WO2015115630A1 - 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器 - Google Patents

透明導電膜及びその製造方法、情報入力装置、並びに、電子機器 Download PDF

Info

Publication number
WO2015115630A1
WO2015115630A1 PCT/JP2015/052785 JP2015052785W WO2015115630A1 WO 2015115630 A1 WO2015115630 A1 WO 2015115630A1 JP 2015052785 W JP2015052785 W JP 2015052785W WO 2015115630 A1 WO2015115630 A1 WO 2015115630A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
metal nanowire
group
metal
Prior art date
Application number
PCT/JP2015/052785
Other languages
English (en)
French (fr)
Inventor
亮介 岩田
康久 石井
水野 幹久
忍 原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201580006986.6A priority Critical patent/CN105960685B/zh
Priority to US15/116,298 priority patent/US10365750B2/en
Publication of WO2015115630A1 publication Critical patent/WO2015115630A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a transparent conductive film, a manufacturing method thereof, an information input device, and an electronic device.
  • Metal oxides such as tin oxide (ITO) have been used.
  • transparent conductive films using metal oxides are expensive to produce because they are sputtered in a vacuum environment, and cracks and delamination are likely to occur due to deformation such as bending and deflection. .
  • a transparent conductive film using a metal oxide instead of a transparent conductive film using a metal oxide, a transparent conductive film using metal nanowires that can be formed by coating or printing and has high resistance to bending and bending has been studied.
  • a transparent conductive film using metal nanowires has attracted attention as a next-generation transparent conductive film that does not use indium, which is a rare metal (see, for example, Patent Documents 1 and 2).
  • the transparent conductive film described in Patent Document 1 is reddish, and transparency may be impaired. Furthermore, when a transparent conductive film using metal nanowires is provided on the display surface side of the display panel, the external display is diffusely reflected on the surface of the metal nanowires, so that the black display on the display panel is displayed slightly brightly. A so-called black floating phenomenon occurs. The black floating phenomenon causes deterioration of display characteristics due to a decrease in contrast.
  • a gold nanotube using gold which hardly causes irregular reflection of light.
  • Au gold nanotube using gold
  • silver nanowires that easily diffusely reflect light are used as a template, and gold plating is applied thereto.
  • the silver nanowire part used as a template is etched or oxidized and converted into a gold nanotube (for example, refer to Patent Document 3).
  • a technique for preventing light scattering by using a metal nanowire and a secondary conductive medium (CNT (carbon nanotube), conductive polymer, ITO, etc.) in combination has been proposed (for example, see Patent Document 2).
  • CNT carbon nanotube
  • ITO conductive polymer
  • the silver nanowire used as a template is not only wasted as a material, but also a metal material for gold plating is required. Therefore, there is a problem that the material cost becomes high and the manufacturing process becomes high because the process becomes complicated.
  • a secondary conductive medium such as CNT, conductive polymer, ITO, or the like is disposed in the opening of the metal nanowire network, there is a problem that transparency may be impaired. .
  • the material cost becomes high and the manufacturing process becomes high because the process becomes complicated.
  • This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, a transparent conductive film containing metal nanowires that efficiently suppresses scattering of external light on a display screen such as a touch panel, improves black float prevention (light contrast) and electrode pattern non-visibility, and a method for manufacturing the same It is an object of the present invention to provide an information input device including the transparent conductive film and an electronic device including the transparent conductive film.
  • the present inventor has discovered that metal nanowires are aggregated in a coating film and a bundled portion (bundle structure (aggregate)) is greatly involved in the black floating phenomenon and electrode pattern non-visibility.
  • the present inventor suppresses external light scattering by ensuring that the number of bundles of metal nanowires (bundle structure) in the film is a certain amount or less. As a result, the present invention has been completed.
  • the transparent conductive film is characterized in that the number is 3 or less per region.
  • the metal nano-particles that can efficiently suppress external light scattering on a display screen such as a touch panel, improve black float prevention (light contrast), and electrode pattern non-visibility Includes wire.
  • the “bundle structure” here is defined as a structure in which two or more metal nanowires are in line contact with each other in part or in whole.
  • the “line contact” in the present specification means that two or more metal nanowires are in contact with each other by 1 ⁇ m or more.
  • the dye is the transparent conductive film according to ⁇ 2> or ⁇ 3>, which absorbs light in a visible light region.
  • light particularly visible light
  • the transparent conductive film according to ⁇ 2> to ⁇ 4> light, particularly visible light, is absorbed by the colored compound adsorbed on the metal nanowire body, thereby irregularly reflecting light on the surface of the metal nanowire body. Is prevented more efficiently than the transparent conductive film according to ⁇ 1>. Further, the irregular reflection can be more reliably prevented by adsorbing the specified amount of the colored compound to the surface of the metal nanowire body.
  • the metal nanowire has a metal nanowire body and a colored compound adsorbed on the metal nanowire body, and the colored compound has a chromophore having absorption in a visible light region, and the metal nanowire.
  • the transparent conductive film according to ⁇ 5> and ⁇ 6> In the transparent conductive film according to ⁇ 5> and ⁇ 6>, light, particularly visible light, is absorbed by the colored compound adsorbed on the metal nanowire body, thereby irregularly reflecting light on the surface of the metal nanowire body. Is prevented more efficiently than the transparent conductive film according to ⁇ 1>. Further, the irregular reflection can be more reliably prevented by adsorbing the specified amount of the colored compound to the surface of the metal nanowire body.
  • the colored compound is the transparent conductive film according to ⁇ 5> or ⁇ 6>, which is represented by the following general formula (I).
  • R-X (I) (However, R is a chromophore having absorption in the visible light region, and X is a group bonded to the metal constituting the metal nanowire body.)
  • chromophore includes at least one selected from the group consisting of an unsaturated alkyl group, an aromatic group, a heterocyclic ring, and a metal ion. It is a conductive film.
  • the chromophore includes nitroso group, nitro group, azo group, methine group, amino group, ketone group, thiazolyl group, naphthoquinone group, indoline group, stilbene derivative, indophenol derivative, diphenylmethane derivative, anthraquinone derivative, triaryl.
  • ⁇ 5 including at least one selected from the group consisting of methane derivatives, diazine derivatives, indigoid derivatives, xanthene derivatives, oxazine derivatives, phthalocyanine derivatives, acridine derivatives, thiazine derivatives, sulfur atom-containing compounds, and metal ion-containing compounds.
  • methane derivatives diazine derivatives, indigoid derivatives, xanthene derivatives, oxazine derivatives, phthalocyanine derivatives, acridine derivatives, thiazine derivatives, sulfur atom-containing compounds, and
  • ⁇ 11> The transparent conductive film according to any one of ⁇ 5> to ⁇ 10>, wherein the group bonded to the metal is at least one of a thiol group and a disulfide group.
  • ⁇ 12> The transparent conductive film according to any one of ⁇ 2> to ⁇ 11>, wherein the metal nanowire body has an average minor axis diameter of 1 nm to 500 nm and an average major axis length of 5 ⁇ m to 50 ⁇ m. is there.
  • the metal nanowire body includes Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Composed of at least one element selected from the group consisting of Mo, Cr, V, and Ta, The transparent conductive film according to any one of ⁇ 2> to ⁇ 12>.
  • ⁇ 14> The transparent conductive film according to ⁇ 13>, wherein the ⁇ reflection L * value is 2.5 or less.
  • ⁇ 15> The transparent conductive film according to any one of ⁇ 13> or ⁇ 14>, further including a binder, wherein the metal nanowires are dispersed in the binder.
  • ⁇ 16> The transparent conductive film according to any one of ⁇ 13> to ⁇ 15>, wherein the metal nanowires are integrated on a base material.
  • ⁇ 17> A method for producing a transparent conductive film for producing the transparent conductive film according to any one of ⁇ 1> to ⁇ 16>, wherein the transparent conductive film is subjected to a water flow dispersion treatment on the metal nanowire dispersion liquid. It is a manufacturing method of the transparent conductive film characterized by including the process to form. According to the method for producing a transparent conductive film according to ⁇ 17>, since the number of bundle structures in the transparent conductive film can be surely made constant or less, scattering of external light of the transparent conductive film is suppressed, and black The anti-floating property (light contrast) and the non-visibility of the electrode pattern can be improved.
  • a step of adsorbing a colored compound to the metal nanowire body before the water flow dispersion treatment wherein the step of adsorbing the colored compound to the metal nanowire body is (1) transmitting a colored compound and a solvent, A step of placing a filter container that does not transmit the aggregate of the nanowire and the colored compound into a container containing a solvent in which the colored compound is dissolved or dispersed; (2) a metal nanowire body in the filter container; A step of bringing the metal nanowire body into contact with the colored compound dissolved or dispersed in the solvent, and (3) taking out the container made of the filter and releasing it into the solvent and the solvent in the container made of the filter.
  • the method for producing a transparent conductive film according to ⁇ 17> further comprising a step of removing the colored compound.
  • the method for producing a transparent conductive film according to ⁇ 18> by causing the colored compound to be adsorbed on the metal nanowire main body, the light scattering of the transparent conductive film can be more efficiently suppressed and the black float prevention property can be prevented. (Light contrast) and electrode pattern non-visibility can be improved.
  • An information input device comprising: a transparent base material; and the transparent conductive film according to any one of ⁇ 1> to ⁇ 16> provided on the transparent base material.
  • the information input device described in ⁇ 19> black floating due to irregular reflection or the like of the information input screen, electrode visibility is prevented, and screen display visibility is improved.
  • An electronic device comprising: a display panel; and the transparent conductive film according to any one of ⁇ 1> to ⁇ 16> provided on a display surface side of the display panel.
  • the electronic device according to ⁇ 20> black floating due to irregular reflection or the like of the display screen, electrode visibility is prevented, and screen display visibility is improved.
  • the present invention it is possible to solve the above-described problems and achieve the above-mentioned object, efficiently suppress external light scattering on a display screen such as a touch panel, prevent black floating (light contrast), and electrodes It is possible to provide a transparent conductive film containing metal nanowires that can improve pattern non-visibility, a method for manufacturing the same, an information input device including the transparent conductive film, and an electronic device including the transparent conductive film. Furthermore, according to the information input device and the electronic apparatus of the present invention, since the transparent conductive film with improved black floating is used on the display screen, the bright place contrast on the display surface can be improved.
  • the transparent conductive film of this invention contains a metal nanowire at least, and also has a binder (transparent resin material) and another component as needed.
  • the metal nanowires are preferably dispersed in the binder, but may be integrated on a substrate as shown in FIG.
  • the said metal nanowire has a metal nanowire main body at least, and also has the colored compound adsorbed
  • the number of bundles of the metal nanowires is not particularly limited as long as it is 3 or less per rectangular area of 30 ⁇ m in length and 40 ⁇ m in width (30 ⁇ m ⁇ 40 ⁇ m) of the transparent conductive film. Although it can be selected, it is preferably 2 or less, more preferably 1 or less, and particularly preferably 0. When the number of bundle structures of the metal nanowires exceeds 3, external light scattering cannot be suppressed. On the other hand, when the number of bundle structures of the metal nanowires is within the preferable range, the more preferable range, or the particularly preferable range, it is advantageous in that external light scattering can be further suppressed.
  • the bundle structure means a structure in which two or more metal nanowires are in line contact with each other in part or in whole.
  • line contact in the present specification means that two or more metal nanowires are in contact with each other by 1 ⁇ m or more.
  • FIG. 8 is a diagram showing a partial outline of a bundle structure of metal nanowires in the transparent conductive film of the present invention.
  • the two metal nanowires 13 are in line contact with each other as a whole.
  • FIG. 8B two metal nanowires 13 are partly in line contact with each other.
  • FIG. 8C three metal nanowires 13 are partly in line contact with each other.
  • the metal nanowire body is made of metal and is a fine wire having a diameter of nm order.
  • the constituent element of the metal nanowire body is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose.
  • a metal element for example, Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir , Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, Ag and Au are preferable in terms of high conductivity.
  • the average minor axis diameter of the metal nanowire body is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 500 nm, and more preferably 10 nm to 100 nm.
  • the average minor axis diameter of the metal nanowire body is less than 1 nm, the conductivity of the metal nanowire body is deteriorated, and the transparent conductive film including the metal nanowire body may not function as a conductive film. If the thickness exceeds 500 nm, the total light transmittance of the transparent conductive film including such a metal nanowire body may deteriorate and haze may increase.
  • the average minor axis diameter of the metal nanowire body is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire body has high conductivity and high transparency.
  • an average major axis length of the said metal nanowire main body there is no restriction
  • the average major axis length of the metal nanowire main body is less than 5 ⁇ m, the metal nanowire main bodies are not easily connected to each other, and the transparent conductive film including the metal nanowire main body may not function as a conductive film. Exceeding may deteriorate the total light transmittance of the transparent conductive film including such a metal nanowire body, and may deteriorate the dispersibility of the metal nanowire body used when forming the transparent conductive film.
  • the weight per unit area of the metal nanowires body is not particularly limited, suitably it can be selected, preferably 0.001g / m 2 ⁇ 1.000g / m 2 depending on the purpose, 0.003 g / m 2 ⁇ 0.03 g / m 2 is more preferable.
  • the basis weight of the metal nanowire body is less than 0.001 g / m 2 , the metal nanowire body is not sufficiently present in the adsorption wire layer, and the conductivity of the transparent conductive film may deteriorate, If it exceeds 1.000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate.
  • the basis weight of the metal nanowire body is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
  • the colored compound is a substance having absorption in the visible light region and adsorbing to the metal nanowire body.
  • the “visible light region” in this specification is a wavelength band of approximately 360 nm or more and 830 nm or less.
  • Such a colored compound is a compound (general formula [R] having (i) a dye or (ii) a chromophore having absorption in the visible light region and a group binding to the metal constituting the metal nanowire body.
  • -X] (wherein R is a chromophore having absorption in the visible light region, and X is a functional group (site) bonded to the metal constituting the metal nanowire body).
  • the adsorption amount of the said colored compound with respect to the said metal nanowire main body there is no restriction
  • the amount of the colored compound adsorbed to the metal nanowire body is less than 0.5% by mass, the effect of suppressing external light scattering is small, and the non-visibility of the pattern may deteriorate, exceeding 10% by mass. Then, the adsorbed colored compound may interfere with the contact of the metal nanowire, and the conductivity may be deteriorated.
  • Examples thereof include Kayakalan BordeauxBL, Kayakalan Brown GL, Kayakalan Gray BL167, Kayakalan Yellow GL143, Kaylan Yellow GL143, Kaylan Yellow GL143, Kaylan Yellow GL143, BGL, Kayakalan Orange RL, Kayarus Cupro Green G, Kayarusu Supra Blue MRG, Kayaru Supra SCallet BNL200, Nippon Kayaku's Lyn Olive BG200 Dyes having a sulfo group such as alon Polymer Black ECX300, Kayalon Microester Blue AQ-LE; N3, N621, N712, N719, N749, N773, N790, N820, N823, N845, K86, N945, K23, Dyes having a carboxyl group as a Ru complex such as K27, K29, K51, K60, K66, K69, K73, K77, Z235, Z316, Z907, Z907Na, Z910, Z991, CYC-B1, and HR
  • the chromophore [R] is not particularly limited as long as it has absorption in the visible light region, and can be appropriately selected according to the purpose.
  • aromatic and heterocyclic rings, particularly cyanine, quinone, ferrocene, triphenylmethane, and quinoline are preferable in that a transparent conductive film with improved transparency can be produced.
  • Specific examples of the chromophore [R] are not particularly limited and may be appropriately selected depending on the intended purpose.
  • nitroso group, nitro group, azo group, methine group, amino group, ketone group, thiazolyl group Naphthoquinone group, indoline group, stilbene derivative, indophenol derivative, diphenylmethane derivative, anthraquinone derivative, triarylmethane derivative, diazine derivative, indigoid derivative, xanthene derivative, oxazine derivative, phthalocyanine derivative, acridine derivative, thiazine derivative, sulfur atom-containing compound , Metal ion-containing compounds, and the like.
  • These may be used individually by 1 type and may use 2 or more types together.
  • a Cr complex, a Cu complex, a Co complex, a Ni complex, an Fe complex, an azo group, and an indoline group are preferable because a transparent conductive film with improved transparency can be produced.
  • the functional group [X] is a group that binds to the metal nanowire main body constituting the metal nanowire.
