WO2015176201A1 - Composition for lithium ion battery electrodes - Google Patents

Composition for lithium ion battery electrodes Download PDF

Info

Publication number
WO2015176201A1
WO2015176201A1 PCT/CN2014/077759 CN2014077759W WO2015176201A1 WO 2015176201 A1 WO2015176201 A1 WO 2015176201A1 CN 2014077759 W CN2014077759 W CN 2014077759W WO 2015176201 A1 WO2015176201 A1 WO 2015176201A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
slurry
binder
cathode
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2014/077759
Other languages
English (en)
French (fr)
Inventor
Zhuo Wang
Xiuqin SHI
Kun Chen
Yingjun CAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to PCT/CN2014/077759 priority Critical patent/WO2015176201A1/en
Priority to EP14892414.5A priority patent/EP3146578B1/en
Priority to CN201480079040.8A priority patent/CN106463728B/zh
Priority to US15/310,824 priority patent/US10276861B2/en
Priority to JP2016567914A priority patent/JP6392897B2/ja
Priority to KR1020167033990A priority patent/KR102193848B1/ko
Publication of WO2015176201A1 publication Critical patent/WO2015176201A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the lithium ion battery is a rechargeable battery that is widely used for a variety of purposes, including consumer electronics and vehicles.
  • the electrodes in LIBs were often made by distributing electrode material as particles in a liquid that also contained dissolved or dispersed polymeric binder. When a layer of the liquid was applied to a substrate and the liquid removed by evaporation, a layer of the desired electrode remained.
  • One commonly-used polymeric binder was polyvinylidene fluoride (PVDF) dissolved in N- methyl-2-pyrrolidone (NMP) solvent.
  • PVDF binder has several disadvantages. The use of NMP poses environmental difficulties, and the relative humidity must be carefully controlled during the fabrication process.
  • a waterborne binder that has been used is styrene/butadiene copolymer (SBR), dispersed as latex particles in water, where the water also contains dissolved sodium carboxymethyl cellulose (CMC).
  • SBR binder also has disadvantages. SBR binders have undesirably low stability in high voltage environments, and SBR binders do not show sufficient adhesion to aluminum substrate. Thus, when the SBR binder is applied to an aluminum foil and then the foil is bent, the binder tends to show one or more of the following problems: loss of adhesion to the aluminum; cracking; and powder dropping.
  • US 2008/0166633 describes an anode for a lithium battery made using a binder that contains a waterborne acrylic polymer and a water-soluble polymer. It is desired to provide an aqueous binder for lithium ion battery electrodes that is suitable for making cathodes and that shows, after application of the binder to an aluminum substrate and the bending of the substrate, one or more of the following: good adhesion to the aluminum; resistance to cracking, resistance to powder dropping. It is also desired that when cathodes are made using such an aqueous binder, that the cathodes show acceptable electrochemical performance, such as cycling stability and capacity retention.
  • the first aspect of the present invention is an aqueous composition for making lithium ion battery electrodes, said composition comprising
  • the second aspect of the present invention is a method of making an electrode suitable for use in a lithium ion battery, wherein said method comprises (i) providing an aqueous slurry comprising
  • the third aspect of the present invention is a method of making a cathode suitable for use in a lithium ion battery, wherein said method comprises
  • the fourth aspect of the present invention is the method of the second aspect, wherein said electrode is an anode, and wherein said slurry comprises one or more anode compounds, wherein each of said one or more anode compounds may be the same as one or more of said conductive materials or may be different from any of said conductive materials.
  • the fifth aspect of the present invention is an electrode suitable for use in a lithium ion battery, wherein said electrode comprises
  • the sixth aspect of the present invention is a cathode suitable for use in a lithium ion battery, wherein said cathode comprises
  • the seventh aspect of the present invention is the electrode of the fifth aspect, wherein the electrode comprises one or more anode compounds, wherein each of said one or more anode compounds may be the same as one or more of said conductive materials or may be different from any of said conductive materials.
  • a "polymer,” as used herein is a relatively large molecule made up of the reaction products of smaller chemical repeat units. Polymers may have structures that are linear, branched, star shaped, looped, hyperbranched, crosslinked, or a combination thereof;
  • polymers may have a single type of repeat unit ("homopolymers") or they may have more than one type of repeat unit (“copolymers”). Copolymers may have the various types of repeat units arranged randomly, in sequence, in blocks, in other arrangements, or in any mixture or combination thereof.
