WO2018003686A1 - 酵素特異的な細胞内滞留性赤色蛍光プローブ。 - Google Patents

酵素特異的な細胞内滞留性赤色蛍光プローブ。 Download PDF

Info

Publication number
WO2018003686A1
WO2018003686A1 PCT/JP2017/023171 JP2017023171W WO2018003686A1 WO 2018003686 A1 WO2018003686 A1 WO 2018003686A1 JP 2017023171 W JP2017023171 W JP 2017023171W WO 2018003686 A1 WO2018003686 A1 WO 2018003686A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorescent probe
enzyme
red fluorescent
red
Prior art date
Application number
PCT/JP2017/023171
Other languages
English (en)
French (fr)
Inventor
泰照 浦野
真子 神谷
央樹 伊藤
優 川又
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US16/313,357 priority Critical patent/US11591359B2/en
Publication of WO2018003686A1 publication Critical patent/WO2018003686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Definitions

  • the present invention relates to a novel red fluorescent probe that stays in a target cell and can specifically act on the cell, and a method for specifically imaging a target cell in which a specific enzyme is expressed using the fluorescent probe And a detection kit comprising the probe.
  • Non-patent Document 1 ⁇ -galactosidase enzyme-specific imaging probes are molecular tools for elucidating the aging mechanism of cells. It is also important. Furthermore, since it has been shown that ⁇ -galactosidase activity is increased in certain types of cancer cells (Non-patent Document 2 and Non-patent Document 3), ⁇ -galactosidase enzyme-specific imaging probes are used for cancer cells. It can be used as a selective fluorescent imaging probe.
  • Non-patent Document 4 a method for imaging enzyme activity using X-Gal as a substrate has been widely used.
  • X-Gal cannot be applied to living cells, it can be applied to living cells.
  • Development of an imaging probe is desired.
  • imaging probes applicable to many living cells have been developed.
  • HMDER- ⁇ Gal and the like have been developed as ⁇ -galactosidase fluorescent probes applicable to living cells and living tissues that can be excited by visible light by controlling the spirocyclization reaction in the molecule (Non-patent Documents). 5, Patent Document 1).
  • the present invention enables selective visualization of target cells such as cells expressing ⁇ -galactosidase (lacZ-expressing cells) at a single cell level and in a red fluorescent region, and is capable of co-staining with GFP.
  • An object of the present invention is to provide an imaging probe.
  • the present inventors have substituted the 10-position element of the xanthene ring from the oxygen atom to the silicon atom in the rhodamine-based fluorescent dye, and also converted the carboxyl group at the 2-position of the benzene ring.
  • red fluorescence is exhibited only by reaction with an enzyme such as ⁇ -galactosidase, and excellent cells. It was found that a fluorescent imaging probe exhibiting internal retention can be obtained.
  • the fluorescent probe produces a highly reactive quinone methide by reaction with an enzyme, which binds irreversibly to intracellular nucleophilic molecules such as proteins, and intramolecular spirocyclization in the fluorescent probe.
  • Intracellular retentive red fluorescent probe comprising a compound represented by the following formula (I) or a salt thereof:
  • A represents a monovalent group that is cleaved by an enzyme
  • R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring
  • R 3 , R 4 , R 5 , and R 6 each independently represent —CFR 10 R 11 or —CF 2 R 12 , or a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom, provided that R 3 , R 4 , R 5 And at least one of R 6 is —CFR 10 R 11 or —CF 2 R 12
  • R 2 and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom
  • 8 and R 9 each independently represent a hydrogen atom or an alkyl group
  • R 10, R 11 and R 12 are
  • the present invention provides: ⁇ 9> A kit for detecting or visualizing a target cell in which a specific enzyme is expressed, comprising the intracellular retention red fluorescent probe according to any one of ⁇ 1> to ⁇ 8>above; ⁇ 10> The composition or kit according to ⁇ 9> above, wherein the target cell is a ⁇ -galactosidase-expressing cell; ⁇ 11> The composition or kit according to ⁇ 9> above, wherein the target cell is a cancer cell; ⁇ 12> A method for detecting a target cell in which a specific enzyme is expressed using the intracellular retention red fluorescent probe according to any one of ⁇ 1> to ⁇ 8>above; ⁇ 13> including a step of bringing the intracellular retentive red fluorescent probe and an enzyme specifically expressed in the target cell into contact with each other in vitro, and a step of generating fluorescence by performing excitation light irradiation
  • the intracellular retention red fluorescent probe of the present invention has sufficient cell permeability and intracellular retention, and can detect a cell expressing a reporter enzyme such as ⁇ -galactosidase live at a single cell level. Furthermore, since it is a luminescent signal in the red fluorescent region, it can be separated from the fluorescent signal of GFP (green fluorescent protein), and there is an effect that co-staining with GFP is possible. Therefore, according to the present invention, by using a novel fluorescent probe having both red fluorescence and intracellular retention, selective fluorescence at a single cell level of target cells in living cells and living living tissues can be achieved. Imaging becomes possible.
  • the imaging technique using the intracellular retention red fluorescent probe of the present invention can be performed with a microscope capable of normal cell imaging and does not require any special equipment. As described above, the industrial utility value and economic effect of the intracellular retention red fluorescent probe of the present invention are extremely large.
  • FIG. 1 shows the intensity (a) of fluorescence generated by the enzymatic reaction of 4-CH 2 F-SPiDER-RED- ⁇ Gal, which is an intracellular retention red fluorescent probe of the present invention, and ⁇ -galactosidase, and changes in absorption spectrum (b ) And a fluorescence spectrum (c).
  • FIG. 2 shows the intensity (a) of fluorescence generated by the enzymatic reaction of 2-CH 2 F-SPiDER-RED- ⁇ Gal, which is the intracellular retention red fluorescent probe of the present invention, and ⁇ -galactosidase, and changes in absorption spectrum (b ) And a fluorescence spectrum (c).
  • FIG. 1 shows the intensity (a) of fluorescence generated by the enzymatic reaction of 4-CH 2 F-SPiDER-RED- ⁇ Gal, which is an intracellular retention red fluorescent probe of the present invention, and ⁇ -galactosidase, and changes in absorption spectrum (b ) And a fluorescence spectrum (c).
  • Lane 1 10 ⁇ M 4-CH 2 F-SPiDER-RED- ⁇ Gal, 1 mg / mL BSA, PBS buffer containing 5 U ⁇ -galactosidase 10 ⁇ L
  • Lane 2 10 ⁇ M 4-CH 2 F-SPiDER-RED 10 ⁇ L of PBS buffer containing ⁇ -Gal and 1 mg / mL BSA
  • Lane 3 10 ⁇ L of PBS buffer containing 10 ⁇ M 4-CH 2 F-SPiDER-RED- ⁇ Gal and 5 U ⁇ -galactosidase
  • Lane 4 10 ⁇ M 10 ⁇ L of PBS buffer containing 4-CH 2 F-SPiDER-RED- ⁇ Gal alone
  • Lane 5 10 ⁇ L of PBS buffer containing 10 ⁇ M 4-CH 2 OH-SPiDER-RED.
  • FIG. 4 shows that the protein BSA coexisting in the solution is fluorescently labeled by enzymatic reaction of 2-CH 2 F-SPiDER-RED- ⁇ Gal, which is an intracellular retention red fluorescent probe of the present invention, with ⁇ -galactosidase. It is the figure which showed having obtained.
  • Lane 1 10 ⁇ M 2-CH 2 F-SPiDER-RED- ⁇ Gal, 10 ⁇ L of PBS buffer containing 1 mg / mL BSA, 5 U ⁇ -galactosidase
  • Lane 2 10 ⁇ M 2-CH 2 F-SPiDER-RED 10 ⁇ L of PBS buffer containing ⁇ -Gal, 1 mg / mL BSA
  • Lane 3 10 ⁇ L of PBS buffer containing 10 ⁇ M 2-CH 2 F-SPiDER-RED- ⁇ Gal and 5 U ⁇ -galactosidase
  • Lane 4 10 ⁇ M 10 ⁇ L of PBS buffer containing 2-CH 2 F-SPiDER-RED- ⁇ Gal alone
  • Lane 5 10 ⁇ L of PBS buffer containing 10 ⁇ M 2-CH 2 OH-SPiDER-RED.
  • FIG. 5 is a live cell fluorescence imaging image using 4-CH 2 F-SPiDER-RED- ⁇ Gal, which is an intracellular retention red fluorescent probe of the present invention.
  • the upper left image is an image of green fluorescence observed from HEK cells
  • the upper right image is an image of red fluorescence derived from 4-CH 2 F-SPiDER-RED- ⁇ Gal
  • the lower left image is a bright field image
  • the lower right image is , A superimposed image of fluorescent images.
  • FIG. 6 is a fluorescence imaging image of fly wing primordium tissue reacted with 4-CHF 2 -SPiDER-RED- ⁇ Gal, which is an intracellular retention red fluorescent probe of the present invention.
  • the fluorescence image of 4-CHF 2 -SPiDER-RED- ⁇ Gal From the top left, the fluorescence image of 4-CHF 2 -SPiDER-RED- ⁇ Gal, the fluorescence image of GFP, the fluorescence image of Hoechst33342, the bright field image from the left of the bottom, and a merged image thereof.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • alkyl may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited, for example, 1 to 20 carbon atoms (C 1-20), having 3 to 15 carbon (C 3-15), having 5 to 10 carbon atoms (C 5-10 ). When the number of carbons is specified, it means “alkyl” having the number of carbons within the range.
  • C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included.
  • the alkyl group may have one or more arbitrary substituents.
  • substituents examples include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • alkyl group has two or more substituents, they may be the same or different.
  • alkyl part of other substituents containing an alkyl part for example, an alkoxy group, an arylalkyl group, etc.
  • a functional group when a functional group is defined as “may be substituted”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different.
  • the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.
  • aryl may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom Etc.) may be an aromatic heterocyclic ring. In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions.
  • Non-limiting examples of monocyclic aryl include phenyl group (Ph), thienyl group (2- or 3-thienyl group), pyridyl group, furyl group, thiazolyl group, oxazolyl group, pyrazolyl group, 2-pyrazinyl Group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyridazinyl group, 3-isothiazolyl group, 3-isoxazolyl group, 1,2,4-oxadiazol-5-yl group or 1,2,4-oxadiazole-3 -Yl group and the like.
  • Non-limiting examples of fused polycyclic aryl include 1-naphthyl group, 2-naphthyl group, 1-indenyl group, 2-indenyl group, 2,3-dihydroinden-1-yl group, 2,3 -Dihydroinden-2-yl group, 2-anthryl group, indazolyl group, quinolyl group, isoquinolyl group, 1,2-dihydroisoquinolyl group, 1,2,3,4-tetrahydroisoquinolyl group, indolyl group, Isoindolyl group, phthalazinyl group, quinoxalinyl group, benzofuranyl group, 2,3-dihydrobenzofuran-1-yl group, 2,3-dihydrobenzofuran-2-yl group, 2,3-dihydrobenzothiophen-1-yl group, 2 , 3-dihydrobenzothiophen-2-yl group, benzothiazolyl group,
  • an aryl group may have one or more arbitrary substituents on the ring.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
  • the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof.
  • methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
  • ring structure when formed by a combination of two substituents, means a heterocyclic or carbocyclic group, such group being saturated, unsaturated, or aromatic.
  • it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above. Examples include cycloalkyl, phenyl, naphthyl, morpholinyl, piperidinyl, imidazolyl, pyrrolidinyl, pyridyl and the like.
  • a substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substitution, such as bonding to hydrogen.
  • the intracellular retentive red fluorescent probe of the present invention includes a compound having a structure represented by the following general formula (I) or a salt thereof.
  • R 1 represents a hydrogen atom or 1 to 4 substituents bonded to a benzene ring.
  • substituents include, but are not limited to, alkyl groups, alkoxy groups, halogen atoms, amino groups, mono- or di-substituted amino groups, substituted silyl groups, and acyl groups. . These substituents may be further substituted with one or more substituents. Examples of such substituents include alkyl groups, alkoxy groups, halogen atoms, hydroxyl groups, carboxyl groups, amino groups, and sulfo groups. 1 or 2 or more may be included. When having two or more substituents on the benzene ring, they may be the same or different.
  • R 1 is more preferably a hydrogen atom, a lower alkyl group or a lower alkoxy group. A hydrogen atom is particularly preferred.
  • R 3 , R 4 , R 5 , and R 6 each independently represent —CFR 10 R 11 or —CF 2 R 12 , or a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom (the alkyl group is substituted) May be).
  • R 10 , R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an alkenyl group.
  • at least one of R 3, R 4, R 5 , and R 6 represents a -CFR 10 R 11 or -CF 2 R 12.
  • At least one of R 3 , R 4 , R 5 , and R 6 is preferably —CFR 10 R 11 . More preferably, at least one of R 3 , R 4 , R 5 , and R 6 is —CH 2 F.
  • R 2 and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom.
  • R 2 and R 7 are preferably both hydrogen atoms.
  • R 8 and R 9 each independently represent a hydrogen atom or an alkyl group. When R 8 and R 9 both represent an alkyl group, they may be the same or different.