  • Specific examples of the functional group [X] are not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a sulfo group (including a sulfonate), a sulfonyl group, a sulfonamide group, and a carboxylic acid.
  • the functional group [X] may be present at least one in the colored compound.
  • a thiol group and a disulfide group are preferable from the viewpoint of suppressing a decrease in conductivity due to adsorption of a colored compound.
  • a compound that can be adsorbed to the metal is selected from the compounds represented by the above general formula [RX].
  • a self-assembled material may be used as the colored compound having the functional group [X].
  • the functional group [X] may constitute a part of the chromophore [R]. Whether the colored compound has the functional group [X] or not, the compound having the chromophore [R] is subjected to a chemical reaction with the compound containing the functional group [X]. A functional group [X] may be newly added.
  • the other components are not particularly limited and may be appropriately selected depending on the purpose.
  • a dispersant adsorbed on the metal nanowire bodies adhesion between metal nanowire bodies and a transparent substrate; And additives for improving durability.
  • the dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include amino group-containing compounds such as polyvinylpyrrolidone (PVP) and polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups.
  • the dispersant is attached to the metal nanowire body in such an amount that does not inhibit the deterioration of the conductivity of the transparent conductive film described later and the adsorption of the colored compound.
  • the binder (transparent resin material) is for dispersing the metal nanowires, and can be widely selected from known transparent natural polymer resins or synthetic polymer resins. There is no restriction
  • thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • thermosetting resin For example, (i) polyvinyl alcohol, a polyvinyl acetate type polymer (saponified product of polyvinyl acetate etc.), polyoxyalkylene Polymers such as polyethylene polymers (polyethylene glycol, polypropylene glycol, etc.), cellulose polymers (methyl cellulose, viscose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, etc.), and (ii) metal alkoxides, diisocyanate compounds, blocks And a composition containing a crosslinking agent such as an isocyanate compound.
  • a crosslinking agent such as an isocyanate compound.
  • the positive photosensitive resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (i) a polymer such as a novolac resin, an acrylic copolymer resin, and a hydroxy polyamide, and (ii) naphthoquinone diazide. Well-known positive type photoresist materials, such as a composition containing a compound, are mentioned.
  • the negative photosensitive resin is not particularly limited and may be appropriately selected depending on the purpose.
  • a polymer in which a photosensitive group is introduced into at least one of a main chain and a side chain examples thereof include a composition containing a binder resin (polymer) and a crosslinking agent, (iii) a composition containing at least one of a (meth) acrylic monomer and a (meth) acrylic oligomer, and a photopolymerization initiator.
  • the photosensitive group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a functional group containing a nitrogen atom, a functional group containing a sulfur atom, a functional group containing a bromine atom, and a functional group containing a chlorine atom. Groups, functional groups that do not contain any of those atoms, and the like. Specific examples of the photosensitive group are not particularly limited and may be appropriately selected depending on the purpose.
  • an azide group for example, an azide group, a diazirine group, a stilbene group, a chalcone group, a diazonium base, a cinnamic acid group, an acrylic acid group And the like, and the like.
  • an azide group and a diazirine group are preferable.
  • the polymer having the photosensitive group introduced into at least one of the main chain and the side chain desirably does not inhibit the dispersibility of the metal nanowires, and is preferably water-soluble.
  • water-soluble refers to a compound having a necessary and sufficient amount of ionic or polar side chains with respect to the main chain in the molecule in order to dissolve in water.
  • the solubility of the polymer in which the photosensitive group is introduced into at least one of the main chain and the side chain in water is not particularly limited and can be appropriately selected depending on the purpose. However, 1 or more is preferable at 25 degreeC.
  • the polymer before the photosensitive group is introduced into at least one of the main chain and the side chain is not particularly limited and can be appropriately selected according to the purpose.
  • X is one or more types of photosensitive groups containing an azide group
  • R is a chain or cyclic alkylene group, and is not present in at least one of the main chain and the side chain.
  • R ′ represents a chain Or cyclic alkyl group, unsaturated bond, ether bond, carbonyl bond, ester bond, amide bond, urethane bond, sulfide bond, aromatic ring, heterocycle, amino group in at least one of main chain and side chain
  • One or more quaternary ammonium bases may be contained, l and m are 1 or more, and n is 0 or more.
  • the binder resin (polymer) desirably does not inhibit the dispersibility of the metal nanowires, and is preferably a water-soluble polymer.
  • the “water-soluble polymer” referred to here is a polymer having a sufficient amount of ionic or polar side chains with respect to the main chain in the molecule in order to dissolve in water.
  • the solubility of the water-soluble polymer in water is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 or more at 25 ° C.
  • the water-soluble polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the crosslinking agent desirably does not hinder the dispersibility of the metal nanowires, and is preferably water-soluble.
  • the water solubility for the crosslinking agent means that an aqueous solution having a concentration of 0.1 mM or more can be provided.
  • the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bisazide compounds, aromatic bisazide compounds, polyfunctional azide compounds, aromatic polyfunctional azide compounds, diazirine compounds, and aromatic diazirines. Compounds, hexamethoxymethylmelamine, tetramethoxyglycolyl, and the like. These may be used alone or in combination of two or more. Among these, bisazide compounds, aromatic bisazide compounds, polyfunctional azide compounds, aromatic polyfunctional azide compounds, diazirine compounds, and aromatic diazirine compounds are preferable.
  • composition containing at least one of (meth) acrylic monomer and (meth) acrylic oligomer and photopolymerization initiator As the photosensitive material, a composition containing at least one of a (meth) acryl monomer and a (meth) acryl oligomer and a photopolymerization initiator may be used.
  • the composition containing at least one of the (meth) acrylic monomer and the (meth) acrylic oligomer and the photopolymerization initiator desirably does not inhibit the dispersibility of the metal nanowires, and is preferably water-soluble.
  • solubility the gram number which melt
  • solubility the gram number which melt
  • a specific example of the negative photosensitive material among the photosensitive materials is not particularly limited and may be appropriately selected depending on the purpose.
  • surfactants are added to the binder as necessary. May be.
  • the ⁇ reflection L * value represents a difference between reflection L * values of an electrode portion and a non-electrode portion of a transparent electrode, which will be described later.
  • the lower the ⁇ reflection L * value the smaller the difference in external light scattering between the electrode portion and the non-electrode portion of the transparent electrode, and the pattern appearance can be suppressed.
  • the bright place contrast is improved. The visibility of the screen is improved when the mobile device is used outdoors, and the power consumption can be suppressed.
  • reflection L * value of the said transparent conductive film there is no restriction
  • the method for producing a transparent conductive film of the present invention includes a step of forming a transparent conductive film after subjecting the metal nanowire dispersion to a water flow dispersion treatment, and further, if necessary, a metal nanowire preparation step, a transparent conductive film production For preparing a dispersion for use, and other steps. Moreover, when making the said colored compound adsorb
  • the metal nanowire having the colored compound adsorbed to the metal nanowire body is prepared in advance, and the free colored compound is removed.
  • a method of preparing a metal nanowire dispersion using a material and subjecting it to a water flow dispersion treatment is used.
  • the metal nanowire dispersion includes at least the above-described metal nanowire and a dispersion medium, and further improves the dispersibility of the above-described binder (transparent resin material) and metal nanowire as necessary. It has a dispersant, an additive for improving adhesion and durability, and other components.
  • the dispersion solvent is not particularly limited as long as it is a solvent capable of dispersing the metal nanowires, and can be appropriately selected according to the purpose.
  • water methanol, ethanol, n-propanol, i- Alcohols such as propanol, n-butanol, sec-butanol, tert-butanol; anones such as cyclohexanone and cyclopentanone; amides such as N, N-dimethylformamide (DMF); sulfides such as dimethyl sulfoxide (DMSO); Can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
  • a high boiling point solvent is further added to the dispersion solvent to evaporate the solvent from the dispersion.
  • the speed may be controlled.
  • the high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • These may be used individually by 1 type and may use 2 or more types together.
  • the other components are not particularly limited and may be appropriately selected depending on the purpose.
  • a light stabilizer an ultraviolet absorber, a light absorbing material, an antistatic agent, a lubricant, a leveling agent, an antifoaming agent
  • examples include flame retardants, infrared absorbers, surfactants, viscosity modifiers, dispersants, curing accelerating catalysts, plasticizers, antioxidants, and sulfidizing agents. These may be used individually by 1 type and may use 2 or more types together.
  • Metal nanowire preparation process There is no restriction
  • Cylindrical filter paper method In the cylindrical filter paper method, at least (1) a container made of a filter that transmits a colored compound and a solvent and does not transmit an aggregate of metal nanowires and a colored compound contains a solvent in which the colored compound is dissolved or dispersed. (2) placing the metal nanowire main body in the filter-made container and bringing the metal nanowire main body into contact with the colored compound dissolved or dispersed in the solvent; A step of removing the filter container and removing the solvent in the filter container and the colored compound liberated in the solvent, and other steps as necessary.
  • the filter paper used is capable of transmitting the solvent and the colored compound molecules, but cannot transmit the aggregates of the colored compound molecules and the metal nanowire body.
  • a fluorine fiber filter paper, a cellulose fiber paper, glass fiber paper, silica fiber paper etc. are mentioned.
  • a fluorine fiber filter paper is preferable in that the shape hardly collapses in a solvent.
  • cylindrical filter paper cylindrical filter paper
  • shape of the filter is not particularly limited as long as it is a shape that can contain a solvent in which metal nanowires are dispersed inside, and depending on the purpose Can be selected as appropriate.
  • the method used in the present invention is also referred to as a “cylindrical filter paper method” for the sake of convenience in order to distinguish from the method of adsorbing a colored compound to metal nanowires in the prior art.
  • the “solvent” refers to a solvent other than water that can dissolve the colored compound.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving a colored compound at a predetermined concentration, and can be appropriately selected according to the purpose.
  • the colored compound solution is put in a container larger than the cylindrical filter paper, and the cylindrical filter paper from which the internal solvent is removed is immersed in the colored compound solution with the opening up and the bottom down before drying. In that case, it is preferable to let it stand until a certain amount of an external colored compound solution permeates into the cylindrical filter paper.
  • the colored compound solution is prepared by dissolving a colored compound in the solvent.
  • concentration of the colored compound in the said colored compound solution there is no restriction
  • concentration of the colored compound in the colored compound solution is 0.1% by mass to 1.0% by mass, the colored compound can be efficiently adsorbed to the metal nanowire body, and the colored compound solution contains Aggregation of colored compound molecules is unlikely to occur.
  • at least one of thiols and disulfides may be mixed.
  • the metal nanowire main body (metal nanowire main body dispersion liquid) dispersed in the first liquid medium is placed inside the cylindrical filter paper, and is allowed to stand for a predetermined time (adsorption process).
  • distributes a metal nanowire main body According to the objective, it can select suitably, For example, water, the solvent which can be used as said solvent, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
  • dispersion amount of the metal nanowire main body in the said 1st liquid medium Although it can select suitably according to the objective, 0.1 mass% with respect to the said metal nanowire main body dispersion liquid.
  • the dispersion amount of the metal nanowire body is 0.1% to 2.0%, the colored compound can be efficiently adsorbed, and aggregation of the metal nanowire body is difficult to occur.
  • the adsorption temperature when the colored compound is adsorbed on the metal nanowire body is not particularly limited as long as the solvent and the first liquid medium do not boil, and can be appropriately selected according to the purpose. ⁇ 100 ° C is preferable, and 40 ° C to 80 ° C is more preferable.
  • the adsorption time for adsorbing the colored compound on the metal nanowire body is not particularly limited and can be appropriately selected according to the purpose, but is preferably 1 hour to 120 hours, and 1 hour to 12 hours. More preferred.
  • the cylindrical filter paper After completion of the adsorption step, the cylindrical filter paper is taken out and allowed to stand in a state where the cylindrical shape is maintained at room temperature, and the liquid inside is leached from the bottom as a filtrate. At that time, the liquid should not be completely depleted. With most of the liquid inside leached, the solvent is put into the cylindrical filter paper, and the liquid is further leached from the bottom. This operation is preferably repeated a plurality of times until the filtrate is colorless and transparent. In this step, if necessary, additives such as a dispersant, a surfactant, an antifoaming agent, and a viscosity modifier may be added to the solvent.
  • additives such as a dispersant, a surfactant, an antifoaming agent, and a viscosity modifier may be added to the solvent.
  • the second liquid medium is placed in the cylindrical filter paper, and the liquid inside is leached as a filtrate (cleaning step).
  • a filtrate there is no restriction
  • water, the solvent which can be used as said solvent, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, those having higher polarity than the solvent are preferable.
  • the first liquid medium and the second liquid medium may be the same or different. Preferably, pure water is used for both liquid media.
  • the metal nanowire body attached to the wall of the cylindrical filter paper is colored
  • the metal nanowire with the compound adsorbed is washed away with a poly dropper or the like, and the metal nanowire with the colored compound adsorbed on the metal nanowire body is recovered.
  • the colored compound aggregates that are easily peeled off later do not come into contact with the metal nanowire body, and since the free colored compounds are removed by the washing process, it is difficult to produce free colored compounds. It is possible to obtain nanowires (metal nanowire bodies on which colored compounds are adsorbed).
  • the said cylindrical filter paper method shows an example of the metal nanowire preparation process in the manufacturing method of the transparent conductive film of this invention, The raw material and shape of the filter to be used, the solvent to be used, the temperature and time of each step These conditions can be changed as appropriate.
  • the adsorption amount of the colored compound in the metal nanowire obtained in the metal nanowire preparation step and used for forming the transparent conductive film described later is 0.5% by mass to 10% by mass with respect to the metal nanowire body. is there. If the amount of the colored compound adsorbed is less than 0.5% by mass, the effect of reducing the irregular reflection of light by the metal nanowires cannot be sufficiently obtained, and if it exceeds 10% by mass, the formed transparent Problems such as the conductivity of the conductive film being likely to be lowered and the dispersibility of the metal nanowires being lowered may arise.
  • Evaluation of the adsorbed amount of the colored compound of the metal nanowire used for the preparation of the transparent conductive film and the dispersion is performed by the following analysis.
  • the mass of the colored compound with respect to the mass of the metal nanowire body can be measured or calculated. For example, it can be carried out by combining EDS measurement using EM-002B manufactured by Topcon Technohouse Co., Ltd. and system 6 manufactured by Thermo Fisher Scientific Co., Ltd., ICP elemental analysis, transmission electron microscope observation (TEM), and the like. .
  • the colored compound adsorption amount to the metal nanowire body can be analyzed and calculated by the following method.
  • the constituent element of the metal nanowire and the mass% of the characteristic element in the colored compound are respectively measured, and then the ratio of the metal mass to the colored compound mass is calculated.
  • the adsorption amount of the colored compound adsorbed on the metal nanowire main body can be confirmed.
  • the technique for enhancing the dispersibility of the metal nanowires in the metal nanowire dispersion is not particularly limited and can be appropriately selected according to the purpose.
  • stirring, ultrasonic dispersion, bead dispersion, kneading, A homogenizer process, a water flow dispersion process, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among them, the water dispersion treatment is suitable for improving the dispersibility without breaking the metal nanowires.
  • the water flow dispersion treatment is a method in which a dispersion liquid is pressed into a fine flow path with a plunger pump or the like, and the dispersion is dispersed in the dispersion medium by turbulent flow and shearing force in the flow path.