  • weight of polymer means the dry weight of polymer.
  • each of R 1 , R 2 , R 3 , and R 4 is, independently, a hydrogen, a halogen, an aliphatic group (such as, for example, an alkyl group), a substituted aliphatic group, an aryl group, a substituted aryl group, another substituted or unsubstituted organic group, or any combination thereof.
  • Vinyl monomers include, for example, styrene, substituted styrenes, dienes, ethylene, other alkenes, dienes, ethylene derivatives, and mixtures thereof.
  • Ethylene derivatives include, for example, unsubstituted or substituted versions of the following: ethenyl esters of substituted or unsubstituted alkanoic acids (including, for example, vinyl acetate and vinyl neodecanoate), acrylonitrile, (meth)acrylic acids, (meth)acrylates,
  • (meth)acrylamides vinyl chloride, halogenated alkenes, and mixtures thereof.
  • (meth)acrylic means acrylic or methacrylic
  • (meth)acrylate means acrylate or methacrylate
  • (meth)acrylamide means acrylamide or methacryl amide.
  • Substituted means having at least one attached chemical group such as, for example, alkyl group, alkenyl group, vinyl group, hydroxyl group, carboxylic acid group, other functional groups, and combinations thereof.
  • Substituted monomers include, for example, monomers with more than one carbon-carbon double bond, monomers with hydroxyl groups, monomers with other functional groups, and monomers with combinations of functional groups.
  • (Meth)acrylates are substituted and unsubstituted esters or amides of (meth)acrylic acid.
  • acrylic monomers are monomers selected from (meth)acrylic acid, aliphatic esters of (meth)acrylic acid, aliphatic esters of (meth)acrylic acid having one or more substituent on the aliphatic group, (meth)acrylamide, N-substituted (meth)acrylamide, and mixtures thereof.
  • an "acrylic " polymer is a polymer in which 30% or more of the polymerized units are selected from acrylic monomers. The percentages are by weight based on the weight of the polymer.
  • a "binder polymer” is a polymer having glass transition
  • Tg temperature of 50°C or lower.
  • the category of binder polymers, as used herein, does not include polyvinyl alcohol, derivatives of polyvinyl alcohol, cellulose, or derivatives of cellulose. Tg is measured by Differential Scanning Calorimetry at 10°C per minute using the midpoint method.
  • Polyvinyl alcohol is a polymer having a hydrocarbon backbone with various pendant groups. PVA is normally made by polymerization of vinyl acetate to form polyvinylacetate, followed by conversion some of the pendant acetate ester groups to hydroxyl groups. Some types of PVA are further modified by attaching functional groups such as, for example, carboxyl groups, sulfonate groups, or combinations thereof. PVA having pendant carboxyl groups is known herein as carboxylated PVA, and PVA having pendant sulfonate groups is known herein as sulfonated PVA.
  • PVA may be characterized by the degree of saponification.
  • the degree of saponification is the molar percentage of the polymerized units of vinyl acetate that have been converted to hydroxyl groups. Optionally, some of those hydroxyl groups were later converted to other groups such as carboxyl and/or sulfonate groups.
  • PVA may also be characterized by the viscosity as follows. A solution of PVA in water is prepared at concentration of 4% by weight based on the weight of the solution, and the viscosity is measured at 20°C.
  • Cellulose is a naturally occurring organic polymer consisting of linear chain of linked D-glucose units. Cellulose is often reacted with one or more of various reagents to produce various derivatives.
  • One useful class of useful cellulose derivatives is the class of water-soluble cellulose derivatives, which are compounds that are soluble in water at 25°C in the amount of 1 gram or more per 100 grams of water.
  • Carboxymethyl cellulose is a derivative of cellulose in which, on some or all of the pendant hydroxyl groups, the hydrogen atom is replaced by the carboxymethyl group, which is
  • CMC degree of substitution
  • degree of substitution is the average number of OH groups that have been substituted in one anhydroglucose unit.
  • the degree of substitution is determined according to ASTM D 1439-03 "Standard Test Methods for Sodium Carboxymethylcellulose; Degree of Etherification, Test Method B: Nonaqueous Titration" (American Society for Testing and Materials, Conshohocken, PA, USA).