  • R 8 and R 9 are each independently preferably a methyl group or an ethyl group, and more preferably R 8 and R 9 are both ethyl groups.
  • X represents Si (R a ) (R b ).
  • R a and R b each independently represent a hydrogen atom or an alkyl group, and the alkyl group is preferably an alkyl group having 1 to 5 carbon atoms and may be substituted.
  • R a and R b are both hydrogen atoms.
  • Y is —C ( ⁇ O) — or —R c C ( ⁇ O) —.
  • R c is an alkylene group having 1 to 3 carbon atoms.
  • the alkylene group may be a linear alkylene group or a branched alkylene group.
  • a methylene group —CH 2 —
  • an ethylene group —CH 2 —CH 2 —
  • a propylene group —CH 2 —CH 2 —CH 2 —
  • a branched alkylene group such as —CH ( CH 3 ) —, —CH 2 —CH (CH 3 ) —, —CH (CH 2 CH 3 ) — and the like can also be used.
  • Y is —C ( ⁇ O) —.
  • the group A represents a monovalent group that is cleaved by an enzyme.
  • a ⁇ -galactopyranosyl group an ⁇ -mannosyl group, a ⁇ -N-acetylglucosamyl group, a ⁇ -lactam ring
  • examples thereof include, but are not limited to, phosphate esters, aminophenoxy groups, hydroxyphenoxy groups, and ⁇ -glutamic acid.
  • Examples of the enzyme for cleaving A include a reductase, an oxidase, or a hydrolase.
  • a reporter enzyme or an enzyme that is specifically expressed or activated in cancer cells more specifically, , ⁇ -galactosidase, ⁇ -lactamase, ⁇ -mannosidase, esterase, alkaline phosphatase, luciferase, peroxidase, cytochrome P450 oxidase, ⁇ -glucosidase, ⁇ -glucuronidase, ⁇ -hexosaminidase, lactase, ⁇ -glutamyltransferase, etc. It can be mentioned, but is not limited to these.
  • ⁇ -galactosidase Preferred are ⁇ -galactosidase, ⁇ -lactamase, alkaline phosphatase, luciferase, ⁇ -hexosaminidase, peroxidase, or ⁇ -glutamyltransferase. Most preferred is ⁇ -galactosidase.
  • the compound represented by the above formula (I) may exist as a salt.
  • the salt include base addition salts, acid addition salts, amino acid salts and the like.
  • the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt.
  • examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate.
  • Examples of amino acid salts include glycine salts.
  • the salt of the compound represented by the formula (I) of the present invention is not limited thereto.
  • the compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
  • the compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • solvents such as ethanol, acetone, isopropanol, can be illustrated.
  • the compound of the formula (I) used as the intracellular retention red fluorescent probe of the present invention include the following compounds. However, it is not limited to these.
  • Fluorescence emission and intracellular retention mechanism of the fluorescent probe of the present invention The fluorescence emission mechanism and intracellular retention mechanism in the intracellular retention red fluorescent probe of the present invention will be described below.
  • the compound represented by the formula (I) or a salt thereof hardly emits fluorescence when irradiated with excitation light of, for example, about 500 to 650 nm in the neutral region. It has the property of emitting extremely strong fluorescence under the same conditions. Therefore, when the cell that has taken in the intracellular retention red fluorescent probe represented by the formula (I) does not express an enzyme capable of cleaving the group A, the ring-opening compound of (C) is not produced. Fluorescent substances are not generated in the cells. Thus, by using the intracellular retention red fluorescent probe represented by the formula (I), fluorescence is selectively emitted only in cells in which an enzyme capable of cleaving the group represented by A is expressed and activated. Generated.
  • reaction product compound represented by (C) can be covalently bound to an intracellular protein, leakage to the outside of the cell is suppressed, thereby identifying a cell in which the enzyme is expressed and activated. In particular, it is possible to visualize at a detailed level such as a single cell level.
  • X which is the 10th element of the xanthene ring has a silicon atom
  • the second position of the benzene ring has a substituent based on a carboxyl group (YO moiety).
  • the compound represented by the formula (I) of the present invention enables detailed visualization at the single cell level without fixing the cells or after the fixing treatment.
  • a fluorescent probe that can be co-stained it is used as a tool for cell biological research in cell systems, and has a wide range of uses such as diagnostics and diagnostic agents for rapid pathological examinations in cancer and other surgical sites. Yes.
  • the intracellular retentive fluorescent probe of the present invention is specifically used to target cells of a target cell expressing a specific enzyme. It can be used for the visualization method. Specifically, a step of contacting an intracellular retentive red fluorescent probe containing a compound or salt of formula (I) with an enzyme such as ⁇ -galactosidase that is specifically expressed in the target cell, followed by irradiation with excitation light By performing the step of detecting the fluorescence generated in this way, only the target cells that speak ⁇ -galactosidase or the like can be specifically visualized as a red fluorescent signal.
  • intracellular retention fluorescent probe of the present invention As means for bringing the intracellular retention fluorescent probe of the present invention into contact with an enzyme that is specifically expressed in a target cell, typically, a sample containing a solution containing the intracellular retention red fluorescent probe is added, applied, or Although spraying is mentioned, it can select suitably according to the use.
  • a sample containing a solution containing the intracellular retention red fluorescent probe is added, applied, or Although spraying is mentioned, it can select suitably according to the use.
  • the intracellular retentive red fluorescent probe of the present invention is applied to diagnosis or diagnosis assistance in an animal individual or detection of a specific cell or tissue, the compound and an enzyme expressed in the target cell or tissue
  • administration means common in the art such as intravenous administration can be used.
  • the light irradiation performed on the target cell can be performed by irradiating the cell with light directly or via a waveguide (such as an optical fiber).
  • a waveguide such as an optical fiber.
  • any light source can be used as long as it can irradiate light containing the absorption wavelength of the intracellular retention red fluorescent probe of the present invention after enzymatic cleavage. It may be appropriately selected depending on the environment to be implemented.
  • the compound represented by the above general formula (I) or a salt thereof may be used as it is, but if necessary, an additive usually used for the preparation of a reagent may be used. You may mix
  • additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible.
  • These compositions are generally provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid, but distilled water for injection or an appropriate buffer at the time of use. It can be dissolved and applied in
  • A 100 mM triethylamine acetate
  • B 99% acetonitrile, 1% milliQ -Ultraviolet-visible absorption spectroscopic analysis and fluorescence spectroscopic analysis were performed using Shimadzu UV-2450 (Shimadzu Corporation) and Hitachi F-7000 (Hitachi Corporation).
  • ⁇ Fluorescence imaging experiments were performed using a confocal fluorescence microscope TCS SP5X (Leica) and an objective lens HCX PL APO CS 40x / 1.25 (Leica).
  • FIG. 1 (a) shows the temporal change in fluorescence intensity due to the enzyme reaction for 4-CH 2 F-SPiDER-RED- ⁇ Gal. Measurement was performed by adding 5 U ⁇ -galactosidase to 4-CH 2 F-SPiDER-RED- ⁇ Gal prepared to 1 ⁇ M in PBS buffer. The measurement conditions are an excitation wavelength of 610 nm, a fluorescence wavelength of 638 nm, a measurement time of 3600 seconds, a slit (excitation / fluorescence) of 2.5 nm / 2.5 nm, and a photomultiplier voltage: 700 V.
  • FIG. 1 (a) shows the temporal change in fluorescence intensity due to the enzyme reaction for 4-CH 2 F-SPiDER-RED- ⁇ Gal. Measurement was performed by adding 5 U ⁇ -galactosidase to 4-CH 2 F-SPiDER-RED- ⁇ Gal prepared to 1 ⁇ M in PBS buffer. The measurement conditions are an excitation wavelength of 610 nm,
  • FIG. 1 (b) is an absorption spectrum of 1 ⁇ M 4-CH 2 F-SPiDER-RED- ⁇ Gal PBS buffer before and after adding 5 U ⁇ -galactosidase.
  • FIG. 1 (c) is a fluorescence spectrum of 1 ⁇ M 4-CH 2 F-SPiDER-RED- ⁇ Gal PBS buffer before addition of 5 U ⁇ -galactosidase and 1 hour after the addition.
  • the measurement conditions are an excitation wavelength of 610 nm, a slit (excitation / fluorescence) of 2.5 nm / 2.5 nm, and a photomultiplier voltage: 700 V.
  • FIG. 2 (a) shows the change over time in fluorescence intensity due to the enzyme reaction for 2-CH 2 F-SPiDER-RED- ⁇ Gal. Measurement was performed by adding 5 U ⁇ -galactosidase to 2-CH 2 F-SPiDER-RED- ⁇ Gal prepared to 1 ⁇ M in PBS buffer. The measurement conditions are an excitation wavelength of 610 nm, a fluorescence wavelength of 638 nm, a measurement time of 3600 seconds, a slit (excitation / fluorescence) of 2.5 nm / 2.5 nm, and a photomultiplier voltage: 700 V.
  • FIG. 1 shows the change over time in fluorescence intensity due to the enzyme reaction for 2-CH 2 F-SPiDER-RED- ⁇ Gal. Measurement was performed by adding 5 U ⁇ -galactosidase to 2-CH 2 F-SPiDER-RED- ⁇ Gal prepared to 1 ⁇ M in PBS buffer. The measurement conditions are an excitation wavelength of 610 nm, a flu
  • FIG. 2 (b) is an absorption spectrum of 1 ⁇ M 2-CH 2 F-SPiDER-RED- ⁇ Gal PBS buffer before and 5 hours after addition of 5 U ⁇ -galactosidase.
  • FIG. 2 (c) is a fluorescence spectrum of 1 ⁇ M 2-CH 2 F-SPiDER-RED- ⁇ Gal PBS buffer before addition of 5 U ⁇ -galactosidase and 1 hour after the addition. Measurement conditions are an excitation wavelength of 610 nm, a slit (excitation / fluorescence) of 2.5 nm / 2.5 nm, and a photomultiplier voltage: 700.
  • 2-CHF 2 -SPiDER-RED- ⁇ Gal and 4-CHF 2 -SPiDER-RED- ⁇ Gal generate fluorescence specifically for the enzyme activity of ⁇ -galactosidase.
  • 2-CHF 2 -SPiDER-RED - ⁇ Gal 4-CHF 2 -SPiDER-RED- ⁇ Gal compared to indicate the ⁇ - galactosidase and high reactivity, it was found to exhibit a high fluorescence increase rate.
  • the gel obtained by SDS-PAGE was irradiated with excitation light at 488 nm, and fluorescence at 540-600 nm was observed at a PMT voltage of 1000 V (FIG. 3 (a)). After observation, the gel was stained with Coomassie, and the position of BSA on the gel was confirmed (FIG. 3 (b)).
  • the probe compound of the present invention was covalently bound to BSA by changing ⁇ -galactosidase activity specifically, and by using the enzyme-specific retention fluorescent compound of the present invention. Specifically, it demonstrates that a protein coexisting in a solution can be fluorescently labeled in a specific enzyme activity. Even when 2-CHF 2 -SPiDER-RED- ⁇ Gal was used, BSA was fluorescently labeled, but due to the low reactivity with the enzyme, the fluorescence intensity was higher than that of 4-CHF 2 -SPiDER-RED- ⁇ Gal. Was low.
  • 4-CHF 2 -SPiDER-RED- ⁇ Gal was added to a dish in which cells expressing ⁇ -galactosidase (HEK-lacZ) and cells not expressing (HEK) were co-cultured, and incubated at 37 ° C. for 30 minutes .
  • HEK cells were prestained with CellTracker TM Green.
  • a fluorescence image and a transmitted light image were obtained with a confocal microscope (TCS SP5X; manufactured by Leica).
  • the laser used was a white light laser (WLL), and the objective lens was 40 times (HCX PL APO CS 40x / 1.25; manufactured by Leica).
  • fluorescence wavelength 610-700 nm.
  • Scale 25 ⁇ m.
  • the obtained live cell fluorescence imaging is shown in FIG.
  • the fluorescent probe of the present invention is effective for fluorescence detection of ⁇ -galactosidase activity of living cells at a single cell level.
  • Non-fixed fluorescence imaging of biological tissue having ⁇ -galactosidase activity Next, the fact that the probe compound of the present invention, 4-CHF 2 -SPiDER-RED- ⁇ Gal, can be applied to fluorescent imaging of biological tissue using Drosophila tissue. confirmed.
  • Drosophila melanogaster en-lacZ / dpp-GFP
  • wing discs in which ⁇ -galactosidase and GFP are expressed in some tissues, 4-CHF 2 -SPiDER-RED- ⁇ Gal and Hoechst33342 for 2 hours After incubation at room temperature, the sample was observed with a confocal microscope (TCS SP8; manufactured by Leica).
  • TCS SP8 a confocal microscope
  • the laser used was a white light laser (WLL), and the objective lens was 40 times (HCX PL APO CS 40x / 1.25; manufactured by Leica).
  • Excitation wavelengths 405 nm (Hoechst33342), 488 nm (GFP), 594 nm (4-CHF 2 -SPiDER-RED- ⁇ Gal), fluorescence wavelengths: 420-490 nm (Hoechst33342), 490-570 nm (GFP), 601 -681 nm (4-CHF 2 -SPiDER-RED- ⁇ Gal). Scale: 75 ⁇ m. The obtained live tissue fluorescence imaging is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Emergency Medicine (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

