CN108117096A - 锂离子电池负极材料以及锂离子电池负极 - Google Patents

锂离子电池负极材料以及锂离子电池负极 Download PDF

Info

Publication number
CN108117096A
CN108117096A CN201611072844.2A CN201611072844A CN108117096A CN 108117096 A CN108117096 A CN 108117096A CN 201611072844 A CN201611072844 A CN 201611072844A CN 108117096 A CN108117096 A CN 108117096A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
negative material
battery negative
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611072844.2A
Other languages
English (en)
Inventor
杨立
章正熙
黄�俊
田青华
古贺英行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Toyota Motor Corp
Original Assignee
Shanghai Jiaotong University
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Toyota Motor Corp filed Critical Shanghai Jiaotong University
Priority to CN201611072844.2A priority Critical patent/CN108117096A/zh
Priority to JP2017194220A priority patent/JP6492146B2/ja
Priority to US15/808,348 priority patent/US20180151878A1/en
Publication of CN108117096A publication Critical patent/CN108117096A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锂离子电池负极材料,其符合分子式:MxNyTizO(x+3y+4z)/2,其中:0≤x≤8,1≤y≤8,1≤z≤8;M为碱金属,选自Li、Na和K;且N为选自P、Sb、Bi的第VA主族元素,或选自Nd、Pm、Sm、Eu、Yb、La的稀土金属。相对于脱嵌锂电位在0.8‑1.2V的钛基负极材料,本发明材料能提供更好的电位平台,且提供更加优异的循环性能和倍率性。