  • a characteristic of water soluble cellulose derivatives is the viscosity, which is measured as follows. A 0.5-2% solution (by dry weight of water-soluble cellulose derivative, based on the weight of the solution) in water is prepared and tested using a Brookfield LVT, SP viscometer at 30 rpm at 25°C.
  • CMC carboxymethyl cellulose
  • An aqueous composition is a composition that contains 30% or more water, by weight based on the weight of the composition. Also, an aqueous composition is liquid at 25°C. Further, in an aqueous composition, there is a continuous liquid medium in which other materials are dispersed, and the the continuous liquid medium contains 50% or more water, by weight based on the weight of the continuous liquid medium. Substances dissolved in the water are considered to be part of the continuous liquid medium.
  • Latex particles are particles of polymer that are suspended in water.
  • the solids content of an aqueous composition is the material remaining when the water and any other compounds having boiling point of 100°C or less have been removed from the aqueous composition.
  • An electrode in an electrochemical cell is either the anode or the cathode of the electrochemical cell.
  • Cathode compounds are typically oxides of transition metals, which can undergo oxidation to higher valences when lithium is removed.
  • a material suitable for use as a cathode in a lithium ion battery contains one or more cathode compound and is capable of transferring electrons to a conductor and transferring lithium ions to an electrolyte.
  • Anode compounds are solid compounds that are capable of undergoing an insertion reaction in which a lithium cation and an electron, possibly in combination with each other, become inserted into the solid structure of the anode compound.
  • a material suitable for use as an anode in a lithium ion battery contains one or more anode compound and is capable of transferring electrons to a conductor and transferring lithium ions to an electrolyte.
  • the anode compound in the form that contains lithium, has a lower
  • VI is the absolute magnitude of the difference between the electrochemical potential of the anode compound in the form that contains lithium and the electrochemical potential of lithium metal
  • V2 is the absolute magnitude of the difference between the
  • V2 is larger than VI .
  • binder combination the combination of all the binder polymers in the composition, all the polyvinyl alcohols in the composition, and all of the water-soluble cellulose derivatives in the composition.
  • the binder combination may be the only ingredients other than water in an aqueous composition, or the binder combination may be present in an aqueous composition that contains other ingredients in addition to water and the binder combination.
  • Preferred binder polymers are polyolefins, polydienes, polystyrenes, polyamides, polyesters, acrylic polymers, polyurethanes, copolymers thereof, and mixtures thereof. More preferred are acrylic polymers and polyurethanes; more preferred are acrylic polymers.
  • Binder polymers have Tg of 50°C or lower; more preferred is Tg of 30°C or lower; more preferred is 10°C or lower; more preferred is 0°C or lower.
  • Preferred acrylic polymers have polymerized units of acrylic monomers in the amount, by weight based on the dry weight of the polymer, of 50% or more; more preferably 75% or more; more preferably 90%or more.
  • Preferred acrylic polymers have polymerized units of one or more alkyl acrylate.
  • Preferred acrylic polymers have polymerized units one or more vinyl monomer that has one or more pendant carboxyl group; more preferably polymerized units of acrylic acid, methacrylic acid, itaconic acid, or a mixture thereof.
  • the preferred amount of polymerized units of monomer having one or more pendant carboxyl group is, by weight based on the dry weight of the polymer, 10% or less; more preferably 7% or less.
  • the preferred amount of polymerized units of monomer having one or more pendant carboxyl group is, by weight based on the dry weight of the polymer, 1% or more; more preferably 2% or more.
  • the binder polymer is present in the aqueous composition in the form of latex particles.
  • the volume-average diameter of the collection of all the polymer particles in the aqueous composition is 200 nm or smaller.
  • the volume-average diameter of the collection of all of the binder polymer particles in the aqueous composition is 10 nm or larger; more preferably 50 nm or larger.
  • the volume-average diameter of the collection of all of the binder polymer particles in the aqueous composition is 150 nm or smaller; more preferably 120 nm or smaller; more preferably 100 nm or smaller.
  • Latex particle size is preferably measured by laser diffraction.
  • the amount of binder polymer, by dry weight based on the solid weight of the binder combination is 63% or more; more preferably 70% or more.