  • Dispersion processing conditions are largely determined mainly by the pump discharge amount, discharge pressure, flow path diameter and length, and the number of processing. If the distributed processing is insufficient once, the number of times may be increased. Alternatively, the treatment may be performed by continuously circulating the dispersion for a certain period of time.
  • the formation of the transparent conductive film (for example, the transparent conductive film 17 in the transparent electrode of the first embodiment of FIG. 1) will be described.
  • the transparent conductive film is formed on a transparent substrate through processes such as formation of a dispersion film and drying / curing of the dispersion film, which will be described later.
  • the transparent base material on which the transparent conductive film is formed is subjected to processes such as patterning (pattern etching) and calendering, which will be described later, as necessary, thereby producing a transparent electrode.
  • the material for the transparent substrate is not particularly limited as long as it is a material having transparency to visible light, and can be appropriately selected according to the purpose. Examples thereof include inorganic materials and plastic materials. It is done.
  • a thickness required for the transparent electrode for example, a thickness that can realize a film shape (sheet shape) thinned to such a degree that flexible flexibility can be realized, and moderate flexibility
  • the thickness is such that the rigidity can be realized, there is no particular limitation, and the thickness can be appropriately selected according to the purpose.
  • inorganic materials There is no restriction
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • polyether sulfone polysulfone
  • PP polypropylene
  • diacetyl cellulose polyvinyl chloride
  • acrylic resin PMMA
  • PC polycarbonate
  • epoxy examples thereof include resins, urea resins, urethane resins, melamine resins, and cycloolefin polymers (COP).
  • the thickness of the transparent substrate using the plastic material is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 500 ⁇ m from
  • a dispersion film 17b in which the metal nanowire main body 13 is dispersed on the transparent substrate 11 is formed using the dispersion liquid prepared as described above.
  • the colored compound is adsorbed on the metal nanowire, the colored compound a is present.
  • a wet film forming method is preferable at points, such as a physical property, convenience, and manufacturing cost.
  • the coating method is not particularly limited and may be appropriately selected depending on the purpose.
  • the micro gravure coating method, the wire bar coating method, the direct gravure coating method, the die coating method, the dip method, the spray coating method, and the reverse Known coating methods such as a roll coating method, a curtain coating method, a comma coating method, a knife coating method, and a spin coating method can be used.
  • the printing method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, and ink jet printing. .
  • a dispersion film 17b in which the metal nanowire main body 13 is dispersed in a solvent containing an uncured transparent resin material (binder) 15a is formed.
  • the colored compound is adsorbed on the metal nanowire, the colored compound a is present.
  • a dispersion film 17b patterned in advance may be formed in the formation process of the dispersion film 17b shown in FIG.
  • the pattern formation of the dispersion film 17b can be performed by, for example, a printing method.
  • the dispersion film 17b (wire layer 17) may be subjected to pattern etching in a step after the formed dispersion film 17b is cured.
  • pattern etching may be performed so that at least the metal nanowire main body 13 is divided and becomes in an insulating state in a region other than the electrode pattern in the dispersion film 17b (wire layer 17).
  • Calendar processing In order to lower the sheet resistance value of the transparent electrode to be obtained, it is preferable to perform calendar treatment such as roll press and flat plate press.
  • calendar treatment such as roll press and flat plate press.
  • the said calendar process may be performed before the said patterning process as needed, and may be performed after it.
  • a non-visualized fine pattern may be formed on the transparent electrode.
  • the non-visualized fine pattern is a technology that suppresses the visibility of the electrode pattern by forming a plurality of holes in the transparent electrode and providing a plurality of convex portions on the surface of the insulating portion of the base material where no transparent electrode exists.
  • the plurality of holes and protrusions can be formed by an etching method or a printing method in accordance with the description of Japanese Patent No. 4862969. Thereby, the non-visibility of the electrode pattern can be further improved.
  • FIG. 3 the structure of the transparent electrode 1-1 which provided the overcoat layer 80 in the transparent electrode (transparent electrode 1 in FIG. 1) of 1st Embodiment as a structural example (modification 1) of a transparent electrode is shown.
  • the overcoat layer 80 is for protecting the wire layer 17 configured by using the metal nanowire 13 main body, and is provided on the wire layer 17.
  • this overcoat layer 80 has a light-transmitting property with respect to visible light, and is composed of a polyacrylic resin, a polyamide resin, a polyester resin, or a cellulose resin, or Consists of hydrolysis, dehydration condensate, etc. of metal alkoxide.
  • the overcoat layer 80 is configured to have a film thickness that does not impair the light transmittance with respect to visible light.
  • the overcoat layer 80 may have at least one function selected from a functional group consisting of a hard coat function, an antiglare function, an antireflection function, an anti-Newton ring function, an antiblocking function, and the like.
  • the overcoat layer 80 it is preferable to expose at least a part of the metal nanowire body 13 from the surface of the overcoat layer 80.
  • FIG. 4 shows a configuration of a transparent electrode 1-2 in which an anchor layer 90 is provided on the transparent electrode (transparent electrode 1 in FIG. 1) of the first embodiment as a configuration example (variation example 2) of the transparent electrode.
  • the anchor layer 90 is for ensuring adhesion between the wire layer 17 and the transparent substrate 11 configured using the metal nanowires 13, and is sandwiched between the wire layer 17 and the transparent substrate 11. ing.
  • the anchor layer 90 has a light-transmitting property with respect to visible light, and is composed of a polyacrylic resin, a polyamide resin, a polyester resin, a cellulose resin, or a metal Consists of alkoxide hydrolysis, dehydration condensate and the like. Moreover, such an anchor layer 90 shall be comprised by the film thickness with which the light transmittance with respect to visible light is not inhibited.
  • this modification 2 can also be combined with the modification 1.
  • the wire layer 17 formed by using the metal nanowire body 13 is sandwiched between the anchor layer 90 and the overcoat layer 80.
  • the colored compound is adsorbed on the metal nanowire, the colored compound a is present.
  • FIG. 5 shows a configuration of a transparent electrode 1-3 in which a binder (transparent resin material) is removed from the transparent electrode (transparent electrode 1 in FIG. 1) of the first embodiment as a configuration example (Modification 3) of the transparent electrode. Show. On the transparent base material 11, the metal nanowire main body 13 is integrated without being dispersed in a binder (transparent resin material). When the colored compound is adsorbed on the metal nanowire, the colored compound a is present.
  • storage of the metal nanowire main body 13 is arrange
  • FIG. Such a configuration is applied when the adhesion between the metal nanowire bodies 13 and between the metal nanowire body 13 and the transparent substrate 11 is good.
  • Modification 3 can be combined with at least one of Modification 1 and Modification 2. That is, an overcoat layer may be provided above the wire layer 17 ′ in combination with the first modification, and an anchor layer may be provided between the transparent substrate 11 and the wire layer 17 ′ in combination with the second modification.
  • the configuration described in the first embodiment It is possible to obtain the same effect as that of the transparent electrode.
  • FIG. 6 shows a configuration of a transparent electrode 1-4 in which a hard coat layer 110 is provided on the transparent electrode (transparent electrode 1 in FIG. 1) of the first embodiment as a configuration example (Modification 4) of the transparent electrode.
  • the hard coat layer 110 is for protecting the transparent substrate 11, and is provided at the lower portion of the transparent substrate 11.
  • the hard coat layer 110 has optical transparency to visible light, and is composed of an organic hard coat agent, an inorganic hard coat agent, an organic-inorganic hard coat agent, and the like. .
  • the hard coat layer 110 is configured to have a film thickness that does not impair the light transmittance with respect to visible light.
  • Modification 4 can be combined with at least one of Modifications 1 to 3.
  • an overcoat layer or an anchor layer may be further provided.
  • An anchor layer is provided in at least one between the transparent base material 11 and the wire layer 17, and between the transparent base material 11 and the hard-coat layer 110, for example.
  • the overcoat layer is provided on at least one of the upper part of the wire layer 17 and the lower part of the hard coat layer 110.
  • FIG. 7 shows a configuration example of the transparent electrode 1-5 in which the hard electrode layers 120 and 121 are provided on the transparent electrode of the first embodiment (transparent electrode 1 in FIG. 1) as a configuration example of the transparent electrode (Modification 5). Show.
  • the hard coat layer 120 is for protecting the transparent base material 11, and is provided in the lower part of the transparent base material 11.
  • the hard coat layer 121 is for protecting the transparent substrate 11 and is provided on the transparent substrate 11.
  • the wire layer 17 is provided on the hard coat layer 121.
  • the hard coat layers 120 and 121 have a light-transmitting property with respect to visible light, and are composed of an organic hard coat agent, an inorganic hard coat agent, an organic-inorganic hard coat agent, or the like. Is done. Further, the hard coat layers 120 and 121 are configured to have a film thickness that does not impair the light transmittance with respect to visible light.
  • Modification 5 can be combined with at least one of Modifications 1 to 3.
  • an overcoat layer or an anchor layer may be further provided.
  • the anchor layer is, for example, at least one place between the transparent substrate 11 and the hard coat layer 121, between the hard coat layer 121 and the wire layer 17, and between the transparent substrate 11 and the hard coat layer 120. Is provided.
  • the overcoat layer is provided on at least one of the upper part of the wire layer 17 and the lower part of the hard coat layer 120.
  • the information input device of the present invention includes at least a known transparent substrate and the transparent conductive film of the present invention, and further includes other known members (for example, refer to Japanese Patent No. 4893867) as necessary. Since the information input device includes the transparent conductive film of the present invention, the information input device is excellent in black float prevention (light contrast) and electrode pattern non-visibility. There is no restriction
  • the electronic device of the present invention includes at least a known display panel and the transparent conductive film of the present invention, and further includes other known members (for example, see Japanese Patent No. 4893867) as necessary. Since the electronic device includes the transparent conductive film of the present invention, the electronic device is excellent in black floating prevention (light contrast) and electrode pattern non-visibility. There is no restriction
  • Examples 1 to 4 as the transparent conductive film of the present invention and Comparative Examples 1 to 4 as the transparent conductive film for comparison were prepared, and physical properties of the transparent conductive film were evaluated.
  • the evaluation results of each example are shown in Table 1.
  • Example 1 Silver nanowire [1] (manufactured by Seashell Technology, AgNW-25 (average diameter 25 nm, average length 23 ⁇ m)) was used as the metal nanowire body.
  • Silver nanowire [1] water and ethanol were mixed and passed through a wet water flow dispersion device to perform water flow dispersion treatment.
  • the dispersion treatment conditions were a plunger pump pressure of 1.0 MPa, and water flow dispersion treatment was performed by repeatedly passing through a flow passage having a flow passage diameter of 0.5 mm and a length of 300 mm. Subsequently, these were mixed with water-soluble photosensitive resin (AWP-MRH manufactured by Toyo Gosei Co., Ltd.).
  • Silver nanowire [1] 0.065 mass% Water-soluble photosensitive resin (AWP-MRH manufactured by Toyo Gosei Co., Ltd.): 0.130% by mass Water: 89.805 mass% Ethanol: 10% by mass
  • the dispersion liquid was applied onto a transparent substrate with a coil bar of count 10 to form a dispersion film.
  • the basis weight of the silver nanowire was 0.013 g / m 2 .
  • PET Toray Lumirror U34
  • the transparent substrate PET (Toray Lumirror U34) having a film thickness of 125 ⁇ m was used.
  • hot air is applied to the coated surface with a dryer, and the solvent in the dispersion film is removed by drying.
  • ultraviolet rays are emitted from the silver nanowire layer in the atmosphere with an integrated light amount of 200 mJ / cm 2.
  • calendering (nip width 1 mm, load 4 kN, speed 1 m / min) was performed.
  • Example 2 In Example 1, a transparent electrode was produced in the same manner as in Example 1 except that the composition of the coating material was as follows.
  • Example 3 Silver nanowire [1] (manufactured by Seashell Technology, AgNW-25 (average diameter 25 nm, average length 23 ⁇ m)) was used as the metal nanowire body.
  • the colored compound (dye) was prepared by the following procedure.
  • Lanyl Black BG E / C manufactured by Taoka Chemical Co., Ltd. and 2-amineethanethiol hydrochloride manufactured by Wako Pure Chemical Industries, Ltd. were mixed in an aqueous solvent at a mass ratio of 4: 1. The mixed solution was allowed to react for 100 minutes using an ultrasonic cleaner, and then allowed to stand for 15 hours.
  • the reaction solution was filtered through a cellulose mixed ester type membrane filter having a pore size of 3 ⁇ m, and the obtained solid was washed three times with water and then dried at 100 ° C. in a vacuum oven to prepare Dye [I].
  • a 0.2% by weight dye [I] ethanol solution was prepared.
  • a fluororesin cylindrical filter paper No. 1 manufactured by ADVANTEC which was moistened with ethanol in the dye [I] ethanol solution. 89 was immersed. 0.025g of silver nanowire [1] was added to the place where the dye [I] ethanol solution exuded into the cylindrical filter paper. These were heated at 70 ° C.
  • EDS measurement measured 4 times per sample of silver nanowire [2], and made the average value the measured value. From the EDS measurement, it was confirmed that 92.6% by mass of Ag and 0.2% by mass of S were present in the silver nanowire [2].
  • Example 1 A transparent electrode was produced in the same manner as in Example 1 except that the obtained silver nanowire [2] was used.
  • Example 4 a transparent electrode was produced in the same manner as in Example 3 except that the composition of the coating material was as follows.
  • Example 1 a transparent electrode was produced in the same manner as in Example 1 except that the water flow dispersion treatment passed through a wet water flow dispersion device was not performed.
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the water flow dispersion treatment through a wet water flow dispersion device was not performed.
  • Example 3 a transparent electrode was produced in the same manner as in Example 3 except that the water flow dispersion treatment through a wet water flow dispersion device was not performed.
  • Example 4 a transparent electrode was produced in the same manner as in Example 4 except that the water dispersion treatment passed through a wet water dispersion apparatus was not performed.
  • A) Evaluation of Bundle The bundle of each transparent conductive film was evaluated according to the following evaluation criteria at 2000 times using a field emission scanning electron microscope (trade name; S-4700, manufactured by HITACHI).
  • Three spots are selected at random within the transparent conductive film surface, and the number of bundle structures in all three selected spots is three per rectangular area of the transparent conductive film 30 ⁇ m long ⁇ 40 ⁇ m wide
  • X When the number of bundle structures described above is four or more per rectangular area region of 30 ⁇ m long ⁇ 40 ⁇ m wide of the transparent conductive film.
  • haze value The haze value of each transparent conductive film was evaluated according to JIS K7136 using HM-150 (trade name; manufactured by Murakami Color Research Laboratory Co., Ltd.). The haze value is preferably 1.1 or less.
  • the sheet resistance value of each transparent conductive film was evaluated using MCP-T360 (trade name; manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the sheet resistance value is preferably 500 [ ⁇ / ⁇ ] or less.
  • ⁇ reflection L * value is obtained by pasting a black vinyl tape (VT-50 manufactured by Nichiban Co., Ltd.) on the silver nanowire layer side and from the side opposite to the silver nanowire layer side.
  • evaluation was performed using a color i5 bench top manufactured by Videojet X-Rite Co., Ltd.
  • a light source a D65 light source was used, and measurement was performed at three arbitrary locations by an SCE (regular reflection light removal) method, and an average value thereof was taken as a reflection L value.
  • the ⁇ reflection L * value can be calculated by the following formula.
  • ( ⁇ reflection L * value) (reflection L * value of transparent electrode including substrate) ⁇ (reflection L * value of substrate)
  • the ⁇ reflection L * value is preferably 2.5 or less, and more preferably 1.5 or less.
  • Example 1 and Comparative Example 1 When comparing Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, and Example 4 and Comparative Example 4, respectively, the weight of silver nanowires present in the transparent conductive film is Despite the same degree, the bundle structure does not exist or is very small (Examples 1 to 4) has a low sheet resistance value and ⁇ reflection L * value. This is probably because the bundle structure does not exist or is very small, so that it has an efficient conductivity and can suppress external light scattering.
  • FIG. 9 is a scanning electron microscope observation (SEM) image of Example 1
  • FIG. 10 is a scanning electron microscope observation (SEM) image of Comparative Example 1
  • FIG. It is a scanning electron microscope observation (SEM) image.
  • 9 (Example 1) the number of bundle structures is 0.
  • FIG. 10 (Comparative Example 1) the number of bundle structures is 8 or more.
  • FIG. 11 (Comparative Example 3), was 8 or more.
  • Transparent electrode 11 ... Transparent base material 13 . Metal nanowire main body 15, 15a ... Binder (transparent resin material) 17, 17 ', 17b ... wire layer (dispersion film, transparent conductive film) 80 ... Overcoat layer 90 . Anchor layer 110, 120, 121 ... Hard coat layer a ... Colored compound

