WO2015174133A1 - タッチパネル及びその製造方法 - Google Patents

タッチパネル及びその製造方法 Download PDF

Info

Publication number
WO2015174133A1
WO2015174133A1 PCT/JP2015/057733 JP2015057733W WO2015174133A1 WO 2015174133 A1 WO2015174133 A1 WO 2015174133A1 JP 2015057733 W JP2015057733 W JP 2015057733W WO 2015174133 A1 WO2015174133 A1 WO 2015174133A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
groove
terminal
resin layer
connection
Prior art date
Application number
PCT/JP2015/057733
Other languages
English (en)
French (fr)
Inventor
昌哉 中山
浩行 小林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167027770A priority Critical patent/KR101943176B1/ko
Priority to JP2016519144A priority patent/JP6240756B2/ja
Priority to CN201580015561.1A priority patent/CN106133660B/zh
Publication of WO2015174133A1 publication Critical patent/WO2015174133A1/ja
Priority to US15/285,702 priority patent/US10303311B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a touch panel including terminal portions arranged corresponding to a plurality of detection electrodes and a method for manufacturing the same.
  • a so-called touch panel that can perform various operations by touching with a finger has been widely adopted.
  • a technical idea is known in which a detection electrode is configured by filling a concave groove formed in a substrate with a conductive material (for example, FIG. 5, FIG. 6, paragraph ⁇ 0076> of Patent Document 1). To paragraph ⁇ 0078> etc.).
  • a terminal groove is formed by forming a concave groove in a resin layer provided on a substrate and filling the groove with a conductive material. It is possible to do.
  • the terminal portion refers to an electrode terminal portion that is electrically connected to a flexible circuit board (FPC: Flexible printed circuit).
  • the groove may not be completely filled with the conductive material, and a space may be formed on the opening side of the groove. Then, when the terminal portion and the flexible circuit board are bonded via the anisotropic conductive film, the anisotropic conductive film does not enter the space on the opening side of the groove, and the anisotropic conductive film and the conductive material are removed. There may be cases where contact cannot be made reliably. As a result, there is a possibility that the terminal portion and the flexible circuit board cannot be electrically connected.
  • the present invention has been made in consideration of such problems, and even when the groove formed in the resin layer in the terminal portion is not completely filled with the conductive material, the conductive material of the terminal portion It is an object of the present invention to provide a touch panel that can reliably connect a flexible circuit board and a manufacturing method thereof.
  • the touch panel according to the present invention includes a substrate, a plurality of detection electrodes provided on the substrate, a terminal portion arranged corresponding to the detection electrode, and a periphery electrically connecting the detection electrode and the corresponding terminal portion.
  • a terminal portion is formed of a resin layer provided on a substrate and having a groove, and a conductive material filled in the groove, and the plurality of terminal portions are electrically separated from each other.
  • Each of the conductive connecting portions is in contact with the conductive material of the terminal portion and covers a part of the outer surface of the resin layer.
  • the conductive material and the anisotropic conductive film can be reliably electrically connected via the conductive connection portion.
  • the conductive material of the terminal portion and the flexible circuit board are securely connected via the connection portion and the anisotropic conductive film. Can be electrically connected.
  • the surface of the portion covering the conductive material in the connecting portion is the surface of the resin layer. It becomes easy to dent to the groove bottom side with respect to the surface of the part which covers an outer surface. And when a hollow part is formed in a part of surface of a connection part, the contact resistance of a connection part and an anisotropic conductive film may deteriorate (it becomes high). On the other hand, the contact area decreases as the groove width of the groove constituting the terminal portion becomes narrower, so that the contact resistance between the conductive material filled in the groove and the connection portion deteriorates.
  • the terminal portion includes a plurality of grooves, and the connecting portion extends over at least two or more grooves. According to such a configuration, the contact area increases, and both the contact resistance between the conductive material constituting the terminal portion and the connection portion and the contact resistance between the connection portion and the anisotropic conductive film are improved (lowered). )be able to.
  • the plurality of grooves are preferably arranged in a mesh shape. According to such a configuration, the number of grooves constituting the terminal portion can be increased efficiently. Therefore, the contact resistance between the conductive material of the terminal portion and the connection portion can be further improved.
  • the detection electrode and the peripheral wiring may be constituted by a resin layer having a groove and a conductive material filled in the groove. According to such a configuration, the detection electrode, the peripheral wiring, and the terminal portion can be simultaneously formed in the same process, and the process can be simplified.
  • the average value of the height dimension from the outer surface of the resin layer in the connection portion is 0.1 ⁇ m to 2.0 ⁇ m. According to such a configuration, the contact resistance between the connection portion and the anisotropic conductive film can be suitably improved, and also for a portion of the outer surface of the resin layer that is not covered with the connection portion. An anisotropic conductive film can be adhered reliably.
  • connection portion contains conductive oxide particles and a binder.
  • an anisotropic conductive film can be easily repaired with respect to a connection part.
  • “repair” refers to removing the anisotropic conductive film adhered to the connecting portion and then bonding it to the connecting portion again.
  • the connecting portion and the flexible circuit board are electrically connected via an anisotropic conductive film. According to such a structure, a flexible circuit board and a terminal part can be electrically connected reliably.
  • a method of manufacturing a touch panel according to the present invention electrically connects a substrate, a plurality of detection electrodes provided on the substrate, a terminal portion disposed corresponding to the detection electrode, and a terminal portion corresponding to each of the detection electrodes.
  • a touch panel manufacturing method comprising a peripheral wiring to be connected and a connection part provided at each of the plurality of terminal parts and spaced apart from each other, and an electrode part for forming a detection electrode and a peripheral wiring
  • a resin layer is formed on at least a part of one surface of the substrate, and a resin is formed.
  • connection portion forming step it is preferable that the ink-like conductive member is patterned and formed using screen printing or ink jet. According to such a method, a connection part can be obtained easily and efficiently by screen printing or inkjet.
  • the groove forming step it is preferable to form a plurality of grooves in the terminal portion by pressing the mold against the resin layer, and in the connecting portion forming step, the connecting portion is formed so as to straddle at least two or more grooves. According to such a method, it is possible to improve both the contact resistance between the conductive material of the terminal portion and the connection portion, and the contact resistance between the connection portion and the anisotropic conductive film.
  • a plurality of grooves are formed in a mesh shape in the terminal portion by pressing a mold against the resin layer. According to such a method, a mesh-like groove can be easily formed in the resin layer of the terminal portion, and the contact resistance between the conductive material of the terminal portion and the connection portion can be further improved.
  • the electrode part forming step is preferably the same as the terminal part forming step and is performed simultaneously. According to such a method, a detection electrode, peripheral wiring, and a terminal part can be formed efficiently.
  • a crimping step of crimping and electrically connecting the flexible circuit board and the connecting portion using an anisotropic conductive film after the connecting portion forming step it is preferable to perform a crimping step of crimping and electrically connecting the flexible circuit board and the connecting portion using an anisotropic conductive film after the connecting portion forming step. According to such a method, a flexible circuit board and a terminal part can be reliably electrically connected.
  • a touch panel including a terminal portion formed by filling a groove formed in the resin layer with a conductive material
  • electrical connection between the terminal portion and the flexible circuit board can be reliably performed.
  • the conductive material of the terminal portion and the flexible circuit board are connected via the connection portion and the anisotropic conductive film. It can be securely connected.
  • FIG. 3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 2
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 2
  • FIG. 3C is a cross-sectional view taken along line IIIC-IIIC in FIG.
  • FIG. 4A is a partially omitted plane explanatory view showing connection between the terminal portion and the flexible circuit board
  • FIG. 4B is a partially omitted sectional view taken along line IVB-IVB in FIG. 4A.
  • FIG. 6A is a cross-sectional explanatory view of the groove forming step
  • FIG. 6B is a cross-sectional explanatory view of the original film mold used in the groove forming step
  • FIG. 6C is a cross-sectional view showing a state in which the film mold is produced by the original mold It is.
  • FIG. 7A is a first cross-sectional explanatory view of the filling step
  • FIG. 7B is a second cross-sectional explanatory view of the filling step.
  • FIG. 8A is a cross-sectional explanatory view of the removing step
  • FIG. 8B is a cross-sectional explanatory view of the first heating step.
  • FIG. 9A is a cross-sectional explanatory view of the connection portion forming step
  • FIG. 9B is a cross-sectional explanatory view of the second heating step. It is sectional explanatory drawing of the hollow part formed in the connection part.
  • 11A is a schematic plan view of a terminal portion according to a modification
  • FIG. 11B is a cross-sectional view of a state in which a flexible circuit board is connected to the terminal portion shown in FIG. 11A.
  • the touch panel 10 is configured as a capacitive touch panel, a display device 12 that displays arbitrary visible information, a finger that touches or approaches the touch surface 14 of the touch panel 10, and the like.
  • a touch sensor 18 that detects the position of the indicator 16, a cover member 20 that covers the touch sensor 18, and a housing 22.
  • the display device 12 is not particularly limited, and various display methods can be adopted. Suitable examples thereof include a liquid crystal display, a plasma display, an organic EL (Electro-Luminescence) display, an inorganic EL display, and electronic paper.
  • the touch sensor 18 includes a sensor main body 26 bonded to one surface of the display device 12 via an adhesive layer 24, and a control circuit unit (IC circuit or the like) electrically connected to the sensor main body 26 via a flexible circuit board 28. 30.
  • IC circuit integrated circuit
  • the control circuit unit 30 detects a change in capacitance between the indicator 16 and the sensor body 26 and detects the contact position or the proximity position. Is. In the example of FIG. 1, the control circuit unit 30 is fixed to the inner surface of the housing 22, but can be fixed to an arbitrary position of the housing 22.
  • the cover member 20 is laminated on one surface of the sensor body 26 and constitutes the touch surface 14 of the touch panel 10.
  • the cover member 20 may be adhered to one surface of the sensor body 26 in a state coated with silicon oxide or the like, or an OCA (Optical Clear Clear Adhesive) sheet or the like on one surface of the sensor body 26 to prevent damage due to rubbing or the like. You may stick through a transparent adhesive.
  • OCA Optical Clear Clear Adhesive
  • the constituent material of the cover member 20 for example, glass, tempered glass, sapphire, a resin such as polycarbonate (PC), polymethyl methacrylate (PMMA), or the like can be suitably used.
  • the housing 22 houses the display device 12, the touch sensor 18, and the cover member 20.
  • the sensor body 26 is configured by laminating a first conductive film 32A and a second conductive film 32B.
  • first conductive film 32A and the second conductive film 32B are laminated via a transparent adhesive such as an OCA sheet, although not shown.
  • the first conductive film 32A is electrically connected to the first substrate 34A, the plurality of first detection electrodes 36A provided on the first substrate 34A, and the first detection electrodes 36A via the first connection portions 38A.
  • the plurality of first peripheral wirings 40A, and the plurality of first terminal portions 42A electrically connected to each first peripheral wiring 40A.
  • the first substrate 34A is a substrate 34 having insulation and transparency.
  • the transmittance of visible light having a wavelength of 400 nm to 700 nm with respect to the first substrate 34A can be arbitrarily set, but is preferably 80% or more, and more preferably 90% or more.
  • the thickness of the first substrate 34A is preferably 25 ⁇ m to 250 ⁇ m.
  • glass or resin can be suitably used as the constituent material of the first substrate 34A.
  • this type of resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and polyethylene vinyl acetate (EVA); vinyl Other resins: Others such as polycarbonate (PC), polyamide, polyimide, polymethylmethacrylate (PMMA), acrylic resin, triacetyl cellulose (TAC), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyether A sulfone (PES) etc. are mentioned.
  • the plurality of first detection electrodes 36A are separated from each other in the second direction (Y direction, longitudinal direction of the first substrate 34A) in a state of extending in the first direction (X direction, short direction of the first substrate 34A). Side by side.
  • the first detection electrode 36A includes a first resin layer 44a provided on the first substrate 34A and having a concave first electrode groove 46a, and a first conductive material 48a filled in the concave first electrode groove 46a. It is configured (see FIG. 3A).
  • the first resin layer 44a is laminated on the entire surface of the first substrate 34A, but there may be a portion where the first resin layer 44a is not laminated on the first substrate 34A. I do not care.
  • the first resin layer 44a has insulation and transparency, and an ultraviolet curable resin, a thermosetting resin, or the like can be suitably used.
  • the constituent material of the first resin layer 44a include acrylic resin, urethane resin, epoxy resin, polyester resin, and acrylic resin and urethane resin are particularly preferable.
  • the first detection electrode 36A has a mesh pattern obtained by arranging a plurality of first electrode grooves 46a in a mesh shape in plan view.
  • this mesh pattern is configured by combining many cells having the same rectangular shape.
  • the groove width of the first electrode groove 46a is preferably 1 ⁇ m to 10 ⁇ m, and the pitch of the first electrode grooves 46a adjacent in parallel is preferably 50 ⁇ m to 600 ⁇ m.
  • the cell shape of the mesh may be a polygonal shape such as a triangle, a quadrangle, a pentagon, or a hexagon. Among these, rhombus, square and regular hexagon are preferable.
  • the mesh pattern may be configured by combining many cells having different shapes, or may be a random pattern.
  • the first electrode groove 46a has a rectangular cross section.
  • the groove depth of the first electrode groove 46a is preferably 1 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m. This is because the thickness of the first resin layer 44a can be made relatively thin and the disconnection of the first conductive material 48a filled in the first terminal groove 54a can be effectively suppressed.
  • the cross sectional shape of the first electrode groove 46a can be set to an arbitrary shape.
  • the first conductive material 48a includes at least one material selected from the group consisting of copper, silver, aluminum, nickel, chromium, and carbon black.
  • the first conductive material 48a may be configured by stacking a plurality of types of materials.
  • the first connection portions 38A are alternately provided at one end of the first detection electrode 36A, and fill the first resin layer 44a having the concave first connection grooves 50a and the concave first connection grooves 50a. And the first conductive material 48a.
  • the first connection groove 50a communicates with the first electrode groove 46a, is formed in a rectangular shape in plan view, and extends in the X direction.
  • the first peripheral wiring 40A electrically connects the plurality of first detection electrodes 36A and the corresponding first terminal portions 42A, and includes a first resin layer 44a having a concave first wiring groove 52a. And the first conductive material 48a filled in the concave first wiring groove 52a (see FIG. 3B).
  • the first wiring groove 52a communicates with the first connection groove 50a.
  • the groove width of the first wiring groove 52a is preferably larger than the groove width of the first electrode groove 46a, but may be the same.
  • the plurality of first terminal portions 42A are arranged in a state of being separated from each other in the X direction (electrically insulated state) at one end portion in the Y direction of the first substrate 34A.
