WO2022209761A1 - 透明導電膜の製造装置および製造方法 - Google Patents
透明導電膜の製造装置および製造方法 Download PDFInfo
- Publication number
- WO2022209761A1 WO2022209761A1 PCT/JP2022/010887 JP2022010887W WO2022209761A1 WO 2022209761 A1 WO2022209761 A1 WO 2022209761A1 JP 2022010887 W JP2022010887 W JP 2022010887W WO 2022209761 A1 WO2022209761 A1 WO 2022209761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- conductive film
- supply port
- collecting member
- carbon nanotubes
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 106
- 239000012528 membrane Substances 0.000 claims abstract description 33
- 239000002041 carbon nanotube Substances 0.000 claims description 173
- 239000007789 gas Substances 0.000 claims description 121
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 31
- 238000005192 partition Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the present disclosure relates to a transparent conductive film manufacturing apparatus and manufacturing method.
- a transparent conductive film can be used, for example, as a transparent heater for ensuring the function of a vehicle sensor using a camera, LiDAR, millimeter waves, or the like, or the function of a windshield.
- the transparent conductive film used as the transparent heater heats the vehicle sensor or the windshield to prevent icing or fogging. It plays the role of removing.
- a carbon nanotube is described as "CNT.”
- Patent Literature 1 discloses a method for manufacturing a transparent conductive film formed by providing a grid-like wiring pattern of CNTs on a transparent base material.
- a collecting member is formed by providing a photosensitive resist film having grooves (openings in Patent Document 1) for forming a wiring pattern of CNTs on a porous filter.
- the CNTs synthesized in the gas phase by chemical vapor deposition or the like are collected by the collecting member.
- the CNTs collected by the collecting member are transferred to a transparent substrate such as a transparent film to form a transparent conductive film.
- the CNTs constituting the wiring pattern are oriented in random directions with respect to the direction in which the wiring pattern extends, or in the direction perpendicular to the direction in which the wiring pattern extends. It has been clarified by the studies of the inventors. Therefore, the transparent conductive film manufactured by the manufacturing method described in Patent Document 1 has a high electrical resistance value, and there is a problem that the application is limited.
- An object of the present disclosure is to provide a manufacturing apparatus and a manufacturing method that make it possible to reduce the electrical resistance of a transparent conductive film using CNTs.
- a transparent conductive film manufacturing apparatus includes a supply passage and a support section.
- the supply passage has a supply port to which a gas containing CNTs is supplied, and constitutes a channel through which the gas containing carbon nanotubes supplied from the supply port flows.
- the support part has a porous film for collecting CNTs contained in the gas, and a dense film provided with grooves for forming a wiring pattern of CNTs on the surface of the porous film on the supply port side.
- a collecting member is supported downstream of the feed passage.
- the supply passage has an inclined portion configured so that the direction of gas flow from the supply port toward the collecting member is oblique or parallel to the longitudinal direction of the grooves of the dense membrane.
- the CNTs contained in the gas flow with their orientation aligned in the gas flow direction. Therefore, by making the flow direction of the gas flowing through the inclined portion oblique or parallel to the longitudinal direction of the grooves of the dense film, the CNTs trapped in the grooves are highly oriented in the longitudinal direction of the grooves. can be done. Therefore, in the transparent conductive film obtained by transferring the CNTs collected by the collecting member to the transparent base material, the number of contacts between the CNTs constituting the wiring pattern is reduced and the contact resistance is reduced, so that the electrical resistance value can be lowered. can.
- a transparent conductive film manufacturing apparatus includes a supply passage, a support portion, and a guide plate.
- the supply passage has a supply port to which a gas containing CNTs is supplied, and constitutes a channel through which the gas containing CNTs supplied from the supply port flows.
- the support part has a porous film for collecting CNTs contained in the gas, and a dense film provided with grooves for forming a wiring pattern of CNTs on the surface of the porous film on the supply port side.
- the member is supported downstream of the feed passage.
- the guide plate is provided in the supply passage, and makes the direction of gas flow from the supply port toward the collecting member oblique or parallel to the longitudinal direction of the grooves of the dense membrane.
- the guide plate provided in the supply passage increases the degree of orientation of the CNTs collected in the grooves of the dense membrane in the longitudinal direction of the grooves, and the orientation of the CNTs on the collecting surface of the collecting member. can improve the in-plane uniformity. Therefore, the transparent conductive film obtained by transferring the CNTs collected by the collecting member to the transparent base material can reduce the electric resistance value.
- a transparent conductive film manufacturing apparatus includes a supply passage, a support portion, and a plurality of exhaust passages.
- the supply passage has a supply port to which a gas containing CNTs is supplied, and constitutes a channel through which the gas containing CNTs supplied from the supply port flows.
- the support part has a porous film for collecting CNTs contained in the gas, and a dense film provided with grooves for forming a wiring pattern of CNTs on the surface of the porous film on the supply port side.
- the member is supported downstream of the feed passage.
- a plurality of exhaust passages are provided on the side opposite to the supply passage with respect to the collection member, and discharge gas that has passed through the collection member.
- a plurality of exhaust passages are provided for each divided region obtained by dividing the collecting member into a plurality of regions.
- the transparent conductive film in which the CNTs collected by the collecting member are transferred to the transparent base material has reduced variation in the amount of CNTs forming the wiring pattern, and can lower the electric resistance value.
- a collection member having a porous film for collecting CNTs contained in gas and a dense film provided with grooves for forming a wiring pattern of CNTs is prepared.
- a collecting member is installed on a support provided downstream of a supply passage having a supply port to which a gas containing CNTs is supplied.
- a gas containing CNTs is supplied from the supply port to the inclined portion configured such that the flow direction of the gas from the supply port toward the collecting member is oblique or parallel to the longitudinal direction of the grooves of the dense membrane. thing. Transferring the CNTs collected by the collecting member to a transparent substrate to form a transparent conductive film.
- the flow direction of the gas flowing through the inclined portion is set obliquely or parallel to the longitudinal direction of the grooves of the dense film, so that the CNTs trapped in the grooves are oriented in the longitudinal direction. can be higher. Therefore, in the transparent conductive film obtained by transferring the CNTs collected by the collecting member to the transparent base material, the number of contacts between the CNTs constituting the wiring pattern is reduced and the contact resistance is reduced, so that the electrical resistance value can be lowered. can.
- a further aspect is the disclosure of a method for producing a transparent conductive film.
- This manufacturing method includes the following steps.
- a collection member having a porous film for collecting CNTs contained in gas and a dense film provided with grooves for forming a wiring pattern of CNTs is prepared.
- a collecting member is installed on a support provided downstream of a supply passage having a supply port to which a gas containing CNTs is supplied.
- the gas is supplied along the guide plate provided in the supply passage so that the incident angle of the gas with respect to the collection surface on the supply port side of the collection member is parallel or oblique to the longitudinal direction of the groove of the dense membrane.
- Supply gas containing CNT from the mouth. Transferring the CNTs collected by the collecting member to a transparent substrate to form a transparent conductive film.
- the guide plate provided in the supply passage increases the degree of orientation of the CNTs collected in the grooves of the dense membrane in the longitudinal direction of the grooves, and the orientation of the CNTs on the collecting surface of the collecting member. can improve the in-plane uniformity. Therefore, the transparent conductive film obtained by transferring the CNTs collected by the collecting member to the transparent base material can reduce the electric resistance value.
- a method for manufacturing a transparent conductive film includes the following steps.
- a collection member having a porous film for collecting CNTs contained in gas and a dense film provided with grooves for forming a wiring pattern of CNTs is prepared.
- a collecting member is installed on a support provided downstream of a supply passage having a supply port to which a gas containing CNTs is supplied. Supplying gas containing CNT from the supply port.
- the transparent conductive film in which the CNTs collected by the collecting member are transferred to the transparent base material has reduced variation in the amount of CNTs forming the wiring pattern, and can lower the electric resistance value.
- FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1;
- FIG. 4 is a flow chart showing a method for manufacturing a transparent conductive film according to the first embodiment; It is a figure which shows the cross-sectional structure of the manufacturing apparatus of the transparent conductive film of a comparative example.
- FIG. 5 is an explanatory diagram for explaining how CNTs are collected in grooves of a collecting member in a transparent conductive film manufacturing apparatus of a comparative example;
- FIG. 4 is an explanatory diagram for explaining how CNTs are collected in grooves of a collecting member in the apparatus for manufacturing a transparent conductive film according to the first embodiment
- FIG. 3 is a schematic diagram of CNTs forming a wiring pattern of a transparent conductive film manufactured by a transparent conductive film manufacturing apparatus of a comparative example.
- FIG. 2 is a schematic diagram of CNTs forming a wiring pattern of a transparent conductive film manufactured by the transparent conductive film manufacturing apparatus of the first embodiment.
- FIG. 4 is an explanatory diagram for explaining how CNTs are collected in the grooves of the collecting member when a gas containing CNTs is supplied from one side of the grooves in the longitudinal direction;
- FIG. 3 is a schematic diagram of CNTs forming a wiring pattern of a transparent conductive film manufactured by a transparent conductive film manufacturing apparatus of a comparative example.
- FIG. 2 is a schematic diagram of CNTs forming a wiring pattern of a transparent conductive film manufactured by the transparent conductive film
- FIG. 4 is an explanatory diagram of a method for calculating the degree of orientation of CNTs forming the wiring pattern of the transparent conductive film; 4 is a graph showing experimental results regarding the relationship between the degree of orientation of CNTs forming the wiring pattern of the transparent conductive film and the resistance reduction rate of the transparent conductive film. It is a figure which shows the cross-sectional structure of the manufacturing apparatus of the transparent conductive film which concerns on 2nd Embodiment.
- FIG. 11 is a sectional view taken along line XI-XI of FIG. 10, with the guide plate omitted; 6 is a flow chart showing a method for manufacturing a transparent conductive film according to the second embodiment;
- the transparent conductive film formed by the manufacturing apparatus and manufacturing method of the first embodiment has a predetermined wiring pattern composed of carbon nanotubes (hereinafter referred to as CNT) on one surface of a thin transparent substrate. It is.
- a transparent conductive film can be used, for example, as a transparent heater for ensuring the function of a vehicle sensor using a camera, LiDAR, millimeter waves, or the like, or the function of a windshield.
- the manufacturing apparatus 1 of the first embodiment includes a supply passage 10 forming a flow path for a gas containing CNTs, and a collection member 20 downstream of the supply passage 10.
- a supporting portion 21 and the like are provided for supporting.
- a supply port 11 is provided in the supply passage 10 at a location away from the support portion 21 upward. As indicated by an arrow A in FIG. 1, a gas containing CNT synthesized in a gas phase by, for example, a floating catalyst method is supplied from the supply port 11 to the inside of the supply passage 10 .
- the supply passage 10 constitutes a flow path through which gas containing CNTs supplied from the supply port 11 flows.
- the collection member 20 arranged on the support portion 21 provided downstream of the supply passage 10
- the CNTs contained in the gas are collected by the collection member 20. be collected.
- the collection member 20 has a porous membrane 22 and a dense membrane 23 provided on the surface of the porous membrane 22 facing the supply port 11 side.
- the porous membrane 22 is a porous filter that allows gas to pass therethrough and collects CNTs contained in the gas.
- the dense film 23 is a mask that hardly allows CNTs and gas to pass through, and is composed of, for example, a photosensitive resist or a metal thin plate.