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

効率よく、タッチパネル等の表示画面における外光散乱の抑制、黒浮き防止性(明所コントラスト)及び電極パターン非視認性の向上を可能とする金属ナノワイヤーを含む透明導電膜及びその製造方法、前記透明導電膜を備える情報入力装置、並びに、前記透明導電膜を備える電子機器を提供する。透明導電膜は、金属ナノワイヤーを含み、前記透明導電膜中に存在する金属ナノワイヤーのバンドル構造が、前記透明導電膜の縦30μm、横40μmの長方形の面積領域当たり3個以下である。

Description

透明導電膜及びその製造方法、情報入力装置、並びに、電子機器 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2014−018869号(2014年2月3日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、透明導電膜及びその製造方法、情報入力装置、並びに、電子機器に関する。
 タッチパネル等の表示パネルの表示面に設けられる透明導電膜、さらには表示パネルの表示面側に配置される情報入力装置の透明導電膜等、光透過性が要求される透明導電膜には、インジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。しかしながら、金属酸化物を用いた透明導電膜は、真空環境下においてスパッタ成膜されるため製造コストがかかるものであり、また曲げやたわみなどの変形によって割れや剥離が発生し易いものであった。
 そこで金属酸化物を用いた透明導電膜に代えて、塗布や印刷による成膜が可能で、しかも曲げやたわみに対する耐性も高い金属ナノワイヤーを用いた透明導電膜が検討されている。金属ナノワイヤーを用いた透明導電膜は、レアメタルであるインジウムを使わない次世代の透明導電膜としても注目されている(例えば、特許文献1,2参照)。
 ところが、前記特許文献1に記載された透明導電膜は、赤みを呈して、透明性が損なわれることがある。
 さらに、金属ナノワイヤーを用いた透明導電膜を表示パネルの表示面側に設けた場合、金属ナノワイヤーの表面で外光が乱反射することにより、表示パネルの黒表示がほのかに明るく表示される、いわゆる黒浮き現象が発生する。黒浮き現象は、コントラスト低下による表示特性の劣化を招く要因になる。
 このような黒浮き現象の発生を防止することを目的として、光の乱反射が発生し難い金(Au)を用いた金ナノチューブが提案されている。金ナノチューブの形成は、先ず、光を乱反射しやすい銀ナノワイヤーをテンプレートとして用い、これに金メッキを施す。その後、テンプレートとして用いた銀ナノワイヤー部分をエッチングもしくは酸化して金ナノチューブに変換する(例えば、特許文献3参照)。
 また、金属ナノワイヤーと二次導電性媒体(CNT(カーボンナノチューブ)、導電性ポリマー、ITO等)とを併用して、光散乱を防止する手法が提案されている(例えば、特許文献2参照)。
 しかしながら、前者の方法で得られる金ナノチューブは、テンプレートとして用いた銀ナノワイヤーが材料として無駄になってしまうのみならず、さらに金メッキを施すための金属材料も必要となってしまう。そのため材料費が高くなり、また工程も煩雑になるため製造コストが高くなるという問題がある。
 また、後者の方法では、CNT、導電性ポリマー、ITO等の二次導電性媒体(着色材料)を金属ナノワイヤーネットワークの開口部に配置するため、透明性が損なわれる虞があるという問題がある。また、材料費が高くなり、また工程も煩雑になるため製造コストが高くなるという問題もある。
 斯かる問題を解決すべく、金属ナノワイヤー本体と該金属ナノワイヤー本体に吸着した有色化合物(染料)とを含む透明導電膜(例えば、特許文献4,5参照)が提案されている。
特表2010−507199号公報 特表2010−525526号公報 特表2010−525527号公報 特開2012−190777号公報 特開2012−190780号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、効率よく、タッチパネル等の表示画面における外光散乱の抑制、黒浮き防止性(明所コントラスト)及び電極パターン非視認性の向上を可能とする金属ナノワイヤーを含む透明導電膜及びその製造方法、前記透明導電膜を備える情報入力装置、並びに、前記透明導電膜を備える電子機器を提供することを目的とする。
 本発明者は、金属ナノワイヤーが塗膜中で凝集し、束になっている部分(バンドル構造(凝集体))が、黒浮き現象及び電極パターン非視認性に大きく関与することを発見した。
 本発明者は、前記目的を達成すべく鋭意検討を行った結果、膜中の金属ナノワイヤーの束(バンドル構造)の数を確実に一定量以下とすることで、外光散乱を抑制することができることを見出し、本発明の完成に至った。
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
 <1> 金属ナノワイヤーを含む透明導電膜であって、前記透明導電膜中に存在する金属ナノワイヤーのバンドル構造が、前記透明導電膜の縦30μm、横40μm(30μm×40μm)の長方形の面積領域当たり3個以下であることを特徴とする透明導電膜である。
 該<1>に記載の透明導電膜において、効率よく、タッチパネル等の表示画面における外光散乱の抑制、黒浮き防止性(明所コントラスト)及び電極パターン非視認性の向上を可能とする金属ナノワイヤーを含む。
 ここでいう「バンドル構造」とは、2本以上の金属ナノワイヤーが一部もしくは全体で互いに線接触している構造と定義する。
 なお、本明細書における「線接触」とは、2本以上の金属ナノワイヤーが1μm以上接触していることを意味する。
 <2> 前記金属ナノワイヤーが、金属ナノワイヤー本体と、前記金属ナノワイヤー本体に吸着した有色化合物とを有し、前記有色化合物は染料である、前記<1>に記載の透明導電膜である。
 <3> 前記有色化合物の吸着量が、前記金属ナノワイヤー本体に対し0.5質量%~10質量%である、前記<2>に記載の透明導電膜である。
 <4> 前記染料は、可視光領域の光を吸収する、前記<2>又は<3>に記載の透明導電膜である。
 該<2>~<4>に記載の透明導電膜においては、金属ナノワイヤー本体に吸着した有色化合物に光、特に可視光が吸収されることにより、金属ナノワイヤー本体の表面での光の乱反射が前記<1>に記載の透明導電膜よりもさらに効率よく防止される。また、規定量の有色化合物が金属ナノワイヤー本体の表面に吸着することで、より確実に該乱反射を防止することができる。
 <5> 前記金属ナノワイヤーが、金属ナノワイヤー本体と、前記金属ナノワイヤー本体に吸着した有色化合物とを有し、前記有色化合物は、可視光領域に吸収を持つ発色団と、前記金属ナノワイヤー本体を構成する金属に結合する基とを有する、前記<1>に記載の透明導電膜である。
 <6> 前記有色化合物の吸着量が、前記金属ナノワイヤー本体に対し0.5質量%~10質量%である、前記<5>に記載の透明導電膜である。
 該<5>及び<6>に記載の透明導電膜においては、金属ナノワイヤー本体に吸着した有色化合物に光、特に可視光が吸収されることにより、金属ナノワイヤー本体の表面での光の乱反射が前記<1>に記載の透明導電膜よりもさらに効率よく防止される。また、規定量の有色化合物が金属ナノワイヤー本体の表面に吸着することで、より確実に該乱反射を防止することができる。
 <7> 前記有色化合物は、下記一般式(I)で表される、前記<5>又は<6>に記載の透明導電膜である。
 R−X  ・・・(I)
(但し、Rは、可視光領域に吸収を持つ発色団であり、Xは、前記金属ナノワイヤー本体を構成する金属に結合する基である。)
 <8> 前記発色団は、不飽和アルキル基、芳香族、複素環、及び金属イオンからなる群より選択される少なくとも1種を含む、前記<5>から<7>のいずれかに記載の透明導電膜である。
 <9> 前記発色団は、ニトロソ基、ニトロ基、アゾ基、メチン基、アミノ基、ケトン基、チアゾリル基、ナフトキノン基、インドリン基、スチルベン誘導体、インドフェノール誘導体、ジフェニルメタン誘導体、アントラキノン誘導体、トリアリールメタン誘導体、ジアジン誘導体、インジゴイド誘導体、キサンテン誘導体、オキサジン誘導体、フタロシアニン誘導体、アクリジン誘導体、チアジン誘導体、硫黄原子含有化合物、及び金属イオン含有化合物からなる群より選択される少なくとも1種を含む、前記<5>から<8>のいずれかに記載の透明導電膜である。
 <10> 前記発色団は、Cr錯体、Cu錯体、Co錯体、Ni錯体、Fe錯体、アゾ基、及びインドリン基からなる群より選択される少なくとも1種を含む、前記<9>に記載の透明導電膜である。
 <11> 前記金属に結合する基は、チオール基及びジスルフィド基の少なくともいずれかである、前記<5>から<10>のいずれかに記載の透明導電膜である。
 <12> 前記金属ナノワイヤー本体は、平均短軸径が1nm~500nmであり、平均長軸長が5μm~50μmである、前記<2>から<11>のいずれかに記載の透明導電膜である。
 <13> 前記金属ナノワイヤー本体は、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、V、及びTaからなる群から選択される少なくとも1種の元素で構成される、
前記<2>から<12>のいずれかに記載の透明導電膜である。
 <14> Δ反射L*値が2.5以下である、前記<13>に記載の透明導電膜である。
 ここでいう「Δ反射L*値」とは、JIS Z8722に従って測定可能な数値であり、以下の式で表される。
 (Δ反射L*値)=(基材を含む透明電極の反射L*値)−(基材の反射L*値)
 <15> バインダーをさらに含み、前記金属ナノワイヤーが前記バインダーに分散している、前記<13>もしくは<14>のいずれかに記載の透明導電膜である。
 <16> 前記金属ナノワイヤーが、基材上に集積されている、前記<13>から<15>のいずれかに記載の透明導電膜である。
 <17> 前記<1>から<16>のいずれかに記載の透明導電膜を製造する透明導電膜の製造方法であって、金属ナノワイヤー分散液に水流分散処理を施した後に透明導電膜を形成する工程を含むことを特徴とする透明導電膜の製造方法である。
 該<17>に記載の透明導電膜の製造方法によれば、透明導電膜中のバンドル構造の数を確実に一定以下にすることができるため、透明導電膜の外光散乱を抑制し、黒浮き防止性(明所コントラスト)及び電極パターン非視認性を向上することができる。
 <18> 前記水流分散処理の前に金属ナノワイヤー本体に有色化合物を吸着させる工程を含み、前記金属ナノワイヤー本体に有色化合物を吸着させる工程が、(1)有色化合物及び溶媒を透過し、金属ナノワイヤー及び有色化合物の凝集体を透過しないフィルター製の容器を、前記有色化合物を溶解乃至分散させた溶媒が入った容器内に入れる工程、(2)前記フィルター製の容器内に金属ナノワイヤー本体を入れ、前記金属ナノワイヤー本体と溶媒中に溶解乃至分散した有色化合物とを接触させる工程、及び(3)前記フィルター製の容器を取り出し、前記フィルター製の容器内の溶媒及び前記溶媒中に遊離する有色化合物を除去する工程、を含む、前記<17>に記載の透明導電膜の製造方法である。
 該<18>に記載の透明導電膜の製造方法によれば、有色化合物を金属ナノワイヤー本体に吸着量させることにより、さらに効率よく、透明導電膜の外光散乱を抑制し、黒浮き防止性(明所コントラスト)及び電極パターン非視認性を向上することができる。
 <19> 透明基材と、前記透明基材上に設けられた前記<1>から<16>のいずれかに記載の透明導電膜と、を備えることを特徴とする情報入力装置である。
 該<19>に記載の情報入力装置においては、情報入力画面の乱反射等による黒浮き、電極視認性が防止され、画面表示の視認性が良好となる。
 <20> 表示パネルと、前記表示パネルの表示面側に設けられた前記<1>から<16>のいずれかに記載の透明導電膜と、を備えることを特徴とする電子機器である。
 該<20>に記載の電子機器においては、表示画面の乱反射等による黒浮き、電極視認性が防止され、画面表示の視認性が良好となる。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、効率よく、タッチパネル等の表示画面における外光散乱の抑制、黒浮き防止性(明所コントラスト)及び電極パターン非視認性の向上を可能とする金属ナノワイヤーを含む透明導電膜及びその製造方法、前記透明導電膜を備える情報入力装置、並びに、前記透明導電膜を備える電子機器を提供することができる。
 さらに、本発明の情報入力装置、電子機器によれば、その表示画面において、黒浮きが改善された透明導電膜を用いているので、表示面における明所コントラストを向上させることができる。
本発明の透明導電膜を有する透明電極の構成例(第1実施形態)を説明する断面模式図である。金属ナノワイヤーが有色化合物を吸着している場合は、有色化合物aが存在する。 本発明の透明導電膜を有する透明電極の形成工程の概略を示す図である。 本発明の透明導電膜を有する透明電極の構成例(変形例1)を説明する断面模式図である。 本発明の透明導電膜を有する透明電極の構成例(変形例2)を説明する断面模式図である。 本発明の透明導電膜を有する透明電極の構成例(変形例3)を説明する断面模式図である。 本発明の透明導電膜を有する透明電極の構成例(変形例4)を説明する断面模式図である。 本発明の透明導電膜を有する透明電極の構成例(変形例5)を説明する断面模式図である。 本発明の透明導電膜における金属ナノワイヤーのバンドル構造の一部概略を示す図である。 実施例1の走査型電子顕微鏡観察(SEM)画像である。 比較例1の走査型電子顕微鏡観察(SEM)画像である。 比較例3の走査型電子顕微鏡観察(SEM)画像である。
(透明導電膜)
 本発明の透明導電膜は、少なくとも、金属ナノワイヤーを含み、さらに必要に応じて、バインダー(透明樹脂材料)、その他の成分を有する。前記金属ナノワイヤーは、前記バインダーに分散していることが好ましいが、後述する図5に示すように、基材上に集積されていてもよい。
<金属ナノワイヤー>
 前記金属ナノワイヤーは、少なくとも、金属ナノワイヤー本体を有し、さらに必要に応じて、前記金属ナノワイヤー本体に吸着した有色化合物、その他の成分を有することが好ましい。
 前記金属ナノワイヤーのバンドル構造の数としては、前記透明導電膜の縦30μm、横40μm(30μm×40μm)の長方形の面積領域当たり3個以下である限り、特に制限はなく、目的に応じて適宜選択することができるが、2個以下が好ましく、1個以下がより好ましく、0個が特に好ましい。
 前記金属ナノワイヤーのバンドル構造の数が、3個を超えると、外光散乱を抑制することができない。一方、前記金属ナノワイヤーのバンドル構造の数が、前記好ましい範囲内、前記より好ましい範囲内、又は前記特に好ましい範囲内であると、外光散乱をより抑制することができる点で有利である。
 なお、前記バンドル構造とは、2本以上の金属ナノワイヤーが一部もしくは全体で互いに線接触している構造を意味する。
 ここで、本明細書における「線接触」とは、2本以上の金属ナノワイヤーが1μm以上接触していることを意味する。
 図8は、本発明の透明導電膜における金属ナノワイヤーのバンドル構造の一部概略を示す図である。
 図8(A)では、2本の金属ナノワイヤー13が全体で互いに線接触している。
 図8(B)では、2本の金属ナノワイヤー13が一部で互いに線接触している。
 図8(C)では、3本の金属ナノワイヤー13が一部で互いに線接触している。
<<金属ナノワイヤー本体>>
 金属ナノワイヤー本体は、金属を用いて構成されたものであって、nmオーダーの径を有する微細なワイヤーである。
 前記金属ナノワイヤー本体の構成元素としては、金属元素である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、V、Ta、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、AgやAuが、導電性が高い点で、好ましい。
 前記金属ナノワイヤー本体の平均短軸径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~500nmが好ましく、10nm~100nmがより好ましい。
 前記金属ナノワイヤー本体の平均短軸径が1nm未満であると、金属ナノワイヤー本体の導電率が劣化して、斯かる金属ナノワイヤー本体を含む透明導電膜が導電膜として機能しにくいことがあり、500nmを超えると、斯かる金属ナノワイヤー本体を含む透明導電膜の全光線透過率が劣化し、ヘイズ(Haze)が高くなることがある。一方、前記金属ナノワイヤー本体の平均短軸径が前記より好ましい範囲内であると、金属ナノワイヤー本体を含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 前記金属ナノワイヤー本体の平均長軸長としては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~50μmが好ましい。
 前記金属ナノワイヤー本体の平均長軸長が5μm未満であると、前記金属ナノワイヤー本体同士がつながりにくく、斯かる金属ナノワイヤー本体を含む透明導電膜が導電膜として機能しにくいことがあり、50μmを超えると、斯かる金属ナノワイヤー本体を含む透明導電膜の全光線透過率が劣化すると共に、透明導電膜を形成する際に用いるにおける金属ナノワイヤー本体の分散性が劣化することがある。
 なお、金属ナノワイヤー本体の平均短軸径及び平均長軸長は、走査型電子顕微鏡により測定可能な、数平均短軸径及び数平均長軸長である。より具体的には、金属ナノワイヤー本体を少なくとも100本以上測定し、電子顕微鏡写真から画像解析装置を用いて、それぞれのナノワイヤーの投影径及び投影面積を算出する。投影径を、短軸径とした。また、下記式に基づき、長軸長を算出した。
長軸長=投影面積/投影径
 平均短軸径は、短軸径の算術平均値とした。平均長軸長は、長軸長の算術平均値とした。
 さらに、前記金属ナノワイヤー本体は、金属ナノ粒子が数珠状に繋がってワイヤー形状を有しているものでもよい。この場合、長さは限定されない。
 前記金属ナノワイヤー本体の目付量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001g/m~1.000g/mが好ましく、0.003g/m~0.03g/mがより好ましい。
