WO2015174460A1 - 酵素特異的な細胞内滞留性蛍光化合物 - Google Patents

酵素特異的な細胞内滞留性蛍光化合物 Download PDF

Info

Publication number
WO2015174460A1
WO2015174460A1 PCT/JP2015/063789 JP2015063789W WO2015174460A1 WO 2015174460 A1 WO2015174460 A1 WO 2015174460A1 JP 2015063789 W JP2015063789 W JP 2015063789W WO 2015174460 A1 WO2015174460 A1 WO 2015174460A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
hmder
fluorescent compound
βgal
specific
Prior art date
Application number
PCT/JP2015/063789
Other languages
English (en)
French (fr)
Inventor
泰照 浦野
真子 神谷
智裕 堂浦
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US15/310,641 priority Critical patent/US9981934B2/en
Priority to JP2016519289A priority patent/JP6635555B2/ja
Priority to EP15793236.9A priority patent/EP3144315B1/en
Priority to CA2948306A priority patent/CA2948306A1/en
Priority to CN201580025824.7A priority patent/CN106459125B/zh
Publication of WO2015174460A1 publication Critical patent/WO2015174460A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/938Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-galactose-glycoside bonds, e.g. beta-galactosidase

Definitions

  • the present invention relates to a novel fluorescent compound that stays in a target cell and can specifically act on the cell, and a method for specifically imaging a target cell in which a specific enzyme is expressed using the compound,
  • the present invention relates to a probe used for imaging, and a detection kit, detection agent, diagnostic agent or kit containing the probe. More specifically, the present invention relates to a fluorescent compound that selectively visualizes cells expressing a reporter enzyme such as ⁇ -galactosidase, and an imaging method, imaging probe, detection agent, diagnostic agent or kit using the same.
  • Non-patent Document 1 ⁇ -galactosidase enzyme-specific imaging probes are molecular tools for elucidating the aging mechanism of cells. It is also important. Furthermore, since it has been shown that ⁇ -galactosidase activity is increased in certain types of cancer cells (Non-Patent Document 2 and Non-Patent Document 3), an imaging probe specific for ⁇ -galactosidase enzyme is selected for cancer cells. It can be used as a typical fluorescent imaging probe.
  • Non-patent Document 4 a method for imaging enzyme activity using X-Gal as a substrate has been widely used.
  • X-Gal cannot be applied to living cells, it can be applied to living cells.
  • Development of an imaging probe is desired.
  • imaging probes applicable to many living cells have been developed.
  • HMDER- ⁇ Gal and the like have been developed as ⁇ -galactosidase fluorescent probes applicable to living cells and living tissues that can be excited by visible light by controlling the spirocyclization reaction in the molecule (Non-patent Documents). 5, Patent Document 1).
  • the enzyme reaction product leaks from the cells, or because cytotoxic UV light is used as excitation light, live cells etc. are clearly imaged at the single cell level. It was difficult to do.
  • conventional cancer probes have a problem that they cannot be used for pathological diagnosis because they leak out of the cell by immobilizing a section for pathological diagnosis.
  • the problem to be solved by the present invention is to generate fluorescence specifically for an enzyme activity, and at the same time, stay in the cell having the enzyme without fixing or fixing the cell.
  • a fluorescent imaging probe using the fluorescent compound a detection method using the fluorescent probe, a detection kit, or a detection agent.
  • an enzyme substrate having a substituent that changes a fluorescent dye to a quinone methide after reaction with a reporter enzyme into a fluorescent dye having a xanthene ring as a fluorophore It was discovered that by optimizing the structure and reacting with a reporter enzyme such as ⁇ -galactosidase, a fluorescent imaging probe that exhibits fluorescence for the first time and exhibits excellent intracellular retention can be obtained. . Based on this finding, the present invention has been completed.
  • the present invention provides an enzyme-specific retention fluorescent compound containing a compound represented by the following formula (I) or a salt thereof.
  • A represents a monovalent group cleaved by an enzyme
  • R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring
  • R 3 , R 4 , R 5 and R 6 each independently represent —CFR 10 R 11 or —CF 2 R 12 , or a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom
  • R 2 and R 7 each independently represent a hydrogen atom
  • R 8 and R 9 each independently represent a hydrogen atom or an alkyl group
  • R 10 , R 11 and R 12 each independently represent a hydrogen atom, an alkyl group or an alkenyl group
  • X is an oxygen atom, Se, CR 13 R 14, or represents SiR 15 R 16
  • R 13, R 14, a hydrogen atom or a to R 15 and R 16 are each independently Represents Kill group
  • Y represents a C 1 -C 3 alkylene group
  • Z represents an oxygen
  • the enzyme-specific retention fluorescent compound is represented by the following formula. (In the formula, A, R 1 to R 9 , X and Y are the same as in formula (I).)
  • At least one of R 3 , R 4 , R 5 , and R 6 is —CFR 10 R 11 .
  • At least one of R 3 , R 4 , R 5 , and R 6 is —CH 2 F.
  • A is a group that is cleaved by a hydrolase containing a reporter enzyme or an enzyme that is specifically expressed or activated in cancer cells, and more preferably, A is a galactopyranosyl group.
  • the reporter enzyme is ⁇ -galactosidase.
  • the enzyme-specific retention fluorescent compound or a salt thereof is a compound represented by (Ia) to (Ic) or a salt thereof.
  • the present invention relates to a fluorescent probe containing an enzyme-specific retentive fluorescent compound represented by the formula (I), (I ′) or (Ia) to (Ic).
  • the present invention expresses a specific enzyme containing an enzyme-specific retentive fluorescent compound represented by formula (I), (I ′) or (Ia)-(Ic)
  • the present invention relates to a composition or a kit for detecting or visualizing a target cell.
  • the target cell is a ⁇ -galactosidase-expressing cell, and more preferably the target cell is a cancer cell.
  • the present invention expresses a specific enzyme using an enzyme-specific retention fluorescent compound represented by the formula (I), (I ′) or (Ia) to (Ic)
  • the present invention relates to a method for detecting a target cell.
  • an enzyme-specific retention fluorescent compound and an enzyme that is specifically expressed in the target cell are contacted in vitro or in vivo to detect a target cell in which the specific enzyme is expressed.
  • the method includes a step of bringing an enzyme-specific retention fluorescent compound and an enzyme specifically expressed in the target cell into contact in vitro or in vivo, and a step of generating fluorescence by performing excitation light irradiation.
  • the present invention relates to a method for detecting a target cell in which the specific enzyme is expressed. More preferably, in the method, the target cell is a ⁇ -galactosidase-expressing cell, and more preferably the target cell is a cancer cell.
  • the present invention relates to a compound represented by the following formula (II), which is used for producing the formula (I).
  • R 3 , R 4 , R 5 , and R 6 each independently represent —C ( ⁇ O) H, a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom
  • R 2 and R 7 each represent Independently represents a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom
  • R 8 and R 9 each independently represent a hydrogen atom or an alkyl group
  • X represents an oxygen atom or Se, CR 13 R 14 , or SiR 15 R
  • 16 represents;
  • R 13, R 14, R 15 and R 16 each independently represent a hydrogen atom or an alkyl group
  • Y represents a C 1 -C 3 alkylene group, wherein, R 3, R 4, R 5 And at least one of R 6 represents —C ( ⁇ O) H.
  • the compound of the formula (II) is a compound represented by the following formula (IIa) or (IIb).
  • the enzyme-specific retentive fluorescent compound of the present invention changes the visible light absorption by an enzyme reaction, and at the same time uses the produced quinone methide to covalently bond to a protein that coexists in the cell, thereby providing excellent intracellular retentivity. Indicates. As a result of the combination of these effects, it becomes possible to visualize target cells expressing the enzyme in a detailed level such as a single cell level in a live cell state or in a fixed state.
  • the enzyme-specific retention fluorescent compound of the present invention can be used as a molecular tool for elucidating the aging mechanism of cells, and can also be used as a selective fluorescent imaging probe in certain types of cancer cells.
  • the imaging technique using the enzyme-specific retention fluorescent compound of the present invention can be performed with a microscope capable of normal cell imaging, and does not require any special equipment.
  • fluorescence imaging at the single cell level is possible, it is possible to track changes in individual cells over time, and surgically without leaving cancer tissue using cancer cell selective fluorescence imaging It can also be excised.
  • the industrial utility value and economic effect of the enzyme-specific retention fluorescent compound of the present invention are considered to be extremely large.
  • FIG. 1 shows the intensity of fluorescence (a) generated by an enzyme reaction between 2-CHF 2 -HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, and ⁇ -galactosidase (a), change in absorption spectrum (b), It is the figure which showed the fluorescence spectrum (c).
  • FIG. 2 shows the intensity (a) of fluorescence generated by the enzymatic reaction of 4-CHF 2 -HMDER- ⁇ Gal, which is the enzyme-specific retention fluorescent compound of the present invention, with ⁇ -galactosidase, change in absorption spectrum (b), It is the figure which showed the fluorescence spectrum (c).
  • FIG. 1 shows the intensity of fluorescence (a) generated by an enzyme reaction between 2-CHF 2 -HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, and ⁇ -galactosidase (a), change in absorption spectrum (b), It is the figure which showed the fluorescence spectrum (c).
  • FIG. 3 shows the fluorescence intensity (a), the change in absorption spectrum (b) generated by the enzymatic reaction between 4-CH 2 F-HMDER- ⁇ Gal, which is the enzyme-specific retention fluorescent compound of the present invention, and ⁇ -galactosidase, It is the figure which showed the fluorescence spectrum (c).
  • FIG. 4 shows the enzyme-specific retention fluorescent compounds of the present invention, 2-CHF 2 -HMDER- ⁇ Gal, 4-CHF 2 -HMDER- ⁇ Gal, and 4-CH 2 F-HMDER- ⁇ Gal, and ⁇ -galactosidase. It is the figure which showed that the protein BSA which coexists in a solution can be fluorescence-labeled by making it react with an enzyme.
  • (A) A fluorescence image obtained when an SDS-PAGE gel was excited with excitation light having a wavelength of 488 nm.
  • Lane 1 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 0.5 mg / mL BSA
  • Lane 2 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal, 0.5 mg / mL BSA and 5U ⁇ -galactosidase
  • Lane 3 2.5 ⁇ M 4-CHF 2 -HMDER- ⁇ Gal, 0.5 mg / mL BSA and 5U ⁇ -galactosidase
  • Lane 4 2.5 ⁇ M 2-CHF 2 -HMDER- ⁇ Gal, 0.5 mg / mL BSA And 5U ⁇ -galactosidase
  • lane 5 2.5 ⁇ M HMDER- ⁇ Gal, 0.5 mg / mL BSA and 5U ⁇ -galactosidase.
  • FIG. 5 shows that the enzyme-specific retention fluorescent compounds of the present invention, 2-CHF 2 -HMDER- ⁇ Gal, 4-CHF 2 -HMDER- ⁇ Gal, and 4-CH 2 F-HMDER- ⁇ Gal, inhibit intracellular proteins. It is a figure which shows carrying out fluorescence labeling specific to enzyme activity.
  • A A fluorescence image obtained when an SDS-PAGE gel was excited with excitation light having a wavelength of 488 nm.
  • Lane 1 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK cell lysate
  • Lane 2 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK- lacZ cell lysate
  • lane 3 2.5 ⁇ M 4-CHF 2 -HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK-lacZ cell lysate
  • lane 4 2.5 ⁇ M 2-CHF 2 -HMDER- ⁇ Gal and 20 ⁇ L 5 mg / mL HEK-lacZ cell lysate
  • lane 5 2.5 ⁇ M HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK-lacZ cell lysate.
  • FIG. 6 is a diagram showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be used for live cell fluorescence imaging at the single cell level.
  • FIG. 7 is a diagram showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, has excellent intracellular retention.
  • FIG. 8 shows that by using 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, fluorescence imaging similar to that of living cells can be performed even in a sample subjected to fixation treatment.
  • FIG. 9 shows that cells having different enzyme activities can be detected or distinguished using flow cytometry by utilizing 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention.
  • FIG. (A) Flow cytometry results of HEK cells, HEK-LacZ cells, and mixtures thereof reacted with 4-CH 2 F-HMDER- ⁇ Gal.
  • (B) Flow cytometry results of HEK cells, HEK-LacZ cells, and mixtures thereof reacted with HMDER- ⁇ Gal.
  • FIG. 10 is a diagram showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be applied to fluorescence imaging of living tissues.
  • FIG. 11 is a diagram showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be applied to single-cell fluorescence imaging.
  • A Image of Drosophila (esg-lacZ) reacted with 4-CH 2 F-HMDER- ⁇ Gal. From left, fluorescence image and bright field image.
  • FIG. 12 is a fluorescence spectrum image showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be applied to cancer site-selective fluorescence imaging.
  • White arrows indicate tumor location. Unmixed is an autofluorescence and fluorescence spectrum separated by a fluorescence spectrum.
  • FIG. 13 is a diagram showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be applied to fluorescence imaging of unfixed cells in a living body.
  • FIG. 14 shows that the enzyme-specific retention fluorescent compound of the present invention, 4-CH 2 F-HMDER- ⁇ Gal, can be applied to single-cell fluorescence imaging of ⁇ -galactosidase activity that is randomly expressed in living tissue.
  • FIG. 12 is a fluorescence spectrum image showing that 4-CH 2 F-HMDER- ⁇ Gal, which is an enzyme-specific retention fluorescent compound of the present invention, can be applied to cancer site-
  • the alkyl group or alkenyl group may be any of an alkyl group or alkenyl group composed of linear, branched, cyclic, or a combination thereof.
  • the number of carbon atoms of the alkyl group or alkenyl group is not particularly limited, but is, for example, about 1 to 6 carbon atoms, preferably about 1 to 4 carbon atoms, and more preferably about 1 or 2 carbon atoms.
  • the alkyl group or alkenyl group may have one or more arbitrary substituents.
  • substituents examples include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
  • a group, an aryl group, and the like can be mentioned, but are not limited thereto.
  • the alkyl group or alkenyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part or alkenyl part of other substituents containing an alkyl part or alkenyl part (for example, an alkyloxy group or an aralkyl group).
  • Enzyme-specific retention fluorescent compound is, in one embodiment, a compound having a structure represented by the following general formula (I).
  • R 1 represents a hydrogen atom or 1 to 4 substituents bonded to a benzene ring.
  • substituents include, but are not limited to, an alkyl group, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
  • R 1 is more preferably a hydrogen atom, a lower alkyl group or a lower alkoxy group.
  • a hydrogen atom is particularly preferred.