Description

锂离子电池负极材料以及锂离子电池负极
技术领域
本发明涉及一种新型锂离子电池负极材料以及含有该负极材料的锂离子电池负极,尤其涉及一种脱嵌锂电位在0.8-1.2V vs.Li+/Li的负极材料。
背景技术
目前,商业化的锂离子电池多采用石墨作为负极材料,其充放电平台电位低(0.1Vvs.Li+/Li),耐过充能力较弱,容易导致电解液还原分解的副反应发生;另外,初期充电时形成的固体电解质界面膜(SEI)的长期稳定性不能保证,高温工作时还易发生分解,使电池存在膨胀、燃烧等安全隐患,同时容易产生锂枝晶,这些问题都严重威胁锂离子电池的安全性。钛酸盐,比如Li4Ti5O12,其脱嵌锂电位在~1.55V Li+/Li,不会形成SEI膜以及锂枝晶,因而电池的安全性显著提高,但其代价是降低了全电池电压。
由于脱嵌锂电位在0.8-1.2V的负极材料其充放电电位足够高,在避免产生锂枝晶的同时又不会显著降低全电池电压,因此引起了广泛的关注。具有0.8-1.2V脱嵌锂电位的钛基负极材料目前报道的并不多,但都存在一定的问题,比如已有报道的钛基材料MLi2Ti6O14(M=Ba,Sr,Pb,2Na,2K)等(J.Electroanal.Chem.,717,10-16,2014.J.PowerSources,293,33-41,2015.Electrochim.Acta,173,595-606,2015.J.Power Sources,296,276-281,2015.Inorg.Chem.2010,49,2822–2826)。与Li4Ti5O12相比,Na2Li2Ti6O14具有较低的充放电平台电位(1.25V左右),但其电位平台较短,且材料电子电导率和锂离子扩散系数较低,导致倍率性能较差。另外已有报道的Li(V0.5Ti0.5)S2(Nat.Commun.,7,1761-1767,2016)材料制备方法复杂,需要真空高压等苛刻的条件,且其循环性能较差。
发明内容
为了避免商业化锂离子电池石墨负极潜在的锂枝晶等安全问题,以及已有的脱嵌锂电位在0.8-1.2V vs.Li+/Li的负极材料的缺点,研究开发了一类新型的脱嵌锂电位在0.8-1.2V vs.Li+/Li的负极材料。
本发明的锂离子电池负极材料,其符合分子式:MxNyTizO(x+3y+4z)/2,其中:
0≤x≤8,1≤y≤8,1≤z≤8;
M为碱金属,选自Li、Na和K;且
N为选自P、Sb、Bi的第VA主族元素,或选自Nd、Pm、Sm、Eu、Yb、La的稀土金属。
本发明优选的锂离子电池负极材料,其中,0≤x≤5,1≤y≤5,1≤z≤5。
本发明优选的锂离子电池负极材料,其中M为Li或Na,且N为Bi或Eu。
本发明优选的锂离子电池负极材料,其为LiEuTiO4、NaBiTiO4、LiBiTiO4或Bi4Ti3O12
本发明优选的锂离子电池负极材料,其粒径为0.1-20微米。
本发明还提供一种锂离子电池负极,其包含本发明的上述锂离子电池负极材料。
相对于已有的脱嵌锂电位在0.8-1.2V的钛基负极材料,本发明材料能提供更好的电位平台,且提供更加优异的循环性能和倍率性。
附图说明
图1和图2分别为实施例1的负极材料LiEuTiO4的XRD图和SEM图;
图3和图4分别为实施例1的负极材料LiEuTiO4的充放电曲线图和循环特性图;
图5和图6分别为实施例2的负极材料NaBiTiO4的XRD图和SEM图;
图7为实施例2的负极材料NaBiTiO4的充放电曲线图;
图8和图9分别为实施例3的负极材料LiBiTiO4的XRD图和SEM图;
图10为实施例3的负极材料LiBiTiO4的充放电曲线图;
图11和图12分别为实施例4的负极材料Bi4Ti3O12的XRD图和SEM图;及
图13为实施例4的负极材料Bi4Ti3O12的充放电曲线图。
具体实施方式
本发明的负极材料化合物符合分子式MxNyTizO(x+3y+4z)/2其中:0≤x≤8,1≤y≤8,1≤z≤8;M为碱金属,选自Li、Na和K;且N为选自P、Sb、Bi的第VA主族元素,或选自Nd、Pm、Sm、Eu、Yb、La的稀土金属。优选地,0≤x≤5,1≤y≤5,1≤z≤5。优选地,M为Li或Na;N为Bi或Eu。
本发明具体实施例中制得的负极材料为结晶的片状或团聚的颗粒,尺寸可以为0.1-20微米,优选为0.2-10微米。但本发明负极材料对颗粒形态和尺寸没有特别的要求,只要能符合一般锂电池负极原料的颗粒要求。
本发明的负极材料可以通过以下三种方法合成:包括固相法、溶剂热法和溶胶-凝胶反应。方法中作为反应起始物所用的M源为碱金属的氢氧化物、碳酸盐、草酸盐、硝酸盐、醋酸盐或硫酸盐。钛源为例如二氧化钛、四氯化钛、钛酸四丁酯、异丙醇钛。N源为第VA主族元素或稀土金属的氧化物、硝酸盐、碳酸盐、草酸盐、硫酸盐或柠檬酸盐。
传统固相反应法:
M源、钛源和N源按照所需负极材料化合物分子式化学计量比,进行混合(例如通过球磨或研磨的方法)后进行热处理(例如600-1200℃,2-24h)。然后根据需要在熔融盐(300-700℃,3-24h)条件下进行离子交换(比如为了得到LiEuTiO4,由于Li元素高温处理过程中易挥发,所以可先采用Na元素,得到NaEuTiO4,然后将其与熔融得Li盐(如LiNO3)进行离子交换得到LiEuTiO4,具体见后面实例的制备过程)。最后对产物进行洗涤(水或醇洗)和干燥(60-150℃,6-24h)。
溶剂热法:
M源、钛源和N源按照所需负极材料化合物分子式化学计量比,溶于溶剂(例如水、乙醇、醋酸、氨水、硝酸、氢氧化钠)中并搅拌(0.5-6h),以分散和溶解反应原料。然后将溶液,例如装入不锈钢反应釜中,进行热处理(120-220℃,12-48h)。最后,收集沉淀产物,并进行洗涤(水或醇洗)和干燥(60-150℃,6-24h)。
溶胶-凝胶反应法:
碱金属盐(例如氢氧化物、碳酸盐、草酸盐、硝酸盐、醋酸盐、硫酸盐等)溶解在溶剂(例如水、或乙醇、醋酸、氨水、硝酸、氢氧化钠等的溶液)中并搅拌。第ⅤA主族元素或稀土金属(例如氧化物、硝酸盐、碳酸盐、草酸盐、硫酸盐、柠檬酸盐等)溶于溶剂(例如水、乙醇、醋酸、氨水、硝酸等)中并将其在搅拌条件下加入碱金属盐溶液中。然后加入钛源(例如二氧化钛、四氯化钛、钛酸四丁酯、异丙醇钛等)并加入水。将混合液搅拌2h后在80-120℃下老化10-48h并蒸发掉多余溶剂。将得到的干凝胶(金属的氧化物或氢氧化物或配合物)在500-1200℃下煅烧2-15h。
负极材料的测试
通过XRD和SEM对材料MxNyTizO(x+3y+4z)/2的晶体结构和形貌进行分析,并将其作为锂离子电池负极材料进行电化学性能测试。
电化学性能测试条件:
电池测试采用负极材料作为工作电极,金属锂作为对电极;
电解液:碳酸二乙酯/碳酸二甲酯=1/1,1M LiPF6;温度:25℃;
粘结剂:羧基甲基纤维素(CMC);
电极材料成分比例:负极材料(活性物质):导电乙炔黑:CMC=70:20:10;
隔膜:PE聚合物隔膜;
电压范围:0.01-3.0V vs.Li+/Li。
实施例
实施例1.LiEuTiO4
制备方法:固相反应法
0.13mol Na2C2O4、0.2mol TiO2和0.1mol Eu2O3作为反应起始物按化学计量比在研钵中进行研磨混合,然后进行热处理(900℃,12h),合成得到0.2mol NaEuTiO4。NaEuTiO4与锂离子在熔融的0.26mol LiNO3(350℃,12h)中进行离子交换,得到的产物LiEuTiO4进行洗涤(水洗)并在烘箱中进行干燥(80℃)。
从产物的X射线衍射图(XRD图,图1)中可以看出,产物LiEuTiO4被成功合成且具有良好的结晶性。
从LiEuTiO4的扫描电子显微镜图(SEM图,图2)中可以看出产品呈现出片状,尺寸在2微米左右。
电化学性能:
对LiEuTiO4的电化学性能进行测试,总的来说其充放电曲线的平台位于~0.8V,参见图3和图4,其中充放电电流密度:100mA/g。
与本发明的目标一致,LiEuTiO4的充放电曲线具有一个0.8V vs Li+/Li的电位平台。从图3中可以看出,100次循环后,LiEuTiO4的放电比容量保持稳定,在170mAh g-1左右,同时20次循环后其库伦效率保持在100%左右。
实施例2.NaBiTiO4
方法:固相反应法
0.1molNa2C2O4、0.2mol TiO2和0.1mol Bi2O3作为反应起始物按照化学计量比在研钵中进行研磨混合,然后进行热处理(800℃,12h)得到0.2mol NaBiTiO4。对产物NaBiTiO4进行水洗和烘箱中干燥(80℃)。
从XRD图(图5)中可以看出NaBiTiO4被成功合成并具有良好的结晶性。
从SEM图(图6)中可以看出样品具有片状外形,尺寸在微米级。
电化学性能:
从NaBiTiO4的充放电图(图7)中可以看出,其具有一个0.8V vs Li+/Li的电位平台。经过10次循环后,NaBiTiO4的比容量保持在355mAh g-1
实施例3.LiBiTiO4
方法:固相反应法
0.13mol Na2C2O4、0.2mol TiO2和0.1mol Bi2O3作为反应起始物按照化学计量比在研钵中进行研磨混合,然后进行热处理(800℃,12h)得到0.2mol NaBiTiO4。NaBiTiO4与锂离子在熔融的0.26mol LiNO3(350℃,12h)中进行离子交换,将得到的产物LiBiTiO4进行洗涤(水洗)并在烘箱中进行干燥(80℃)。
从XRD图(图8)中可以看出成功合成了LiBiTiO4
从SEM图(图9)中可以看出产物呈现出片状。尺寸为1-2μm。
电化学性能:
从LiBiTiO4的充放电曲线(图10)中可以看出,其具有一个0.8V vs Li+/Li的电位平台。50次循环后,LiBiTiO4的比容量保持在217.8mAh g-1
实施例4.Bi4Ti3O12
方法:水热法(溶剂热法)
将0.1mol硝酸铋与0.075mol异丙醇钛分别加入100mL水中,在加入KOH溶液调节pH值至12,然后将所得溶液超声30分钟,放入水热反应釜,180℃加热24小时,最后将所得沉淀物用水洗涤后,80℃空气中干燥。
从产物的XRD图(图11)中可以看出成功合成了Bi4Ti3O12
从产物的SEM图(图12)中可以看出,样品尺寸在300-500nm左右,且团聚在一起。
电化学性能:
从Bi4Ti3O12的充放电曲线(图13)中可以看出,其具有一个0.8V vs Li+/Li的电位平台。60次循环后,Bi4Ti3O12的比容量保持在275.8mAh g-1
比较例1:Na2Li2Ti6O14(J.Power Sources,293,33-41,2015.)
其脱嵌锂电位在1.25V,但其平台较短,平台容量仅为80mAh g-1左右,30次循环后其放电比容量大约为175mAh g-1
比较例2:MLi2Ti6O14(M=Sr,Ba,2Na)(Inorg.Chem.2010,49,2822–2826)
平台大多在1.5V左右,比容量较低,第一次放电比容量约为120-160mAh g-1