 前記金属ナノワイヤー本体の目付量が、0.001g/m未満であると、金属ナノワイヤー本体が十分に吸着ワイヤー層中に存在せず、透明導電膜の導電性が劣化することがあり、1.000g/mを超えると、透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤー本体の目付量が前記より好ましい範囲内であると、透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
<<有色化合物>>
 前記有色化合物は、可視光領域に吸収を持ち、且つ金属ナノワイヤー本体に吸着する物質である。ここで、本明細書における「可視光領域」とは、およそ360nm以上830nm以下の波長帯域である。このような有色化合物は、(i)染料、又は、(ii)可視光領域に吸収を持つ発色団と、前記金属ナノワイヤー本体を構成する金属に結合する基とを有する化合物(一般式[R−X](但し、Rは、可視光領域に吸収を持つ発色団であり、Xは、前記金属ナノワイヤー本体を構成する金属に結合する官能基(部位)である。)で表される化合物)である。
 前記金属ナノワイヤー本体に対する前記有色化合物の吸着量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~10質量%が好ましい。
 前記金属ナノワイヤー本体に対する前記有色化合物の吸着量が、0.5質量%未満であると、外光散乱の抑制効果が小さく、パターンの非視認性が悪くなることがあり、10質量%を超えると、吸着した有色化合物が金属ナノワイヤーの接触を阻害して、導電性が劣化することがある。
−染料−
 前記染料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸性染料、直接染料などが挙げられる。
 前記染料の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、日本化薬製Kayakalan BordeauxBL、Kayakalan Brown GL、Kayakalan Gray BL167、Kayakalan Yellow GL143、KayakalanBlack 2RL、Kayakalan Black BGL、Kayakalan Orange RL、Kayarus Cupro Green G、Kayarus Supra Blue MRG、Kayarus Supra Scarlet BNL200、田岡化学工業製Lanyl Olive BG、日本化薬製Kayalon Polyester Blue 2R−SF、Kayalon Microester Red AQ−LE、Kayalon Polyester Black ECX300、Kayalon Microester Blue AQ−LE、等のスルホ基を有する染料;N3、N621、N712、N719、N749、N773、N790、N820、N823、N845、N886、N945、K9、K19、K23、K27、K29、K51、K60、K66、K69、K73、K77、Z235、Z316、Z907、Z907Na、Z910、Z991、CYC−B1、HRS−1等のRu錯体としてのカルボキシル基を有する染料(色素増感太陽電池用色素);Anthocyanine、WMC234、WMC236、WMC239、WMC273、PPDCA、PTCA、BBAPDC、NKX−2311、NKX−2510、NKX−2553(林原生物化学製)、NKX−2554(林原生物化学製)、NKX−2569、NKX−2586、NKX−2587(林原生物化学製)、NKX−2677(林原生物化学製)、NKX−2697、NKX−2753、NKX−2883、NK‐5958(林原生物化学製)、NK‐2684(林原生物化学製)、Eosin Y、Mercurochrome、MK−2(総研化学製)、D77、D102(三菱製紙化学製)、D120、D131(三菱製紙化学製)、D149(三菱製紙化学製)、D150、D190、D205(三菱製紙化学製)、D358(三菱製紙化学製)、JK−1、JK−2、5、ZnTPP、H2TC1PP、H2TC4PP、Phthalocyanine Dye(Zinc phtalocyanine−2,9,16,23−tetra−carboxylic acid、2−[2’−(zinc9’,16’,23’−tri−tert−butyl−29H,31H−phthalocyanyl)] succinic acid、Polythiohene Dye(TT−1)、Pendant type polymer、Cyanine Dye(P3TTA、C1−D、SQ−3、B1)等の有機色素系としてのカルボキシル基を有する染料(色素増感太陽電池用色素);などが挙げられる。
−発色団[R]−
 前記発色団[R]としては、可視光領域に吸収を持つものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、不飽和アルキル基、芳香族、複素環、金属イオン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、芳香族、複素環、特に、シアニン、キノン、フェロセン、トリフェニルメタン、キノリンが、透明性が向上した透明導電膜を製造することができる点で好ましい。
 前記発色団[R]の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニトロソ基、ニトロ基、アゾ基、メチン基、アミノ基、ケトン基、チアゾリル基、ナフトキノン基、インドリン基、スチルベン誘導体、インドフェノール誘導体、ジフェニルメタン誘導体、アントラキノン誘導体、トリアリールメタン誘導体、ジアジン誘導体、インジゴイド誘導体、キサンテン誘導体、オキサジン誘導体、フタロシアニン誘導体、アクリジン誘導体、チアジン誘導体、硫黄原子含有化合物、金属イオン含有化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、Cr錯体、Cu錯体、Co錯体、Ni錯体、Fe錯体、アゾ基、インドリン基が、透明性が向上した透明導電膜を製造することができる点で好ましい。
−官能基[X]−
 前記官能基[X]は、金属ナノワイヤーを構成する金属ナノワイヤー本体に結合する基である。前記官能基[X]の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホ基(スルホン酸塩を含む。)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩を含む。)、アミノ基、アミド基、リン酸基(リン酸塩及びリン酸エステルを含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、ジスルフィド基、カルビノール基、水酸基、金属ナノワイヤーを構成する金属に配位可能な原子(例えば、N(窒素)、S(イオウ)、O(酸素)等)、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記官能基[X]は、前記有色化合物中に少なくとも1つ存在していればよい。
 これらの中でも、チオール基、ジスルフィド基が、有色化合物の吸着による導電性低下を抑制する点で好ましい。
 上述の一般式[R−X]で表される化合物中から、金属ナノワイヤー本体を構成する金属毎に、その金属に吸着可能な化合物が選択して用いられる。
 前記官能基[X]を有する有色化合物として、自己組織化材料を使用してもよい。また、前記官能基[X]は、前記発色団[R]の一部を構成するものであってもよい。なお、前記有色化合物が前記官能基[X]を有する、有さないにかかわらず、前記発色団[R]を有する化合物に対して、前記官能基[X]を含む化合物との化学反応により前記官能基[X]を新たに付加してもよい。
<<その他の成分>>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属ナノワイヤー本体に吸着した分散剤;金属ナノワイヤー本体同士及び透明基材との密着性や耐久性を向上させるための添加剤;などが挙げられる。
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルピロリドン(PVP)、ポリエチレンイミン等のアミノ基含有化合物;スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基等の官能基を有する化合物で金属に吸着可能なもの;などが挙げられる。
 前記分散剤を前記金属ナノワイヤー本体に吸着させることにより、前記金属ナノワイヤー本体の分散性が向上する。
 前記分散剤は、後述する透明導電膜の導電性の劣化や、前記有色化合物の吸着が阻害されない程度の量で金属ナノワイヤー本体に付着されていることとする。
<バインダー(透明樹脂材料)>
 前記バインダー(透明樹脂材料)は、前記金属ナノワイヤーを分散させるものであり、既知の透明な天然高分子樹脂または合成高分子樹脂から広く選択して使用することができる。
 前記バインダー(透明樹脂材料)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱可塑性樹脂、熱硬化性樹脂、ポジ型又はネガ型感光性樹脂、などが挙げられる。
<<熱可塑性樹脂>>
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
<<熱硬化性樹脂>>
 前記熱硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)ポリビニルアルコール、ポリ酢酸ビニル系ポリマー(ポリ酢酸ビニルのけん化物等)、ポリオキシアルキレン系ポリマー(ポリエチレングリコールやポリプロピレングリコール等)、セルロース系ポリマー(メチルセルロース、ビスコース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等)などのポリマーと、(ii)金属アルコキシド、ジイソシアネート化合物、ブロックイソシアネート化合物などの架橋剤と、を含む組成物、などが挙げられる。
<<ポジ型感光性樹脂>>
 前記ポジ型感光性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)ノボラック樹脂、アクリル共重合樹脂、ヒドロキシポリアミド等のポリマーと、(ii)ナフトキノンジアジド化合物とを含む組成物、などの公知のポジ型フォトレジスト材料が挙げられる。
<<ネガ型感光性樹脂>>
 前記ネガ型感光性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー、(ii)バインダー樹脂(ポリマー)と架橋剤とを含む組成物、(iii)(メタ)アクリルモノマー及び(メタ)アクリルオリゴマーの少なくともいずれかと光重合開始剤とを含む組成物、などが挙げられる。
−(i)感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー−
 前記感光基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素原子を含む官能基、硫黄原子を含む官能基、臭素原子を含む官能基、塩素原子を含む官能基、それらのいずれの原子も含まない官能基、などが挙げられる。
 前記感光基の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アジド基、ジアジリン基、スチルベン基、カルコン基、ジアゾニウム塩基、ケイ皮酸基、アクリル酸基を含有する官能基、などが挙げられる。
 これらの中でも、アジド基、ジアジリン基が好ましい。
 前記感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマーは、金属ナノワイヤーの分散性を阻害しないことが望ましく、水溶性であることが好ましい。ここで言う「水溶性」とは、水に溶解するために分子内の主鎖に対して必要充分な量のイオン性もしくは極性の側鎖を持つ化合物である。
 なお、前記感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマーの水に対する溶解度(水100gに溶解するグラム数)としては、特に制限はなく、目的に応じて適宜選択することができるが、25℃で1以上が好ましい。
 前記感光基が主鎖及び側鎖の少なくともいずれかに導入される前のポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリビニルアセトアミド、ポリビニルホルムアミド、ポリビニルオキサゾリドン、ポリビニルスクシンイミド、ポリアクリルアミド、ポリメタアクリルアミド、ポリエチレンイミン、ポリ酢酸ビニル系ポリマー(ポリ酢酸ビニルのけん化物等)、ポリオキシアルキレン系ポリマー(ポリエチレングリコールやポリプロピレングリコール等)、セルロース系ポリマー(メチルセルロース、ビスコース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等)、天然高分子(ゼラチン、カゼイン、コラーゲン、アラビアガム、キサンタンガム、トラガントガム、グアーガム、プルラン、ペクチン、アルギン酸ナトリウム、ヒアルロン酸、キトサン、キチン誘導体、カラギーナン、澱粉類(カルボキシメチルデンプン、アルデヒドデンプン)、デキストリン、サイクロデキストリン等)、これらを構成するモノマー同士の共重合体、などが挙げられる。これらは、1種単独で使用してもよいし、2種類以上を併用してもよい。
 これらの中でも、下記一般式(I)で表されるものが好ましい。これにより、金属ナノワイヤーの分散性を阻害することなく、インク化することができる。また、基材上に均質な塗膜を形成でき、実用的な300nm~500nmの波長で、透明導電膜及び所定パターンの透明導電膜を形成することができる。
Figure JPOXMLDOC01-appb-C000001
(一般式(I)中、Xは、アジド基を含有する感光基の1種類以上であり、Rは、鎖状或いは環状のアルキレン基であって、主鎖及び側鎖の少なくともいずれかに不飽和結合、エーテル結合、カルボニル結合、エステル結合、アミド結合、ウレタン結合、スルフィド結合、芳香環、複素環、アミノ基、4級アンモニウム塩基、を1種類以上含有してもよく、R’は、鎖状或いは環状のアルキル基であって、主鎖及び側鎖の少なくともいずれかに不飽和結合、エーテル結合、カルボニル結合、エステル結合、アミド結合、ウレタン結合、スルフィド結合、芳香環、複素環、アミノ基、4級アンモニウム塩基、を1種類以上含有してもよく、l及びmは1以上であり、nは0以上である。)
−(ii)バインダー樹脂(ポリマー)と架橋剤とを含む組成物−
 前記バインダー樹脂(ポリマー)は、金属ナノワイヤーの分散性を阻害しないことが望ましく、水溶性ポリマーであることが好ましい。ここで言う「水溶性ポリマー」とは、水に溶解するために分子内の主鎖に対して必要充分な量のイオン性もしくは極性の側鎖を持つポリマーである。
 前記水溶性ポリマーの水に対する溶解度(水100gに溶解するグラム数)としては、特に制限はなく、目的に応じて適宜選択することができるが、25℃で1以上が好ましい。
 前記水溶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリビニルアセトアミド、ポリビニルホルムアミド、ポリビニルオキサゾリドン、ポリビニルスクシンイミド、ポリアクリルアミド、ポリメタアクリルアミド、ポリエチレンイミン、ポリ酢酸ビニル系ポリマー(ポリ酢酸ビニルのけん化物等)、ポリオキシアルキレン系ポリマー(ポリエチレングリコールやポリプロピレングリコール等)、セルロース系ポリマー(メチルセルロース、ビスコース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等)、天然高分子(ゼラチン、カゼイン、コラーゲン、アラビアガム、キサンタンガム、トラガントガム、グアーガム、プルラン、ペクチン、アルギン酸ナトリウム、ヒアルロン酸、キトサン、キチン誘導体、カラギーナン、澱粉類(カルボキシメチルデンプン、アルデヒドデンプン)、デキストリン、サイクロデキストリン等)、これらを構成するモノマー同士の共重合体、などが挙げられる。これらは、1種単独で使用してもよいし、2種類以上を併用してもよい。
 前記架橋剤は、金属ナノワイヤーの分散性を阻害しないことが望ましく、水溶性であることが好ましい。前記架橋剤についての水溶性とは、0.1mM以上の濃度の水溶液を与えることができることを意味する。
 前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスアジド化合物、芳香族ビスアジド化合物、多官能アジド化合物、芳香族多官能アジド化合物、ジアジリン化合物、芳香族ジアジリン化合物、ヘキサメトキシメチルメラミン、テトラメトキシグリコユリル、などが挙げられる。これらは、1種単独で使用してもよいし、2種類以上を併用してもよい。
 これらの中でも、ビスアジド化合物、芳香族ビスアジド化合物、多官能アジド化合物、芳香族多官能アジド化合物、ジアジリン化合物、芳香族ジアジリン化合物、が好ましい。
−(iii)(メタ)アクリルモノマー及び(メタ)アクリルオリゴマーの少なくともいずれかと光重合開始剤とを含む組成物−
 前記感光性材料として、(メタ)アクリルモノマーと(メタ)アクリルオリゴマーの少なくとも一方と光重合開始剤とを含む組成物を用いてもよい。前記(メタ)アクリルモノマーと(メタ)アクリルオリゴマーの少なくとも一方と光重合開始剤とを含む組成物は、金属ナノワイヤーの分散性を阻害しないことが望ましく、水溶性であることが好ましい。
 前記(メタ)アクリルモノマーと(メタ)アクリルオリゴマーの少なくとも一方と光重合開始剤とを含む組成物の水に対する溶解度(水100gに溶解するグラム数)としては、特に制限はなく、目的に応じて適宜選択することができるが、25℃で1以上が好ましい。
 前記感光性材料のうちのネガ型感光性材料の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、感光基アジド含有ポリビニルアルコール、水系UVポリマー(中京油脂株式会社製O−106、O−391等)、などが挙げられる。
 前記ネガ型感光性材料の化学反応としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)光重合開始剤を介した光重合系、(ii)スチルベンやマレイミドなどの光二量化反応、(iii)アジド基やジアジリン基などの光分解による架橋反応、などが挙げられる。
 これらの中でも、(iii)アジド基やジアジリン基などの光分解による架橋反応が、酸素による反応阻害を受けない、硬化塗膜が耐溶剤性、硬度、耐擦傷性に優れるなど、硬化反応性の点で、好ましい。
 前記バインダーには、必要に応じて、添加剤としての、界面活性剤、粘度調整剤、分散剤、硬化促進触媒、可塑剤、酸化防止剤や硫化防止剤等の安定剤、などが添加されていてもよい。