  • the amount of binder polymer, by dry weight based on the solid weight of the binder combination is 98%) or less; more preferably 85%> or less; more preferably 78% or less.
  • one or more PVA is used that has degree of saponification of 75% or more; more preferably 80% or more; more preferably 85% or more.
  • one or more PVA is used that has degree of saponification of 95% or less; more preferably 90% or less.
  • one or more PVA is used that has viscosity of 0.5 mPa*s or higher; more preferably 1 mPa*s or higher; more preferably 2 mPa*s or higher.
  • one or more PVA is used that has viscosity of 5 mPa*s or lower; more preferably 4 mPa*s or lower; more preferably 3 mPa*s or lower.
  • one or more PVA is used that is a carboxylated PVA or a sulfonated PVA or a PVA that is both carboxylated and sulfonated, or a mixture thereof. More preferably, one or more PVA is used that is a sulfonated PVA. Preferably, one or more PVA is used that has solubility in water at 25°C of 20 grams or more PVA in 80 grams of water. [0046] Preferably, the amount of PVA is, by dry weight based on the solid weight of the binder combination, 5% or more; more preferably 10% or more; more preferably 15% or more. Preferably, the amount of PVA is, by dry weight based on the solid weight of the binder combination, 25% or less; more preferably 21% or less; more preferably 18% or less.
  • Preferred water-soluble cellulose derivatives are hydroxyalkyl celluloses, hydroxyalkyl methylcelluloses, and carboxyalkyl celluloses.
  • hydroxyalkyl celluloses preferred is hydroxyethyl cellulose.
  • hydroxyalkyl methylcelluloses preferred is hydroxypropyl methylcellulose.
  • carboxyalkyl celluloses preferred is carboxymethyl cellulose. Most preferred is carboxymethyl cellulose (CMC).
  • the CMC is in the form of its sodium salt
  • the viscosity of the water-soluble cellulose derivative measured in a 1%) solution by weight, is 1,000 mPa*s or greater; more preferably 2,000 mPa*s or greater.
  • the viscosity of the water-soluble cellulose derivative, measured in a 1% solution by weight is 10,000 mPa*s or less; more preferably 5,000 mPa*s or less.
  • the amount of water-soluble cellulose derivatives, by dry weight based on the solid weight of the binder combination is 1% or more; more preferably 2% or more; more preferably 4% or more.
  • the amount of water-soluble cellulose derivatives, by dry weight based on the solid weight of the binder combination is 12% or less; more preferably 11% or less; more preferably 10% or less;
  • a preferred use for the composition of the present invention is making an electrode, preferably a cathode, for a lithium ion battery.
  • an aqueous slurry is used, where that aqueous slurry contains the binder combination, one or more cathode compounds that contain lithium, and one or more conductive material.
  • a layer of the slurry is applied to a substrate, and the water is removed by allowing the water to evaporate, either at ambient conditions or by applying heat or reduced pressure or moving air or a combination thereof.
  • the aqueous slurry is prepared by first making an aqueous composition (herein called the "binder preparation") that contains the binder combination and, optionally, one or more additives, but does not contain conductive material or cathode compound.
  • binder preparation an aqueous composition that contains the binder combination and, optionally, one or more additives, but does not contain conductive material or cathode compound.
  • Preferred additives are de-foaming agents, leveling agents, stabilizing agents (such as surfactants), and mixtures thereof.
  • the total amount of additives, by solids weight based on the total solids weight of the binder preparation is 20% or less; more preferably 10% or less.
  • Preferred conductive materials are carbon black, graphite, and mixtures thereof.
  • the conductive material is present as particles.
  • the conductive material contains carbon black.
  • the conductive material has number-average particle size (assessed by images of the particles using transmission electron microscopy) of 10 nm or larger; more preferably 20 nm or larger; more preferably 30 nm or larger.
  • the conductive material has number-average particle size of 1,000 nm or smaller; more preferably 300 nm or smaller; more preferably 100 nm or smaller.
  • the slurry contains one or more anode compound.
  • Anode compounds are preferably forms of carbon, or elements that are capable of forming alloys with lithium, or complexes or compounds containing such elements, or mixtures thereof. More preferred anode compounds are natural graphite, artificial graphite, coke, carbon fiber, an element that is capable of forming an alloy with lithium, complexes or compounds containing such elements, or mixtures thereof. Among elements capable of forming an alloy with lithium, preferred are Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, and Ti. More preferred anode compounds contain natural or artificial graphite or a mixture thereof. Preferably, anode compound is in the form of particles.