- the dense film 23 is provided with a plurality of grooves 24 for forming a predetermined wiring pattern of CNTs. The plurality of grooves 24 penetrate through the dense film 23 in the thickness direction.
- the opening width of the plurality of grooves 24 is set to, for example, several micrometers to several tens of micrometers, and the pitch of the plurality of grooves 24 is set to, for example, several ten to several hundred micrometers.
- the pitch is shown thicker and wider than the actual one.
- the predetermined wiring pattern is described as being striped, but the wiring pattern is not limited to this.
- Various shapes such as a shape, a cross-hatched shape, and the like can be adopted.
- the surface of the dense film 23 of the collecting member 20 that faces the supply port 11 will be referred to as the "collecting surface 25 of the collecting member 20", and the plurality of grooves 24 provided in the dense film 23 will be referred to as the "collecting surface 25".
- the portion of the dense membrane 23 excluding the groove 24 is referred to as the "mask portion 26”.
- the supply passage 10 includes the above-described supply port 11, an enlarged portion 12 whose flow passage area gradually expands toward the downstream side from the supply port 11, and the downstream side of the enlarged portion 12. and a sloped portion 13 .
- the inclined portion 13 is configured such that the direction of gas flow from the supply port 11 toward the collecting member 20 is oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20 .
- the center 111 of the supply port 11 is along the longitudinal direction of the groove 24 of the collecting member 20 with respect to an imaginary line VL that includes the center of the collecting surface 25 of the collecting member 20 and is perpendicular to the collecting surface 25 . It is in a position shifted to one side of the direction. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and the position of the supply port 11 is indicated by a chain double-dashed line. Specifically, the center 111 of the supply port 11 is located at a position shifted from the outer edge 27 of the collecting member 20 to one side in the longitudinal direction of the groove 24 of the collecting member 20 .
- the channel center line CL of the inclined portion 13 is inclined to one side in the longitudinal direction of the groove 24 of the collecting member 20 with respect to the virtual line VL shown in FIG.
- the gas flow direction of the inclined portion 13 is oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20 .
- the inclined portion 13 in the vicinity of immediately above the collecting surface 25 of the collecting member 20 , has an elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collecting surface 25 smaller than 90° and 0°. It is configured to be in the range of ° or more.
- the inclined portion 13 is configured such that the elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collecting surface 25 in the vicinity of the collecting surface 25 of the collecting member 20 is in the range of 25° or less to 0° or more. It is more preferable to be This makes it possible to increase the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20 with respect to the longitudinal direction of the grooves 24 .
- the vicinity directly above the collecting surface 25 of the collecting member 20 is, for example, set at a position about 1 mm away from the collecting surface 25 of the collecting member 20 toward the supply port 11 .
- the inclined portion 13 has an incident angle ⁇ 2 of the flow velocity vector of the gas with respect to the longitudinal direction of the grooves 24 of the collecting member 20 in a plan view in the vicinity of the collection surface 25 of the collecting member 20 . is less than 90° and greater than -90°. Note that the inclined portion 13 is such that the incident angle ⁇ 2 of the gas flow velocity vector with respect to the longitudinal direction of the grooves 24 of the collecting member 20 is from 15° or less to ⁇ 15° in a plan view in the vicinity of the collection surface 25 of the collection member 20 . It is more preferable to be configured to be in the range of ° or more.
- planar view refers to a state in which the collection surface 25 is viewed from the supply port 11 side perpendicular to the collection surface 25 .
- the inclined portion 13 has an elevation angle ⁇ 1 of 25° or less to 0° or more with respect to the collection surface 25 of the collection member 20. configured to range.
- the channel center line CL of the inclined portion 13 is perpendicular to the collecting surface 25 of the collecting member 20 and parallel to the longitudinal direction of the groove 24 with respect to the virtual plane VS. are configured to be substantially parallel to each other. Note that “substantially parallel” includes not only the state in which the flow channel center line CL of the inclined portion 13 and the virtual plane VS are parallel, but also a positional deviation within a predetermined range (for example, about ⁇ 5°) due to manufacturing tolerances and the like.
- step S10 the collecting member 20 having the above-described porous membrane 22 and dense membrane 23 is prepared.
- step S ⁇ b>20 the collecting member 20 is installed on the support portion 21 of the manufacturing apparatus 1 .
- the direction in which the collecting member 20 is installed on the support portion 21 is such that the supply port 11 of the supply passage 10 is on one side in the longitudinal direction of the groove 24 of the collecting member 20 .
- step S30 a gas containing CNTs is supplied from the supply port 11 to the inside of the supply passage 10. Then, the CNT-containing gas flows through the enlarged portion 12 and the inclined portion 13 and passes through the collecting member 20 .
- the gas containing CNTs passes through the collecting member 20 , the CNTs contained in the gas are collected by the collecting member 20 .
- the gas flow direction from the supply port 11 toward the collecting member 20 at the inclined portion 13 is oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20.
- the CNTs collected in 24 have a high degree of orientation with respect to the longitudinal direction of groove 24 .
- step S40 the collecting member 20 is removed from the supporting portion 21 after a predetermined time has elapsed since the supply of the gas containing CNTs was started.
- step S ⁇ b>50 a transparent base material (not shown) is placed on the surface of the collecting member 20 on the side of the dense film 23 where the CNTs are collected, and the transparent base material is pressed against the collecting member 20 .
- the transparent substrate it is possible to use a resin material such as PET (polyethylene terephthalate) or an inorganic material such as quartz glass. After that, the CNTs are transferred to the transparent base material by removing the collection member 20 from the transparent base material. As a result, a wiring pattern of CNTs is formed on one surface of the transparent substrate.
- step S60 the transparent substrate on which the CNT wiring pattern is formed is dipped in a solution containing a dopant substance, or a solution containing a dopant substance is applied to the transparent substrate and then dried. Thus, a transparent conductive film is completed.
- the supply passage 10 has the supply port 11 and the enlarged portion 12 and does not have the inclined portion 13 .
- the center 111 of the supply port 11 is located on a virtual line VL that includes the center of the collecting surface 25 of the collecting member 20 and is perpendicular to the collecting surface 25 . Therefore, in the manufacturing apparatus 100 of the comparative example, the flow direction of the gas flowing through the expanded portion 12 from the supply port 11 toward the collecting member 20 is substantially perpendicular to the collecting surface 25 of the collecting member 20 .
- FIG. 5A shows a plan view of the vicinity directly above the collecting surface 25 of the collecting member 20 in the manufacturing apparatus 100 of the comparative example.
- FIG. 5A shows the direction of the airflow flowing into the groove 24 from the vicinity directly above the mask portion 26 and the CNTs moving following the airflow.
- the airflow from the mask portion 26 toward the grooves 24 flows into the grooves 24 in a direction perpendicular to the longitudinal direction of the grooves 24 and passes through the porous membrane 22 exposed in the grooves 24 .
- the CNTs that move following the airflow enter the grooves 24 in a direction perpendicular to the longitudinal direction of the grooves 24 in the same manner as the airflow, and are captured by the porous membrane 22 exposed in the grooves 24. . Therefore, in the manufacturing apparatus 100 of the comparative example, the orientation of the CNTs captured by the porous film 22 exposed in the grooves 24 of the capturing member 20 is random.
- FIG. 5B shows a plan view of the vicinity directly above the collecting surface 25 of the collecting member 20 in the manufacturing apparatus 1 of the first embodiment.
- FIG. 5B also shows the direction of the airflow flowing into the groove 24 from the vicinity directly above the mask portion 26 and the CNTs moving following the airflow.
- the airflow from the mask portion 26 toward the grooves 24 flows into the grooves 24 obliquely to the longitudinal direction of the grooves 24 and passes through the porous membrane 22 exposed in the grooves 24. .
- the CNTs moving following the airflow enter the grooves 24 obliquely to the longitudinal direction of the grooves 24 in the same manner as the airflow, and are collected by the porous membrane 22 exposed in the grooves 24 . Therefore, in the manufacturing apparatus 1 of the first embodiment, the orientation of the CNTs collected in the porous film 22 exposed in the grooves 24 of the collecting member 20 is relatively uniform in the longitudinal direction of the grooves 24 (that is, the CNTs is higher than in the comparative example).
- FIG. 6A schematically shows CNTs forming a wiring pattern of a transparent conductive film to which CNTs collected by the manufacturing apparatus 100 of the comparative example are transferred.
- the orientation of the CNTs forming the wiring pattern of the transparent conductive film is in a random state. Therefore, this transparent conductive film has a problem that the electrical resistance value increases because the number of contacts between CNTs constituting the wiring pattern increases and the contact resistance increases.
- FIG. 6B schematically shows CNTs constituting the wiring pattern of the transparent conductive film to which the CNTs collected by the manufacturing apparatus 1 of the first embodiment are transferred.
- the orientation of the CNTs forming the wiring pattern of the transparent conductive film is relatively uniform in the longitudinal direction of the wiring pattern. Therefore, in this transparent conductive film, the number of contacts between CNTs forming the wiring pattern is small, and the contact resistance is small, so that the electrical resistance value can be lowered.
- FIG. 7 also shows that CNTs are collected in the grooves 24 of the collecting member 20 when a gas containing CNTs is supplied from one side in the longitudinal direction of the grooves 24 as in the manufacturing apparatus 1 of the first embodiment.
- FIG. 10 is an explanatory diagram for explaining the state of Note that FIG. 7 also shows a plan view of the vicinity directly above the collecting surface 25 of the collecting member 20, as in FIG. 5B.
- Broken lines F1 to F8 in FIG. 7 indicate air currents that flow into the grooves 24 from the vicinity of the mask portion 26 directly above.
- dashed lines F1 to F8 the incident angle of the airflow flowing into the groove 24 from a location far from the groove 24 is greater than the incident angle of the airflow flowing into the groove 24 from a location close to the groove 24 with respect to the longitudinal direction of the groove 24. becomes larger. Therefore, the CNTs moving following the airflow flowing into the grooves 24 from a location far from the grooves 24 are more likely to be collected in the grooves 24 than the CNTs moving following the airflows flowing into the grooves 24 from a location closer to the grooves 24 .
- the angle of the CNTs at this time is large with respect to the longitudinal direction of the grooves 24 .
- the CNTs that move following the airflow flowing into the grooves 24 from a location near the grooves 24 are caught by the grooves 24 more than the CNTs that move following the airflow flowing into the grooves 24 from a location far from the grooves 24 .
- the angle of the CNTs when gathered is small with respect to the longitudinal direction of the grooves 24 . Therefore, by narrowing the pitch of the plurality of grooves 24 of the collecting member 20 as much as possible, the airflow flowing into the grooves 24 from a location near the grooves 24 is increased, and the degree of orientation of the CNTs collected in the grooves 24 is increased. It is possible to
- FIG. 9 is a graph showing the results of an experiment conducted by the inventors regarding the relationship between the degree of orientation of CNTs forming the wiring pattern of the transparent conductive film and the electrical resistance reduction rate of the transparent conductive film. As shown in FIG. 9, by increasing the degree of orientation from about 7% (that is, no orientation) to about 24%, the resistance reduction rate of the transparent conductive film becomes 20% or more. Therefore, in the transparent conductive film manufactured using the manufacturing apparatus 1 of the first embodiment, it is possible to reduce the electrical resistance value by increasing the degree of orientation of the CNTs forming the wiring pattern.
