WO2015172463A1 - 一种测量装置及镀膜设备 - Google Patents

一种测量装置及镀膜设备 Download PDF

Info

Publication number
WO2015172463A1
WO2015172463A1 PCT/CN2014/085658 CN2014085658W WO2015172463A1 WO 2015172463 A1 WO2015172463 A1 WO 2015172463A1 CN 2014085658 W CN2014085658 W CN 2014085658W WO 2015172463 A1 WO2015172463 A1 WO 2015172463A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz crystal
crystal oscillator
frequency change
coating
module
Prior art date
Application number
PCT/CN2014/085658
Other languages
English (en)
French (fr)
Inventor
吴海东
马群
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/917,050 priority Critical patent/US20160216099A1/en
Priority to EP14891722.2A priority patent/EP3144411B1/en
Publication of WO2015172463A1 publication Critical patent/WO2015172463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/063Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using piezoelectric resonators
    • G01B7/066Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using piezoelectric resonators for measuring thickness of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators

Definitions

  • the present disclosure relates to measurement techniques, and in particular to a measurement device and a coating apparatus.
  • the thickness of the film is a very important parameter, which is directly related to whether the film material can work normally. Therefore, it is necessary to obtain the thickness of the film during the production process.
  • a common measurement method is to use a crystal plate to measure the film thickness in real time.
  • an embodiment of the present disclosure provides a measuring device for measuring a thickness of a film layer generated on a film to be coated module, the measuring device comprising:
  • the second quartz crystal oscillator is the same as the first quartz crystal oscillator, and is blocked during the coating process. Will be coated;
  • An excitation source generating unit for generating and outputting an alternating current to the first quartz crystal plate and the second quartz crystal plate;
  • a first calculating module configured to calculate an initial value of the frequency change according to the first response signal generated by the first quartz crystal oscillator in response to the alternating current during the coating process
  • a second calculating module configured to calculate a frequency change correction value according to the second response signal generated by the second quartz crystal oscillator in response to the alternating current during the coating process
  • a third calculating module configured to calculate a film thickness by using the frequency change correction value to correct the frequency change target value obtained by the initial value of the frequency change.
  • the frequency change target value is equal to a difference between the frequency change initial value and the frequency change correction value.
  • the above measuring device further includes:
  • An occlusion module is configured to block the second quartz crystal oscillator during the coating process so that the second quartz crystal oscillator is not coated.
  • the second calculation module is specifically configured to be generated according to the alternating current according to each of the second quartz crystal oscillation plates during the coating process.
  • the second response signal calculates an intermediate value of the frequency change corresponding to each of the second quartz crystal oscillation plates, and takes an average value of the intermediate values of all the frequency changes as the frequency change correction value.
  • an embodiment of the present disclosure provides a coating apparatus, including a coating machine for coating a film to be coated module, the coating apparatus further comprising a measuring device, the measuring device comprising:
  • the second quartz crystal oscillator is the same as the first quartz crystal oscillator, and is blocked during the coating process and is not coated;
  • An excitation source generating unit for generating and outputting an alternating current to the first quartz crystal plate and the second quartz crystal plate;
  • a first calculating module configured to calculate an initial value of the frequency change according to the first response signal generated by the first quartz crystal oscillator in response to the alternating current during the coating process
  • a second calculating module configured to respond to the second quartz crystal oscillator in response to the coating process Calculating a frequency change correction value by a second response signal generated by the alternating current;
  • a third calculating module configured to calculate a film thickness by using the frequency change correction value to correct the frequency change target value obtained by the initial value of the frequency change.
  • the frequency change target value is equal to a difference between the frequency change initial value and the frequency change correction value.
  • the above coating device which further comprises:
  • An occlusion module is configured to block the second quartz crystal oscillator during the coating process so that the second quartz crystal oscillator is not coated.
  • the first quartz crystal oscillation piece and the second quartz crystal oscillation piece are arranged in a ring shape, and the shielding module is specifically a rotatable shielding piece provided with a through hole, the shielding piece being capable of rotating by the The through holes are located above different quartz crystal plates.
  • the above coating device which further comprises:
  • the coating machine is provided with a vacuum adsorption device having an adsorption surface for adsorbing the module to be coated, and the height and the placement of the first quartz crystal oscillator and the second quartz crystal oscillator It is stated that the placement height of the coating module is the same.