  • Preferred weight average particle size is 10 nm to 10 micrometer.
  • one or more anode compound is present that also functions as a conductive material. In some embodiments, one or more anode compound is present that does not function as a conductive material. In some embodiments, one or more anode compound is present that also functions as a conductive material, and one or more anode compound is present that does not function as a conductive material.
  • the slurry contains one or more cathode compounds that contain lithium.
  • Preferred cathode compounds that contain lithium are oxide or phosphate compounds that contain both lithium and one or more additional metals.
  • Preferred additional metals are cobalt, manganese, nickel, iron, and mixtures thereof.
  • the oxide or phosphate compound may be a co-crystalline compound with an oxide of a metal other than lithium.
  • Preferred cathode compounds that contain lithium are LiCo0 2 , LiMn x 0 2x ,
  • LiNi ( i -X )Mn x 0 2 x (where x is 1 or 2), LiMn 2 0 4 , LiNi0 2 , LiFe0 2 , and LiFeP0 4 , LiFeP0 4 » zM'0 (where ⁇ is a metal oxide, and where z is 0.01 to 1.1) and mixtures thereof.
  • Suitable metal oxides for M'O are V 2 0 3 , Ti0 2 , Cr 2 0 3 , Bi 4 Ti 3 0i 2 , CuNb 2 0 6 , MnTa0 4 , FeW0 4 , ZnZrNb 2 0 8 , NiNb 2 0 6 , NiZrNb 2 0 8 , FeTiNb 2 0 8 , MnTiNb 2 0 8 , MgSnNb 2 0 8 , ZnTa 2 0 6 , Cu 0 .
  • the cathode compound is optionally doped with one or more cations, for example cations of one or more of aluminum, niobium, and zirconium.
  • the cathode compound is present as particles.
  • the weight- average particle diameter is 10 nm to 10 micrometer.
  • the amount of binder preparation, by solid weight of binder preparation based on the solid weight of the slurry is 1% or more; or 2% or more; or 3% or more.
  • the amount of binder preparation, by solid weight of binder preparation based on the solid weight of the slurry is 10% or less; more preferably 7% or less; more preferably 5% or less.
  • the amount of conductive material, by solid weight of conductive material, based on the solid weight of the slurry is 1% or more; or 2% or more; or 4% or more.
  • the amount of conductive material, by solid weight of conductive material, based on the solid weight of the slurry is 10% or less; more preferably 8% or less; more preferably 6% or less.
  • the amount of cathode compounds, by solid weight of cathode compounds, based on the solid weight of the slurry is 80% or more; or 85% or more; or 90% or more.
  • the amount of cathode compounds, by solid weight of cathode compounds, based on the solid weight of the slurry is 98% or less; more preferably 96% or less; more preferably 94% or less.
  • the aqueous slurry may be used for making an electrode that is appropriate for use in a lithium ion battery.
  • a layer of the slurry is applied to substrate that is a current collector such as metal foil, and the layer of slurry is dried.
  • the layered article made from the dried layer of slurry on the substrate is preferably pressed under high pressure, preferably by passing through a roller having a load of from 100 metric tons to 200 metric tons.
  • a layer of slurry is applied to a temporary substrate and dried, and then the layer of dried slurry is transferred to a substrate that is a current collector.
  • the current collector is preferably aluminum foil.
  • the current collector is preferably copper foil.
  • the layer of dried slurry is flexible.
  • the layered article will normally tend to curl after it is released from the roller.
  • the dried layer of slurry will not crack and will not exhibit any areas that become detached from the foil.
  • the dried layer of slurry shows acceptable electrochemical performance.
  • the dried layer of slurry has acceptable discharge capacity, has coulombic efficiency, and maintains discharge capacity after many charge/discharge cycles.
  • Latex #1 Latex polymer. Volume-average particle size of between 55 and 85 nm.
  • Composition is polymerized units of ethyl acrylate with 2 to 7% by weight of polymerized units of an unsaturated carboxyl -functional monomer.