- the transparent conductive film manufacturing apparatus 1 and the manufacturing method according to the first embodiment described above have the following effects.
- the inclined portion 13 of the supply passage 10 is arranged so that the flow direction of the gas from the supply port 11 toward the collection member 20 is oriented with respect to the longitudinal direction of the groove 24 of the collection member 20. are configured to be slanted or parallel to each other. According to this, the CNTs contained in the gas flow with their orientation aligned in the flow direction of the gas. Therefore, by providing the inclined portion 13 in the supply passage 10, the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20 can be increased.
- the transparent conductive film obtained by transferring the CNTs collected by the collecting member 20 to a transparent base material such as a transparent film the number of contacts between the CNTs constituting the wiring pattern is reduced, and the contact resistance is reduced. resistance can be lowered.
- the center 111 of the supply port 11 is located on the trapping member 20 with respect to the virtual line VL that includes the center of the trapping surface 25 of the trapping member 20 and is perpendicular to the trapping surface 25 . is shifted to one side of the groove 24 in the longitudinal direction. According to this, the gas flow direction of the supply passage 10 can be made oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20 .
- the inclined portion 13 has an elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collection surface 25 in the vicinity of immediately above the collection surface 25 of the collection member 20 smaller than 90° and 0 It is configured to be in the range of ° or more. According to this, the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20 can be increased.
- the elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collecting surface 25 is more preferably in the range of 25° or less to 0° or more.
- the inclined portion 13 is such that the gas flow velocity vector in the longitudinal direction of the grooves 24 of the collecting member 20 changes in a plan view in the vicinity of immediately above the collecting surface 25 of the collecting member 20.
- the incident angle ⁇ 2 is configured to fall within a range of less than 90° and greater than -90°. According to this, the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20 can be increased.
- the incident angle ⁇ 2 of the gas flow velocity vector with respect to the longitudinal direction of the grooves 24 of the collection member 20 ranges from 15° or less to -15° or more. more preferred.
- a transparent conductive film according to the method for manufacturing a transparent conductive film according to the first embodiment, by making the flow direction of the gas flowing through the inclined portion 13 oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20, The degree of orientation of the CNTs trapped in the grooves 24 of the trapping member 20 can be increased. Therefore, a transparent conductive film in which the CNTs collected by the collecting member 20 are transferred to a transparent base material such as a transparent film has fewer contacts between the CNTs that make up the wiring pattern, resulting in a lower contact resistance. can lower the value.
- the manufacturing apparatus 1 of the second embodiment includes a supply passage 10, a support portion 21, a guide plate 14, an exhaust passage 30, a partition plate 31, a flow control valve 32, a collective space 33, and the like.
- letters a to c are added to the end of the reference numerals of the plurality of partition plates 31 shown in cross section. 11 is a cross-sectional view taken along line XI-XI of FIG. 10, but the guide plate 14 is omitted.
- FIG. 11 among the plurality of partition plates 31 arranged on the downstream side of the collecting member 20, the positions of the ends on the collecting member 20 side are indicated by dashed lines or dashed lines with reference numerals 31a to 31d. there is In the following description, for convenience of description, the symbols of the partition plates 31 may be suffixed with letters a to d.
- the configuration of the supply passage 10, the support portion 21, and the collection member 20 supported by the support portion 21 is the same as that described in the first embodiment. omitted.
- a plurality of guide plates 14 are provided inside the supply passage 10 .
- the guide plate 14 is configured so that the direction of gas flow from the supply port 11 toward the collecting member 20 is oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20 .
- a predetermined gap S ⁇ b>1 is provided between the end portion of the guide plate 14 on the side of the collecting member 20 and the collecting surface 25 of the collecting member 20 .
- the predetermined gap S1 is set to 1 mm or more, for example.
- the guide plate 14 is configured to be able to be changed to any angle including parallel to the channel center line CL of the inclined portion 13 .
- the guide plate 14 can rotate at any angle around a rotation axis (not shown) provided near the end of the guide plate 14 on the collecting member 20 side.
- the guide plate 14 is provided so as to be substantially perpendicular to a virtual plane VS perpendicular to the collecting surface 25 of the collecting member 20 and parallel to the longitudinal direction of the groove 24 . Note that the virtual plane VS is shown in FIG.
- substantially perpendicular includes not only the state in which the guide plate 14 is perpendicular to the virtual plane VS, but also a positional deviation within a predetermined range (for example, about ⁇ 5°) due to manufacturing tolerances and the like.
- the guide plate 14 is configured so that the elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collection surface 25 is less than 90° and equal to or greater than 0° in the vicinity of the collection surface 25 of the collection member 20. .
- the guide plate 14 is configured so that the elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collecting surface 25 in the vicinity of the collecting surface 25 of the collecting member 20 is in the range of 25° or less to 0° or more. It is more preferable to be Specifically, in the second embodiment, the guide plate 14 is configured such that the elevation angle ⁇ 1 with respect to the collecting surface 25 of the collecting member 20 is in the range of 25° or less to 0° or more.
- the exhaust passage 30 is provided on the side opposite to the supply passage 10 with respect to the collection member 20 (that is, the downstream side of the collection member 20), and is a passage for discharging the gas that has passed through the collection member 20.
- a plurality of partition plates 31 are provided in the exhaust passage 30 . Therefore, a plurality of exhaust passages 30 partitioned by a plurality of partition plates 31 are formed downstream of the collecting member 20 .
- the plurality of partition plates 31 are provided substantially parallel to the channel center line CL of the inclined portion 13 .
- substantially parallel includes not only a state in which the channel center line CL of the inclined portion 13 and the partition plate 31 are parallel, but also a positional deviation within a predetermined range (for example, about ⁇ 5°) due to manufacturing tolerances and the like.
- 10 are substantially perpendicular to a virtual plane VS perpendicular to the collecting surface 25 of the collecting member 20 and parallel to the longitudinal direction of the groove 24. is configured to be Note that the virtual plane VS is shown in FIG.
- substantially perpendicular includes not only a state in which the partition plates 31a to 31c are perpendicular to the virtual plane VS, but also a positional deviation within a predetermined range (for example, about ⁇ 5°) due to manufacturing tolerances and the like.
- the plurality of partition plates 31 may include those arranged substantially parallel to the virtual plane VS, such as a partition plate 31d indicated by a dashed line in FIG. 11 . 10, the end portion of the partition plate 31d on the side of the collecting member 20 is denoted by 31d.
- the length L1 of the portions of the partition plates 31a to 31c that are provided substantially parallel to the channel center line CL of the inclined portion 13 is set to, for example, 150 mm or more.
- a predetermined gap S2 is provided between the end of each of the partition plates 31a to 31d on the side of the collecting member 20 and the surface of the collecting member 20 on the downstream side.
- the predetermined gap S2 is set to 1 mm or more, for example.
- FIG. 11 of the partition plate 31 arranged on the downstream side of the collecting member 20, the positions of the ends of the collecting member 20 side are indicated by dashed lines or dotted lines with reference numerals 31a to 31d. ing. The areas divided by the dashed lines and the dashed-dotted lines are called divided areas. Note that eight divided regions are formed in the second embodiment.
- a plurality of exhaust passages 30 shown in FIG. 10 are provided for each divided region obtained by dividing the collecting member 20 into a plurality of regions.
- a collection space 33 is provided in which the gases that have flowed through the plurality of exhaust passages 30 are collected.
- a fan (not shown) may be provided on the downstream side of the collective space 33 .
- a negative pressure is generated in the gathering space 33 and the plurality of exhaust passages 30 by driving the fan.
- the gathering space 33 can equalize the negative pressures of the plurality of exhaust passages 30 .
- a plurality of flow control valves 32 for controlling the flow rate of gas flowing through each exhaust passage 30 are provided in the middle of the plurality of exhaust passages 30 .
- the valve opening degrees of the plurality of flow control valves 32 By adjusting the valve opening degrees of the plurality of flow control valves 32, the flow rate of the gas flowing through the plurality of exhaust passages 30 can be controlled.
- step S10 the collecting member 20 having the porous membrane 22 and the dense membrane 23 is prepared.
- step S ⁇ b>20 the collecting member 20 is installed on the support portion 21 of the manufacturing apparatus 1 .
- the direction in which the collecting member 20 is installed on the support portion 21 is such that the supply port 11 of the supply passage 10 is on one side in the longitudinal direction of the groove 24 of the collecting member 20 .
- step S25 the angle of the guide plate 14 provided inside the supply passage 10 is adjusted.
- the guide plate 14 is adjusted so that the elevation angle ⁇ 1 of the flow velocity vector of the gas flowing from the inclined portion 13 to the collecting member 20 is an appropriate angle. Also, at this time, the degree of opening of the flow control valve 32 provided in each exhaust passage 30 may be adjusted.
- step S30 a gas containing CNTs is supplied from the supply port 11 to the inside of the supply passage 10. Then, the CNT-containing gas flows along the guide plate 14 in the inclined portion 13 and passes through the collecting member 20 . Then, when the gas containing CNTs passes through the collecting member 20 , the CNTs contained in the gas are collected by the collecting member 20 .
- step S35 the gas that has passed through the collecting member 20 is discharged through the plurality of exhaust passages 30.
- steps S30 and S35 are executed simultaneously.
- the in-plane uniformity of the amount of CNTs collected on the collecting surface 25 of the collecting member 20 can be improved. can be improved.
- step S40 the collecting member 20 is removed from the supporting portion 21 after a predetermined time has elapsed since the supply of the gas containing CNTs was started.
- step S ⁇ b>50 a transparent base material (not shown) is placed on the surface of the collecting member 20 on the side of the dense film 23 where the CNTs are collected, and the transparent base material is pressed against the collecting member 20 . After that, the CNTs are transferred to the transparent base material by removing the collection member 20 from the transparent base material. As a result, a wiring pattern of CNTs is formed on one surface of the transparent substrate.
- step S60 the transparent substrate on which the CNT wiring pattern is formed is dipped in a solution containing a dopant substance, or a solution containing a dopant substance is applied to the transparent substrate and then dried. Thus, a transparent conductive film is completed.
- the transparent conductive film manufacturing apparatus 1 and manufacturing method according to the second embodiment described above have the following effects.
- the transparent conductive film manufacturing apparatus 1 includes a guide plate 14 inside the inclined portion 13 .
- the guide plate 14 can make the direction of gas flow from the supply port 11 toward the collecting member 20 oblique or parallel to the longitudinal direction of the grooves 24 of the dense membrane 23 .
- the direction of gas flow is controlled by the guide plate 14 to increase the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20, and the CNTs are collected on the collecting surface 25 of the collecting member 20. In-plane uniformity of orientation can be improved. Therefore, a transparent conductive film in which the CNTs collected by the collecting member 20 are transferred to a transparent base material such as a transparent film can reduce the electric resistance value.
- the guide plate 14 is provided so that the elevation angle ⁇ 1 with respect to the collection surface 25 of the collection member 20 is less than 90° and equal to or greater than 0°, and , is provided at a distance of 1 mm or more from the collecting surface 25 of the collecting member 20 . According to this, the degree of orientation of the CNTs collected in the grooves 24 of the collecting member 20 can be increased.
- the elevation angle ⁇ 1 of the flow velocity vector of the gas with respect to the collecting surface 25 is more preferably in the range of 25° or less to 0° or more.