  • the spacing between the adjacent first terminal portions 42A in the X direction is preferably 50 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m, from the viewpoint of electrical insulation and miniaturization.
  • the first terminal portion 42A includes a first resin layer 44a having a concave first terminal groove 54a and a first conductive material 48a filled in the concave first terminal groove 54a (see FIG. 4B). .
  • the first terminal groove 54a communicates with the first wiring groove 52a.
  • the first terminal portion 42A has a solid pattern obtained by forming the first terminal groove 54a in a rectangular shape in plan view, and extends along the Y direction.
  • the groove width (dimension along the X direction) of the first terminal groove 54a is formed larger than the groove width of the first wiring groove 52a.
  • the groove width of the first terminal groove 54a is preferably 50 ⁇ m to 500 ⁇ m, and more preferably 200 ⁇ m to 400 ⁇ m, from the viewpoint of contact resistance with the first connection portion 58A described later and miniaturization.
  • the first terminal groove 54a is not completely filled with the first conductive material 48a. That is, the surface of the first conductive material 48a filled in the first terminal groove 54a is located closer to the groove bottom than the outer surface of the first resin layer 44a.
  • first electrode groove 46a In such a first conductive film 32A, the corresponding first electrode groove 46a, first connection groove 50a, first wiring groove 52a, and first terminal groove 54a communicate with each other to form a continuous concave first groove 56a.
  • a plurality of first detection electrodes 36A, a first connection portion 38A, a first wiring portion, and a first terminal portion 42A are configured by filling the first grooves 56a with the first conductive material 48a. Is done.
  • the touch panel 10 of the present embodiment includes a plurality of conductive first connection portions provided in a state of being separated from each other with respect to the plurality of first terminal portions 42A. 58A.
  • the first connection portion 58A is in contact with the first conductive material 48a filled in the first terminal groove 54a and covers a part of the first resin layer 44a.
  • the plurality of first connection portions 58A are electrically connected to predetermined terminals 62 of the flexible circuit board 28 through an anisotropic conductive film 60 (ACF: Anisotropic Conductive Film).
  • ACF Anisotropic Conductive Film
  • the anisotropic conductive film 60 is configured by dispersing conductive particles in an insulating thermosetting resin, and has conductivity in the thickness direction and insulation in the surface direction.
  • the anisotropic conductive film 60 is preferably disposed so as to cover two or more first connection portions 58A, and more preferably disposed so as to cover all the first connection portions 58A.
  • the first connection portion 58A is formed in a rectangular shape that is slightly larger than the first terminal groove 54a in plan view.
  • the width dimension of the first connecting portion 58A is preferably 2 ⁇ m to 100 ⁇ m larger than the groove width of the first terminal groove 54a, and more preferably 10 ⁇ m to 50 ⁇ m larger than the groove width of the first terminal groove 54a. In this case, the entire surface of the first terminal groove 54a can be efficiently covered with the first connection portion 58A while ensuring electrical insulation with the adjacent first connection portion 58A.
  • the average value of the height dimension from the outer surface of the first resin layer 44a in the first connection portion 58A is preferably 0.05 ⁇ m to 5.0 ⁇ m, and more preferably 0.1 ⁇ m to 2.0 ⁇ m.
  • the contact resistance between the first connection portion 58A and the anisotropic conductive film 60 can be suitably improved, and the anisotropic conductive film 60 is connected to the first connection on the outer surface of the first resin layer 44a. It can be made to adhere also to the part which is not covered with part 58A.
  • the average value (Have) of the height dimension from the outer surface of the first resin layer 44a in the first connection portion 58A is, as shown in FIG.
  • conductive oxides such as indium tin oxide (ITO: Indium ⁇ Tin Oxido), metals such as copper, silver, aluminum, nickel, chromium and gold, carbon nanotubes, metals It is preferable to contain at least one conductive material selected from the group consisting of conductive fibers such as nanowires, and polymer conductive materials such as polyacetylene and polythiophene.
  • the first connecting portion 58A is preferably a conductive member containing conductive particles and a binder.
  • the conductive member containing the conductive particles and the binder can be a liquid of ink or paste, easily penetrates into the concave first terminal groove 54a of the first terminal portion 42A, and has a concave first terminal groove with a narrow line width.
  • the contact resistance with the conductive material filled in 54a can be improved.
  • the conductive particles metal particles such as silver particles or conductive oxide particles can be used, and conductive oxide particles are particularly preferable. Examples of the constituent material of the conductive oxide particles include ITO.
  • the anisotropic conductive film 60 is easily repaired with respect to the first connection portion 58A, which is preferable. That is, after the anisotropic conductive film 60 is bonded to the first connection portion 58A, the anisotropic conductive film 60 can be once removed and bonded to the first connection portion 58A again.
  • the average particle size of the conductive particles is preferably 1 nm to 500 nm, more preferably 5 nm to 100 nm, and further preferably 10 nm to 80 nm.
  • the binder has a function of increasing the conductivity and strength of the conductive member by bonding the conductive particles.
  • organic and / or inorganic binders can be used.
  • the organic binder (resin binder) can be appropriately selected from the group of thermoplastic resins, thermosetting resins, room temperature curable resins, ultraviolet curable resins, electron beam curable resins, and the like.
  • a thermoplastic resin has various glass transition points (Tg) depending on its type and structure, it is preferable to select the thermoplastic resin appropriately according to the heat resistance of the substrate.
  • the thermoplastic resin generally known thermoplastic resins can be used, but those having a high glass transition point (Tg) are preferable.
  • thermoplastic resin examples include acrylic resins such as methacrylic resins, polyester resins, and the like.
  • thermosetting resin for example, epoxy resin, fluorine resin, etc.
  • room temperature curable resin two-part epoxy resin, various urethane resins, etc.
  • ultraviolet curable resin various oligomers, monomers
  • the resin containing the photoinitiator and the electron beam curable resin examples include resins containing various oligomers and monomers, but are not limited to these resins.
  • the inorganic binder examples include binders mainly composed of silica sol, alumina sol, zirconia sol, titania sol and the like.
  • the silica sol is a polymer obtained by hydrolyzing a tetraalkyl silicate with water or an acid catalyst and dehydrating condensation polymerization, or a tetraalkyl silicate that has already been polymerized into a tetramer to a pentamer.
  • a polymer obtained by further hydrolyzing and dehydrating polycondensation can be used for the alkyl silicate solution. If the dehydration condensation polymerization proceeds too much, the solution viscosity increases and eventually solidifies. Therefore, the degree of dehydration condensation polymerization is adjusted to be equal to or lower than the upper limit viscosity that can be applied.
  • the degree of dehydration condensation polymerization is not particularly limited as long as it is a level equal to or lower than the above upper limit viscosity, but in view of film strength, weather resistance and the like, a weight average molecular weight of about 500 to 50,000 is preferable.
  • This alkylsilicate hydrolyzed polymer (silica sol) undergoes a dehydration condensation polymerization reaction (crosslinking reaction) almost completely upon heating after application / drying of the coating liquid for forming a transparent conductive film, and a hard silicate binder matrix (silicon oxide).
  • An organic-inorganic hybrid binder can also be used as the binder.
  • a binder obtained by partially modifying the above-described silica sol with an organic functional group and a binder mainly composed of various coupling agents such as a silicon coupling agent can be given.
  • the second conductive film 32B is electrically connected to the second substrate 34B, the plurality of second detection electrodes 36B provided on the second substrate 34B, and the second detection electrodes 36B via the second connection portions 38B.
  • the second substrate 34B is configured in the same manner as the first substrate 34A.
  • the plurality of second detection electrodes 36 ⁇ / b> B are arranged side by side in the X direction so as to extend in the Y direction.
  • the second detection electrode 36B includes a second resin layer 44b provided on the second substrate 34B and having a concave second electrode groove 46b, and a second conductive material 48b filled in the concave second electrode groove 46b. It is configured (see FIG. 3A).
  • the same material as the first conductive material 48a can be suitably used as the second conductive material 48b.
  • the second connection portion 38B is provided at one end of the second detection electrode 36B, and the second resin layer 44b having the concave second connection groove 50b and the second resin layer 44b filled in the concave second connection groove 50b. And a conductive material 48b.
  • the second peripheral wiring 40B is configured in the same manner as the first peripheral wiring 40A, and electrically connects the plurality of second detection electrodes 36B to the corresponding second terminal portions 42B, and has a concave shape.
  • the second resin layer 44b having the second wiring groove 52b and the second conductive material 48b filled in the concave second wiring groove 52b are configured.
  • the plurality of second terminal portions 42B are arranged in a state of being separated from each other in the X direction (electrically insulated state) at one end portion in the Y direction of the second substrate 34B.
  • the spacing between the adjacent second terminal portions 42B in the X direction is preferably 50 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m, from the viewpoint of electrical insulation and miniaturization.
  • the second terminal portion 42B is configured in the same way as the first terminal portion 42A, and the second resin layer 44b having the concave second terminal groove 54b and the second conductive material filled in the concave second terminal groove 54b. And material 48b.
  • the corresponding second electrode groove 46b, second connection groove 50b, second wiring groove 52b, and second terminal groove 54b communicate with each other to form a continuous concave second groove 56b.
  • a plurality of second detection electrodes 36B, second connection portions 38B, second wiring portions, and second terminal portions 42B are configured by filling the second grooves 56b with the second conductive material 48b. Is done.
  • the touch panel 10 of the present embodiment includes a plurality of second connection portions 58B that are provided separately from each other with respect to the plurality of second terminal portions 42B.
  • the second connection portion 58B is in contact with the second conductive material 48b filled in the second terminal groove 54b and covers a part of the second resin layer 44b.
  • the plurality of second connection portions 58 ⁇ / b> B are electrically connected to predetermined terminals 62 of the flexible circuit board 28 through the anisotropic conductive film 60. Since the second connection portion 58B is configured in the same manner as the first connection portion 58A, detailed description thereof is omitted.
  • the touch panel 10 is basically configured as described above. Next, a method for manufacturing the touch panel 10 will be described. In the following description, a method for manufacturing the first conductive film 32A and the first connection portion 58A will be mainly described. In addition, since the manufacturing method of the 2nd conductive film 32B and the 2nd connection part 58B is fundamentally the same as the manufacturing method of the 1st conductive film 32A and the 1st connection part 58A, the description is abbreviate
  • the ultraviolet curable resin 70 is applied to one surface of the first substrate 34A conveyed by the plurality of rollers 66 and 68. Then, as shown in FIG. 6A, an imprint mold 72 including a convex protrusion is pressed (transferred) to the ultraviolet curable resin 70 applied to one surface of the first substrate 34A, and the ultraviolet irradiation device 74 By irradiating the ultraviolet curable resin 70 with ultraviolet rays, a first resin layer 44a in which a predetermined concave groove is formed is obtained (step S1: groove forming step in FIG. 5).
  • Preferable materials for the ultraviolet curable resin 70 include an ultraviolet curable acrylic resin and an ultraviolet curable urethane resin.
  • the imprint mold 72 includes a roll part 76 and a film mold 78 adhered to the outer peripheral surface of the roll part 76 via an adhesive layer.
  • the film mold 78 is formed as follows. That is, first, the photosensitive material 82 applied to the glass substrate 80 is exposed to light to form a predetermined concave groove pattern 84 in the photosensitive material 82 to obtain a master (master mold) 86 (see FIG. 6B). ). As the photosensitive material 82, a material having a sufficiently small surface roughness is selected. And the film type
  • the film mold 78 is preferably subjected to a surface treatment in order to smoothly separate it from the first resin layer 44a.
  • a surface treatment examples include thin film coating (coating with a thickness of 1200 to 1500 mm) with silicon dioxide or the like by sputtering.
  • the concave first groove 56a (the plurality of first electrode grooves 46a, the first connection grooves 50a, the first wiring grooves 52a, and the first terminal grooves 54a) is first formed by one imprint die 72. It is simultaneously formed on the resin layer 44a. However, the concave first groove 56 a may be formed using a plurality of imprint molds 72.
  • thermosetting resin is applied to one surface of the first substrate 34A, the imprint mold 72 is pressed against the thermosetting resin, and the thermosetting resin is heated, thereby forming a concave first groove. You may obtain the 1st resin layer 44a in which 56a was formed.
  • conductive ink (ink-like conductive material) 88 as the first conductive material 48a is filled in the concave first groove 56a formed in the first resin layer 44a (step S2: filling step). That is, as shown in FIG. 7A, the conductive ink 88 is applied to the outer surface of the first resin layer 44a from the ink supply unit 85 while the first substrate 34A is being conveyed by roll-to-roll, and then the sweep unit 87 is moved to the first. By bringing the conductive ink 88 on the outer surface of the first resin layer 44a into contact with the outer surface of the resin layer 44a, the first electrode groove 46a, the first connection groove 50a, the first wiring groove 52a, and the first terminal groove 54a. Introduced into (filled).
  • the supply amount and supply speed of the conductive ink 88 depend on the viscosity of the conductive ink 88, the groove width and the groove depth of the first electrode groove 46a, the first connection groove 50a, the first wiring groove 52a, and the first terminal groove 54a. And the transfer speed of the first substrate 34A and the like.
  • the sweep portion 87 is formed to be equal to or larger than the width of the first resin layer 44a, and has a blade 89 that is inclined and extends to the side opposite to the transport direction of the first substrate 34A. That is, the contact angle of the blade 89 with respect to the first resin layer 44a (the angle formed between the first resin layer 44a and the blade 89) is an acute angle.
  • the blade 89 can be pressed against the first resin layer 44a with an appropriate pressure, so that the conductive ink 88 on the outer surface of the first resin layer 44a is removed from the first electrode groove 46a and the first connection groove 50a. And can be efficiently introduced into the first wiring groove 52a.
  • the contact angle and pressure of the blade 89 are set so that the conductive ink 88 can be efficiently introduced (filled) into the concave first groove 56a. Therefore, as shown in FIG.
  • the conductive ink 88 also remains on the first resin layer 44a other than the groove 56a.
  • a preferable example of the conductive ink 88 is a metal nano ink.
  • the metal nano ink is an ink in which metal nanoparticles are dispersed in water or a solvent, and has a feature that it can be sintered at a low temperature.
  • silver nano ink is particularly preferable from the viewpoint of resistance value and stability over time.
  • the roll-to-roll filling method has been described, but it is of course possible to carry out the above filling method in a single wafer manner.
  • the first groove 56a may be filled with the conductive ink 88 by screen printing.
  • the conductive ink 88 placed on the screen 90 is extruded using a squeegee 92 and filled into the first terminal grooves 54a of the first resin layer 44a.
  • the method of filling the first terminal groove 54a with the conductive ink 88 is not limited to screen printing, and ink jet may be used. By using such screen printing or inkjet, the application amount (filling amount) of the conductive ink 88 to the first groove 56a can be adjusted efficiently. Even when screen printing or inkjet is used, the conductive ink 88 remains on the first resin layer 44a other than the first groove 56a as shown in FIG. 7B.
  • the first conductive material 48a in which a plurality of types of materials are stacked may be formed by filling the first groove 56a with different types of conductive ink 88.
  • the conductive ink 88 is configured as an ink or paste containing the constituent material of the first conductive material 48a described above.
