WO2015177967A1 - 透明導電膜の製造方法、及び透明導電膜 - Google Patents

透明導電膜の製造方法、及び透明導電膜 Download PDF

Info

Publication number
WO2015177967A1
WO2015177967A1 PCT/JP2015/002172 JP2015002172W WO2015177967A1 WO 2015177967 A1 WO2015177967 A1 WO 2015177967A1 JP 2015002172 W JP2015002172 W JP 2015002172W WO 2015177967 A1 WO2015177967 A1 WO 2015177967A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
conductive film
film
transparent conductive
airflow
Prior art date
Application number
PCT/JP2015/002172
Other languages
English (en)
French (fr)
Inventor
井上 純一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2015177967A1 publication Critical patent/WO2015177967A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method for producing a transparent conductive film and a transparent conductive film, and more particularly to a method for producing a transparent conductive film for producing a transparent conductive film using metal nanowires and a transparent conductive film produced by such a production method.
  • Metal oxides such as tin oxide (ITO) have been used.
  • ITO tin oxide
  • a transparent conductive film using a metal oxide is manufactured by sputtering film formation in a vacuum environment, and thus is expensive to manufacture, and cracking and peeling are likely to occur due to deformation such as bending and bending. It was a thing.
  • a transparent conductive film using a metal oxide instead of a transparent conductive film using a metal oxide, a transparent conductive film using metal nanowires that can be formed by coating or printing and has high resistance to bending and bending has been studied.
  • a transparent conductive film using metal nanowires has attracted attention as a next-generation transparent conductive film that does not use indium, which is a rare metal (see, for example, Patent Documents 1 and 2).
  • Patent Document 3 uses a winding film forming apparatus in which a plurality of non-contact surface resistance measuring devices are fixedly arranged, and an eddy current is applied to a transparent conductive film formed using the winding film forming apparatus.
  • the surface resistance of the transparent conductive film is continuously measured from the eddy current, the temperature of the sensor that detects the eddy current, and the distance between the sensor and the transparent conductive film, and the measurement results are fed back. It discloses that a transparent conductive film roll having a surface resistance distribution uniformity within a predetermined range can be manufactured by taking a method of controlling the surface resistance.
  • Patent Document 4 discloses that when a base material is exposed to a thin film forming gas in a plasma state between opposing electrodes to form a transparent conductive thin film on the base material, the visible light transmittance and resistance of the thin film are formed. It discloses that a transparent conductive thin film having a surface resistance distribution within ⁇ 10% can be formed by controlling the flow rate or concentration of the thin film forming gas introduced between the counter electrodes while monitoring the value.
  • the conventional method is premised on the use of a metal oxide such as indium tin oxide (ITO), a gaseous organometallic compound, or the like instead of the metal nanowires described above.
  • ITO indium tin oxide
  • the conventional method requires various in-line measuring devices, plasma generators, etc., so that the control is relatively complicated and the cost for manufacturing the transparent conductive film increases. is there.
  • the metal nanowire may have characteristics such as being capable of causing Brownian motion in a wet state, having a curved shape, and being able to be easily unevenly distributed by aggregation in a liquid or a film. There has been almost no report on a method for easily uniforming the surface resistance of a transparent conductive film using the metal nanowire.
  • the present invention provides a method for producing a transparent conductive film capable of easily producing a transparent conductive film having excellent surface resistance uniformity using metal nanowires, and a surface resistance using metal nanowires.
  • An object of the present invention is to provide a transparent conductive film having excellent uniformity.
  • the present inventors apply a predetermined air flow to the dispersion film when the dispersion film containing metal nanowires is formed on the substrate and dried. As a result, it was found that a transparent conductive film excellent in uniformity of surface resistance can be easily produced, and the present invention has been completed.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A dispersion preparation step of preparing a dispersion comprising metal nanowires; A dispersion film forming step of forming a dispersion film on a substrate using the dispersion liquid; A dispersion film drying step of applying a downflow airflow in a predetermined direction to the dispersion film on the substrate, The air flow is a method for producing a transparent conductive film, wherein a speed of reaching the dispersion film is 0.5 m / second or more and 18.0 m / second or less.
  • the “downflow airflow” refers to an airflow having at least a vertically lower vector when the airflow is decomposed into a vertical vector and a horizontal vector.
  • the arrival speed of the airflow to the dispersion film refers to the speed of the airflow measured on the surface of the dispersion film.
  • a wind direction defined by an angle ⁇ formed by a direction in which an airflow applied to the dispersion film flows and a direction perpendicular to the surface of the base material on which the dispersion film is formed is 45 ° or less, in the above ⁇ 1> It is a manufacturing method of the transparent conductive film of description.
  • ⁇ 4> The method for producing a transparent conductive film according to any one of ⁇ 1> to ⁇ 3>, wherein an atmospheric temperature in the dispersion film drying step is 122 ° C. or lower.
  • ⁇ 5> The transparent conductive film according to any one of ⁇ 1> to ⁇ 4>, wherein in the dispersion film drying step, infrared drying is further performed when a downflow airflow is applied to the dispersion film on the substrate. It is a manufacturing method.
  • ⁇ 6> A transparent conductive film produced by the method for producing a transparent conductive film according to any one of ⁇ 1> to ⁇ 5>, wherein the standard deviation ⁇ of the surface resistance values at any 12 locations on the surface is 20 ⁇ / It is a transparent conductive film which is less than sq.
  • the said problems in the past can be solved, the said objective can be achieved, and the transparent conductive film excellent in the uniformity of surface resistance can be easily manufactured using metal nanowire.
  • the transparent conductive film excellent in the uniformity of surface resistance using the manufacturing method of a transparent conductive film and metal nanowire can be provided.
  • FIG. 1 is a schematic diagram for explaining a dispersion film drying step of the method for producing a transparent conductive film of the present invention.
  • the method for producing a transparent conductive film of the present invention includes at least a dispersion preparation step, a dispersion film formation step, and a dispersion film drying step, and further, a heat curing treatment step and a calendar treatment, which are appropriately selected as necessary. Other steps such as a step (pressure treatment step) are included.
  • the dispersion preparation step is a step of preparing a dispersion containing metal nanowires.
  • the dispersion liquid includes at least metal nanowires, and further includes carbon nanotubes, a transparent resin material (binder), a solvent, a dispersant, and other components as necessary.
  • the dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
  • the viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 cP or more and 50 cP or less, more preferably 10 cP to 40 cP. If the viscosity of the dispersion is less than 1 cP or more than 50 cP, a dispersion film formation failure may be caused in the dispersion film forming step, and the surface resistance distribution may be non-uniform. On the other hand, when the viscosity of the dispersion is within the more preferable range, it is advantageous in that formation failure of the dispersion film can be prevented and the distribution of surface resistance can be made uniform.
  • the mass of the said dispersion liquid is 100 masses. Parts, preferably 0.01 to 10.00 parts by mass.
  • sufficient basis weight of the metal nanowires and arbitrary carbon nanotubes in the finally obtained transparent conductive film may (0.001g / m 2 ⁇ 1.000g / m 2) can not be obtained, and when it exceeds 10.00 parts by mass, the dispersibility of the metal nanowires and any of the carbon nanotube is deteriorated.
  • the metal nanowire is made of metal and is a fine wire having a diameter on the order of nm.
  • the constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose.
  • Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • Ag and Cu are preferable in terms of high conductivity.
  • the average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
  • the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate.
  • the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
  • the average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m.
  • the metal nanowires are not easily connected to each other, and the transparent conductive film containing the metal nanowires may not function as a conductive film.
  • the total light transmittance and haze of the transparent conductive film containing the metal nanowire may be deteriorated, or the dispersibility of the metal nanowire in the dispersion used when forming the transparent conductive film may be deteriorated.
  • the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape.
  • the length of the metal nanowire is not limited.
  • the weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ⁇ 1.000g / m 2, 0.003g / m 2 ⁇ 0.3 g / m 2 is more preferable.
  • the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate.
  • the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
  • the metal nanowire network means a network structure formed by connecting a plurality of metal nanowires to each other in a network.
  • the said metal nanowire network is formed by passing through the pressurization process mentioned later.
  • combined by the conventional synthesis method may be sufficient, and a commercially available thing may be used.
  • combining method of the said carbon nanotube According to the objective, it can select suitably, For example, an arc discharge method, a laser evaporation method, a thermal CVD method etc. are mentioned.
  • limiting in particular as said carbon nanotube According to the objective, it can select suitably, A single-walled carbon nanotube (SWNT) may be sufficient, and a multi-walled carbon nanotube (MWNT) may be sufficient. However, the single-walled carbon nanotube is preferable.
  • the carbon nanotube may be a mixture of metallic and semiconducting carbon nanotubes, or may be selectively separated semiconducting carbon nanotubes.
  • the carbon nanotube network means a network structure formed by connecting a plurality of carbon nanotubes in a network.
  • the carbon nanotube network is formed through a pressure treatment described later.
  • the transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) there is no restriction
  • a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned,
  • Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
  • the thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
  • the solvent is not particularly limited as long as the metal nanowires and optionally contained carbon nanotubes are dispersed, and can be appropriately selected according to the purpose.
  • water methanol, ethanol, n-propanol , I-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol and other alcohols; cyclohexanone, cyclopentanone, anone and other ketones; N, N-dimethylformamide (DMF) and other amides; dimethyl sulfoxide Sulfides such as (DMSO); and the like. These may be used individually by 1 type and may use 2 or more types together.
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide Sulfides
  • a high boiling point solvent may be further added to the dispersion liquid. Thereby, the evaporation rate of the solvent from the dispersion can be controlled.
  • the high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups.
  • PVP polyvinyl pyrrolidone
  • amino group-containing compounds such as polyethyleneimine
  • sulfo groups including sulfonates
  • the dispersant when added to the dispersion, it is preferable to add the dispersant so that the conductivity of the finally obtained transparent conductive film does not deteriorate.
  • the said dispersing agent can be made to adsorb
  • ingredients are not particularly limited and may be appropriately selected depending on the purpose.
  • surfactants for example, surfactants, viscosity modifiers, curing accelerating catalysts, plasticizers, antioxidants, sulfidizing agents and the like are stable. Agents, etc.
  • the dispersion film forming step is a step of forming a dispersion film on a substrate using the dispersion obtained in the dispersion preparation step.
  • the transparent base material comprised with the material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
  • the transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film.
  • the film is formed into a film (sheet) thinned to such an extent that flexible flexibility can be realized, or an appropriate amount. It is assumed that it is a flat plate having a film thickness that can realize flexibility and rigidity.
  • quartz, sapphire, glass, etc. are mentioned.
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyimide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PE polyether sulfone
  • PP polypropylene
  • PP diacetyl cellulose
  • PVC polyvinyl chloride
  • acrylic resin PMMA
  • PC polycarbonate
  • Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used.
  • the film thickness of the transparent substrate is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • Dispersion film is formed using a dispersion, and the dispersion is as described above.