- the CNTs can be collected by causing the gas to flow also to a portion of the collecting surface 25 corresponding to the lower end of the guide plate 14. .
- the guide plate 14 is configured to be changeable to any angle including being parallel to the channel center line CL of the inclined portion 13 . According to this, it is possible to adjust the direction of the gas flowing through the inclined portion 13 . Therefore, the degree of orientation of the CNTs trapped in the grooves 24 of the trapping member 20 can be increased, and the in-plane uniformity of the orientation of the CNTs on the trapping surface 25 of the trapping member 20 can be improved.
- the transparent conductive film manufacturing apparatus 1 includes a plurality of exhaust passages 30 downstream of the collecting member 20 .
- a plurality of exhaust passages 30 are provided for each divided area obtained by dividing the collecting surface 25 of the collecting member 20 into a plurality of areas. According to this, the in-plane uniformity of the amount of CNTs trapped on the trapping surface 25 of the trapping member 20 can be improved. Therefore, a transparent conductive film in which the CNTs collected by the collecting member 20 are transferred to a transparent base material such as a transparent film has reduced variations in the amount of CNTs forming the wiring pattern, and can reduce the electric resistance value. can.
- the transparent conductive film manufacturing apparatus 1 is equipped with a flow control valve 32 in the middle of each exhaust passage 30 . According to this, by controlling the flow rate of the gas flowing through each exhaust passage 30 by the flow control valve 32, the in-plane uniformity of the amount of CNTs collected on the collection surface 25 of the collection member 20 can be improved. can.
- the apparatus 1 for manufacturing a transparent conductive film includes, on the downstream side of the plurality of exhaust passages 30, a collecting space 33 for collecting the gases that have flowed through the plurality of exhaust passages 30 respectively. According to this, when a fan is provided on the downstream side of the collection space 33, it is possible to equalize the negative pressure of the plurality of exhaust passages 30, and the amount of CNTs collected on the collection surface 25 of the collection member 20 is reduced. can improve the in-plane uniformity.
- the transparent conductive film manufacturing apparatus 1 includes a partition plate 31 provided between the plurality of exhaust passages 30 .
- the partition plate 31 is provided substantially parallel to the channel center line CL of the inclined portion 13 and is provided at a distance of 1 mm or more from the collecting member 20 .
- the flow direction of the gas flowing from the supply passage 10 through the collecting member 20 and the plurality of exhaust passages 30 can be made oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20. It becomes possible. Therefore, the degree of orientation of the CNTs trapped in the grooves 24 of the trapping member 20 can be increased, and the in-plane uniformity of the orientation of the CNTs on the trapping surface 25 of the trapping member 20 can be improved.
- by setting a distance of 1 mm or more between the collecting member 20 and the partition plate 31 it is possible to collect CNTs by causing the gas to flow also to a portion of the collection surface 25 corresponding to the upper end of the partition plate 31. .
- the length L1 of the portion of the partition plate 31 that is provided substantially parallel to the channel center line CL of the inclined portion 13 is set to, for example, 150 mm or more. It is According to this, the flow direction of the gas flowing from the supply passage 10 through the collecting member 20 and the plurality of exhaust passages 30 can be made oblique or parallel to the longitudinal direction of the grooves 24 of the collecting member 20. It becomes possible. Therefore, the degree of orientation of the CNTs trapped in the grooves 24 of the trapping member 20 can be increased, and the in-plane uniformity of the orientation of the CNTs on the trapping surface 25 of the trapping member 20 can be improved.
- the CNT-containing gas is caused to flow along the guide plate 14 to the collecting member 20 so that the gas is collected in the grooves 24 of the collecting member 20. It is possible to increase the degree of orientation of the CNTs. At the same time, the in-plane uniformity of CNT orientation on the collecting surface 25 of the collecting member 20 can be improved. Therefore, a transparent conductive film in which the CNTs collected by the collecting member 20 are transferred to a transparent base material such as a transparent film can reduce the electric resistance value.
- the gas that has passed through the collecting member 20 is discharged from the plurality of exhaust passages 30, so that the collecting surface 25 of the collecting member 20 is can improve the in-plane uniformity of the amount of CNTs captured. Therefore, a transparent conductive film in which the CNTs collected by the collecting member 20 are transferred to a transparent base material such as a transparent film has reduced variations in the amount of CNTs forming the wiring pattern, and can reduce the electric resistance value. can.
- a plurality of guide plates 14 are arranged inside the supply passage 10, but the number of guide plates 14 is not limited to this, and may be one.
- a guide plate 14 may be provided in the supply passage 10 of the manufacturing apparatus 1 described in the first embodiment or the comparative example.
- the guide plate 14 may be removed from the manufacturing apparatus 1 described in the second embodiment.
- a plurality of exhaust passages 30 are provided on the downstream side of the collecting member 20, but the present invention is not limited to this, and the exhaust passage 30 may be one passage.
- one or a plurality of exhaust passages 30 may be provided in the manufacturing apparatus 1 described in the first embodiment or the comparative example.
- the exhaust passage 30 may be removed from the manufacturing apparatus 1 described in the second embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Electric Cables (AREA)
- Non-Insulated Conductors (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
透明導電膜の製造装置(1)は、供給通路(10)および支持部(21)を備える。供給通路(10)は、CNTを含むガスが供給される供給口(11)を有し、その供給口(11)から供給されるCNTを含むガスが流れる流路を構成する。支持部(21)は、供給通路(10)の下流側で捕集部材(20)を支持する。捕集部材(20)は、ガスに含まれるCNTを捕集する多孔質膜(22)、および、その多孔質膜(22)のうち供給口(11)側の面にCNTによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する。供給通路(10)は、供給口(11)から捕集部材(20)に向かうガスの流れ方向が、緻密膜(23)の有する溝(24)の長手方向に対して斜め又は平行になるように構成された傾斜部(13)を有している。
Description