  • the second calculation module is specifically configured to be generated according to the alternating current according to each of the second quartz crystal oscillation plates during the coating process.
  • the second response signal calculates an intermediate value of the frequency change corresponding to each of the second quartz crystal oscillation plates, and takes an average value of the intermediate values of all the frequency changes as the frequency change correction value.
  • a first quartz crystal oscillator piece which can obtain an initial thickness of the film layer by using the film thickness measuring method of the prior art.
  • the film thickness calculated based on the amount of change in the oscillation frequency of the quartz crystal plate after the coating is not accurate.
  • the second quartz crystal oscillator piece is also disposed at the same time, and the second quartz crystal oscillator piece is blocked during the coating process and is not coated, and can be calculated according to the variation of the oscillation frequency of the second quartz crystal oscillator piece.
  • a correction value can further reduce the error caused by the change of the oscillation frequency caused by the environment from the initial value of the film thickness, thereby improving the accuracy of the film thickness detection.
  • Figure 1 is a schematic view showing the arrangement of a plurality of quartz crystal oscillator plates and a shielding mechanism
  • Fig. 2 is a view showing a concrete structure of an embodiment of the present disclosure for vacuum evaporation.
  • an uncoated quartz crystal oscillator is used to measure the influence of environmental factors on the frequency change during the coating process, and the measurement accuracy is improved.
  • the principle of measuring the film thickness using a quartz crystal oscillator is to utilize the approximate linear relationship between the change of the oscillation frequency of the quartz crystal oscillator and the thickness of the deposited film as follows:
  • ⁇ f is the amount of change in the oscillation frequency of the quartz crystal oscillator
  • ⁇ d f is the thickness of the deposited film
  • ⁇ f is the density of the deposited film
  • ⁇ Q is the density of the quartz crystal plate
  • f Q is the natural resonant frequency of the quartz crystal oscillator
  • N is the frequency constant of the quartz crystal plate.
  • the variation of the oscillation frequency of the quartz crystal oscillator is not only related to the thickness of the deposited film, but also related to the environment of the coating chamber (such as temperature, vacuum, etc.). Therefore, the thickness of the film obtained by using the crystal oscillator in the prior art is not accurate.
  • a measuring device for measuring a thickness of a film layer generated on a film-to-coating module comprising:
  • the second quartz crystal oscillator is the same as the first quartz crystal oscillator, and is blocked during the coating process and is not coated;
  • An excitation source generating unit for generating and outputting an alternating current to the first quartz crystal plate and the second quartz crystal plate;
  • a first calculating module configured to calculate an initial value of the frequency change according to the first response signal generated by the first quartz crystal oscillator in response to the alternating current during the coating process
  • a second calculating module configured to calculate a frequency change correction value according to the second response signal generated by the second quartz crystal oscillator in response to the alternating current during the coating process
  • a third calculating module configured to calculate a film thickness by using the frequency change correction value to correct the frequency change target value obtained by the initial value of the frequency change.
  • a first quartz crystal oscillator piece is provided, which can obtain an initial value of frequency change using the film thickness measurement method of the prior art.
  • the frequency variation of the quartz crystal oscillator is not only related to the thickness of the film but also related to the environment, it is not accurate to calculate the thickness of the film based on the amount of change in the oscillation frequency of the quartz crystal plate after the coating.
  • the second quartz crystal oscillator is also disposed at the same time, and the second quartz crystal oscillator is blocked during the coating process and is not coated. Therefore, the second quartz crystal oscillator can be measured due to environmental factors.
  • the amount of oscillation frequency change in turn, the error caused by the change of the oscillation frequency caused by the environment can be deducted from the initial value of the frequency change, and the accurate target value of the frequency change due to the thickness of the film layer can be obtained, and the accurate reflection can be utilized.
  • the frequency change target value of the film thickness change value is calculated to obtain an accurate film thickness.
  • the frequency change target value is equal to a difference between the frequency change initial value and the frequency change correction value.
  • a shielding mechanism may be disposed on the measuring device itself for shielding the coating process.
  • the second quartz crystal plate prevents the second quartz crystal plate from being coated.
  • the shielding mechanism can also be placed on the coating machine, which will be described later.