  • the metal nanowires, carbon nanotubes, transparent resin material (binder), solvent, dispersant, and other components that can be contained in the dispersion are all as described above in the description of the dispersion.
  • the method for forming the dispersion film on the substrate is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a wet film formation method is preferable in terms of physical properties, convenience, production cost, and the like.
  • limiting in particular as said wet film-forming method According to the objective, it can select suitably, For example, well-known methods, such as the apply
  • the coating method is not particularly limited and can be appropriately selected according to the purpose. For example, the micro gravure coating method, the wire bar coating method, the direct gravure coating method, the die coating method, the dip method, and the spray coating.
  • the printing method is not particularly limited and can be appropriately selected depending on the purpose. For example, letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, ink jet printing, and the like. Is mentioned.
  • the thickness of the dispersion film is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the wet thickness is preferably 3 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m to 15 ⁇ m. If the wet thickness of the dispersion film is less than 3 ⁇ m, it may be difficult to form the dispersion film, and if it exceeds 20 ⁇ m, the surface resistance distribution of the obtained transparent conductive film may be non-uniform. On the other hand, when the wet thickness of the dispersion film is within the more preferable range, it is advantageous in terms of good formation of the dispersion film and uniformity of the surface resistance distribution of the transparent conductive film obtained.
  • the dispersion film drying step is a step of drying the dispersion film by applying a downflow airflow to the dispersion film formed in the dispersion film forming step. In this step, the solvent contained in the dispersion film can be removed.
  • the dispersion film is as described above.
  • Airflow of downflow In the dispersion film drying step, as shown in FIG. 1, a downflow air flow 3 in a predetermined direction is applied to the dispersion film 1 formed on the substrate 2 in the dispersion film formation step. Thereby, a solvent can be removed, suppressing aggregation of the metal nanowire in the dispersion film 1 effectively. Therefore, according to the present invention, the uniformity of the surface resistance of the transparent conductive film obtained can be improved.
  • the “downflow airflow” refers to an airflow having at least a vertically lower vector when the airflow is decomposed into a vertical vector and a horizontal vector. Therefore, the “downflow airflow” does not include a horizontal airflow or an airflow directed upward in the vertical direction.
  • a downflow airflow in a predetermined direction may be applied to the dispersion film while the substrate on which the dispersion film is formed is conveyed at a predetermined speed.
  • the conveyance speed of the base material is not particularly limited and can be appropriately determined according to the purpose. However, from the viewpoint of minimizing the relative change in the wind direction described later, it is 100 m / min or less. Preferably, it is 50 m / min or less, more preferably 5 m / min or less.
  • the method of drying the dispersion film is not particularly limited as long as a downflow airflow is applied to the dispersion film formed on the substrate, and can be appropriately selected according to the purpose.
  • a drying device including a heating means capable of heating to a temperature and a nozzle capable of supplying the air as an air current, the air current is supplied from the nozzle in a predetermined direction and is applied to a dispersion film on a substrate to be dried.
  • the dispersion film may be dried only by applying a downflow airflow in a predetermined direction to the dispersion film on the base material, but the downflow in the predetermined direction is applied to the dispersion film on the base material.
  • the air current it is preferable to further perform infrared drying.
  • Further infrared drying in the dispersion film drying step is advantageous from the viewpoint of preventing drying unevenness due to more efficient drying of the dispersion film and improving the uniformity of the surface resistance associated therewith.
  • the wavelength of infrared rays is close to the absorption wavelength of water, it is more advantageous when the dispersion contains an aqueous solvent.
  • Airflow components There is no restriction
  • the temperature of the airflow is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 156 ° C. or lower, and more preferably 30 ° C. to 120 ° C.
  • the temperature of the airflow of the downflow exceeds 156 ° C.
  • the time and cost for heating the airflow increase, and the surface resistance may be high and non-uniform.
  • the temperature of the airflow of the downflow is within the more preferable range, the time and cost for heating the airflow are suppressed, drying unevenness is prevented by effective drying of the dispersion film, and the surface resistance is uniform. It is advantageous from the viewpoint of improving the property.
  • the temperature of the said airflow can be measured with the commercially available thermometer normally used for the measurement of temperature, for example, a thermocouple thermometer.
  • the atmospheric temperature is a temperature around the substrate when a downflow airflow is applied to the dispersion film on the substrate.
  • the atmospheric temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 122 ° C. or lower, and more preferably 30 ° C. to 100 ° C. If the ambient temperature is higher than 122 ° C., the substrate may be distorted due to the glass transition temperature (Tg) of the substrate, or the surface resistance of the obtained transparent conductive film cannot be sufficiently uniformed. is there.
  • Tg glass transition temperature
  • the atmospheric temperature is within the more preferable range, it is advantageous from the viewpoint of preventing unevenness of drying by effective drying of the dispersion film, reducing surface resistance, and improving uniformity.
  • the ambient temperature can increase with time, but even in such a case, it is advantageous as long as it is within the range. is there.
  • the said atmospheric temperature can be measured with the commercially available thermometer normally used for the measurement of temperature, for example, a thermocouple thermometer.
  • the speed at which the airflow reaches the dispersion film is not particularly limited as long as it is 0.5 m / second or more and 18.0 m / second or less, and can be appropriately selected according to the purpose. It is preferably at least 1 second and less than 15.0 m / second, more preferably at least 1.0 m / second and less than 10.0 m / second.
  • the dispersion film itself is biased by the action of the force of the airflow, so that the metal nanowires contained in the dispersion film are It may be unevenly distributed, resulting in non-uniform surface resistance.
  • the arrival speed of the airflow to the dispersion film is within the preferable range or the more preferable range, the dispersion film itself is prevented from being biased, and the surface resistance of the obtained transparent conductive film is uniform.
  • the “arrival speed of the airflow to the dispersion film” refers to the speed of the airflow measured on the surface of the dispersion film, and can be measured by a commercially available anemometer usually used for measuring the wind speed. it can.
  • the wind direction is defined by an angle ⁇ formed by the direction in which the airflow 3 applied to the dispersion film 1 flows and the direction perpendicular to the surface of the substrate 2 on which the dispersion film 1 is formed, as represented by reference numeral 5 in FIG. Is done.
  • limiting in particular as said wind direction Although it can select suitably according to the objective, 45 degrees or less are preferable and 30 degrees or less are more preferable. If the wind direction exceeds 45 °, the surface resistance may be high and non-uniform. On the other hand, when the wind direction is in the more preferable range, it is advantageous from the viewpoint of reduction of surface resistance and uniformity of surface resistance.
  • the air direction can be adjusted by changing the angle of the nozzle in a drying apparatus including a nozzle capable of supplying air as an air current, for example.
  • the time for applying the air flow to the dispersion membrane in the dispersion membrane drying step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 minutes to 10 minutes, more preferably 1 minute to 5 minutes. preferable.
  • the time for applying the air flow to the dispersion film is less than 0.5 minutes, drying of the dispersion film may be insufficient and uneven drying may occur. Increasing the size may increase manufacturing costs.
  • the time is within the more preferable range, it is advantageous in terms of sufficient drying of the dispersion film and suppression of production costs.
  • the heat curing treatment step is a step of obtaining a transparent conductive film by performing a heat curing treatment after the dispersion film drying step.
  • the heating temperature in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 60 ° C to 140 ° C, more preferably 80 ° C to 120 ° C, and particularly preferably about 120 ° C. .
  • the heating temperature in the heat curing treatment is less than 60 ° C., the time required for drying may become long and workability may deteriorate, and when it exceeds 140 ° C., the balance with the glass transition temperature (Tg) of the substrate The substrate may be distorted.
  • the heating temperature in the heat curing treatment is within the more preferable range or the particularly preferable temperature, it is advantageous in terms of forming a metal nanowire network.
  • the heating time in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably about 5 minutes. .
  • the heating time in the heat curing treatment is less than 1 minute, curing may be insufficient, and when it exceeds 30 minutes, workability may be deteriorated.
  • the heating time in the heat curing treatment is within the more preferable range or the particularly preferable time, it is advantageous in terms of network formation and workability of metal nanowires or carbon nanotubes.
  • the calendering process is a process of calendering (pressurizing) the transparent conductive film.
  • the calendar process pressure process
  • the transparent conductive film is sandwiched and pressed by a roll pair constituted by a press roll (first roll) and a back roll (second roll).
  • a roll used for the said pressurization process there is no restriction
  • the surface pressure, line width, pressurization (load), and conveyance speed in the pressurization process are appropriately adjusted according to the type of roll used in the pressurization process.
  • the material of the elastic roll is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the main component is a chloroprene polymer rubber, acrylonitrile butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM). Such as rubber; resin; and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, rubber having high hardness and solvent resistance is preferable.
  • the material of the said elastic roll is not rubber
  • the diameter of the elastic roll is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 mm to 1,000 mm, more preferably 40 mm to 500 mm, and particularly preferably 50 mm to 300 mm.
  • the diameter of the elastic roll is less than 30 mm, it is difficult to wind the rubber around the metal roll, and it may be difficult to produce the elastic roll, and when it exceeds 1,000 mm, it may be difficult to handle the roll. .
  • the diameter of the elastic roll is within the more preferable range or the particularly preferable range, it is advantageous in terms of roll production and handling.
  • Metal roll >> There is no restriction
  • the metal used for the metal roll may be subjected to, for example, hard chrome plating. Among these, a metal with high workability and solvent resistance is preferable.
  • the diameter of the metal roll is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 mm to 1,000 mm, more preferably 40 mm to 500 mm, and particularly preferably 50 mm to 300 mm. If the diameter of the metal roll is less than 30 mm, it may be difficult to produce the roll, and if it exceeds 1,000 mm, handling of the roll may be difficult. On the other hand, when the diameter of the metal roll is within the more preferable range or the particularly preferable range, it is advantageous in terms of roll production and handling.
  • a metal roll having a diameter of less than 200 mm is preferably used as the press roll (first roll), and an elastic roll having a diameter of 200 mm or more is preferably used as the back roll (second roll).
  • the cushioning action is increased by using a metal roll having a diameter of less than 200 mm as the press roll (first roll) and using an elastic roll having a diameter of 200 mm or more as the back roll (second roll).
  • the pressure can be suitably released.
  • the transparent conductive film of the present invention includes the above-described method for producing the transparent conductive film of the present invention, that is, at least a dispersion preparation process, a dispersion film forming process, and a dispersion film drying process. It is a transparent conductive film manufactured by a method including other steps selected as appropriate, and the standard deviation ⁇ of surface resistance values at any 12 locations on the surface is less than 20 ⁇ / sq. Since the transparent conductive film of the present invention is manufactured by the method for manufacturing a transparent conductive film of the present invention, it has excellent surface resistance uniformity.
  • the standard deviation ⁇ relating to the surface resistance value of the transparent conductive film of the present invention is not particularly limited as long as it is less than 20 ⁇ / sq, but is preferably less than 10 ⁇ / sq.
  • the standard deviation is within the more preferable range, it is advantageous in that the surface resistance is more excellent in uniformity and can be suitably used for a display panel, an information input device or the like.