本出願は、2021年4月1日に出願された日本特許出願番号2021-62596号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、透明導電膜の製造装置および製造方法に関するものである。
従来、カーボンナノチューブを用いた透明導電膜が知られている。透明導電膜は、例えば、カメラ、LiDAR、ミリ波などを用いた車用センサの機能またはフロントガラスの機能を確保するための透明ヒータとして使用することが可能である。具体的には、透明ヒータとして使用される透明導電膜は、車用センサまたはフロントガラスに着氷や曇り等が発生する場合、その車用センサまたはフロントガラスを温めることで、着氷や曇りを除去する役割を果たすものである。なお、以下の説明では、カーボンナノチューブを「CNT」と表記する。
特許文献1には、CNTによる格子状の配線パターンを透明基材に設けることで構成される透明導電膜の製造方法が開示されている。この製造方法は、まず、CNTによる配線パターンを形成するための溝(特許文献1では開口部)を有する感光性レジスト膜を多孔質フィルタ上に設けることで捕集部材を形成する。次に、化学気相成長法などにより気相中で合成したCNTを、その捕集部材により捕集する。そして、捕集部材で捕集したCNTを、透明フィルムなどの透明基材に転写し、透明導電膜を形成する。
特許文献1には、CNTによる格子状の配線パターンを透明基材に設けることで構成される透明導電膜の製造方法が開示されている。この製造方法は、まず、CNTによる配線パターンを形成するための溝(特許文献1では開口部)を有する感光性レジスト膜を多孔質フィルタ上に設けることで捕集部材を形成する。次に、化学気相成長法などにより気相中で合成したCNTを、その捕集部材により捕集する。そして、捕集部材で捕集したCNTを、透明フィルムなどの透明基材に転写し、透明導電膜を形成する。
しかしながら、特許文献1に記載の製造方法では、配線パターンを構成するCNTが、配線パターンの延びる方向に対してランダムな方向を向くか、または、その配線パターンの延びる方向に対して垂直方向を向くことが発明者らの検討により明らかとなっている。そのため、特許文献1に記載の製造方法で製造された透明導電膜は、電気抵抗値が高く、用途が限られてしまうという問題がある。
本開示は、CNTを用いた透明導電膜の電気抵抗値を下げることを可能とした製造装置および製造方法を提供することを目的とする。
本開示の1つの観点によれば、透明導電膜の製造装置において、供給通路および支持部を備える。供給通路は、CNTを含むガスが供給される供給口を有し、前記供給口から供給されるカーボンナノチューブを含むガスが流れる流路を構成する。支持部は、ガスに含まれるCNTを捕集する多孔質膜、および、その多孔質膜のうち供給口側の面にCNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を供給通路の下流側で支持する。供給通路は、供給口から捕集部材に向かうガスの流れ方向が、緻密膜の有する溝の長手方向に対して斜め又は平行になるように構成された傾斜部を有している。
これによれば、ガスに含まれるCNTは、その配向がガスの流れ方向に揃った状態で流れる。そのため、傾斜部を流れるガスの流れ方向を緻密膜の有する溝の長手方向に対して斜め又は平行にすることで、その溝に捕集されるCNTにおいて溝の長手方向の配向度を高くすることができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、配線パターンを構成するCNT同士の接点が少なくなり接点抵抗が小さくなるので、電気抵抗値を下げることができる。
また、別の観点によれば、透明導電膜の製造装置において、供給通路、支持部およびガイド板を備える。供給通路は、CNTを含むガスが供給される供給口を有し、供給口から供給されるCNTを含むガスが流れる流路を構成する。支持部は、ガスに含まれるCNTを捕集する多孔質膜、および、多孔質膜のうち供給口側の面にCNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を供給通路の下流側で支持する。ガイド板は、供給通路に設けられ、供給口から捕集部材に向かうガスの流れ方向を、緻密膜の有する溝の長手方向に対して斜め又は平行にする。
これによれば、供給通路に設けられたガイド板により、緻密膜の有する溝に捕集されるCNTにおいて溝の長手方向の配向度を高くすると共に、捕集部材の捕集面においてCNTの配向の面内均一性を向上することができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、電気抵抗値を下げることができる。
さらに別の観点によれば、透明導電膜の製造装置において、供給通路、支持部および複数の排気通路を備える。供給通路は、CNTを含むガスが供給される供給口を有し、供給口から供給されるCNTを含むガスが流れる流路を構成する。支持部は、ガスに含まれるCNTを捕集する多孔質膜、および、多孔質膜のうち供給口側の面にCNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を供給通路の下流側で支持する。複数の排気通路は、捕集部材に対して供給通路とは反対側に設けられ、捕集部材を通過したガスを排出する。そして、複数の排気通路は、捕集部材を複数の領域に分割した分割領域ごとに設けられている。
これによれば、捕集部材の捕集面においてCNTの捕集量の面内均一性を向上することができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、配線パターンを構成するCNTの量のばらつきが低減され、電気抵抗値を下げることができる。
また別の観点は、透明導電膜の製造方法に関する開示である。この製造方法は、次の工程を含む。ガスに含まれるCNTを捕集する多孔質膜、および、CNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を用意すること。CNTを含むガスが供給される供給口を有する供給通路の下流側に設けられた支持部に捕集部材を設置すること。供給口から捕集部材に向かうガスの流れ方向が緻密膜の有する溝の長手方向に対して斜め又は平行になるように構成されている傾斜部に対し、供給口からCNTを含むガスを供給すること。捕集部材により捕集されたCNTを透明基材に転写し、透明導電膜を形成すること。
これによれば、傾斜部を流れるガスの流れ方向を緻密膜の有する溝の長手方向に対して斜め又は平行にすることで、その溝に捕集されるCNTにおいて溝の長手方向の配向度を高くすることができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、配線パターンを構成するCNT同士の接点が少なくなり接点抵抗が小さくなるので、電気抵抗値を下げることができる。
さらに別の観点も、透明導電膜の製造方法に関する開示である。この製造方法は、次の工程を含む。ガスに含まれるCNTを捕集する多孔質膜、および、CNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を用意すること。CNTを含むガスが供給される供給口を有する供給通路の下流側に設けられた支持部に捕集部材を設置すること。捕集部材のうち供給口側の捕集面に対するガスの入射角を、緻密膜の有する溝の長手方向に対して平行又は斜めにするように供給通路に設けられたガイド板に沿って、供給口からCNTを含むガスを供給すること。捕集部材により捕集されたCNTを透明基材に転写し、透明導電膜を形成すること。
これによれば、供給通路に設けられたガイド板により、緻密膜の有する溝に捕集されるCNTにおいて溝の長手方向の配向度を高くすると共に、捕集部材の捕集面においてCNTの配向の面内均一性を向上することができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、電気抵抗値を下げることができる。
また別の観点も、透明導電膜の製造方法に関する開示である。この製造方法は、次の工程を含む。ガスに含まれるCNTを捕集する多孔質膜、および、CNTによる配線パターンを形成するための溝が設けられた緻密膜を有する捕集部材を用意すること。CNTを含むガスが供給される供給口を有する供給通路の下流側に設けられた支持部に捕集部材を設置すること。供給口からCNTを含むガスを供給すること。捕集部材を複数の領域に分割した分割領域ごとに捕集部材に対して供給通路とは反対側に設けられた複数の排気通路から、捕集部材を通過したガスを排出すること。捕集部材により捕集されたCNTを透明基材に転写し、透明導電膜を形成すること。
これによれば、捕集部材の捕集面においてCNTの捕集量の面内均一性を向上することができる。したがって、この捕集部材に捕集されたCNTを透明基材に転写した透明導電膜は、配線パターンを構成するCNTの量のばらつきが低減され、電気抵抗値を下げることができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
(第1実施形態)
第1実施形態に係る透明導電膜の製造装置および製造方法について、図面を参照しつつ説明する。第1実施形態の製造装置および製造方法により形成される透明導電膜は、薄膜状の透明基材の一方の面に、カーボンナノチューブ(以下、CNTという)により構成される所定の配線パターンを備えたものである。透明導電膜は、例えば、カメラ、LiDAR、ミリ波などを用いた車用センサの機能またはフロントガラスの機能を確保するための透明ヒータとして使用することが可能である。
第1実施形態に係る透明導電膜の製造装置および製造方法について、図面を参照しつつ説明する。第1実施形態の製造装置および製造方法により形成される透明導電膜は、薄膜状の透明基材の一方の面に、カーボンナノチューブ(以下、CNTという)により構成される所定の配線パターンを備えたものである。透明導電膜は、例えば、カメラ、LiDAR、ミリ波などを用いた車用センサの機能またはフロントガラスの機能を確保するための透明ヒータとして使用することが可能である。
図1および図2に示すように、第1実施形態の製造装置1は、CNTを含むガスが流れる流路を構成する供給通路10、および、その供給通路10の下流側で捕集部材20を支持する支持部21などを備えている。
供給通路10のうち支持部21から上方に離れた場所に供給口11が設けられている。図1の矢印Aに示すように、供給口11から供給通路10の内側に、例えば浮遊触媒法などにより気相中で合成されたCNTを含むガスが供給される。供給通路10は、供給口11から供給されるCNTを含むガスが流れる流路を構成する。供給通路10を流れるCNTを含むガスは、供給通路10の下流側に設けられた支持部21に配置される捕集部材20を通過する際、そのガスに含まれるCNTが捕集部材20により捕集される。
捕集部材20は、多孔質膜22と、その多孔質膜22のうち供給口11側を向く面に設けられる緻密膜23とを有している。多孔質膜22は、ガスを通過させると共に、そのガスに含まれるCNTを捕集することが可能な多孔質フィルタである。緻密膜23は、CNTおよびガスを殆ど通過させることの無いマスクであり、例えば感光性レジストまたは金属製の薄板などで構成されている。緻密膜23には、CNTによる所定の配線パターンを形成するための複数の溝24が設けられている。複数の溝24は、緻密膜23の厚み方向に貫通している。複数の溝24の開口幅は、例えば数μm~数十μmに設定されており、複数の溝24のピッチは、例えば数十μm~数百μmに設定されている。なお、図2では、複数の溝24の延びる向き(すなわち、溝24の長手方向)をわかり易く示すため、実際のものよりも太く、且つ、広いピッチで記載している。また、本実施形態では、所定の配線パターンをストライプ状として説明するが、これに限らず、配線パターンは、複数の溝が平行に延びる部位を有していればよく、例えば、格子状、ハッチング状、クロスハッチング状など、種々の形状を採用することができる。
以下の説明では、捕集部材20の有する緻密膜23のうち供給口11側の面を「捕集部材20の捕集面25」といい、緻密膜23に設けられた複数の溝24を「捕集部材20の溝24」といい、緻密膜23のうち溝24を除く部位を「マスク部26」という。
以下の説明では、捕集部材20の有する緻密膜23のうち供給口11側の面を「捕集部材20の捕集面25」といい、緻密膜23に設けられた複数の溝24を「捕集部材20の溝24」といい、緻密膜23のうち溝24を除く部位を「マスク部26」という。
図1に示すように、供給通路10は、上述した供給口11と、その供給口11から下流側に向かい流路面積が次第に拡大する拡大部12と、その拡大部12の下流側に設けられた傾斜部13とを有している。傾斜部13は、供給口11から捕集部材20に向かうガスの流れ方向が、捕集部材20の溝24の長手方向に対して斜め又は平行になるように構成されている。
図1に示すように、捕集部材20の捕集面25の中心を含み捕集面25に垂直な仮想線VLに対し、供給口11の中心111は、捕集部材20の溝24の長手方向の一方側にずれた位置にある。なお、図2は、図1のII-II線の断面図であるが、供給口11の位置を二点鎖線で示している。詳細には、供給口11の中心111は、捕集部材20の外縁27よりも、捕集部材20の溝24の長手方向の一方側にずれた位置にある。そのため、図1に示した仮想線VLに対し、傾斜部13の流路中心線CLは、捕集部材20の溝24の長手方向の一方側に傾斜している。これにより、傾斜部13のガスの流れ方向は、捕集部材20の溝24の長手方向に対して斜め又は平行となる。
具体的には、図1に示すように、傾斜部13は、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1が90°より小さく、0°以上の範囲になるように構成されている。なお、傾斜部13は、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1が25°以下から0°以上の範囲となるように構成されていることがより好ましい。これにより、捕集部材20の溝24に捕集されるCNTにおいて溝24の長手方向に対する配向度をより大きくすることが可能となる。なお、捕集部材20の捕集面25の直上近傍とは、例えば、捕集部材20の捕集面25から供給口11側に1mm程度離れた位置に設定される。
また、図2に示すように、傾斜部13は、捕集部材20の捕集面25の直上近傍の平面視において、捕集部材20の溝24の長手方向に対するガスの流速ベクトルの入射角θ2が90°より小さく、-90°より大きい範囲になるように構成されている。なお、傾斜部13は、捕集部材20の捕集面25の直上近傍の平面視において、捕集部材20の溝24の長手方向に対するガスの流速ベクトルの入射角θ2が15°以下から-15°以上の範囲となるように構成されていることがより好ましい。これにより、捕集部材20の溝24に捕集されるCNTにおいて溝24の長手方向に対する配向度をより大きくすることが可能となる。なお、本明細書において平面視とは、捕集面25に対して垂直方向供給口11側から捕集面25を視た状態をいう。
具体的に、第1実施形態の製造装置1において、傾斜部13は、その流路中心線CLが、捕集部材20の捕集面25に対して仰角θ1が25°以下から0°以上の範囲となるように構成されている。また、第1実施形態の製造装置1において、傾斜部13は、その流路中心線CLが、捕集部材20の捕集面25に垂直且つ溝24の長手方向に平行な仮想平面VSに対して実質的に平行となるように構成されている。なお、実質的に平行とは、傾斜部13の流路中心線CLと仮想平面VSとが平行な状態に加え、製造公差などによる所定範囲(例えば±5°程度)の位置ずれを含むものである。