  • the number of the second quartz crystal oscillation plates may be one, but in order to further improve the measurement accuracy, a plurality of second quartz crystal oscillation plates may be disposed.
  • the second calculation module is specific. Calculating a frequency change corresponding to each of the second quartz crystal oscillators according to a second response signal generated by each of the second quartz crystal oscillators in response to the alternating current during the coating process Value, and take the average of the intermediate values of all frequency changes as the frequency change correction value.
  • the embodiment of the present disclosure also provides a coating device, including a coating machine for coating a film to be coated module, the coating device further comprising a measuring device, the measuring device comprising:
  • the second quartz crystal oscillator is the same as the first quartz crystal oscillator, and is blocked during the coating process and is not coated;
  • An excitation source generating unit for generating and outputting an alternating current to the first quartz crystal plate and the second quartz crystal plate;
  • a first calculating module configured to calculate an initial value of the frequency change according to the first response signal generated by the first quartz crystal oscillator in response to the alternating current during the coating process
  • a second calculating module configured to calculate a frequency change correction value according to the second response signal generated by the second quartz crystal oscillator in response to the alternating current during the coating process
  • a third calculating module configured to calculate a film thickness by using the frequency change correction value to correct the frequency change target value obtained by the initial value of the frequency change.
  • the frequency change target value is equal to a difference between the frequency change initial value and the frequency change correction value.
  • a shielding module is disposed in the coating chamber for shielding the second quartz crystal oscillator during the coating process, so that the second quartz crystal oscillator is not coated.
  • the first quartz crystal oscillator 101 and the second quartz crystal oscillator 102 are annularly arranged, and the occlusion module Specifically, a rotatable shielding piece 103 is provided with a through hole 104, and the shielding piece 103 can be rotated such that the through hole 104 is located above different quartz crystal oscillation pieces.
  • first quartz crystal oscillator and the second quartz crystal oscillator are for a single coating operation, taking the case shown in FIG. 1 as an example, the first quartz crystal oscillator is a quartz crystal oscillator directly above, and the like.
  • the quartz crystal oscillator is a second quartz crystal oscillator.
  • the first quartz crystal oscillation piece is the left quartz crystal oscillation piece
  • the other quartz crystal oscillation piece is the second quartz crystal oscillation piece.
  • the overall replacement of the quartz crystal is required after at least 3 coats.
  • the film, and in the first two measurements, the measurement accuracy can be improved because the number of quartz crystal plates that can be used to measure environmental influences exceeds two or more.
  • the above coating device further includes:
  • the temperature of the vapor deposition, the supply rate of the vapor deposition material, and the like can be controlled.
  • the quartz crystal oscillator plate may be disposed at each position of the coating chamber, but when the quartz crystal oscillator disc and the module to be coated are not at the same height, the thickness of the formed film layer is inconsistent, and a correction needs to be set at this time. Factor to correct the resulting film thickness.
  • the coating machine is provided with an adsorption surface for adsorbing the module to be coated.
  • a vacuum adsorption device 205 wherein the quartz crystal oscillator piece is placed at a height at the same horizontal position as the module to be plated, that is, the first quartz crystal oscillator piece, the second quartz crystal oscillator piece is disposed at a height and the film to be coated The placement height of the group is the same.
  • the second calculation module is specifically configured to calculate, according to the second response signal generated by each of the second quartz crystal oscillation plates in response to the alternating current during the coating process
  • the intermediate values of the frequency changes of the second quartz crystal oscillators are taken, and the average value of the intermediate values of all the frequency changes is taken as the frequency change correction value.
  • FIG. 2 is a schematic view showing a specific structure of a vacuum evaporation apparatus according to an embodiment of the present disclosure.
  • the original oscillation frequencies of the two quartz crystal oscillation plates 201 and 202 disposed in the vapor deposition chamber 200 were first measured, and are denoted as f 1 and f 2 , respectively.
  • the quartz crystal plate 201 is blocked by a baffle 203, and is not coated during the coating process, and the quartz crystal plate 202 is exposed, and the vapor deposition gas generated by the crucible together with the module to be coated 204 forms a film on the surface.
  • the quartz crystal oscillation plate 202 and the module to be coated 204 are at the same height.
  • the oscillation frequencies of the two quartz crystal plates were measured and recorded as f 1 ' and f 2 ', respectively.
  • ⁇ f (f 2 ' - f 2 ) - (f 1 ' - f 1 )
  • ⁇ f' f 1 '-f 1 is the amount of change in the oscillation frequency of the crystal oscillation plate caused by the environmental change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