  • Example 1 ⁇ Preparation of silver nanowire ink (dispersion)> Silver nanowire ink (dispersion) was prepared with the following composition. In addition, the viscosity of the obtained silver nanowire ink (dispersion) was 15 cP.
  • Metal nanowire Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (maker value), average major axis length 23 ⁇ m (maker value)): compounding amount 0.05 parts by mass (2 )
  • Solvent (i) Water: Compounding amount 89.80 parts by mass, (ii) ethanol: Compounding amount 10.00 parts by mass
  • the prepared silver nanowire ink (dispersion) is applied onto a flat transparent substrate (PET: Toray Industries, U34, thickness 125 ⁇ m) with a wire bar (counter 10) by a wire bar coating method.
  • a silver nanowire dispersion film having a thickness of 20 ⁇ m was formed.
  • the basis weight of the silver nanowires was set to about 0.01 g / m 2 .
  • the plate-like base material on which the silver nanowire-dispersed film is formed is conveyed at a speed of 1.8 m / min in the drying apparatus, and at that time, the silver nanowire dispersion formed on the plate-like substrate is used.
  • An air flow perpendicular to the conveyance direction of the flat substrate was applied to the entire film for 2 minutes.
  • the atmospheric temperature (T o ) in the drying apparatus was 33 ° C.
  • the temperature (T x ) of the air flow was 43 ° C.
  • the velocity (V x ) of the air flow to the dispersion film was 0.5 m / sec.
  • the wind direction (angle ⁇ formed by the direction in which the airflow applied to the dispersion film flows and the direction perpendicular to the surface of the flat substrate on which the dispersion film was formed) was set to 0 °.
  • the ambient temperature (T o ) and the temperature of the air stream (T x ) were measured using a thermocouple thermometer AD-5601A manufactured by A & D Co., Ltd., and the velocity of the air stream reaching the dispersion film (V x ) was measured by using an ex-pocket anemometer AM-261 manufactured by As One Co., Ltd., with the measurement part of the anemometer in contact with the surface of the dispersion film. Thereafter, a heat curing treatment at 120 ° C. for 5 minutes was performed in an oven to produce a silver nanowire transparent conductive film.
  • ⁇ Pressure treatment of silver nanowire transparent conductive film The prepared silver nanowire transparent conductive film was subjected to a calendar process (pressure process) using a calendar processing apparatus including a cylindrical press roll (first roll) and a back roll (second roll). .
  • a calendar processing apparatus including a cylindrical press roll (first roll) and a back roll (second roll).
  • both the press roll (first roll) and the back roll are steel rolls (manufacturer name: Miyagawa roller), the pressure (load) is 4 kN, and the conveyance speed is 1 m / min. Minutes.
  • the resistance value of the pressure-treated silver nanowire transparent conductive film was measured as follows. A measurement probe of a manual nondestructive resistance measuring instrument (Napson Co., Ltd., EC-80P) is brought into contact with the surface of the silver nanowire dispersion film, and at any 12 locations on the surface of the transparent conductive film (silver nanowire layer). The resistance value was measured, and the average value was defined as the resistance value ( ⁇ / sq). The measurement results are shown in Table 1.
  • Example 2 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 2.0 m / second. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 3 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / sec to 3.6 m / sec. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 4 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the arrival speed (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 5.0 m / second. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 5 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 7.2 m / second. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 6 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 10.0 m / second. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 7 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / sec to 14.4 m / sec. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 8 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 16.2 m / second. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 9 In Example 1, the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / sec to 18.0 m / sec. A wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 10 pressure treatment was performed in the same manner as in Example 4 except that the wind direction was changed from 0 ° to 15 ° in the clockwise direction when viewed from the front side in the conveyance direction of the flat substrate.
  • a silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 1, including the atmospheric temperature (T o ) and the air temperature (T x ) at this time.
  • Example 11 In Example 10, except that the wind direction was changed from 15 ° to 30 °, a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 10 to measure the resistance value and evaluate the resistance distribution. Went. The results are shown in Table 2, including the atmospheric temperature (T o ) and the airflow temperature (T x ).
  • Example 12 In Example 10, except that the wind direction was changed from 15 ° to 45 °, a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 10 to measure the resistance value and evaluate the resistance distribution. Went. The results are shown in Table 2, including the atmospheric temperature (T o ) and the airflow temperature (T x ).
  • Example 13 In Example 10, the wind direction was changed from 15 ° in the clockwise direction to 15 ° in the counterclockwise direction when viewed from the front side in the conveyance direction of the flat substrate, and the same as in Example 10. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2, including the atmospheric temperature (T o ) and the airflow temperature (T x ).
  • Example 14 In Example 13, except that the wind direction was changed from 15 ° to 30 °, a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 13, and the resistance value was measured and the resistance distribution was evaluated. Went. The results are shown in Table 2, including the atmospheric temperature (T o ) and the airflow temperature (T x ).
  • Example 15 In Example 13, except that the wind direction was changed from 15 ° to 45 °, a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 13, and the resistance value was measured and the resistance distribution was evaluated. Went. The results are shown in Table 2, including the atmospheric temperature (T o ) and the airflow temperature (T x ).
  • Example 16 In Example 4, the atmosphere temperature (T o ) in the drying apparatus was changed from 35 ° C. to 20 ° C., and the air flow temperature (T x ) was changed from 45 ° C. to 26 ° C., as in Example 4. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2.
  • Example 17 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 30 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 34 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2.
  • Example 18 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 48 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 61 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2.
  • Example 19 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 66 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 82 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2.
  • Example 20 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 78 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 99 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 2.
  • Example 21 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 89 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 122 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 3.
  • Example 22 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 103 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 138 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 3.
  • Example 23 In Example 16, the atmosphere temperature (T o ) in the drying apparatus was changed from 20 ° C. to 115 ° C., and the air flow temperature (T x ) was changed from 26 ° C. to 156 ° C., as in Example 16. Then, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 3.
  • Example 24 In Example 4, the atmospheric temperature (T o ) in the drying apparatus was changed from 35 ° C. to 45 ° C., and further subjected to infrared drying while applying an air current, and then pressure-treated silver in the same manner as in Example 4. A nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 25 a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 24 except that the atmospheric temperature (T o ) in the drying apparatus was changed from 45 ° C. to 55 ° C. Measurement of values and evaluation of resistance distribution were performed. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 26 a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 24 except that the atmospheric temperature (T o ) in the drying apparatus was changed from 45 ° C. to 65 ° C. Measurement of values and evaluation of resistance distribution were performed. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 27 a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 24 except that the atmospheric temperature (T o ) in the drying apparatus was changed from 45 ° C. to 89 ° C. Measurement of values and evaluation of resistance distribution were performed. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 28 In Example 24, a pressure-treated silver nanowire transparent conductive film was prepared in the same manner as in Example 24 except that the atmospheric temperature (T o ) in the drying apparatus was changed from 45 ° C. to 122 ° C. Measurement of values and evaluation of resistance distribution were performed. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 29 a pressure-treated silver nanowire transparent conductive film was produced in the same manner as in Example 24 except that the atmospheric temperature (T o ) in the drying apparatus was changed from 45 ° C. to 138 ° C. Measurement of values and evaluation of resistance distribution were performed. The results are shown in Table 3 including the temperature (T x ) of the airflow at this time.
  • Example 1 In Example 1, instead of having a flat substrate transported in a drying apparatus and applying an air flow for 2 minutes to the entire silver nanowire dispersion film formed on the flat substrate, the ambient temperature A silver nanowire subjected to pressure treatment in the same manner as in Example 1 except that (T o ) was set to 20 ° C. and the silver nanowire-dispersed film formed on the flat substrate was naturally dried for 10 minutes. A transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 4.
  • Example 2 In Example 1, a plate-like substrate was conveyed in a drying apparatus, and instead of applying an air flow for 2 minutes to the entire silver nanowire dispersion film formed on the plate-like substrate, a plate-like substrate was used. Except that the base material is placed on a hot plate with the surface on which the silver nanowire dispersion film is not formed facing down, and the plate temperature is set to 120 ° C. and the ambient temperature (T o ) is set to 50 ° C. for 5 minutes. In the same manner as in Example 1, a pressure-treated silver nanowire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated. The results are shown in Table 4.
  • Comparative Example 3 In Comparative Example 2, a pressure-treated silver nanowire transparent conductive film was prepared and the resistance value was measured in the same manner as in Comparative Example 2 except that the atmospheric temperature (T o ) was changed from 50 ° C. to 80 ° C. And resistance distribution was evaluated. The results are shown in Table 4.
  • Example 4 (Comparative Example 4)
  • the pressure-treated silver nanoparticle was changed in the same manner as in Example 1 except that the velocity (V x ) of the air flow to the dispersion film was changed from 0.5 m / second to 20.0 m / second.
  • a wire transparent conductive film was prepared, and the resistance value was measured and the resistance distribution was evaluated.
  • Table 4 shows the results including the atmospheric temperature (T o ) and the temperature of the airflow (T x ).
  • Example 5 (Comparative Example 5)
  • a flat substrate is transported in a drying apparatus, the atmospheric temperature (T o ) is 33 ° C., the temperature of the air flow (T x ) is 43 ° C., and the speed to reach the dispersion film (V x )
  • the atmospheric temperature (T o ) was set to 50 ° C.
  • the temperature (T x ) of the air flow was set to 60 ° C.
  • the velocity of the air flow reaching the dispersion film (except V x) that was held for 5 minutes in a drying oven at turbulent less than 15 m / sec, in the same manner as in example 1, to prepare a silver nanowire transparent conductive film processed under pressure, resistance And resistance distribution were evaluated.
  • Table 4 The results are shown in Table 4.
  • Comparative Example 6 pressurization was performed in the same manner as in Comparative Example 5 except that the atmospheric temperature (T o ) was changed from 50 ° C. to 80 ° C. and the temperature of the air flow (T x ) was changed from 60 ° C. to 95 ° C.
  • the processed silver nanowire transparent conductive film was produced, resistance value measurement and resistance distribution evaluation were performed. The results are shown in Table 4.
  • Comparative Example 7 pressurization was carried out in the same manner as in Comparative Example 5, except that the atmospheric temperature (T o ) was changed from 50 ° C. to 110 ° C., and the temperature of the air flow (T x ) was changed from 60 ° C. to 140 ° C.
  • the processed silver nanowire transparent conductive film was produced, resistance value measurement and resistance distribution evaluation were performed. The results are shown in Table 4.
  • the transparent conductive film manufactured using the coating method of the present invention is an alternative to a transparent conductive film using metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers and smartphones. It can be suitably used as a product.
  • ITO indium tin oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