<Δ反射L*値>
 前記Δ反射L*値は、後述する透明電極の電極部及び非電極部の反射L*値の差を表す。一般に、Δ反射L*値が低いほど、透明電極の電極部及び非電極部の外光散乱の差が小さくなり、パターン見えを抑制することができる。電極部の外光散乱が小さい透明電極を用いたタッチパネルを搭載した表示素子において、明所コントラストが向上する。モバイル機器の屋外使用時に画面の視認性が向上し、電力消費量を抑制することができる。
 前記透明導電膜のΔ反射L*値としては、特に制限はなく、目的に応じて適宜選択することができるが、2.5以下が好ましく、2.2以下がより好ましく、1.5以下がさらにより好ましく、1.0以下が特に好ましい。
 前記透明導電膜のΔ反射L*値が、2.5を超えると、パターンの非視認性が悪くなり、明所コントラストが低くなり、黒浮き現象が発生し、表示パネルの表示面側に配置する用途に適用できないことがある。一方、前記透明導電膜のΔ反射L*値が、前記より好ましい範囲内、前記さらにより好ましい範囲及び前記特に好ましい範囲内のいずれかであると、黒浮き現象の発生を抑制し、表示パネルの表示面側に配置する用途に好適に適用できる点で有利である。
 なお、Δ反射L*値は、JIS Z8722に従って評価することができ、下記式で表される。
 (Δ反射L*値)=(基材を含む透明電極の反射L*値)−(基材の反射L*値)
(透明導電膜の製造方法)
 本発明の透明導電膜の製造方法は、金属ナノワイヤー分散液に水流分散処理を施した後に透明導電膜を形成する工程を含み、さらに必要に応じて、金属ナノワイヤー調製工程、透明導電膜製造用の分散液調製工程、その他の工程を含む。
 また、前記有色化合物を金属ナノワイヤー本体に吸着させる場合は、前記有色化合物は、透明導電膜内で遊離等を生じることなく、金属ナノワイヤー本体表面にのみ偏在させることが望ましい。そのため、前記有色化合物を金属ナノワイヤー本体に吸着させて透明導電膜を製造する場合においては、金属ナノワイヤー本体に有色化合物を吸着させた金属ナノワイヤーを予め調製し、遊離の有色化合物を除去したものを用いて金属ナノワイヤー分散液を調製し、水流分散処理する方法が用いられる。
<金属ナノワイヤー分散液>
 前記金属ナノワイヤー分散液は、少なくとも、前述の金属ナノワイヤーと、分散液媒体とを含み、さらに必要に応じて、前述のバインダー(透明樹脂材料)、金属ナノワイヤーの分散性を向上させるための分散剤、密着性や耐久性を向上させるための添加剤、その他の成分を有する。
<<分散液溶媒>>
 前記分散液溶媒としては、前記金属ナノワイヤーを分散可能な溶剤である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、水;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等のアルコール;シクロヘキサノン、シクロペンタノン等のアノン;N,N−ジメチルホルムアミド(DMF)等のアミド;ジメチルスルホキシド(DMSO)等のスルフィド;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記金属ナノワイヤー分散液を用いて形成される透明導電膜の乾燥ムラ、クラック、白化を抑えるため、前記分散液溶媒には、さらに、高沸点溶剤を添加して、分散液からの溶剤の蒸発速度を制御してもよい。
 前記高沸点溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<<その他の成分>>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光安定剤、紫外線吸収剤、光吸収材料、帯電防止剤、滑剤、レベリング剤、消泡剤、難燃剤、赤外線吸収剤、界面活性剤、粘度調整剤、分散剤、硬化促進触媒、可塑剤、酸化防止剤、硫化防止剤、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ここで、前記分散剤を添加する場合は、最終的に得られる透明導電膜の導電性が劣化しない程度の添加量にすることが好ましい。
 前記金属ナノワイヤー分散液における金属ナノワイヤーの配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記金属ナノワイヤー分散液100質量部に対して、0.01質量部~10質量部が好ましい。
 前記金属ナノワイヤー分散液における金属ナノワイヤーの配合量が、0.01質量部未満であると、最終的に得られる透明導電膜において金属ナノワイヤーに十分な目付量(0.001g/m~1.000g/m)が得られないことがあり、10質量部を超えると、金属ナノワイヤーの分散性が極度に劣化することがある。
<金属ナノワイヤー調製工程>
 前記金属ナノワイヤー調製工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属ナノワイヤー本体に有色化合物を吸着させる工程、などが挙げられる。前記金属ナノワイヤー本体に有色化合物を吸着させる工程では、円筒濾紙法が好適に用いられる。
<<円筒濾紙法>>
 前記円筒濾紙法は、少なくとも、(1)有色化合物及び溶媒を透過し、金属ナノワイヤー及び有色化合物の凝集体を透過しないフィルター製の容器を、前記有色化合物を溶解乃至分散させた溶媒が入った容器内に入れる工程と、(2)前記フィルター製の容器内に金属ナノワイヤー本体を入れ、前記金属ナノワイヤー本体と溶媒中に溶解乃至分散した有色化合物とを接触させる工程と、(3)前記フィルター製の容器を取り出し、前記フィルター製の容器内の溶媒及び前記溶媒中に遊離する有色化合物を除去する工程とを含み、必要に応じて、その他の工程を含む。
 まず、円筒濾紙の内部に溶媒のみを入れ、円筒濾紙(フィルター)を充分に湿らせる。ここで、使用される濾紙は、溶媒、有色化合物分子を透過可能である一方、有色化合物分子の凝集体、金属ナノワイヤー本体を透過不能なものを使用する。
 前記円筒濾紙の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素繊維濾紙、セルロース繊維紙、ガラス繊維紙、シリカ繊維紙などが挙げられる。これらの中でも、溶媒中で形状が崩れにくい点で、フッ素繊維濾紙が好ましい。
 フィルターとして円筒形状の濾紙(円筒濾紙)を使用しているが、前記フィルターの形状としては、内部に金属ナノワイヤーを分散した溶媒を収納可能な形状である限り、特に制限はなく、目的に応じて適宜選択することができる。なお、本明細書においては、従来技術における有色化合物の金属ナノワイヤーへの吸着方法と区別するため、本発明に用いる方法を、便宜上「円筒濾紙法」とも称する。
 前記「溶媒」は、前記有色化合物を溶解可能な水以外の溶剤を示す。
 前記溶媒としては、有色化合物を所定濃度に溶解可能な溶剤である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、アセトニトリル、3−メトキシプロピオニトリル、3,3−ジメトキシプロピオニトリルエトキシプロピオニトリル、3−エトキシプロピオニトリル、3,3−オキシジプロピオニトリル、3−アミノプロピオニトリル、プロピオニトリル、シアノ酢酸プロピル、イソチオシアン酸3−メトキシプロピル、3−フェノキシプロピオニトリル、p−アニシジン3−(フェニルメトキシ)プロパンニトリル、メタノール、エタノール、プロパノール、イソプロピルアルコール、n−ブタノール、2−ブタノール、イソブタノール、t−ブタノール、エチレングリコール、トリエチレングリコール、1−メトキシ−エタノール、1,1−ジメチル−2−メトキシエタノール、3−メトキシ−1−プロパノール、ジメチルスルホキシド、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、クロロベンゼン、ジクロロベンゼン、酢酸ブチル、酢酸エチル、シクロヘキサン、シクロヘキサノン、エチルメチルケトン、アセトン、ジメチルホルムアミド、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記溶媒は、前記有色化合物を所定某度に溶解及び/又は分散可能で、且つ金属ナノワイヤー分散液と相溶する材料を適宜選択することが好ましい。
 円筒濾紙より大きな容器に、有色化合物溶液を入れ、内部の溶媒を除いた円筒濾紙を、乾燥しないうちに、開口部を上に、底面を下にして前記有色化合物溶液内に浸漬させる。その際、円筒濾紙内部に外部の有色化合物溶液が若干量浸透するまで静置させることが好ましい。
 前記有色化合物溶液は、有色化合物を、前記溶媒に溶解して調製する。
 前記有色化合物溶液中の有色化合物の濃度としては、特に制限はなく、有色化合物の種類に応じて適宜選択することができるが、0.01質量%~10.0質量%が好ましく、0.1質量%~1.0質量%がより好ましい。
 前記有色化合物溶液中の有色化合物の濃度が、0.1質量%~1.0質量%であると、金属ナノワイヤー本体に有色化合物を効率よく吸着させることができ、かつ、有色化合物溶液内の有色化合物分子の凝集が生じにくい。
 前記有色化合物溶液の調製時において、チオール類及びジスルフィド類の少なくとも一方を混合してもよい。
 円筒濾紙内部に、第1液媒中に分散させた金属ナノワイヤー本体(金属ナノワイヤー本体分散液)を入れ、所定時間静置する(吸着工程)。
 金属ナノワイヤー本体を分散させる第1液媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、前記溶媒として使用可能な溶剤、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記第1液媒中の金属ナノワイヤー本体の分散量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記金属ナノワイヤー本体分散液に対して、0.1質量%~2.0質量%が好ましく、0.2質量%~1.0質量%がより好ましい。前記金属ナノワイヤー本体の分散量が0.1%~2.0%であると、効率よく有色化合物を吸着させることができ、かつ金属ナノワイヤー本体の凝集等を生じにくい。
 金属ナノワイヤー本体に有色化合物を吸着させる際の吸着温度としては、溶媒及び第1液媒が沸騰しない温度である限り、特に制限はなく、目的に応じて適宜選択することができるが、25℃~100℃が好ましく、40℃~80℃がより好ましい。
 また、金属ナノワイヤー本体に有色化合物を吸着させる際の吸着時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間~120時間が好ましく、1時間~12時間がより好ましい。
 前記吸着工程の終了後、円筒濾紙を取り出し、室温にて円筒形状を保持した状態で静置し、内部の液体を底部から濾液として滲出させる。その際、液体を完全に涸渇させないようにする。内部の液体の大部分が滲出した状態で、円筒濾紙内部に前記溶媒を入れ、さらに底部から液体を滲出させる。この操作は、濾液が無色透明となるまで複数回繰り返すことが好ましい。なお、この工程において、必要に応じて、溶媒に分散剤、界面活性剤、消泡剤、粘度調整剤等の添加剤を加えてもよい。
 次いで、円筒濾紙中に第2液媒を入れ、内部の液体を濾液として浸出させる(洗浄工程)。
 前記第2液媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、前記溶媒として使用可能な溶剤、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、前記溶媒よりも高い極性を有するものが好ましい。
 第1液媒と第2液媒とは、同じものであっても、異なるものであってもよい。好適には、両液媒とも純水が使用される。
 円筒濾紙内の溶媒が第2液媒と交換され、内部の液量が当初の金属ナノワイヤー本体分散液とほぼ同量となったところで、円筒濾紙の壁内についた、金属ナノワイヤー本体に有色化合物が吸着した金属ナノワイヤーをポリスポイト等で洗い流すようにして落とし、金属ナノワイヤー本体に有色化合物が吸着した金属ナノワイヤーを回収する。
 前記円筒濾紙法によれば、後に剥離脱落しやすい有色化合物凝集体が金属ナノワイヤー本体に接触しないこと、洗浄工程により遊離の有色化合物が除去されることから、遊離の有色化合物を生じにくい、金属ナノワイヤー(有色化合物が吸着した金属ナノワイヤー本体)を取得することが可能である。なお、前記円筒濾紙法は、本発明の透明導電膜の製造方法における、金属ナノワイヤー調製工程の一例を示すものであり、使用するフィルターの素材や形状、使用する溶剤、各段階の温度や時間の条件等は、適宜変更することができるものとする。
<<金属ナノワイヤー本体への有色化合物の吸着量の評価>>
 前記金属ナノワイヤー調製工程で取得され、後述の透明導電膜の形成に使用される金属ナノワイヤーにおける有色化合物の吸着量としては、金属ナノワイヤー本体に対し、0.5質量%~10質量%である。
 前記有色化合物の吸着量が、0.5質量%未満であると、金属ナノワイヤーにより光の乱反射を低減する、という効果が充分に得られず、10質量%超であると、形成される透明導電膜の導電性が低下しやすい、金属ナノワイヤーの分散性が低下する、等の問題が生じ得る。
 透明導電膜、分散液の調製に使用される金属ナノワイヤーの有色化合物吸着量の評価は、以下の分析により行われる。
−STEM EDSによる分析−
 金属ナノワイヤーを、STEM EDSによる分析を行うことで、金属ナノワイヤー本体の質量に対する、有色化合物の質量を測定乃至算出することができる。例えば、株式会社トプコンテクノハウス製EM−002B及びサーモフィッシャーサイエンティフィック株式会社製system6を用いたEDS測定と、ICP元素分析、透過型電子顕微鏡観察(TEM)等を組み合わせることで実施することができる。
 金属ナノワイヤー本体への有色化合物吸着量は、以下の方法で分析、算出することができる。
 EDS測定により、金属ナノワイヤーの構成元素と、有色化合物中の特徴的な元素の質量%をそれぞれ測定し、次いで、金属の質量と有色化合物の質量との比を算出する。
 以上の方法により、金属ナノワイヤー本体に吸着した有色化合物の吸着量を確認することが可能である。
<金属ナノワイヤーの分散性>
 前記金属ナノワイヤー分散液中の金属ナノワイヤーの分散性を高める手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理、水流分散処理などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。その中でも水流分散処理が、金属ナノワイヤーを壊すことなく分散性を向上させるのに適している。
<<水流分散処理>>
 前記水流分散処理とは、プランジャポンプなどで分散液を微細な流路に圧入し、流路中の乱流及びせん断力により被分散物を分散媒に分散させる方法である。分散処理条件は、主に前記ポンプの吐出量、吐出圧と流路径及び長さ、処理回数により概ね決定される。分散処理が1度で不十分な場合は、回数を増やして行ってもよい。また、連続的に一定時間分散液を環流させて処理を行ってもよい。
<透明導電膜の形成>
 以下、透明導電膜(例えば、図1の第1実施形態の透明電極における透明導電膜17)の形成について説明する。
 前記透明導電膜は、後述する、分散膜の形成、分散膜の乾燥・硬化、などのプロセスを経て、透明基材上に形成される。前記透明導電膜が形成された透明基材には、後述する、パターニング(パターンエッチング)、カレンダー処理、などの処理が必要に応じて施され、透明電極が作製される。
<<透明基材>>
 前記透明基材の材料としては、可視光に対して透過性を有する材料である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機材料、プラスチック材料、などが挙げられる。
 前記透明基材の厚みとしては、透明電極に必要とされる厚み(例えば、フレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)を実現できる程度の厚み、適度の屈曲性と剛性を実現できる程度の厚み)である限り、特に制限はなく、目的に応じて適宜選択することができる。
−無機材料−
 前記無機材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、石英、サファイア、ガラス、などが挙げられる。
−プラスチック材料−
 前記プラスチック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、などが挙げられる。
 前記プラスチック材料を用いた透明基材の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、生産性の観点から、5μm~500μmが好ましい。
<<分散膜の形成>>
 次に、図2(A)に示すように、上述したようにして作製した分散液を用いて、透明基材11上金属ナノワイヤー本体13を分散させた分散膜17bを形成する。有色化合物を金属ナノワイヤーへ吸着している場合は有色化合物aが存在する。
 分散膜17bの形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、物性、利便性、製造コストなどの点で、湿式製膜法が好ましい。
 前記湿式製膜法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布法、スプレー法、印刷法、などの公知の方法が挙げられる。
 前記塗布法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法、などの公知の塗布法が挙げられる。
 前記印刷法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、凸版印刷、オフセット印刷、グラビア印刷、凹版印刷、ゴム版印刷、スクリーン印刷、インクジェット印刷、などが挙げられる。
 この状態においては、未硬化の透明樹脂材料(バインダー)15aを含む溶剤中に、金属ナノワイヤー本体13が分散された分散膜17bが形成される。有色化合物を金属ナノワイヤーへ吸着している場合は有色化合物aが存在する。
<<分散膜の乾燥・硬化>>
 次に、図2(B)に示すように、透明基材11上に形成された分散膜17b中の溶剤を乾燥させて除去する。その後、未硬化のバインダー(透明樹脂材料)15aの硬化処理を行い、硬化させたバインダー(透明樹脂材料)15中に、金属ナノワイヤー本体13を分散させてなるワイヤー層17を形成する。有色化合物を金属ナノワイヤーへ吸着している場合は有色化合物aが存在する。以上の、溶剤の乾燥による除去は、自然乾燥であっても加熱乾燥であってもよい。その後、未硬化のバインダー(透明樹脂材料)15aの硬化処理を行い、硬化させた透明樹脂材料15中に金属ナノワイヤー本体13を分散させた状態とする。