Claims (6)

1.一种锂离子电池负极材料,其符合分子式:MxNyTizO(x+3y+4z)/2,其中:
0≤x≤8,1≤y≤8,1≤z≤8;
M为碱金属,选自Li、Na和K;且
N为选自P、Sb、Bi的第VA主族元素,或选自Nd、Pm、Sm、Eu、Yb、La的稀土金属。
2.如权利要求1所述的锂离子电池负极材料,其中,0≤x≤5,1≤y≤5,1≤z≤5。
3.如权利要求1所述的锂离子电池负极材料,其中M为Li或Na,且N为Bi或Eu。
4.如权利要求1所述的锂离子电池负极材料,其为LiEuTiO4、NaBiTiO4、LiBiTiO4或Bi4Ti3O12
5.如权利要求1-4任一项所述的锂离子电池负极材料,其粒径为0.1-20微米。
6.一种锂离子电池负极,其包含权利要求1-5任一项所述的锂离子电池负极材料作为活性物质。
CN201611072844.2A 2016-11-29 2016-11-29 锂离子电池负极材料以及锂离子电池负极 Pending CN108117096A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611072844.2A CN108117096A (zh) 2016-11-29 2016-11-29 锂离子电池负极材料以及锂离子电池负极
JP2017194220A JP6492146B2 (ja) 2016-11-29 2017-10-04 リチウムイオン電池用負極材料及びリチウムイオン電池用負極
US15/808,348 US20180151878A1 (en) 2016-11-29 2017-11-09 Anode material for lithium-ion battery and anode for lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611072844.2A CN108117096A (zh) 2016-11-29 2016-11-29 锂离子电池负极材料以及锂离子电池负极

Publications (1)

Publication Number Publication Date
CN108117096A true CN108117096A (zh) 2018-06-05

Family

ID=62192877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611072844.2A Pending CN108117096A (zh) 2016-11-29 2016-11-29 锂离子电池负极材料以及锂离子电池负极

Country Status (3)