 金属ナノワイヤーを用い、表面抵抗の均一性に優れた透明導電膜を容易に製造することが可能な透明導電膜の製造方法、及び、金属ナノワイヤーを用いた、表面抵抗の均一性に優れた透明導電膜を提供する。透明導電膜の製造方法は、金属ナノワイヤーを含んでなる分散液を調製する分散液調製工程と、前記分散液を用いて基材上に分散膜を形成する分散膜形成工程と、前記基材上の分散膜に所定方向のダウンフローの気流を当てる分散膜乾燥工程とを含み、前記気流は、前記分散膜への到達速度が0.5m/秒以上18.0m/秒以下であることを特徴とする。

Description

透明導電膜の製造方法、及び透明導電膜 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2014-104573号(2014年5月20日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、透明導電膜の製造方法、及び透明導電膜に関し、特に、金属ナノワイヤーを用いた透明導電膜を製造する透明導電膜の製造方法、及びかかる製造方法により製造した透明導電膜に関する。
 タッチパネル等の表示パネルの表示面に設けられる透明導電膜、更には表示パネルの表示面側に配置される情報入力装置の透明導電膜等、光透過性が要求される透明導電膜には、インジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。しかしながら、金属酸化物を用いた透明導電膜は、真空環境下におけるスパッタ成膜等により製造されるため、製造コストがかかるものであり、また曲げやたわみなどの変形によって割れや剥離が発生し易いものであった。
 そこで、金属酸化物を用いた透明導電膜に代えて、塗布や印刷による成膜が可能で、しかも曲げやたわみに対する耐性も高い金属ナノワイヤーを用いた透明導電膜が検討されている。金属ナノワイヤーを用いた透明導電膜は、レアメタルであるインジウムを使わない次世代の透明導電膜としても注目されている(例えば、特許文献1,2参照)。
 ところで、一般に、透明導電膜においては、その表面全体に亘って抵抗が均一に分布していることが強く求められている。そして、従来から、透明導電膜の表面抵抗の分布の均一化を達成するために、種々の検討がなされている。
 例えば、特許文献3は、複数個の非接触式表面抵抗測定装置が固定配置された巻き取り式成膜装置を用い、当該巻き取り式成膜装置を用いて形成される透明導電膜に渦電流を流し、当該渦電流、当該渦電流を検出するセンサーの温度、及び当該センサーと透明導電膜との離間距離から、透明導電膜の表面抵抗を連続的に測定し、その測定結果をフィードバックして表面抵抗を制御する方法をとることにより、表面抵抗の分布均一度が所定範囲内となる透明導電性フィルムロールを製造し得ることを開示している。
 また、例えば、特許文献4は、対向電極間でプラズマ状態にした薄膜形成ガスに基材を晒して該基材上に透明導電性薄膜を形成させる際に、かかる薄膜の可視光線透過率と抵抗値をモニターしながら該対向電極間に導入する薄膜形成ガスの流量あるいは濃度を制御することで、表面抵抗の分布が±10%以内の透明導電性薄膜を形成し得ることを開示している。
特表2010-507199号公報 特表2010-525526号公報 特許第4981432号 特開2004-039469号公報
 しかしながら、上記従来の方法は、上述した金属ナノワイヤーではなく、インジウムスズ酸化物(ITO)等の金属酸化物やガス状の有機金属化合物等を用いることを前提とするものである。また、上記従来の方法は、種々のインライン式の測定装置やプラズマ発生装置等を必要とするため、制御が比較的複雑である上、透明導電膜を製造するための費用が増大するという問題がある。
 なお、金属ナノワイヤーは、ウェット状態においてブラウン運動を起こし得ること、湾曲した形状を有し得ること、液中や膜中で凝集して容易に偏在化し得ること等の特性を有することもあり、容易に、当該金属ナノワイヤーを用いた透明導電膜の表面抵抗を均一化する方法については、これまでにほとんど報告されていない。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、金属ナノワイヤーを用い、表面抵抗の均一性に優れた透明導電膜を容易に製造することが可能な透明導電膜の製造方法、及び、金属ナノワイヤーを用いた、表面抵抗の均一性に優れた透明導電膜を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、金属ナノワイヤーを含んでなる分散膜を基材上に形成して乾燥する際に、かかる分散膜に所定の気流を当てることにより、容易に、表面抵抗の均一性に優れた透明導電膜を製造することができることを見出し、本発明の完成に至った。
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
<1>金属ナノワイヤーを含んでなる分散液を調製する分散液調製工程と、
 前記分散液を用いて基材上に分散膜を形成する分散膜形成工程と、
 前記基材上の分散膜に所定方向のダウンフローの気流を当てる分散膜乾燥工程と
を含み、
 前記気流は、前記分散膜への到達速度が0.5m/秒以上18.0m/秒以下であることを特徴とする、透明導電膜の製造方法である。
 ここで、本発明において「ダウンフローの気流」とは、当該気流を鉛直方向のベクトルと水平方向のベクトルとに分解したときに、少なくとも鉛直方向下方のベクトルを有する気流を指す。
 またここで、本発明において「分散膜への気流の到達速度」とは、分散膜の表面にて測定される気流の速度を指す。
 該<1>に記載の透明導電膜の製造方法において、分散膜乾燥工程で用いる所定方向のダウンフローの気流は、得られる透明導電膜の表面抵抗の均一性の向上に寄与する。
<2>前記分散膜に当てる気流が流れる方向と、前記分散膜を形成した基材の面に直交する方向とのなす角度Φで定義される風向が45°以下である、前記<1>に記載の透明導電膜の製造方法である。
<3>前記気流の温度が156℃以下である、前記<1>又は<2>に記載の透明導電膜の製造方法である。
<4>前記分散膜乾燥工程における雰囲気温度が122℃以下である、前記<1>~<3>のいずれかに記載の透明導電膜の製造方法である。
<5>前記分散膜乾燥工程では、前記基材上の分散膜にダウンフローの気流を当てる際に、更に赤外線乾燥を行う、前記<1>~<4>のいずれかに記載の透明導電膜の製造方法である。
<6>前記<1>~<5>のいずれかに記載の透明導電膜の製造方法により製造した透明導電膜であって、表面の任意の12箇所の表面抵抗値の標準偏差σが20Ω/sq未満である、透明導電膜である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、金属ナノワイヤーを用い、表面抵抗の均一性に優れた透明導電膜を容易に製造することが可能な透明導電膜の製造方法、及び、金属ナノワイヤーを用いた、表面抵抗の均一性に優れた透明導電膜を提供することができる。
図1は、本発明の透明導電膜の製造方法の分散膜乾燥工程を説明するための模式図である。
(透明導電膜の製造方法)
 本発明の透明導電膜の製造方法は、少なくとも、分散液調製工程と、分散膜形成工程と、分散膜乾燥工程とを含み、更に、必要に応じて適宜選択した、加熱硬化処理工程、カレンダー処理工程(加圧処理工程)等のその他の工程を含む。
<分散液調製工程>
 前記分散液調製工程は、金属ナノワイヤーを含んでなる分散液を調製する工程である。
<<分散液>>
 前記分散液は、少なくとも、金属ナノワイヤーを含んでなり、更に必要に応じて、カーボンナノチューブ、透明樹脂材料(バインダー)、溶剤、分散剤、その他の成分、などを含んでなる。
 前記分散液の分散手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理、加圧分散処理、などが好適に挙げられる。
 前記分散液の粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、1cP以上50cP以下が好ましく、10cP~40cPがより好ましい。
 前記分散液の粘度が、1cP未満又は50cP超であると、分散膜形成工程において分散膜の形成不良を引き起こし、表面抵抗の分布を不均一にすることがある。一方、前記分散液の粘度が、前記より好ましい範囲内であると、分散膜の形成不良を防止して、表面抵抗の分布を均一化できる点で有利である。
 前記分散液中の金属ナノワイヤーと、任意に含まれるカーボンナノチューブとの合計の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記分散液の質量を100質量部とした場合、0.01質量部~10.00質量部が好ましい。
 前記金属ナノワイヤーと、任意のカーボンナノチューブとの合計の配合量が、0.01質量部未満であると、最終的に得られる透明導電膜において金属ナノワイヤー及び任意のカーボンナノチューブの十分な目付量(0.001g/m2~1.000g/m2)が得られないことがあり、10.00質量部を超えると、金属ナノワイヤー及び任意のカーボンナノチューブの分散性が劣化することがある。
-金属ナノワイヤー-
 前記金属ナノワイヤーは、金属を用いて構成されたものであって、nmオーダーの径を有する微細なワイヤーである。
 前記金属ナノワイヤーの構成元素としては、金属元素である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、Fe、V、Ta、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、AgやCuが、導電性が高い点で、好ましい。
 前記金属ナノワイヤーの平均短軸径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm超500nm以下が好ましく、10nm~100nmがより好ましい。
 前記金属ナノワイヤーの平均短軸径が、1nm以下であると、金属ナノワイヤーの導電率が劣化して、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、500nmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの平均短軸径が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 前記金属ナノワイヤーの平均長軸長としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~1000μmが好ましく、1μm~100μmがより好ましい。
 前記金属ナノワイヤーの平均長軸長が、1μm未満であると、金属ナノワイヤー同士がつながりにくく、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、1000μmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化したり、透明導電膜を形成する際に用いる分散液における金属ナノワイヤーの分散性が劣化することがある。一方、前記金属ナノワイヤーの平均長軸長が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 なお、金属ナノワイヤーの平均短軸径及び平均長軸長は、走査型電子顕微鏡により測定可能な、数平均短軸径及び数平均長軸長である。より具体的には、金属ナノワイヤーを少なくとも100本以上測定し、電子顕微鏡写真から画像解析装置を用いて、それぞれのナノワイヤーの投影径及び投影面積を算出する。投影径を、短軸径とした。また、下記式に基づき、長軸長を算出した。
長軸長=投影面積/投影径
 平均短軸径は、短軸径の算術平均値とした。平均長軸長は、長軸長の算術平均値とした。
 更に、前記金属ナノワイヤーは、金属ナノ粒子が数珠状に繋がってワイヤー形状を有しているものでもよい。この場合、前記金属ナノワイヤーの長さは限定されない。