  • the conductive ink 88 remaining on the outer surface of the first resin layer 44a is removed by the blade 94 (step S3: removal step).
  • the blade 94 is slid while being in contact with the outer surface of the first resin layer 44a.
  • the blade 94 may contain a cleaning liquid that softens the remaining conductive ink 88.
  • the cleaning liquid include a mixture of isopropyl alcohol and acetone.
  • the conductive ink 88 can be efficiently softened by mixing a large amount of isopropyl alcohol at a ratio of 9: 1 or 8: 2.
  • the first groove 56 a of the first resin layer 44 a is not completely filled with the conductive ink 88.
  • the surface of the first conductive material 48a filled in the first groove 56a is located closer to the groove bottom surface than the outer surface of the first resin layer 44a, and a space S is formed on the opening side of the first groove 56a.
  • one or more rollers are pressed against the outer surface of the first resin layer 44a while being transported by the roll-to-roll, and the first substrate 34A remains on the outer surface of the first resin layer 44a.
  • the conductive ink 88 may be removed.
  • the roller may contain the cleaning liquid described above.
  • the conductive ink 88 filled in the first groove 56a is heated and baked (cured) by the heating device 102 (step S4: first heating step). Specifically, the heating device 102 irradiates heat, hot air, infrared rays, or far infrared rays toward the conductive ink 88.
  • the heating condition is set according to the material of the conductive ink 88 and the like.
  • the first connection portion 58A is formed by patterning so as to be in contact with the conductive ink 88 filled in the first terminal groove 54a and to cover a part of the outer surface of the first resin layer 44a (step S5: connection). Part forming step).
  • an ink-like conductive member 96 as the first connection portion 58A is applied to the space S formed on the opening side of the first terminal groove 54a by screen printing (see FIG. 9A). That is, the conductive member 96 placed on the screen 98 is pushed out to the first resin layer 44a side using the squeegee 100, and the conductive member 96 is patterned and formed in a region that is slightly larger than the first terminal groove 54a. At this time, the conductive members 96 are provided separately from each other with respect to the plurality of first terminal portions 42A.
  • the conductive member 96 is configured as an ink or paste containing the constituent material of the first connection portion 58A described above. Note that the method of applying the ink-like conductive member 96 is not limited to screen printing, and ink jet may be used. By using screen printing and inkjet, the conductive member 96 can be easily patterned.
  • the conductive member 96 provided on the first terminal portion 42A is heated and baked (cured) by the heating device 102 (step S6: second heating step).
  • the heating device 102 irradiates heat, hot air, infrared rays, or far infrared rays toward the conductive member 96.
  • the heating condition is set depending on the material of the conductive member 96 and the like.
  • the heating temperature in the second heating step is preferably higher than the heating temperature in the first heating step. By increasing the heating temperature in the second heating step, the adhesion between the conductive ink 88 and the conductive member 96 can be enhanced.
  • the first heating step and the second heating step can be made common. That is, step S4 (first heating step) is omitted, and the conductive ink 88 filled in the first groove 56a and the conductive member 96 provided in the first terminal portion 42A are replaced with step S6 (second heating step). And may be simultaneously sintered (cured).
  • the first detection electrode 36A, the first connection part 38A, the first peripheral wiring 40A, the first terminal part 42A, and the first connection part 58A are obtained.
  • the first connection portion 58A covers a part of the outer surface of the first resin layer 44a in contact with the first conductive material 48a filled in the first terminal groove 54a.
  • the anisotropic conductive film 60 and the flexible circuit board 28 are disposed so as to straddle the plurality of first connection portions 58A, and are pressed and heated to be bonded, thereby corresponding to the plurality of first connection portions 58A.
  • the terminal 62 of the flexible circuit board 28 is electrically connected (step S7: crimping process). Thereby, the touch panel 10 which concerns on this embodiment is manufactured.
  • the electrode part forming process for forming the first detection electrode 36A, the first connection part 38A, and the first peripheral wiring 40A, and the terminal part forming process for forming the first terminal part 42A are:
  • the groove forming step, the filling step, and the removing step are performed. That is, the electrode portion forming step and the terminal portion forming step are the same step and are performed simultaneously.
  • the electrode portion forming step and the terminal portion forming step may be separate steps. That is, after the first detection electrode 36A, the first connection portion 38A, and the first peripheral wiring 40A are formed by the groove forming step, the filling step, and the removing step, the first terminal portion 42A is formed by the groove forming step, the filling step, And you may produce by a removal process.
  • the conductive first connection portion 58A that is in contact with the first conductive material 48a of the first terminal portion 42A and covers a part of the outer surface of the first resin layer 44a has a plurality of first portions.
  • the terminal portions 42A are provided separately from each other. Therefore, the first conductive material 48a and the anisotropic conductive film 60 can be electrically connected via the first connection portion 58A. Accordingly, even when the first conductive material 48a does not completely fill the concave first terminal groove 54a formed in the first resin layer 44a, the first connection portion 58A and the anisotropic conductive film 60 are removed. Accordingly, the first conductive material 48a of the first terminal portion 42A and the terminal 62 of the flexible circuit board 28 can be reliably electrically connected.
  • the first groove 56a is formed in the groove forming step and the conductive ink 88 as the first conductive material 48a is filled in the first groove 56a in the filling step, the first detection electrode 36A, the first connection portion 38A, the first peripheral wiring 40A, and the first terminal portion 42A can be efficiently formed.
  • the average value of the height dimension from the outer surface of the first resin layer 44a in the first connection portion 58A is 0.05 ⁇ m to 5.0 ⁇ m, and a more preferable range is 0.1 ⁇ m to 2.0 ⁇ m.
  • the contact resistance between the first connection portion 58A and the anisotropic conductive film 60 can be preferably improved, and the portion of the outer surface of the first resin layer 44a that is not covered by the first connection portion 58A.
  • the anisotropic conductive film 60 can be reliably adhered.
  • the anisotropic conductive film 60 can be easily repaired with respect to the first connection portion 58A.
  • connection portion forming step the ink-like conductive member 96 is patterned and formed as the first connection portion 58A using screen printing or inkjet, so that the first connection portion 58A can be obtained easily and efficiently. it can.
  • the space S not filled with the first conductive material 48a in the first terminal groove 54a increases as the groove width of the first terminal groove 54a increases, the first conductive material 48a of the first connection portion 58A is covered.
  • the surface of the part is easily recessed toward the groove bottom side with respect to the part covering the outer surface of the first resin layer 44a (see FIG. 10).
  • the contact resistance of 58 A of 1st connection parts and the anisotropic conductive film 60 may deteriorate.
  • the groove width of the first terminal groove 54a becomes narrower, the contact resistance between the first conductive material 48a filled in the first terminal groove 54a and the first connection portion 58A deteriorates.
  • the first conductive film 32A may include the first terminal portion 120A according to the modification shown in FIGS. 11A and 11B.
  • the first terminal portion 120A has a mesh pattern obtained by arranging a plurality of concave first terminal grooves 122a in a mesh shape. In other words, this mesh pattern is configured by combining many cells having the same rectangular shape.
  • the groove width of the first terminal groove 122a is preferably 2 ⁇ m to 30 ⁇ m, and more preferably 3 ⁇ m to 15 ⁇ m.
  • the pitch of the first terminal grooves 122a adjacent in parallel is preferably 15 ⁇ m to 100 ⁇ m, and more preferably 20 ⁇ m to 50 ⁇ m.
  • the cell shape of the mesh pattern can be a polygonal shape such as a triangle, a quadrangle, a pentagon, or a hexagon. Among these, rhombus, square and regular hexagon are preferable. Note that the mesh pattern may be configured by combining a number of cells having different shapes.
  • the second conductive film 32B may have a second terminal portion 120B.
  • the second terminal portion 120B has a mesh pattern obtained by arranging a plurality of concave second terminal grooves 122b in a mesh shape. In other words, this mesh pattern is configured by combining many cells having the same rectangular shape.
  • the second terminal groove 122b is configured similarly to the first terminal groove 122a.
  • the first terminal portion 120A includes the plurality of first terminal grooves 122a, and the first connection portion 58A extends across at least two or more first terminal grooves 122a. Both the contact resistance between the first conductive material 48a of the first terminal portion 120A and the first connection portion 58A and the contact resistance between the first connection portion 58A and the anisotropic conductive film 60 can be improved.
  • the plurality of first terminal grooves 122a are arranged in a mesh shape, the number of first terminal grooves 122a constituting the first terminal portion 120A can be increased efficiently. Therefore, the contact resistance between the first conductive material 48a of the first terminal portion 120A and the first connection portion 58A can be further improved.
  • Example 1 In the groove forming step, the first groove 56a (first electrode groove 46a, first connection) having a depth of 3 ⁇ m is formed in the first resin layer 44a made of ultraviolet-curing acrylic resin provided on the first substrate 34A made of PET having a thickness of 100 ⁇ m. A groove 50a, a first wiring groove 52a, and a first terminal groove 54a) were formed. Further, in the filling step, the first groove 56a is filled with water-based silver nano ink as the conductive ink 88, and in the first heating step, the first detection electrode 36A, A first conductive film 32A having a first connection part 38A, a first peripheral wiring 40A, and a first terminal part 42A was obtained (see FIG. 2). As shown in FIG.
  • the first terminal portion 42 ⁇ / b> A has a solid pattern made up of first terminal grooves 54 a having a square shape with a side of 300 ⁇ m in plan view.
  • the interval between the adjacent first terminal grooves 54a was set to 200 ⁇ m.
  • each first terminal portion 42A was patterned on each first terminal portion 42A by screen printing so that the average value of the height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A was 1 ⁇ m. .
  • Each first connection portion 58A was a square solid pattern having a side of 330 ⁇ m.
  • REXALPHA RA FA FS 015 manufactured by Toyo Ink Manufacturing Co., Ltd. was used, and as the screen 98, a stainless mesh screen (number of meshes 500, thickness 25 ⁇ m) was used.
  • the touch panel according to Example 1 was manufactured by heating at 140 ° C. for 1 hour to form a dry film.
  • Example 2 In the connecting portion forming step, the squeegee speed is lowered using a stainless steel mesh screen (mesh number 730, thickness 15 ⁇ m), and the average value of the height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A is determined.
  • a touch panel according to Example 2 was produced in the same manner as in Example 1 except that the thickness was 0.05 ⁇ m.
  • Example 3 In the connecting portion forming step, the squeegee speed is lowered using a stainless steel mesh screen (mesh number 730, thickness 15 ⁇ m), and the average value of the height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A is determined.
  • a touch panel according to Example 3 was produced in the same manner as Example 1 except that the thickness was 0.1 ⁇ m.
  • Example 4 In the connecting portion forming step, the squeegee speed was reduced, and the embodiment was performed in the same manner as in the first embodiment, except that the average value of the height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A was 2 ⁇ m. A touch panel according to No. 4 was produced.
  • Example 5 In the connecting portion forming step, a stainless mesh screen (number of meshes 400, thickness 30 ⁇ m) is used, and the average height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A is set to 5 ⁇ m. Produced a touch panel according to Example 5 in the same manner as Example 1.
  • the touch panel according to the sixth embodiment is the same as the first embodiment except that the first terminal groove 54a having a mesh pattern formed by arranging the first terminal grooves 54a having a groove width of 10 ⁇ m in a mesh shape with a pitch of 30 ⁇ m. Was made.
  • Example 7 In the connecting portion forming step, the ITO ink is patterned on the first terminal portion 42A by an ink jet device, and in the second heating step, heated and fired at 130 ° C. for one hour, and from the outer surface of the first resin layer 44a in the first connecting portion 58A.
  • a touch panel according to Example 7 was fabricated in the same manner as in Example 1 except that the average value of the height dimension was 1.5 ⁇ m.
  • DMP2831 manufactured by DIMATIX was used as the ink jet device, and an ink prepared by adjusting the transparent conductive ITO ink X-100 manufactured by Sumitomo Metal Mining Co., Ltd. to a viscosity of 15 mPa ⁇ s was used as the ITO ink.
  • Example 2 A touch panel according to a comparative example was produced in the same manner as in Example 1 except that the first connection portion 58A was not formed.
  • the ten first connection portions 58A and the flexible circuit board 28 are pressure-bonded by the anisotropic conductive film 60, and the first conductive material 48a of the ten first terminal portions 42A and the corresponding terminal 62 of the flexible circuit board 28 are provided. A resistance value between the first terminal portion 42A and the flexible circuit board 28 was evaluated.
  • the case where the measured resistance values of all the first terminal portions 42A are conductive at less than 80% of the reference resistance value is “AA”, and the measured resistance values of all the first terminal portions 42A are the reference resistance.
  • “A” indicates that the current is conducted at 80% or more and less than 90% of the value, and “A” indicates that the measured resistance value of all the first terminal portions 42A is 90% or more and less than 100% of the reference resistance value.
  • B and“ C ”when at least one first terminal portion 42A was insulated. Note that the lower the measured resistance value of the first terminal portion 42A, the higher the contact resistance between the first conductive material 48a and the first connection portion 58A and the contact resistance between the first connection portion 58A and the anisotropic conductive film 60. Means low.
  • Table 1 shows the results of Examples 1 to 7 and Comparative Example. As shown in Table 1, in Examples 1 to 7, continuity was confirmed in all the first terminal portions 42A. In particular, Examples 6 and 7 obtained AA evaluation, Examples 1, 3 and 4 obtained A evaluation, and Examples 2 and 5 obtained B evaluation. In addition, the film thickness of the connection part in Table 1 corresponds to “the average value of the height dimension from the outer surface of the first resin layer 44a in the first connection part 58A”, and the flexible circuit board 28 in the cross section SEM. The measurement was performed in a state in which is pressed.
  • the first terminal portion 42A is preferably a mesh pattern. Further, from Examples 1 to 5, the average value of the height dimension from the outer surface of the first resin layer 44a in the first connecting portion 58A (the thickness of the connecting portion) is preferably 0.1 ⁇ m to 2 ⁇ m. I understand that.
  • the touch panel 10 and the manufacturing method thereof according to the present embodiment are not limited to the configuration and method described above.
  • the first conductive film 32A, the first detection electrode 36A, the first connection portion 38A, and the first peripheral wiring 40A for example, deposit a metal on the first substrate 34A and form a patterned resist on the metal.
  • the metal fine line pattern may be formed by etching the metal with an etchant, or the metal fine line may be formed by applying metal ink on the first substrate 34A using screen printing. You may comprise by forming a pattern. The same applies to the second conductive film 32B.
  • a first dummy pattern may be provided between adjacent first detection electrodes 36A in order to make it difficult to visually recognize the first detection electrodes 36A.
  • the first detection electrode 36A and the first dummy pattern are insulated.
  • the first dummy pattern can be formed at the same time as the first detection electrode 36A by the groove forming process, the filling process, and the removing process.
  • the first dummy pattern is formed by, for example, depositing metal on the first substrate 34A, forming a patterned resist on the metal, and etching the metal with an etching solution.
  • the line width and pitch of the first dummy pattern are preferably the same as those of the first detection electrode 36A. The same applies to the second conductive film 32B.
  • the touch panel and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