  • R 3 , R 4 , R 5 , and R 6 each independently represent —CFR 10 R 11 or —CF 2 R 12 , or represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom, and R 10 , R 11 And R 12 each independently represents a hydrogen atom, an alkyl group or an alkenyl group, and further, at least one of R 3 , R 4 , R 5 , and R 6 is —CFR 10 R 11 or —CF 2 R 12 is represented. At least one of R 3 , R 4 , R 5 , and R 6 is preferably —CFR 10 R 11 . More preferably, at least one of R 3 , R 4 , R 5 , and R 6 is —CH 2 F.
  • R 2 and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom.
  • R 2 and R 7 are preferably hydrogen atoms.
  • R 8 and R 9 each independently represent a hydrogen atom or an alkyl group. When R 8 and R 9 both represent an alkyl group, they may be the same or different.
  • R 8 and R 9 are each independently preferably a methyl group or an ethyl group, and more preferably R 8 and R 9 are both ethyl groups.
  • X represents an oxygen atom, Se, CR 13 R 14 , or SiR 15 R 16 .
  • R 13 , R 14 , R 15 and R 16 each independently represent a hydrogen atom or an alkyl group. Of these, an oxygen atom is preferred.
  • the alkylene group may be a linear alkylene group or a branched alkylene group.
  • a methylene group (—CH 2 —)
  • an ethylene group (—CH 2 —CH 2 —)
  • a propylene group (—CH 2 —CH 2 —CH 2 —)
  • a branched alkylene group such as —CH ( CH 3 ) —, —CH 2 —CH (CH 3 ) —, —CH (CH 2 CH 3 ) — and the like can also be used.
  • a methylene group or an ethylene group is preferable, and a methylene group is more preferable.
  • Z represents an oxygen atom or NR 17
  • R 17 represents a hydrogen atom or an alkyl group. Of these, an oxygen atom is preferred.
  • the group A represents a monovalent group that is cleaved by an enzyme.
  • a ⁇ -galactopyranosyl group an ⁇ -mannosyl group, a ⁇ -N-acetylglucosamyl group, a ⁇ -lactam ring
  • examples thereof include, but are not limited to, phosphate esters, aminophenoxy groups, hydroxyphenoxy groups, and ⁇ -glutamic acid.
  • Examples of the enzyme for cleaving A include a reductase, an oxidase, or a hydrolase.
  • a reporter enzyme or an enzyme that is specifically expressed or activated in cancer cells more specifically, , ⁇ -galactosidase, ⁇ -lactamase, ⁇ -mannosidase, esterase, alkaline phosphatase, luciferase, peroxidase, cytochrome P450 oxidase, ⁇ -glucosidase, ⁇ -glucuronidase, ⁇ -hexosaminidase, lactase, ⁇ -glutamyltransferase, etc. It can be mentioned, but is not limited to these.
  • ⁇ -galactosidase Preferred are ⁇ -galactosidase, ⁇ -lactamase, alkaline phosphatase, luciferase, ⁇ -hexosaminidase, peroxidase, or ⁇ -glutamyltransferase. Most preferred is ⁇ -galactosidase.
  • the compound represented by the above formula (I) may exist as a salt.
  • the salt include base addition salts, acid addition salts, amino acid salts and the like.
  • the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt.
  • Examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate.
  • Examples of amino acid salts include glycine salts.
  • the salt of the compound of the present invention is not limited to these.
  • the compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
  • the compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • solvents such as ethanol, acetone, isopropanol, can be illustrated.
  • cleavage of the group A and the opening of the spiro ring are caused by ⁇ -galactosidase as follows, and the fluorescent compound (III) covalently bound to the intracellular protein is produced.
  • the fluorescent compound (III) covalently bound to the intracellular protein is produced. Details of the mechanism by which a compound similar to formula (III) emits fluorescence are known to those skilled in the art as described in WO 2005/024049.
  • the compound represented by the general formula (I) or a salt thereof hardly emits fluorescence when irradiated with excitation light of, for example, about 440 to 550 nm in the neutral region, but the ring-opened compound produced by the enzyme activity is It has the property of emitting extremely strong fluorescence under the same conditions. Therefore, when the cell that has taken in the enzyme-specific retention fluorescent compound represented by formula (I) does not express an enzyme capable of cleaving the group represented by A, it is represented by formula (III). Such a ring-opening compound is not produced, and no fluorescent substance is produced in the cells.
  • the compound represented by the formula (I) of the present invention enables detailed visualization at the single cell level without fixing the cells or after the fixing treatment.
  • it has a wide range of uses such as a diagnostic agent and a diagnostic agent used for rapid pathological examination in a surgical field such as cancer.
  • the intracellular retentive fluorescent compound of the present invention is selected from the cells of target cells expressing a specific enzyme. It can be used for a method of specific visualization. Specifically, the step of contacting the enzyme-specific retention fluorescent compound of formula (I) with an enzyme such as ⁇ -galactosidase that is specifically expressed in the target cell, and then fluorescence generated by irradiation with excitation light By performing the step of detecting, only target cells expressing ⁇ -galactosidase or the like can be specifically visualized.
  • the intracellular retention fluorescent compound of the present invention As a means for bringing the intracellular retention fluorescent compound of the present invention into contact with an enzyme that is specifically expressed in a target cell, typically, a sample containing a solution containing the enzyme specific retention fluorescent compound is added, applied, or Although spraying is mentioned, it can select suitably according to the use.
  • a sample containing a solution containing the enzyme specific retention fluorescent compound is added, applied, or Although spraying is mentioned, it can select suitably according to the use.
  • the intracellular retention fluorescent compound of the present invention is applied to diagnosis or diagnosis assistance in an animal individual, or detection of a specific cell or tissue, the compound and an enzyme expressed in a target cell or tissue
  • the means for contacting is not particularly limited, and for example, administration means common in the art such as intravenous administration can be used.
  • the light irradiation performed on the target cell can be performed by irradiating the cell with light directly or via a waveguide (such as an optical fiber).
  • a waveguide such as an optical fiber.
  • any light source can be used as long as it can irradiate light including the absorption wavelength of the enzyme-specific stagnant fluorescent compound of the present invention after being subjected to enzyme cleavage. It may be appropriately selected depending on the environment to be implemented.
  • the compound represented by the above general formula (I) or a salt thereof may be used as it is, but if necessary, an additive usually used for preparing a reagent may be used. You may mix
  • additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible.
  • These compositions are generally provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid, but distilled water for injection or an appropriate buffer at the time of use. It can be dissolved and applied in
  • Purification by medium pressure column chromatography was performed using YFLC-AI580 (Yamazen Co., Ltd.). NMR measurements were performed using an AVANCE III 400 Nanobay (Bruker, Co. Ltd.).
  • THF Tetrahydrofuran
  • DMF N, N-dimethylformamide
  • TFA Trifluoroacetic acid
  • DAST N, N-diethylaminosulfur trifluoride
  • PLC Thin layer plate for preparative
  • MeOH (10 mL) was added under ice cooling to quench the reaction and the solvent was removed by evaporation.
  • MeOH (28 mL) was added to the resulting residue to dissolve, and NaOMe (1.38 g, 25.5 mmol) was added and stirred at room temperature for 30 minutes.
  • the solvent was removed by evaporation, CH 2 Cl 2 was added to the residue, celite filtration was performed, and the filtrate was concentrated by evaporation.
  • leuco-4-CHO-HMDER 134 mg, 0.332 mmol
  • anhydrous DMF 3 mL
  • 2,3,4,6-tetra-O-acetyl- ⁇ -D-galactopyranoylyl bromide 705 mg, 1. 71 mmol
  • Cs 2 CO 3 970 mg, 2.98 mmol
  • Na 2 SO 4 390 mg, 2.75 mmol
  • the solvent was removed by evaporation, CH 2 Cl 2 and saturated NH 4 Cl aqueous solution were added, liquid separation operation was performed 3 times, Na 2 SO 4 was added to the organic phase and dried, Celite filtration was performed, and the filtrate was evaporated.
  • leuco-4-CHO-HMDER (249 mg, 0.616 mmol) was added to anhydrous DMF (6 mL), 2,3,4,6-tetra-O-acetyl- ⁇ -D-galactopyranosyl bromide (550 mg, 1. 34 mmol), Cs 2 CO 3 (1.50 g, 4.60 mmol) and Na 2 SO 4 (400 mg, 2.82 mmol) were added, and the mixture was stirred at room temperature for 2.5 hours.
  • Ac 2 O 100 ⁇ L, 108 mg, 1.06 mmol was added to the reaction solution, and the mixture was further stirred at room temperature for 1 hour.
  • the enzyme-specific retention fluorescent compound of the present invention has excellent properties as a fluorescent imaging probe.
  • Fluorescence emission specific for enzyme reaction with ⁇ -galactosidase 2-CHF 2 -HMDER- ⁇ Gal, 4-CHF 2 -HMDER- ⁇ Gal and 4-CH 2 F-HMDER- ⁇ Gal are specifically treated with ⁇ -galactosidase. It was confirmed that fluorescence was generated.
  • the enzyme-specific retention fluorescent compound of the present invention 2-CHF 2 -HMDER- ⁇ Gal, 4-CHF 2 -HMDER- ⁇ Gal or 4-CH 2 F-HMDER- ⁇ Gal, is reacted with ⁇ -galactosidase for 30 minutes. Changes in absorption spectrum and fluorescence spectrum (excitation wavelength: 550 nm) caused by the above were measured in the presence of 200 mM sodium phosphate buffer (pH 7.4). The measurement was performed using Shimadzu UV-2450 (Shimadzu Corp.) and Hitachi F-7000 (Hitachi Corp.).
  • HEK cells that express ⁇ -galactosidase (HEK-lacZ cells) and normal HEK cells were used.
  • HEK-lacZ cells HEK cells that express ⁇ -galactosidase
  • normal HEK cells were used.
  • 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK cell lysate (2) 2.5 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK-lacZ Cell Lysate (3)
  • 2.5 ⁇ M 2-CHF 2 -HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK-lacZ cell lysate (5) 2.5 ⁇ M HMDER- ⁇ Gal and 20 ⁇ L 1.5 mg / mL HEK
  • reaction product was SDS- PAGE (running gel 10%, stacking gel 4%, and subjected to electrophoresis voltage 200V).
  • the gel obtained by SDS-PAGE was irradiated with excitation light at 488 nm, and fluorescence at 540-600 nm was observed at a PMT voltage of 1000 V (FIG. 5 (a)). After the observation, the gel was stained with Coomassie, and the position of BSA on the gel was confirmed (FIG. 5 (b)).
  • HEK-LacZ cells incubated with 4-CH 2 F-HMDER- ⁇ Gal showed clear fluorescence (left side of FIG. 6). Further, in the mixture of HEK-LacZ cells and HEK cells, a clear difference was observed in the fluorescence level among individual cells, indicating that ⁇ -galactosidase activity for each cell can be detected and fluorescently imaged. On the other hand, when HMDER- ⁇ Gal was used, fluorescence imaging of ⁇ -galactosidase activity of individual cells could not be performed (right side of FIG. 6).
  • HEK cells, HEK-lacZ cells, and mixtures of these cells were incubated with 1 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal or HMDER- ⁇ Gal for 30 minutes (in the presence of 37 ° C., 5% CO 2 ). . These cells were analyzed with excitation light at 488 nm using a flow cytometer Accuri C6 (Accri Cytometers). (result) When a mixture of HEK-LacZ cells and HEK cells incubated with 4-CH 2 F-HMDER- ⁇ Gal was analyzed using flow cytometry, peaks corresponding to HEK-LacZ cells and HEK cells were clearly observed.
  • Non-fixed fluorescence imaging of biological tissue having ⁇ -galactosidase activity It was confirmed that the enzyme-specific retention fluorescent compound of the present invention can be applied to fluorescent imaging of biological tissue.
  • Drosophila esg-lacZ
  • ⁇ -galactosidase in the midgut were prepared. The fly was dissected and fixed with 4% FPA, 4-CH 2 F-HMDER- ⁇ Gal was added, reacted for 10 minutes, washed, clarified with 80% glycerol, and fluorescence microscope ( TCS SP5: manufactured by Leica, controlled by LAS AF software.). As a control, Drosophila intestinal stem cells (esg-GFP) expressing GFP were observed. Observation conditions are as follows; excitation light: 514 nm, observation light: 535-595 nm (HyD2), 40 times.
  • Ovarian cancer cells SHIN3 were seeded to prepare cancer model mice. In ovarian cancer cells, it is known that acid ⁇ -galactosidase activity is increased.
  • fluorescence observation was performed using Maestro in-vivo imaging system (CRi). The observation conditions are as follows; excitation light: 490-530 nm, observation light: 550-800 nm (result)
  • excitation light 490-530 nm
  • observation light 550-800 nm (result)
  • fluorescence derived from a fluorescent dye generated after the enzyme reaction was observed from a tissue site (indicated by a white arrow) considered to be a cancer site (FIG. 12).
  • the observation conditions are as follows: (4-CH 2 F-HMDER- ⁇ Gal) excitation light: 514 nm, observation light: 525-585 nm, (mRFP1) excitation light: 594 nm, observation light: 610-700 nm, 63 Double. (result)
  • 4-CH 2 F-HMDER- ⁇ Gal excitation light: 514 nm
  • (mRFP1) excitation light: 594 nm
  • observation light 610-700 nm
  • a fat pad was dissected from a 3rd instar (final) fly and placed in a medium containing 10 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal and 16 ⁇ M Hoechst 33342 (nuclear stain). Incubated for 20 minutes, washed with PBS and fixed in 80% glycerol. Further, in order to perform immunochemical staining, the dissected fat pad was immersed in 4% paraformaldehyde (PFA) -containing PBS for 20 minutes and fixed.
  • PFA paraformaldehyde
  • the fat pad was immersed in a mouse-derived monoclonal antibody against ⁇ -galactosidase (1: 250, Promega) for 30 minutes, and 10 ⁇ M 4-CH 2 F-HMDER- ⁇ Gal, 16 ⁇ M Hoechst 33342, Alexa 647 modification A secondary antibody was added, and observation was performed under a confocal fluorescence microscope (TCS SP5: manufactured by Leica, controlled by LAS AF software).
  • the observation conditions are as follows: (Hoechst 33342) excitation light: 405 nm, observation light: 415-490 nm, (4-CH 2 F-HMDER- ⁇ Gal) excitation light: 514 nm, observation light: 525-600 nm, (Alexa 647 modified secondary antibody) Excitation light: 633 nm, observation light: 640-700 nm, 40 times. (result) Fluorescence imaging was performed using 4-CH 2 F-HMDER- ⁇ Gal, and it was confirmed that single-cell fluorescence imaging of ⁇ -galactosidase-active cells that were randomly expressed in living tissue was possible (FIG. 14). ). The above results demonstrate that by using the enzyme-specific retention fluorescent compound of the present invention, ⁇ -galactosidase active cells randomly expressed in living tissue can be visualized and discriminated by single cells. is there.
  • fluorescence is emitted specifically with enzyme activity, and at the same time, it stays in a living cell having the enzyme, so that the cell can be selectively fixed at a single cell level without being fixed.
  • Visualizable fluorescent compounds, fluorescent imaging probes using the fluorescent compounds, detection methods using the fluorescent probes, detection kits or detection agents are provided.
  • the enzyme-specific retention fluorescent compound of the present invention and an imaging technique using the same can be used as a molecular tool for elucidating the aging mechanism of cells, and can be used as a cancer cell-selective fluorescent imaging probe for examination, diagnosis, etc. In a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