次に、第1実施形態の製造装置1を用いた透明導電膜の製造方法について、図3のフローチャートを参照して説明する。
まず、ステップS10で、上述した多孔質膜22および緻密膜23を有する捕集部材20を用意する。
次に、ステップS20で、製造装置1の支持部21に捕集部材20を設置する。このとき、支持部21に捕集部材20を設置する向きは、捕集部材20の溝24の長手方向の一方側に供給通路10の供給口11があるようにする。
次に、ステップS20で、製造装置1の支持部21に捕集部材20を設置する。このとき、支持部21に捕集部材20を設置する向きは、捕集部材20の溝24の長手方向の一方側に供給通路10の供給口11があるようにする。
続いて、ステップS30で、供給口11から供給通路10の内側にCNTを含むガスを供給する。そうすると、CNTを含むガスは、拡大部12および傾斜部13を流れて捕集部材20を通過する。CNTを含むガスが捕集部材20を通過する際、ガスに含まれるCNTが捕集部材20により捕集される。本実施形態では、傾斜部13において供給口11から捕集部材20に向かうガスの流れ方向が捕集部材20の溝24の長手方向に対して斜め又は平行となるので、捕集部材20の溝24に捕集されるCNTは、溝24の長手方向に対する配向度が大きいものとなる。
次に、ステップS40で、CNTを含むガスの供給開始から所定時間が経過した後、支持部21から捕集部材20を取り外す。
続いて、ステップS50で、捕集部材20のうちCNTが捕集された緻密膜23側の面に図示しない透明基材を配置し、透明基材を捕集部材20に押し当てる。なお、透明基材として、PET(ポリエチレンテレフタラート)などの樹脂材料または石英ガラスなどの無機材料を用いることが可能である。その後、その透明基材から捕集部材20を取り外すことで、透明基材にCNTが転写される。これにより、透明基材の一方の面にCNTによる配線パターンが形成される。
続いて、ステップS50で、捕集部材20のうちCNTが捕集された緻密膜23側の面に図示しない透明基材を配置し、透明基材を捕集部材20に押し当てる。なお、透明基材として、PET(ポリエチレンテレフタラート)などの樹脂材料または石英ガラスなどの無機材料を用いることが可能である。その後、その透明基材から捕集部材20を取り外すことで、透明基材にCNTが転写される。これにより、透明基材の一方の面にCNTによる配線パターンが形成される。
次に、ステップS60で、CNTによる配線パターンが形成された透明基材を、ドーパント物質を含む溶液にディッピングするか、或いは、その透明基材にドーパント物質を含む溶液を塗布し、その後、乾燥させることで透明導電膜が完成する。
続いて、比較例の透明導電膜の製造装置100と、第1実施形態の透明導電膜の製造装置1とを比較しつつ、透明導電膜におけるCNTの配向度と電気抵抗値との関係について説明する。
図4に示すように、比較例の透明導電膜の製造装置100は、供給通路10が供給口11と拡大部12を有しており、傾斜部13を有していない。供給口11の中心111は、捕集部材20の捕集面25の中心を含み捕集面25に垂直な仮想線VL上に位置している。そのため、比較例の製造装置100では、供給口11から捕集部材20に向かい拡大部12を流れるガスの流れ方向が、捕集部材20の捕集面25に対して略垂直になる。
図5Aは、比較例の製造装置100において、捕集部材20の捕集面25の直上近傍の平面視を示したものである。図5Aでは、マスク部26の直上近傍から溝24に流れ込む気流の方向と、その気流に追従して移動するCNTを示している。比較例の製造装置100では、マスク部26から溝24に向かう気流は、溝24の長手方向に対して垂直な方向から溝24に流れ込み、その溝24に露出する多孔質膜22を通過する。このとき、その気流に追従して移動するCNTは、気流と同様に溝24の長手方向に対して垂直な方向から溝24に入り込み、その溝24に露出する多孔質膜22に捕集される。そのため、比較例の製造装置100では、捕集部材20の溝24に露出する多孔質膜22に捕集されるCNTの配向はランダムな状態となる。
それに対し、図5Bは、第1実施形態の製造装置1において、捕集部材20の捕集面25の直上近傍の平面視を示したものである。図5Bでも、マスク部26の直上近傍から溝24に流れ込む気流の方向と、その気流に追従して移動するCNTを示している。第1実施形態の製造装置1では、マスク部26から溝24に向かう気流は、溝24の長手方向に対して斜め方向から溝24に流れ込み、その溝24に露出する多孔質膜22を通過する。このとき、その気流に追従して移動するCNTは、気流と同様に溝24の長手方向に対して斜め方向から溝24に入り込み、その溝24に露出する多孔質膜22に捕集される。そのため、第1実施形態の製造装置1では、捕集部材20の溝24に露出する多孔質膜22に捕集されるCNTの配向が溝24の長手方向に比較的揃った状態(すなわち、CNTの配向度が比較例に比べて高い状態)となる。
図6Aは、比較例の製造装置100により捕集されたCNTを転写した透明導電膜の配線パターンを構成するCNTを模式的に示したものである。図6Aに示すように、比較例の製造装置100を使用した場合、透明導電膜の配線パターンを構成するCNTの配向はランダムな状態となる。そのため、この透明導電膜は、配線パターンを構成するCNT同士の接点の数が多くなり、接点抵抗が大きくなるので、電気抵抗値が高くなるといった問題がある。
それに対し、図6Bは、第1実施形態の製造装置1により捕集されたCNTを転写した透明導電膜の配線パターンを構成するCNTを模式的に示したものである。図6Bに示すように、第1実施形態の製造装置1を使用した場合、透明導電膜の配線パターンを構成するCNTの配向は、配線パターンの長手方向に比較的揃った状態となる。そのため、この透明導電膜は、配線パターンを構成するCNT同士の接点の数が少なく、接点抵抗が小さくなるので、電気抵抗値を下げることができる。
また、図7は、第1実施形態の製造装置1のように、溝24の長手方向の一方側からCNTを含むガスを供給した場合に、捕集部材20の溝24にCNTが捕集される様子を説明するための説明図である。なお、図7も、図5Bと同じく、捕集部材20の捕集面25の直上近傍の平面視を示したものである。
図7の破線F1~F8は、マスク部26の直上近傍から溝24に流れ込む気流を示している。破線F1~F8に示すように、溝24から遠い場所から溝24に流れ込む気流の入射角は、溝24に近い場所から溝24に流れ込む気流の入射角に比べて、溝24の長手方向に対する角度が大きくなる。そのため、溝24から遠い場所から溝24に流れ込む気流に追従して移動するCNTは、溝24に近い場所から溝24に流れ込む気流に追従して移動するCNTに比べて、溝24に捕集されたときのCNTの角度が溝24の長手方向に対して大きいものとなる。その反対に、溝24に近い場所から溝24に流れ込む気流に追従して移動するCNTは、溝24から遠い場所から溝24に流れ込む気流に追従して移動するCNTに比べて、溝24に捕集されたときのCNTの角度が溝24の長手方向に対して小さいものとなる。このことから、捕集部材20の複数の溝24のピッチを出来るだけ狭くすることで、溝24に近い場所から溝24に流れ込む気流を増やし、溝24に捕集されるCNTの配向度を高くすることが可能である。
ここで、CNTの配向度の算出方法を、図8を参照しつつ説明する。
まず、走査電子顕微鏡を用いて、CNTにより構成された配線パターンの膜の様子を観察し、画像解析を行う。具体的には、走査電子顕微鏡により得られた画像を2値化し、フーリエ変換することで、図8に示すようなパワースペクトルのグラフをつくる。そして、そのグラフの半値幅Wを用いて下記の式(1)から配向度を算出する。
まず、走査電子顕微鏡を用いて、CNTにより構成された配線パターンの膜の様子を観察し、画像解析を行う。具体的には、走査電子顕微鏡により得られた画像を2値化し、フーリエ変換することで、図8に示すようなパワースペクトルのグラフをつくる。そして、そのグラフの半値幅Wを用いて下記の式(1)から配向度を算出する。
図9は、透明導電膜の配線パターンを構成するCNTの配向度と、透明導電膜の電気抵抗減少率との関係に関し、発明者らが行った実験の結果を示すグラフである。
図9に示すように、配向度を約7%(すなわち無配向)から約24%に高めることで、透明導電膜の抵抗減少率が20%以上となることがわかる。したがって、第1実施形態の製造装置1を用いて製造した透明導電膜は、配線パターンを構成するCNTの配向度を高めることで、電気抵抗値を下げることが可能である。
図9に示すように、配向度を約7%(すなわち無配向)から約24%に高めることで、透明導電膜の抵抗減少率が20%以上となることがわかる。したがって、第1実施形態の製造装置1を用いて製造した透明導電膜は、配線パターンを構成するCNTの配向度を高めることで、電気抵抗値を下げることが可能である。
以上説明した第1実施形態に係る透明導電膜の製造装置1および製造方法は、次の作用効果を奏するものである。
(1)透明導電膜の製造装置1において、供給通路10が有する傾斜部13は、供給口11から捕集部材20に向かうガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にするように構成されている。
これによれば、ガスに含まれるCNTは、その配向がガスの流れ方向に揃った状態で流れる。そのため、供給通路10に傾斜部13を設けたことで、捕集部材20の溝24に捕集されるCNTの配向度を高くすることが可能となる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNT同士の接点が少なくなり、接点抵抗が小さくなるので、電気抵抗値を下げることができる。
これによれば、ガスに含まれるCNTは、その配向がガスの流れ方向に揃った状態で流れる。そのため、供給通路10に傾斜部13を設けたことで、捕集部材20の溝24に捕集されるCNTの配向度を高くすることが可能となる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNT同士の接点が少なくなり、接点抵抗が小さくなるので、電気抵抗値を下げることができる。
(2)透明導電膜の製造装置1において、捕集部材20の捕集面25の中心を含み捕集面25に垂直な仮想線VLに対し、供給口11の中心111は、捕集部材20の溝24の長手方向の一方側にずれた位置にある。
これによれば、供給通路10のガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能である。
これによれば、供給通路10のガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能である。
(3)透明導電膜の製造装置1において、傾斜部13は、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1が90°より小さく、0°以上の範囲になるように構成されている。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1は25°以下から0°以上の範囲がより好ましい。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1は25°以下から0°以上の範囲がより好ましい。
(4)透明導電膜の製造装置1において、傾斜部13は、捕集部材20の捕集面25の直上近傍の平面視において、捕集部材20の溝24の長手方向に対するガスの流速ベクトルの入射角θ2が90°より小さく、-90°より大きい範囲になるように構成されている。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍の平面視において、捕集部材20の溝24の長手方向に対するガスの流速ベクトルの入射角θ2は15°以下から-15°以上の範囲がより好ましい。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍の平面視において、捕集部材20の溝24の長手方向に対するガスの流速ベクトルの入射角θ2は15°以下から-15°以上の範囲がより好ましい。
(5)第1実施形態に係る透明導電膜の製造方法によれば、傾斜部13を流れるガスの流れ方向を捕集部材20の溝24の長手方向に対して斜め又は平行にすることで、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNT同士の接点が少なくなり接点抵抗が小さくなるので、電気抵抗値を下げることができる。
(第2実施形態)
次に、第2実施形態に係る透明導電膜の製造装置1および製造方法について、図面を参照しつつ説明する。
次に、第2実施形態に係る透明導電膜の製造装置1および製造方法について、図面を参照しつつ説明する。
図10および図11に示すように、第2実施形態の製造装置1は、供給通路10、支持部21、ガイド板14、排気通路30、仕切板31、流量制御弁32、集合空間33などを備えている。
なお、図10では、断面で示された複数の仕切板31の符号の末尾にa~cのアルファベットを付している。また、図11は、図10のXI-XI線の断面図であるが、ガイド板14を省略している。また、図11では、捕集部材20の下流側に配置される複数の仕切板31のうち捕集部材20側の端部の位置を、符号31a~31dを付した破線または一点鎖線で示している。以下の説明では、説明の便宜上、複数の仕切板31の符号の末尾にa~dのアルファベット付すことがある。
なお、図10では、断面で示された複数の仕切板31の符号の末尾にa~cのアルファベットを付している。また、図11は、図10のXI-XI線の断面図であるが、ガイド板14を省略している。また、図11では、捕集部材20の下流側に配置される複数の仕切板31のうち捕集部材20側の端部の位置を、符号31a~31dを付した破線または一点鎖線で示している。以下の説明では、説明の便宜上、複数の仕切板31の符号の末尾にa~dのアルファベット付すことがある。
第2実施形態の製造装置1において、供給通路10、支持部21、およびその支持部21に支持される捕集部材20の構成は、第1実施形態で説明したものと同様であるので、説明を省略する。
図10に示すように、ガイド板14は、供給通路10の内側に複数個設けられている。ガイド板14は、供給口11から捕集部材20に向かうガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にするように構成されている。また、ガイド板14のうち捕集部材20側の端部と、捕集部材20の捕集面25との間には、所定の隙間S1が設けられている。その所定の隙間S1は、例えば1mm以上に設定されている。
また、ガイド板14は、傾斜部13の流路中心線CLに対して平行を含む任意の角度に変更可能に構成されている。具体的には、図10の破線141に示したように、ガイド板14は、そのガイド板14の捕集部材20側の端部付近に設けられた図示しない回転軸を中心として、任意の角度に変更可能である。また、ガイド板14は、捕集部材20の捕集面25に垂直且つ溝24の長手方向に平行な仮想平面VSに対して実質的に垂直となるように設けられている。なお、仮想平面VSは図11に示されている。また、実質的に垂直とは、ガイド板14と仮想平面VSとが垂直な状態に加え、製造公差などによる所定範囲(例えば±5°程度)の位置ずれを含むものである。