端子部において樹脂層に形成された溝が導電材料によって完全に埋められていない場合であっても、端子部とフレキシブル回路基板とを確実に電気的に接続することができるタッチパネル及びその製造方法を提供する。タッチパネル10は、複数の第1検出電極36Aに対応して配置された複数の第1端子部42Aを備える。第1端子部42Aは、第1基板34A上に設けられ且つ第1端子溝54aが形成された第1樹脂層44aと、第1端子溝54aに充填された第1導電材料48aとで構成され、第1端子部42Aの第1導電材料48aに接触し、かつ、第1樹脂層44aの外表面の一部を覆う導電性の第1接続部58Aが複数の第1端子部42Aに対して個別に互いに離間した状態で設けられている。

Description

タッチパネル及びその製造方法
 本発明は、複数の検出電極に対応して配置された端子部を備えたタッチパネル及びその製造方法に関する。
 多機能携帯電話(スマートフォン)やデジタルカメラ等の表示装置として、指を使って触れることによって様々な操作を行い得る、いわゆるタッチパネルが広汎に採用されるに至っている。このタッチパネルにおいて、基板に形成された凹状の溝に導電材料を充填することにより検出電極を構成する技術的思想が知られている(例えば、特許文献1の図5、図6、段落<0076>~段落<0078>等を参照)。
特表2011-513846号公報
 ところで、タッチパネルにおいて、上述した特許文献1の従来技術に係る検出電極と同様に、基板上に設けた樹脂層に凹状の溝を形成し、その溝に導電材料を充填することにより端子部を構成することが考えられる。端子部とは、フレキシブル回路基板(FPC:Flexible printed circuits)と電気的に接続するための電極端子部のことを示す。
 しかしながら、このようにして端子部を構成する場合、溝が導電材料によって完全に埋められておらず、溝の開口部側に空間が形成されることがある。そうすると、異方性導電フィルムを介して端子部とフレキシブル回路基板とを接着した際に、異方性導電フィルムが溝の開口部側の空間に入り込まず、異方性導電フィルムと導電材料とを確実に接触させることができないことがある。その結果、端子部とフレキシブル回路基板とを電気的に接続させることができないおそれがある。
 本発明は、このような課題を考慮してなされたものであり、端子部において樹脂層に形成された溝が導電材料によって完全に埋められていない場合であっても、端子部の導電材料とフレキシブル回路基板とを確実に電気的に接続することができるタッチパネル及びその製造方法を提供することを目的とする。
 本発明に係るタッチパネルは、基板と、基板に設けられた複数の検出電極と、検出電極に対応して配置された端子部と、検出電極とそれぞれ対応する端子部とを電気的に接続する周辺配線と、を備えるタッチパネルであって、端子部は、基板上に設けられて溝を有する樹脂層と、溝に充填された導電材料とで構成され、複数の端子部は、相互に離間した導電性の接続部をそれぞれ有し、導電性の接続部は、端子部の導電材料に接触し、かつ、樹脂層の外表面の一部を覆っている、ことを特徴とする。
 本発明に係るタッチパネルによれば、導電材料と異方性導電フィルムとを導電性の接続部を介して確実に電気的に接続することができる。これにより、樹脂層に形成された溝が導電材料によって完全に埋められていない場合であっても、接続部及び異方性導電フィルムを介して端子部の導電材料とフレキシブル回路基板とを確実に電気的に接続することができる。
 ところで、端子部の溝の溝幅が広くなるほどその溝の開口部側の空間(導電材料によって埋められていない空間)が大きくなるため、接続部のうち導電材料を覆う部位の表面が樹脂層の外表面を覆う部位の表面に対して溝底面側に窪み易くなる。そして、接続部の表面の一部に窪み部が形成されると、接続部と異方性導電フィルムとのコンタクト抵抗が悪化する(高くなる)ことがある。一方、端子部を構成する溝の溝幅が狭くなるほど接触面積が低減するために、その溝に充填される導電材料と接続部とのコンタクト抵抗が悪化する。
 そのため、端子部は、複数の溝を含み、接続部は、少なくとも2以上の溝に跨って延在していることが好ましい。このような構成によれば、接触面積が増え、端子部を構成する導電材料と接続部とのコンタクト抵抗と、接続部と異方性導電フィルムとのコンタクト抵抗との両方を改善させる(低くさせる)ことができる。
 また、端子部において、複数の溝は、メッシュ状に配置されていることが好ましい。このような構成によれば、端子部を構成する溝の数を効率的に増やすことができる。そのため、端子部の導電材料と接続部とのコンタクト抵抗をより一層改善させることができる。
 さらに、検出電極と周辺配線とが、溝を有する樹脂層と、溝に充填された導電材料とで構成されていてもよい。このような構成によれば、検出電極、周辺配線、及び端子部を同じ工程で同時に形成することができ、工程を簡略化できる。
 さらにまた、接続部における樹脂層の外表面からの高さ寸法の平均値が0.1μm~2.0μmであることが好ましい。このような構成によれば、接続部と異方性導電フィルムとのコンタクト抵抗を好適に改善することができ、かつ、樹脂層の外表面のうち接続部で覆われていない部位に対しても異方性導電フィルムを確実に接着させることができる。
 また、接続部は、導電性酸化物粒子及びバインダーを含有していることが好ましい。このような構成によれば、接続部に対して異方性導電フィルムを容易にリペアすることができる。ここで、リペアとは、接続部に接着した異方性導電フィルムを取り外し、再度接続部に接着することをいう。
 さらに、異方性導電フィルムを介して接続部とフレキシブル回路基板とが電気的に接続されていることが好ましい。このような構成によれば、フレキシブル回路基板と端子部とを確実に電気的に接続することができる。
 本発明に係るタッチパネルの製造方法は、基板と、基板に設けられた複数の検出電極と、検出電極に対応して配置された端子部と、検出電極とそれぞれ対応する端子部とを電気的に接続する周辺配線と、複数の前記端子部のそれぞれに設けられ、かつ、相互に離間している接続部と、を備えるタッチパネルの製造方法であって、検出電極と周辺配線とを形成する電極部形成工程と、端子部を形成する端子部形成工程と、接続部を形成する接続部形成工程と、を行い、端子部形成工程では、基板の一面の少なくとも一部に樹脂層を形成し、樹脂層に突出部を含む型を押し付けて溝を形成する溝形成工程と、溝の少なくとも一部にインク状の導電材料を充填する充填工程と、樹脂層の外表面に残留したインク状の導電材料を除去する除去工程と、を行い、接続部形成工程では、端子部の導電材料に接触し、かつ、樹脂層の外表面の一部を覆うように導電性部材を接続部としてパターニング形成する、ことを特徴とする。
 本発明に係るタッチパネルの製造方法によれば、上述した本発明に係るタッチパネルと同様の効果を奏する。
 また、接続部形成工程において、スクリーン印刷又はインクジェットを用いてインク状の導電性部材を接続部としてパターニング形成していることが好ましい。このような方法によれば、スクリーン印刷又はインクジェットにより接続部を容易且つ効率的に得ることができる。
 さらに、溝形成工程では、樹脂層に型を押し付けて端子部に複数の溝を形成し、接続部形成工程では、少なくとも2以上の溝に跨るように接続部を形成していることが好ましい。このような方法によれば、端子部の導電材料と接続部とのコンタクト抵抗と、接続部と異方性導電フィルムとのコンタクト抵抗との両方を改善させることができる。
 さらにまた、溝形成工程では、樹脂層に型を押し付けて端子部に複数の溝をメッシュ状に形成していることが好ましい。このような方法によれば、端子部の樹脂層にメッシュ状の溝を容易に形成することができ、さらに端子部の導電材料と接続部とのコンタクト抵抗をより一層改善させることができる。
 また、電極部形成工程は、端子部形成工程と同工程であり、且つ同時に行われていることが好ましい。このような方法によれば、検出電極、周辺配線、及び端子部を効率的に形成することができる。
 さらに、接続部形成工程後に、異方性導電フィルムを用いて、フレキシブル回路基板と接続部とを圧着して電気的に接続させる圧着工程を行うことが好ましい。このような方法によれば、フレキシブル回路基板と端子部とを確実に電気的に接続することができる。
 本発明によれば、樹脂層に形成された溝に導電材料を充填することにより形成された端子部を備えるタッチパネルにおいて、端子部とフレキシブル回路基板との電気的接続を確実に行うことができる。特に、端子部において樹脂層に形成された溝が導電材料で完全に埋められていない場合であっても、接続部及び異方性導電フィルムを介して端子部の導電材料とフレキシブル回路基板とを確実に接続することができる。
本発明の一実施形態に係るタッチパネルの断面図である。 図1に示すタッチパネルを構成するセンサ本体の平面図である。 図3Aは図2のIIIA-IIIA線に沿った断面図であり、図3Bは図2のIIIB-IIIB線に沿った断面図であり、図3Cは図2のIIIC-IIIC線に沿った断面図である。 図4Aは端子部とフレキシブル回路基板との接続を示す一部省略平面説明図であり、図4Bは図4AのIVB-IVB線に沿った一部省略断面図である。 本発明の一実施形態に係るタッチパネルの製造方法を説明するフローチャートである。 図6Aは溝形成工程の断面説明図であり、図6Bは溝形成工程で用いられるフィルム型の原型の断面説明図であり、図6Cは原型によりフィルム型を作製している状態を示す断面図である。 図7Aは充填工程の第1の断面説明図であり、図7Bは充填工程の第2の断面説明図である。 図8Aは除去工程の断面説明図であり、図8Bは第1加熱工程の断面説明図である。 図9Aは接続部形成工程の断面説明図であり、図9Bは第2加熱工程の断面説明図である。 接続部に形成された窪み部の断面説明図である。 図11Aは変形例に係る端子部の模式的平面図であり、図11Bは図11Aに示す端子部にフレキシブル回路基板を接続した状態の断面図である。 実施例を説明するための端子部の平面説明図である。 樹脂層の外表面からの高さ寸法の平均値を求める断面図である。
 以下、本発明に係るタッチパネル及びその製造方法について好適な実施形態を挙げ、添付の図面を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
 図1に示すように、タッチパネル10は、静電容量方式のタッチパネルとして構成されており、任意の可視情報を表示する表示装置12と、タッチパネル10のタッチ面14に対して接触又は近接する手指等の指示体16の位置を検出するタッチセンサ18と、タッチセンサ18を覆うカバー部材20と、筐体22とを備える。
 表示装置12は、特に限定されるものではなく種々の表示方式を採用し得る。その好適な例としては、液晶ディスプレイ、プラズマディスプレイ、有機EL(Electro-Luminescence)ディスプレイ、無機ELディスプレイ、電子ペーパー等が挙げられる。
 タッチセンサ18は、表示装置12の一面に接着層24を介して接着されたセンサ本体26と、フレキシブル回路基板28を介してセンサ本体26に電気的に接続された制御回路部(IC回路等)30とを有する。センサ本体26の詳細な構成については追って説明する。
 制御回路部30は、指示体16がタッチ面14に接触又は近接した際に、指示体16とセンサ本体26との間の静電容量の変化を捉えて、その接触位置又は近接位置を検出するものである。制御回路部30は、図1の例では、筐体22の内側面に固定されているが、筐体22の任意の位置に固定可能である。
 カバー部材20は、センサ本体26の一面に積層されており、タッチパネル10のタッチ面14を構成する。カバー部材20は、酸化珪素等を用いてコーティングした状態でセンサ本体26の一面に密着させてもよいし、擦れ等による損傷を防止するためセンサ本体26の一面にOCA(Optical Clear Adhesive)シート等の透明な粘着剤を介して貼着してもよい。カバー部材20の構成材料は、例えば、ガラス、強化ガラス、サファイア又はポリカーボネート(PC)やポリメチルメテクリレート(PMMA)等の樹脂等を好適に用いることができる。筐体22は、表示装置12、タッチセンサ18、及びカバー部材20を収容する。
 図2~図4Bに示すように、センサ本体26は、第1導電性フィルム32Aと第2導電性フィルム32Bとを積層して構成されている。なお、第1導電性フィルム32Aと第2導電性フィルム32Bとは、図示されていないが、OCAシート等の透明な粘着剤を介して積層されている。第1導電性フィルム32Aは、第1基板34Aと、第1基板34Aに設けられた複数の第1検出電極36Aと、各第1検出電極36Aに第1結線部38Aを介して電気的に接続された複数の第1周辺配線40Aと、各第1周辺配線40Aに電気的に接続された複数の第1端子部42Aとを有している。
 第1基板34Aは、絶縁性及び透明性を有した基板34である。第1基板34Aに対する波長400nm~700nmの可視光の透過率は、任意に設定可能であるが、80%以上が好ましく、90%以上がより好ましい。第1基板34Aの厚みは、25μm~250μmが好ましい。