<<パターニング>>
 ワイヤー層17からなる電極パターンを有する透明電極を作製する場合、図2(A)に示す分散膜17bの形成工程において、予めパターニングされた分散膜17bを形成すればよい。分散膜17bのパターン形成は、例えば、印刷法によって行うことができる。また別の方法として、形成した分散膜17bを硬化させた以降の工程で、分散膜17b(ワイヤー層17)をパターンエッチングしてもよい。この場合、分散膜17b(ワイヤー層17)における電極パターン以外の領域において、少なくとも、金属ナノワイヤー本体13が分断されて絶縁状態となるようにパターンエッチングを行えばよい。
<<カレンダー処理>>
 得られる透明電極のシート抵抗値を下げるために、ロールプレス、平板プレス等のカレンダー処理を施すことが好ましい。なお、前記カレンダー処理は、必要に応じて、前記パターニング工程の前に行ってもよく、後に行ってもよい。
<<その他の処理>>
 必要に応じて、透明電極に非視認化微細パターンを形成してもよい。非視認化微細パターンは、透明電極に複数の孔部を形成し、透明電極の存在しない基材の絶縁部の表面に複数の凸部を設けることにより電極パターンの視認性を抑制する技術である。複数の孔部や凸部は特許第4862969号の記載に従い、エッチング法、又は印刷法の方法により形成することができる。これにより、電極パターンの非視認性をさらに向上させることができる。
<オーバーコート層を設けた透明電極の構成例(変形例1)>
 図3には、透明電極の構成例(変形例1)として、第1実施形態の透明電極(図1における透明電極1)にオーバーコート層80を設けた透明電極1−1の構成を示す。オーバーコート層80は、金属ナノワイヤー13本体を用いて構成されたワイヤー層17を保護するためのものであり、ワイヤー層17の上部に設けられている。
 このオーバーコート層80は、可視光に対して光透過性を有していることが重要であり、ポリアクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、又はセルロース系樹脂で構成されるか、あるいは金属アルコキシドの加水分解、脱水縮合物などで構成される。またこのようなオーバーコート層80は、可視光に対する光透過性が阻害されることのない膜厚で構成されていることとする。オーバーコート層80が、ハードコート機能、防眩機能、反射防止機能、アンチニュートンリング機能、およびアンチブロッキング機能などからなる機能群より選ばれる少なくとも1種の機能を有していてもよい。
 オーバーコート層80を形成する場合、金属ナノワイヤー本体13の少なくとも一部をオーバーコート層80の表面から露出させることが好ましい。
<アンカー層を設けた透明電極の構成例(変形例2)>
 図4には、透明電極の構成例(変形例2)として、第1実施形態の透明電極(図1における透明電極1)にアンカー層90を設けた透明電極1−2の構成を示す。アンカー層90は、金属ナノワイヤー13を用いて構成されたワイヤー層17−透明基材11間の密着性を確保するためのものであり、ワイヤー層17−透明基材11との間に挟持されている。
 このアンカー層90は、可視光に対して光透過性を有していることが重要であり、ポリアクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、又はセルロース系樹脂で構成されるか、あるいは金属アルコキシドの加水分解、脱水縮合物などで構成される。またこのようなアンカー層90は、可視光に対する光透過性が阻害されることのない膜厚で構成されていることとする。
 尚、本変形例2は、変形例1と組み合わせることも可能である。組み合わせた場合、アンカー層90−オーバーコート層80間に、金属ナノワイヤー本体13を用いて構成されたワイヤー層17を挟持させた構成となる。有色化合物を金属ナノワイヤーへ吸着している場合は有色化合物aが存在する。
<バインダー(透明樹脂材料)に分散させずに金属ナノワイヤーを集積させた透明電極の構成例(変形例3)>
 図5には、透明電極の構成例(変形例3)として、第1実施形態の透明電極(図1における透明電極1)からバインダー(透明樹脂材料)を除去した透明電極1−3の構成を示す。透明基材11上には、金属ナノワイヤー本体13が、バインダー(透明樹脂材料)に分散されることなく集積されている。有色化合物を金属ナノワイヤーへ吸着している場合は有色化合物aが存在する。そして、金属ナノワイヤー本体13の集積によって構成されたワイヤー層17’が、透明基材11の表面との密着性を保って透明基材11上に配置されている。このような構成は、金属ナノワイヤー本体13同士および金属ナノワイヤー本体13と透明基材11との密着性が良好である場合に適用される。
 なお、このような変形例3は、変形例1および変形例2の少なくとも一方と組み合わせることが可能である。すなわち変形例1と組み合わせてワイヤー層17’の上方にオーバーコート層を設けてもよく、変形例2と組み合わせて透明基材11とワイヤー層17’との間にアンカー層を設けてもよい。
 このような構成の透明電極1−3であっても、金属ナノワイヤーのバンドル構造が透明導電膜の40μm×30μmの長方形の面積領域当たり3個以下である限り、第1実施形態で説明した構成の透明電極と同様の効果を得ることが可能である。
<基材の一主面にハードコート層を設けた透明電極の構成例(変形例4)>
 図6には、透明電極の構成例(変形例4)として、第1実施形態の透明電極(図1における透明電極1)にハードコート層110を設けた透明電極1−4の構成を示す。ハードコート層110は、透明基材11を保護するためのものであり、透明基材11の下部に設けられている。
 このハードコート層110は、可視光に対して光透過性を有していることが重要であり、有機系ハードコート剤、無機系ハードコート剤、有機−無機系ハードコート剤などで構成される。またこのようなハードコート層110は、可視光に対する光透過性が阻害されることのない膜厚で構成されていることとする。
 なお、このような変形例4は、変形例1~3のうちの少なくとも1つと組み合わせることが可能である。例えば、オーバーコート層やアンカー層などをさらに設けるようにしてもよい。アンカー層は、例えば、透明基材11とワイヤー層17との間、および透明基材11とハードコート層110との間の少なくとも一方に設けられる。オーバーコート層は、例えば、ワイヤー層17の上部、およびハードコート層110の下部の少なくとも一方に設けられる。
<基材の両主面にハードコート層を設けた透明電極の構成例(変形例5)>
 図7には、透明電極の構成例(変形例5)として、第1実施形態の透明電極(図1における透明電極1)にハードコート層120、121を設けた透明電極1−5の構成を示す。ハードコート層120は、透明基材11を保護するためのものであり、透明基材11の下部に設けられている。ハードコート層121は、透明基材11を保護するためのものであり、透明基材11の上部に設けられている。ワイヤー層17は、ハードコート層121の上部に設けられている。
 このハードコート層120、121は、可視光に対して光透過性を有していることが重要であり、有機系ハードコート剤、無機系ハードコート剤、有機−無機系ハードコート剤などで構成される。またこのようなハードコート層120、121は、可視光に対する光透過性が阻害されることのない膜厚で構成されていることとする。
 なお、このような変形例5は、変形例1~3のうちの少なくとも1つと組み合わせることが可能である。例えば、オーバーコート層やアンカー層などをさらに設けるようにしてもよい。アンカー層は、例えば、透明基材11とハードコート層121との間、ハードコート層121とワイヤー層17との間、および透明基材11とハードコート層120との間のうちの少なくとも一箇所に設けられる。オーバーコート層は、例えば、ワイヤー層17の上部、およびハードコート層120の下部の少なくとも一方に設けられる。
(情報入力装置)
 本発明の情報入力装置は、少なくとも、公知の透明基材と、本発明の透明導電膜とを備え、さらに必要に応じて、その他の公知の部材(例えば、特許第4893867号参照)を備える。前記情報入力装置は、本発明の透明導電膜を備えるため、黒浮き防止性(明所コントラスト)及び電極パターン非視認性に優れる。
 前記情報入力装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特許第4893867号に示されるような、タッチパネル、などが挙げられる。
(電子機器)
 本発明の電子機器は、少なくとも、公知の表示パネルと、本発明の透明導電膜とを備え、さらに必要に応じて、その他の公知の部材(例えば、特許第4893867号参照)を備える。前記電子機器は、本発明の透明導電膜を備えるため、黒浮き防止性(明所コントラスト)及び電極パターン非視認性に優れる。
 前記電子機器としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特許第4893867号に示されるような、テレビ、デジタルカメラ、ノート型パーソナルコンピュータ、ビデオカメラ、携帯端末装置、などが挙げられる。
 以下の通り、本発明の透明導電膜としての実施例1~4を、対照用の透明導電膜としての比較例1~4を作製し、透明導電膜の物性評価を行った。各例の評価結果を、表1に示す。
(実施例1)
 金属ナノワイヤー本体として、銀ナノワイヤー[1](Seashell Technology社製、AgNW−25(平均径25nm、平均長さ23μm))を使用した。
 銀ナノワイヤー[1]、水およびエタノールを混合し、湿式の水流分散装置へ通して水流分散処理を行った。ここで、前記分散処理条件は、プランジャポンプ圧1.0MPaの条件で、流路径0.5mmかつ長さ300mmの流路中を3回繰り返し通すことで水流分散処理を行った。次いで、これらを水溶性感光性樹脂(東洋合成工業株式会社製AWP−MRH)と混合した。なお、これらは下記の配合となるように調整した。
 銀ナノワイヤー[1]:0.065質量%
 水溶性感光性樹脂(東洋合成工業株式会社製AWP−MRH):0.130質量%
 水:89.805質量%
 エタノール:10質量%
 次いで、分散液を番手10のコイルバーで透明基材上に塗布して分散膜を形成した。銀ナノワイヤーの目付量は0.013g/mとした。透明基材としては、膜厚125μmのPET(東レ製ルミラーU34)を用いた。
 これらを大気中において塗布面にドライヤーで温風を当て、分散膜中の溶剤を乾燥除去した後、メタルハライドランプを用いて、大気中にて銀ナノワイヤー層から積算光量200mJ/cmで紫外線を照射して、水溶性感光性樹脂(バインダー)を硬化させた。
 その後、カレンダー処理(ニップ幅1mm、荷重4kN、速度1m/分)を行った。
(実施例2)
 実施例1において、塗料の組成を以下にした以外は実施例1と同様にして透明電極を作製した。
 銀ナノワイヤー[1]:0.04質量%
 水溶性感光性樹脂(東洋合成工業株式会社製AWP−MRH):0.08質量%
 水:89.88質量%
 エタノール:10質量%
(実施例3)
 金属ナノワイヤー本体として、銀ナノワイヤー[1](Seashell Technology社製、AgNW−25(平均径25nm、平均長さ23μm))を使用した。
 有色化合物(染料)は、以下の手順で調製した。
 田岡化学工業製Lanyl Black BG E/Cと、和光純薬工業製2−アミンエタンチオール塩酸塩を質量比4:1で水溶媒中で混合した。混合液を100分間、超音波洗浄器を用いて反応させ、その後、15時間静置した。反応液を孔径3μmのセルロース混合エステルタイプのメンブレンフィルターで濾過し、得られた固体を水で3回洗浄後、真空オーブン中で100℃で乾燥させ、染料[I]を作製した。
 0.2質量%の染料[I]エタノール溶液を調製した。次いで、前記染料[I]エタノール溶液に、エタノールで湿らせたADVANTEC社製フッ素樹脂円筒濾紙No.89を浸漬させた。円筒濾紙内部に染料[I]エタノール溶液が滲出してきたところに、銀ナノワイヤー[1]を0.025g加えた。
 これらを70℃で4時間加熱し、銀ナノワイヤー[1]に染料[I]を吸着させ、有色化合物が吸着した銀ナノワイヤー[2]を得た。加熱後、室温に戻し、円筒濾紙を染料[I]エタノール溶液から取り出した。次いで、円筒濾紙内部にエタノールを加え、濾液が目視で無色透明となるまでエタノールによる洗浄を繰り返した。
 洗浄後の銀ナノワイヤー[2]を回収し、銀ナノワイヤー[2]における、銀ナノワイヤー[1]に吸着した染料[I]の吸着量を、STEM EDSを用いて、測定、算出した。
 STEM EDSの測定は、株式会社トプコンテクノハウス製EM−002B及びサーモフィッシャーサイエンティフィック株式会社製system6を用いて実施した。なお、EDS測定は、銀ナノワイヤー[2]の1サンプルにつき4回測定し、その平均値を測定値とした。
 EDS測定により、銀ナノワイヤー[2]中には、Agが92.6質量%、Sが0.2質量%存在することが確認できた。
 染料[I]の組成式はC403413Crであり、分子量は997であることから、染料[I]の吸着量を以下のように算出した。
 0.2/92.6=0.00216(Agに対するSの質量割合)
 96/997=0.0963(染料[I]に対するSの質量割合)
 0.00216/0.0963×100=2.24質量%
 したがって、実施例3では、銀ナノワイヤー[2]における、銀ナノワイヤー[1]に吸着した染料[I]の吸着量は、約2.2質量%であることが判明した。なお、同様に染料[I]を使用した実施例4、並びに比較例3と4においても同様の方法で染料[I]吸着量を測定、算出した。
 実施例1において、得られた銀ナノワイヤー[2]を用いたこと以外は実施例1と同様にして透明電極を作製した。
(実施例4)
 実施例3において、塗料の組成を以下にした以外は実施例3と同様にして透明電極を作製した。
 銀ナノワイヤー[2]:0.04質量%
 水溶性感光性樹脂(東洋合成工業株式会社製AWP−MRH):0.08質量%
 水:89.88質量%
 エタノール:10質量%
(比較例1)
 実施例1において、湿式の水流分散装置へ通す水流分散処理を行わなかったこと以外は、実施例1と同様にして透明電極を作製した。
(比較例2)
 実施例2において、湿式の水流分散装置へ通す水流分散処理を行わなかったこと以外は、実施例2と同様にして透明電極を作製した。
(比較例3)
 実施例3において、湿式の水流分散装置へ通す水流分散処理を行わなかったこと以外は、実施例3と同様にして透明電極を作製した。
(比較例4)
 実施例4において、湿式の水流分散装置へ通す水流分散処理を行わなかったこと以外は、実施例4と同様にして透明電極を作製した。
<評価>
 以上の実施例1~4及び比較例1~4で作製した透明導電膜について、A)バンドルの評価、B)全光線透過率[%]、C)ヘイズ値、D)シート抵抗値[Ω/□]、E)Δ反射L*値を評価した。各評価は、次のように行った。
 A)バンドルの評価
 各透明導電膜のバンドルは、電界放出型走査電子顕微鏡(商品名;S−4700、HITACHI製)を用いて、2000倍で次の評価基準に従って評価した。
 ○:透明導電膜面内で無作為に3点スポットを選択し、選択した3点のスポットすべてにおいて、有するバンドル構造の数が透明導電膜の縦30μm×横40μmの長方形の面積領域当たり3つ以下の場合。
 ×:上記の有するバンドル構造の数が透明導電膜の縦30μm×横40μmの長方形の面積領域当たり4つ以上の場合。
 B)全光線透過率の評価
 各透明導電膜の全光線透過率について、HM−150(商品名;(株)村上色彩技術研究所製)を用いてJIS K7136に従って評価した。
 C)ヘイズ値の評価
 各透明導電膜のヘイズ値について、HM−150(商品名;(株)村上色彩技術研究所製)を用いてJIS K7136に従って評価した。なお、ヘイズ値としては、1.1以下が好ましい。
 D)シート抵抗値の評価
 各透明導電膜のシート抵抗値は、MCP−T360(商品名;(株)三菱化学アナリテック製)を用いて評価した。なお、シート抵抗値としては、500[Ω/□]以下が好ましい。
 E)Δ反射L*値の評価
 Δ反射L値は、銀ナノワイヤー層側に黒色のビニールテープ(ニチバン株式会社製VT−50)を貼合し、銀ナノワイヤー層側とは反対側から、JIS Z8722に従い、ビデオジェット・エックスライト株式会社製カラーi5ベンチトップを用いて評価した。光源としては、D65光源を用い、SCE(正反射光除去)方式で、任意の3箇所で測定を行い、その平均値を反射L値とした。 ここで、Δ反射L*値は、下記計算式により算出することができる。
 (Δ反射L*値)=(基材を含む透明電極の反射L*値)−(基材の反射L*値)
 なお、Δ反射L*値としては、2.5以下が好ましく、1.5以下がより好ましい。
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、以下のことが確認された。
 先ず、実施例1と3、並びに実施例2と4とを比較すると、有色化合物を吸着した銀ナノワイヤー本体を用いたもの(実施例3と4)は、有色化合物を吸着していない銀ナノワイヤー(実施例1と2)と比較して、ヘイズ値及びΔ反射L*値が低く、良好な結果が得られた。これは、銀ナノワイヤー本体の表面に有色化合物が吸着することで、外光散乱が抑えられた結果と考えられる。
 実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、並びに実施例4と比較例4を、それぞれ比較すると、透明導電膜内に存在する銀ナノワイヤー重量が同程度にも関わらず、バンドル構造が存在しない、もしくは微少もの(実施例1~4)は、シート抵抗値およびΔ反射L*値が低い。これは、バンドル構造が存在しない、もしくは微少であることから、効率よく導電性を有し、かつ外光散乱を抑えられた結果と考えられる。
 なお、図9は、実施例1の走査型電子顕微鏡観察(SEM)画像であり、図10は、比較例1の走査型電子顕微鏡観察(SEM)画像であり、図11は、比較例3の走査型電子顕微鏡観察(SEM)画像である。
 図9(実施例1)において、バンドル構造の数は0個であり、図10(比較例1)において、バンドル構造の数は8個以上であり、図11(比較例3)において、バンドル構造の数は8個以上であった。
1,1−1,1−2,1−3,1−4,1−5…透明電極
11…透明基材
13…金属ナノワイヤー本体
15,15a…バインダー(透明樹脂材料)
17,17’,17b…ワイヤー層(分散膜、透明導電膜)
80…オーバーコート層
90…アンカー層
110,120,121…ハードコート層
a…有色化合物