  • Latex #C2 Latex polymer. Composition is polymerized units, by weight, as follows: ethyl acrylate (40-50%), 2-ethylhexyl acrylate (40-50%), styrene (greater than 0% and less than or equal to 10%), unsaturated carboxyl-functional monomer (greater than 0% and less than or equal to 5%), and multiethylenically unsaturated monomer (greater than 0% and less than or equal to 2%). Volume-average particle diameter of between 800 and 1,000 nm.
  • PVCF Comparative binder. Poly(vinylidene fluoride) polymer in solution in MP
  • Latex #C3 Comparative binder.
  • Latex #C3 is a commercial product used as a binder for lithium ion electrodes.
  • PU#1 Aliphatic urethane polymer, present as a dispersion of polymer latex particles, volumer-average particle diameter of 43 nanometers.
  • CMC#1 CMC having viscosity above 2,000 mPa*s and less than 5000 mPa*s based on
  • CMC#2 CMC having viscosity of 2,000 mPa*s based on 2% by mass aqueous solution
  • CMC#3 CMC having viscosity of 1500 mPa*s based on 0.5% by mass aqueous
  • S-PVA sulfonated polyvinyl alcohol: degree of saponification greater than 80 mol% and less than 95 mol%; viscosity greater than 1.5 mPa*s and less than 3.5 mPa*s
  • Latex particle sizes were measured using laser diffraction with a Coulter LS230 Laser Diffraction Particle Size Analyzer (Beckman Coulter, Inc.).
  • Binder preparation BP-1 was made as follows:
  • aqueous binder preparation BP-1 was diluted with 18.11 g of deionized water. Then 1.30 g of Super-Li was mixed into the solution and got complete wetting dispersion by using high speed mixer and mixing at 3000 rpm for 3 min. After that, 23.66 g of LFP powder was added into the system and got complete wetting and dispersion by mixing at 3000 rpm for 3 min. Finally the well dispersed cathode slurry was achieved.
  • Cathode C-l was made as follows:
  • Comparative Slurry S-Cl was made as follows:
  • Comparative Cathode C-Cl was made as follows:
  • Comparative Slurry S-C2 was made as follows
  • Comparative Cathode C-C2 was made as follows:
  • the slurry S-C2 was cast onto the aluminum foil and rolled using the same methods as used for Cathode C-l .
  • each cathode After passing through the rollers, each cathode curled. Each cathode was inspected to look for cracking, areas in which dried slurry detached from the substrate, and powder dropping. Powder dropping, is a phenomenon in which the coated powders peel off the aluminum foil substrate during transferring of the cathode in the production process of making cells.
  • the Inventive Example C-l shows excellent performance.
  • the Comparative Example C-Cl also shows good performance but uses a solvent-based binder and not an aqueous binder preparation.
  • Comparative Example C-C2 uses an aqueous binder that does not have water- soluble cellulose derivative or PVA, and its performance is poor.
  • the electrode sheets were assembled in 2016 coin cells using CelgardTM 2400 separator and lithium foils as the counter and reference electrodes.
  • the assembly of cells was processed in an argon filled glove box with oxygen and water contents less than 1 ppm.
  • the galvanostatic charge/discharge tests were conducted on a LANDTM CT2001 A battery test system in a voltage range of 2.0-3.85 V (versus Li/Li+) at 0.05C-1 C-rate under 23°C.
  • the testing procedures are specified below.
  • the example cathode C-1 performs as well as the cathode made with the solvent-based PVDF and as the cathode made with the commercial latex binder IndigoTM LA- 132.
  • Electrochemical cycling test was performed as follows. Charge/discharge in lC-rate for 100 times as one cycling test. We tested Example C-l 8 times; we tested Comparative Example C-2 8 times; and we tested 4 times to Comparative Example C-l 4 times. Each test was run for 100 cycles. The results were as follows.
  • Example cathode performed as well as the Comparative cathodes, which were made with commercial binder systems.
  • Example BP-1 shows comparable electrochemical performance to commercial binders, and the binder preparation of Example BP-1 shows mechanical property superior to the commercial waterborne binder.
  • a variety of cathodes (“series 2") were made using the same methods employed in making Example binder preparation BP-1, Example slurry S-l, and Example cathode C-l . Cathodes were tested by rolling as described above. The compositions of the binder preparations and the results of mechanical testing were as follows. All binder preparations had total solids of 15%.