 このような第1基板34Aの構成材料は、例えば、ガラス又は樹脂等を好適に用いることができる。この種の樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリエチレンビニルアセテート(EVA)等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、ポリメチルメテクリレート(PMMA)等のアクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリエーテルスルホン(PES)等が挙げられる。
 複数の第1検出電極36Aは、第1方向(X方向、第1基板34Aの短手方向)に延在した状態で第2方向(Y方向、第1基板34Aの長手方向)に互いに離間して並設されている。第1検出電極36Aは、第1基板34A上に設けられて凹状の第1電極溝46aを有する第1樹脂層44aと、凹状の第1電極溝46aに充填された第1導電材料48aとで構成されている(図3A参照)。
 本実施形態では、第1樹脂層44aは、第1基板34Aの一面の全面に積層されているが、第1基板34A上に第1樹脂層44aが積層されていない部分が存在していても構わない。第1樹脂層44aは、絶縁性及び透明性を有しており、紫外線硬化性樹脂や熱硬化性樹脂等を好適に用いることができる。第1樹脂層44aの構成材料としては、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂等が挙げられ、特にアクリル樹脂、ウレタン樹脂が好ましい。
 第1検出電極36Aは、複数の第1電極溝46aを平面視でメッシュ状に配置することにより得られたメッシュパターンを有している。換言すれば、このメッシュパターンは、同一の方形状のセルが多数組み合わされて構成されている。第1電極溝46aの溝幅は、1μm~10μmが好ましく、平行して隣接する第1電極溝46aのピッチは、50μm~600μmが好ましい。メッシュのセル形状としては、三角形、四角形、五角形、六角形等の多角形形状をとることができる。その中でも、菱形、正方形および正六角形が好ましい。なお、メッシュパターンは、異なる形状のセルが多数組み合わされて構成されていてもよいし、ランダムなパターンであってもよい。
 第1電極溝46aは、横断面が方形状に形成されている。第1電極溝46aの溝深さは、1μm~10μmが好ましく、1μm~5μmがより好ましい。第1樹脂層44aの厚みを比較的薄くすることができ、かつ、第1端子溝54aに充填された第1導電材料48aの断線を効果的に抑制できるからである。後述する第1結線溝50a、第1配線溝52a、及び第1端子溝54aのそれぞれの溝深さについても同様である。なお、第1電極溝46aの横断面形状は、任意の形状に設定可能である。
 第1導電材料48aは、銅、銀、アルミニウム、ニッケル、クロムおよびカーボンブラックからなる群より選択される少なくとも1種の材料を含む。また、第1導電材料48aは、複数種類の材料を積層して構成されていてもよい。
 第1結線部38Aは、第1検出電極36Aの片方の端部に交互に設けられており、凹状の第1結線溝50aを有する第1樹脂層44aと、凹状の第1結線溝50aに充填された第1導電材料48aとで構成されている。第1結線溝50aは、第1電極溝46aに連通しており、平面視で矩形状に形成されてX方向に延在している。
 第1周辺配線40Aは、複数の第1検出電極36Aとそれぞれ対応する第1端子部42Aとを電気的に接続するものであって、凹状の第1配線溝52aを有する第1樹脂層44aと、凹状の第1配線溝52aに充填された第1導電材料48aとで構成されている(図3B参照)。第1配線溝52aは、第1結線溝50aに連通している。第1配線溝52aの溝幅は、第1電極溝46aの溝幅よりも大きく形成されていることが好ましいが、同じであってもよい。
 複数の第1端子部42Aは、第1基板34AのY方向の一端部においてX方向に互いに離間した状態(電気的に絶縁した状態)で配設されている。隣接する第1端子部42AのX方向の離間間隔は、電気的絶縁性及び小型化の観点より、50μm~500μmが好ましく、100μm~300μmがより好ましい。
 第1端子部42Aは、凹状の第1端子溝54aを有する第1樹脂層44aと、凹状の第1端子溝54aに充填された第1導電材料48aとで構成されている(図4B参照)。第1端子溝54aは、第1配線溝52aに連通している。第1端子部42Aは、第1端子溝54aを平面視で矩形状に形成することにより得られるベタパターンを有しており、Y方向に沿って延在している。
 第1端子溝54aの溝幅(X方向に沿った寸法)は、第1配線溝52aの溝幅よりも大きく形成されている。具体的には、第1端子溝54aの溝幅は、後述する第1接続部58Aとのコンタクト抵抗及び小型化の観点から、50μm~500μmが好ましく、200μm~400μmがより好ましい。
 第1端子溝54aは、第1導電材料48aによって完全に埋められていない。すなわち、第1端子溝54aに充填された第1導電材料48aの表面は、第1樹脂層44aの外表面よりも溝底面側に位置している。
 このような第1導電性フィルム32Aでは、対応する第1電極溝46a、第1結線溝50a、第1配線溝52a、及び第1端子溝54aが連通して一続きの凹状の第1溝56aが複数形成され、これら第1溝56aに第1導電材料48aが充填されることにより、複数の第1検出電極36A、第1結線部38A、第1配線部、及び第1端子部42Aが構成される。
 また、図4A及び図4Bに示すように、本実施形態のタッチパネル10は、複数の第1端子部42Aに対して個別に互いに離間した状態で設けられた複数の導電性を有する第1接続部58Aを備える。第1接続部58Aは、第1端子溝54aに充填された第1導電材料48aに接触し、かつ、第1樹脂層44aの一部を覆っている。
 複数の第1接続部58Aは、異方性導電フィルム60(ACF:Anisotropic Conductive Film)を介してフレキシブル回路基板28の所定の端子62に電気的に接続している。異方性導電フィルム60は、絶縁性の熱硬化性樹脂に導電性粒子を分散して構成され、厚み方向に導電性を有して面方向に絶縁性を有する。異方性導電フィルム60は、2以上の第1接続部58Aを覆うように配設されるのが好ましく、全ての第1接続部58Aを覆うように配設されるのがより好ましい。
 第1接続部58Aは、平面視で第1端子溝54aよりも一回り大きく矩形状に形成されている。第1接続部58Aの幅寸法は、第1端子溝54aの溝幅よりも2μm~100μm大きいのが好ましく、第1端子溝54aの溝幅よりも10μm~50μm大きいのがより好ましい。この場合、隣接する第1接続部58Aとの電気的絶縁性を確保しつつ第1端子溝54aの全面を第1接続部58Aによって効率的に覆うことができるからである。
 第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値は、0.05μm~5.0μmが好ましく、0.1μm~2.0μmがより好ましい。この場合、第1接続部58Aと異方性導電フィルム60とのコンタクト抵抗を好適に改善することができ、かつ、異方性導電フィルム60を第1樹脂層44aの外表面のうち第1接続部58Aに覆われていない部位に対しても接着させることができる。
 第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値(Have)とは、図13に示すように、第1接続部58Aの最大高さ部Pmaxの第1樹脂層44aの外表面からの高さHaと第1端子部42A上の第1接続部58Aの最小高さ部Pminの第1樹脂層44aの外表面からの高さHbとの中間高さとして定義できる。つまり、Have=(Ha+Hb)/2で定義される値である。
 第1接続部58Aを構成する導電性部材としては、酸化インジウムスズ(ITO:Indium Tin Oxido)等の導電性酸化物、銅、銀、アルミニウム、ニッケル、クロム、金等の金属、カーボンナノチューブ、金属ナノワイヤー等の導電性繊維、ポリアセチレン、ポリチオフェン等の高分子導電材料からなる群より選択される少なくとも1種の導電材料を含有していることが好ましい。
 第1接続部58Aは、導電性粒子及びバインダーを含有する導電性部材であることが好ましい。導電性粒子及びバインダーを含有する導電性部材はインク、ペーストの液体にすることができ、第1端子部42Aの凹状の第1端子溝54aに染み込みやすく、線幅の狭い凹状の第1端子溝54aに充填されている導電材料とのコンタクト抵抗を改善できる効果がある。導電性粒子には、銀粒子等の金属粒子又は導電性酸化物粒子を用いることができ、特に導電性酸化物粒子がより好ましい。導電性酸化物粒子の構成材料としては、ITO等が挙げられる。この場合、第1接続部58Aに対して異方性導電フィルム60をリペアし易くすくなり好適である。すなわち、異方性導電フィルム60を第1接続部58Aに接着した後で、一旦取り外し、再度第1接続部58Aに接着することができる。
 導電性粒子の平均粒径は、1nm~500nmが好ましく、5nm~100nmがより好ましく、10nm~80nmがさらに好ましい。
 バインダーは、導電性粒子同士を結合して導電部材の導電性と強度を高める機能を有するものである。バインダー成分としては、有機及び/又は無機バインダーを用いることが可能である。有機バインダー(樹脂バインダー)としては、熱可塑性樹脂、熱硬化性樹脂、常温硬化性樹脂、紫外線硬化性樹脂、及び電子線硬化性樹脂等の群から適宜選択することができる。例えば、熱可塑性樹脂は、その種類、構造によって種々のガラス転移点(Tg)をもつため、基材の耐熱性に合わせて適宜選択することが好ましい。熱可塑性樹脂としては、一般に知られた熱可塑性樹脂を用いることができるが、高いガラス転移点(Tg)を有するものが好ましい。
 また、熱可塑性樹脂としては、メタクリル樹脂等のアクリル樹脂、ポリエステル樹脂等が挙げられる。また、熱硬化性樹脂としては、例えばエポキシ樹脂、フッ素樹脂等を、常温硬化性樹脂としては、2液性のエポキシ樹脂や各種ウレタン樹脂等を、紫外線硬化性樹脂としては、各種オリゴマー、モノマー、光開始剤を含有する樹脂等を、電子線硬化性樹脂としては各種オリゴマー、モノマーを含有する樹脂等を挙げることができるが、これら樹脂に限定されるものではない。また、無機バインダーとしては、シリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾル等を主成分とするバインダーを挙げることができる。例えば、上記シリカゾルとしては、テトラアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいはテトラアルキルシリケートを既に4~5量体まで重合を進ませた市販のアルキルシリケート溶液を、さらに加水分解と脱水縮重合を進行させた重合物等を利用することができる。なお、脱水縮重合が進行し過ぎると、溶液粘度が上昇して最終的に固化してしまうので、脱水縮重合の度合いについては、塗布可能な上限粘度以下に調整する。ただし、脱水縮重合の度合いは、上記上限粘度以下のレベルであれば特に限定されないが、膜強度、耐候性等を考慮すると、重量平均分子量で500~50000程度が好ましい。そして、このアルキルシリケート加水分解重合物(シリカゾル)は、透明導電膜形成用塗布液の塗布・乾燥後の加熱時において脱水縮重合反応(架橋反応)がほぼ完結し、硬いシリケートバインダーマトリックス(酸化ケイ素を主成分とするバインダーマトリックス)になる。バインダーとして、有機-無機のハイブリッドバインダーを用いることもできる。例えば、前述のシリカゾルを一部有機官能基で修飾したバインダーや、シリコンカップリング剤等の各種カップリング剤を主成分とするバインダーが挙げられる。
 一方、第2導電性フィルム32Bは、第2基板34Bと、第2基板34Bに設けられた複数の第2検出電極36Bと、各第2検出電極36Bに第2結線部38Bを介して電気的に接続された複数の第2周辺配線40Bと、各第2周辺配線40Bに電気的に接続された複数の第2端子部42Bとを有している。
 第2基板34Bは、第1基板34Aと同様に構成される。複数の第2検出電極36Bは、Y方向に延在した状態でX方向に互いに離間して並設されている。第2検出電極36Bは、第2基板34B上に設けられて凹状の第2電極溝46bを有する第2樹脂層44bと、凹状の第2電極溝46bに充填された第2導電材料48bとで構成されている(図3A参照)。
 第2導電材料48bは、第1導電材料48aと同様のものを好適に用いることができる。第2結線部38Bは、第2検出電極36Bの一端部に設けられており、凹状の第2結線溝50bを有する第2樹脂層44bと、凹状の第2結線溝50bに充填された第2導電材料48bとで構成されている。