 標的細胞、特にβ-ガラクトシダーゼなどのレポーター酵素発現細胞において特異的に蛍光を発するとともに、当該細胞内のタンパク質に共有結合することで、優れた細胞内滞留性を示す、以下の式(I')で表される化合物又はその塩を含む酵素特異的滞留性蛍光化合物を提供する。式(I')中のA、X、Y、R1~R9は請求項1に記載のとおりである。

Description

酵素特異的な細胞内滞留性蛍光化合物
 本発明は、標的細胞に滞留し、該細胞にて特異的に作用し得る新規な蛍光化合物、及び当該化合物を用いて特定の酵素が発現している標的細胞を特異的にイメージングする方法、当該イメージングに使用するプローブ、及び当該プローブを含む検出キット、検出剤、診断薬またはキットに関する。より詳細には、β-ガラクトシダーゼ等のレポーター酵素を発現する細胞を選択的に可視化する蛍光化合物およびこれを用いたイメージング方法、イメージングプローブ、検出剤、診断薬またはキットに関する。
 生命科学の発展に対するレポータータンパク質の寄与は計り知れない。レポータータンパク質の中で最も汎用されているものがβ-ガラクトシダーゼである。近年では老化と細胞のβガラクトシダーゼの発現に関連性があることが示唆されており(非特許文献1)、β-ガラクトシダーゼ酵素特異的なイメージングプローブは、細胞の老化機構を解明するための分子ツールとしても重要である。さらに、ある種の癌細胞においてはβガラクトシダーゼ活性が上昇していることが示されているため(非特許文献2、非特許文献3)、β-ガラクトシダーゼ酵素特異的なイメージングプローブは、癌細胞選択的な蛍光イメージングプローブとしても利用できると考えられる。
従来、X-Galを基質として酵素活性をイメージングする手法が広く利用されているが(非特許文献4)、X-Galは生細胞に適用することができないため、生細胞に適用可能な酵素活性イメージングプローブの開発が望まれている。現在までに多くの生細胞に適用可能なイメージングプローブが開発されてきた。例えば、分子内でスピロ環化反応を制御することにより可視光励起可能である、生細胞および生きた生体組織に適用可能なβガラクトシダーゼ蛍光プローブとして、HMDER-βGal等が開発されている(非特許文献5、特許文献1)。しかしながら、これらの蛍光プローブでは、いずれも酵素反応生成物が細胞から漏出してしまうため、あるいは細胞傷害性の紫外光を励起光に使用するため、生細胞等を単一細胞レベルで明確にイメージングすることが困難であった。また、これまでの癌プローブは、病理診断のために切片を固定化することにより、細胞外に漏れてしまい、病理診断に利用できないという問題点も存在していた。
国際公開2005/024049号
G. P. Dimri et al., Proc. Natl. Acad. Sci. USA, 1995, 92, 9363-9367. H. B. Bosmann et al., Proc. Natl. Acad. Sci. USA, 1974, 71, 1833-1837. S. K. Chatterjee et al., Cancer Res., 1979, 39, 1943-1951. F. D.-Chainiaux et al., Nat. Protoc., 2009, 4, 1798-1806. M.Kamiya et al., J.Am.Chem.Soc. 2011, 133, 12960-12963.
 本発明の解決しようする課題は、酵素活性特異的に蛍光を発生すると同時に、当該酵素を有する細胞内に滞留することで、当該細胞を固定することなく、あるいは固定した状態で、単一細胞レベルで選択的に可視化可能な蛍光化合物、当該蛍光化合物を用いた蛍光イメージングプローブ、当該蛍光プローブを用いた検出方法、検出キット又は検出剤を提供することにある。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、キサンテン環を蛍光団とする蛍光色素に、レポーター酵素との反応後に、蛍光色素をキノンメチドに変化させる置換基を有する酵素基質を合成し、その構造の最適化を行うことにより、βガラクトシダーゼ等のレポーター酵素との反応によって、はじめて蛍光性を示すとともに、優れた細胞内滞留性を示す蛍光イメージングプローブを得られることを見出した。この知見に基づき、本発明を完成するに至った。
 すなわち、本発明は、一態様において、以下の式(I)で表される化合物又はその塩を含む、酵素特異的滞留性蛍光化合物を提供するものである。
Figure JPOXMLDOC01-appb-I000005




(式中、Aは酵素によって切断される一価の基を表し;Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、及びRはそれぞれ独立に-CFR1011又は-CF12、若しくは、水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を表し;R10、R11及びR12はそれぞれ独立に水素原子、アルキル基又はアルケニル基を表し;Xは酸素原子、Se、CR1314、又はSiR1516を表し;R13、R14、R15及びR16はそれぞれ独立に水素原子又はアルキル基を表し;YはC-Cアルキレン基を表し; Zは酸素原子、又はNR17を表し;R17は水素原子又はアルキル基を表し、ここで、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12を表す。)
 好ましい態様において、当該酵素特異的滞留性蛍光化合物は、以下の式で表される。
Figure JPOXMLDOC01-appb-I000006



(式中、A、R~R9、X、Yは式(I)と同様である。)
 好ましい態様において、R、R、R、及びRの少なくとも一つは、-CFR1011である。
 好ましい態様において、R、R、R、及びRの少なくとも一つは、-CHFである。
 好ましい態様において、Aはレポーター酵素を含む加水分解酵素、あるいは、癌細胞において特異的に発現又は活性化している酵素によって切断される基であり、より好ましくは、Aはガラクトピラノシル基であり、レポーター酵素はβ-ガラクトシダーゼである。
 さらに好ましい態様において、酵素特異的滞留性蛍光化合物又はその塩は、(Ia)~(Ic)で表される化合物又はその塩である。
Figure JPOXMLDOC01-appb-I000007



Figure JPOXMLDOC01-appb-I000008


 別の態様において、本発明は、式(I)、(I’)又は(Ia)~(Ic)で表される、酵素特異的滞留性蛍光化合物を含有する、蛍光プローブに関する。
 別の態様において、本発明は、式(I)、(I’)又は(Ia)~(Ic)で表される、酵素特異的滞留性蛍光化合物を含有する、特定の酵素が発現している標的細胞を検出するための、又は可視化するための、組成物又はキットに関する。好ましくは、当該標的細胞は、β-ガラクトシダーゼ発現細胞であり、さらに好ましくは、標的細胞は、癌細胞である。
 別の態様において、本発明は、式(I)、(I’)又は(Ia)~(Ic)で表される、酵素特異的滞留性蛍光化合物を用いて、特定の酵素が発現している標的細胞を検出する方法に関する。好ましくは、当該方法において、酵素特異的滞留性蛍光化合物と、当該標的細胞において特異的に発現する酵素とを、生体外又は生体内において接触させ、特定の酵素が発現している標的細胞を検出する。より好ましくは、酵素特異的滞留性蛍光化合物と当該標的細胞において特異的に発現する酵素とを、生体外又は生体内において接触させる工程、及び、励起光照射を行って蛍光を生じさせる工程を含むことを特徴とする、前記特定の酵素が発現している標的細胞を検出する方法に関する。より好ましくは、当該方法において、標的細胞は、β-ガラクトシダーゼ発現細胞であり、さらに好ましくは、標的細胞は、癌細胞である。
 別の態様において、本発明は、式(I)を製造するために用いられる、以下の式(II)で表される化合物に関する。
Figure JPOXMLDOC01-appb-I000009


(式中、R、R、R、及びRはそれぞれ独立に-C(=O)H、水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;Xは酸素原子又はSe、CR1314、又はSiR1516を表し;R13、R14、R15及びR16はそれぞれ独立に水素原子又はアルキル基を表し;YはC-Cアルキレン基を表し、ここで、R、R、R、及びRの少なくとも一つは、-C(=O)Hを表す。)
 より好ましい態様において、式(II)の化合物は、以下の式(IIa)又は(IIb)で表される化合物である。
Figure JPOXMLDOC01-appb-I000010


 本発明の酵素特異的滞留性蛍光化合物は、酵素反応によって可視光吸収を変化させること同時に、生成したキノンメチドを用いて、細胞内に共存するタンパク質に共有結合することにより、優れた細胞内滞留性を示す。これらの効果が組み合わさった結果、当該酵素を発現する標的細胞を、生細胞の状態で、あるいは固定した状態で、単一細胞レベルといった詳細なレベルで可視化することが可能となる。本発明の酵素特異的滞留性蛍光化合物は、細胞の老化機構を解明するための分子ツールとして利用し得るほか、ある種の癌細胞においては選択的な蛍光イメージングプローブとしても利用できると考えられる。さらに、本発明の酵素特異的滞留性蛍光化合物によるイメージング手法は、通常の細胞イメージングが行える顕微鏡で施行可能であり、特別な機器を必要としない。また単一細胞レベルでの蛍光イメージングが可能であることから、個々の細胞の経時的な変化を追跡可能であり、癌細胞選択的な蛍光イメージングを利用して癌組織を取り残さずに外科的に切除することも可能となる。このように、本発明の酵素特異的滞留性蛍光化合物の産業上の利用価値、経済効果は、極めて大きいと考えられる。
図1は、本発明の酵素特異的滞留性蛍光化合物である、2-CHF-HMDER-βGalと、β-ガラクトシダーゼとの酵素反応によって生じる蛍光の強度(a)、吸収スペクトル変化(b)、蛍光スペクトル(c)を示した図である。 図2は、本発明の酵素特異的滞留性蛍光化合物である、4-CHF-HMDER-βGalと、β-ガラクトシダーゼとの酵素反応によって生じる蛍光の強度(a)、吸収スペクトル変化(b)、蛍光スペクトル(c)を示した図である。 図3は、本発明の酵素特異的滞留性蛍光化合物である、4-CHF-HMDER-βGalと、β-ガラクトシダーゼとの酵素反応によって生じる蛍光強度(a)、吸収スペクトル変化(b)、蛍光スペクトル(c)を示した図である。 図4は、本発明の酵素特異的滞留性蛍光化合物である、2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalを、β-ガラクトシダーゼと酵素反応させることにより、溶液中に共存するタンパク質BSAを蛍光ラベル化し得ることを示した図である。(a)SDS-PAGEゲルを波長488nmの励起光で励起した際に得られた蛍光画像である。レーン1: 2.5μM 4-CHF-HMDER-βGal および0.5mg/mL BSA、レーン2: 2.5μM 4-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ、レーン3: 2.5 μM 4-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ、レーン4: 2.5μM 2-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ、レーン5: 2.5μM HMDER-βGal、0.5mg/mL BSA および5U β-ガラクトシダーゼ。(b)上記SDS-PAGEゲルをクマシー染色したもの。 図5は、本発明の酵素特異的滞留性蛍光化合物である、2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、細胞内タンパク質を酵素活性特異的に蛍光ラベル化することを示す図である。(a)SDS-PAGEゲルを波長488nmの励起光で励起した際に得られた蛍光画像である。レーン1:2.5μM 4-CHF-HMDER-βGal および20μL 1.5mg/mL HEK細胞ライセート、レーン2:2.5μM 4-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート、レーン3:2.5 μM 4-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート、レーン4:2.5μM 2-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート、レーン5:2.5μM HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート。(b)上記SDS-PAGEゲルをクマシー染色したもの。 図6は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、単一細胞レベルの生細胞蛍光イメージングに利用可能であることを示す図である。 図7は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalが、優れた細胞内滞留性を有することを示す図である。 図8は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを用いることにより、固定処理を行った試料においても、生細胞と同様の蛍光イメージングが可能であることを示す図である。 図9は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを利用することで、酵素活性の異なる細胞を、フローサイトメトリーを用いて検出又は区別し得ることを示す図である。(a)4-CHF-HMDER-βGalと反応させた、HEK細胞、HEK-LacZ細胞、およびこれらの混合物のフローサイトメトリー結果。(b)HMDER-βGalと反応させた、HEK細胞、HEK-LacZ細胞、およびこれらの混合物のフローサイトメトリー結果。 図10は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、生体組織の蛍光イメージングに適用し得ることを示す図である。(a)4-CHF-HMDER-βGalと反応させた、ハエ羽根原基組織の画像。左から、蛍光画像、明視野画像、これらのマージ画像。(b)HMDER-βGalと反応させた、ハエ羽根原基組織の画像。左から、蛍光画像、明視野画像、これらのマージ画像。 図11は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、単一細胞蛍光イメージングに適用し得ることを示す図である。(a)4-CHF-HMDER-βGalと反応させた、ショウジョウバエ(esg-lacZ)の画像。左から、蛍光画像、明視野画像これらのマージ画像。(b)ショウジョウバエ腸幹細胞(esg-GFP)左から、蛍光画像、明視野画像これらのマージ画像。 図12は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、癌部位選択的な蛍光イメージングに適用し得ることを示す、蛍光スペクトル画像である。白い矢印は腫瘍の位置を示す。Unmixedは、蛍光スペクトルにより、自家蛍光と蛍光スペクトルを分離したもの。 図13は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、生体内の未固定細胞群の蛍光イメージングに適用し得ることを示す図である。 図14は、本発明の酵素特異的滞留性蛍光化合物である4-CHF-HMDER-βGalを、生体組織内にランダムに発現したβガラクトシダーゼ活性の、単一細胞蛍光イメージングに適用し得ることを示す図である。
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 本明細書において、アルキル基またはアルケニル基は、直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基またはアルケニル基のいずれであってもよい。アルキル基またはアルケニル基の炭素数は特に限定されないが、例えば炭素数1~6個程度、好ましくは炭素数1~4個程度、より好ましくは炭素数1または2個程度である。本明細書において、アルキル基又はアルケニル基は、任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、アシル基、又はアリール基などを挙げることができるが、これらに限定されることはない。アルキル基又はアルケニル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分またはアルケニル部分を含む他の置換基(例えばアルキルオキシ基やアラルキル基など)のアルキル部分またはアルケニル部分についても同様である。
(1)酵素特異的滞留性蛍光化合物
 本発明の酵素特異的滞留性蛍光化合物は、一態様において、以下の一般式(I)で表される構造を有する化合物である。
Figure JPOXMLDOC01-appb-I000011