Country Link
US (1) US20180151878A1 (zh)
JP (1) JP6492146B2 (zh)
CN (1) CN108117096A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975388A (zh) * 2018-07-20 2018-12-11 成都理工大学 一种一锅合成LiEuTiO4锂离子电池阳极材料的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553127B (zh) * 2018-12-29 2021-06-29 陕西科技大学 一种水热法制备的钛酸铋钠纳米线及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222046A (zh) * 2008-01-25 2008-07-16 南京大学 锂电池的正极材料及高温固相烧结制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530095B2 (en) * 2009-09-09 2013-09-10 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
US9011713B2 (en) * 2011-07-05 2015-04-21 Samsung Sdi Co., Ltd. Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP2014049198A (ja) * 2012-08-29 2014-03-17 Toyota Motor Corp 電池用焼結体、全固体リチウム電池および電池用焼結体の製造方法
JP5831426B2 (ja) * 2012-10-31 2015-12-09 トヨタ自動車株式会社 リチウムイオン電池用負極活物質、リチウムイオン電池、及び、リチウムイオン電池の使用方法
JP2014192133A (ja) * 2013-03-28 2014-10-06 Kyocera Corp 活物質およびそれを用いた二次電池
US10276861B2 (en) * 2014-05-19 2019-04-30 Dow Global Technologies Llc Composition for lithium ion battery electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222046A (zh) * 2008-01-25 2008-07-16 南京大学 锂电池的正极材料及高温固相烧结制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONG-YOUNG KIM ET AL.: ""Macromolecular Nanoplatelet of Aurivillius-type Layered Perovskite Oxide Bi4Ti3O12"", 《CHEM. MATER.》 *
SANG-HOON SONG ET AL.: ""Effect of an Internal Electric Field on the Redox Energies of ALnTiO4 (A = Na or Li, Ln = Y or Rare-Earth)"", 《CHEM. MATER.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975388A (zh) * 2018-07-20 2018-12-11 成都理工大学 一种一锅合成LiEuTiO4锂离子电池阳极材料的方法

Also Published As

Publication number Publication date
JP6492146B2 (ja) 2019-03-27
US20180151878A1 (en) 2018-05-31
JP2018088395A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
Xu et al. The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN110010889A (zh) 一种高压实高稳定性高镍正极材料及其制备方法以及一种锂离子电池
CN108390022A (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN106532035A (zh) 一种锂离子电池三元正极材料及其制备方法
CN105070907A (zh) 一种高镍正极材料及其制备方法和锂离子电池
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
CN107534132A (zh) 锂二次电池用正极活性材料、其制备方法和包含其的二次电池
CN106602015A (zh) 一种氟掺杂的镍钴锰系三元正极材料的制备方法及制得的材料
CN104934597A (zh) 一类钠离子电池正极材料的制备及应用
CN105576233A (zh) 一种镍基三元正极材料及其制备方法
CN105552360A (zh) 一种改性的镍钴锰酸锂正极材料及其制备方法
CN105914400B (zh) 电解液及钠离子电池
CN105938899A (zh) 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用
CN101847717A (zh) 一种锂离子电池用钛酸锂复合负极材料的制备方法
CN104112845A (zh) 一种锂离子电池正极材料及其制备方法
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
CN104091943A (zh) 一种高功率锂离子正极材料及其制备方法
CN110034274A (zh) 改性三元正极材料、其制备方法及锂离子电池
CN107611384A (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN105655563B (zh) 一种锂离子电池复合负极材料及其制备方法
CN103746113A (zh) 一种包覆型尖晶石锰酸锂复合正极材料的制备方法
CN105845926A (zh) 正极材料湿法包覆铝的方法、正极材料、正极、电池
CN103367733A (zh) 锂离子电池正极材料及其制备方法、电池
Álvarez‐Serrano et al. Stable manganese‐oxide composites as cathodes for Zn‐ion batteries: interface activation from in situ layer electrochemical deposition under 2 V

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180605