  • Latex#l solid weight, based on total solid weight of binder preparation
  • Comparative Examples 2-C4, 2-C5, 2-C6, 2-C7, and 2-C8 each lack one or more of the required ingredients for the present invention, and each one shows unacceptable behavior.
  • Example 2-10 has relatively high level of CMC and shows undesirably high viscosity.
  • Examples 2-12 and 2-13 have relatively high level of PVA and show undesirable lack of adhesion to the aluminum foil when rolled.
  • Comparative Example 2-C14 uses an acrylic latex with a relatively large particle size, and it shows an undesirable lack of adhesion to the aluminum foil when rolled.
  • Example 2-15 uses non-sulfonated PVA, and it shows an undesirable lack of adhesion to the aluminum foil when rolled.
  • Examples 2-16 and 2-17 use CMC of relatively low and relatively high viscosity, and these two examples show an undesirable lack of adhesion to the aluminum foil when rolled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
PCT/CN2014/077759 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes Ceased WO2015176201A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/077759 WO2015176201A1 (en) 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes
EP14892414.5A EP3146578B1 (en) 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes
CN201480079040.8A CN106463728B (zh) 2014-05-19 2014-05-19 用于锂离子电池电极的组合物
US15/310,824 US10276861B2 (en) 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes
JP2016567914A JP6392897B2 (ja) 2014-05-19 2014-05-19 リチウムイオン電池電極用組成物
KR1020167033990A KR102193848B1 (ko) 2014-05-19 2014-05-19 리튬 이온 배터리 전극용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077759 WO2015176201A1 (en) 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes

Publications (1)

Publication Number Publication Date
WO2015176201A1 true WO2015176201A1 (en) 2015-11-26

Family

ID=54553160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077759 Ceased WO2015176201A1 (en) 2014-05-19 2014-05-19 Composition for lithium ion battery electrodes

Country Status (6)

Country Link
US (1) US10276861B2 (cg-RX-API-DMAC7.html)
EP (1) EP3146578B1 (cg-RX-API-DMAC7.html)
JP (1) JP6392897B2 (cg-RX-API-DMAC7.html)
KR (1) KR102193848B1 (cg-RX-API-DMAC7.html)
CN (1) CN106463728B (cg-RX-API-DMAC7.html)
WO (1) WO2015176201A1 (cg-RX-API-DMAC7.html)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108117096A (zh) * 2016-11-29 2018-06-05 丰田自动车株式会社 锂离子电池负极材料以及锂离子电池负极
CN110749600A (zh) * 2019-09-27 2020-02-04 惠州亿纬创能电池有限公司 表征锂离子电池用cmc中水不溶物含量的测量方法
JP2021128887A (ja) * 2020-02-14 2021-09-02 日本製紙株式会社 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法
JP2021128886A (ja) * 2020-02-14 2021-09-02 日本製紙株式会社 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法
JP2021128888A (ja) * 2020-02-14 2021-09-02 日本製紙株式会社 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法
US20220384816A1 (en) * 2020-02-14 2022-12-01 Nippon Paper Industries Co., Ltd. Binder for non-aqueous electrolyte secondary batteries, electrode composition for non-aqueous electrolyte secondary batteries, electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery and method for producing binder for non-aqueous electrolyte secondary batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107281A (zh) * 2005-01-27 2008-01-16 株式会社吴羽 1,1-二氟乙烯类核/壳型聚合物和其在非水系电化学元件中的应用
US20120237826A1 (en) * 2011-03-17 2012-09-20 Kwang-Soo Kim Aqueous active material composition, electrode, and rechargeable lithium battery using the same
CN103199233A (zh) * 2012-01-06 2013-07-10 三星Sdi株式会社 锂电池正极物质、由其制备的正极和含该正极的锂电池
CN103242595A (zh) * 2012-02-09 2013-08-14 三星Sdi株式会社 复合粘合剂、含其的负极和包括该负极的锂电池
CN103391951A (zh) * 2011-02-18 2013-11-13 旭硝子株式会社 含氟共聚物胶乳的制造方法、含氟共聚物胶乳、电极制造用粘结剂、蓄电装置用电极合剂以及蓄电装置用电极

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226205A (ja) * 1993-12-15 1995-08-22 Toshiba Battery Co Ltd アルカリ二次電池
KR100800969B1 (ko) 2006-01-18 2008-02-11 주식회사 엘지화학 바인더로서 폴리비닐알콜을 포함하는 전극 합제 및 이를기반으로 한 리튬 이차전지