提供了一种测量装置及镀膜设备。该测量装置包括第一石英晶振片(202),在镀膜过程中一起被镀膜;第二石英晶振片(201),和第一石英晶振片相同,在镀膜过程中被遮挡,不被镀膜;激励源产生单元,用于产生并输出交变电流到第一石英晶振片和第二石英晶振片;第一计算模块,根据第一石英晶振片(202)在镀膜过程中响应于该交变电流产生的第一响应信号计算频率变化初始值;第二计算模块,根据第二石英晶振片(201)在镀膜过程中响应于该交变电流产生第二响应信号计算频率变化修正值;第三计算模块,利用频率变化修正值修正该频率变化初始值得到频率变化目标值,并计算膜层厚度。

Description

一种测量装置及镀膜设备
相关申请的交叉引用
本申请主张在2014年5月13日在中国提交的中国专利申请号No.201410200994.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及测量技术,特别是一种测量装置及镀膜设备。
背景技术
当今微电子薄膜、光学薄膜、抗氧化薄膜、巨磁电阻薄膜、高温超导薄膜等在工业生产和人类生活中不断得到应用。如大规模集成电路、液晶面板、LED器件等生产工艺中的各种薄膜,由于集成程度的不断提高,薄膜厚度的任何微小变化,对器件的性能都会产生直接的影响。除此之外,薄膜的各种性能,如透光性能、导电性能、绝缘性能等都与厚度有着密切的联系。
因此可以看出,薄膜的厚度是一个非常重要的参数,直接关系到该薄膜材料能否正常工作。因此在生产过程中需要获取薄膜的厚度。
随着科技的进步和精密仪器的应用,薄膜厚度的测量方法有很多,一种常见的测量方法为使用晶振片对薄膜厚度进行实时测量。
然而发明人发现,现有技术中使用晶振片对薄膜厚度进行实时测量的方法,由于受到环境因素的影响而存在精度不高的问题。
发明内容
本公开实施例的目的在于提供一种测量装置及镀膜设备,提高使用晶振片对薄膜厚度进行测量的测量精度。
为了实现上述目的,本公开实施例提供了一种测量装置,用于测量一待镀膜模组上产生的膜层的厚度,所述测量装置包括:
第一石英晶振片,在镀膜过程中一起被镀膜;
第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不 会被镀膜;
激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算频率变化修正值;
第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
上述的测量装置,其中,所述频率变化目标值等于频率变化初始值与频率变化修正值的差值。
上述的测量装置,其中,还包括:
一遮挡模块,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
上述的测量装置,其中,所述第二石英晶振片的数量为多个,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振片各自对应的频率变化中间值,并取所有频率变化中间值的平均值作为频率变化修正值。
为了实现上述目的,本公开实施例提供了一种镀膜设备,包括一镀膜机,用于向待镀膜模组镀膜,所述镀膜设备还包括一测量装置,所述测量装置包括:
第一石英晶振片,在镀膜过程中一起被镀膜;
第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不会被镀膜;
激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述 交变电流产生的第二响应信号计算频率变化修正值;
第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
上述的镀膜设备,其中,所述频率变化目标值等于频率变化初始值与频率变化修正值的差值。
上述的镀膜设备,其中,还包括:
一遮挡模块,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
上述的镀膜设备,其中,所述第一石英晶振片和第二石英晶振片环形排列,所述遮挡模块具体为一设置有一通孔的可旋转遮挡片,所述遮挡片能够通过旋转使得所述通孔位于不同石英晶振片的上方。
上述的镀膜设备,其中,还包括:
控制器,用于根据所述膜层厚度实际值控制镀膜机的镀膜厚度。
上述的镀膜设备,其中,所述镀膜机上设置有一具有一吸附面的用于吸附所述待镀膜模组的真空吸附装置,所述第一石英晶振片、第二石英晶振片的安置高度与所述待镀膜模组的安置高度相同。
上述的镀膜设备,其中,所述第二石英晶振片的数量为多个,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振片各自对应的频率变化中间值,并取所有频率变化中间值的平均值作为频率变化修正值。
本公开实施例中,设置了第一石英晶振片,其利用现有技术的薄膜厚度测量方法可以得到一个膜层厚度初始值。之前提到,由于石英晶振片的频率变化不仅与薄膜厚度有关,而且与环境有关,因此基于镀膜后的石英晶振片的振荡频率变化量计算出的膜层厚度并不准确。而本公开实施例中同时还设置了第二石英晶振片,而第二石英晶振片在镀膜的过程中被遮挡,不会被镀膜,根据该第二石英晶振片的振荡频率变化量可以计算出一修正值,进而可以将由于环境导致的振荡频率变化带来的误差从膜层厚度初始值中扣除,提高了膜层厚度检测的精度。
附图说明
图1表示设置的多块石英晶振片和遮挡机构的配合示意图;
图2表示本公开实施例用于真空蒸镀时的具体结构示意图。
具体实施方式
本公开实施例的测量装置及镀膜设备中,使用一个不镀膜的石英晶振片来测量镀膜过程中的环境因素对频率变化产生的影响,提高了测量的精度。
为方便本领域技术人员更好的理解本公开实施例,在此先对本公开实施例涉及到的一些知识介绍如下。
使用石英晶振片测膜厚原理是利用了石英晶振片振荡频率的变化与沉积薄膜厚度的近似线性关系如下:
Figure PCTCN2014085658-appb-000001
其中:
Δf为石英晶振片振荡频率的变化量;
Δdf为沉积薄膜的厚度;
ρf是沉积薄膜的密度;
ρQ是石英晶振片密度;
fQ为石英晶振片的固有谐振频率;
N为石英晶振片的频率常数。
从上式可以发现,当沉积薄膜的厚度变化不大时,近似认为Δf与Δdf成线性关系,因此可以根据石英晶振片振荡频率的变化计算出薄膜厚度。