 上記一般式(I)において、Rは水素原子又はベンゼン環に結合する1個ないし4個の置換基を示す。置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。ベンゼン環上に2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。Rとしては、水素原子、低級アルキル基又は低級アルコキシ基であることがより好ましい。水素原子が特に好ましい。
 R、R、R、及びRはそれぞれ独立に-CFR1011又は-CF12、若しくは、水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し、R10、R11及びR12はそれぞれ独立に水素原子、アルキル基又はアルケニル基を表し、さらにここで、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12を表す。R、R、R、及びRの少なくとも一つは、-CFR1011であることが好ましい。R、R、R、及びRの少なくとも一つは、-CHFであることがさらに好ましい。
 R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を示す。R、Rが水素原子であることが好ましい。
 R及びRはそれぞれ独立に水素原子又はアルキル基を示す。R及びRがともにアルキル基を示す場合には、それらは同一でも異なっていてもよい。例えば、R及びRはそれぞれ独立に、メチル基又はエチル基であることが好ましく、R及びRがいずれもエチル基である場合がさらに好ましい。
 Xは酸素原子、Se、CR1314、又はSiR1516を示す。R13、R14、R15及びR16はそれぞれ独立に水素原子又はアルキル基を表す。これらのうち酸素原子が好ましい。
 YはC-Cアルキレン基を示す。アルキレン基は直鎖状アルキレン基又は分枝鎖状アルキレン基のいずれであってもよい。例えば、メチレン基(-CH-)、エチレン基(-CH-CH-)、プロピレン基(-CH-CH-CH-)のほか、分枝鎖状アルキレン基として-CH(CH)-、-CH-CH(CH)-、-CH(CHCH)-なども使用することができる。これらのうち、メチレン基又はエチレン基が好ましく、メチレン基がさらに好ましい。
 Zは酸素原子、又はNR17を表し、R17は水素原子又はアルキル基を表す。これらのうち酸素原子が好ましい。
 基Aは、酵素によって切断される一価の基を表し、具体的には、例えば、β-ガラクトピラノシル基、α-マンノシル基、β-N-アセチルグルコサミル基、β-ラクタム環、リン酸エステル、アミノフェノキシ基、ヒドロキシフェノキシ基、γ-グルタミン酸などを挙げることができるが、これらに限定されることはない。
 Aを切断するための酵素としては、例えば、還元酵素、酸化酵素、又は加水分解酵素などを挙げることができ、レポーター酵素や癌細胞において特異的に発現又は活性化する酵素、より具体的には、β-ガラクトシダーゼ、β-ラクタマーゼ、α-マンノシダーゼ、エステラーゼ、アルカリホスファターゼ、ルシフェラーゼ、ペルオキシダーゼ、チトクロームP450酸化酵素、β-グルコシダーゼ、β-グルクロニダーゼ、β-ヘキソサミニダーゼ、ラクターゼ、γ-グルタミルトランスフェラーゼなどを挙げることができるが、これらに限定されることはない。好ましくは、β-ガラクトシダーゼ、β-ラクタマーゼ、アルカリホスファターゼ、ルシフェラーゼ、β-ヘキソサミニダーゼ、ペルオキシダーゼ、又はγ-グルタミルトランスフェラーゼである。最も好ましくは、β-ガラクトシダーゼである。
 上記式(I)で表される化合物(式(I’)、(Ia)~(Ic)の態様の場合を含む。以下の記載においても同じ。)は塩として存在する場合がある。塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。もっとも、本発明の化合物の塩はこれらに限定されることはない。
 式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。
 式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。
 本明細書の実施例には、一般式(I)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、及び必要に応じて、出発原料や試薬、反応条件などを適宜選択することにより、一般式(I)に包含される任意の化合物を容易に製造することができる。
(2)本発明の化合物の蛍光発光および細胞内滞留の機構
 本発明により提供される式(I)で表される酵素特異的滞留性蛍光化合物を細胞内に取り込ませた場合、Aで表される基を切断可能な酵素が発現している細胞では、該細胞内において、Aで表される基が切断されるとともに、R、R、R、又はRに位置する、-CFR1011又は-CF12からフッ化水素が離脱し、キノンメチドが生成される。キノンメチドは急速に周囲の求核剤による攻撃を受けることから、細胞内でキノンメチドを生成した場合、周囲のタンパク質がもつ求核基と速やかに反応し、タンパク質に不可逆的に結合するものと考えられる。
 例えば、式(Ib)の化合物の場合には、以下のようにβ-ガラクトシダーゼによって基Aの切断とスピロ環の開環が生じ、細胞内タンパク質に共有結合した蛍光化合物(III)が生成する。式(III)に類する化合物が蛍光を発する機構については、国際公開2005/024049号に記載されるように、その詳細が当業者に知られている。
Figure JPOXMLDOC01-appb-I000012

 一般式(I)で表される化合物又はその塩は、中性領域において例えば440~550nm程度の励起光を照射した場合には、ほとんど蛍光を発しないが、酵素活性によって生じた開環化合物は、同じ条件下において極めて強い蛍光を発する性質を有している。したがって、式(I)で表される酵素特異的滞留性蛍光化合物を取り込んだ細胞が、Aで表される基を切断可能な酵素を発現していない場合には、式(III)で表されるような開環化合物は生成せず、蛍光物質が該細胞内で生成することはない。このように式(I)で表される酵素特異的滞留性蛍光化合物を用いることにより、Aで表される基を切断可能な酵素が発現および活性化している細胞のみにおいて、選択的に蛍光が生成される。さらに、式(III)などで表される反応生成化合物は、細胞内タンパク質に共有結合していることから、細胞外への漏出が抑制され、これにより、当該酵素が発現および活性化している細胞を特異的に、単一細胞レベルといった詳細なレベルで可視化することが可能となる。
 上記特性から、本発明の式(I)で表される化合物は、細胞を固定処理することなく、あるいは固定処理後に、単一細胞レベルで詳細に可視化することを可能とするものであり、蛍光プローブとして細胞系における細胞生物学的研究用のツールに用いる他、癌などの手術現場における迅速な病理検査に用いる検査薬、診断薬などの、幅広い利用用途を有している。
(3)本発明の酵素特異的滞留性蛍光化合物による選択的細胞可視化方法
 上述の特性を示すため、本発明の細胞内滞留性蛍光化合物を、特定の酵素が発現している標的細胞の細胞を特異的に可視化する方法に用いることができる。具体的には、式(I)の酵素特異的滞留性蛍光化合物と標的細胞において特異的に発現するβ-ガラクトシダーゼ等の酵素とを接触させる工程、次いで、励起光照射を行うことで発生する蛍光を検出する工程を行うことによって、β-ガラクトシダーゼ等を発現している標的細胞のみを特異的に可視化することができる。
 本発明の細胞内滞留性蛍光化合物と、標的細胞において特異的に発現する酵素とを接触させる手段としては、代表的には、酵素特異的滞留性蛍光化合物を含む溶液を試料添加、塗布、或いは噴霧することが挙げられるが、その用途に応じて適宜選択することが可能である。また、本発明の細胞内滞留性蛍光化合物を、動物個体における診断又は診断の補助、若しくは特定の細胞又は組織の検出に適用する際に、当該化合物と、標的細胞又は組織において発現する酵素とを接触させる手段としては、特に限定されることなく、例えば、静脈内投与等、当該分野において一般的な投与手段を用いることができる。
 また、標的細胞に行う光照射は、当該細胞に対して光を直接或いは導波管(光ファイバー等)を介して照射することができる。光源としては、酵素切断を受けた後の、本発明の酵素特異的滞留性蛍光化合物の吸収波長を含む光を照射できるものであれば、任意の光源を用いることができ、本発明の方法を実施する環境等に応じて適宜選択され得る。
 本発明の酵素特異的滞留性蛍光化合物としては、上記一般式(I)で表される化合物又はその塩をそのまま用いてもよいが、必要に応じて、試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で試薬を用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、一般的には、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供されるが、使用時に注射用蒸留水や適宜の緩衝液に溶解して適用することが可能である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
(1)以下のスキーム1~3に従って、本発明の酵素特異的滞留性蛍光化合物である2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalを合成した。
スキーム1:2-CHF-HMDER-βGalの合成
Figure JPOXMLDOC01-appb-I000013

スキーム2:4-CHF-HMDER-βGalの合成
Figure JPOXMLDOC01-appb-I000014

スキーム3:4-CHF-HMDER-βGalの合成
Figure JPOXMLDOC01-appb-I000015

 以下に各合成反応の詳細を述べる。
 ○使用した合成試薬、装置等
 市販の原料は試薬メーカー(和光純薬株式会社、東京化成工業株式会社、Sigma-Aldrich Co. Ltd.)より購入した。
 高速液体クロマトグラフィーによる精製に用いた装置およびカラム。
 ・ポンプ:PU-2080およびPU-2087(日本分光株式会社)
 ・検出器:MD-2010(日本分光株式会社)
 ・カラム:Inertsil ODS-3
 (10 x 250 mm or 20 x 250 mm,
  GL Science Inc.)
 HPLCによる分離精製用いた溶媒。
 A: 100 mM トリエチルアミン酢酸塩
 B: 99% アセトニトリル、 1% milliQ
 HPLC分離における送液は、それぞれ
 25mL/min(ポンプ:PU-2087,カラム:20x250mm)5 mL/min(ポンプ:PU-2080,カラム:10x250mm)にて行った。
 中圧カラムクロマトグラフィーによる精製はYFLC-AI580(山善株式会社)を用いて行った。
 NMR測定はAVANCE III 400 Nanobay(Bruker,Co. Ltd.)を用いて行った。(400MHz for H NMR、101MHz for 13C NMR)
 質量分析測定はMicrOTOF(ESI-TOF,Bruker,Co. Ltd.)を用いて行った。High-resolution MS(HRMS)測定については、外部標準物質としてギ酸ナトリウムを使用した。
 略語の説明
 THF: テトラヒドロフラン
 DMF: N,N-ジメチルホルムアミド
 TFA: トリフルオロ酢酸
 DAST:三フッ化N,N-ジエチルアミノ硫黄
 PLC: 分取用薄層プレート
(合成例1)6-(diethylamino)-9-(2-(hydroxymethyl)phenyl)-9H-xanthen-3-ol(leuco-HMDER)の合成
Figure JPOXMLDOC01-appb-I000016

