-05 珠海英搏爾電気股▲フン▼有限公司 駆動アセンブリ、及び交通機関
DE112021002717T5 (de) 2020-08-11 2023-03-09 Ihi Corporation Drehmaschine

Also Published As

Publication number Publication date
US20170077779A1 (en) 2017-03-16
CN106233589A (zh) 2016-12-14
DE112015002343T5 (de) 2017-02-09
US10211698B2 (en) 2019-02-19
JP6081021B2 (ja) 2017-02-15
CN106233589B (zh) 2019-01-22
JPWO2015178087A1 (ja) 2017-04-20
DE112015002343B4 (de) 2022-06-09

Similar Documents

Publication Publication Date Title
JP6081021B2 (ja) 機電一体型モータ装置
JP5859031B2 (ja) 機電一体モジュール
JP5649737B2 (ja) 機電一体型モジュール
JP5811422B2 (ja) 回転電機
JP5748869B2 (ja) 機電一体モジュール
WO2017033917A1 (ja) モータ
JP5804450B2 (ja) 回転電機
TWI643433B (zh) 旋轉電機
KR20080070161A (ko) 에이에프피엠 코어리스형 멀티 발전기 및 모터
JP6621491B2 (ja) 回転電機
JP2008017656A (ja) 囲む式空気室及び半径方向の通気孔を持つクローズタイプの電機
JP2014143841A (ja) インバータ一体型モータ
WO2018088525A1 (ja) 電動コンプレッサ
JP5787226B2 (ja) 車両用回転電機
EP3488515B1 (en) Electric motor
JP2014138489A (ja) インバータ付きモータ
JP6485705B2 (ja) 電力変換装置および回転電機
JP2017189052A (ja) インバータ一体形回転電機
JP6049584B2 (ja) 電動機
JP3774863B2 (ja) 回転電機
JP2004222428A (ja) パワーモジュール一体型アクチュエータ
JP5717669B2 (ja) 機電一体モジュール
JP2020159336A (ja) 電動ポンプ
CN111247724A (zh) 具有包括部分细分通道的冷却装置的电机
JP2008101471A (ja) ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520977

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125243

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002343

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795494

Country of ref document: EP

Kind code of ref document: A1