【課題】 β-ガラクトシダーゼを発現している細胞(lacZ発現細胞)のような標的細胞を単一細胞レベルでかつ赤色蛍光領域で選択的に可視化でき、GFPと共染色が可能な蛍光イメージングプローブを提供することを課題とする。 【解決手段】 以下の式(I)で表される化合物又はその塩を含む細胞内滞留性赤色蛍光プローブ: (式中、Aは、酵素によって切断される一価の基を表し;Rは、水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、及びRは、それぞれ独立に-CFR1011又は-CF12、若しくは水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し、ただし、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12であり;R及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRは、それぞれ独立に水素原子又はアルキル基を表し;R10、R11及びR12は、それぞれ独立に水素原子、アルキル基又はアルケニル基を表し;XはSi(R)(R)を表し、ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表し;Yは、-C(=O)-又は-RC(=O)-であり、ここで、Rは、炭素数1~3のアルキレン基である。)。

Description

酵素特異的な細胞内滞留性赤色蛍光プローブ。
 本発明は、標的細胞に滞留し、当該細胞にて特異的に作用し得る新規な赤色蛍光プローブ、及び当該蛍光プローブを用いて特定の酵素が発現している標的細胞を特異的にイメージングする方法、及び当該プローブを含む検出キットに関する。
 生命科学の発展に対するレポータータンパク質の寄与は大きなものであり、かかるレポータータンパク質の中で最も汎用されているものがβ-ガラクトシダーゼ(lacZ)である。近年では老化と細胞のβガラクトシダーゼの発現に関連性があることが示唆されており(非特許文献1)、β-ガラクトシダーゼ酵素特異的なイメージングプローブは、細胞の老化機構を解明するための分子ツールとしても重要である。さらに、ある種の癌細胞においてはβ-ガラクトシダーゼ活性が上昇していることが示されているため(非特許文献2、非特許文献3)、β-ガラクトシダーゼ酵素特異的なイメージングプローブは、癌細胞選択的な蛍光イメージングプローブとしても利用できると考えられる。
 従来、X-Galを基質として酵素活性をイメージングする手法が広く利用されているが(非特許文献4)、X-Galは生細胞に適用することができないため、生細胞に適用可能な酵素活性イメージングプローブの開発が望まれている。現在までに多くの生細胞に適用可能なイメージングプローブが開発されてきた。例えば、分子内でスピロ環化反応を制御することにより可視光励起可能である、生細胞および生きた生体組織に適用可能なβガラクトシダーゼ蛍光プローブとして、HMDER-βGal等が開発されている(非特許文献5、特許文献1)。
 しかしながら、従来のβガラクトシダーゼ蛍光プローブでは、細胞膜透過性が低い、酵素反応後に生成する蛍光色素の細胞内滞留性が低いなどの問題点から、生細胞等を単一細胞レベルで明確にイメージングすることが困難であった。これに対し、本願発明者らは、キサンテン環にフルオロメチル基を導入したイメージングプローブを開発したが(特許文献2)、当該プローブは、単一細胞レベルで標的細胞を検出可能であるものの、蛍光検出における発光が緑色蛍光領域であるため、ライブイメージングで多用されるGFP(緑色蛍光タンパク質)との共染色が困難であった
国際公開2005/024049号 国際公開2015/174460号
G. P. Dimri et al., Proc. Natl. Acad. Sci. USA, 1995, 92, 9363-9367. H. B. Bosmann et al., Proc. Natl. Acad. Sci. USA, 1974, 71, 1833-1837. S. K. Chatterjee et al., Cancer Res., 1979, 39, 1943-1951. F. D.-Chainiaux et al., Nat. Protoc., 2009, 4, 1798-1806. M.Kamiya et al., J.Am.Chem.Soc. 2011, 133, 12960-12963.
 そこで、本発明は、β-ガラクトシダーゼを発現している細胞(lacZ発現細胞)のような標的細胞を単一細胞レベルでかつ赤色蛍光領域で選択的に可視化でき、GFPと共染色が可能な蛍光イメージングプローブを提供することを課題とするものである。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、ローダミン系蛍光色素におけるキサンテン環の10位元素を酸素原子からケイ素原子に置換し、またベンゼン環の2位にカルボキシル基に基づく置換基を有する誘導体を用い、さらに当該誘導体に酵素との反応によってキノンメチドに変化させる置換基を導入することによって、β-ガラクトシダーゼ等の酵素との反応によりはじめて赤色蛍光を示し、かつ優れた細胞内滞留性を示す蛍光イメージングプローブが得られることを見出した。これは、当該蛍光プローブが酵素との反応により反応性の高いキノンメチドが産出し、これがタンパク質等の細胞内求核分子と共有結合により不可逆的に結合すること、及び蛍光プローブにおける分子内スピロ環化平衡による蛍光性の制御とを組み合わせることにより、上記課題を解決し、標的細胞のライブイメージを可能とするものである。かかる知見に基づき、本発明を完成するに至った。
 すなわち、本発明は、一態様において、
<1>以下の式(I)で表される化合物又はその塩を含む、細胞内滞留性赤色蛍光プローブ:
Figure JPOXMLDOC01-appb-C000003


(式中、Aは、酵素によって切断される一価の基を表し;Rは、水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、及びRは、それぞれ独立に-CFR1011又は-CF12、若しくは水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し、ただし、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12であり;R及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRは、それぞれ独立に水素原子又はアルキル基を表し;R10、R11及びR12は、それぞれ独立に水素原子、アルキル基又はアルケニル基を表し;XはSi(R)(R)を表し、ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表し;Yは、-C(=O)-又は-RC(=O)-であり、ここで、Rは、炭素数1~3のアルキレン基である。);
<2>前記酵素が、レポーター酵素を含む加水分解酵素である、上記<1>に記載の細胞内滞留性赤色蛍光プローブ;
<3>前記レポーター酵素が、β-ガラクトシダーゼ、β-ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、又はペルオキシダーゼである、上記<2>に記載の細胞内滞留性赤色蛍光プローブ;
<4>前記酵素が、癌細胞で特異的に発現又は活性化する酵素である、上記<1>に記載の細胞内滞留性赤色蛍光プローブ;
<5>Aがガラクトピラノシル基である、上記<1>に記載の細胞内滞留性赤色蛍光プローブ;
<6>R、R、R、及びRの少なくとも一つは、-CFR1011である、上記<1>~<5>のいずれかに記載の細胞内滞留性赤色蛍光プローブ;
<7>R、R、R、及びRの少なくとも一つは、-CHFである、上記<1>~<5>のいずれかに記載の細胞内滞留性赤色蛍光プローブ;及び
<8>以下の式(Ia)又は(Ib)で表される化合物又はその塩を含む、細胞内滞留性赤色蛍光プローブ:
Figure JPOXMLDOC01-appb-C000004


を提供するものである。
また、別の態様において、本発明は、
<9>上記<1>~<8>のいずれかに記載の細胞内滞留性赤色蛍光プローブを含む、特定の酵素が発現している標的細胞を検出するための又は可視化するためのキット;
<10>前記標的細胞が、β-ガラクトシダーゼ発現細胞である、上記<9>に記載の組成物又はキット;
<11>前記標的細胞が、癌細胞である、上記<9>に記載の組成物又はキット;
<12>上記<1>~<8>のいずれかに記載の細胞内滞留性赤色蛍光プローブを用いて、特定の酵素が発現している標的細胞を検出する方法;
<13>前記細胞内滞留性赤色蛍光プローブと、前記標的細胞において特異的に発現する酵素とを、生体外において接触させる工程、及び、励起光照射を行って蛍光を生じさせる工程を含むことを特徴とする、上記<12>に記載の方法;
<14>前記標的細胞が、β-ガラクトシダーゼ発現細胞である、上記<12>又は<13>に記載の方法;及び
<15>前記標的細胞が、癌細胞である、上記<12>又は<13>に記載の方法
を提供するものである。
 本発明の細胞内滞留性赤色蛍光プローブは、十分な細胞透過性と細胞内滞留性を有し、β-ガラクトシダーゼ等のレポーター酵素を発現している細胞を単一細胞レベルでライブ検出することが可能であり、さらに、赤色蛍光領域の発光シグナルであるためGFP(緑色蛍光タンパク質)の蛍光シグナルと分離することができ、GFPとの共染色が可能であるという効果を奏する。したがって、本発明によれば、赤色蛍光性と細胞内滞留性とを兼ね備えた新規な蛍光プローブを用いることによって、生きた細胞及び生きた生体組織における標的細胞の単一細胞レベルでの選択的蛍光イメージングが可能となる。
これにより、個々の細胞の経時的な変化を追跡可能であり、例えば、癌細胞を選択的に蛍光イメージングすることで、癌組織を取り残さずに外科的に切除することも可能となる。さらに、本発明の細胞内滞留性赤色蛍光プローブによるイメージング手法は、通常の細胞イメージングが行える顕微鏡で施行可能であり、特別な機器を必要としない。このように、本発明の細胞内滞留性赤色蛍光プローブの産業上の利用価値、経済効果は、極めて大きいものである。
図1は、本発明の細胞内滞留性赤色蛍光プローブである4-CH2F-SPiDER-RED-βGalと、β-ガラクトシダーゼとの酵素反応によって生じる蛍光の強度(a)、吸収スペクトル変化(b)、蛍光スペクトル(c)を示した図である。 図2は、本発明の細胞内滞留性赤色蛍光プローブである2-CH2F-SPiDER-RED-βGalと、β-ガラクトシダーゼとの酵素反応によって生じる蛍光の強度(a)、吸収スペクトル変化(b)、蛍光スペクトル(c)を示した図である。 図3は、本発明の細胞内滞留性赤色蛍光プローブである4-CH2F-SPiDER-RED-βGalを、β-ガラクトシダーゼと酵素反応させることにより、溶液中に共存するタンパク質BSAを蛍光ラベル化し得ることを示した図である。(a)SDS-PAGEゲルを波長488nmの励起光で励起した際に得られた蛍光画像である。レーン1:10 μM 4-CH2F-SPiDER-RED-βGal、1 mg/mL BSA、5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、レーン2:10 μM 4-CH2F-SPiDER-RED-βGal、1 mg/mL BSAを含むPBS緩衝液10 μL、レーン3:10μM 4-CH2F-SPiDER-RED-βGalと5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、レーン4:10 μM 4-CH2F-SPiDER-RED-βGalのみを含むPBS緩衝液10 μL、レーン5: 10 μM 4-CH2OH-SPiDER-REDを含むPBS緩衝液10 μL。(b)上記SDS-PAGEゲルをクマシー染色した後の画像。 図4は、本発明の細胞内滞留性赤色蛍光プローブである2-CH2F-SPiDER-RED-βGalを、β-ガラクトシダーゼと酵素反応させることにより、溶液中に共存するタンパク質BSAを蛍光ラベル化し得ることを示した図である。(a)SDS-PAGEゲルを波長488nmの励起光で励起した際に得られた蛍光画像である。レーン1:10 μM 2-CH2F-SPiDER-RED-βGal、1 mg/mL BSA、5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、レーン2:10 μM 2-CH2F-SPiDER-RED-βGal、1 mg/mL BSAを含むPBS緩衝液10 μL、レーン3:10μM 2-CH2F-SPiDER-RED-βGalと5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、レーン4:10 μM 2-CH2F-SPiDER-RED-βGalのみを含むPBS緩衝液10 μL、レーン5: 10 μM 2-CH2OH-SPiDER-REDを含むPBS緩衝液10 μL。(b)上記SDS-PAGEゲルをクマシー染色した後の画像。 図5は、本発明の細胞内滞留性赤色蛍光プローブである4-CH2F-SPiDER-RED-βGalを用いたライブセル蛍光イメージング画像である。β-ガラクトシダーゼを発現している細胞(HEK-lacZ)と発現していない細胞(HEK、予めCellTracker Greenで染色)を共培養し、4-CHF2-SPiDER-RED-βGalでインキュベートした場合の画像である。左上図は、HEK細胞からの緑色蛍光を観察した画像、右上図は、4-CH2F-SPiDER-RED-βGal由来の赤色蛍光を観察した画像、左下図は、明視野像、右下図は、蛍光像の重ね合わせ画像である。これらは、単一細胞レベルの生細胞蛍光イメージングに利用可能であることを示す図である。 図6は、本発明の細胞内滞留性赤色蛍光プローブである4-CHF2-SPiDER-RED-βGalと反応させたハエ羽根原基組織の蛍光イメージング画像である。上段の左から、4-CHF2-SPiDER-RED-βGalの蛍光画像、GFPの蛍光画像、Hoechst33342の蛍光画像、下段の左から明視野画像、これらのマージ画像である。
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
1.定義
 本明細書中において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を意味する。
 本明細書中において、「アルキル」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数3~15個(C3~15)、炭素数5~10個(C5~10)である。炭素数を指定した場合は、その数の範囲の炭素数を有する「アルキル」を意味する。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。当該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコシ基、アリールアルキル基など)のアルキル部分についても同様である。
 本明細書において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基、ジアルキルアミノ基などを挙げることができるが、これらに限定されることはない。
 本明細書中において、「アリール」は単環式又は縮合多環式の芳香族炭化水素基のいずれであってもよく、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含む芳香族複素環であってもよい。この場合、これを「ヘテロアリール」または「ヘテロ芳香族」と呼ぶ場合もある。アリールが単環及び縮合環のいずれである場合も、すべての可能な位置で結合しうる。単環式のアリールの非限定的な例としては、フェニル基(Ph)、チエニル基(2-又は3-チエニル基)、ピリジル基、フリ
ル基、チアゾリル基、オキサゾリル基、ピラゾリル基、2-ピラジニル基、ピリミジニル基、ピロリル基、イミダゾリル基、ピリダジニル基、3-イソチアゾリル基、3-イソオキサゾリル基、1,2,4-オキサジアゾール-5-イル基又は1,2,4-オキサジアゾール-3-イル基等が挙げられる。縮合多環式のアリールの非限定的な例としては、1-ナフチル基、2-ナフチル基、1-インデニル基、2-インデニル基、2,3-ジヒドロインデン-1-イル基、2,3-ジヒドロインデン-2-イル基、2-アンスリル基、インダゾリル基、キノリル基、イソキノリル基、1,2-ジヒドロイソキノリル基、1,2,3,4-テトラヒドロイソキノリル基、インドリル基、イソインドリル基、フタラジニル基、キノキサリニル基、ベンゾフラニル基、2,3-ジヒドロベンゾフラン-1-イル基、2,3-ジヒドロベンゾフラン-2-イル基、2,3-ジヒドロベンゾチオフェン-1-イル基、2,3-ジヒドロベンゾチオフェン-2-イル基、ベンゾチアゾリル基、ベンズイミダゾリル基、フルオレニル基又はチオキサンテニル基等が挙げられる。本明細書において、アリール基はその環上に任意の置換基を1個以上有していてもよい。当該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アリール基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリール部分を含む他の置換基(例えばアリールオキシ基やアリールアルキル基など)のアリール部分についても同様である。
 本明細書中において、「アルコキシ基」とは、前記アルキル基が酸素原子に結合した構造であり、例えば直鎖状、分枝状、環状又はそれらの組み合わせである飽和アルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、シクロブトキシ基、シクロプロピルメトキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、シクロプロピルエチルオキシ基、シクロブチルメチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、シクロプロピルプロピルオキシ基、シクロブチルエチルオキシ基又はシクロペンチルメチルオキシ基等が好適な例として挙げられる。
 本明細書中において用いられる「アミド」とは、RNR’CO-(R=アルキルの場合、アルカミノカルボニル-)及びRCONR’-(R=アルキルの場合、アルキルカルボニルアミノ-)の両方を含む。
 本明細書中において用いられる「エステル」とは、ROCO-(R=アルキルの場合、アルコキシカルボニル-)及びRCOO-(R=アルキルの場合、アルキルカルボニルオキシ-)の両方を含む。
 本明細書中において、「環構造」という用語は、二つの置換基の組み合わせによって形成される場合、複素環または炭素環基を意味し、そのような基は飽和、不飽和、または芳香族であることができる。従って、上記において定義した、シクロアルキル、シクロアルケニル、アリール、及びヘテロアリールを含むものである。例えば、シクロアルキル、フェニル、ナフチル、モルホリニル、ピペルジニル、イミダゾリル、ピロリジニル、及びピリジルなどが挙げられる。本明細書中において、置換基は、別の置換基と環構造を形成することができ、そのような置換基同士が結合する場合、当業者であれば、特定の置換、例えば水素への結合が形成されることを理解できる。従って、特定の置換基が共に環構造を形成すると記載されている場合、当業者であれば、当該環構造は通常の化学反応によって形成することができ、また容易に生成することを理解できる。かかる環構造及びそれらの形成過程はいずれも、当業者の認識範囲内である。
2.細胞内滞留性赤色蛍光プローブ
 本発明の細胞内滞留性赤色蛍光プローブは、一態様において、以下の一般式(I)で表される構造を有する化合物又はその塩を含むことを特徴とする。
Figure JPOXMLDOC01-appb-I000005