 前記金属ナノワイヤーの目付量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001g/m2~1.000g/m2が好ましく、0.003g/m2~0.3g/m2がより好ましい。
 前記金属ナノワイヤーの目付量が、0.001g/m2未満であると、金属ナノワイヤーが十分に金属ナノワイヤー層中に存在せず、透明導電膜の導電性が劣化することがあり、1.000g/m2を超えると、透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの目付量が前記より好ましい範囲内であると、透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
-金属ナノワイヤーネットワーク-
 なお、前記金属ナノワイヤーネットワークとは、複数の金属ナノワイヤーが互いに網状に連結されて形成されたネットワーク構造を意味する。前記金属ナノワイヤーネットワークは、後述する加圧処理を経ることにより形成される。
-カーボンナノチューブ-
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、従来の合成法で合成されるものでもよく、また、市販のものであってもよい。
 前記カーボンナノチューブの合成法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アーク放電法、レーザー蒸発法、熱CVD法、などが挙げられる。
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、単層カーボンナノチューブ(SWNT)であってもよく、多層カーボンナノチューブ(MWNT)であってもよい。但し、前記単層カーボンナノチューブが好ましい。
 前記カーボンナノチューブとしては、金属性と半導体性のカーボンナノチューブの混合物であってよく、また、選択的に分離された半導体性カーボンナノチューブであってもよい。
-カーボンナノチューブネットワーク-
 前記カーボンナノチューブネットワークとは、複数のカーボンナノチューブが互いに網状に連結されて形成されたネットワーク構造を意味する。前記カーボンナノチューブネットワークは、後述する加圧処理を経ることにより形成される。
-透明樹脂材料(バインダー)-
 前記透明樹脂材料(バインダー)は、前記金属ナノワイヤー、及び任意に含まれる前記カーボンナノチューブを分散させるものである。
 前記透明樹脂材料(バインダー)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、既知の透明な、天然高分子樹脂、合成高分子樹脂、などが挙げられ、熱可塑性樹脂であってもよく、また、熱、光、電子線、放射線で硬化する熱(光)硬化性樹脂であってもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
 前記熱(光)硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂、アジド基やジアジリン基などの感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー、などが挙げられる。
-溶剤-
 前記溶剤としては、金属ナノワイヤー及び任意に含まれるカーボンナノチューブが分散するものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、水;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール等のアルコール;シクロヘキサノン、シクロペンタノン、アノン等のケトン;N,N-ジメチルホルムアミド(DMF)等のアミド;ジメチルスルホキシド(DMSO)等のスルフィド;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記分散液を用いて形成される分散膜の乾燥ムラやクラックを抑えるため、分散液には、更に高沸点溶剤を添加してもよい。これにより、分散液からの溶剤の蒸発速度をコントロールすることができる。
 前記高沸点溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコール、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-分散剤-
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルピロリドン(PVP);ポリエチレンイミン等のアミノ基含有化合物;スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基等の官能基を有する化合物で金属に吸着可能なもの;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記分散剤を、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの表面に吸着させてもよい。これにより、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの分散性を向上させることができる。
 また、前記分散剤を前記分散液に対して添加する場合は、最終的に得られる透明導電膜の導電性が劣化しない程度の添加量にすることが好ましい。これにより、前記分散剤を、透明導電膜の導電性が劣化しない程度の量で金属ナノワイヤー又は任意に含まれるカーボンナノチューブに吸着させることができる。
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、粘度調整剤、硬化促進触媒、可塑剤、酸化防止剤や硫化防止剤等の安定剤、などが挙げられる。
<分散膜形成工程>
 前記分散膜形成工程は、前記分散液調製工程で得られた分散液を用いて基材上に分散膜を形成する工程である。
<<基材>>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができるが、無機材料、プラスチック材料等の可視光に対して透過性を有する材料で構成された透明基材が好ましい。前記透明基材は、透明導電膜を有する透明電極に必要とされる膜厚を有しており、例えばフレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)、又は適度の屈曲性と剛性を実現できる程度の膜厚を有する平板状であることとする。
 前記無機材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、石英、サファイア、ガラス、などが挙げられる。
 前記プラスチック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、などの公知の高分子材料が挙げられる。斯かるプラスチック材料を用いて透明基材を構成した場合、生産性の観点から透明基材の膜厚を5μm~500μmとすることが好ましいが、この範囲に特に限定されるものではない。
<<分散膜>>
 前記分散膜は、分散液を用いて形成され、該分散液は、前述した通りである。また、前記分散液に含まれ得る金属ナノワイヤー、カーボンナノチューブ、透明樹脂材料(バインダー)、溶剤、分散剤、その他の成分は、いずれも、分散液の説明で前述した通りである。
 前記基材上への前記分散膜の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、物性、利便性、製造コスト等の点で、湿式製膜法が好ましい。
 前記湿式製膜法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布法、スプレー法、印刷法、などの公知の方法が挙げられる。
 前記塗布法としては、特に限定されるものではなく、目的に応じて適宜選択することができ、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法、などが挙げられる。
 前記スプレー法としては、特に制限はなく、目的に応じて適宜選択することができる。 前記印刷法としては、特に限定されるものではなく、目的に応じて適宜選択することができ、例えば、凸版印刷、オフセット印刷、グラビア印刷、凹版印刷、ゴム版印刷、スクリーン印刷、インクジェット印刷、などが挙げられる。
 前記分散膜の厚さとしては、特に制限はなく、目的に応じて適宜選択することができるが、ウェット厚として3μm~20μmが好ましく、5μm~15μmがより好ましい。
 前記分散膜のウェット厚が、3μm未満であると、分散膜の形成が困難になることがあり、20μmを超えると、得られる透明導電膜の表面抵抗の分布が不均一になることがある。一方、前記分散膜のウェット厚が、前記より好ましい範囲内であると、分散膜の良好な形成及び得られる透明導電膜の表面抵抗の分布の均一性の点で有利である。
<分散膜乾燥工程>
 前記分散膜乾燥工程は、前記分散膜形成工程で形成した分散膜にダウンフローの気流を当て、該分散膜を乾燥する工程である。かかる工程では、前記分散膜中に含まれる溶剤を除去することができる。ここで、分散膜は、前述した通りである。
<<ダウンフローの気流>>
 前記分散膜乾燥工程では、図1にその一例を示すように、前記分散膜形成工程で基材2上に形成した分散膜1に対し、所定方向のダウンフローの気流3を当てる。これにより、分散膜1内での金属ナノワイヤーの凝集を効果的に抑制しつつ、溶剤を除去することができる。したがって、本発明によれば、得られる透明導電膜の表面抵抗の均一性を向上させることができる。
 ここで、本発明において「ダウンフローの気流」とは、当該気流を鉛直方向のベクトルと水平方向のベクトルとに分解したときに、少なくとも鉛直方向下方のベクトルを有する気流を指す。したがって、前記「ダウンフローの気流」には、水平方向の気流や、鉛直方向上方に向かう気流は含まれない。
 前記分散膜乾燥工程では、分散膜を形成した基材を所定の速度で搬送させながら、前記分散膜に対して所定方向のダウンフローの気流を当ててもよい。この場合、前記基材の搬送速度としては、特に制限はなく、目的に応じて適宜することができるが、後述する風向の相対的な変化を最小限に抑える観点からは、100m/分以下が好ましく、50m/分以下がより好ましく、5m/分以下が更に好ましい。
 前記分散膜を乾燥する方法としては、基材上に形成した分散膜にダウンフローの気流を当てる限り、特に制限はなく、目的に応じて、適宜選択することができ、例えば、空気を任意の温度に加熱可能な加熱手段と、当該空気を気流として供給可能なノズルとを備える乾燥装置を用い、当該ノズルから前記気流を所定方向に供給して、基材上の分散膜に当てて乾燥する方法が挙げられる。
-赤外線乾燥-
 前記分散膜乾燥工程では、前記基材上の分散膜に所定方向のダウンフローの気流を当てることのみによって分散膜を乾燥させてもよいが、前記基材上の分散膜に所定方向のダウンフローの気流を当てる際に、更に赤外線乾燥を行うことが好ましい。前記分散膜乾燥工程で更に赤外線乾燥を行うことは、分散膜のより効率的な乾燥による乾燥ムラの防止、並びにそれに伴う表面抵抗の均一性の向上の観点で有利である。特に、赤外線の波長は水の吸収波長に近いことから、前記分散液が水系の溶剤を含む場合により有利である。
-気流の成分-
 前記気流の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空気、窒素などが挙げられる。これらの中でも、空気が、費用及び汎用性の観点で、好ましい。
-気流の温度-
 前記気流の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、156℃以下が好ましく、30℃~120℃がより好ましい。
 前記ダウンフローの気流の温度が、156℃超であると、気流を加熱するための時間及び費用が増大するとともに、表面抵抗が高く且つ不均一になることがある。一方、前記ダウンフローの気流の温度が、前記より好ましい範囲内であると、気流の加熱のための時間及び費用の抑制、分散膜の効果的な乾燥による乾燥ムラの防止、並びに表面抵抗の均一性の向上の観点で有利である。