然而,石英晶振片振荡频率的变化不仅仅和沉积薄膜厚度有关,还与镀膜腔的环境有关(如温度、真空度等)。因此,现有技术的使用晶振片测试得到的薄膜厚度并不准确。
本公开实施例的一种测量装置,用于测量一待镀膜模组上产生的膜层的厚度,所述测量装置包括:
第一石英晶振片,在镀膜过程中一起被镀膜;
第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不会被镀膜;
激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算频率变化修正值;
第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
本公开实施例中,设置了第一石英晶振片,其利用现有技术的薄膜厚度测量方法可以得到一个频率变化初始值。之前提到,由于石英晶振片的频率变化不仅与薄膜厚度有关,而且与环境有关,因此基于镀膜后的石英晶振片的振荡频率变化量来计算膜层厚度并不准确。而本公开实施例中同时还设置了第二石英晶振片,而第二石英晶振片在镀膜的过程中被遮挡,不会被镀膜,因此利用该第二石英晶振片可以测量得到由于环境因素导致的振荡频率变化量,进而可以将由于环境导致的振荡频率变化带来的误差从频率变化初始值中扣除,得到准确的由于膜层厚度带来的频率变化目标值,进而可以利用该准确的反映膜层厚度变化值的频率变化目标值计算得到准确的膜层厚度。
在本公开的具体实施例中,该频率变化目标值等于频率变化初始值与频率变化修正值的差值。
在本公开的具体实施例中,需要保证第二石英晶振片在镀膜的过程中被遮挡,不会被镀膜,因此,可以在测量装置自身设置一个遮挡机构,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
但当然,该遮挡机构也可以设置于镀膜机上,这将在后续进行说明。
在本公开的具体实施例中,第二石英晶振片的数量可以是一个,但为了进一步提高测量精度,也可以设置多个第二石英晶振片,这种情况下,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振片各自对应的频率变化中间 值,并取所有频率变化中间值的平均值作为频率变化修正值。
本公开实施例同时还提供了一种镀膜设备,包括一镀膜机,用于向待镀膜模组镀膜,所述镀膜设备还包括一测量装置,所述测量装置包括:
第一石英晶振片,在镀膜过程中一起被镀膜;
第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不会被镀膜;
激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算频率变化修正值;
第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
在本公开的具体实施例中,所述频率变化目标值等于频率变化初始值与频率变化修正值的差值。
在本公开的具体实施例中,上述的镀膜设备中在镀膜腔内设置一遮挡模块,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
对于镀膜设备而言,为了提高测量的精度,同时减少测量的晶振片的更换次数,如图1所示,所述第一石英晶振片101和第二石英晶振片102环形排列,所述遮挡模块具体为一设置有一通孔104的可旋转遮挡片103,所述遮挡片103能够通过旋转使得所述通孔104位于不同石英晶振片的上方。
应当理解的是,所谓第一石英晶振片和第二石英晶振片是针对某一次镀膜操作而言,以图1所示的情况为例,第一石英晶振片为正上方的石英晶振片,其他的石英晶振片为第二石英晶振片。
而当通孔104逆时钟旋转90度,进行下一次镀膜操作时,则第一石英晶振片为左边的石英晶振片,其他的石英晶振片为第二石英晶振片。
类似于图1所示的结构,至少在3次镀膜之后才需要整体更换石英晶振 片,而且在前两次测量时,由于可以用于测量环境影响的石英晶振片数量超过大于或等于两片,因此可以提高测量精度。
在镀膜的过程中,不但可以直接测量膜层的厚度,还可以根据膜层厚度控制镀膜机得工作,此时,上述的镀膜设备,还包括:
控制器,用于根据所述膜层厚度实际值控制镀膜机的镀膜厚度。
如对于真空蒸镀工艺而言,可以控制蒸镀的温度、蒸镀材料的供给速度等。
在本公开的具体实施例中,石英晶振片可以设置于镀膜腔的各个位置,但当石英晶振片和待镀膜模组不在同一高度时,其形成的膜层厚度不一致,此时需要设置一修正因子来修正得到的膜层厚度。
为了避免调节因子设置不准确带来的工艺繁琐和最终膜层厚度测量不准确,在本公开的具体实施例中,所述镀膜机上设置有一具有一吸附面的用于吸附所述待镀膜模组的真空吸附装置205,所述镀膜机上将石英晶振片安置在与待镀模组处于同一水平位置的高度,即所述第一石英晶振片、第二石英晶振片安置高度与所述待镀膜模组的安置高度相同。
当所述第二石英晶振片的数量为多个时,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振片各自对应的频率变化中间值,并取所有频率变化中间值的平均值作为频率变化修正值。
以下以一个更加具体的范例对本公开实施例作进一步详细的说明。
如图2所示,为本公开实施例的真空蒸镀设备的具体结构示意图。
在镀膜前,首先测量设置于蒸镀腔200内的两个石英晶振片201和202的原始振荡频率,分别记为f1和f2。其中石英晶振片201被一挡板203所遮挡,在镀膜过程中不会被镀膜,而石英晶振片202暴露,会和待镀膜模组204一起由坩埚产生的蒸镀气体在表面形成薄膜。
同时,为了避免调节因子的设置,在本公开具体实施例中,该石英晶振片202和待镀膜模组204处于同一高度。
蒸镀薄膜后再测量两个石英晶振片的振荡频率,分别记为f1′和f2′。
由此可以得到Δf=(f2′-f2)-(f1′-f1),其中Δf′=f1′-f1为环 境变化所导致的晶振片振荡频率改变量。将Δf代入下式即可获得准确薄膜厚度。
Figure PCTCN2014085658-appb-000002
以上说明对本公开而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离所附权利要求所限定的精神和范围的情况下,可做出许多修改、变化或等效,但都将落入本公开的保护范围内。