 上記一般式(I)において、Rは水素原子又はベンゼン環に結合する1個ないし4個の置換基を示す。かかる置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。これらの置換基は、1以上の置換基によってさらに置換されていてもよく、そのような置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基、カルボキシル基、アミノ基、スルホ基などを1個又は2個以上有していてもよい。ベンゼン環上に2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。Rとしては、水素原子、低級アルキル基又は低級アルコキシ基であることがより好ましい。水素原子が特に好ましい。
 R、R、R、及びRはそれぞれ独立に-CFR1011又は-CF12、若しくは、水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表す(当該アルキル基は置換されていてもよい)。R10、R11及びR12はそれぞれ独立に水素原子、アルキル基又はアルケニル基を表す。さらに、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12を表す。R、R、R、及びRの少なくとも一つは、-CFR1011であることが好ましい。R、R、R、及びRの少なくとも一つは、-CHFであることがさらに好ましい。
 R及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を示す。R及びRがいずれも水素原子であることが好ましい。
 R及びRはそれぞれ独立に水素原子又はアルキル基を示す。R及びRがともにアルキル基を示す場合には、それらは同一でも異なっていてもよい。例えば、R及びRはそれぞれ独立に、メチル基又はエチル基であることが好ましく、R及びRがいずれもエチル基である場合がさらに好ましい。
 XはSi(R)(R)を表す。ここで、R及びRは、それぞれ独立に水素原子又はアルキル基を表し、当該アルキル基は、好ましくは炭素数1~5のアルキル基であり、置換されていてもよい。好ましくは、R及びRは、いずれも水素原子である。
 Yは-C(=O)-又は-RC(=O)-である。ここで、Rは、炭素数1~3のアルキレン基である。当該アルキレン基は、直鎖状アルキレン基又は分枝鎖状アルキレン基のいずれであってもよい。例えば、メチレン基(-CH-)、エチレン基(-CH-CH-)、プロピレン基(-CH-CH-CH-)のほか、分枝鎖状アルキレン基として-CH(CH)-、-CH-CH(CH)-、-CH(CHCH)-なども使用することができる。好ましくは、Yは-C(=O)-である。
 基Aは、酵素によって切断される一価の基を表し、具体的には、例えば、β-ガラクトピラノシル基、α-マンノシル基、β-N-アセチルグルコサミル基、β-ラクタム環、リン酸エステル、アミノフェノキシ基、ヒドロキシフェノキシ基、γ-グルタミン酸などを挙げることができるが、これらに限定されることはない。
 Aを切断するための酵素としては、例えば、還元酵素、酸化酵素、又は加水分解酵素などを挙げることができ、レポーター酵素や癌細胞において特異的に発現又は活性化する酵素、より具体的には、β-ガラクトシダーゼ、β-ラクタマーゼ、α-マンノシダーゼ、エステラーゼ、アルカリホスファターゼ、ルシフェラーゼ、ペルオキシダーゼ、チトクロームP450酸化酵素、β-グルコシダーゼ、β-グルクロニダーゼ、β-ヘキソサミニダーゼ、ラクターゼ、γ-グルタミルトランスフェラーゼなどを挙げることができるが、これらに限定されることはない。好ましくは、β-ガラクトシダーゼ、β-ラクタマーゼ、アルカリホスファターゼ、ルシフェラーゼ、β-ヘキソサミニダーゼ、ペルオキシダーゼ、又はγ-グルタミルトランスフェラーゼである。最も好ましくは、β-ガラクトシダーゼである。
 上記式(I)で表される化合物は塩として存在する場合がある。塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。ただし、本発明の式(I)で表される化合物の塩はこれらに限定されることはない。
 式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。
 式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。
 本明細書の実施例には、式(I)で表される化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者であれば、本明細書の開示を参照することにより、及び必要に応じて、出発原料や試薬、反応条件などを適宜選択することにより、式(I)に包含される任意の化合物を容易に製造することができる。
 本発明の細胞内滞留性赤色蛍光プローブとして用いられる代表的な式(I)の化合物の具体例としては、以下の化合物を挙げることができる。ただし、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000006

3.本発明の蛍光プローブの蛍光発光および細胞内滞留の機構
 本発明の細胞内滞留性赤色蛍光プローブにおける蛍光発光機構及び細胞内滞留機構について以下説明する。
 式(I)で表される化合物を含む細胞内滞留性赤色蛍光プローブを細胞内に取り込ませた場合、Aで表される基を切断可能な酵素が発現している細胞では、当該細胞内において、Aで表される基が切断されるとともに、R、R、R、又はRのいずれかに位置する-CFR1011又は-CF12からフッ化水素が離脱し、キノンメチドが生成される。キノンメチドは急速に周囲の求核剤による攻撃を受けることから、細胞内でキノンメチドを生成した場合、周囲のタンパク質がもつ求核基と速やかに反応し、タンパク質に不可逆的に結合する。
 例えば、式(Ia)の化合物(式中(A))の場合には、以下のようにβ-ガラクトシダーゼによって基Aの切断(式中(B))とスピロ環の開環が生じ、細胞内タンパク質に共有結合した化合物(式中(C))が生成する。かかるスピロ環の開環による蛍光発光機構については、国際公開2005/024049号にその詳細が記載されている。
Figure JPOXMLDOC01-appb-C000007

 式(I)で表される化合物又はその塩は、中性領域において例えば500~650nm程度の励起光を照射した場合には、ほとんど蛍光を発しないが、酵素活性によって生じた開環化合物は、同じ条件下において極めて強い蛍光を発する性質を有している。したがって、式(I)で表される細胞内滞留性赤色蛍光プローブを取り込んだ細胞が、基Aを切断可能な酵素を発現していない場合には、(C)の開環化合物は生成せず、蛍光物質が当該細胞内で生成することはない。このように式(I)で表される細胞内滞留性赤色蛍光プローブを用いることにより、Aで表される基を切断可能な酵素が発現および活性化している細胞のみにおいて、選択的に蛍光が生成される。さらに、(C)で表される反応生成化合物は、細胞内タンパク質に共有結合することができるため、細胞外への漏出が抑制され、これにより、当該酵素が発現および活性化している細胞を特異的に、単一細胞レベルといった詳細なレベルで可視化することが可能となる。
 また、式(I)で表される化合物では、キサンテン環の10位元素であるXにケイ素原子を有し、またベンゼン環の2位にカルボキシル基に基づく置換基(Y-O部分)を有する構造を採用したことにより、スピロ環の開環による蛍光発光を、蛍光ピーク波長が600~750nmの赤色蛍光とすることができるという特徴を有するものである。これにより、GFP(緑色蛍光タンパク質)の蛍光シグナルと分離することができ、GFPとの共染色が可能となる。
 上記特性から、本発明の式(I)で表される化合物は、細胞を固定処理することなくあるいは固定処理後に、単一細胞レベルで詳細に可視化することを可能とするものであり、GFPとの共染色可能な蛍光プローブとして細胞系における細胞生物学的研究用のツールに用いる他、癌などの手術現場における迅速な病理検査に用いる検査薬、診断薬などの、幅広い利用用途を有している。
4.本発明の細胞内滞留性赤色蛍光プローブによる選択的細胞可視化方法
 上述の特性を示すため、本発明の細胞内滞留性蛍光プローブを、特定の酵素が発現している標的細胞の細胞を特異的に可視化する方法に用いることができる。具体的には、式(I)の化合物又は塩を含む細胞内滞留性赤色蛍光プローブと標的細胞において特異的に発現するβ-ガラクトシダーゼ等の酵素とを接触させる工程、次いで、励起光照射を行うことで発生する蛍光を検出する工程を行うことによって、β-ガラクトシダーゼ等を発言している標的細胞のみを特異的に赤色蛍光シグナルとして可視化することができる。
 本発明の細胞内滞留性蛍光プローブと、標的細胞において特異的に発現する酵素とを接触させる手段としては、代表的には、細胞内滞留性赤色蛍光プローブを含む溶液を試料添加、塗布、或いは噴霧することが挙げられるが、その用途に応じて適宜選択することが可能である。また、本発明の細胞内滞留性赤色蛍光プローブを、動物個体における診断又は診断の補助、若しくは特定の細胞又は組織の検出に適用する際に、当該化合物と、標的細胞又は組織において発現する酵素とを接触させる手段としては、特に限定されることなく、例えば、静脈内投与等、当該分野において一般的な投与手段を用いることができる。
 また、標的細胞に行う光照射は、当該細胞に対して光を直接或いは導波管(光ファイバー等)を介して照射することができる。光源としては、酵素切断を受けた後の、本発明の細胞内滞留性赤色蛍光プローブの吸収波長を含む光を照射できるものであれば、任意の光源を用いることができ、本発明の方法を実施する環境等に応じて適宜選択され得る。
 本発明の細胞内滞留性赤色蛍光プローブとしては、上記一般式(I)で表される化合物又はその塩をそのまま用いてもよいが、必要に応じて、試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で試薬を用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、一般的には、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供されるが、使用時に注射用蒸留水や適宜の緩衝液に溶解して適用することが可能である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 本実施例では以下に示す装置及び条件を用いた。
・NMR測定はULTRASHIELD 400 (BRUKER)を用いて行った。(400 MHz for 1H NMR, 100 MHz for 13C NMR)

・シリカゲルカラムクロマトグラフィーにはシリカゲル60 N (球状、中性、KANTO CHEMICAL Co., Inc.)を用いた。

・逆相HPLCによる精製は、以下の装置およびカラムを使用した。
 ・ポンプ:PU-2080およびPU-2087 (日本分光株式会社)
 ・検出器:MD-2010 (日本分光株式会社)
 ・カラム:Inertsil ODS-3 (20×250 mm, GL Science Inc.)