 なお、前記気流の温度は、温度の測定に通常用いられる市販の温度計、例えば熱電対温度計により、測定することができる。
-雰囲気温度-
 前記雰囲気温度とは、基材上の分散膜にダウンフローの気流を当てる際における、前記基材の周囲の温度である。
 前記雰囲気温度としては、特に制限はなく、目的に応じて適宜選択することができるが、122℃以下が好ましく、30℃~100℃がより好ましい。
 前記雰囲気温度が、122℃超であると、基材のガラス転移温度(Tg)の兼ね合いで基材が歪曲したり、得られる透明導電膜の表面抵抗を十分に均一化することができないことがある。
 一方、前記雰囲気温度が、前記より好ましい範囲内であると、分散膜の効果的な乾燥による乾燥ムラの防止、並びに表面抵抗の低減及び均一性の向上の観点で有利である。ここで、例えば、前記雰囲気温度と前記気流の温度との差が大きいと、経時的に前記雰囲気温度は上昇し得るが、そのような場合であっても、前記範囲内である限り、有利である。
 なお、前記雰囲気温度は、温度の測定に通常用いられる市販の温度計、例えば熱電対温度計により、測定することができる。
-気流の到達速度-
 前記気流の前記分散膜への到達速度としては、0.5m/秒以上18.0m/秒以下である限り、特に制限はなく、目的に応じて適宜選択することができるが、0.5m/秒以上15.0m/秒未満が好ましく、1.0m/秒以上10.0m/秒未満がより好ましい。
 前記気流の分散膜への到達速度が、0.5m/秒未満であると、分散膜内で金属ナノワイヤーの凝集を効果的に抑制しつつ溶剤を除去することができない結果、得られる透明導電膜の表面抵抗の均一性を向上させることができない。
 また、前記気流の分散膜への到達速度が、18.0m/秒超であると、前記気流の力の作用により分散膜自体に偏りが生じることにより、当該分散膜に含まれる金属ナノワイヤーが偏在し、表面抵抗の不均一化をもたらすことがある。
 一方、前記気流の分散膜への到達速度が、前記好ましい範囲内及び前記より好ましい範囲内のいずれかであると、分散膜自体の偏りの防止、及び得られる透明導電膜の表面抵抗の均一性の向上の観点で有利である。
 なお、本発明において「分散膜への気流の到達速度」とは、分散膜の表面にて測定される気流の速度を指し、風速の測定に通常用いられる市販の風速計により、測定することができる。
-風向-
 前記風向は、図1の符号5で表されるように、分散膜1に当てる気流3が流れる方向と、分散膜1を形成した基材2の面に直交する方向とのなす角度Φで定義される。
 前記風向としては、特に制限はなく、目的に応じて適宜選択することができるが、45°以下が好ましく、30°以下がより好ましい。
 前記風向が、45°超であると、表面抵抗が高く且つ不均一になることがある。
 一方、前記風向が前記より好ましい範囲であると、表面抵抗の低減及び表面抵抗の均一性の観点で有利である。
 なお、風向は、例えば、空気を気流として供給可能なノズルを備える乾燥装置において、当該ノズルの角度を変えることにより調節することができる。
-気流を当てる時間-
 前記分散膜乾燥工程で分散膜に気流を当てる時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5分間~10分間が好ましく、1分間~5分間がより好ましい。
 前記分散膜乾燥工程において分散膜に気流を当てる時間が、0.5分間未満であると、分散膜の乾燥が不十分となって乾燥ムラが生じることがあり、10分間を越えると、乾燥装置のサイズを大きくすることにより製造コストが増大することがある。一方、前記時間が、前記より好ましい範囲内であると、分散膜の十分な乾燥及び製造コストの抑制の点で有利である。
<加熱硬化処理工程>
 前記加熱硬化処理工程は、前記分散膜乾燥工程後に加熱硬化処理を行って、透明導電膜を得る工程である。
 前記加熱硬化処理における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃~140℃が好ましく、80℃~120℃がより好ましく、約120℃が特に好ましい。
 前記加熱硬化処理における加熱温度が、60℃未満であると、乾燥に要する時間が長くなり作業性が悪化することがあり、140℃を超えると、基材のガラス転移温度(Tg)の兼ね合いで基材が歪曲することがある。一方、前記加熱硬化処理における加熱温度が、前記より好ましい範囲内又は前記特に好ましい温度であると、金属ナノワイヤーのネットワーク形成の点で有利である。
 前記加熱硬化処理における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間~30分間が好ましく、2分間~10分間がより好ましく、約5分間が特に好ましい。
 前記加熱硬化処理における加熱時間が、1分間未満であると、硬化が不十分なことがあり、30分間を超えると、作業性が悪化することがある。一方、前記加熱硬化処理における加熱時間が、前記より好ましい範囲内又は前記特に好ましい時間であると、金属ナノワイヤー又はカーボンナノチューブのネットワーク形成及び作業性の点で有利である。
<カレンダー処理工程(加圧処理工程)>
 前記カレンダー処理工程(加圧処理工程)は、前記透明導電膜をカレンダー処理(加圧処理)する工程である。
 前記カレンダー処理(加圧処理)では、例えば、透明導電膜が、プレスロール(第1ロール)とバックロール(第2ロール)とで構成されたロール対により挟持されて加圧される。
 前記加圧処理に使用するロールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、弾性ロール、金属ロール、などが挙げられる。
 前記加圧処理に使用するロールの種類に応じて、前記加圧処理における面圧、線幅、加圧(荷重)及び搬送速度が適宜調整される。
 また、前記加圧処理において、透明導電膜を加圧するために、「ニップロール」又は「ピンチロール」を使用してもよい。
<<弾性ロール>>
 前記弾性ロールの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、主成分がクロロプレン重合体のゴム、アクリロニトリルブタジエンゴム(NBR)、エチレン-プロピレン-ジエンゴム(EPDM)等のゴム;樹脂;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、高硬度であり、且つ、耐溶剤性を有するゴムが好ましい。
 なお、前記加圧処理において、ロール温調が必要な場合は、前記弾性ロールの材質を、ゴムではなく、樹脂とすることが好ましい。
 前記弾性ロールの直径としては、特に制限はなく、目的に応じて適宜選択することができるが、30mm~1,000mmが好ましく、40mm~500mmがより好ましく、50mm~300mmが特に好ましい。
 前記弾性ロールの直径が、30mm未満であると、金属ロールへのゴム巻きが難しく、弾性ロール作製が困難となることがあり、1,000mmを超えると、ロールの取扱いが困難となることがある。一方、前記弾性ロールの直径が、前記より好ましい範囲内又は前記特に好ましい範囲内であると、ロール製作及び取扱いの点で有利である。
<<金属ロール>>
 前記金属ロールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレス(SUS)ロールや、スチールロール等が挙げられる。ここで、前記金属ロールに用いられる金属は、例えば、ハードクロムめっき加工されていてもよい。
 これらの中でも、加工性及び耐溶剤性の高い金属が好ましい。
 前記金属ロールの直径としては、特に制限はなく、目的に応じて適宜選択することができるが、30mm~1,000mmが好ましく、40mm~500mmがより好ましく、50mm~300mmが特に好ましい。
 前記金属ロールの直径が、30mm未満であると、ロールの製作が困難となることがあり、1,000mmを超えると、ロールの取扱いが困難となることがある。一方、前記金属ロールの直径が、前記より好ましい範囲内又は前記特に好ましい範囲内であると、ロール製作及び取扱いの点で有利である。
 前記加圧処理工程において、プレスロール(第1ロール)として直径200mm未満の金属ロールを用いることが好ましく、また、バックロール(第2ロール)として直径200mm以上の弾性ロールを用いることが好ましい。
 前記加圧処理工程において、プレスロール(第1ロール)として直径200mm未満の金属ロールを用い、且つ、バックロール(第2ロール)として直径200mm以上の弾性ロールを用いることで、クッション作用を大きくして、好適に圧を逃がすことができる。
(透明導電膜)
 本発明の透明導電膜は、上述した本発明の透明導電膜の製造方法、即ち、少なくとも、分散液調製工程と、分散膜形成工程と、分散膜乾燥工程とを含み、更に、必要に応じて適宜選択したその他の工程を含む方法により製造した透明導電膜であり、表面の任意の12箇所の表面抵抗値の標準偏差σが20Ω/sq未満である。本発明の透明導電膜は、本発明の透明導電膜の製造方法により製造したため、表面抵抗の均一性に優れている。
 なお、本発明の透明導電膜の表面抵抗値に係る前記標準偏差σとしては、20Ω/sq未満である限り、特に制限はないが、10Ω/sq未満がより好ましい。前記標準偏差が、前記より好ましい範囲内であると、表面抵抗の均一性に一層優れ、表示パネルや情報入力装置等に好適に用いることができる点で、有利である。
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。
(実施例1)
<銀ナノワイヤーインク(分散液)の調製>
 下記の配合にて、銀ナノワイヤーインク(分散液)を調製した。なお、得られた銀ナノワイヤーインク(分散液)の粘度は15cPであった。
(1)金属ナノワイヤー:銀ナノワイヤー(Seashell Technology社製、AgNW-25、平均短軸径25nm(メーカー値)、平均長軸長23μm(メーカー値)):配合量0.05質量部
(2)バインダー(透明樹脂材料):ヒドロキシプロピルメチルセルロース(アルドリッチ社製、2%水溶液の20℃における粘度80cP~120cP(文献値)):配合量0.15質量部
(3)溶剤:(i)水:配合量89.80質量部、(ii)エタノール:配合量10.00質量部
<分散膜の形成>
 調製した銀ナノワイヤーインク(分散液)を、ワイヤーバーコート法により、ワイヤーバー(番手10)で平板状の透明基材(PET:東レ株式会社製、U34、厚さ125μm)上に塗布して、厚さ20μmの銀ナノワイヤー分散膜を形成した。ここで、銀ナノワイヤーの目付量を約0.01g/m2とした。
<分散膜の乾燥及び加熱硬化>
 次いで、銀ナノワイヤー分散膜を形成した平板状の基材を、乾燥装置内で1.8m/分の速度で搬送させ、その際、当該平板状の基材の上に形成した銀ナノワイヤー分散膜全体に対し、平板状の基材の搬送方向に直交する気流を2分間当てた。このとき、乾燥装置内の雰囲気温度(To)を33℃、気流の温度(Tx)を43℃とし、分散膜への気流の到達速度(Vx)を0.5m/秒とした。また、風向(分散膜に当てる気流が流れる方向と、分散膜を形成した平板状の基材の面に直交する方向とのなす角度Φ)を0°とした。なお、雰囲気温度(To)及び気流の温度(Tx)は、株式会社エー・アンド・デイ製熱電対温度計AD-5601Aを用いて測定し、分散膜への気流の到達速度(Vx)は、アズワン株式会社製エクスポケット風速計AM-261を用い、当該風速計の測定部を分散膜表面に接触させて測定した。
 その後、オーブン中で120℃5分間の加熱硬化処理を行い、銀ナノワイヤー透明導電膜を作製した。
<銀ナノワイヤー透明導電膜の加圧処理>
 作製した銀ナノワイヤー透明導電膜に対して、円柱状のプレスロール(第1ロール)及びバックロール(第2ロール)を備えるカレンダー処理装置を使用して、カレンダー処理(加圧処理)を行った。カレンダー処理(加圧処理)の際、プレスロール(第1ロール)及びバックロールの両方をスチール製ロール(製造会社名:宮川ローラー)とし、加圧(荷重)を4kNとし、搬送速度を1m/分とした。