Claims (13)

  1. 一种测量装置,用于测量一待镀膜模组上产生的膜层的厚度,所述测量装置包括:
    第一石英晶振片,在镀膜过程中一起被镀膜;
    第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不会被镀膜;
    激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
    第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
    第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算频率变化修正值;
    第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
  2. 根据权利要求1所述的测量装置,其中,所述频率变化目标值等于频率变化初始值与频率变化修正值的差值。
  3. 根据权利要求1所述的测量装置,其中,还包括:
    一遮挡模块,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
  4. 根据权利要求3所述的测量装置,其中,所述第一石英晶振片和第二石英晶振片环形排列,所述遮挡模块为一设置有一通孔的可旋转遮挡片,所述遮挡片能够通过旋转使得所述通孔位于不同石英晶振片的上方。
  5. 根据权利要求1所述的测量装置,其中,设置有具有一吸附面的用于吸附所述待镀膜模组的真空吸附装置,所述第一石英晶振片、第二石英晶振片安置高度与所述待镀膜模组相同。
  6. 根据权利要求1-5中任意一项所述的测量装置,其中,所述第二石英晶振片的数量为多个,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振 片各自对应的频率变化中间值,并取所有频率变化中间值的平均值作为频率变化修正值。
  7. 一种镀膜设备,包括一镀膜机,用于向待镀膜模组镀膜,所述镀膜设备还包括一测量装置,所述测量装置包括:
    第一石英晶振片,在镀膜过程中一起被镀膜;
    第二石英晶振片,和第一石英晶振片相同,在镀膜的过程中被遮挡,不会被镀膜;
    激励源产生单元,用于产生并输出交变电流到所述第一石英晶振片和第二石英晶振片;
    第一计算模块,用于根据所述第一石英晶振片在镀膜过程中响应于所述交变电流产生的第一响应信号计算频率变化初始值;
    第二计算模块,用于根据所述第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算频率变化修正值;
    第三计算模块,用于利用所述频率变化修正值修正所述频率变化初始值得到的频率变化目标值计算膜层厚度。
  8. 根据权利要求7所述的镀膜设备,其中,所述频率变化目标值等于频率变化初始值与频率变化修正值的差值。
  9. 根据权利要求7所述的镀膜设备,其中,还包括:
    一遮挡模块,用于在镀膜过程中遮挡所述第二石英晶振片,使所述第二石英晶振片不会被镀膜。
  10. 根据权利要求9所述的镀膜设备,其中,所述第一石英晶振片和第二石英晶振片环形排列,所述遮挡模块为一设置有一通孔的可旋转遮挡片,所述遮挡片能够通过旋转使得所述通孔位于不同石英晶振片的上方。
  11. 根据权利要求7所述的镀膜设备,其中,还包括:
    控制器,用于根据所述膜层厚度实际值控制镀膜机的镀膜厚度。
  12. 根据权利要求7所述的镀膜设备,其中,所述镀膜机上设置有一具有一吸附面的用于吸附所述待镀膜模组的真空吸附装置,所述第一石英晶振片、第二石英晶振片安置高度与所述待镀膜模组相同。
  13. 根据权利要求7-12中任意一项所述的镀膜设备,其中,所述第二石 英晶振片的数量为多个,所述第二计算模块具体用于根据每一个第二石英晶振片在镀膜过程中响应于所述交变电流产生的第二响应信号计算第二石英晶振片各自对应的频率变化中间值,并取所有频率变化中间值的平均值作为频率变化修正值。
PCT/CN2014/085658 2014-05-13 2014-09-01 一种测量装置及镀膜设备 WO2015172463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/917,050 US20160216099A1 (en) 2014-05-13 2014-09-01 Measurement apparatus and film-coating device
EP14891722.2A EP3144411B1 (en) 2014-05-13 2014-09-01 Measurement apparatus and coating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410200994 2014-05-13
CN201410200994.1 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015172463A1 true WO2015172463A1 (zh) 2015-11-19

Family

ID=51909500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085658 WO2015172463A1 (zh) 2014-05-13 2014-09-01 一种测量装置及镀膜设备