KR20080064590A (ko) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 리튬 전지용 애노드 및 이를 채용한 리튬 전지
CN101260282B (zh) 2008-03-18 2010-08-11 成都中科来方能源科技有限公司 锂离子电池用水性粘合剂、制备方法及锂离子电池正极片
JP2010080297A (ja) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2011065929A (ja) * 2009-09-18 2011-03-31 Panasonic Corp 非水電解質二次電池用負極およびその製造方法
WO2011062232A1 (ja) * 2009-11-18 2011-05-26 三井化学株式会社 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
JP2013196821A (ja) * 2012-03-16 2013-09-30 Hitachi Maxell Ltd 重合体および二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107281A (zh) * 2005-01-27 2008-01-16 株式会社吴羽 1,1-二氟乙烯类核/壳型聚合物和其在非水系电化学元件中的应用
CN103391951A (zh) * 2011-02-18 2013-11-13 旭硝子株式会社 含氟共聚物胶乳的制造方法、含氟共聚物胶乳、电极制造用粘结剂、蓄电装置用电极合剂以及蓄电装置用电极
US20120237826A1 (en) * 2011-03-17 2012-09-20 Kwang-Soo Kim Aqueous active material composition, electrode, and rechargeable lithium battery using the same
CN103199233A (zh) * 2012-01-06 2013-07-10 三星Sdi株式会社 锂电池正极物质、由其制备的正极和含该正极的锂电池
CN103242595A (zh) * 2012-02-09 2013-08-14 三星Sdi株式会社 复合粘合剂、含其的负极和包括该负极的锂电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Also Published As

Publication number Publication date
JP6392897B2 (ja) 2018-09-19
US10276861B2 (en) 2019-04-30
JP2017520885A (ja) 2017-07-27
US20170084911A1 (en) 2017-03-23
EP3146578B1 (en) 2018-12-05
EP3146578A4 (en) 2017-11-01
EP3146578A1 (en) 2017-03-29
KR20170009890A (ko) 2017-01-25
CN106463728A (zh) 2017-02-22
KR102193848B1 (ko) 2020-12-22
CN106463728B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US10276861B2 (en) Composition for lithium ion battery electrodes
CN104081567B (zh) 二次电池电极用粘合剂树脂组合物、二次电池电极用浆料、二次电池用电极、锂离子二次电池
US10403896B2 (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
EP3214675B1 (en) Binder composition for positive electrode for lithium-ion rechargeable battery, slurry composition for positive electrode for lithium-ion rechargeable battery, positive electrode of lithium-ion rechargeable battery, and lithium-ion rechargeable battery
EP3163653B1 (en) Laminate for nonaqueous secondary cell, method for producing same, and nonaqueous secondary cell
Prosini et al. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries
KR102338184B1 (ko) 리튬 이온 2 차 전지 부극용 바인더 조성물, 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극 및 리튬 이온 2 차 전지
EP3678237B1 (en) Binder composition for a non-aqueous secondary battery electrode, slurry composition for a non-aqueous secondary battery electrode, electrode for a non-aqueous secondary battery, and non-aqueous secondary battery
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JPWO2018235722A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子
JPWO2012176895A1 (ja) 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子
WO2018096981A1 (ja) 電気化学素子用バインダー
EP3425707A1 (en) Binder composition for non-aqueous secondary cell electrode, electrically conductive material paste composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
TW202201830A (zh) 用於二次電池中柔韌電極的漿料組合物
EP3605653B1 (en) Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
TW201628236A (zh) 電極組成物、電化學電池及製造電化學電池之方法
JP2010282979A (ja) 非水電解質二次電池正極用スラリー組成物
EP4278394A1 (en) Rheologically modified slurries for electrochemical cells and components made therefrom
WO2019181744A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US20240332498A1 (en) Method for manufacturing secondary battery electrode slurry composition, and methods for manufacturing secondary battery electrode and secondary battery
JP7717561B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
EP4046211A1 (en) Aqueous cathode slurry preparation for manufacturing lithium ion battery cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310824

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016567914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167033990

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014892414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892414

Country of ref document: EP