ガイド板14は、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1が90°より小さく、0°以上の範囲になるように構成されている。なお、ガイド板14は、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1が25°以下から0°以上の範囲となるように構成されていることがより好ましい。具体的に、第2実施形態では、ガイド板14は、捕集部材20の捕集面25に対して仰角θ1が25°以下から0°以上の範囲となるように構成されている。
排気通路30は、捕集部材20に対して供給通路10とは反対側(すなわち捕集部材20の下流側)に設けられ、捕集部材20を通過したガスを排出する通路である。排気通路30には、複数の仕切板31が設けられている。そのため、捕集部材20の下流側には、複数の仕切板31で仕切られた複数の排気通路30が形成されている。
複数の仕切板31は、傾斜部13の流路中心線CLに対して実質的に平行に設けられている。なお、実質的に平行とは、傾斜部13の流路中心線CLと仕切板31とが平行な状態に加え、製造公差などによる所定範囲(例えば±5°程度)の位置ずれを含むものである。また、図10の断面視で示された複数の仕切板31a~31cは、捕集部材20の捕集面25に垂直且つ溝24の長手方向に平行な仮想平面VSに対して実質的に垂直となるように構成されている。なお、仮想平面VSは図11に示されている。また、実質的に垂直とは、仕切板31a~31cと仮想平面VSとが垂直な状態に加え、製造公差などによる所定範囲(例えば±5°程度)の位置ずれを含むものである。また、複数の仕切板31は、図11に一点鎖線で示された仕切板31dのように、仮想平面VSに対して実質的に平行となるように配置されるものを含んでいてもよい。なお、図11に一点鎖線で示された仕切板31dは、図10において、その仕切板31dのうち捕集部材20側の端部に符号31dを付している。
図10に示すように、仕切板31a~31cのうち傾斜部13の流路中心線CLに対して実質的に平行に設けられている部位の長さL1は、例えば150mm以上に設定されている。また、仕切板31a~31dのうち捕集部材20側の端部と、捕集部材20の下流側の面との間には、所定の隙間S2が設けられている。その所定の隙間S2は、例えば1mm以上に設定される。
上述したように、図11では、捕集部材20の下流側に配置される仕切板31のうち捕集部材20側の端部の位置を、符号31a~31dを付した破線または一点鎖線で示している。この破線および一点鎖線で分割された領域を、分割領域と呼ぶこととする。なお、第2実施形態では8個の分割領域が形成されている。図10に示す複数の排気通路30は、捕集部材20を複数の領域に分割した分割領域ごとに設けられている。
複数の排気通路30の下流側には、複数の排気通路30をそれぞれ流れたガスを集合させる集合空間33が設けられている。なお、集合空間33の下流側には、図示しないファンを設けてもよい。その場合、ファンの駆動により集合空間33および複数の排気通路30に負圧が発生する。その際、集合空間33は、複数の排気通路30の負圧を均一化することが可能である。
また、複数の排気通路30の途中には、各排気通路30を流れるガスの流量を制御するための複数の流量制御弁32が設けられている。複数の流量制御弁32の開弁度を調整することで、複数の排気通路30を流れるガスの流量を制御できる。
次に、第2実施形態の製造装置1を用いた透明導電膜の製造方法について、図12のフローチャートを参照して説明する。
まず、ステップS10で、多孔質膜22および緻密膜23を有する捕集部材20を用意する。
次に、ステップS20で、製造装置1の支持部21に捕集部材20を設置する。このとき、支持部21に捕集部材20を設置する向きは、捕集部材20の溝24の長手方向の一方側に供給通路10の供給口11があるようにする。
次に、ステップS20で、製造装置1の支持部21に捕集部材20を設置する。このとき、支持部21に捕集部材20を設置する向きは、捕集部材20の溝24の長手方向の一方側に供給通路10の供給口11があるようにする。
続いて、ステップS25で、供給通路10の内側に設けられたガイド板14の角度を調整する。ガイド板14は、傾斜部13から捕集部材20に流れるガスの流速ベクトルの仰角θ1が適切な角度となるように調整される。また、このとき、各排気通路30に設けられた流量制御弁32の開弁度を調整してもよい。
次に、ステップS30で、供給口11から供給通路10の内側にCNTを含むガスを供給する。そうすると、CNTを含むガスは、傾斜部13をガイド板14に沿って流れて捕集部材20を通過する。そして、CNTを含むガスが捕集部材20を通過する際、ガスに含まれるCNTが捕集部材20により捕集される。
続いて、ステップS35で、捕集部材20を通過したガスを複数の排気通路30を経由して排出する。なお、上記ステップS30とステップS35は、同時に実行される。第2実施形態では、捕集部材20を通過したガスを複数の排気通路30を経由して排出することで、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。
次に、ステップS40で、CNTを含むガスの供給開始から所定時間が経過した後、支持部21から捕集部材20を取り外す。
続いて、ステップS50で、捕集部材20のうちCNTが捕集された緻密膜23側の面に図示しない透明基材を配置し、透明基材を捕集部材20に押し当てる。その後、その透明基材から捕集部材20を取り外すことで、透明基材にCNTが転写される。これにより、透明基材の一方の面にCNTによる配線パターンが形成される。
続いて、ステップS50で、捕集部材20のうちCNTが捕集された緻密膜23側の面に図示しない透明基材を配置し、透明基材を捕集部材20に押し当てる。その後、その透明基材から捕集部材20を取り外すことで、透明基材にCNTが転写される。これにより、透明基材の一方の面にCNTによる配線パターンが形成される。
次に、ステップS60で、CNTによる配線パターンが形成された透明基材を、ドーパント物質を含む溶液にディッピングするか、或いは、その透明基材にドーパント物質を含む溶液を塗布し、その後、乾燥させることで透明導電膜が完成する。
以上説明した第2実施形態に係る透明導電膜の製造装置1および製造方法は、次の作用効果を奏するものである。
(1)透明導電膜の製造装置1は、傾斜部13の内側にガイド板14を備えている。ガイド板14は、供給口11から捕集部材20に向かうガスの流れ方向を、緻密膜23の有する溝24の長手方向に対して斜め又は平行にすることが可能である。
これによれば、ガスの流れ方向をガイド板14により制御し、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、電気抵抗値を下げることができる。
これによれば、ガスの流れ方向をガイド板14により制御し、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、電気抵抗値を下げることができる。
(2)透明導電膜の製造装置1において、ガイド板14は、捕集部材20の捕集面25に対する仰角θ1が90°より小さく、0°以上の範囲となるように設けられており、且つ、捕集部材20の捕集面25から1mm以上の距離をあけて設けられている。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1は25°以下から0°以上の範囲がより好ましい。
また、ガイド板14と捕集面25との距離を1mm以上あけることで、捕集面25のうち、ガイド板14の下端に対応する箇所にもガスを流してCNTを捕集することができる。
これによれば、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。なお、捕集部材20の捕集面25の直上近傍において、捕集面25に対するガスの流速ベクトルの仰角θ1は25°以下から0°以上の範囲がより好ましい。
また、ガイド板14と捕集面25との距離を1mm以上あけることで、捕集面25のうち、ガイド板14の下端に対応する箇所にもガスを流してCNTを捕集することができる。
(3)透明導電膜の製造装置1において、ガイド板14は、傾斜部13の流路中心線CLに対して平行を含む任意の角度に変更可能に構成されている。
これによれば、傾斜部13を流れるガスの向きを調整することが可能である。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
これによれば、傾斜部13を流れるガスの向きを調整することが可能である。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
(4)透明導電膜の製造装置1は、捕集部材20の下流側に複数の排気通路30を備えている。複数の排気通路30は、捕集部材20の捕集面25を複数の領域に分割した分割領域ごとに設けられている。
これによれば、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNTの量のばらつきが低減され、電気抵抗値を下げることができる。
これによれば、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNTの量のばらつきが低減され、電気抵抗値を下げることができる。
(5)透明導電膜の製造装置1は、各排気通路30の途中に流量制御弁32を備えている。
これによれば、流量制御弁32により各排気通路30を流れるガスの流量を制御することで、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。
これによれば、流量制御弁32により各排気通路30を流れるガスの流量を制御することで、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。
(6)透明導電膜の製造装置1は、複数の排気通路30の下流側に、複数の排気通路30をそれぞれ流れたガスを集合させる集合空間33を備えている。
これによれば、集合空間33の下流側にファンを設けた場合、複数の排気通路30の負圧を均一化することが可能となり、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。
これによれば、集合空間33の下流側にファンを設けた場合、複数の排気通路30の負圧を均一化することが可能となり、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。
(7)透明導電膜の製造装置1は、複数の排気通路30同士の間に設けられる仕切板31を備える。仕切板31は、傾斜部13の流路中心線CLに対して実質的に平行に設けられており、且つ、捕集部材20から1mm以上の距離をあけて設けられている。
これによれば、供給通路10から捕集部材20を通過して複数の排気通路30を流れるガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能となる。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
また、捕集部材20と仕切板31との距離を1mm以上あけることで、捕集面25のうち、仕切板31の上端に対応する箇所にもガスを流してCNTを捕集することができる。
これによれば、供給通路10から捕集部材20を通過して複数の排気通路30を流れるガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能となる。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
また、捕集部材20と仕切板31との距離を1mm以上あけることで、捕集面25のうち、仕切板31の上端に対応する箇所にもガスを流してCNTを捕集することができる。
(8)透明導電膜の製造装置1において、仕切板31のうち傾斜部13の流路中心線CLに対して実質的に平行に設けられている部位の長さL1は、例えば150mm以上に設定されている。
これによれば、供給通路10から捕集部材20を通過して複数の排気通路30を流れるガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能となる。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
これによれば、供給通路10から捕集部材20を通過して複数の排気通路30を流れるガスの流れ方向を、捕集部材20の溝24の長手方向に対して斜め又は平行にすることが可能となる。そのため、捕集部材20の溝24に捕集されるCNTの配向度を高くすると共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。
(9)第2実施形態に係る透明導電膜の製造方法によれば、CNTを含むガスをガイド板14に沿って捕集部材20へ流すことで、捕集部材20の溝24に捕集されるCNTの配向度を高くすることができる。それと共に、捕集部材20の捕集面25においてCNTの配向の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、電気抵抗値を下げることができる。
(10)また、第2実施形態に係る透明導電膜の製造方法によれば、捕集部材20を通過したガスを複数の排気通路30から排出することで、捕集部材20の捕集面25においてCNTの捕集量の面内均一性を向上することができる。したがって、この捕集部材20に捕集されたCNTを透明フィルムなどの透明基材に転写した透明導電膜は、配線パターンを構成するCNTの量のばらつきが低減され、電気抵抗値を下げることができる。
(他の実施形態)
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態および比較例は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態および比較例は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。
また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
例えば、上記第2実施形態では、供給通路10の内側に複数のガイド板14を配置したが、これに限らず、ガイド板14は1個でもよい。或いは、上記第1実施形態または比較例で説明した製造装置1の供給通路10にガイド板14を設けてもよい。或いは、上記第2実施形態で説明した製造装置1からガイド板14を除いてもよい。
また、例えば、上記第2実施形態では、捕集部材20の下流側に複数の排気通路30を設けたが、これに限らず、排気通路30は一つの通路としてもよい。或いは、上記第1実施形態または比較例で説明した製造装置1に一つまたは複数の排気通路30を設けてもよい。或いは、上記第2実施形態で説明した製造装置1から排気通路30を除いてもよい。
Claims (17)
- 透明導電膜の製造装置において、
カーボンナノチューブを含むガスが供給される供給口(11)を有し、前記供給口から供給されるカーボンナノチューブを含むガスが流れる流路を構成する供給通路(10)と、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、前記多孔質膜のうち前記供給口側の面にカーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を前記供給通路の下流側で支持する支持部(21)と、を備え、