Country Status (4)

Country Link
US (1) US20160216099A1 (zh)
EP (1) EP3144411B1 (zh)
CN (1) CN104165573B (zh)
WO (1) WO2015172463A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002474B (zh) * 2015-07-30 2017-10-03 东莞市华星镀膜科技有限公司 一种维持镀膜机连续工作的晶振片更换系统及其更换工艺
CN105486215A (zh) * 2015-12-15 2016-04-13 苏州晶鼎鑫光电科技有限公司 一种镀膜膜厚监测方法
CN105908133B (zh) * 2016-04-29 2018-07-31 成都西沃克真空科技有限公司 一种共蒸设备
CN106092002A (zh) * 2016-06-07 2016-11-09 应达利电子股份有限公司 用于成膜厚度监测的石英晶体谐振器、监测仪及监测方法
JP2018538429A (ja) * 2016-10-25 2018-12-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 堆積速度を測定するための測定アセンブリ、蒸発源、堆積装置及びそのための方法
CN107565062B (zh) * 2017-07-20 2019-10-11 武汉华星光电半导体显示技术有限公司 膜厚监控仪与蒸镀机
KR101870581B1 (ko) * 2017-09-29 2018-06-22 캐논 톡키 가부시키가이샤 수정진동자의 수명 판정방법, 막두께 측정장치, 성막방법, 성막장치, 및 전자 디바이스 제조방법
CN107779822B (zh) * 2017-10-30 2019-12-03 深圳市华星光电半导体显示技术有限公司 蒸镀装置与蒸镀方法
CN108893710B (zh) * 2018-07-26 2020-07-21 京东方科技集团股份有限公司 掩模板、蒸镀掩模板组件及其制造方法、蒸镀设备
CN108823545B (zh) 2018-09-07 2020-11-24 京东方科技集团股份有限公司 晶振探头结构和蒸镀装置
JP7253352B2 (ja) * 2018-10-22 2023-04-06 キヤノントッキ株式会社 成膜装置、下地膜形成方法、および成膜方法
CN111101098B (zh) * 2018-10-26 2021-11-16 合肥欣奕华智能机器有限公司 一种蒸镀控制方法及蒸镀控制系统
CN109797372B (zh) * 2019-03-28 2021-04-20 京东方科技集团股份有限公司 一种镀膜检测装置、镀膜设备及检测片切换方法
CN110670044B (zh) * 2019-11-27 2021-10-01 昆山国显光电有限公司 成膜厚度检测装置、检测方法以及蒸镀设备
CN111238358B (zh) * 2020-02-25 2021-06-04 山东大学 基于电阻值测试的刀具涂层厚度测量电极、装置及方法
CN111829428B (zh) * 2020-06-17 2022-02-15 华中科技大学 一种双石英晶振膜厚控制仪及误差校正方法
CN112697081B (zh) * 2020-12-15 2022-10-21 江苏集萃有机光电技术研究所有限公司 一种膜厚测量系统及方法
CN113278945B (zh) * 2021-05-10 2023-09-01 布勒莱宝光学设备(北京)有限公司 一种膜厚监控装置、镀膜设备及膜厚监控方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122200A (ja) * 2006-11-10 2008-05-29 Ulvac Japan Ltd 膜厚測定方法
CN102465262A (zh) * 2010-11-04 2012-05-23 佳能株式会社 成膜装置
CN103469172A (zh) * 2013-08-31 2013-12-25 上海膜林科技有限公司 石英晶体镀膜厚度控制方法及石英晶体镀膜装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174411A (ja) * 1988-12-27 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> 水晶膜厚モニタ
US6668618B2 (en) * 2001-04-23 2003-12-30 Agilent Technologies, Inc. Systems and methods of monitoring thin film deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122200A (ja) * 2006-11-10 2008-05-29 Ulvac Japan Ltd 膜厚測定方法
CN102465262A (zh) * 2010-11-04 2012-05-23 佳能株式会社 成膜装置
CN103469172A (zh) * 2013-08-31 2013-12-25 上海膜林科技有限公司 石英晶体镀膜厚度控制方法及石英晶体镀膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3144411A4 *