 2-(4-diethylamino-2-hydroxybenzoyl)benzoic acid(2.54g,8.05mmol)、resorcinol(900mg,8.17mmol)、85% HPO(15mL)を90℃で42時間撹拌した。エバポレーションにより水分を除去した後、MeOH(60mL,47.5g,1483mmol)、HSO(13.5mL,24.8g,253mmol)を加え、70℃で終夜撹拌した。エバポレーションによりMeOHを除去し、飽和NaHCO水溶液を加えて中和した。CHClを加えて3回分液操作を行い、有機相にNaSOを加えて乾燥させ、溶媒をエバポレーションにより除去し、DER-Meを赤色固体として得た。アルゴン雰囲気下、LiAlH(1680mg,44.3mmol)、anhydrous THF(80mL)を加えて室温で20時間撹拌した。氷冷下で飽和ロシェル塩水溶液を加えて1時間撹拌し、EtOAcを加えて3回分液操作を行い、有機相にNaSOを加えて乾燥させ、エバポレーションにより溶媒を除去した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2)により精製し、目的化合物leuco-HMDERをピンク色固体(2.40g,y.79% in 3 steps)として得た。
1H NMR (CDCl3): δ. 7.31-7.29 (m, 1H), 7.14 (brs, 3H), 6.61-6.56 (m, 2H), 6.48 (d, 1H, J = 2.0 Hz), 6.34 (d, 1H, J = 2.3 Hz), 6.23-6.21 (m, 2H), 5.25 (s, 1H), 4.55-4.45 (m, 2H), 3.23 (q, 4H, J = 7.0 Hz), 1.07 (t, 6H, J = 7.0 Hz). 13C NMR (CDCl3): δ. 155.8, 151.5, 151.3, 147.9, 144.7, 137.7, 131.4, 130.3, 130.0, 129.5, 128.3, 127.0, 116.3, 111.3, 111.0, 108.0, 103.3, 99.2, 62.9, 44.4, 39.8, 12.5. HRMS-ESI (m/z): [M + Na]+ calculated for 398.1727 (C24H25NNaO3), found 398.1722.
(合成例2)6-(diethylamino-3-hydroxy-9-(2-(hydroxymethyl)phenyl)-9H-xanthene-2-carbaldehyde(leuco-2-CHO-HMDER)の合成
Figure JPOXMLDOC01-appb-I000017

 アルゴン雰囲気下でleuco-HMDER(2.20g,5.86mmol)、hexamethylenetetramine(838mg,5.98mmol)、TFA(10mL)を70℃で5時間、HO(10mL)を加え70℃で10分間撹拌した。エバポレーションによりTFAとHOを除去した。飽和NaHCO水溶液を加えて中和し、EtOAcを加えて3回分液操作を行い、有機相をエバポレーションにより濃縮した。中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2)により精製し、目的化合物leuco-2-CHO-HMDERをピンク色固体(344mg,y.15%)として得た。
1H NMR (CDCl3): δ. 11.09 (s, 1H), 9.53 (d, 1H, J = 0.4 Hz), 7.43-7.41 (m, 1H), 7.27-7.25 (m, 2H), 7.19-7.16 (m, 1H), 7.11 (d, 1H, J = 0.9 Hz), 6.67 (dd, 1H, J = 0.5 and 8.7 Hz), 6.64 (s, 1H), 6.39 (d, 1H, J = 2.6 Hz), 6.31 (dd, 1H, J = 2.6 and 8.7 Hz), 5.45 (s, 1H), 4.75-4.59 (m, 2H), 3.32 (q, 4H, J = 7.1 Hz), 1.15 (t, 6H, J = 7.1 Hz). 13C NMR (CDCl3): δ. 194.9, 161.9, 157.9, 150.8, 148.2, 144.4, 138.1, 136.1, 131.4, 130.0, 129.4, 128.8, 127.4, 118.2, 117.5, 110.2, 108.6, 104.2, 98.9, 63.3, 44.5, 38.8, 12.7. HRMS-ESI (m/z): [M + H]+ calculated for 404.1856 (C25H26NO4), found 404.1845.
(合成例3)(2S,3R,4S,5R,6R)-2-((6’-(diethylamino)-2’-(difluoromethyl)-3H-spiro[isobenzofuran-1,9’-xanthen]-3’-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol(2-CHF-HMDER-βGal)の合成
Figure JPOXMLDOC01-appb-I000018

 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromideの合成は既報(J.L.Montero et al.,Carbohydr.Res. 1997,297,175.)に従って行った。アルゴン雰囲気下、leuco-2-CHO-HMDER(210mg,0.520mmol)、2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide(260mg,0.632mmol)、CsCO(293mg,0.899mmol)、NaSO(321mg,2.26mmol)、DMF(1mL)を室温で終夜撹拌した。エバポレーションによりDMFを除去し、CHClと飽和NHCl水溶液を加えて3回分液操作を行い、有機相にNaSOを加えて乾燥させ、エバポレーションにより濃縮した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/EtOAc = 98/2)により精製し、leuco-2-CHO-HMDER-βGal-Ac-Ac(137mg,0.177mmol)を得た。アルゴン雰囲気下でanhydrous CHCl(5mL)に溶解させ、DAST(300μL,366mg,2.27mmol)を加えて室温で2時間半撹拌した。氷冷下でMeOH(10mL)を加え、反応をクエンチし、エバポレーションにより溶媒を除去した。得られた残渣にMeOH(28mL)を加えて溶解させ、NaOMe(1.38g,25.5mmol)を加えて室温で30分間撹拌した。エバポレーションにより溶媒を除去し、残渣にCHClを加えてセライト濾過を行い、濾液をエバポレーションにより濃縮した。中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 97/3 to 96/4)とPLC(溶離液:CHCl/MeOH = 9/1)により精製し、目的化合物2-CHF-HMDER-βGalを薄い紫色固体(15.2mg,y.5.1% in 3 steps)として得た。
1H NMR (CD3OD): δ. 7.46-7.39 (m, 2H), 7.30 (t, 1H, J = 7.3 Hz), 7.14 (s, 0.5H), 7.13 (s, 0.5H), 7.07 (s, 1H), 7.03 (t, 0.5H, J = 55.5 Hz), 7.02 (t, 0.5H, J = 55.5 Hz), 6.84 (d, 0.5H, J = 7.6 Hz), 6.83 (d, 0.5H, J = 7.6 Hz), 6.72 (d, 0.5H, J = 8.8 Hz), 6.72 (d, 0.5H, J = 8.8 Hz), 6.47-6.43 (m, 2H), 5.26 (s, 2H), 4.97 (dd, 1H, J = 7.8 and 11.5 Hz), 3.94 (d, 1H, J = 2.6 Hz), 3.86-3.78 (m, 4H), 3.63-3.60 (m, 1H), 3.38 (q, 4H, J = 7.0 Hz), 1.15 (t, 6H, J = 7.0 Hz). 13C NMR (CD3OD): δ. 157.2 (t, J = 5.5 Hz), 154.7, 154.6, 152.9, 152.9, 150.3, 145.8, 145.7, 140.4, 140.3, 130.7, 129.5, 129.4, 128.0-127.8 (m), 124.7, 124.7, 122.0, 121.0 (t, J = 22.9 Hz), 120.9 (t, J = 22.9 Hz), 120.7, 120.6, 112.5 (t, J = 234.2 Hz), 112.1, 109.9, 104.7, 104.6, 103.5, 103.4, 98.6, 85.2, 85.2, 77.3, 74.8, 72.7, 72.7, 72.1, 70.2, 62.4, 45.4, 12.8. HRMS-ESI (m/z): [M + Na]+ calculated for 608.2066 (C31H33F2NNaO8), found 608.2075.
(合成例4)3-(diethyliminio)-5-formyl-9-(2-(hydroxymethyl)phenyl)-3H-xanthen-6-olate(4-CHO-HMDER)の合成
Figure JPOXMLDOC01-appb-I000019

 HMDERの合成は既報(M.Kamiya et al., J.Am. Chem.Soc. 2011,133,12960.)を参考に行った。HMDER(2.35g,6.29mmol)にhexamethylenetetramine(894mg,6.38mmol)とTFA(8mL)を加えて95℃で14時間撹拌し、HO(10mL)を加えて95℃で2時間撹拌した。エバポレーションによりTFAとHOを除去し、CHClと飽和NaHCO水溶液を加えて3回分液操作を行い、有機相をエバポレーションにより濃縮した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2)により精製し、目的化合物4-CHO-HMDERを赤色固体(963mg,y.38%)として得た。
1H NMR (CDCl3): δ 12.09 (s, 1H), 10.67 (s, 1H, CHO), 7.35-7.34 (m, 2H), 7.27-7.23 (m, 1H), 7.07 (d, 1H, J = 8.8 Hz), 6.91 (d, 1H, J = 7.6 Hz), 6.75 (d, 1H, J = 8.7 Hz), 6.57 (d, 1H, J = 8.8 Hz), 6.44 (d, 1H, J = 2.5 Hz), 6.41 (dd, 1H, J = 2.5 and 8.7 Hz), 5.25 (d, 2H, J = 5.4 Hz), 3.33 (q, 4H, J = 7.1 Hz), 1.15 (t, 6H, J = 7.1 Hz). 13C NMR (CDCl3): δ 193.9, 163.3, 152.6, 150.8, 148.8, 144.4, 139.5, 138.6, 129.6, 128.4, 128.2, 123.9, 120.8, 115.9, 112.5, 111.0, 109.0, 108.8, 97.4, 83.1, 71.7, 44.4, 12.6. HRMS-ESI (m/z): [M + H]+ calculated for 402.1700 (C25H24NO4), found 402.1684.
(合成例5)3-(diethyliminio)-5-(1,3-dioxan-2-yl)-9-(2-(hydroxymethyl)phenyl)-3H-xanthen-6-olate(4-acetal-HMDER)の合成
Figure JPOXMLDOC01-appb-I000020

 4-CHO-HMDER(745mg,1.86mmol)にpropane-1,3-diol(12mL,12.7g,167mmol)とp-toluenesulfonic acid(27mg,0.157mmol)を加えて60℃で終夜撹拌した。飽和NaHCO水溶液を加えて中和し、CHClを加えて3回分液操作を行い、有機相をエバポレーションにより濃縮した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2)により精製し、目的化合物4-acetal-HMDERを赤色固体(648mg,y.76%)として得た。
1H NMR (CDCl3):δ. 8.45 (s, 1H), 7.34-7.30 (m, 2H), 7.25-7.21 (m, 1H), 6.88 (d, 1H, J = 7.6 Hz), 6.79 (d, 1H, J = 8.7 Hz), 6.72 (d, 1H, J = 8.5 Hz), 6.56 (d, 1H, J = 8.7 Hz), 6.39-6.36 (m, 3H), 5.22 (s, 2H), 4.36-4.30 (m, 2H), 4.18-4.11 (m, 2H), 3.34 (q, 4H, J = 7.0 Hz), 2.36-2.24 (m, 1H), 1.52 (d, 1H, J = 13.7 Hz), 1.15 (t, 6H, J = 7.0 Hz). 13C NMR (CDCl3):δ. 156.9, 151.6, 148.7, 148.6, 145.0, 139.6, 131.0, 129.5, 128.2, 127.8, 124.1, 120.6, 116.6, 112.5, 111.6, 109.2, 108.6, 99.1, 97.8, 83.9, 71.5, 68.0, 67.8, 44.4, 25.9, 12.7. HRMS-ESI (m/z): [M + H]+ calculated for 460.2119 (C28H30NO5), found 460.2120.
(合成例6)6-(diethylamino)-4-(1,3-dioxan-2-yl)-9-(2-(hydroxymethyl)phenyl)-9H-xanthen-3-ol(leuco-4-acetal-HMDER)の合成
Figure JPOXMLDOC01-appb-I000021

 アルゴン雰囲気下で4-acetal-HMDER(182mg,0.396mmol)にMeOH(5mL)とNaBH(81mg,2.14mmol)を加えて室温で1時間半撹拌した。エバポレーションにより溶媒を除去し、飽和NaHCO水溶液を加えて反応をクエンチし、CHClを加えて分液操作を2回行った。有機相をエバポレーションにより濃縮し、目的化合物leuco-4-acetal-HMDERを薄いピンク色固体(151mg,y.83%)として得た。
1H NMR (CDCl3):δ. 8.30 (s, 1H), 7.39-7.35 (m, 1H), 7.22-7.15 (m, 3H), 6.72 (d, 1H, J = 8.6 Hz), 6.65 (d, 1H, J = 8.6 Hz), 6.46 (d, 1H, J = 8.6 Hz), 6.35 (d, 1H, J = 2.5 Hz), 6.34 (s, 1H), 6.27 (dd, 1H, J = 2.5 and 8.6 Hz), 5.33 (s, 1H), 4.60-4.50 (m, 2H), 4.34-4.31 (m, 2H), 4.14 (t, 2H, J = 12.0 Hz), 3.30 (q, 4H, J = 7.0 Hz), 2.35-2.23 (m, 1H), 1.80 (brs, 1H), 1.52 (d, 1H, J = 13.7 Hz), 1.14 (t, 6H, J = 7.0 Hz). 13C NMR (CDCl3):δ. 155.8, 151.1, 148.3, 147.9, 144.5, 138.3, 131.4, 131.2, 129.9, 129.2, 128.2, 127.0, 115.9, 112.0, 111.2, 109.7, 108.2, 99.1, 98.9, 67.9, 67.9, 63.0, 44.3, 39.6, 25.9, 12.7. HRMS-ESI (m/z): [M + H]+ calculated for 462.2275 (C28H32NO5), found 462.2278.
(合成例7)6-(diethylamino)-3-hydroxy-9-(2-(hydroxymethyl)phenyl)-9H-xanthene-4-carbaldehyde(leuco-4-CHO-HMDER)の合成
Figure JPOXMLDOC01-appb-I000022