 第2周辺配線40Bは、第1周辺配線40Aと同様に構成されており、複数の第2検出電極36Bとそれぞれ対応する第2端子部42Bとを電気的に接続するものであって、凹状の第2配線溝52bを有する第2樹脂層44bと、凹状の第2配線溝52bに充填された第2導電材料48bとで構成されている。
 複数の第2端子部42Bは、第2基板34BのY方向の一端部においてX方向に互いに離間した状態(電気的に絶縁した状態)で配設されている。隣接する第2端子部42BのX方向の離間間隔は、電気的絶縁性及び小型化の観点より、50μm~500μmが好ましく、100μm~300μmがより好ましい。
 第2端子部42Bは、第1端子部42Aと同様に構成されており、凹状の第2端子溝54bを有する第2樹脂層44bと、凹状の第2端子溝54bに充填された第2導電材料48bとで構成されている。
 このような第2導電性フィルム32Bでは、対応する第2電極溝46b、第2結線溝50b、第2配線溝52b、及び第2端子溝54bが連通して一続きの凹状の第2溝56bが複数形成され、これら第2溝56bに第2導電材料48bが充填されることにより、複数の第2検出電極36B、第2結線部38B、第2配線部、及び第2端子部42Bが構成される。
 また、本実施形態のタッチパネル10は、複数の第2端子部42Bに対して個別に互いに離間した状態で設けられた複数の第2接続部58Bを備える。第2接続部58Bは、第2端子溝54bに充填された第2導電材料48bに接触し、かつ、第2樹脂層44bの一部を覆っている。複数の第2接続部58Bは、異方性導電フィルム60を介してフレキシブル回路基板28の所定の端子62に電気的に接続している。第2接続部58Bは、第1接続部58Aと同様に構成されているため、その詳細な説明は省略する。
 本実施形態に係るタッチパネル10は、基本的に以上のように構成されるものであり、次に、タッチパネル10の製造方法について説明する。なお、以下の説明では、主に第1導電性フィルム32A及び第1接続部58Aの製造方法について説明する。なお、第2導電性フィルム32B及び第2接続部58Bの製造方法は、第1導電性フィルム32A及び第1接続部58Aの製造方法と基本的に同様であるので、その説明は省略する。
 先ず、複数のローラ66、68によって搬送される第1基板34Aの一面に紫外線硬化性樹脂70を塗布する。そして、図6Aに示すように、第1基板34Aの一面に塗布された紫外線硬化性樹脂70に凸状の突出部を含むインプリント型72を押し付け(転写する)、かつ、紫外線照射装置74から紫外線硬化性樹脂70に紫外線を照射することにより、所定の凹状の溝が形成された第1樹脂層44aを得る(図5のステップS1:溝形成工程)。紫外線硬化性樹脂70の好ましい材料としては、紫外線硬化アクリル樹脂、紫外線硬化ウレタン樹脂等が挙げられる。
 ここで、インプリント型72は、ロール部76と、ロール部76の外周面に接着層を介して接着されるフィルム型78とを備える。フィルム型78は、次のように形成される。すなわち、先ず、ガラス基板80に塗布された感光性材料82に光を露光して感光性材料82に所定の凹状の溝パターン84を形成することにより原型(マスターモールド)86を得る(図6B参照)。感光性材料82は、表面粗さが十分に小さい材料が選択される。そして、原型86の溝パターンにニッケルを電鋳することにより溝パターンに対応した凸パターンを有したフィルム型78を得る(図6C参照)。
 フィルム型78は、第1樹脂層44aとの分離を円滑に行うために、表面処理を施すことが好ましい。表面処理としては、例えば、スパッタリング方式によって二酸化珪素等を薄膜コーティング(厚さ1200Å~1500Åでコーティング)することが挙げられる。
 この溝形成工程では、1つのインプリント型72により凹状の第1溝56a(複数の第1電極溝46a、第1結線溝50a、第1配線溝52a、及び第1端子溝54a)が第1樹脂層44aに同時に形成される。ただし、複数のインプリント型72を用いて凹状の第1溝56aを形成してもよい。
 溝形成工程では、第1基板34Aの一面に熱硬化性樹脂を塗布し、その熱硬化性樹脂にインプリント型72を押し付け、かつ、熱硬化性樹脂を加熱することにより、凹状の第1溝56aが形成された第1樹脂層44aを得てもよい。
 続いて、第1樹脂層44aに形成された凹状の第1溝56aに第1導電材料48aとしての導電性インク(インク状の導電材料)88を充填する(ステップS2:充填工程)。すなわち、図7Aに示すように、ロールツーロールにより第1基板34Aを搬送しながらインク供給部85より第1樹脂層44aの外表面に導電性インク88を塗布した後、スイープ部87を第1樹脂層44aの外表面に接触させることにより第1樹脂層44aの外表面にある導電性インク88を第1電極溝46a、第1結線溝50a、第1配線溝52a、及び第1端子溝54aに導入(充填)する。
 導電性インク88の供給量及び供給速度は、導電性インク88の粘性、第1電極溝46a、第1結線溝50a、第1配線溝52a、及び第1端子溝54aの溝幅及び溝深さ、並びに第1基板34Aの搬送速度等に応じて設定される。スイープ部87は、第1樹脂層44aの幅以上に形成されており、第1基板34Aの搬送方向とは反対側に傾斜して延在したブレード89を有している。すなわち、第1樹脂層44aに対するブレード89の接触角(第1樹脂層44aとブレード89のなす角度)は、鋭角になっている。これにより、ブレード89を第1樹脂層44aに対して適度な圧力で押し付けることができるので、第1樹脂層44aの外表面にある導電性インク88を第1電極溝46a、第1結線溝50a、及び第1配線溝52aに効率的に導入することできる。
 本工程においてはブレード89の接触角及び圧力は、導電性インク88を凹状の第1溝56aに効率的に導入(充填)できるように設定されているために、図7Aに示すように第1溝56a以外の第1樹脂層44a上にも導電性インク88が残留してしまう。導電性インク88の好ましいものとしては、金属ナノインクがある。金属ナノインクとは、金属のナノ粒子を水又は溶剤に分散したインクであり、低温で焼結可能という特徴を持つ。金属ナノインクの中でも特に銀ナノインクが抵抗値、経時安定性の観点から、好ましい。ここでは、ロールツーロールによる充填方法を説明したが、上記の充填方法を枚葉式で行うことも勿論可能である。
 また、この充填工程では、図7Bに示すように、スクリーン印刷により第1溝56aへの導電性インク88の充填が行われてもよい。具体的には、スクリーン90上に載せた導電性インク88をスキージ92を用いて押し出し、第1樹脂層44aの第1端子溝54aに充填する。この第1端子溝54aへの導電性インク88の充填方法は、スクリーン印刷に限定されるものではなく、インクジェットを用いてもよい。このようなスクリーン印刷やインクジェットを用いることにより、第1溝56aへの導電性インク88の塗布量(充填量)を効率的に調整することができる。スクリーン印刷やインクジェットを用いた場合でも、図7Bに示すように第1溝56a以外の第1樹脂層44a上に導電性インク88が残留してしまう。
 このような充填工程では、種類の異なる導電性インク88を第1溝56aに対して充填することにより複数種類の材料が積層された第1導電材料48aを形成するようにしてもよい。なお、導電性インク88は、上述した第1導電材料48aの構成材料を含むインク又はペーストとして構成されている。
 その後、図8Aに示すように、第1樹脂層44aの外表面に残留した導電性インク88をブレード94により除去する(ステップS3:除去工程)。具体的には、第1樹脂層44aの外表面にブレード94を接触させながらスライドさせる。ブレード94は、残留した導電性インク88を軟化させる洗浄液を含有していてもよい。洗浄液としては、イソプロピルアルコールとアセトンの混合物が挙げられる。この場合、9:1又は8:2の割合でイソプロピルアルコールを多く混合すると、導電性インク88を効率的に軟化させることができる。
 このとき、第1溝56aに充填されている導電性インク88の一部がブレード94によって剥ぎ取られる。すなわち、第1樹脂層44aの第1溝56aは、導電性インク88によって完全に埋められていない。換言すれば、第1溝56aに充填された第1導電材料48aの表面が第1樹脂層44aの外表面よりも溝底面側に位置し、第1溝56aの開口部側に空間Sが形成されている。
 なお、除去工程では、ロールツーロールにより第1基板34Aを搬送しながら、第1樹脂層44aの外表面に1つ又は複数のローラを押し付けることにより第1樹脂層44aの外表面に残留している導電性インク88を除去してもよい。この場合、ローラは、上述した洗浄液を含有していてもよい。
 除去工程の後に、図8Bに示すように、第1溝56aに充填された導電性インク88は、加熱装置102により加熱して焼成(硬化)させる(ステップS4:第1加熱工程)。具体的には、加熱装置102は、熱、熱風、赤外線、又は遠赤外線を導電性インク88に向けて照射する。加熱条件は、導電性インク88の材質等によって設定される。
 次いで、第1端子溝54aに充填された導電性インク88に接触し、かつ、第1樹脂層44aの外表面の一部を覆うように第1接続部58Aをパターニング形成する(ステップS5:接続部形成工程)。
 具体的には、第1端子溝54aの開口部側に形成された空間Sに第1接続部58Aとしてのインク状の導電性部材96をスクリーン印刷により塗布する(図9A参照)。すなわち、スクリーン98上に載せた導電性部材96をスキージ100を用いて第1樹脂層44a側に押し出して、第1端子溝54aよりも一回り大きい領域に導電性部材96をパターニング形成する。このとき、導電性部材96は、複数の第1端子部42Aに対して個別に互いに離間して設けられている。導電性部材96は、上述した第1接続部58Aの構成材料を含むインク又はペーストとして構成されている。なお、インク状の導電性部材96の塗布方法は、スクリーン印刷に限定されるものではなく、インクジェットを用いてもよい。スクリーン印刷及びインクジェットを用いることにより、簡易に導電性部材96のパターニング形成ができる。
 そして、図9Bに示すように、第1端子部42Aに設けられた導電性部材96を加熱装置102により加熱して焼成(硬化)させる(ステップS6:第2加熱工程)。具体的には、加熱装置102は、熱、熱風、赤外線、又は遠赤外線を導電性部材96に向けて照射する。加熱条件は、導電性部材96の材質等によって設定される。第2加熱工程における加熱温度は、第1加熱工程における加熱温度よりも高いことが好ましい。第2加熱工程における加熱温度の方を高くすることにより、導電性インク88と導電性部材96との密着性を強化することができる。なお、導電性インク88と導電性部材96との材質によっては、第1加熱工程と第2加熱工程とを共通化できる。つまり、ステップS4(第1加熱工程)を省略し、第1溝56aに充填された導電性インク88と第1端子部42Aに設けられた導電性部材96とをステップS6(第2加熱工程)にて、同時に焼結(硬化)させてもよい。
 これにより、第1検出電極36A、第1結線部38A、第1周辺配線40A、第1端子部42A、及び第1接続部58Aが得られる。この状態で、第1接続部58Aは、第1端子溝54aに充填された第1導電材料48aに接触した状態で第1樹脂層44aの外表面の一部を覆うこととなる。
 その後、複数の第1接続部58Aに跨るように異方性導電フィルム60及びフレキシブル回路基板28を配置して加圧及び加熱して圧着することにより、複数の第1接続部58Aとそれぞれ対応するフレキシブル回路基板28の端子62とを電気的に接続する(ステップS7:圧着工程)。これにより、本実施形態に係るタッチパネル10が製造される。
 上述したタッチパネル10の製造方法では、第1検出電極36A、第1結線部38A、及び第1周辺配線40Aを形成する電極部形成工程と、第1端子部42Aを形成する端子部形成工程とは、溝形成工程、充填工程および除去工程を行うことにより実施される。すなわち、電極部形成工程と端子部形成工程とが同工程であり、且つ同時に行われている。
 ただし、電極部形成工程と端子部形成工程とは別工程であってもよい。つまり、第1検出電極36A、第1結線部38A、及び第1周辺配線40Aを溝形成工程、充填工程、及び除去工程により作製した後で、第1端子部42Aを溝形成工程、充填工程、及び除去工程により作製してもよい。
 本実施形態によれば、第1端子部42Aの第1導電材料48aに接触し、かつ、第1樹脂層44aの外表面の一部を覆う導電性の第1接続部58Aが複数の第1端子部42Aに対して個別に互いに離間した状態で設けられている。そのため、第1導電材料48aと異方性導電フィルム60とを第1接続部58Aを介して電気的に接続することができる。これにより、第1導電材料48aが第1樹脂層44aに形成された凹状の第1端子溝54aを完全に埋めていない場合であっても、第1接続部58A及び異方性導電フィルム60を介して第1端子部42Aの第1導電材料48aとフレキシブル回路基板28の端子62とを確実に電気的に接続することができる。