Claims (20)

  1.  金属ナノワイヤーを含む透明導電膜であって、
     前記透明導電膜中に存在する金属ナノワイヤーのバンドル構造が、前記透明導電膜の縦30μm、横40μmの長方形の面積領域当たり3個以下であることを特徴とする透明導電膜。
  2.  前記金属ナノワイヤーが、金属ナノワイヤー本体と、前記金属ナノワイヤー本体に吸着した有色化合物とを有し、
     前記有色化合物は染料である、請求項1に記載の透明導電膜。
  3.  前記有色化合物の吸着量が、前記金属ナノワイヤー本体に対し0.5質量%~10質量%である、請求項2に記載の透明導電膜。
  4.  前記染料は、可視光領域の光を吸収する、請求項2又は3に記載の透明導電膜。
  5.  前記金属ナノワイヤーが、金属ナノワイヤー本体と、前記金属ナノワイヤー本体に吸着した有色化合物とを有し、
     前記有色化合物は、可視光領域に吸収を持つ発色団と、前記金属ナノワイヤー本体を構成する金属に結合する基とを有する、請求項1に記載の透明導電膜。
  6.  前記有色化合物の吸着量が、前記金属ナノワイヤー本体に対し0.5質量%~10質量%である、請求項5に記載の透明導電膜。
  7.  前記有色化合物は、下記一般式(I)で表される、請求項5又は6に記載の透明導電膜。
     R−X  ・・・(I)
    (但し、Rは、可視光領域に吸収を持つ発色団であり、Xは、前記金属ナノワイヤー本体を構成する金属に結合する基である。)
  8.  前記発色団は、不飽和アルキル基、芳香族、複素環、及び金属イオンからなる群より選択される少なくとも1種を含む、請求項5又は6に記載の透明導電膜。
  9.  前記発色団は、ニトロソ基、ニトロ基、アゾ基、メチン基、アミノ基、ケトン基、チアゾリル基、ナフトキノン基、インドリン基、スチルベン誘導体、インドフェノール誘導体、ジフェニルメタン誘導体、アントラキノン誘導体、トリアリールメタン誘導体、ジアジン誘導体、インジゴイド誘導体、キサンテン誘導体、オキサジン誘導体、フタロシアニン誘導体、アクリジン誘導体、チアジン誘導体、硫黄原子含有化合物、及び金属イオン含有化合物からなる群より選択される少なくとも1種を含む、請求項5又は6に記載の透明導電膜。
  10.  前記発色団は、Cr錯体、Cu錯体、Co錯体、Ni錯体、Fe錯体、アゾ基、及びインドリン基からなる群より選択される少なくとも1種を含む、請求項9に記載の透明導電膜。
  11.  前記金属に結合する基は、チオール基及びジスルフィド基の少なくともいずれかである、請求項5又は6に記載の透明導電膜。
  12.  前記金属ナノワイヤー本体は、平均短軸径が1nm~500nmであり、平均長軸長が5μm~50μmである、請求項2、3、5、及び6のいずれかに記載の透明導電膜。
  13.  前記金属ナノワイヤー本体は、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、V、及びTaからなる群から選択される少なくとも1種の元素で構成される、請求項2、3、5、及び6のいずれかに記載の透明導電膜。
  14.  Δ反射L*値が2.5以下である、請求項13に記載の透明導電膜。
  15.  バインダーをさらに含み、
     前記金属ナノワイヤーが前記バインダーに分散している、請求項13に記載の透明導電膜。
  16.  前記金属ナノワイヤーが、基材上に集積されている、請求項13に記載の透明導電膜。
  17.  請求項1~3、5、及び6のいずれかに記載の透明導電膜を製造する透明導電膜の製造方法であって、金属ナノワイヤー分散液に水流分散処理を施した後に透明導電膜を形成する工程を含むことを特徴とする透明導電膜の製造方法。
  18.  前記水流分散処理の前に金属ナノワイヤー本体に有色化合物を吸着させる工程を含み、
     前記金属ナノワイヤー本体に有色化合物を吸着させる工程が、
     (1)有色化合物及び溶媒を透過し、金属ナノワイヤー及び有色化合物の凝集体を透過しないフィルター製の容器を、前記有色化合物を溶解乃至分散させた溶媒が入った容器内に入れる工程、
     (2)前記フィルター製の容器内に金属ナノワイヤー本体を入れ、前記金属ナノワイヤー本体と溶媒中に溶解乃至分散した有色化合物とを接触させる工程、及び
     (3)前記フィルター製の容器を取り出し、前記フィルター製の容器内の溶媒及び前記溶媒中に遊離する有色化合物を除去する工程、
     を含む、請求項17に記載の透明導電膜の製造方法。
  19.  透明基材と、
     前記透明基材上に設けられた請求項1~3、5、及び6のいずれかに記載の透明導電膜と、を備えることを特徴とする情報入力装置。
  20.  表示パネルと、
     前記表示パネルの表示面側に設けられた請求項1~3、5、及び6のいずれかに記載の透明導電膜と、を備えることを特徴とする電子機器。
PCT/JP2015/052785 2014-02-03 2015-01-26 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器 WO2015115630A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006986.6A CN105960685B (zh) 2014-02-03 2015-01-26 透明导电膜及其制造方法、信息输入装置以及电子设备
US15/116,298 US10365750B2 (en) 2014-02-03 2015-01-26 Transparent conductive film and method for producing same, information input device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-018869 2014-02-03
JP2014018869A JP6441576B2 (ja) 2014-02-03 2014-02-03 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器

Publications (1)

Publication Number Publication Date
WO2015115630A1 true WO2015115630A1 (ja) 2015-08-06

Family

ID=53757195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052785 WO2015115630A1 (ja) 2014-02-03 2015-01-26 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器

Country Status (5)

Country Link
US (1) US10365750B2 (ja)
JP (1) JP6441576B2 (ja)
CN (1) CN105960685B (ja)
TW (1) TWI654625B (ja)
WO (1) WO2015115630A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045669A (ko) * 2015-10-19 2017-04-27 삼성전자주식회사 도전체, 그 제조 방법, 및 이를 포함하는 소자
JP2018536962A (ja) * 2015-09-07 2018-12-13 ライプニッツ−インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク 構造化表面の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441576B2 (ja) 2014-02-03 2018-12-19 デクセリアルズ株式会社 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器
JP6356114B2 (ja) * 2015-11-26 2018-07-11 デクセリアルズ株式会社 透明導電膜の製造方法
US10831327B2 (en) * 2016-09-30 2020-11-10 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device
JP6859083B2 (ja) * 2016-11-28 2021-04-14 昭和電工株式会社 導電性フィルム、及び導電性フィルムの製造方法
FR3061605B1 (fr) * 2016-12-29 2019-05-31 Aledia Dispositif optoélectronique à diodes électroluminescentes
KR20190030810A (ko) * 2017-09-14 2019-03-25 한국전자통신연구원 신경신호 측정용 신경전극 및 그의 제조방법
JP2019128992A (ja) * 2018-01-22 2019-08-01 Dowaエレクトロニクス株式会社 銀ナノワイヤインクおよびその製造法
CN112088410B (zh) * 2018-03-09 2023-08-08 大日本印刷株式会社 导电性膜、传感器、触控面板和图像显示装置
TWI740400B (zh) * 2020-03-02 2021-09-21 力哲科技股份有限公司 電池材料及其製備方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129732A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
WO2009107694A1 (ja) * 2008-02-27 2009-09-03 株式会社クラレ 金属ナノワイヤの製造方法並びに得られた金属ナノワイヤよりなる分散液および透明導電膜
JP2012190777A (ja) * 2011-02-23 2012-10-04 Sony Corp 透明導電膜、分散液、情報入力装置、および電子機器
WO2013047197A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 透明導電性塗布膜、透明導電性インク、及びそれらを用いたタッチパネル
JP2013211130A (ja) * 2012-03-30 2013-10-10 Toray Ind Inc 導電積層体の製造方法、導電積層体、および、それを用いた表示体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589473B (zh) 2006-10-12 2011-10-05 凯博瑞奥斯技术公司 基于纳米线的透明导体及其应用
CN101971354B (zh) 2007-04-20 2012-12-26 凯博瑞奥斯技术公司 高对比度的透明导体及其形成方法
TWI487125B (zh) 2007-04-20 2015-06-01 Cambrios Technologies Corp 複合透明導體及形成其之方法
JP4943254B2 (ja) * 2007-07-18 2012-05-30 太陽ホールディングス株式会社 導電性ペースト組成物、および該組成物を用いた透光性導電フィルム並びにその製造方法
US8535805B2 (en) * 2008-04-28 2013-09-17 The United States Of America, As Represented By The Secretary Of The Navy Hydrophobic nanostructured thin films
CN102087884A (zh) * 2009-12-08 2011-06-08 中国科学院福建物质结构研究所 基于有机聚合物和银纳米线的柔性透明导电薄膜及其制备方法
CA2828468A1 (en) * 2010-02-27 2011-09-01 Innova Dynamics, Inc. Structures with surface-embedded additives and related manufacturing methods
JP2012009219A (ja) * 2010-06-23 2012-01-12 Fujifilm Corp 導電材料及びタッチパネル
US20120148823A1 (en) * 2010-12-13 2012-06-14 Innovation & Infinity Global Corp. Transparent conductive structure and method of making the same
JP2012185770A (ja) * 2011-03-08 2012-09-27 Sony Corp 透明電極素子、情報入力装置、および電子機器
JP2012216535A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 金属ナノワイヤー含有透明導電膜及びその塗布液
AU2012275284B2 (en) * 2011-06-28 2015-06-11 Innova Dynamics, Inc. Transparent conductors incorporating additives and related manufacturing methods
CN104040642B (zh) * 2011-08-24 2016-11-16 宸鸿科技控股有限公司 图案化透明导体和相关制备方法
US20150017457A1 (en) 2012-03-06 2015-01-15 Dexerials Corporation Transparent conductive film, conductive element, composition, input device, display device and electronic instrument
KR102009321B1 (ko) * 2012-04-16 2019-08-12 엘지디스플레이 주식회사 표시장치용 터치 스크린 패널 및 그 제조방법
GB201209221D0 (en) * 2012-05-25 2012-07-04 Isis Innovation Solid material and method and composition for forming solid material
WO2014010270A1 (ja) 2012-07-10 2014-01-16 東レ株式会社 導電積層体、パターン化導電積層体、その製造方法、および、それらを用いてなるタッチパネル
US9099222B2 (en) * 2012-10-10 2015-08-04 Carestream Health, Inc. Patterned films and methods
JP6308737B2 (ja) * 2013-08-26 2018-04-11 デクセリアルズ株式会社 金属ナノワイヤー、分散液、透明導電膜、情報入力装置、及び、電子機器
DE102014115156B4 (de) * 2013-10-17 2021-09-16 Samsung Sdi Co., Ltd. Transparenter Leiter und damit ausgestattetes optisches Display
JP6327870B2 (ja) * 2014-01-29 2018-05-23 デクセリアルズ株式会社 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器
JP6441576B2 (ja) 2014-02-03 2018-12-19 デクセリアルズ株式会社 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129732A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
WO2009107694A1 (ja) * 2008-02-27 2009-09-03 株式会社クラレ 金属ナノワイヤの製造方法並びに得られた金属ナノワイヤよりなる分散液および透明導電膜
JP2012190777A (ja) * 2011-02-23 2012-10-04 Sony Corp 透明導電膜、分散液、情報入力装置、および電子機器
WO2013047197A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 透明導電性塗布膜、透明導電性インク、及びそれらを用いたタッチパネル
JP2013211130A (ja) * 2012-03-30 2013-10-10 Toray Ind Inc 導電積層体の製造方法、導電積層体、および、それを用いた表示体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536962A (ja) * 2015-09-07 2018-12-13 ライプニッツ−インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク 構造化表面の製造方法
KR20170045669A (ko) * 2015-10-19 2017-04-27 삼성전자주식회사 도전체, 그 제조 방법, 및 이를 포함하는 소자
JP2017079212A (ja) * 2015-10-19 2017-04-27 三星電子株式会社Samsung Electronics Co.,Ltd. 導電体およびその製造方法、ならびにこれを含む素子
US11052644B2 (en) 2015-10-19 2021-07-06 Samsung Electronics Co., Ltd. Electrical conductors, production methods thereof, and electronic devices including the same
KR102452651B1 (ko) * 2015-10-19 2022-10-06 삼성전자주식회사 도전체, 그 제조 방법, 및 이를 포함하는 소자

Also Published As

Publication number Publication date
US20170010736A1 (en) 2017-01-12
CN105960685A (zh) 2016-09-21
JP6441576B2 (ja) 2018-12-19
TW201532076A (zh) 2015-08-16
CN105960685B (zh) 2019-06-25
JP2015146127A (ja) 2015-08-13
TWI654625B (zh) 2019-03-21
US10365750B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6327870B2 (ja) 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器
JP6441576B2 (ja) 透明導電膜及びその製造方法、情報入力装置、並びに、電子機器
JP6094270B2 (ja) 透明導電膜、導電性素子、組成物、入力装置、表示装置および電子機器
EP2613328B1 (en) Transparent electroconductive film, information input device, and electronic instrument
WO2014168158A1 (ja) 透明導電膜形成用インク組成物、透明導電膜、透明電極の製造方法、及び画像表示装置
JP6654834B2 (ja) 分散液、透明導電膜、入力装置及び有機el照明装置
JP6356114B2 (ja) 透明導電膜の製造方法
US20180082762A1 (en) Transparent Conductive Film, Dispersion Liquid, Information Input Device, and Electronic Equipment
JP2015040316A (ja) ナノ粒子担持金属ナノワイヤー、分散液、透明導電膜及びその製造方法、並びに、タッチパネル
JP6633387B2 (ja) 透明導電膜、構造体、及び情報入力装置、並びに電極の製造方法
JP6320365B2 (ja) 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742710

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15116298

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15742710

Country of ref document: EP

Kind code of ref document: A1