・逆相HPLCによる精製に際しては、以下の溶媒AおよびBを用いた。
  A:100 mM トリエチルアミン酢酸塩
  B:99% アセトニトリル、1% milliQ

・紫外-可視吸光分光分析および蛍光分光分析は、Shimadzu UV-2450(島津製作所)およびHitachi F-7000(日立製作所)を用いて行った。

・蛍光イメージング実験は共焦点蛍光顕微鏡TCS SP5X(Leica)と対物レンズHCX PL APO CS 40x/1.25(Leica)を用いて行った。
1.プローブ分子の合成
 以下に示すとおり、本発明の細胞内滞留性赤色蛍光プローブとして用いられる4-CH2F-SPiDER-RED-βGal及び2-CH2F-SPiDER-RED-βGalをそれぞれ合成した。
(1)4-CH2F-SPiDER-RED-βGalの合成
 以下のスキームに従って、本発明の細胞内滞留性赤色蛍光プローブである4-CH2F-SPiDER-RED-βGalを合成した。
Figure JPOXMLDOC01-appb-I000008

[化合物1の合成]
Figure JPOXMLDOC01-appb-I000009


化合物1は既報(Chemical Communications 47, 4162-4164 (2011))に則り合成した。具体的には、3-bromoaniline (4.0 mL, 37 mmol) と allyl bromide (11 mL, 131 mmol) をMeCN (40 mL)に溶解した後、potassium carbonate (11 g, 80 mmol)を添加した。反応溶液をアルゴン雰囲気下で80C で終夜撹拌した。反応液を室温まで冷却した後、不溶物をセライトろ過にて取り除き、ろ液を減圧除去した。得られたオイル状物質をシリカゲルカラムクロマトグラフィー(溶離液:AcOEt : hexane = 2.5 : 97.5 to AcOEt : hexane = 10 : 90) により精製し、目的化合物1を透明なオイル状物質として得た (8.6 g, 93%)。
1H-NMR (300 MHz, CDCl3) δ 3.89-3.90 (4H, m), 5.12-5.16 (2H, m), 5.19 (2H, m) 5.76-5.89 (2H, m), 6.57-6.61 (1H, m), 6.77-6.81 (2H, m), 7.03 (1H, t, J = 8.1 Hz).
[化合物2の合成]
Figure JPOXMLDOC01-appb-I000010


化合物1 (1.0 g, 4.0 mmol) をDMF (3 mL)に溶解した後、phosphoryl chloride (490 μL, 5.2 mmol)を添加した。反応溶液をアルゴン雰囲気下で終夜撹拌した後、反応溶液に2N NaOH aqを滴下し、CH2Cl2 で分液抽出した。集めた有機層を減圧除去し、得られたオイル状物質をさらにAcOEtに溶解し飽和NH4Cl水溶液で3回洗浄した。集めた有機層を無水硫酸ナトリウムで乾燥し、減圧除去して得られた残査を中圧シリカゲルカラムクロマトグラフィー(溶離液: CH2Cl2:hexane = 67:33 to 100:0) で精製し、化合物2を得た (902 mg, 81%)。
1H-NMR (300 MHz, CDCl3) δ 3.98-3.99 (4H, m), 5.15-5.23 (4H, m), 5.81-5.85 (2H, m), 6.64 (1H, dd, J = 8.8 Hz, 2.2 Hz), 6.81 (1H, d, J = 2.9 Hz), 7.77 (1H, d, J = 8.8 Hz), 10.07 (1H, s) 13C-NMR (75 MHz, CDCl3) δ 52.7, 111.0, 115.2, 117.0, 122.4, 129.7, 131.1, 131.6, 153.5, 190.1
[化合物3の合成]
Figure JPOXMLDOC01-appb-I000011


化合物2 (3.6 g, 13 mmol) をMeOH (15 mL) に溶解しsodium borohydride をゆっくり添加した。反応液をアルゴン雰囲気下で室温2時間撹拌した。反応液を飽和NaHCO3 水溶液で希釈し、CH2Cl2で2回分液抽出した。集めた有機層を無水硫酸ナトリウムで乾燥し、減圧除去して得られたオイル状物質(2.9 g, 10 mmol) をCH2Cl(30 mL)に溶解した。3-bromo-N,N,-dimethylaniline (1.4 mL, 10 mmol)とboron trifluoride ethyl ether complex (1.7 mL, 13 mmol) を添加し、アルゴン雰囲気下室温で終夜撹拌した。反応液を飽和NaHCO3水溶液に希釈し、CH2Cl2で2回分液抽出し、集めた有機層を無水硫酸ナトリウムで乾燥した。有機層を減圧除去し、得られた残査を中圧シリカゲルカラムクロマトグラフィー(溶離液:CH2Cl2 : hexane = 0 : 100 to 50: 50) で精製し、化合物3を得た (3.2 g, 55%)。
1H-NMR (300 MHz, CDCl3) δ 2.91 (6H, s), 3.87 (4H, d, J = 5.1 Hz), 3.98 (2H, s,), 5.16 (4H, dd, J = 1.8, 13.6 Hz), 5.78-5.87 (2H, m), 6.54 (1H, dd, J = 8.8 Hz, 2.9 Hz), 6.59 (1H, dd, J = 8.8 Hz, 2.9 Hz), 6.79 (1H, d, J = 8.8 Hz), 6.87 (1H, d, J = 8.1 Hz), 6.90 (1H, d, J = 2.2 Hz), 6.93 (1H, d, J = 2.9 Hz) 13C-NMR (75 MHz, CDCl3) δ39.8, 40.5, 52.7, 111.6, 111.8, 115.9, 116.2, 116.2, 125.5, 125.6, 126.8, 127.0, 130.7, 130.8, 133.4, 148.1, 150.0
[化合物4の合成]
Figure JPOXMLDOC01-appb-I000012


化合物3 (3.3 g, 7.1 mmol) をTHF (15 mL)に溶解し、アルゴン雰囲気下で-78 Cで20分間撹拌した。s-BuLi (18 mL, 18 mmol) を滴下した後、30分間アルゴン雰囲気下-78 Cで撹拌し、さらにdichlorodimethylsilane (1.3 mL, 11 mmol)を添加した。反応液を徐々に室温に戻し、さらにアルゴン雰囲気下2時間室温で撹拌した。2N 塩酸を滴下した後、飽和NaHCO3水溶液を加え、CH2Cl2で3回分液抽出した。集めた有機層を無水硫酸ナトリウムで乾燥し、減圧除去してオイル状残査得た。残査をacetone (30 mL) に溶かし、0 Cに冷却した後、Potassium manganite (VII)を添加した。3時間0 Cで撹拌した後、さらに3等量のpotassium manganite (VII) (3.4 g, 21 mmol)を添加し、反応液を徐々に室温に戻した。終夜室温で撹拌し後、不溶物をセライトろ過し、ろ液を減圧除去して得られた残査を中圧シリカゲルカラムクロマトグラフィー(溶離液:AcOEt : CH2Cl2 = 0 : 100 to 10: 90)で精製し、化合物4 を黄色固体として得た(1.0 g, 38%).
1H-NMR (300 MHz, CDCl3) δ 0.44 (6H, s), 3.10 (6H, s), 4.03 (4H, d, J = 5.1 Hz), 5.17-5.20 (2H, m), 5.23 (2H, br), 5.84-5.93 (2H, m), 6.77-6.85 (4H, m), 8.37 (2H, t, J = 9.5 Hz) 13C-NMR (75 MHz, CDCl3) δ -1.1, 40.0, 52.7, 113.1, 113.4, 114.2, 114.7, 116.5, 129.7, 130.0, 131.6, 133.0, 140.4, 140.4, 150.1, 151.4, 185.1 HRMS (ESI+): calcd for [M+H]+, 377.20491; found, 377.20176 (-3.15 mmu).
[化合物5の合成]
Figure JPOXMLDOC01-appb-I000013


化合物4 (1.0 g, 2.7 mmol) をCH2Cl2 (35 mL)に溶解し、tetrakis(triphenylphosphine)palladium(0) (0.31 g, 0.27 mmol) と1,3-dimethylbarbituric acid (0.86 g, 5.4 mmol) を添加し、アルゴン雰囲気下室温で終夜撹拌した。反応液を飽和Na2CO3水溶液で3回抽出した後、無水硫酸ナトリウムで乾燥し、減圧除去得られた残査を中圧シリカゲルカラムクロマトグラフィー(溶離液:AcOEt : hexane = 45 : 55 to 67: 33)で精製し、化合物5 を得た(790 mg, 99%)。
1H-NMR (300 MHz, CD3OD) δ 0.42 (6H, s), 3.06 (6H, s), 6.74-6.89 (4H, m), 8.14 (1H, d, J = 8.8 Hz), 8.22 (1H, d, J = 8.8 Hz)13C-NMR (75 MHz, CD3OD) δ -1.2, 40.1, 114.1, 115.6, 116.6, 118.4, 129.9, 130.9, 132.5, 132.7, 142.2, 142.7, 153.1, 153.3, 187.5 HRMS (ESI+): calcd for [M+H]+, 297.14231; found, 297.14250 (0.19 mmu)
[化合物6の合成]
Figure JPOXMLDOC01-appb-I000014


化合物5 (258 mg, 0.87 mmol) をMeOH (10 mL) と 6N 硫酸(25 mL) の混合溶媒に溶解し、0 C に冷却した。H2O (4 mL) に溶解したSodium nitrile (600 mg, 8.7 mmol) を1時間かけて滴下した後、加熱した1N 硫酸(100 mL) に少量ずつ滴下した。10分間撹拌後、室温まで戻し、反応液をCH2Cl2で4回分液抽出した。集めた有機層を無水硫酸ナトリウムで乾燥し、減圧除去した。得られた残査を中圧シリカゲルカラムクロマトグラフィー(溶離液:AcOEt : CH2Cl2 = 0 : 100 to 10: 90) で精製し、化合物6 を得た(81 mg, 31%)。
1H-NMR (300 MHz, CD3OD) δ 0.44 (6H, s), 3.09 (6H, s), 6.84-6.89 (2H, m), 6.93 (1H, dd, J = 8.8 Hz, 2.2 Hz), 7.06 (1H, d, J = 2.2 Hz), 8.21-8.26 (2H, m) 13C-NMR (75 MHz, CD3OD) δ-1.3, 40.1, 114.2, 115.6, 118.2, 120.0, 129.6, 132.8, 133.0, 134.1, 142.3, 143.2, 153.5, 161.9, 187.6 HRMS (ESI+): calcd for [M+H]+, 298.12633; found, 298.12254 (-3.79 mmu).
[化合物7の合成]
Figure JPOXMLDOC01-appb-I000015


化合物6 (1.45 mmol, 431 mg)とhexamethylenetetramine (2.9 mmol, 406 mg)をTFA (2.5 mL)中90℃で3時間加熱した。1N塩酸を加えて室温でさらに1時間撹拌した後、水酸化ナトリウム水溶液で中和し酢酸エチルを加えて3回分液操作を行った。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。シリカゲルカラムクロマトグラフィー(Hexane/CH2Cl2/EtOAc = 1/1/0.25)で精製し、目的化合物7を黄色固体として得た (130 mg, 28%)。異性体である化合物7’も同時に得られた(87 mg, 18%)。
1H NMR (300 MHz, CDCl3)δ12.25 (1H, s), 10.45 (1H, s), 8.75 (1H, d, J = 9.5 Hz), 8.37 (1H, d, J = 8.8 Hz), 7.17 (1H, d, J = 8.8 Hz), 6.89 (1H, dd, J = 9.2 Hz, 2.6 Hz), 6.80 (1H, d, J = 2.2 Hz), 3.14 (6H, s), 0,67 (6H, s); 13C NMR (100 MHz, CDCl3) δ196.0, 184.0, 165.9, 152.1, 145.3, 139.6, 139.0, 134.5, 131.7, 127.4, 122.4, 120.2, 113.7, 113.6, 40.0, 1.6
[化合物8の合成]
Figure JPOXMLDOC01-appb-I000016