<抵抗値の測定>
 加圧処理した銀ナノワイヤー透明導電膜の抵抗値を、以下のように測定した。銀ナノワイヤー分散膜表面に、手動式非破壊抵抗測定器(ナプソン株式会社製、EC-80P)の測定プローブを接触させて、透明導電膜(銀ナノワイヤー層)表面上の任意の12箇所で抵抗値測定を行い、その平均値を抵抗値(Ω/sq)とした。測定結果を表1に示す。
<抵抗分布の評価>
 前記抵抗値の測定で測定した任意の12箇所の値を用いて、その標準偏差σを抵抗分布として算出した。算出結果を表1に示す。
(実施例2)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から2.0m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例3)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から3.6m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例4)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から5.0m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例5)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から7.2m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例6)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から10.0m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例7)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から14.4m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例8)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から16.2m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例9)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から18.0m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例10)
 実施例4において、風向を、0°から、平板状の基材の搬送方向手前側から見て時計回り方向に15°に変えたこと以外は、実施例4と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表1に示す。
(実施例11)
 実施例10において、風向を15°から30°に変えたこと以外は、実施例10と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表2に示す。
(実施例12)
 実施例10において、風向を15°から45°に変えたこと以外は、実施例10と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表2に示す。
(実施例13)
 実施例10において、風向を、平板状の基材の搬送方向手前側から見て、時計回り方向に15°から反時計回り方向に15°に代えたこと以外は、実施例10と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表2に示す。
(実施例14)
 実施例13において、風向を15°から30°に変えたこと以外は、実施例13と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表2に示す。
(実施例15)
 実施例13において、風向を15°から45°に変えたこと以外は、実施例13と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表2に示す。
(実施例16)
 実施例4において、乾燥装置内の雰囲気温度(To)を35℃から20℃に変え、気流の温度(Tx)を45℃から26℃に変えたこと以外は、実施例4と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表2に示す。
(実施例17)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から30℃に変え、気流の温度(Tx)を26℃から34℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表2に示す。
(実施例18)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から48℃に変え、気流の温度(Tx)を26℃から61℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表2に示す。
(実施例19)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から66℃に変え、気流の温度(Tx)を26℃から82℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表2に示す。
(実施例20)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から78℃に変え、気流の温度(Tx)を26℃から99℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表2に示す。
(実施例21)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から89℃に変え、気流の温度(Tx)を26℃から122℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表3に示す。
(実施例22)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から103℃に変え、気流の温度(Tx)を26℃から138℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表3に示す。
(実施例23)
 実施例16において、乾燥装置内の雰囲気温度(To)を20℃から115℃に変え、気流の温度(Tx)を26℃から156℃に変えたこと以外は、実施例16と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表3に示す。
(実施例24)
 実施例4において、乾燥装置内の雰囲気温度(To)35℃から45℃に変え、気流を当てながら更に赤外線乾燥を行ったこと以外は、実施例4と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(実施例25)
 実施例24において、乾燥装置内の雰囲気温度(To)45℃から55℃に変えたこと以外は、実施例24と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(実施例26)
 実施例24において、乾燥装置内の雰囲気温度(To)45℃から65℃に変えたこと以外は、実施例24と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(実施例27)
 実施例24において、乾燥装置内の雰囲気温度(To)45℃から89℃に変えたこと以外は、実施例24と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(実施例28)
 実施例24において、乾燥装置内の雰囲気温度(To)45℃から122℃に変えたこと以外は、実施例24と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(実施例29)
 実施例24において、乾燥装置内の雰囲気温度(To)45℃から138℃に変えたこと以外は、実施例24と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの気流の温度(Tx)を含め、結果を表3に示す。
(比較例1)
 実施例1において、平板状の基材を乾燥装置内で搬送させ、平板状の基材の上に形成した銀ナノワイヤー分散膜全体に対して気流を2分間当てたことに代えて、雰囲気温度(To)を20℃として、平板状の基材上に形成した銀ナノワイヤー分散膜の自然乾燥を10分間行ったこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
(比較例2)
 実施例1において、平板状の基材を乾燥装置内で搬送させ、平板状の基材の上に形成した銀ナノワイヤー分散膜全体に対して気流を2分間当てたことに代えて、平板状の基材を、銀ナノワイヤー分散膜を形成していない面を下側にしてホットプレートに配置し、プレート温度を120℃、雰囲気温度(To)を50℃として5分間保持したこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
(比較例3)
 比較例2において、雰囲気温度(To)を50℃から80℃に変えたこと以外は、比較例2と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
(比較例4)
 実施例1において、分散膜への気流の到達速度(Vx)を0.5m/秒から20.0m/秒に変えたこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。このときの雰囲気温度(To)、気流の温度(Tx)を含め、結果を表4に示す。
(比較例5)
 実施例1において、平板状の基材を乾燥装置内で搬送させ、雰囲気温度(To)を33℃、気流の温度(Tx)を43℃とし、分散膜への到達速度(Vx)を0.5m/秒とした前記気流を当てたことに代えて、雰囲気温度(To)を50℃、気流の温度(Tx)を60℃とし、分散膜への前記気流の到達速度(Vx)が15m/秒未満である乱流状態の乾燥オーブン内で5分間保持したこと以外は、実施例1と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
(比較例6)
 比較例5において、雰囲気温度(To)を50℃から80℃に変え、気流の温度(Tx)を60℃から95℃に変えたこと以外は、比較例5と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
(比較例7)
 比較例5において、雰囲気温度(To)を50℃から110℃に変え、気流の温度(Tx)を60℃から140℃に変えたこと以外は、比較例5と同様にして、加圧処理した銀ナノワイヤー透明導電膜を作製し、抵抗値の測定及び抵抗分布の評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4から、基材上に形成した分散膜を乾燥する際、基材への到達速度が0.5m/秒以上18.0m/秒以下であるダウンフローの気流を当該分散膜に当てる工程を経た実施例1~29では、当該工程を経ていない比較例1~7と比較して、表面抵抗の均一性に優れた透明導電膜を製造することができることが分かる。
 本発明の塗工方法を用いて製造された透明導電膜は、ノートパソコン、スマートフォン等の電子機器に用いられているインジウムスズ酸化物(ITO)等の金属酸化物を用いた透明導電膜の代替物として、好適に利用可能である。
1 分散膜
2 基材
3 ダウンフローの気流
4 分散膜を形成した基材面の直交方向
5 風向(角度Φ)