 また、溝形成工程において第1溝56aを形成し、充填工程において第1溝56aに第1導電材料48aとしての導電性インク88を充填しているので、第1検出電極36A、第1結線部38A、第1周辺配線40A、及び第1端子部42Aを効率的に形成することができる。
 さらに、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値が0.05μm~5.0μmであり、より好ましい範囲は0.1μm~2.0μmである。この場合、第1接続部58Aと異方性導電フィルム60とのコンタクト抵抗を好適に改善でき、かつ、第1樹脂層44aの外表面のうち第1接続部58Aによって覆われていない部位に対しても異方性導電フィルム60を確実に接着させることができる。
 本実施形態によれば、第1接続部58Aが導電性酸化物粒子及びバインダーを含有しているので、第1接続部58Aに対して異方性導電フィルム60を容易にリペアすることができる。
 また、接続部形成工程において、スクリーン印刷又はインクジェットを用いてインク状の導電性部材96を第1接続部58Aとしてパターニング形成しているので、第1接続部58Aを容易且つ効率的に得ることができる。
 以上では、第1導電性フィルム32A及び第1接続部58Aに関する作用効果について説明したが、第2導電性フィルム32B及び第2接続部58Bについても同様の作用効果を奏する。そのため、第2導電性フィルム32B及び第2接続部58Bに関する作用効果の説明は省略する。以下の説明についても同様である。
 ところで、第1端子溝54aの溝幅が広くなるほど第1端子溝54aにおける第1導電材料48aによって埋められていない空間Sが大きくなるため、第1接続部58Aのうち第1導電材料48aを覆う部位の表面が第1樹脂層44aの外表面を覆う部位に対して溝底面側に窪み易くなる(図10参照)。そして、第1接続部58Aの表面に窪み部110が形成されると、第1接続部58Aと異方性導電フィルム60とのコンタクト抵抗が悪化することがある。一方、第1端子溝54aの溝幅が狭くなるほどその第1端子溝54aに充填される第1導電材料48aと第1接続部58Aとのコンタクト抵抗が悪化する。
 そこで、本実施形態に係るタッチパネル10において、第1導電性フィルム32Aは、図11A及び図11Bに示す変形例に係る第1端子部120Aを有していてもよい。この第1端子部120Aは、複数の凹状の第1端子溝122aをメッシュ状に配置することにより得られるメッシュパターンを有している。換言すれば、このメッシュパターンは、同一の方形状のセルが多数組み合わされて構成されている。
 第1端子溝122aの溝幅は、2μm~30μmが好ましく、3μm~15μmがより好ましい。平行して隣接する第1端子溝122aのピッチは、15μm~100μmが好ましく、20μm~50μmがより好ましい。メッシュパターンのセル形状としては、三角形、四角形、五角形、六角形等の多角形形状をとることができる。その中でも、菱形、正方形および正六角形が好ましい。なお、メッシュパターンは、異なる形状のセルが多数組み合わされて構成されていてもよい。
 また、第2導電性フィルム32Bは、第2端子部120Bを有していてもよい。この第2端子部120Bは、複数の凹状の第2端子溝122bをメッシュ状に配置することにより得られるメッシュパターンを有している。換言すれば、このメッシュパターンは、同一の方形状のセルが多数組み合わされて構成されている。第2端子溝122bは、第1端子溝122aと同様に構成される。
 このような構成によれば、第1端子部120Aが複数の第1端子溝122aを含み、かつ、少なくとも2以上の第1端子溝122aに跨って第1接続部58Aを延在しているので、第1端子部120Aの第1導電材料48aと第1接続部58Aとのコンタクト抵抗と第1接続部58Aと異方性導電フィルム60とのコンタクト抵抗との両方を改善させることができる。
 また、複数の第1端子溝122aをメッシュ状に配置しているので、第1端子部120Aを構成する第1端子溝122aの数を効率的に増やすことができる。そのため、第1端子部120Aの第1導電材料48aと第1接続部58Aとのコンタクト抵抗をより一層改善させることができる。
 以下、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、寸法、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
 溝形成工程において、膜厚100μmのPETからなる第1基板34A上に設けた紫外線硬化アクリル樹脂からなる第1樹脂層44aに深さ3μmの第1溝56a(第1電極溝46a、第1結線溝50a、第1配線溝52a、及び第1端子溝54a)を形成した。また、充填工程において、第1溝56aに導電性インク88として水系の銀ナノインクを充填し、第1加熱工程において、120℃で30分加熱し乾燥成膜することにより、第1検出電極36A、第1結線部38A、第1周辺配線40A、及び第1端子部42Aを有する第1導電性フィルム32Aを得た(図2参照)。図12に示すように、第1端子部42Aは、平面視で一辺300μmの正方形状の第1端子溝54aからなるベタパターンとした。また、隣接する第1端子溝54aの間隔を200μmとした。
 接続部形成工程において、銀ペーストをスクリーン印刷により第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値が1μmとなるように各第1端子部42Aにパターニング形成した。各第1接続部58Aは、一辺が330μmの正方形状のベタパターンとした。銀ペーストとしては、東洋インキ製造株式会社製のREXALPHA RA FA FS 015を用い、スクリーン98としては、ステンレス製メッシュスクリーン(メッシュ数500、厚さ25μm)を用いた。第2加熱工程において、140℃で1時間加熱し乾燥成膜することにより実施例1に係るタッチパネルを作製した。
(実施例2)
 接続部形成工程において、ステンレス製メッシュスクリーン(メッシュ数730、厚さ15μm)を用いてスキージ速度を落とし、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値を0.05μmにしたこと以外は、実施例1と同様にして実施例2に係るタッチパネルを作製した。
(実施例3)
 接続部形成工程において、ステンレス製メッシュスクリーン(メッシュ数730、厚さ15μm)を用いてスキージ速度を落とし、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値を0.1μmにしたこと以外は、実施例1と同様にして実施例3に係るタッチパネルを作製した。
(実施例4)
 接続部形成工程において、スキージ速度を落とし、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値を2μmにしたこと以外は、実施例1と同様にして実施例4に係るタッチパネルを作製した。
(実施例5)
 接続部形成工程において、ステンレス製メッシュスクリーン(メッシュ数400、厚さ30μm)を用い、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値を5μmにしたこと以外は、実施例1と同様にして実施例5に係るタッチパネルを作製した。
(実施例6)
 溝幅10μmの第1端子溝54aをピッチ30μmでメッシュ状に配置して形成されたメッシュパターンを有する第1端子部42Aとしたこと以外は、実施例1と同様にして実施例6に係るタッチパネルを作製した。
(実施例7)
 接続部形成工程においてITOインクをインクジェット装置により第1端子部42Aにパターニングし、第2加熱工程において130℃で1時間加熱焼成し、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値を1.5μmにしたこと以外は、実施例1と同様にして実施例7に係るタッチパネルを作製した。なお、インクジェット装置としてはDIMATIX社製のDMP2831を使用し、ITOインクとしては住友金属鉱山株式会社製の透明導電ITOインクX-100を粘度15mPa・sに調整したインクを使用した。
(比較例)
 第1接続部58Aを形成しなかったこと以外は実施例1と同様に比較例に係るタッチパネルを作製した。
[評価]
 異方性導電フィルム60により10個の第1接続部58Aとフレキシブル回路基板28とを圧着し、10個の第1端子部42Aの第1導電材料48aとそれに対応するフレキシブル回路基板28の端子62との間の抵抗値を測定し、第1端子部42Aとフレキシブル回路基板28とのコンタクト抵抗を評価した。
 具体的には、全ての第1端子部42Aの測定抵抗値が基準抵抗値の80%未満で導通していた場合を「AA」とし、全ての第1端子部42Aの測定抵抗値が基準抵抗値の80%以上90%未満で導通していた場合を「A」とし、全ての第1端子部42Aの測定抵抗値が基準抵抗値の90%以上100%未満で導通していた場合を「B」とし、少なくとも1つの第1端子部42Aが絶縁していた場合を「C」とした。なお、第1端子部42Aの測定抵抗値が低い方が、第1導電材料48aと第1接続部58Aとのコンタクト抵抗、及び第1接続部58Aと異方性導電フィルム60とのコンタクト抵抗が低いことを意味する。
[結果]
 実施例1~7及び比較例の結果を表1に示す。表1に示すように、実施例1~7は、全ての第1端子部42Aにおいて導通が確認された。特に、実施例6及び7はAA評価、実施例1、3、4はA評価、実施例2及び5はB評価の結果を得た。
なお、表1中の接続部の膜厚とは、「第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値」に相当し、断面SEMにてフレキシブル回路基板28が圧着された状態で測定を行った。
Figure JPOXMLDOC01-appb-T000001
 このことから、実施例6及び7より、第1端子部42Aはメッシュパターンであることが好ましいことがわかる。また、実施例1~5より、第1接続部58Aにおける第1樹脂層44aの外表面からの高さ寸法の平均値(接続部の膜厚)は、0.1μm~2μmであることが好ましいことがわかる。
 本実施形態に係るタッチパネル10及びその製造方法は、上述した構成及び方法に限定されない。第1導電性フィルム32Aにおいて、第1検出電極36A、第1結線部38A、第1周辺配線40Aは、例えば、第1基板34A上に金属を蒸着し、金属上にパターン化されたレジストを形成し、エッチング液により金属をエッチングすることによって、金属の細線パターンを形成することにより構成してもよいし、第1基板34A上に金属インクをスクリーン印刷を用いて塗布することにより、金属の細線パターンを形成することにより構成してもよい。第2導電性フィルム32Bについても同様である。
 また、第1導電性フィルム32Aでは、第1検出電極36Aを視認し難くするために、隣接する第1検出電極36Aの間に第1ダミーパターンを設けてもよい。第1検出電極36Aと第1ダミーパターンは絶縁している。第1ダミーパターンは、溝形成工程、充填工程、及び除去工程により第1検出電極36Aと同時に形成することができる。ただし、第1ダミーパターンは、上記と同様に、例えば、第1基板34A上に金属を蒸着し、金属上にパターン化されたレジストを形成し、エッチング液により金属をエッチングすることによって、金属の細線パターンを形成することにより構成してもよいし、第1基板34A上に金属インクをスクリーン印刷を用いて塗布することにより、金属の細線パターンを形成することにより構成してもよい。第1ダミーパターンの線幅及びピッチは、第1検出電極36Aと同一にするのが好ましい。第2導電性フィルム32Bについても同様である。
 本発明に係るタッチパネル及びその製造方法は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
10…タッチパネル           12…表示装置
26…センサ本体            28…フレキシブル回路基板
32A…第1導電性フィルム       32B…第2導電性フィルム
34A…第1基板            34B…第2基板
36A…第1検出電極          36B…第2検出電極
38A…第1結線部           38B…第2結線部
40A…第1周辺配線          40B…第2周辺配線
42A、120A…第1端子部      42B、120B…第2端子部
44a…第1樹脂層           44b…第2樹脂層
46a…第1電極溝           46b…第2電極溝
48a…第1導電材料          48b…第2導電材料
50a…第1結線溝           50b…第2結線溝
52a…第1配線溝           52b…第2配線溝
54a、122a…第1端子溝      54b、122b…第2端子溝
56a…第1溝             56b…第2溝
58A…第1接続部           58B…第2接続部
60…異方性導電フィルム        110…窪み部