化合物7 (0.76 mmol, 247 mg)をMeOH (5 mL)に溶解し、そこに室温でNaBH4 (0.76 mmol, 29 mg)を加えた。5分後飽和塩化アンモニウム水溶液を加え撹拌した後、酢酸エチルを加えて3回分液操作を行った。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。ここにTBSCl (3 mmol, 452 mg)、imidazole (6 mmol, 408 mg)、DMF (1 mL)を加えて60℃で1時間撹拌した。反応後、水を加えてヘキサンで3回分液操作を行った。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。得られた化合物をシリカゲルカラムクロマトグラフィー(Hexane/EtOAc = 10/1)で精製し目的化合物を淡黄色の粘稠な液体として得た(422 mg, 99%)。
1H NMR (300 MHz, CDCl3)δ8.38 (1H, d, J = 8.8 Hz), 8.28 (1H, dd, J = 8.8 Hz, 1.5 Hz), 6.98 (1H, d, J = 8.1 Hz), 6.80-6.83 (2H, m), 4.92 (2H, s), 3.10 (6H, s), 1.02 (9H, s), 0.90 (9H, s), 0.60 (6H, s), 0.28 (6H, s), 0.16 (6H, s); 13C NMR (100 MHz, CDCl3) δ186.4, 156.2, 151.9, 143.2, 141.0, 136.3, 135.1, 1331.3, 128.8, 120.5, 113.8, 113.2, 59.2, 40.0, 26.2, 26.1, 18.6, 18.6, 0.6, -3.7, -4.7; HRMS (ESI) exact mass calcd. for: m/z 556.30985 ([M + H]+), found: m/z 556.30757 (-2.28 mmu).
[化合物9の合成]
Figure JPOXMLDOC01-appb-I000017


2-bromobenzoic acid (2 mmol, 402 mg)を Et2O (10 mL)に溶解させ、-78 °Cでt-BuLi (1.7 M in pentane, 6 mmol, 3.5 mL)を加えこの温度で3時間撹拌した。キャヌラを用い、この溶液を 化合物8 (0.6 mmol, 331 mg)のTHF溶液(3 mL)を入れた別のフラスコに-78 °Cで滴下した。滴下後室温で12時間撹拌し、1 N 塩酸を加えてさらに30分撹拌した。その後、炭酸水素ナトリウム水溶液で中和しヘキサンを加えて3回分液操作を行った。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。残った粗生成物をDMF (6 mL) に溶解し、1 N LiOH (2 mL)を室温で加えた。5分撹拌したのち、飽和塩化アンモニウム水溶液を加えてhexane/AcOEt = 3/1の混合溶媒で3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。得られた化合物をシリカゲルカラムクロマトグラフィー(hexane/CH2Cl2 = 1/2, 2% AcOEt)で精製し目的化合物を無色の粘稠な液体として得た (252 mg, 76%)。
1H NMR (400 MHz, CDCl3)δ8.62 (1H, s), 7.94 (1H, d, J = 8.0 Hz), 7.60 (1H, t, J = 7.6 Hz), 7.50 (1H, t, J = 7.6 Hz), 7.22 (1H, d, J = 7.6 Hz), 6.90-6.92 (2H, m), 6.82 (1H, d, J = 9.6 Hz), 6.76 (1H, d, J = 8.0 Hz), 6.59 (1H, d, J = 9.6 Hz), 5.21 (1H, d, J = 12 Hz), 5.17 (1H, d, J = 12 Hz), 2.96 (6H, s), 0,97 (9H, s), 0.71 (3H, s), 0.66 (3H, s), 0.42 (6H, s); 13C NMR (100 MHz, CDCl3) δ170.9, 157.0, 155.3, 149.6, 136.4, 135.6, 134.1, 133.4, 131.1, 129.1, 128.8, 128.6, 128.0, 126.1, 125.9, 124.2, 119.0, 116.2, 114.1, 91.8, 66.5, 40.4, 25.9, 18.3, 14.4, 1.4, -5.1; HRMS (ESI) exact mass calcd. for C31H39NO4Si2: m/z 546.24904 ([M + H]+), found: m/z 546.25315 (+4.1 mmu).
[化合物10の合成]
Figure JPOXMLDOC01-appb-I000018


化合物9 (0.46 mmol, 252 mg)、2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (0.92 mmol, 379 mg)、Cs2CO3 (0.92 mmol, 300 mg) を MeCN (3 mL) 中室温で2時間撹拌した。飽和塩化アンモニウム水溶液を加え、酢酸エチルで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。残った粗生成物をTHF (5 mL) に溶解し、Et3N (0.8 mmol, 0.11 mL)、 TFA (0.8 mmol, 60 μL)を加えた後、TBAF (1 M in THF, 1.5 mmol, 1.5 mL) を加え、室温で6時間撹拌した。TLCで反応の完結を確認した後、塩化アンモニウム水溶液を加え、酢酸エチルで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。シリカゲルカラムクロマトグラフィー(Et2O)で大部分の不純物を取り除いた後、粗精製物をCH2Cl2 (5 mL) に溶解しDAST (0.36 mmol, 48 μL) を 0 °Cで加えた。30分撹拌した後、塩化アンモニウム水溶液を加え、CH2Cl2で3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、エバポレーターで溶媒を除去した。シリカゲルカラムクロマトグラフィー (CH2Cl2/Et2O = 10/1) による精製で目的化合物が31% 収率 (110.4 mg) で 1:1 のジアステレオ混合物として得られた。
1H NMR (400 MHz, CDCl3, dr = 1:1)δ7.95 (2H, d, J = 7.6 Hz), 7.61 (2H, t, J = 7.6 Hz), 7.51 (2H, t, J = 7.6 Hz), 7.22 (2H, t, J = 7.6 Hz), 7.10 (2H, t, J = 9.2 Hz), 6.94-7.00 (4H, m), 6.87 (2H, dd, J = 9.2 Hz, 2.8 Hz), 6.60 (2H, d, J = 9.2 Hz, 2.8 Hz), 5.81 (1H, t, J = 10.4 Hz), 5.69 (1H, t, J = 10.4 Hz), 5.56 (2H, d, J = 10.4 Hz, 8.0 Hz), 5.42-5.46 (2H, m), 5.09 (2H, td, J = 9.6 Hz, 3.2 Hz), 5.02 (1H, d, J = 8.0 Hz), 4.97 (1H, d, J = 8.0 Hz), 4.01-4.22 (8H, m), 2.98 (12H, s), 1.97-2.19 (24H, m), 0.79 (3H, s), 0.75 (3H, s), 0.72 (3H, s), 0.66 (3H, s); HRMS (ESI) exact mass calcd. for C39H43FNO12Si: m/z 764.25445 ([M + H]+), found: m/z 764.25794 (+3.5 mmu).
[4-CH2F-SPiDER-RED-βGalの合成]
Figure JPOXMLDOC01-appb-I000019


化合物10 (0.15 mmol, 114 mg)をMeOH (3 mL) に溶解しNaOMe (2.3 mmol, 124 mg) を加えて室温で3 時間撹拌した。AcOH (2.3 mmol, 0.14 mL)を加えて中和した後、エバポレーターで溶媒を除去した。残った化合物をシリカゲルカラムクロマトグラフィー(CH2Cl2/MeOH = 6/1)で精製し目的化合物が70% 収率 (59 mg) で1:1 のジアステレオ混合物として得られた。
得られたサンプル(10 mg)を逆相HPLC (linear gradient from eluent A : eluent B = 70 : 30 to 0 : 100 in 30 min, eluent A: 100mM triethylamine acetate, eluent B: 99% MeCN + 1% H2O)によりさらに精製した。
1H NMR (400 MHz, CDCl3, dr = 1:1)δ7.82 (2H, t, J = 8.0 Hz), 7.49-7.55 (2H, m), 7.35-7.44 (2H, m), 7.22 (1H, d, J = 7.6 Hz), 7.14 (1H, d, J = 7.6 Hz), 6.91-7.04 (6H, m), 6.75-6.79 (2H, m), 6.54-6.56 (2H, m), 5.67 (2H, br), 5.56 (2H, br), 4.19-4.90 (8H, m), 3.95 (4H, br), 3.38-3.58 (10H, m), 2.95 (12H, s), 0.61 (3H, s), 0.58 (3H, s), 0.54 (3H, s), 0.49 (3H, s); 13C NMR (100 MHz, CDCl3) δ170.9, 170.7, 156.2, 154.8, 154.4, 149.7, 139.5, 139.0, 138.8, 136.6, 136.2, 134.4, 130.5, 130.3, 130.2, 129.2, 129.1, 127.9, 126.1, 125.9, 125.7, 124.6, 124.3, 117.1, 116.7, 116.5, 116.4, 113.9, 113.7, 101.7, 91.7, 91.5, 79.7 (d, JC-F = 160 Hz), 77.4, 74.6, 74.4, 73.3, 71.0, 69.0, 61.5, 40.4, 14.3, 1.6, 1.5, 0.9, 0.6; HRMS (ESI) exact mass calcd. for C31H34FNO8Si: m/z 596.21105 ([M + H]+), found: m/z 596.21193 (+0.9 mmu).
(2)2-CH2F-SPiDER-RED-βGalの合成
 以下のスキームに従って、本発明の細胞内滞留性赤色蛍光プローブである2-CH2F-SPiDER-RED-βGalを合成した。
Figure JPOXMLDOC01-appb-I000020

[化合物7’の合成]
Figure JPOXMLDOC01-appb-I000021


化合物7を合成する反応で異性体として収率18%で得られた。
1H-NMR (400 MHz, CDCl3) δ 11.20 (1H, s), 10.04 (1H, s), 8.77 (1H, s), 8.40 (1H, d, J = 9.2 Hz), 7.22 (1H, s), 6.86 (1H, dd, J = 9.2 Hz, 2.8 Hz), 6.77 (1H, d, J = 2.8 Hz), 3.13 (6H, s), 0.50 (6H, s); 13C-NMR (100 MHz, CDCl3) δ197.7, 184.4, 162.5, 152.3, 150.5, 140.4, 136.5, 134.1, 132.6, 128.6, 121.9, 121.8, 114.5, 113.7, 40.3, -1.2; HRMS (ESI) exact mass calcd. for C18H19NO3Si: m/z 326.12070 ([M + H]+), found: m/z 326.12119 (+0.5 mmu).
[化合物8’の合成]
Figure JPOXMLDOC01-appb-I000022


化合物8と同様の手順により化合物7’ (0.06 mmol, 19 mg)から合成した。PLC (hexane/Et2O = 5/1)により精製し目的化合物が収率31% (10 mg)で得られた。
1H-NMR (400 MHz, CDCl3) δ 8.61 (1H, s), 8.40 (1H, d, J = 9.2 Hz), 6.93 (1H, s), 6.84 (1H, dd, J = 9.2 Hz, 2.8 Hz), 6.78 (1H, d, J = 2.8 Hz), 4.79 (2H, s), 3.10 (6H, s), 1.03 (9H, s), 0.98 (9H, s), 0.44 (6H, s), 0.28 (6H, s), 0.14 (6H, s); 13C-NMR (100 MHz, CDCl3) δ185.8, 155.5, 151.9, 140.8, 139.0, 135.3, 134.5, 132.3, 130.1, 129.7, 121.7, 114.5, 113.6, 60.9, 40.4, 26.4, 26.1, 18.9, 18.7, -0.9, -3.7, -4.9; HRMS (ESI) exact mass calcd. for C30H49NO3Si3: m/z 556.30930 ([M + H]+), found: m/z 556.30896 (-0.3 mmu).
[化合物9’の合成]
Figure JPOXMLDOC01-appb-I000023


化合物9と同様の手順により化合物8’ (0.12 mmol, 67 mg)から合成した。シリカゲルカラムクロマトグラフィー(hexane/CH2Cl2 = 1/2, 2% AcOEt)により精製し収率52% (34 mg)で得られた。
1H NMR (400 MHz, CDCl3)δ8.17 (1H, s), 7.96 (1H, d, J = 7.6 Hz), 7.61 (1H, t, J = 7.6 Hz), 7.52 (1H, t, J = 7.6 Hz), 7.23 (1H, d, J = 7.6 Hz), 7.16 (1H, s), 6.94 (1H, d, J = 2.8 Hz), 6.84 (1H, d, J = 9.2 Hz), 6.56-6.59 (2H, m), 4.75 (1H, d, J = 13 Hz), 4.69 (1H, d, J = 13 Hz), 2.96 (6H, s), 0.88 (9H, s), 0.63 (3H, s), 0.58 (3H, s), 0.07 (6H, s); 13C NMR (100 MHz, CDCl3) δ170.8, 155.7, 154.9, 149.2, 136.5, 135.9, 135.6, 133.9, 131.3, 128.6, 127.9, 125.9, 125.7, 125.2, 125.1, 124.0, 121.4, 116.4, 113.5, 90.8, 65.8, 40.1, 25.6, 17.9, 0.0, -1.2, -5.7; HRMS (ESI) exact mass calcd. for C31H39NO4Si2: m/z 546.24904 ([M + H]+), found: m/z 546.25041 (+1.4 mmu).
[化合物10’の合成]
Figure JPOXMLDOC01-appb-I000024


化合物10と同様の手順により化合物9’ (0.7 mmol, 382 mg)から合成した。シリカゲルカラムクロマトグラフィー(hexane/AcOEt = 1/1)により精製し1:1のジアステレオ混合物が収率14% (76 mg)で得られた。
1H NMR (400 MHz, CDCl3, dr = 1:1)δ 7.99 (2H, d, J = 7.2 Hz), 7.66-7.72 (2H, m), 7.60 (2H, app. t, J = 7.2 Hz), 7.31-7.37 (4H, m), 6.94-6.99 (4H, m), 6.84 (1H, d, J = 9.2 Hz), 6.81 (1H, d, J = 8.8 Hz), 6.54-6.58 (2H, m), 4.96-5.56 (12H, m), 4.11-4.26 (6H, m), 2.97 (12H, s), 2.20 (3H, s), 2.19 (3H, s), 2.11 (3H, s), 2.10 (3H, s), 2.04 (3H, s), 2.03 (3H, s), 2.01 (6H, s), 0.67 (3H, s), 0.66 (3H, s), 0.65 (3H, s), 0.64 (3H, s); HRMS (ESI) exact mass calcd. for C39H42FNO12Si: m/z 764.25331 ([M + H]+), found: m/z 764.25049 (-2.8 mmu).
[2-CH2F-SPiDER-RED-βGalの合成]
Figure JPOXMLDOC01-appb-I000025


4-CH2F-SPiDER-RED-βGalと同様の手順により化合物10’ (0.1 mmol, 76 mg)から合成した。シリカゲルカラムクロマトグラフィー(CH2Cl2/MeOH = 6/1)により精製し1:1のジアステレオ混合物が収率73% (43 mg)で得られた。
1H NMR (400 MHz, CDCl3, dr = 1:1)δ 7.92 (1H, d, J = 7.6 Hz), 7.83 (1H, d, J = 7.6 Hz), 7.57 (2H, app. t, J = 7.6 Hz), 7.44-7.50 (2H, m), 7.37 (1H, s), 7.36 (1H, s), 7.24 (1H, d, J = 8.0 Hz), 7.21 (1H, d, J = 7.6 Hz), 6.92 (2H, app. s), 6.88 (1H, s), 6.84 (1H, s), 6.81 (1H, d, J = 9.2 Hz), 6.75 (1H, d, J = 9.2 Hz), 6.50-6.57 (2H, m), 5.04-5.30 (4H, m), 4.85 (1H, d, J = 7.6 Hz), 4.78 (1H, d, J = 7.6 Hz), 4.28 (4H, br), 3.89-3.96 (6H, m), 3.48-3.78 (10H, m), 2.95 (6H, s), 2.94 (6H, s), 0.54 (6H, s), 0.53 (3H, s), 0.48 (3H, s); 13C NMR (100 MHz, CDCl3
δ170.8, 170.6, 154.7, 154.1, 153.3, 149.6, 149.5, 140.4, 139.9, 139.4, 136.5, 135.9, 134.4, 134.2, 131.1, 131.0, 129.3, 129.2, 128.3, 126.9, 126.8 (d, JC-F = 16 Hz), 126.6 (d, JC-F = 16 Hz), 126.5, 126.2, 126.1, 124.8, 124.4, 120.7, 120.4, 116.8, 116.7, 113.7, 113.4, 101.9, 101.7, 91.2, 90.9, 80.7 (d, JC-F = 163 Hz), 77.4, 74.9, 74.6, 73.5, 71.1, 69.1, 61.8, 40.3, 0.4, 0.0, -1.2, -1.9; HRMS (ESI) exact mass calcd. for C31H34FNO8Si: m/z 596.21105 ([M + H]+), found: m/z 596.21002 (-1.0 mmu).
(3)4-CH2OH-SPiDER-REDの合成
 酵素によって切断される一価の基を有しない酵素反応生成物(または酵素による加水分解生成物)である4-CH2OH-SPiDER-REDを以下の反応により合成した。
Figure JPOXMLDOC01-appb-I000026


 化合物9 (0.015 mmol, 8 mg)、AcOH (0.015 mmol, 0.9 μL)のTHF (0.5 mL)溶液にTBAF (1.0 M in THF, 0.045 mmol, 45 μL)を室温で加えた。一時間撹拌したあとエバポレーターで溶媒を除き、PLC (hexane/AcOEt = 5/6)で精製したところ、目的物が67%収率で得られた(6.5 mg)。 
1H NMR (400 MHz, CDCl3)δ 7.94 (1H, d, J = 7.6 Hz), 7.60 (1H, t, J = 7.6 Hz), 7.50 (1H, t, J = 7.6 Hz), 7.21 (1H, d, J = 7.6 Hz), 6.92-6.94 (2H, m), 6.83 (1H, d, J = 8.8 Hz), 6.78 (1H, d, J = 8.8 Hz), 6.60 (1H, dd, J = 8.8 Hz, 2.8 Hz), 5.11 (2H, s), 2.96 (6H, s), 0.73 (3H, s), 0.67 (3H, s); 13C NMR (100 MHz, CDCl3) δ171.2, 156.6, 155.6, 149.8, 137.2, 135.8, 135.1, 134.4, 130.4, 129.2, 129.1, 128.2, 126.2, 126.1, 124.3, 118.8, 116.5, 114.3, 91.9, 64.4, 40.6, 1.7, 1.6; HRMS (ESI) exact mass calcd. for C25H25NO4Si: m/z 432.16256 ([M + H]+), found: m/z 432.16280 (+0.2 mmu).
(4)2-CH2OH-SPiDER-REDの合成
 以下の反応により、酵素によって切断される一価の基を有しない比較例化合物である2-CH2OH-SPiDER-REDを合成した。
Figure JPOXMLDOC01-appb-I000027


 4-CH2OH-SPiDER-REDと同様の手順により化合物9’ (0.02 mmol, 10 mg)から合成した。PLC (hexane/AcOEt = 5/6))により精製し目的物が収率95% (8.4 mg)で得られた。
1H NMR (400 MHz, CDCl3) δ7.96 (1H, d, J = 7.6 Hz), 7.61 (1H, t, J = 7.6 Hz), 7.53 (1H, t, J = 7.6 Hz), 7.23 (1H, d, J = 7.6 Hz), 7.19 (1H, s), 6.94 (1H, d, J = 2.8 Hz), 6.83 (1H, d, J = 8.8 Hz), 6.62 (1H, s), 6.57 (1H, dd, J = 8.8 Hz, 2.8 Hz), 4.71 (1H, d, J = 13 Hz), 4.66 (1H, d, J = 13 Hz), 2.96 (6H, s), 0.63 (3H, s), 0.58 (3H, s); 13C NMR (100 MHz, CDCl3) δ170.8, 155.6, 154.8, 149.3, 137.6, 136.1, 135.8, 134.0, 131.2, 128.8, 128.0, 126.3, 126.0, 125.8, 125.5, 124.1, 121.4, 116.4, 113.5, 90.9, 64.8, 40.2, 0.0, -0.1; HRMS (ESI) exact mass calcd. for C25H25NO4Si: m/z 432.16256 ([M + H]+), found: m/z 432.16085 (-0.2 mmu).
酵素反応による吸収・蛍光スペクトル変化
 実施例1で得られた本発明のプローブ化合物である4-CH2F-SPiDER-RED-βGal及び2-CH2F-SPiDER-RED-βGalについて、β-ガラクトシダーゼ添加に伴う吸収スペクトル変化及び蛍光スペクトル変化を測定した。4-CH2F-SPiDER-RED-βGalの測定結果を図1に、2-CH2F-SPiDER-RED-βGalの測定結果を図2にそれぞれ示す。
 図1(a)は、4-CH2F-SPiDER-RED-βGalについて、酵素反応による蛍光強度の時間変化を示したものである。PBS緩衝液中1 μM に調製した4-CH2F-SPiDER-RED-βGal に 5 U のβ-ガラクトシダーゼを添加して測定を行った。測定条件は、励起波長 610 nm、蛍光波長 638 nm、計測時間 3600 秒、スリット(励起/蛍光) 2.5 nm/2.5 nm、ホトマル電圧: 700 Vである。図1(b)は、5 U のβ-ガラクトシダーゼを添加する前と添加後1時間における1 μM 4-CH2F-SPiDER-RED-βGal PBS緩衝液の吸収スペクトルである。図1(c)は、5 U のβ-ガラクトシダーゼを添加する前と添加後1時間における1 μM 4-CH2F-SPiDER-RED-βGal PBS緩衝液の蛍光スペクトルである。測定条件は、励起波長 610 nm、スリット(励起/蛍光) 2.5 nm/2.5 nm、ホトマル電圧: 700 Vである。
 図2(a)は、2-CH2F-SPiDER-RED-βGalについて、酵素反応による蛍光強度の時間変化を示したものである。PBS緩衝液中1 μM に調製した2-CH2F-SPiDER-RED-βGal に 5 U のβ-ガラクトシダーゼを添加して測定を行った。測定条件は、励起波長 610 nm、蛍光波長 638 nm、計測時間 3600 秒、スリット(励起/蛍光) 2.5 nm/2.5 nm、ホトマル電圧: 700 Vである。図2(b)は、5 U のβ-ガラクトシダーゼを添加する前と添加後1時間における1 μM 2-CH2F-SPiDER-RED-βGal PBS緩衝液の吸収スペクトルである。図2(c)は、5 U のβ-ガラクトシダーゼを添加する前と添加後1時間における1 μM 2-CH2F-SPiDER-RED-βGal PBS緩衝液の蛍光スペクトルである。測定条件は、励起波長 610 nm、スリット(励起/蛍光) 2.5 nm/2.5 nm、ホトマル電圧: 700である。
 これらの結果より、2-CHF2-SPiDER-RED-βGal及び4-CHF2-SPiDER-RED-βGalが、β-ガラクトシダーゼの酵素活性特異的に、蛍光を発生することが示された。なお、2-CHF2-SPiDER-RED-βGalに比べ4-CHF2-SPiDER-RED-βGalがβ-ガラクトシダーゼと高い反応性を示し、高い蛍光増大率を示すことが分かった。
BSAタンパク質存在下でのβ-ガラクトシダーゼ酵素反応による、BSAタンパク質への蛍光色素のラベル化
 実施例1で得られた本発明のプローブ化合物である4-CH2F-SPiDER-RED-βGal及び2-CH2F-SPiDER-RED-βGalについて、β-ガラクトシダーゼによって切断されたこれらの化合物が、溶液中に共存するウシ血清アルブミンタンパク質(BSA)を蛍光ラベル化することを確認した。4-CH2F-SPiDER-RED-βGalの測定結果を図3に、2-CH2F-SPiDER-RED-βGalの測定結果を図4にそれぞれ示す。
 1)10 μM 4-CH2F-SPiDER-RED-βGal、1 mg/mL BSA、5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、2)10 μM 4-CH2F-SPiDER-RED-βGal、1 mg/mL BSAを含むPBS緩衝液10 μL、3)10μM 4-CH2F-SPiDER-RED-βGalと5 U β-ガラクトシダーゼを含むPBS緩衝液10 μL、4)10 μM 4-CH2F-SPiDER-RED-βGalのみを含むPBS緩衝液10 μL、5) 10 μM 4-CH2OH-SPiDER-REDを含むPBS緩衝液10 μLを用い、それぞれ反応産物をSDS-PAGE(ランニングゲル10%、スタッキングゲル4%、泳動電圧200V)に供した。SDS-PAGEによって得られたゲルに対して、488nmの励起光を照射し、540-600nmの蛍光をPMT電圧 1000Vにて観察した(図3(a))。観察後、当該ゲルをクマシー染色し、ゲル上におけるBSAの位置を確認した(図3(b))。
 10 μM 4-CH2F-SPiDER-RED-βGalに替えて、10 μM 2-CH2F-SPiDER-RED-βGalを用いて同様の測定を行った結果を図4(a)及び(b)に示す。
  本発明のプローブ化合物と、β-ガラクトシダーゼを、BSA存在下で反応させることにより、SDS泳動後のBSAの位置に蛍光が確認された。一方、β-ガラクトシダーゼを含まない試料及び比較例である4-CH2OH-SPiDER-REDを用いた試料では、蛍光が確認されなかった。
 以上の結果は、本発明のプローブ化合物が、βガラクトシダーゼ活性特異的に変化することで、BSAに共有結合したことを示唆するものであり、本発明の酵素特異的滞留性蛍光化合物を用いることで、酵素活性特異的に、溶液中に共存するタンパク質を蛍光ラベル化し得ることを実証するものである。なお、2-CHF2-SPiDER-RED-βGalを用いた場合も、BSAが蛍光ラベル化されたが、酵素との反応性の低いため、4-CHF2-SPiDER-RED-βGalよりも蛍光強度は低かった。
β-ガラクトシダーゼを発現している生細胞の蛍光イメージング
 本発明のプローブ化合物が、生細胞の蛍光イメージングに利用可能であることを確認した。
 β-ガラクトシダーゼを発現している細胞(HEK-lacZ)と発現していない細胞(HEK)を共培養したディシュに、4-CHF2-SPiDER-RED-βGalを添加し37℃で30分間インキュベーションした。HEK細胞は予めCellTracker(商標) Greenで染色した。蛍光像と透過光像を共焦点顕微鏡(TCS SP5X; Leica社製)で取得した。レーザーは、ホワイトライトレーザー(WLL)、対物レンズは40倍(HCX PL APO CS 40x/1.25; Leica社製)を使用した。励起波長:594 nm、蛍光波長: 610-700 nm. スケール:25 μm。得られたライブセル蛍光イメージングを図5に示す。
 試験化合物4-CHF2-SPiDER-RED-βGalとインキュベートした後、細胞を培地で洗浄することなく観察した結果、HEK-lacZ細胞においてのみ試験化合物由来の赤色蛍光が観察された。一方、β-ガラクトシダーゼを発現していないHEK細胞では、赤色蛍光シグナルは得られなかった(図5左側)。
 この結果は、本発明の蛍光プローブが、生細胞のβ-ガラクトシダーゼ活性を単一細胞レベルで蛍光検出するのに有効であることを実証するものである。
β-ガラクトシダーゼ活性をもつ生体組織の非固定蛍光イメージング
 次いで、本発明のプローブ化合物である4-CHF2-SPiDER-RED-βGalが生体組織の蛍光イメージングに適用し得ることを、ショウジョウバエ組織を用いて確認した。
(材料と方法)
 一部の組織にβ-ガラクトシダーゼとGFPが発現するショウジョウバエ(Drosophila melanogaster、en-lacZ/dpp-GFP)の羽原基(wing discs)を、4-CHF2-SPiDER-RED-βGalとHoechst33342で2時間室温にてインキュベーションした後、共焦点顕微鏡(TCS SP8; Leica社製)にて観察した。レーザーは、ホワイトライトレーザー(WLL)、対物レンズは40倍(HCX PL APO CS 40x/1.25; Leica社製)を使用した。励起波長:405 nm (Hoechst33342), 488 nm (GFP), 594 nm(4-CHF2-SPiDER-RED-βGal)、蛍光波長: 420-490 nm (Hoechst33342), 490-570 nm (GFP), 601-681 nm (4-CHF2-SPiDER-RED-βGal). スケール:75 μm。得られたライブ組織蛍光イメージングを図6に示す。
(結果)
 4-CHF2-SPiDER-RED-βGalを用いて蛍光イメージングを行った場合、酵素反応生成物である蛍光色素は拡散しないため、β-ガラクトシダーゼ活性をもつ部位を選択的に蛍光イメージング可能であった。
 以上の結果は、本発明の4-CHF2-SPiDER-RED-βGal等の細胞内滞留性赤色蛍光プローブを用いることで、生体組織におけるβ-ガラクトシダーゼ発現細胞を一細胞レベルで検出可能であること、またGFPやHoechstとの同時観察が可能となることを実証するものである。

Claims (15)

  1.  以下の式(I)で表される化合物又はその塩を含む、細胞内滞留性赤色蛍光プローブ:
    Figure JPOXMLDOC01-appb-C000001


    (式中、Aは、酵素によって切断される一価の基を表し;Rは、水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、及びRは、それぞれ独立に-CFR1011又は-CF12、若しくは水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し、ただし、R、R、R、及びRの少なくとも一つは、-CFR1011又は-CF12であり;R及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRは、それぞれ独立に水素原子又はアルキル基を表し;R10、R11及びR12は、それぞれ独立に水素原子、アルキル基又はアルケニル基を表し;XはSi(R)(R)を表し、ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表し;Yは、-C(=O)-又は-RC(=O)-であり、ここで、Rは、炭素数1~3のアルキレン基である。)。
  2.  前記酵素が、レポーター酵素を含む加水分解酵素である、請求項1に記載の細胞内滞留性赤色蛍光プローブ。
  3.  前記レポーター酵素が、β-ガラクトシダーゼ、β-ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、又はペルオキシダーゼである、請求項2に記載の細胞内滞留性赤色蛍光プローブ。
  4.  前記酵素が、癌細胞で特異的に発現又は活性化する酵素である、請求項1に記載の細胞内滞留性赤色蛍光プローブ。
  5.  Aがガラクトピラノシル基である、請求項1に記載の細胞内滞留性赤色蛍光プローブ。
  6.  R、R、R、及びRの少なくとも一つは、-CFR1011である、請求項1~5のいずれかに記載の細胞内滞留性赤色蛍光プローブ。
  7.  R、R、R、及びRの少なくとも一つは、-CHFである、請求項1~5のいずれかに記載の細胞内滞留性赤色蛍光プローブ。
  8.  以下の式(Ia)又は(Ib)で表される化合物又はその塩を含む、細胞内滞留性赤色蛍光プローブ:
    Figure JPOXMLDOC01-appb-C000002

  9.  請求項1~8のいずれかに記載の細胞内滞留性赤色蛍光プローブを含む、特定の酵素が発現している標的細胞を検出するための又は可視化するためのキット。
  10.  前記標的細胞が、β-ガラクトシダーゼ発現細胞である、請求項9に記載の組成物又はキット。
  11.  前記標的細胞が、癌細胞である、請求項9に記載の組成物又はキット。
  12.  請求項1~8のいずれかに記載の細胞内滞留性赤色蛍光プローブを用いて、特定の酵素が発現している標的細胞を検出する方法。
  13.  前記細胞内滞留性赤色蛍光プローブと、前記標的細胞において特異的に発現する酵素とを、生体外において接触させる工程、及び、励起光照射を行って蛍光を生じさせる工程を含むことを特徴とする、請求項12に記載の方法。
  14.  前記標的細胞が、β-ガラクトシダーゼ発現細胞である、請求項12又は13に記載の方法。
  15.  前記標的細胞が、癌細胞である、請求項12又は13に記載の方法。
PCT/JP2017/023171 2016-06-30 2017-06-23 酵素特異的な細胞内滞留性赤色蛍光プローブ。 WO2018003686A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/313,357 US11591359B2 (en) 2016-06-30 2017-06-23 Enzyme-specific intracellularly-retained red fluorescent probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-130024 2016-06-30
JP2016130024A JP6849983B2 (ja) 2016-06-30 2016-06-30 酵素特異的な細胞内滞留性赤色蛍光プローブ。

Publications (1)

Publication Number Publication Date
WO2018003686A1 true WO2018003686A1 (ja) 2018-01-04

Family

ID=60787302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023171 WO2018003686A1 (ja) 2016-06-30 2017-06-23 酵素特異的な細胞内滞留性赤色蛍光プローブ。

Country Status (3)

Country Link
US (1) US11591359B2 (ja)
JP (1) JP6849983B2 (ja)
WO (1) WO2018003686A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180744A (zh) * 2018-09-20 2019-01-11 济南大学 一种检测β-半乳糖苷酶的荧光探针
CN109694396A (zh) * 2018-12-26 2019-04-30 济南大学 一种双光子比率荧光探针在检测β-半乳糖苷酶中的应用
WO2020250998A1 (ja) * 2019-06-14 2020-12-17 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法
EP3932916A4 (en) * 2019-02-28 2023-01-25 The University of Tokyo FLUORESCENT PROBE FOR CANCER DETECTION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605343B (zh) * 2022-03-14 2022-11-18 吉林大学 一种荧光基团LAN-OH、荧光传感器LAN-βgal及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111818A1 (ja) * 2011-02-18 2012-08-23 国立大学法人 東京大学 蛍光プローブ
WO2014106957A1 (ja) * 2013-01-07 2014-07-10 国立大学法人 東京大学 非対称Siローダミン及びロドールの合成
WO2015108172A1 (ja) * 2014-01-17 2015-07-23 岐阜市 鉄(ii)イオン検出剤及びそれを用いた検出方法
WO2015174460A1 (ja) * 2014-05-14 2015-11-19 国立大学法人 東京大学 酵素特異的な細胞内滞留性蛍光化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868147B2 (en) 2003-09-05 2011-01-11 Tetsuo Nagano Fluorescent probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111818A1 (ja) * 2011-02-18 2012-08-23 国立大学法人 東京大学 蛍光プローブ
WO2014106957A1 (ja) * 2013-01-07 2014-07-10 国立大学法人 東京大学 非対称Siローダミン及びロドールの合成
WO2015108172A1 (ja) * 2014-01-17 2015-07-23 岐阜市 鉄(ii)イオン検出剤及びそれを用いた検出方法
WO2015174460A1 (ja) * 2014-05-14 2015-11-19 国立大学法人 東京大学 酵素特異的な細胞内滞留性蛍光化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASANUMA, DAISUKE ET AL.: "Sensitive beta- galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo", NAT. COMMUN., vol. 6, no. 6463, 2015, pages 1 - 7, XP055451716 *
EGAWA, TAKAHIRO ET AL.: "Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region", CHEM. COMMUN., vol. 47, 2011, pages 4162 - 4164, XP055451726 *
KENJIRO HANAOKA ET AL.: "Development of Silicon-substituted Xanthene Dyes and Their Application to Fluorescent Probes", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 74, 1 May 2016 (2016-05-01), pages 512 - 520 *
WANG, BAOGANG ET AL.: "A general approach to spirolactonized Si-rhodamines", CHEM. COMMUN., vol. 50, 2014, pages 14374 - 14377, XP055451714 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180744A (zh) * 2018-09-20 2019-01-11 济南大学 一种检测β-半乳糖苷酶的荧光探针
CN109694396A (zh) * 2018-12-26 2019-04-30 济南大学 一种双光子比率荧光探针在检测β-半乳糖苷酶中的应用
EP3932916A4 (en) * 2019-02-28 2023-01-25 The University of Tokyo FLUORESCENT PROBE FOR CANCER DETECTION
WO2020250998A1 (ja) * 2019-06-14 2020-12-17 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法
JP7385850B2 (ja) 2019-06-14 2023-11-24 株式会社同仁化学研究所 細胞滞留性蛍光化合物並びにそれを用いた細胞の染色方法及び高感度検出方法

Also Published As

Publication number Publication date
JP6849983B2 (ja) 2021-03-31
JP2018000074A (ja) 2018-01-11
US20190256544A1 (en) 2019-08-22
US11591359B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2018003686A1 (ja) 酵素特異的な細胞内滞留性赤色蛍光プローブ。
JP6351511B2 (ja) 非対称Siローダミン及びロドールの合成
JP6635555B2 (ja) 酵素特異的な細胞内滞留性蛍光化合物
JP5228190B2 (ja) パーオキシナイトライト蛍光プローブ
JPWO2005024049A1 (ja) 蛍光プローブ
Wang et al. A cyanine-based colorimetric and fluorescence probe for detection of hydrogen sulfide in vivo
WO2017078623A9 (en) Background-free fluorescent probes for live cell imaging
JPWO2016006678A1 (ja) ジペプチジルペプチダーゼiv検出用蛍光プローブ
WO2018159631A1 (ja) ペプチダーゼ活性検出用近赤外蛍光プローブ
JPWO2018174253A1 (ja) ニトロベンゼン誘導体またはその塩およびそれらの用途
JP2018145126A (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
WO2019168199A1 (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
WO2020235567A1 (ja) 脳腫瘍の検出用蛍光プローブ
JP2016193897A (ja) pH依存性蛍光化合物
JP2004101389A (ja) アルミニウムイオン及び/又は第二鉄イオン測定用プローブ
WO2023167305A1 (ja) 酵素活性の検出方法、及び当該方法に用いる蛍光プローブ
JP6120222B2 (ja) セラミド誘導体およびこれを用いたゴルジ体標識化蛍光プローブ
KR20110033451A (ko) 물질 표지용 화합물 및 그 제조방법
WO2021153772A1 (ja) アルデヒドデヒドロゲナーゼ1a1検出用青色蛍光プローブ
RU2688744C1 (ru) Фотостабильный и яркий флуоресцентный бордипиррометеновый краситель
WO2020045529A1 (ja) 新規な蛍光色素並びにそれを用いた脂肪滴染色用組成物及び細胞内脂肪滴のイメージング方法
EP2399925A1 (en) Method for fluorescently labeling protein
JP2009275006A (ja) 低酸素環境測定用試薬
JP2012020978A (ja) 近赤外生物発光基質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820043

Country of ref document: EP

Kind code of ref document: A1