Claims (6)

  1.  金属ナノワイヤーを含んでなる分散液を調製する分散液調製工程と、
     前記分散液を用いて基材上に分散膜を形成する分散膜形成工程と、
     前記基材上の分散膜に所定方向のダウンフローの気流を当てる分散膜乾燥工程と
    を含み、
     前記気流は、前記分散膜への到達速度が0.5m/秒以上18.0m/秒以下であることを特徴とする、透明導電膜の製造方法。
  2.  前記分散膜に当てる気流が流れる方向と、前記分散膜を形成した基材の面に直交する方向とのなす角度Φで定義される風向が45°以下である、請求項1に記載の透明導電膜の製造方法。
  3.  前記気流の温度が156℃以下である、請求項1又は2に記載の透明導電膜の製造方法。
  4.  前記分散膜乾燥工程における雰囲気温度が122℃以下である、請求項1又は2に記載の透明導電膜の製造方法。
  5.  前記分散膜乾燥工程では、前記基材上の分散膜にダウンフローの気流を当てる際に、更に赤外線乾燥を行う、請求項1又は2に記載の透明導電膜の製造方法。
  6.  請求項1又は2に記載の透明導電膜の製造方法により製造した透明導電膜であって、表面の任意の12箇所の表面抵抗値の標準偏差σが20Ω/sq未満である、透明導電膜。
PCT/JP2015/002172 2014-05-20 2015-04-21 透明導電膜の製造方法、及び透明導電膜 WO2015177967A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-104573 2014-05-20
JP2014104573A JP2015220178A (ja) 2014-05-20 2014-05-20 透明導電膜の製造方法、及び透明導電膜

Publications (1)

Publication Number Publication Date
WO2015177967A1 true WO2015177967A1 (ja) 2015-11-26

Family

ID=54553655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002172 WO2015177967A1 (ja) 2014-05-20 2015-04-21 透明導電膜の製造方法、及び透明導電膜

Country Status (3)

Country Link
JP (1) JP2015220178A (ja)
TW (1) TW201606806A (ja)
WO (1) WO2015177967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026829A1 (ja) * 2017-08-02 2019-02-07 昭和電工株式会社 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク
WO2022153959A1 (ja) * 2021-01-13 2022-07-21 日東電工株式会社 透明導電性フィルムの製造方法
WO2022209761A1 (ja) * 2021-04-01 2022-10-06 株式会社デンソー 透明導電膜の製造装置および製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874406B2 (ja) * 2016-02-09 2021-05-19 大日本印刷株式会社 光学積層体、これを有する前面板及び画像表示装置
CN108962434A (zh) * 2018-06-15 2018-12-07 张家港康得新光电材料有限公司 一种纳米银线导电薄膜及其制作方法
JP7339064B2 (ja) * 2019-08-19 2023-09-05 大倉工業株式会社 透明導電性フィルムの製造方法
KR20220070223A (ko) * 2019-10-02 2022-05-30 닛토덴코 가부시키가이샤 투명 도전성 필름의 제조 방법
CN111029039B (zh) * 2019-12-12 2021-02-09 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246799A (ja) * 1988-08-08 1990-02-16 Fuji Photo Film Co Ltd 導電性皮膜の製造方法
JP2011138622A (ja) * 2009-12-25 2011-07-14 Tohoku Univ 導電性膜の製造方法および導電性膜
JP2012216535A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 金属ナノワイヤー含有透明導電膜及びその塗布液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246799A (ja) * 1988-08-08 1990-02-16 Fuji Photo Film Co Ltd 導電性皮膜の製造方法
JP2011138622A (ja) * 2009-12-25 2011-07-14 Tohoku Univ 導電性膜の製造方法および導電性膜
JP2012216535A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 金属ナノワイヤー含有透明導電膜及びその塗布液

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026829A1 (ja) * 2017-08-02 2019-02-07 昭和電工株式会社 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク
JPWO2019026829A1 (ja) * 2017-08-02 2020-06-18 昭和電工株式会社 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク
JP7300991B2 (ja) 2017-08-02 2023-06-30 株式会社レゾナック 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク
WO2022153959A1 (ja) * 2021-01-13 2022-07-21 日東電工株式会社 透明導電性フィルムの製造方法
WO2022209761A1 (ja) * 2021-04-01 2022-10-06 株式会社デンソー 透明導電膜の製造装置および製造方法

Also Published As

Publication number Publication date
TW201606806A (zh) 2016-02-16
JP2015220178A (ja) 2015-12-07

Similar Documents

Publication Publication Date Title
WO2015177967A1 (ja) 透明導電膜の製造方法、及び透明導電膜
JP2020019015A (ja) 導電性膜、及び導電性膜を形成する方法
JP5401814B2 (ja) 透明導電性フィルムの製造方法及び透明導電性フィルム
WO2015075876A1 (ja) 透明導電体及び透明導電体の製造方法
WO2015115630A1 (ja) 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器
WO2015177963A1 (ja) 塗工方法
JP5857771B2 (ja) 導電性フィルム及びタッチパネル
JP2012132082A (ja) 銀ナノワイヤの製造方法およびそれを用いた透明導電膜
JPWO2013118643A1 (ja) 導電性フィルム、及びそれを用いたタッチパネル
JP6690528B2 (ja) 導電性膜
WO2015079626A1 (ja) 透明導電膜の製造方法
JP6356114B2 (ja) 透明導電膜の製造方法
WO2016038821A1 (ja) 電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機el基板
WO2022050243A1 (ja) 透明導電性フィルムの製造方法
WO2015107603A1 (ja) 分散液、透明導電膜、情報入力装置、電子機器、及び透明導電膜の製造方法
JP2017045262A (ja) 電極の製造方法、電極、タッチパネル及び有機el照明素子
WO2016038820A1 (ja) 電極配線の形成方法、構造体、及びタッチパネル
WO2019188023A1 (ja) 導電性シートおよびその製造方法、並びに、導電性組成物
JP6744104B2 (ja) 透明導電性フィルム
JP2014238930A (ja) 透明導電性フィルムの製造方法
WO2016038819A1 (ja) 電極及びその製造方法、並びに前記電極を備える有機el照明装置
WO2022153958A1 (ja) 透明導電性フィルム
WO2022153959A1 (ja) 透明導電性フィルムの製造方法
JP2016224727A (ja) 電極の製造方法、電極、タッチパネル及び有機el照明素子
JP6712860B2 (ja) 透明導電性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795696

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795696

Country of ref document: EP

Kind code of ref document: A1