 アルゴン雰囲気下でleuco-4-acetal-HMDER(151mg,0.327mmol)にTFA-HO(2/1,15mL)を加えて室温で3時間撹拌した。エバポレーションでTFAとHOを除去し、5% KCO水溶液とCHClを加えて分液操作を2回行い、有機相をエバポレーションにより濃縮した。得られた残渣にMeOH(5mL)とNaOMe(18mg,0.333mmol)を加えて室温で5分間撹拌した。エバポレーションにより溶媒を除去し、CHClと飽和NHCl水溶液を加えて分液操作を行い、有機相をエバポレーションにより濃縮した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2)により精製し、目的化合物leuco-4-CHO-HMDERを薄いピンク色固体(134mg,y.quantative)として得た。
1H NMR (CDCl3): δ. 11.85 (s, 1H), 10.62 (s, 1H), 7.41-7.39 (m, 1H), 7.25-7.23 (m, 2H), 7.17-7.15 (m, 1H), 7.06 (d, 1H, J = 8.7 Hz), 6.71 (d, 1H, J = 8.7 Hz), 6.48 (d, 1H, J = 8.7 Hz), 6.39 (d, 1H, J = 2.6 Hz), 6.33 (dd, 1H, J = 2.6 and 8.7 Hz), 5.40 (s, 1H), 4.74-4.61 (m, 2H), 3.33 (q, 4H, J = 7.1 Hz), 1.16 (t, 6H, J = 7.1 Hz). 13C NMR (CDCl3): δ. 194.1, 162.2, 152.7, 150.5, 148.1, 144.5, 139.1, 138.1, 131.4, 130.2, 129.3, 128.7, 127.3, 115.3, 111.9, 110.4, 109.4, 108.7, 98.7, 63.3, 44.5, 38.8, 12.7. HRMS-ESI (m/z): [M + Na]+ calculated for 426.1676 (C25H25NNaO4), found 426.1670.
(合成例8)(2S,3R,4S,5R,6R)-2-((3’-(diethylamino)-5’-(difluoromethyl)-3H-spiro[isobenzofuran-1,9’-xanthen]-6’-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol(4-CHF-HMDER-βGal)の合成
Figure JPOXMLDOC01-appb-I000023

 アルゴン雰囲気下、leuco-4-CHO-HMDER(134mg,0.332mmol)にanhydrous DMF(3mL)、2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide(705mg,1.71mmol)、CsCO(970mg,2.98mmol)、NaSO(390mg,2.75mmol)を加えて室温で終夜撹拌した。エバポレーションにより溶媒を除去し、CHClと飽和NHCl水溶液を加えて3回分液操作を行い、有機相にNaSOを加えて乾燥させ、セライト濾過を行い、濾液をエバポレーションにより濃縮した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/EtOAc = 98/2)により精製し、leuco-4-CHO-HMDER-βGal-Ac-Acを得た。アルゴン雰囲気下でanhydrous CHCl(5mL)とDAST(200μL,244mg,1.51mmol)を加え、室温で4時間撹拌した。氷冷下でMeOH(10mL)を加えて反応をクエンチし、エバポレーションにより溶媒を除去した。得られた残渣にMeOH(40mL)とNaOMe(600mg,11.1mmol)を加えて室温で1時間撹拌し、エバポレーションにより溶媒を除去した。残渣に飽和NHCl水溶液を加えて中和し、CHClを加えて3回分液操作を行った。有機相にNaSOを加えて乾燥させ、セライト濾過を行い、濾液をエバポレーションにより濃縮し、得られた残渣をPLC(溶離液:CHCl/MeOH = 9/1)とHPLC(A/B = 50/50)により精製し、目的化合物4-CHF-HMDER-βGalを薄いピンク色固体(8.0mg,y.4.1% in 3 steps)として得た。
1H NMR (CD3CN):δ. 7.45 (t, 1H, J = 53.7 Hz), 7.42 (d, 1H, J = 7.6 Hz), 7.40-7.36 (m, 1H), 7.28-7.24 (m, 1H), 7.06-7.03 (m, 1H), 6.92 (d, 1H, J = 8.9 Hz), 6.83 (d, 0.5H, J = 7.6 Hz), 6.83 (d, 0.5H, J = 7.6 Hz), 6.74 (d, 0.5H, J = 8.8 Hz), 6.73 (d, 0.5H, J = 8.8 Hz), 6.48 (dd, 1H, J = 2.6 and 8.8 Hz), 6.44 (d, 1H, J = 2.6 Hz), 4.88 (dd, 1H, J = 7.7 and 12.9 Hz), 3.83 (d, 1H, J = 3.1 Hz), 3.72-3.58 (m, 4H), 3.53-3.48 (m, 1H), 3.37 (q, 4H, J = 7.0 Hz), 1.13 (t, 6H, J = 7.0 Hz). 13C NMR (100 MHz, CD3CN):δ. 157.1, 151.9, 151.9, 150.5, 149.9, 146.3, 146.2, 140.2, 140.2, 133.8, 133.8, 130.4, 129.3, 129.2, 129.1, 124.2, 122.1, 121.7, 112.7 (t, J = 233.5 Hz), 112.1, 111.8, 111.7, 110.7 (t, J = 22.0 Hz), 110.6 (t, J = 22.0 Hz), 109.8, 102.5, 102.4, 98.1, 83.9, 83.9, 76.5, 76.5, 74.1, 74.1, 72.9, 71.9, 71.9, 69.7, 62.2, 62.2, 45.0, 12.8. HRMS-ESI (m/z): [M + Na]+ calculated for 608.2066 (C31H33F2NNaO8), found 608.2064.
(合成例9)(2S,3R,4S,5R,6R)-2-((3’-(diethylamino)-5’-(fluoromethyl)-3H-spiro[isobenzofuran-1,9’-xanthen]-6’-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol(4-CHF-HMDER-βGal)の合成
Figure JPOXMLDOC01-appb-I000024


 アルゴン雰囲気下でleuco-4-CHO-HMDER(249mg,0.616mmol)にanhydrous DMF(6mL)、2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide(550mg,1.34mmol)、CsCO(1.50g,4.60mmol)、NaSO(400mg,2.82mmol)を加えて室温で2時間半撹拌した。反応液にAcO(100μL,108mg,1.06mmol)を加えて室温でさらに1時間撹拌した。エバポレーションにより溶媒を除去し、CHClと飽和NHCl水溶液を加えて3回分液操作を行い、有機相にNaSOを加えて乾燥させ、セライト濾過を行い、濾液をエバポレーションにより濃縮した。残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/EtOAc = 98/2)により精製し、leuco-4-CHO-HMDER-βGal-Ac-Acを得た。アルゴン雰囲気下、anhydrous THF(5mL)と1.0 M LiAlH(OtBu) in THF(1mL,1.00mmol)を加えて0℃で50分間撹拌し、氷冷下で飽和NHCl水溶液(3mL)を加えて反応をクエンチした。EtOAc(7mL)を加えて室温で1時間撹拌し、有機相を抽出した。水相にCHClと飽和ロシェル塩水溶液を加えて撹拌し、有機相を抽出する操作を2回行った。有機相を合わせ、エバポレーションにより濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/EtOAc = 98/2)により精製し、leuco-4-CHOH-HMDER-βGal-Ac-Acを得た。アルゴン雰囲気下でanhydrous CHCl(5mL)とDAST(200μL,244mg,1.51mmol)を加えて室温で30分間撹拌し、氷冷下でMeOH(10mL)を添加して反応をクエンチした。エバポレーションにより溶媒を除去し、得られた残渣にMeOH(20mL)とNaOMe(700mg,13.0mmol)を加えて室温で5分間撹拌し、飽和NHCl水溶液(2mL)を加えて反応をクエンチした。エバポレーションにより濃縮した後、CHClと飽和NaHCO水溶液を加えて分液操作を3回行った。水相にCHClを加えて分液し、有機相を合わせた。有機相にNaSOを加えて乾燥させ、セライト濾過を行い、濾液をエバポレーションにより濃縮した。残渣にMeOH(10mL)とp-chloranil(80mg,0.325mmol)を加えて室温で5分間撹拌した。エバポレーションにより溶媒を除去し、CHClと飽和NaHCO水溶液を加えて分液操作を3回行い、有機相に飽和NaCl水溶液を加えて洗浄操作を行った。有機相にセライト濾過を行い、濾液をエバポレーションにより濃縮した。得られた残渣を中圧シリカゲルカラムクロマトグラフィー(溶離液:CHCl/MeOH = 98/2 to 94/6)とHPLC(A/B = 50/50)により精製し、目的化合物4-CHF-HMDER-βGalを薄いピンク色固体(65.9mg,y.18% in 6 steps)として得た。
1H NMR (400 MHz, CD3CN):δ. 7.42 (d, 1H, J = 7.6 Hz), 7.37 (t, 1H, J = 7.4 Hz), 7.26 (t, 1H, J = 7.5 Hz), 6.97 (d, 0.5H, J = 8.9 Hz), 6.97 (d, 0.5H, J = 8.9 Hz), 6.90 (d, 0.5H, J = 8.9 Hz), 6.89 (d, 0.5H, J = 8.9 Hz), 6.82 (d, 0.5H, J = 7.6 Hz), 6.81 (d, 0.5H, J = 7.6 Hz), 6.74 (d, 0.5H, J = 8.8 Hz), 6.73 (d, 0.5H, J = 8.8 Hz), 6.52 (d, 1H, J = 2.5 Hz), 6.47 (dd, 1H, J = 2.5 and 8.8 Hz), 5.81 (d, 2H, J = 48.1 Hz), 5.25 (s, 2H), 4.86 (dd, 1H, J = 7.7 and 12.8 Hz), 3.83 (d, 1H, J = 3.2 Hz), 3.74-3.48 (m, 5H), 3.38 (q, 4H, J = 7.0 Hz), 1.14 (t, 6H, J = 7.0 Hz). 13C NMR (100 MHz, CD3CN):δ. 157.8, 157.7, 152.3, 152.2, 151.0, 149.8, 146.5, 146.3, 140.3, 140.2, 132.4 (d, J = 4.6 Hz), 132.3 (d, J = 4.7 Hz), 130.4, 129.2, 129.0, 124.2, 122.0, 121.1, 121.0, 113.0 (d, J = 15.1 Hz), 113.0 (d, J = 15.2 Hz), 112.4, 112.3, 111.5 (d, J = 8.6 Hz), 111.5 (d, J = 8.4 Hz), 109.6, 102.4, 102.3, 98.2, 98.2, 84.3, 84.2, 76.4, 76.3, 74.5 (d, J = 158.7 Hz), 74.2, 72.8, 72.7, 72.0, 72.0, 69.7, 62.2, 62.2, 45.0, 12.8. HRMS-ESI (m/z): [M + H]+ calculated for 568.2341 (C31H35FNO8), found 568.2343.
 本願発明の酵素特異的滞留性蛍光化合物が、蛍光イメージングプローブとして優れた性質を有することを、以下の試験例により確認した。
試験例1
 β-ガラクトシダーゼとの酵素反応特異的な蛍光発光
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、β-ガラクトシダーゼによる酵素処理特異的に蛍光を発生することを確認した。
(材料と方法)
 本発明の酵素特異的滞留性蛍光化合物である2-CHF-HMDER-βGal、4-CHF-HMDER-βGalまたは4-CHF-HMDER-βGalと、β-ガラクトシダーゼを30分間酵素反応させることによって生じる、吸収スペクトル変化及び蛍光スペクトル変化(励起波長550nm)を、リン酸ナトリウム緩衝液200mM存在下(pH7.4)で測定した。測定は、Shimadzu UV-2450(島津製作所)およびHitachi F-7000(日立製作所)を用いて行った。
(結果)
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalは、β-ガラクトシダーゼと酵素反応することにより、蛍光を発生した(図1~3)。
 これらの結果から、2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、β-ガラクトシダーゼの酵素活性特異的に、蛍光を発生することが示された。
試験例2
 β-ガラクトシダーゼ酵素反応による、共存タンパク質への蛍光色素の結合
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalを用いて、β-ガラクトシダーゼによって切断されたこれらの化合物が、溶液中に共存するウシ血清アルブミンタンパク質(BSA)を蛍光ラベル化することを確認した。
(材料と方法)
(1)2.5μM 4-CHF-HMDER-βGal および0.5mg,/mL BSA、(2)2.5μM 4-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ (3)2.5 μM 4-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ (4)2.5μM 2-CHF-HMDER-βGal,0.5mg/mL BSA および5U β-ガラクトシダーゼ (5)2.5μM HMDER-βGal、0.5mg/mL BSA および5U β-ガラクトシダーゼを、それぞれ水溶液中(500mM リン酸ナトリウム緩衝液、pH7.4)にて反応させた後、反応産物をSDS-PAGE(ランニングゲル10%、スタッキングゲル4%、泳動電圧200V)に供した。SDS-PAGEによって得られたゲルに対して、488nm,の励起光を照射し、540-600nmの蛍光をPMT電圧 1000Vにて観察した(図4(a))。観察後、当該ゲルをクマシー染色し、ゲル上におけるBSAの位置を確認した(図4(b))。
(結果)
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalと、β-ガラクトシダーゼを、BSA存在下で反応させることにより、SDS泳動後のBSAの位置に蛍光が確認された(図4のレーン2~4、75kDa付近のバンド)。β-ガラクトシダーゼを含まない試料(同レーン1)、またはHMDER-βGalを用いた試料(同レーン5)では、蛍光が確認されなかった。
 以上の結果は、2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、βガラクトシダーゼ活性特異的に変化することで、BSAに共有結合したことを示唆するものであり、本発明の酵素特異的滞留性蛍光化合物を用いることで、酵素活性特異的に、溶液中に共存するタンパク質を蛍光ラベル化し得ることを実証するものである。
試験例3
 β-ガラクトシダーゼ酵素反応による細胞内タンパク質への蛍光色素の結合
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、細胞内タンパク質を酵素活性特異的に蛍光ラベル化することを確認した。
(材料と方法)
 β-ガラクトシダーゼを発現するHEK細胞(HEK-lacZ細胞)および通常のHEK細胞を用いた。
(1)2.5μM 4-CHF-HMDER-βGal および20μL 1.5mg/mL HEK細胞ライセート(2)2.5μM 4-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート(3)2.5 μM 4-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート(4)2.5μM 2-CHF-HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセート(5)2.5μM HMDER-βGalおよび20μL 1.5mg/mL HEK-lacZ細胞ライセートを、それぞれ、5%CO存在下で37℃30分間インキュベートした後、反応産物をSDS-PAGE(ランニングゲル10%、スタッキングゲル4%、泳動電圧200V)に供した。SDS-PAGEによって得られたゲルに対して、488nm,の励起光を照射し、540-600nmの蛍光をPMT電圧 1000Vにて観察した(図5(a))。観察後、当該ゲルをクマシー染色し、ゲル上におけるBSAの位置を確認した(図5(b))。
(結果)
 2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalを、HEK-lacZ細胞とインキュベートした試料において、細胞内タンパク質に蛍光が確認された(図5のレーン2~4)。β-ガラクトシダーゼを発現しないHEK細胞を用いた試料(同レーン1)、またはHMDER-βGalを用いた試料(同レーン5)では、蛍光が確認されなかった。
 以上の結果は、2-CHF-HMDER-βGal、4-CHF-HMDER-βGalおよび4-CHF-HMDER-βGalが、βガラクトシダーゼ活性特異的に変化し、細胞内タンパク質に共有結合したことを示唆するものであり、本発明の酵素特異的滞留性蛍光化合物を用いることで、酵素活性特異的に、細胞内タンパク質を蛍光ラベル化し得ることを実証するものである。
試験例4
 β-ガラクトシダーゼを発現している生細胞の蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物が、生細胞の蛍光イメージングに利用可能であることを確認した。
(材料と方法)
 HEK細胞、HEK-lacZ細胞、およびこれらの細胞の混合物を、1μMの4-CHF-HMDER-βGalまたはHMDER-βGalとともに、30分間インキュベート(37C、5% CO存在下)した後、そのまま、あるいは、培地により2回洗浄した後、共焦点顕微鏡を用いて、これらの細胞の蛍光画像および微分干渉画像(DIC)を取得した。また、4-CHF-HMDER-βGalとインキュベーションした後、4%PFAを加えて室温で10分間インキュベーションすることで固定した細胞も、同様に観察した。共焦点顕微鏡には、白色レーザー光、および対物レンズHCX PL APO CS 40x/1.25(Leica社製)を備えた、TCS SP5X(Leica社製)を用い、LAS AF softwareにて制御した。観察条件は以下のとおり: ホワイトライトレーザー(WLL): 80%-25%,励起波長: 525nm,観測波長: 535-595nm,ゲイン: 800 V (PMT1)/350V(Scan-DIC),オフセット: 0%,ピンホール:67.88μM(1エアリーディスク).
(結果)
 試験化合物とインキュベートした後、細胞を培地で洗浄することなく観察した結果、4-CHF-HMDER-βGalでインキュベートされたHEK-LacZ細胞は、鮮明な蛍光を示した(図6左側)。また、HEK-LacZ細胞とHEK細胞の混合物においては、個々の細胞における蛍光レベルに明確な差異が観察され、細胞毎のβ-ガラクトシダーゼ活性を検出・蛍光イメージング可能であることが示された。一方、HMDER-βGalを用いた場合には、個々の細胞のβ-ガラクトシダーゼ活性を蛍光イメージングすることはできなかった(図6右側)。
 さらに、試験化合物とインキュベート後、細胞を培地により2回洗浄した後に観察した場合においても、4-CHF-HMDER-βGalを用いた場合の蛍光強度には、ほとんど変化がなく、4-CHF-HMDER-βGalとβ-ガラクトシダーゼとの酵素反応後に生成する蛍光色素が、ほとんど細胞から漏出しないことが示された(図7)。
 また、4-CHF-HMDER-βGalとインキュベーションした後に固定処理を行った試料においても、生細胞と同様の蛍光イメージングが可能であった(図8)。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、単一細胞レベルにおける詳細な生細胞蛍光イメージングを可能とし得ること、また、優れた細胞内滞留性が得られること、固定化処理を行っても、蛍光色素が細胞外にほとんど漏出しないことを実証するものである。
試験例5
 フローサイトメトリーを用いた生細胞のβ-ガラクトシダーゼ活性の検出
 本願発明の酵素特異的滞留性蛍光化合物を利用することで、生細胞の細胞毎の酵素活性を、フローサイトメトリーを用いて検出し得ることを確認した。
(材料と方法)
 HEK細胞、HEK-lacZ細胞、およびこれらの細胞の混合物を、1 μMの4-CHF-HMDER-βGalまたはHMDER-βGalとともに、30分間インキュベート(37C 、5% CO存在下)した。これらの細胞を、フローサイトメメーター Accuri C6(Accri Cytometers)を用いて、488nmの励起光で解析した。
(結果)
 4-CHF-HMDER-βGalとインキュベートされたHEK-LacZ細胞とHEK細胞の混合物を、フローサイトメトリーを用いて解析したところ、HEK-LacZ細胞、HEK細胞のそれぞれに対応するピークが明瞭に観察され、これらの細胞を、蛍光強度の差に基づいて明確に区別して検出可能であった(図9(a))。一方、HMDER-βGalとインキュベートされたHEK-LacZ細胞とHEK細胞の混合物では、これらの細胞をフローサイトメトリーの結果上区別することはできなかった(図9(b))。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、異なる酵素活性を有する細胞を、フローサイトメトリーを用いて明確に検出および区別し得ることを実証するものである。
試験例6
 β-ガラクトシダーゼ活性をもつ生体組織の非固定蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物を、生体組織の蛍光イメージングに適用し得ることを確認した。
(材料と方法)
 β-ガラクトシダーゼを発現する(en-lacZ)ショウジョウバエ(Drosophila melanogaster)の羽原基(wing discs)を、20μMの4-CHF-HMDER-βGal又はHMDER-βGalとともに、30分間室温にてインキュベーションした後、共焦点顕微鏡(TCS SP5:Leica社製、LAS AF software.にて制御)下で観察した。観察条件は以下のとおり;Ar:40%-25%,励起光:514nm,観測光:535-595nm(HyD2),20倍.
(結果)
 4-CHF-HMDER-βGalを用いて蛍光イメージングを行った場合、酵素反応生成物である蛍光色素は拡散しないため、β-ガラクトシダーゼ活性をもつ部位(後部)を選択的に蛍光イメージング可能であった(図10(a))。一方、HMDER-βGalを用いて蛍光イメージングを行った場合は、経時的に酵素反応生成物である蛍光色素が拡散し、β-ガラクトシダーゼ活性をもつ部位が判別できなかった(図10(b))。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、蛍光色素の拡散が抑制され、生体組織における非固定蛍光イメージングが可能となることを実証するものである。
試験例7
 β-ガラクトシダーゼ活性を発現する固定処理後のハエ腸管細胞の単一細胞蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物を用いて、組織内の細胞を単一細胞レベルで蛍光イメージングすることが可能であることを確認した。
(材料と方法)
 中腸にβ-ガラクトシダーゼを発現するショウジョウバエ(esg-lacZ)を作製した。当該ハエを解剖後4%FPAにより固定処理を行い、4-CHF-HMDER-βGalを添加して10分間反応させた後洗浄し、80%グリセロールにて透明化処理を行い、蛍光顕微鏡(TCS SP5:Leica社製、LAS AF software.にて制御)にて観察を行った。対照として、GFPを発現するショウジョウバエ腸幹細胞(esg-GFP)を観察した。観察条件は以下のとおり;励起光:514nm,観測光:535-595nm(HyD2),40倍.
(結果)
 ショウジョウバエ(esg-lacZ)を4-CHF-HMDER-βGalと反応させることにより、組織内に蛍光を発する細胞を確認することができた(図11(a))。当該画像は、ショウジョウバエ腸幹細胞(esg-GFP)の蛍光画像(図11(b))と類似していた。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、単一細胞蛍光イメージングが可能であることを実証するものである。
なお、固定処理を行っていない、β-ガラクトシダーゼ発現腸管細胞でも、同様の蛍光イメージングが可能であることを確認している。
試験例8
 卵巣癌播種モデルマウスのex vivo蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物を用いて、癌部位を選択的に蛍光イメージング可能であることを確認した。
(材料と方法)
 卵巣癌細胞SHIN3を播種して、癌モデルマウスを作製した。卵巣癌細胞においては、酸性β-ガラクトシダーゼ活性が上昇していることが知られている。当該癌モデルマウスに、4-CHF-HMDER-βGalを腹腔内注射して1時間後に、Maestro in-vivo imaging system(CRi)を用いて蛍光観察を行った。観察条件は以下のとおり;励起光:490-530nm,観測光:550-800nm
(結果)
 蛍光観察の結果、癌部位と考えられる組織部位(白矢印で示す)から、酵素反応後に生成する蛍光色素由来の蛍光が観察された(図12)。蛍光スペクトルにより蛍光を分離する操作(unmix)を行ったところ、自家蛍光と蛍光スペクトルを分離することが可能であった。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、生体における癌部位を、選択的に蛍光イメージング可能であることを実証するものである。
試験例9
 未固定ショウジョウバエ組織における、モザイク状に発現したβ-ガラクトシダーゼ活性の蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物を用いて、生体組織内にモザイク状に分布するβ-ガラクトシダーゼ活性細胞群を未固定で蛍光イメージングすることが可能であることを確認した。
(材料と方法)
 雄のHis2Av-mRFP1, FRT80B/TM6Bをもつショウジョウバエ(Drosophila melanogaster)と雌のhs-flp;;arm-lacZ, FRT80Bをもつショウジョウバエを交配させ、その子が孵化して30時間後の一齢幼虫のときに37℃、1時間ヒートショックを与え、羽原基(wing discs)に以下の三種類の遺伝子型の細胞をモザイク状に発現させた;(1) β-ガラクトシダーゼのみが発現した細胞(arm-lacZ)、(2) 赤色蛍光タンパク質(mRFP1)のみが発現した細胞(His2Av-mRFP1)、(3) β-ガラクトシダーゼとmRFP1が共に発現した細胞(arm-lacZ/His2Av-mRFP1)。三齢(終齢)幼虫から解剖した羽原基を10 μMの4-CHF-HMDER-βGalを含む培地中に30分間浸し、共焦点蛍光顕微鏡(TCS SP5:Leica社製、LAS AF softwareにて制御)下で観察した。観察条件は以下の通り;(4-CHF-HMDER-βGal)励起光:514 nm、観測光:525-585 nm、(mRFP1)励起光:594 nm、観測光:610-700 nm、63倍。
(結果)
 4-CHF-HMDER-βGalを用いて蛍光イメージングを行ったところ、上記三種類の遺伝子型をもつ細胞がモザイク状に存在する様子が鮮明に可視化された(図13)。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、生体組織に存在するβ-ガラクトシダーゼ発現細胞を非固定で明確に可視化・判別可能であることを実証するものである。
試験例10
 β-ガラクトシダーゼ活性を発現するハエ脂肪体細胞の単一細胞蛍光イメージング
 本願発明の酵素特異的滞留性蛍光化合物を用いて、生体組織内にランダムに発現したβ-ガラクトシダーゼ活性を、単一細胞レベルで蛍光イメージングすることが可能であることを確認した。
(材料と方法)
 ショウジョウバエ(Drosophila melanogaster)脂肪体のクローン解析を行うため、フリップアウト技術を使ってUAS-lacZをhs-flp122;Actin>y>Gal4に掛け合わせることによってβ-ガラクトシダーゼを過剰発現させた。生細胞蛍光イメージングを行うため、三齢(終齢)のハエから脂肪体を解剖し、10 μMの4-CHF-HMDER-βGalと16 μMのHoechst 33342(細胞核染色剤)を含む培地に20分間インキュベーションし、PBSで洗浄し、80%グリセロール中に固定した。また、免疫化学染色を行うため、解剖した脂肪体を4%パラホルムアルデヒド(PFA)含有PBSに20分間浸し、固定処理を行った。ブロッキングの後、脂肪体をβ-ガラクトシダーゼに対するマウス由来モノクローナル抗体(1:250、プロメガ社)に30分間浸し、10 μMの4-CHF-HMDER-βGal、16 μMのHoechst 33342、Alexa 647修飾二次抗体を加え、共焦点蛍光顕微鏡(TCS SP5:Leica社製、LAS AF softwareにて制御)下で観察した。観察条件は以下の通り;(Hoechst 33342)励起光:405 nm、観測光:415-490 nm、(4-CHF-HMDER-βGal)励起光:514 nm、観測光:525-600 nm、(Alexa 647修飾二次抗体)励起光:633 nm、観測光:640-700 nm、40倍。
(結果)
 4-CHF-HMDER-βGalを用いて蛍光イメージングを行い、生体組織内にランダムに発現したβ-ガラクトシダーゼ活性細胞を単一細胞ずつ蛍光イメージングすることが可能であることを確認した(図14)。
 以上の結果は、本発明の酵素特異的滞留性蛍光化合物を用いることで、生体組織内にランダムに発現したβ-ガラクトシダーゼ活性細胞を単一細胞ずつ可視化・判別可能であることを実証するものである。
 本発明により、酵素活性特異的に蛍光を発すると同時に、当該酵素を有する生細胞内に滞留することで、当該細胞を固定することなく、あるいは固定した状態で、単一細胞レベルで選択的に可視化可能な蛍光化合物、当該蛍光化合物を用いた蛍光イメージングプローブ、当該蛍光プローブを用いた検出方法、検出キット又は検出剤が提供される。本発明の酵素特異的滞留性蛍光化合物およびこれを用いたイメージング手法は、細胞の老化機構を解明するための分子ツールとして利用し得るほか、癌細胞選択的な蛍光イメージングプローブとして、検査、診断などの分野において、幅広い利用用途を有している。