Claims (13)

  1.  基板と、
     前記基板に設けられた複数の検出電極と、
     前記検出電極に対応して配置された端子部と、
     前記検出電極とそれぞれ対応する前記端子部とを電気的に接続する周辺配線と、
     を備えるタッチパネルであって、
     前記端子部は、前記基板上に設けられて溝を有する樹脂層と、前記溝に充填された導電材料とで構成され、
     複数の前記端子部は、相互に離間した導電性の接続部をそれぞれ有し、前記導電性の接続部は、前記端子部の前記導電材料に接触し、かつ、前記樹脂層の外表面の一部を覆っている、
     ことを特徴とするタッチパネル。
  2.  請求項1記載のタッチパネルにおいて、
     前記端子部は、複数の前記溝を含み、
     前記接続部は、少なくとも2以上の前記溝に跨って延在しているタッチパネル。
  3.  請求項2記載のタッチパネルにおいて、
     前記端子部において、複数の前記溝は、メッシュ状に配置されているタッチパネル。
  4.  請求項1~3のいずれか1項に記載のタッチパネルにおいて、
     前記検出電極と前記周辺配線とが、前記溝を有する前記樹脂層と、前記溝に充填された前記導電材料とで構成されているタッチパネル。
  5.  請求項1~4のいずれか1項に記載のタッチパネルにおいて、
     前記接続部における前記樹脂層の外表面からの高さ寸法の平均値が0.1μm~2.0μmであるタッチパネル。
  6.  請求項1~5のいずれか1項に記載のタッチパネルにおいて、
     前記接続部は、導電性酸化物粒子及びバインダーを含有するタッチパネル。
  7.  請求項1~6のいずれか1項に記載のタッチパネルにおいて、
     異方性導電フィルムを介して前記接続部とフレキシブル回路基板とが電気的に接続されているタッチパネル。
  8.  基板と、
     前記基板に設けられた複数の検出電極と、
     前記検出電極に対応して配置された端子部と、
     前記検出電極とそれぞれ対応する前記端子部とを電気的に接続する周辺配線と、
     複数の前記端子部のそれぞれに設けられ、かつ、相互に離間している接続部と、
     を備えるタッチパネルの製造方法であって、
     前記検出電極と前記周辺配線とを形成する電極部形成工程と、
     前記端子部を形成する端子部形成工程と、
     前記接続部を形成する接続部形成工程と、を行い、
     前記端子部形成工程では、前記基板の一面の少なくとも一部に樹脂層を形成し、前記樹脂層に突出部を含む型を押し付けて溝を形成する溝形成工程と、
     前記溝の少なくとも一部にインク状の導電材料を充填する充填工程と、
     前記樹脂層の外表面に残留した前記インク状の導電材料を除去する除去工程と、を行い、
     前記接続部形成工程では、前記端子部の前記導電材料に接触し、かつ、前記樹脂層の外表面の一部を覆うように導電性部材を前記接続部としてパターニング形成する、
     ことを特徴とするタッチパネルの製造方法。
  9.  請求項8記載のタッチパネルの製造方法において、
     前記接続部形成工程において、スクリーン印刷又はインクジェットを用いてインク状の導電性部材を前記接続部としてパターニング形成するタッチパネルの製造方法。
  10.  請求項8又は9に記載のタッチパネルの製造方法において、
     前記溝形成工程では、前記樹脂層に前記型を押し付けて前記端子部に複数の前記溝を形成し、
     前記接続部形成工程では、少なくとも2以上の前記溝に跨るように前記接続部を形成するタッチパネルの製造方法。
  11.  請求項10記載のタッチパネルの製造方法において、
     前記溝形成工程では、前記樹脂層に前記型を押し付けて前記端子部に複数の前記溝をメッシュ状に形成するタッチパネルの製造方法。
  12.  請求項8~11のいずれか1項に記載のタッチパネルの製造方法において、
     前記電極部形成工程は、前記端子部形成工程と同工程であり、且つ同時に行われているタッチパネルの製造方法。
  13.  請求項8~12のいずれか1項に記載のタッチパネルの製造方法において、
     前記接続部形成工程後に、異方性導電フィルムを用いて、フレキシブル回路基板と前記接続部とを圧着して電気的に接続させる圧着工程を行うタッチパネルの製造方法。
PCT/JP2015/057733 2014-05-16 2015-03-16 タッチパネル及びその製造方法 WO2015174133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167027770A KR101943176B1 (ko) 2014-05-16 2015-03-16 터치 패널 및 그 제조 방법
JP2016519144A JP6240756B2 (ja) 2014-05-16 2015-03-16 タッチパネル及びその製造方法
CN201580015561.1A CN106133660B (zh) 2014-05-16 2015-03-16 触摸面板及其制造方法
US15/285,702 US10303311B2 (en) 2014-05-16 2016-10-05 Touch panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014102879 2014-05-16
JP2014-102879 2014-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/285,702 Continuation US10303311B2 (en) 2014-05-16 2016-10-05 Touch panel and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015174133A1 true WO2015174133A1 (ja) 2015-11-19

Family

ID=54479680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057733 WO2015174133A1 (ja) 2014-05-16 2015-03-16 タッチパネル及びその製造方法

Country Status (6)

Country Link
US (1) US10303311B2 (ja)
JP (1) JP6240756B2 (ja)
KR (1) KR101943176B1 (ja)
CN (1) CN106133660B (ja)
TW (1) TWI639934B (ja)
WO (1) WO2015174133A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187266A1 (ja) * 2016-04-26 2017-11-02 株式会社フジクラ 配線体、配線体アセンブリ、配線基板、及びタッチセンサ
WO2018110398A1 (ja) * 2016-12-14 2018-06-21 シャープ株式会社 配線基板、位置入力装置、位置入力機能付き表示パネル及び配線基板の製造方法
WO2019035317A1 (ja) * 2017-08-14 2019-02-21 富士フイルム株式会社 導電性フィルム、タッチパネル、及び、導電性フィルムの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549925B1 (ko) * 2017-10-26 2023-06-30 삼성디스플레이 주식회사 터치 센서 및 그 제조 방법, 그리고 이를 포함하는 표시 장치
JP6886907B2 (ja) * 2017-10-31 2021-06-16 日本航空電子工業株式会社 タッチパネル及びタッチパネルの生産方法
JP2019121311A (ja) * 2018-01-11 2019-07-22 シャープ株式会社 基板、表示装置及び基板の製造方法
CN108288638A (zh) * 2018-01-25 2018-07-17 京东方科技集团股份有限公司 一种触控基板及其制备方法、触控显示装置
CN110162220B (zh) * 2019-05-28 2022-10-18 业成科技(成都)有限公司 触控装置及其制作方法
CN111831171B (zh) * 2020-06-05 2023-05-30 深圳市鸿合创新信息技术有限责任公司 Pet基材的制备方法及电容膜、电容式触屏模组、整机模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291328A (ja) * 1987-05-22 1988-11-29 Catalysts & Chem Ind Co Ltd メンブレン式タッチパネル
WO2007039969A1 (ja) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. 透明導電層付フィルムとフレキシブル機能性素子、フレキシブル分散型エレクトロルミネッセンス素子及びその製造方法並びにそれを用いた電子デバイス
JP2011513846A (ja) * 2008-02-28 2011-04-28 スリーエム イノベイティブ プロパティズ カンパニー タッチスクリーンセンサ
JP2012048470A (ja) * 2010-08-26 2012-03-08 Nitto Denko Corp タッチパネル用光導波路モジュールおよびその製法
JP2013225279A (ja) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd タッチパネル及びその製造方法
JP2014016857A (ja) * 2012-07-10 2014-01-30 Dainippon Printing Co Ltd タッチパネル一体型表示装置用前面保護板、及び表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526651B2 (ja) * 1999-08-12 2010-08-18 富士通セミコンダクター株式会社 半導体装置
JP3829325B2 (ja) * 2002-02-07 2006-10-04 日本電気株式会社 半導体素子およびその製造方法並びに半導体装置の製造方法
US7849591B2 (en) * 2005-10-14 2010-12-14 Fujikura Ltd. Method of manufacturing a printed wiring board
JP5163174B2 (ja) * 2008-02-20 2013-03-13 ソニー株式会社 タッチパネル及びその製造方法
JP2011517367A (ja) * 2008-02-28 2011-06-02 スリーエム イノベイティブ プロパティズ カンパニー 基材上に導電体をパターン化する方法
TWI373665B (en) * 2008-12-25 2012-10-01 Au Optronics Corp Touch panel structure
AU2011313400A1 (en) * 2010-10-08 2013-05-02 Sharp Kabushiki Kaisha Touch panel, and display device provided with said touch panel
JP5923951B2 (ja) * 2011-12-02 2016-05-25 大日本印刷株式会社 タッチパネルセンサ基板およびその基板の製造方法
JP5822395B2 (ja) * 2012-01-25 2015-11-24 富士フイルム株式会社 導電シート及びその検査方法並びに製造方法
KR20130127848A (ko) * 2012-05-15 2013-11-25 삼성전기주식회사 터치센서 및 그 제조방법
US9818734B2 (en) * 2012-09-14 2017-11-14 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming build-up interconnect structures over a temporary substrate
KR20140100144A (ko) * 2013-02-05 2014-08-14 삼성전자주식회사 반도체 장치 및 이의 제조 방법
JP5470489B2 (ja) * 2013-06-24 2014-04-16 株式会社ワンダーフューチャーコーポレーション タッチパネル、タッチパネルの製造方法、及びタッチパネル一体型表示装置
KR102222194B1 (ko) * 2013-10-17 2021-03-04 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
US9857906B2 (en) * 2014-01-22 2018-01-02 Lg Innotek Co., Ltd. Touch window

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291328A (ja) * 1987-05-22 1988-11-29 Catalysts & Chem Ind Co Ltd メンブレン式タッチパネル
WO2007039969A1 (ja) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. 透明導電層付フィルムとフレキシブル機能性素子、フレキシブル分散型エレクトロルミネッセンス素子及びその製造方法並びにそれを用いた電子デバイス
JP2011513846A (ja) * 2008-02-28 2011-04-28 スリーエム イノベイティブ プロパティズ カンパニー タッチスクリーンセンサ
JP2012048470A (ja) * 2010-08-26 2012-03-08 Nitto Denko Corp タッチパネル用光導波路モジュールおよびその製法
JP2013225279A (ja) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd タッチパネル及びその製造方法
JP2014016857A (ja) * 2012-07-10 2014-01-30 Dainippon Printing Co Ltd タッチパネル一体型表示装置用前面保護板、及び表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187266A1 (ja) * 2016-04-26 2017-11-02 株式会社フジクラ 配線体、配線体アセンブリ、配線基板、及びタッチセンサ
CN108700967A (zh) * 2016-04-26 2018-10-23 株式会社藤仓 配线体、配线体组件、配线基板以及接触式传感器
WO2018110398A1 (ja) * 2016-12-14 2018-06-21 シャープ株式会社 配線基板、位置入力装置、位置入力機能付き表示パネル及び配線基板の製造方法
CN110073319A (zh) * 2016-12-14 2019-07-30 夏普株式会社 配线基板、位置输入装置、带位置输入功能的显示面板以及配线基板的制造方法
US10719185B2 (en) 2016-12-14 2020-07-21 Sharp Kabushiki Kaisha Wiring board, position input device, position input function-equipped display panel, and method of producing wiring board
CN110073319B (zh) * 2016-12-14 2022-05-03 夏普株式会社 配线基板、位置输入装置、带位置输入功能的显示面板以及配线基板的制造方法
WO2019035317A1 (ja) * 2017-08-14 2019-02-21 富士フイルム株式会社 導電性フィルム、タッチパネル、及び、導電性フィルムの製造方法
JPWO2019035317A1 (ja) * 2017-08-14 2020-03-26 富士フイルム株式会社 導電性フィルム、タッチパネル、及び、導電性フィルムの製造方法
US10983653B2 (en) 2017-08-14 2021-04-20 Fujifilm Corporation Conductive film, touch panel, and method for manufacturing conductive film

Also Published As

Publication number Publication date
TWI639934B (zh) 2018-11-01
JPWO2015174133A1 (ja) 2017-04-20
JP6240756B2 (ja) 2017-11-29
CN106133660A (zh) 2016-11-16
KR101943176B1 (ko) 2019-01-28
US20170024040A1 (en) 2017-01-26
US10303311B2 (en) 2019-05-28
CN106133660B (zh) 2019-03-22
KR20160130476A (ko) 2016-11-11
TW201545019A (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6240756B2 (ja) タッチパネル及びその製造方法
JP6144422B2 (ja) タッチパネル及びその製造方法
JP5298209B2 (ja) 静電容量式センサーシートおよびその製造方法
TWI536225B (zh) 監視器及其觸控式螢幕感應模組
JP4794392B2 (ja) 曲面を有するタッチパネル及びその製造方法
KR101095097B1 (ko) 투명 전극 필름 및 이의 제조 방법
TWI395998B (zh) 導電板及應用其之觸控板
TWI497391B (zh) 電容式透明導電膜及其製造方法
EP2273354A1 (en) Conductive plate and touch panel including the same
TW201719359A (zh) 配線體組合、具有導體層之構造體以及碰觸偵知器
TW201503168A (zh) 觸摸屏
CN105493015A (zh) 电容触摸屏及其与柔性电路板的组合
CN106354290A (zh) 触摸屏用光学胶层的制作方法及触摸屏的制作方法
US9426885B2 (en) Multi-layer micro-wire structure
US9296013B2 (en) Making multi-layer micro-wire structure
TWI521552B (zh) 透明導電體之製備方法
JP6549942B2 (ja) 配線体、配線基板、及びタッチセンサ
JP6489710B2 (ja) 静電容量式3次元センサ
KR20130097979A (ko) 이중 구조를 갖는 소프트 몰드 및 이것을 이용한 실버잉크 패턴의 전사방법
US11016620B2 (en) Touchscreen panel and method of producing the same
JP2015207165A (ja) タッチセンサ用シート及びその製造方法
CN205080534U (zh) 电容触摸屏及其与柔性电路板的组合结构
KR20200050816A (ko) 서스펜디드 전극 및 이의 제조방법
JP2016110254A (ja) タッチパネル配線の形成方法およびタッチパネル
KR20160090174A (ko) 터치 윈도우

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519144

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167027770

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792750

Country of ref document: EP

Kind code of ref document: A1