前記供給通路は、前記供給口から前記捕集部材に向かうガスの流れ方向が、前記緻密膜の有する溝の長手方向に対して斜め又は平行になるように構成された傾斜部(13)を有している、透明導電膜の製造装置。 - 前記捕集部材のうち前記供給口側の捕集面(25)の中心を含み前記捕集面に垂直な仮想線(VL)に対し、前記供給口の中心(111)は、前記緻密膜の有する前記溝の長手方向の一方側にずれた位置にある、請求項1に記載の透明導電膜の製造装置。
- 前記傾斜部は、前記捕集部材のうち前記供給口側の捕集面の直上近傍において、前記捕集面に対するガスの流速ベクトルの仰角(θ1)が90°より小さく、0°以上の範囲になるように構成されている、請求項1または2に記載の透明導電膜の製造装置。
- 前記傾斜部は、前記捕集部材のうち前記供給口側の捕集面の直上近傍の平面視において、前記緻密膜の有する前記溝の長手方向に対するガスの流速ベクトルの入射角(θ2)が90°より小さく、-90°より大きい範囲になるように構成されている、請求項1ないし3のいずれか1つに記載の透明導電膜の製造装置。
- 前記傾斜部に設けられ、前記供給口から前記捕集部材に向かうガスの流れ方向を、前記緻密膜の有する前記溝の長手方向に対して斜め又は平行にするガイド板(14)を備える、請求項1ないし4のいずれか1つに記載の透明導電膜の製造装置。
- 前記ガイド板は、前記捕集部材のうち前記供給口側の捕集面に対する仰角が90°より小さく、0°以上の範囲となるように設けられており、且つ、前記ガイド板のうち前記捕集部材側の端部と前記捕集部材との間には1mm以上の隙間(S1)が設けられている、請求項5に記載の透明導電膜の製造装置。
- 前記ガイド板は、前記傾斜部の流路中心線(CL)に対して平行を含む任意の角度に変更可能に構成されている、請求項5または6に記載の透明導電膜の製造装置。
- 前記捕集部材に対して前記供給通路とは反対側に設けられ、前記捕集部材を通過したガスを排出する複数の排気通路(30)を備え、
複数の前記排気通路は、前記捕集部材を複数の領域に分割した分割領域ごとに設けられている、請求項1ないし7のいずれか1つに記載の透明導電膜の製造装置。 - 複数の前記排気通路の途中に、各排気通路を流れるガスの流量を調整可能な流量制御弁(32)を備える、請求項8に記載の透明導電膜の製造装置。
- 複数の前記排気通路の下流側に、複数の前記排気通路をそれぞれ流れたガスを集合させる集合空間(33)を備える、請求項8または9に記載の透明導電膜の製造装置。
- 複数の前記排気通路同士の間に設けられる仕切板(31)を備え、
前記仕切板は、前記傾斜部の流路中心線に対して実質的に平行に設けられており、且つ、前記仕切板のうち前記捕集部材側の端部と前記捕集部材との間には1mm以上の隙間(S2)が設けられている、請求項8ないし10のいずれか1つに記載の透明導電膜の製造装置。 - 前記仕切板のうち前記傾斜部の流路中心線に対して実質的に平行に設けられている部位は、150mm以上の長さを有している、請求項11に記載の透明導電膜の製造装置。
- 透明導電膜の製造装置において、
カーボンナノチューブを含むガスが供給される供給口(11)を有し、前記供給口から供給されるカーボンナノチューブを含むガスが流れる流路を構成する供給通路(10)と、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、前記多孔質膜のうち前記供給口側の面にカーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を前記供給通路の下流側で支持する支持部(21)と、
前記供給通路の内側に設けられ、前記供給口から前記捕集部材に向かうガスの流れ方向を、前記緻密膜の有する前記溝の長手方向に対して斜め又は平行にするガイド板(14)と、を備える透明導電膜の製造装置。 - 透明導電膜の製造装置において、
カーボンナノチューブを含むガスが供給される供給口を有し、前記供給口から供給されるカーボンナノチューブを含むガスが流れる流路を構成する供給通路(10)と、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、前記多孔質膜のうち前記供給口側の面にカーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を前記供給通路の下流側で支持する支持部(21)と、
前記捕集部材に対して前記供給通路とは反対側に設けられ、前記捕集部材を通過したガスを排出する複数の排気通路(30)と、を備え、
複数の前記排気通路は、前記捕集部材を複数の領域に分割した分割領域ごとに設けられている、透明導電膜の製造装置。 - 透明導電膜の製造方法において、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、カーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を用意すること(S10)と、
カーボンナノチューブを含むガスが供給される供給口(11)を有する供給通路(10)の下流側に設けられた支持部(21)に前記捕集部材を設置すること(S20)と、
前記供給口から前記捕集部材に向かうガスの流れ方向が前記緻密膜の有する前記溝の長手方向に対して斜め又は平行になるように構成されている傾斜部(13)に対し、前記供給口からカーボンナノチューブを含むガスを供給すること(S30)と、
前記捕集部材により捕集されたカーボンナノチューブを透明基材に転写し、透明導電膜を形成すること(S50)を含む透明導電膜の製造方法。 - 透明導電膜の製造方法において、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、カーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を用意すること(S10)と、
カーボンナノチューブを含むガスが供給される供給口(11)を有する供給通路(10)の下流側に設けられた支持部(21)に前記捕集部材を設置すること(S20)と、
前記捕集部材のうち前記供給口側の捕集面に対するガスの入射角を、前記緻密膜の有する前記溝の長手方向に対して平行又は斜めにするように前記供給通路に設けられたガイド板(14)に沿って、前記供給口からカーボンナノチューブを含むガスを供給すること(S30)と、
前記捕集部材により捕集されたカーボンナノチューブを透明基材に転写し、透明導電膜を形成すること(S50)を含む透明導電膜の製造方法。 - 透明導電膜の製造方法において、
ガスに含まれるカーボンナノチューブを捕集する多孔質膜(22)、および、カーボンナノチューブによる配線パターンを形成するための溝(24)が設けられた緻密膜(23)を有する捕集部材(20)を用意すること(S10)と、
カーボンナノチューブを含むガスが供給される供給口(11)を有する供給通路(10)の下流側に設けられた支持部(21)に前記捕集部材を設置すること(S20)と、
前記供給口からカーボンナノチューブを含むガスを供給すること(S30)と、
前記捕集部材を複数の領域に分割した分割領域ごとに前記捕集部材に対して前記供給通路とは反対側に設けられた複数の排気通路(30)から、前記捕集部材を通過したガスを排出すること(S35)と、
前記捕集部材により捕集されたカーボンナノチューブを透明基材に転写し、透明導電膜を形成すること(S50)を含む透明導電膜の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20236089A FI20236089A1 (en) | 2021-04-01 | 2022-03-11 | Manufacturing device and manufacturing method for a transparent conductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-062596 | 2021-04-01 | ||
JP2021062596A JP7512941B2 (ja) | 2021-04-01 | 2021-04-01 | 透明導電膜の製造装置および製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209761A1 true WO2022209761A1 (ja) | 2022-10-06 |
Family
ID=83456103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/010887 WO2022209761A1 (ja) | 2021-04-01 | 2022-03-11 | 透明導電膜の製造装置および製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7512941B2 (ja) |
FI (1) | FI20236089A1 (ja) |
WO (1) | WO2022209761A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177165A (ja) * | 2007-01-17 | 2008-07-31 | Samsung Electronics Co Ltd | カーボンナノチューブの網目状薄膜を含むカーボンナノチューブパターンの透明電極、及びその製造方法 |
JP2008204872A (ja) * | 2007-02-21 | 2008-09-04 | Hokkaido Univ | 透明導電性膜基材及び透明積層体 |
WO2015177967A1 (ja) * | 2014-05-20 | 2015-11-26 | デクセリアルズ株式会社 | 透明導電膜の製造方法、及び透明導電膜 |
-
2021
- 2021-04-01 JP JP2021062596A patent/JP7512941B2/ja active Active
-
2022
- 2022-03-11 FI FI20236089A patent/FI20236089A1/en unknown
- 2022-03-11 WO PCT/JP2022/010887 patent/WO2022209761A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177165A (ja) * | 2007-01-17 | 2008-07-31 | Samsung Electronics Co Ltd | カーボンナノチューブの網目状薄膜を含むカーボンナノチューブパターンの透明電極、及びその製造方法 |
JP2008204872A (ja) * | 2007-02-21 | 2008-09-04 | Hokkaido Univ | 透明導電性膜基材及び透明積層体 |
WO2015177967A1 (ja) * | 2014-05-20 | 2015-11-26 | デクセリアルズ株式会社 | 透明導電膜の製造方法、及び透明導電膜 |
Also Published As
Publication number | Publication date |
---|---|
FI20236089A1 (en) | 2023-10-02 |
JP7512941B2 (ja) | 2024-07-09 |
JP2022158014A (ja) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10845350B2 (en) | Hydrogen sensor production method and hydrogen sensor produced thereby | |
US20080290326A1 (en) | Controlled alignment of catalytically grown nanostructures in a large-scale synthesis process | |
JP5798143B2 (ja) | 平行平板型ドライエッチング装置及びこれを用いた半導体装置の製造方法 | |
Barborini et al. | Batch fabrication of metal oxide sensors on micro-hotplates | |
JP2011046604A (ja) | カーボンナノチューブ線状構造体の製造方法 | |
JP4546428B2 (ja) | カーボンナノチューブのマトリックスの製造方法 | |
US10704019B2 (en) | Cell filtration filter | |
WO2022209761A1 (ja) | 透明導電膜の製造装置および製造方法 | |
US20190079017A1 (en) | Carrier for use in single molecule detection | |
JP2007022900A (ja) | 炭素ナノチューブのマトリックスの成長方法 | |
KR101626839B1 (ko) | 박막 증착에서 여과 및 가스/증기 혼합 장치 | |
JP6352991B2 (ja) | サンプル収集デバイスとその製造方法 | |
US20140314998A1 (en) | Porous material for thermal and/or electrical isolation and methods of manufacture | |
US10859501B2 (en) | Carrier for use in single molecule detection | |
US10852241B2 (en) | Method for detecting molecular | |
CN113825720B (zh) | 用于定向沉积的设备和方法 | |
JP2010131700A (ja) | 微粒子構造体/基体複合部材及びその製造方法 | |
JP2008108720A (ja) | 放電素子、この放電素子を用いた放電モジュール、並びに、この放電モジュールを用いたオゾン発生装置及びイオン発生装置 | |
US20120098144A1 (en) | Vertical electrode structure using trench and method for fabricating the vertical electrode structure | |
US11112364B2 (en) | Molecular detection device | |
Savu et al. | Stenciled conducting bismuth nanowires | |
KR20090056038A (ko) | 표면 개질형 나노선 센서 및 그 제작 방법 | |
JP2004062098A (ja) | 配向層形成装置および形成方法 | |
JP2005247644A (ja) | カーボンナノチューブの製造方法および製造装置 | |
KR101660402B1 (ko) | 투명 전도성 산화물 필라를 이용한 고감도 센서 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779982 Country of ref document: EP Kind code of ref document: A1 |