Claims (18)

  1.  以下の式(I’)で表される化合物又はその塩を含む、酵素特異的滞留性蛍光化合物:
    Figure JPOXMLDOC01-appb-C000001


    (式中、Aは酵素によって切断される一価の基を表し;Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、及びRはそれぞれ独立に-CFR1011又は-CF12、若しくは水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を表し;R10、R11及びR12はそれぞれ独立に水素原子、アルキル基又はアルケニル基を表し;Xは酸素原子、Se、CR1314、又はSiR1516を表し;R13、R14、R15及びR16はそれぞれ独立に水素原子又はアルキル基を表し;YはC-Cアルキレン基を表し、ここで、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12を表す。)
  2.  前記酵素が、レポーター酵素を含む加水分解酵素である、請求項1に記載の酵素特異的滞留性蛍光化合物。
  3.  前記酵素が、癌細胞で特異的に発現又は活性化する酵素である、請求項1に記載の酵素特異的滞留性蛍光化合物。
  4.  前記レポーター酵素がβ-ガラクトシダーゼであって、Aがガラクトピラノシル基である、請求項1~3のいずれかに記載の酵素特異的滞留性蛍光化合物。
  5.  R、R、R、及びRの少なくとも一つは、-CFR1011である、請求項1~4のいずれかに記載の酵素特異的滞留性蛍光化合物。
  6.  R、R、R、及びRの少なくとも一つは、-CHFである、請求項1~4のいずれかに記載の酵素特異的滞留性蛍光化合物。
  7.  以下の式(Ia)~(Ic)で表される化合物又はその塩を含む、酵素特異的滞留性蛍光化合物:
    Figure JPOXMLDOC01-appb-C000002

  8.  請求項1~7のいずれかに記載の酵素特異的滞留性蛍光化合物を含有する蛍光イメージングプローブ。
  9.  請求項1~7のいずれかに記載の酵素特異的滞留性蛍光化合物を含有する、特定の酵素が発現している標的細胞を検出するための、又は可視化するための組成物又はキット。
  10.  前記標的細胞が、β-ガラクトシダーゼ発現細胞である、請求項9に記載の組成物又はキット。
  11.  前記標的細胞が、癌細胞である、請求項9に記載の組成物又はキット。
  12.  請求項1~7のいずれかに記載の酵素特異的滞留性蛍光化合物を用いて、特定の酵素が発現している標的細胞を検出する方法。
  13.  請求項1~7のいずれかに記載の酵素特異的滞留性蛍光化合物と、当該標的細胞において特異的に発現する酵素とを、生体外において接触させ、特定の酵素が発現している標的細胞を検出する方法。
  14.  請求項1~7のいずれかに記載の酵素特異的滞留性蛍光化合物と、当該標的細胞において特異的に発現する酵素とを、生体外において接触させる工程、及び、励起光照射を行って蛍光を生じさせる工程を含むことを特徴とする、請求項12又は13のいずれかに記載の方法。
  15.  前記標的細胞が、β-ガラクトシダーゼ発現細胞である、請求項12~14のいずれかに記載の方法。
  16.  前記標的細胞が、癌細胞である、請求項12~15のいずれかに記載の方法。
  17.  以下の式(II)で表される化合物:
    Figure JPOXMLDOC01-appb-C000003



    (式中、R、R、R、及びRはそれぞれ独立に-C(=O)H、水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;Xは酸素原子、Se、CR1314又はSiR1516を表し;R13、R14、R15又はR16はそれぞれ独立に水素原子又はアルキル基を示し;YはC-Cアルキレン基を表し、ここで、R、R、R、及びRの少なくとも一つは、-C(=O)Hを表す。)
  18.  以下の式(IIa)又は(IIb)で表される化合物:
    Figure JPOXMLDOC01-appb-I000004
PCT/JP2015/063789 2014-05-14 2015-05-13 酵素特異的な細胞内滞留性蛍光化合物 WO2015174460A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/310,641 US9981934B2 (en) 2014-05-14 2015-05-13 Enzyme-specific fluorescent compound capable of being retained in cells
JP2016519289A JP6635555B2 (ja) 2014-05-14 2015-05-13 酵素特異的な細胞内滞留性蛍光化合物
EP15793236.9A EP3144315B1 (en) 2014-05-14 2015-05-13 Enzyme-specific fluorescent compound capable of being retained in cells
CA2948306A CA2948306A1 (en) 2014-05-14 2015-05-13 Enzyme-specific fluorescent compound capable of being retained in cells
CN201580025824.7A CN106459125B (zh) 2014-05-14 2015-05-13 酶特异性的细胞内滞留性荧光化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-100771 2014-05-14
JP2014100771 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015174460A1 true WO2015174460A1 (ja) 2015-11-19

Family

ID=54479997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063789 WO2015174460A1 (ja) 2014-05-14 2015-05-13 酵素特異的な細胞内滞留性蛍光化合物

Country Status (6)

Country Link
US (1) US9981934B2 (ja)
EP (1) EP3144315B1 (ja)
JP (1) JP6635555B2 (ja)
CN (1) CN106459125B (ja)
CA (1) CA2948306A1 (ja)
WO (1) WO2015174460A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003686A1 (ja) * 2016-06-30 2018-01-04 国立大学法人 東京大学 酵素特異的な細胞内滞留性赤色蛍光プローブ。
WO2020175688A1 (ja) * 2019-02-28 2020-09-03 国立大学法人 東京大学 癌検出蛍光プローブ
WO2020250998A1 (ja) * 2019-06-14 2020-12-17 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275889A4 (en) * 2015-02-27 2018-11-21 The University of Tokyo Fluorescent probe for detecting calpain activity
CN106632215B (zh) * 2016-11-17 2019-04-12 陕西师范大学 一种荧光蛋白质染色剂及其制备方法和应用
CN109694396A (zh) * 2018-12-26 2019-04-30 济南大学 一种双光子比率荧光探针在检测β-半乳糖苷酶中的应用
CN109651326B (zh) * 2019-01-08 2021-06-01 厦门大学 一类共价键连接标记细胞的荧光探针和跟踪标记细胞的方法
CN111773394A (zh) * 2019-04-04 2020-10-16 复旦大学 一种β-半乳糖苷酶荧光探针纳米微球及其制备方法和用途
WO2022173576A1 (en) * 2021-02-10 2022-08-18 The Regents Of The University Of California Tandem activity-based sensing and labeling strategy for reactive oxygen species imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211531A (ja) * 1987-10-15 1989-08-24 Mo Gos Univ Im Mv Lomonosova フルオロン誘導体を含有する薬剤
WO2005024049A1 (ja) * 2003-09-05 2005-03-17 Daiichi Pure Chemicals Co., Ltd. 蛍光プローブ
WO2007100061A1 (ja) * 2006-03-03 2007-09-07 The University Of Tokyo 蛍光プローブ
WO2010095450A1 (ja) * 2009-02-20 2010-08-26 国立大学法人 東京大学 プロテアーゼ測定用蛍光プローブ
WO2011087000A1 (ja) * 2010-01-13 2011-07-21 国立大学法人 東京大学 がん診断薬
WO2013180181A1 (ja) * 2012-05-30 2013-12-05 国立大学法人 東京大学 高感度膵液検出用蛍光プローブ、及び膵液検出方法
JP2014065673A (ja) * 2012-09-25 2014-04-17 Univ Of Tokyo 標的細胞特異的な光増感用化合物。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014147A1 (en) * 2006-02-28 2008-01-17 The University Of Tokyo Tumor specific fluorescent dye
US8697383B2 (en) * 2010-05-25 2014-04-15 Mitsubishi Rayon Co., Ltd. Fluorescent substrate for detection of enzymatic activity of nitrile-related enzyme

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211531A (ja) * 1987-10-15 1989-08-24 Mo Gos Univ Im Mv Lomonosova フルオロン誘導体を含有する薬剤
WO2005024049A1 (ja) * 2003-09-05 2005-03-17 Daiichi Pure Chemicals Co., Ltd. 蛍光プローブ
WO2007100061A1 (ja) * 2006-03-03 2007-09-07 The University Of Tokyo 蛍光プローブ
WO2010095450A1 (ja) * 2009-02-20 2010-08-26 国立大学法人 東京大学 プロテアーゼ測定用蛍光プローブ
WO2011087000A1 (ja) * 2010-01-13 2011-07-21 国立大学法人 東京大学 がん診断薬
WO2013180181A1 (ja) * 2012-05-30 2013-12-05 国立大学法人 東京大学 高感度膵液検出用蛍光プローブ、及び膵液検出方法
JP2014065673A (ja) * 2012-09-25 2014-04-17 Univ Of Tokyo 標的細胞特異的な光増感用化合物。

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAMIYA MAKO ET AL.: "beta-Galactosidase Fluorescence Probe with Improved Cellular Accumulation Based on a Spirocyclized Rhodol Scaffold", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 33, 2011, pages 12960 - 12963, XP055236721 *
MAKO KAMIYA ET AL.: "Keiko Probe no Seimitsu Sekkei ni Motozuku in vivo Jinsoku Keiko Gan Imaging", EXPERIMENTAL MEDICINE, vol. 30, no. 7, 2012, pages 1135 - 1144, XP008185652 *
MAKO KAMIYA ET AL.: "Rhodol no Spiro Kanka Heiko ni Motozuku beta-Galactosidase Keiko Probe no Kaihatsu", JAPANESE SOCIETY FOR PHOTOMEDICINE AND PHOTOBIOLOGY, vol. 34, 2012, pages 63, XP008185832 *
See also references of EP3144315A4 *
TAKI MASAYASU ET AL.: "A mitochondria-targeted turn-on fluorescent probe based on a rhodol platform for the detection of copper(I", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 12, no. 27, pages 4999 - 5005, XP055236723 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003686A1 (ja) * 2016-06-30 2018-01-04 国立大学法人 東京大学 酵素特異的な細胞内滞留性赤色蛍光プローブ。
JP2018000074A (ja) * 2016-06-30 2018-01-11 国立大学法人 東京大学 酵素特異的な細胞内滞留性赤色蛍光プローブ。
US11591359B2 (en) 2016-06-30 2023-02-28 The University Of Tokyo Enzyme-specific intracellularly-retained red fluorescent probe
WO2020175688A1 (ja) * 2019-02-28 2020-09-03 国立大学法人 東京大学 癌検出蛍光プローブ
WO2020250998A1 (ja) * 2019-06-14 2020-12-17 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法
JP7385850B2 (ja) 2019-06-14 2023-11-24 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法

Also Published As

Publication number Publication date
CN106459125A (zh) 2017-02-22
JP6635555B2 (ja) 2020-01-29
JPWO2015174460A1 (ja) 2017-04-20
EP3144315A1 (en) 2017-03-22
US9981934B2 (en) 2018-05-29
EP3144315B1 (en) 2022-07-06
CN106459125B (zh) 2019-05-07
CA2948306A1 (en) 2015-11-19
EP3144315A4 (en) 2017-12-13
US20170073321A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6635555B2 (ja) 酵素特異的な細胞内滞留性蛍光化合物
Liu et al. Construction of NIR and ratiometric fluorescent probe for Hg 2+ based on a rhodamine-inspired dye platform
US11591359B2 (en) Enzyme-specific intracellularly-retained red fluorescent probe
JP5228190B2 (ja) パーオキシナイトライト蛍光プローブ
CN105917234B (zh) 铁(ii)离子检测剂以及使用其的检测方法
JPWO2005024049A1 (ja) 蛍光プローブ
JP6793040B2 (ja) 活性化可能な水溶性の分子プローブ、その合成のための中間体、および関連する検出方法
WO2010095450A1 (ja) プロテアーゼ測定用蛍光プローブ
WO2010028349A2 (en) Fluorochromes for organelle tracing and multi-color imaging
JP7140398B2 (ja) ニトロベンゼン誘導体またはその塩およびそれらの用途
KR101261791B1 (ko) 생체 세포 내 알칼리 인산분해효소의 활성도 탐지를 위한 형광 프로브
CN113637048A (zh) 一种γ-谷氨酰转肽酶的双光子荧光探针及其制备方法和应用
JP2018145126A (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
WO2021177060A1 (ja) Lta1基質となる蛍光プローブ
JPWO2018105667A1 (ja) Aldh3a1検出蛍光プローブ
JP6274632B2 (ja) メチル化dnaを蛍光標識する方法
WO2021153772A1 (ja) アルデヒドデヒドロゲナーゼ1a1検出用青色蛍光プローブ
US20040044228A1 (en) Fluorescent probe for magnesium ion determination
WO2023167305A1 (ja) 酵素活性の検出方法、及び当該方法に用いる蛍光プローブ
EP3981778A1 (en) Fluorescent probe for detection of enpp activity
WO2014057999A1 (ja) 細胞内アセチル化のイメージング試薬
WO2020045529A1 (ja) 新規な蛍光色素並びにそれを用いた脂肪滴染色用組成物及び細胞内脂肪滴のイメージング方法
JPWO2020111279A1 (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
IWASHITA Studies on the Visualization of Cellular Function with Fluorescent Small Molecules: Live Cell Imaging of Mitophagy and Associated Autophagy
岩下秀文 et al. Studies on the Visualization of Cellular Function with Fluorescent Small Molecules: Live Cell Imaging of Mitophagy and Associated Autophagy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519289

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2948306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15310641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015793236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793236

Country of ref document: EP