Also Published As

Publication number Publication date
CN104165573B (zh) 2016-05-11
US20160216099A1 (en) 2016-07-28
CN104165573A (zh) 2014-11-26
EP3144411A4 (en) 2017-10-18
EP3144411A1 (en) 2017-03-22
EP3144411B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2015172463A1 (zh) 一种测量装置及镀膜设备
JP4818073B2 (ja) 膜厚測定方法
CN105088171B (zh) 基于石英振荡式膜厚监视器的膜厚控制方法
CN103469172B (zh) 石英晶体镀膜厚度控制方法及石英晶体镀膜装置
TWI539637B (zh) 真空氣相沉積系統
CN111829428B (zh) 一种双石英晶振膜厚控制仪及误差校正方法
JP2012112035A (ja) 真空蒸着装置
CN106232858A (zh) 成膜装置、有机膜的膜厚测量方法以及有机膜用膜厚传感器
JP2014515789A (ja) 蒸着アプリケーションのための測定装置及び方法
KR20120047808A (ko) 성막 장치 및 성막 방법
JP2019137877A (ja) 蒸着装置及び蒸着方法
JP2006181566A (ja) スリット式塗布方法、スリット式塗布工程の膜厚リアルタイム監視方法およびその装置
TWI805785B (zh) 用於導電膜層厚度測量的方法、裝置、及系統
JP2016181468A (ja) 有機el表示装置の製造方法、膜厚測定器
TWI607593B (zh) 有機膜厚度測量單元及具彼之沉積設備
CN112458407B (zh) 一种晶振测量系统及测量方法和装置
JP6564745B2 (ja) 膜厚センサ
CN106548956A (zh) 一种蒸发沉积薄膜的厚度量测方法
JP2009228062A (ja) スパッタ成膜装置及びスパッタ成膜方法
JP2019099870A (ja) 蒸着装置及び蒸着方法
CN106104251A (zh) 膜厚监视装置用传感器、具备该膜厚监视装置用传感器的膜厚监视装置以及膜厚监视装置用传感器的制造方法
JP2009221496A (ja) 薄膜形成装置及び薄膜の製造方法
JP2009149919A (ja) 膜厚モニタ装置及びこれを備える成膜装置
JP6412384B2 (ja) 水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、および成膜制御装置の製造方法
TWI649908B (zh) 薄膜沉積裝置及使用其沉積薄膜之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891722

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014891722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917050

Country of ref document: US

Ref document number: 2014891722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE