WO2015169132A1 - 一种制备热喷涂用WC-Co粉末的方法 - Google Patents

一种制备热喷涂用WC-Co粉末的方法 Download PDF

Info

Publication number
WO2015169132A1
WO2015169132A1 PCT/CN2015/075274 CN2015075274W WO2015169132A1 WO 2015169132 A1 WO2015169132 A1 WO 2015169132A1 CN 2015075274 W CN2015075274 W CN 2015075274W WO 2015169132 A1 WO2015169132 A1 WO 2015169132A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
cobalt
cobalt salt
coated
water
Prior art date
Application number
PCT/CN2015/075274
Other languages
English (en)
French (fr)
Inventor
戴煜
谭兴龙
邓军旺
王艳艳
Original Assignee
湖南顶立科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南顶立科技有限公司 filed Critical 湖南顶立科技有限公司
Publication of WO2015169132A1 publication Critical patent/WO2015169132A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • the invention relates to the technical field of thermal spraying materials, in particular to a method for preparing WC-Co powder for thermal spraying.
  • WC-Co-based cermet is the most studied and widely used cermet in carbide-based cermet.
  • the thermal spray coating of WC-Co cermet is widely used in aerospace, due to its good hardness and toughness. Automotive, metallurgy, machinery and other fields.
  • the preparation of WC-Co powder coating by supersonic flame spraying (HVOF) technology is a research hotspot, which can replace the hard chrome technology with high energy consumption and serious pollution to solve the wear resistance of spacecraft and repair worn parts.
  • HVOF supersonic flame spraying
  • the preparation method of WC-Co powder for metal thermal spraying WC-Co powder includes melting method, sintering-crushing method, plasma spheroidizing method and agglomeration sintering (spray granulation)-crushing method, etc., but melting
  • the spray powder produced by the method and the sintering crushing method has irregular morphology, poor sphericity, poor flowability, low powder deposition rate, poor bonding strength between the coating and the substrate, and cracks and even peeling of the coating during use. And the failure, while the production process brings dust and noise pollution to the surrounding environment.
  • the equipment is required to be high and the production cost is high.
  • the thermal spraying powder with excellent performance can be obtained, the powder has a long holding time in the high-temperature sintering process, consumes a large amount of energy, and the powder after sintering is bonded in a block shape, and needs to be crushed. Grading, prolonging the production cycle, increases production costs.
  • a spray granulation method is one of the current industrial production methods of WC-Co powder metal thermal spraying.
  • the application numbers are CN201110336004.3, CN201210061980.7, CN201110321680.3 and CN201210370225.7.
  • the preparation of WC-Co thermal spray powder by spray granulation method is basically the same.
  • a thermally sprayed tungsten carbide-cobalt composite powder with excellent properties was prepared.
  • these methods have the problems of adding a molding agent during the preparation process, increasing the subsequent dewaxing process, crushing and sieving, and causing pollution to the environment during the dewaxing process.
  • the method provided by the present invention avoids dewaxing, crushing and sieving, shortens the process flow, and uniformly coats the WC grains in the Co phase.
  • the present invention provides a method of preparing a WC-Co powder for thermal spraying, comprising the steps of:
  • the mixed slurry is ball milled and then spray granulated to obtain a cobalt salt coated WC precursor powder;
  • the cobalt salt is coated with a WC precursor powder to carry out reduction carbonization to obtain a WC-Co powder.
  • the water-soluble cobalt salt is one or more of cobalt nitrate, cobalt acetate, cobalt chloride and cobalt sulfate.
  • the mass ratio of the tungsten carbide, the water-soluble cobalt salt and the carbon source is a:b:c, 50 ⁇ a ⁇ 70, 28 ⁇ b ⁇ 49, 0 ⁇ c ⁇ 2.
  • the tungsten carbide has a particle size of 0.1 ⁇ m to 8.0 ⁇ m.
  • the carbon source comprises one or more of carbon black, lamp black, carbon nanotubes and organic carbon.
  • the mixed slurry has a mass content of cobalt of from 3 wt% to 20 wt%.
  • the reduction carbonization is carried out in an atmosphere of a reducing gas
  • the reducing gas includes hydrogen and methane.
  • the volume ratio of the hydrogen gas to the methane is (90 to 99): (1 to 10).
  • the temperature of the reduction carbonization is 950 ° C to 1350 ° C.
  • the reduction carbonization time is from 5 min to 60 min.
  • the present invention provides a method for preparing a WC-Co powder for thermal spraying, comprising the steps of: mixing tungsten carbide, a water-soluble cobalt salt, a carbon source and water to obtain a mixed slurry; and grinding and mixing the mixed slurry. Thereafter, spray granulation is carried out to obtain a cobalt salt-coated WC precursor powder; the cobalt salt is coated with the WC precursor powder to carry out reduction carbonization to obtain a WC-Co powder.
  • the method provided by the invention uses a water-soluble cobalt salt as a cobalt source, and prepares a cobalt salt-coated WC precursor powder by a liquid phase method, so that cobalt is coated on the surface of the WC as a solution ion, and the cobalt salt is coated.
  • the WC precursor powder is reduced in carbonization to obtain a WC-Co powder.
  • the invention adopts water-soluble cobalt salt and organic carbon instead of forming agent to avoid dewaxing, and does not need to crush and sieve the obtained product, thereby shortening the process flow.
  • the method provided by the present invention avoids the direct addition of cobalt metal to segregate the components caused by the uneven mixing.
  • the WC-Co powder prepared by the invention has high free carbon content, so that no decarburization phase is generated at high temperature during thermal spraying on the surface of the base material; and the invention can be reduced to carbonized into spherical WC at low temperature.
  • Co powder can be used as thermal spray powder, uniform particle size; low energy consumption, low equipment investment; controllable composition, uniform powder composition, no W 2 C, ⁇ -Co 3 W 3 C, ⁇ -Co 6 W in the composition 6 C, metal tungsten, etc.; high sphericity and good fluidity, no decarburization phase and phase decomposition of the sprayed substrate surface.
  • FIG. 1 is a schematic flow chart of preparing a WC-Co powder according to an embodiment of the present invention
  • Example 2 is a SEM photograph of a precursor powder obtained in Example 2 of the present invention at 2000 magnifications;
  • Example 3 is a SEM photograph of 2000 times magnification of WC-Co powder obtained in Example 2 of the present invention.
  • Example 4 is an XRD photograph of a cobalt-coated nano WC obtained in Example 2 of the present invention.
  • Fig. 6 is a photograph showing a metallographic photograph of a WC-Co powder obtained in the second embodiment of the present invention at a magnification of 1000 and 1500 times.
  • the present invention provides a method of preparing a WC-Co powder for thermal spraying, comprising the steps of:
  • the mixed slurry is ball milled and then spray granulated to obtain a cobalt salt coated WC precursor powder;
  • the cobalt salt is coated with a WC precursor powder to carry out reduction carbonization to obtain a WC-Co powder.
  • the invention adopts water-soluble cobalt salt and organic carbon instead of forming agent to avoid dewaxing, and does not need to crush and sieve the obtained product, thereby shortening the process flow.
  • the water-soluble cobalt salt is used as the cobalt source, and when the cobalt salt-coated WC precursor powder is prepared by the liquid phase method, the cobalt is uniformly mixed in a molecular form without causing segregation of components.
  • the WC-Co powder prepared by the invention has uniform particle size, high sphericity, good fluidity, and uniform and controllable composition, and does not decompose the decarburized camera phase on the surface of the sprayed substrate when used for thermal spraying.
  • the present invention mixes tungsten carbide, a water-soluble cobalt salt, a carbon source and water to obtain a mixed slurry.
  • tungsten carbide, a water-soluble cobalt salt and a carbon source are preferably added to water and mixed to obtain a mixed slurry.
  • the water-soluble cobalt salt is preferably one or more of cobalt nitrate, cobalt acetate, cobalt chloride and cobalt sulfate, more preferably cobalt acetate;
  • the carbon source preferably comprises carbon black, lamp black One or more of carbon nanotubes and organic carbon, more preferably carbon black, lamp black, ethylene diamine, fiber, pulp, acetylene black, carbon nanotubes, glucose, polyacrylonitrile, syrup and sucrose One or several; in an embodiment of the invention, the water may be pure water.
  • the grain size of the tungsten carbide is preferably from 0.1 ⁇ m to 8.0 ⁇ m, more preferably from 0.2 ⁇ m to 1.0 ⁇ m; in the embodiment of the present invention, the tungsten carbide may have a particle size of from 0.5 ⁇ m to 0.6 ⁇ m.
  • the present invention has no particular limitation on the source of the tungsten carbide, the water-soluble cobalt salt, the carbon source and the water, and the tungsten carbide, the water-soluble cobalt salt, the carbon source and the water which are well known to those skilled in the art can be used, for example, the city can be used. Selling goods. Specifically, in the embodiment of the present invention, a commercially available tungsten carbide having a grade of GWC002 may be used.
  • the mass ratio of the tungsten carbide, the water-soluble cobalt salt and the carbon source is preferably a:b:c, 50 ⁇ a ⁇ 70, 28 ⁇ b ⁇ 49, 0 ⁇ c ⁇ 2, more preferably 55 ⁇ a ⁇ 65, 30 ⁇ b ⁇ 45, 0.5 ⁇ c ⁇ 1.5;
  • the mass ratio of the total mass of the tungsten carbide, the water-soluble cobalt salt and the carbon source to water is preferably 1: (0.5 to 3), more preferably 1: (1 to 2.5), most preferably 1: (1.5 to 2.0);
  • the mass content of cobalt in the mixed slurry is preferably from 3% by weight to 20% by weight, more preferably from 5% by weight to 18% by weight, most preferably 6% by weight. % ⁇ 17wt%.
  • the mixed slurry is ball milled and then spray granulated to obtain a cobalt salt coated WC precursor powder.
  • the method for ball milling and mixing in the present invention is not particularly limited, and a technical solution of ball milling and mixing well known to those skilled in the art may be employed, such as rolling ball milling.
  • the time for the ball mill to mix is preferably from 3 h to 12 h, more preferably from 4 h to 12 h, and most preferably from 6 h to 10 h.
  • the inlet blasting temperature of the spray granulation is preferably from 180 ° C to 300 ° C, more preferably from 200 ° C to 280 ° C, most preferably from 220 ° C to 260 ° C; and the outlet blasting temperature of the spray granulation is preferably It is 80 ° C to 180 ° C, more preferably 100 ° C to 170 ° C, most preferably 120 ° C to 160 ° C; the centrifugal atomization rotational speed of the spray granulation is preferably from 6000 r / min to 15000 r / min, more preferably 8000 r / From min to 13500 r/min, most preferably from 10,000 r/min to 12000 r/min.
  • the present invention reduces carbonization of the cobalt salt-coated precursor to obtain a WC-Co powder.
  • the present invention preferably reductively carbonizes the cobalt salt precursor in a reducing gas atmosphere, preferably including hydrogen and methane.
  • the volume ratio of the hydrogen gas to the methane is preferably (90 to 99): (1 to 10), more preferably (95 to 99): (1 to 5), and most preferably (98 to 99). : (1 to 2).
  • the temperature of the reduction carbonization is preferably 950 ° C to 1350 ° C, more preferably 1100 to 1300 ° C, most preferably 1150 ° C to 1250 ° C;
  • the reduction carbonization time is preferably 5 min to 60 min, more preferably It is 10 min to 40 min, and most preferably 20 min to 30 min.
  • FIG. 1 is a schematic flow chart of preparing a WC-Co powder according to an embodiment of the present invention.
  • a tungsten carbide, a cobalt acetate, and an organic carbon are formulated into a mixed slurry; and the mixed slurry is subjected to ball milling and then spray granulated.
  • the coated WC precursor powder is reduced in carbonization to obtain a WC-Co powder.
  • the present invention performs scanning electron microscopy scanning analysis on the obtained cobalt salt-coated WC precursor powder and WC-Co powder, and as a result, it can be seen that the cobalt salt-coated WC precursor powder and WC-Co powder obtained by the method provided by the present invention are obtained. Uniform particle size, high sphericity, and thus higher fluidity;
  • the WC-Co powder obtained by the invention is subjected to X-ray diffraction analysis, and the results show that the cobalt-coated nano WC-Co component obtained by the method provided by the invention is uniform, and no W 2 C, ⁇ -Co 3 W 3 C, ⁇ -Co 6 W 6 C, metal tungsten, etc.; the content of free carbon is high, so that it does not generate a decarburization phase at a high temperature on the surface of the base material when used for thermal spraying.
  • the present invention provides a method for preparing a WC-Co powder for thermal spraying, comprising the steps of: mixing tungsten carbide, a water-soluble cobalt salt, a carbon source and water to obtain a mixed slurry; and grinding and mixing the mixed slurry Thereafter, spray granulation is carried out to obtain a cobalt salt-coated WC precursor powder; the cobalt salt is coated with the WC precursor powder to carry out reduction carbonization to obtain a WC-Co powder.
  • the method provided by the invention uses a water-soluble cobalt salt as a cobalt source, and prepares a cobalt salt-coated WC precursor powder by a liquid phase method, so that cobalt is uniformly coated on the surface of the WC in a molecular form, and then the cobalt salt is coated.
  • the WC precursor powder is reduced in carbonization to obtain a WC-Co powder.
  • the invention adopts water-soluble cobalt salt and organic carbon instead of forming agent to avoid dewaxing, and does not need to crush and sieve the obtained product, thereby shortening the process flow.
  • the method provided by the present invention avoids the direct addition of cobalt metal to segregate the components caused by the uneven mixing.
  • the WC-Co powder prepared by the invention has high free carbon content, so that no decarburization phase is generated at high temperature during thermal spraying on the surface of the base material; and the invention can be reduced to carbonized into spherical WC at low temperature.
  • Co powder can be used as thermal spray powder, uniform particle size; low energy consumption, low equipment investment; controllable composition, uniform powder composition, no W 2 C, ⁇ -Co 3 W 3 C, ⁇ -Co 6 W in the composition 6 C, metal tungsten, etc.; high sphericity and good fluidity, no decarburization phase and phase decomposition of the sprayed substrate surface.
  • step 2) After the ball slurry obtained in the step 1) is ball milled for 6 hours, spray granulation is carried out.
  • the inlet air temperature is 260 ° C
  • the outlet air temperature is 160 ° C
  • the centrifugal atomization speed is 12000 r/min. , obtaining a cobalt salt coated WC precursor powder;
  • Table 1 shows the physical properties and chemical compositions of the WC-Co powders obtained in the examples of the present invention.
  • step 2) After the ball slurry obtained in the step 1) is ball milled for 8 hours, spray granulation is carried out.
  • the inlet air temperature is 260 ° C
  • the outlet air temperature is 140 ° C
  • the centrifugal atomization rotation speed is 10000 r / min. , obtaining a cobalt salt coated WC precursor powder;
  • FIG. 2 is a SEM photograph of the precursor powder obtained in Example 2 of the present invention at 2000 times magnification. As can be seen from FIG. 2, the present invention The obtained precursor powder has a uniform particle size and a spherical shape;
  • the invention performs scanning electron microscopy scanning analysis on the obtained WC-Co powder, and the result is shown in FIG. 3 is a SEM photograph of 2000 times magnification of the WC-Co powder obtained in Example 2 of the present invention.
  • the WC-Co powder prepared by the present invention has uniform particle size and high sphericity.
  • FIG. 4 is an XRD photograph of the cobalt-coated nano WC obtained in Example 2 of the present invention, as can be seen from FIG.
  • the WC-Co powder component prepared by the invention is uniformly mixed; W2C, ⁇ (Co 3 W 3 C, Co 6 W 6 C), metal tungsten or the like does not appear in the WC-Co powder.
  • FIG. 5 is a magnified 5000 of cobalt-coated nano WC-Co powder obtained in Example 2 of the present invention.
  • the SEM photograph and the surface distribution of the W and Co elements are doubled, wherein (a) is a SEM photograph of the cobalt-coated nano-WC-Co powder obtained in Example 2 of the present invention at a magnification of 5000 times, and (b) is Example 2 of the present invention.
  • the obtained cobalt-coated nano-WC-Co powder is magnified 5000 times under the W element surface distribution photograph
  • (c) is a cobalt-coated nano-WC-Co powder obtained in Example 2 of the present invention, magnified 5000 times under the Co element surface distribution photo
  • the WC-Co powder prepared by the invention has a uniform distribution of W and Co phases, and the Co phase uniformly coats the WC grains.
  • FIG. 6 is a metallographic profile of the cobalt-coated nano-WC-Co powder obtained in Example 2 of the present invention at 1000 and 1500 times magnification.
  • Photograph (a) is a photograph of a metallographic cross-section of a cobalt-coated nano-WC-Co powder obtained in Example 2 of the present invention at a magnification of 1000 times, and (b) a magnified cobalt-coated nano-WC-Co obtained in Example 2 of the present invention.
  • Table 1 shows the physical properties and chemical compositions of the WC-Co powders obtained in the examples of the present invention.
  • step 2) After the mixture slurry obtained in the step 1) is ball-milled for 8 hours, spray granulation is carried out.
  • the inlet air temperature is 260 ° C
  • the outlet air temperature is 160 ° C
  • the centrifugal atomization rotation speed is 10000 r / min. , obtaining a cobalt salt coated WC precursor powder;
  • Table 1 shows the physical properties and chemical compositions of the WC-Co powders obtained in the examples of the present invention.
  • the WC-Co powder prepared by the invention has uniform particle size, uniform and controllable composition, and does not cause component segregation; and the WC-Co powder prepared by the invention has high free carbon content, so that the body is made. During the thermal spraying process, the sprayed powder does not produce a decarburized phase at high temperatures.
  • the present invention provides a method for preparing a WC-Co powder for thermal spraying, comprising the steps of: mixing tungsten carbide, a water-soluble cobalt salt, a carbon source and water to obtain a mixed slurry; The mixed slurry is ball milled and mixed, and then spray granulated to obtain a cobalt salt coated WC precursor powder; the cobalt salt is coated with the WC precursor powder for reduction carbonization to obtain a WC-Co powder.
  • the method provided by the invention uses a water-soluble cobalt salt as a cobalt source, and prepares a cobalt salt-coated WC precursor powder by a liquid phase method, so that the cobalt is coated in a solution ion form. On the surface of the WC, the cobalt salt-coated WC precursor powder is reduced and carbonized to obtain a WC-Co powder.
  • the invention adopts water-soluble cobalt salt and organic carbon instead of forming agent to avoid dewaxing, and does not need to crush and sieve the obtained product, thereby shortening the process flow.
  • the method provided by the present invention avoids the direct addition of cobalt metal to segregate the components caused by the uneven mixing.
  • the WC-Co powder prepared by the invention has high free carbon content, so that no decarburization phase is generated at high temperature during thermal spraying on the surface of the base material; and the invention can be reduced to carbonized into spherical WC at low temperature.
  • Co powder can be used as thermal spray powder, uniform particle size; low energy consumption, low equipment investment; controllable composition, uniform powder composition, no W 2 C, ⁇ -Co 3 W 3 C, ⁇ -Co 6 W in the composition 6 C, metal tungsten, etc.; high sphericity and good fluidity, no decarburization phase and phase decomposition of the sprayed substrate surface.
  • the method for preparing WC-Co powder uses a water-soluble cobalt salt as a cobalt source, and prepares a cobalt salt-coated WC precursor powder by a liquid phase method, so that cobalt is uniformly coated on the surface of the WC in a solution molecular level form. Then, the cobalt salt coated WC precursor powder is reduced and carbonized to obtain a WC-Co powder.
  • the WC-Co powder obtained by the invention has uniform particle size, controllable composition, uniform powder composition, no W 2 C, ⁇ -Co 3 W 3 C, ⁇ -Co 6 W 6 C, metal tungsten, etc. in the composition; high sphericity And the fluidity is good, the decarburization phase and the decomposition of the phase do not occur on the surface of the sprayed substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种制备WC-Co粉末的方法,包括以下步骤:将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;将所述混合料浆球磨混匀后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。本方法以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末,使得钴以溶液分子级形式均匀包覆在WC的表面,再将所述钴盐包覆WC前驱体粉末还原碳化,得到WC-Co粉末。WC-Co粉末粒度均匀、成分可控,粉末成分均匀、成分中未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;球形度高及流动性好,喷涂基体表面不发生脱碳相及相的分解。

Description

一种制备热喷涂用WC-Co粉末的方法 技术领域
本发明涉及热喷涂材料技术领域,尤其涉及一种制备热喷涂用WC-Co粉末的方法。
背景技术
WC-Co基金属陶瓷是碳化物基金属陶瓷中研究最多、应用最广的金属陶瓷,其中WC-Co金属陶瓷的热喷涂涂层,由于其良好的硬度和韧性,广泛地应用于航空航天、汽车、冶金、机械等领域。利用超音速火焰喷涂(HVOF)技术制备WC-Co粉末系涂层是研究的热点,可替代能耗高、污染严重的电镀硬铬技术,以解决航天器的耐磨性能及修复磨损部件。
现有技术中,WC-Co粉末系金属热喷涂用WC-Co粉末的制备方法包括熔化法、烧结-破碎法、等离子体球化法和团聚烧结(喷雾造粒)-破碎法等,但是熔化法、烧结破碎法生产的喷涂粉末颗粒形貌不规则,球形度较差,流动性能差,粉末沉积率较低,涂层与基体结合强度较差,使用过程中涂层易出现裂纹甚至剥落现象而失效,同时生产过程中给周围环境带来粉尘和噪音污染。对于等离子体球化法,由于整个球化过程是在高温和保护气氛环境中进行的,对设备要求高,生产成本高昂。对于传统团聚烧结-破碎法,虽然也能获得性能优良的热喷涂粉末,但粉末在高温烧结过程中保温时间较长,耗能大,且烧结后的粉末粘结呈块状,需进行破碎、分级,延长了生产周期,使得生产成本升高。
目前发展了一种喷雾造粒法,其是目前工业化生产WC-Co粉末系金属热喷涂方法之一。如申请号为CN201110336004.3、CN201210061980.7、CN201110321680.3和CN201210370225.7均是采用喷雾造粒法进行WC-Co热喷涂粉末的制备,原理基本相同,都能够 制备出性能优异热喷涂碳化钨钴复合粉。但是,这些方法存在制备过程中需要添加成型剂,增加后续脱蜡工艺、破碎和筛分,同时脱蜡过程对环境产生污染等问题。
发明内容
本发明的目的在于提供一种制备热喷涂用热喷涂用WC-Co粉末的方法,本发明提供的方法避免脱蜡、破碎和筛分,缩短了工艺流程、Co相均匀包覆WC晶粒。
本发明提供了一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:
将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;
将所述混合料浆球磨后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;
将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。
优选的,所述水溶性钴盐为硝酸钴、醋酸钴、氯化钴和硫酸钴中一种或几种。
优选的,所述碳化钨、水溶性钴盐和碳源的质量比为a∶b∶c,50≤a≤70,28≤b≤49,0<c≤2。
优选的,所述碳化钨的粒度为0.1μm~8.0μm。
优选的,所述碳源包括炭黑、灯黑、碳纳米管和有机碳中的一种或几种。
优选的,所述混合料浆中钴的质量含量为3wt%~20wt%。
优选的,所述还原碳化在还原气体的气氛中进行;
所述还原气体包括氢气和甲烷。
优选的,所述氢气和甲烷的体积比为(90~99)∶(1~10)。
优选的,所述还原碳化的温度为950℃~1350℃。
优选的,所述还原碳化的时间为5min~60min。
本发明提供了一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;将所述混合料浆球磨混匀后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。本发明提供的方法以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末,使得钴以溶液离子形式包覆在WC的表面,再将所述钴盐包覆WC前驱体粉末还原碳化,得到WC-Co粉末。本发明采用水溶性钴盐和有机碳代替成型剂,避免脱蜡,且无需对得到的产品进行破碎和筛分,缩短工艺流程。
而且,本发明提供的方法避免直接添加钴金属使混合不均匀造成的成分偏析。同时本发明制备得到的WC-Co粉末中游离碳含量高,使其在基体材料表面热喷涂过程中,在高温下不产生脱碳相;同时本发明在低温下就可还原碳化成球形WC-Co粉末,可用作热喷涂粉,粒度均匀;能耗低,设备投资小;成分可控,粉末成分均匀、成分中未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;球形度高及流动性好,喷涂基体表面不发生脱碳相及相的分解。
附图说明
图1为本发明实施例提供的制备WC-Co粉末的流程示意图;
图2为本发明实施例2得到的前驱体粉末放大2000倍的SEM照片;
图3为本发明实施例2得到的WC-Co粉末放大2000倍的SEM照片;
图4为本发明实施例2得到的钴包覆纳米WC的XRD照片;
图5为本发明实施列2得到的WC-Co粉末放大5000倍下SEM照片及W、Co元素面分布照片;
图6为本发明实施列2得到的WC-Co粉末放大1000、1500倍下剖面的金相照片。
具体实施方式
本发明提供了一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:
将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;
将所述混合料浆球磨后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;
将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。
本发明采用水溶性钴盐和有机碳代替成型剂,避免脱蜡,且无需对得到的产品进行破碎和筛分,缩短工艺流程。本发明以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末时,钴以分子形式混合均匀,不会造成成分偏析。本发明制备得到的WC-Co粉末粒度均匀,球形度高、流动性好,且成分均匀可控,作为热喷涂用时喷涂基体表面不发生脱碳相机相的分解。
本发明将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆。本发明优选将碳化钨、水溶性钴盐和碳源加入到水中,混匀得到混合料浆。在本发明中,所述水溶性钴盐优选为硝酸钴、醋酸钴、氯化钴和硫酸钴中的一种或几种,更优选为醋酸钴;所述碳源优选包括炭黑、灯黑、碳纳米管和有机碳中的一种或几种,更优选为炭黑、灯黑、乙二胺、纤维、纸浆、乙炔黑、碳纳米管、葡萄糖、聚丙烯腈、糖浆和蔗糖中的一种或几种;在本发明的实施例中,所述水可以为纯水。在本发明中,所述碳化钨的粒度优选为0.1μm~8.0μm,更优选为0.2μm~1.0μm;在本发明的实施例中,所述碳化钨的粒度可以为0.5μm~0.6μm。
本发明对所述碳化钨、水溶性钴盐、碳源和水的来源没有特殊的限制,采用本领域技术人员熟知的碳化钨、水溶性钴盐、碳源和水即可,如可以采用市售商品。具体的,在本发明的实施例中,可以采用市售的牌号为GWC002的碳化钨。
在本发明中,所述碳化钨、水溶性钴盐和碳源的质量比优选为a∶b∶c,50≤a≤70,28≤b≤49,0<c≤2,更优选的55≤a≤65,30≤b≤45,0.5≤c≤1.5;所述碳化钨、水溶性钴盐和碳源的总质量与水的质量比优选为1∶(0.5~3),更优选为1∶(1~2.5),最优选为1∶(1.5~2.0);所述混合料浆中钴的质量含量优选为3wt%~20wt%,更优选为5wt%~18wt%,最优选为6wt%~17wt%。
得到混合料浆后,本发明将所述混合料浆球磨混匀后进行喷雾造粒,得到钴盐包覆WC前驱体粉末。本发明对所述球磨混匀的方法没有特殊的限制,采用本领域技术人员熟知的球磨混匀的技术方案即可,如可以采用滚动球磨。在本发明中,所述球磨混匀的时间优选为3h~12h,更优选为4h~12h,最优选为6h~10h。
在本发明中,所述喷雾造粒的进风温度优选为180℃~300℃,更优选为200℃~280℃,最优选为220℃~260℃;所述喷雾造粒的出风温度优选为80℃~180℃,更优选为100℃~170℃,最优选为120℃~160℃;所述喷雾造粒的离心雾化转速优选为6000r/min~15000r/min,更优选为8000r/min~13500r/min,最优选为10000r/min~12000r/min。
得到钴盐包覆WC前驱体粉末后,本发明将所述钴盐包覆前驱体还原碳化,得到WC-Co粉末。本发明优选将所述钴盐前驱体在还原气体气氛中进行还原碳化,所述还原气体优选包括氢气和甲烷。在本发明中,所述氢气和甲烷的体积比优选为(90~99)∶(1~10),更优选为(95~99)∶(1~5),最优选为(98~99)∶(1~2)。在本发明中,所述还原碳化的温度优选为950℃~1350℃,更优选为1100~1300℃,最优选为1150℃~1250℃;所述还原碳化的时间优选为5min~60min,更优选为10min~40min,最优选为20min~30min。
参见图1,图1为本发明实施例提供的制备WC-Co粉末的流程示意图,首先将碳化钨、醋酸钴和有机碳配制成混合料浆;再将混合料浆进行球磨后喷雾造粒,得到钴盐包覆WC前驱体粉末;再将所述钴盐 包覆WC前驱体粉末还原碳化,得到WC-Co粉末。
本发明对得到的钴盐包覆WC前驱体粉末和WC-Co粉末进行扫描电镜扫描分析,结果可以看出,本发明提供的方法得到的钴盐包覆WC前驱体粉末和WC-Co粉末的粒度均匀,球形度较高,进而具有较高的流动性;
本发明将得到的WC-Co粉末进行X-射线衍射分析,结果表明,本发明提供的方法得到的钴包覆纳米WC-Co成分均匀,未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;游离碳的含量较高,使其在用于热喷涂时在基体材料表面,在高温下不产生脱碳相。
本发明提供了一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;将所述混合料浆球磨混匀后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。本发明提供的方法以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末,使得钴以分子形式均匀包覆在WC的表面,再将所述钴盐包覆WC前驱体粉末还原碳化,得到WC-Co粉末。本发明采用水溶性钴盐和有机碳代替成型剂,避免脱蜡,且无需对得到的产品进行破碎和筛分,缩短工艺流程。
而且,本发明提供的方法避免直接添加钴金属使混合不均匀造成的成分偏析。同时本发明制备得到的WC-Co粉末中游离碳含量高,使其在基体材料表面热喷涂过程中,在高温下不产生脱碳相;同时本发明在低温下就可还原碳化成球形WC-Co粉末,可用作热喷涂粉,粒度均匀;能耗低,设备投资小;成分可控,粉末成分均匀、成分中未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;球形度高及流动性好,喷涂基体表面不发生脱碳相及相的分解。
为了进一步说明本发明,下面结合实施例对本发明提供的制备钴包覆纳米WC粉末的方法进行详细地描述,但不能将它们理解为对本 发明保护范围的限定。
实施例1
1)将粒度为0.5μm~0.6μm的50Kg碳化钨粉、21Kg醋酸钴和560g碳纳米管溶于质量是固体总质量1.5倍的纯水中,配制成钴含量为10wt%的混合料浆;
2)将步骤1)得到的混合料浆经球磨6小时后,进行喷雾造粒,喷雾造粒过程中,进风温度为260℃,出风温度为160℃,离心雾化转速为12000r/min,得到钴盐包覆WC前驱体粉末;
3)将步骤2)得到的前驱体粉末在1150℃条件下,在H2∶CH4(体积比)=98.5∶1.5的气氛下进行还原碳化60min,得到WC-Co粉末。
本发明检测了得到的WC-Co粉末的物理性能和化学组成,结果如表1所示,表1为本发明实施例得到的WC-Co粉末的物理性能和化学成分。
实施例2
1)将粒度0.5μm~0.6μm的50Kg碳化钨粉、29Kg醋酸钴、600g炭黑溶于质量是固体总质量1.8倍的纯水中,配制成钴含量为12wt%的混合料浆;
2)将步骤1)得到的混合料浆经球磨8小时后,进行喷雾造粒,喷雾造粒过程中,进风温度为260℃,出风温度为140℃,离心雾化转速为10000r/min,得到钴盐包覆WC前驱体粉末;
本发明将得到的前驱体粉末进行扫描电镜扫描分析,结果如图2所示,图2为本发明实施例2得到的前驱体粉末放大2000倍的SEM照片,由图2可以看出,本发明得到的前驱体粉末粒径均一,形状为球形;
3)将步骤2)得到的前驱体粉末在1250℃条件,在H2∶CH4(体积比)=98.65∶1.35的气氛下进行还原碳化40min,得到WC-Co粉末。
本发明对得到的WC-Co粉末进行扫描电镜扫描分析,结果如图3 所示,图3为本发明实施例2得到的WC-Co粉末放大2000倍的SEM照片,由图3可以看出,本发明制备得到的WC-Co粉末粒度均匀,球形度高。
本发明将得到的WC-Co粉末进行X-射线衍射分析,结果如图4所示,图4为本发明实施例2得到的钴包覆纳米WC的XRD照片,由图4可以看出,本发明制备得到的WC-Co粉末成分混合均匀;WC-Co粉末中未出现W2C、η(Co3W3C、Co6W6C)、金属钨等。
本发明将得到的WC-Co粉末进行场发射扫描电镜放大5000倍下元素面分布照片,结果如图5所示,图5为本发明实施例2得到的钴包覆纳米WC-Co粉末放大5000倍下SEM照片及W、Co元素面分布照片,其中(a)为本发明实施例2得到的钴包覆纳米WC-Co粉末放大5000倍下的SEM照片,(b)为本发明实施例2得到的钴包覆纳米WC-Co粉末放大5000倍下W元素面分布照片,(c)为本发明实施例2得到的钴包覆纳米WC-Co粉末放大5000倍下Co元素面分布照片,由图5可以看出,本发明制备得到的WC-Co粉末、W、Co相分布均匀,Co相均匀包覆WC晶粒。
本发明将得到的WC-Co粉末进行剖面金相分析照片,结果如图6所示,图6为本发明实施例2得到的钴包覆纳米WC-Co粉末放大1000、1500倍下金相剖面照片,其中(a)为本发明实施例2得到的钴包覆纳米WC-Co粉末放大1000倍下金相剖面照片,(b)为本发明实施例2得到的钴包覆纳米WC-Co放大1500倍下金相剖面照片,由图6可以看出,本发明制备得到的WC-Co粉末、WC、Co相分布均匀。
本发明检测了得到的WC-Co粉末的物理性能和化学组成,结果如表1所示,表1为本发明实施例得到的WC-Co粉末的物理性能和化学成分。
实施例3
1)将粒度为0.5μm~0.6μm的50Kg碳化钨粉、43.5Kg醋酸钴、1.4Kg 蔗糖溶于质量为固体总质量3.0倍的纯水中,配制成钴含量为17wt%的混合料浆;
2)将步骤1)得到的混合料浆经球磨8小时后,进行喷雾造粒,在喷雾造粒中,进风温度为260℃,出风温度为160℃,离心雾化转速为10000r/min,得到钴盐包覆WC前驱体粉末;
3)将步骤2)得到的前驱体粉末在1250℃条件,在H2∶CH4(体积比)=98.5∶1.5的气氛下进行还原碳化30min,得到钴包覆纳米WC-Co粉末。
本发明检测了得到的WC-Co粉末的物理性能和化学组成,结果如表1所示,表1为本发明实施例得到的WC-Co粉末的物理性能和化学成分。
表1本发明实施例得到的WC-Co粉末的物理性能和化学成分
Figure PCTCN2015075274-appb-000001
由表1可以看出,本发明制备得到的WC-Co粉末粒度均匀,成分均匀可控,从而不会造成成分偏析;且本发明制备得到的WC-Co粉末中游离碳含量较高,使得机体材料表面在热喷涂过程中,喷涂粉在高温下不产生脱碳相。
由以上实施例可知,本发明提供了一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;将所述混合料浆球磨混匀后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。本发明提供的方法以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末,使得钴以溶液离子形式包覆 在WC的表面,再将所述钴盐包覆WC前驱体粉末还原碳化,得到WC-Co粉末。本发明采用水溶性钴盐和有机碳代替成型剂,避免脱蜡,且无需对得到的产品进行破碎和筛分,缩短工艺流程。
而且,本发明提供的方法避免直接添加钴金属使混合不均匀造成的成分偏析。同时本发明制备得到的WC-Co粉末中游离碳含量高,使其在基体材料表面热喷涂过程中,在高温下不产生脱碳相;同时本发明在低温下就可还原碳化成球形WC-Co粉末,可用作热喷涂粉,粒度均匀;能耗低,设备投资小;成分可控,粉末成分均匀、成分中未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;球形度高及流动性好,喷涂基体表面不发生脱碳相及相的分解。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明提供了的制备WC-Co粉末的方法以水溶性钴盐作为钴源,采用液相法制备得到钴盐包覆WC前驱体粉末,使得钴以溶液分子级形式均匀包覆在WC的表面,再将所述钴盐包覆WC前驱体粉末还原碳化,得到WC-Co粉末。本发明得到的WC-Co粉末粒度均匀、成分可控,粉末成分均匀、成分中未出现W2C、η-Co3W3C、η-Co6W6C、金属钨等;球形度高及流动性好,喷涂基体表面不发生脱碳相及相的分解。

Claims (10)

  1. 一种制备热喷涂用WC-Co粉末的方法,包括以下步骤:将碳化钨、水溶性钴盐、碳源和水混合,得到混合料浆;将所述混合料浆球磨后进行喷雾造粒,得到钴盐包覆WC前驱体粉末;将所述钴盐包覆WC前驱体粉末进行还原碳化,得到WC-Co粉末。
  2. 根据权利要求1所述的方法,其特征在于,所述水溶性钴盐为硝酸钴、醋酸钴、氯化钴和硫酸钴中一种或几种。
  3. 根据权利要求1所述的方法,其特征在于,所述碳化钨、水溶性钴盐和碳源的质量比为a∶b∶c,50≤a≤70,28≤b≤49,0<c≤2。
  4. 根据权利要求1所述的方法,其特征在于,所述碳化钨的粒度为0.1μm~8.0μm。
  5. 根据权利要求1所述的方法,其特征在于,所述碳源包括炭黑、灯黑、碳纳米管和有机碳中的一种或几种。
  6. 根据权利要求1所述的方法,其特征在于,所述混合料浆中钴的质量含量为3wt%~20wt%。
  7. 根据权利要求1所述的方法,其特征在于,所述还原碳化在还原气体的气氛中进行;所述还原气体包括氢气和甲烷。
  8. 根据权利要求7所述的方法,其特征在于,所述氢气和甲烷的体积比为(90~99)∶(1~10)。
  9. 根据权利要求1所述的方法,其特征在于,所述还原碳化的温度为950℃~1350℃。
  10. 根据权利要求1所述的方法,其特征在于,所述还原碳化的时间为5min~60min。
PCT/CN2015/075274 2014-05-09 2015-03-27 一种制备热喷涂用WC-Co粉末的方法 WO2015169132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410195538.2 2014-05-09
CN201410195538.2A CN103920887B (zh) 2014-05-09 2014-05-09 一种制备热喷涂用WC-Co粉末的方法

Publications (1)

Publication Number Publication Date
WO2015169132A1 true WO2015169132A1 (zh) 2015-11-12

Family

ID=51139415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075274 WO2015169132A1 (zh) 2014-05-09 2015-03-27 一种制备热喷涂用WC-Co粉末的方法

Country Status (2)

Country Link
CN (1) CN103920887B (zh)
WO (1) WO2015169132A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479932A1 (de) * 2017-11-03 2019-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung Gesintertes hartmetallgranulat und seine verwendung
CN113976895A (zh) * 2021-09-23 2022-01-28 崇义章源钨业股份有限公司 含板状晶碳化钨热喷涂粉末及其制备方法与应用
CN115504815A (zh) * 2022-10-19 2022-12-23 长沙晶优新材料科技有限公司 一种等离子喷涂制备(C/C)/ZrB2-SiC-LaB6复合涂层材料的方法
CN117887992A (zh) * 2024-03-14 2024-04-16 崇义章源钨业股份有限公司 一种硬质合金及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920887B (zh) * 2014-05-09 2016-02-24 湖南顶立科技有限公司 一种制备热喷涂用WC-Co粉末的方法
CN105648383B (zh) * 2016-01-12 2018-07-27 江西理工大学 一种热喷涂用WC-Co复合粉末的制备方法
CN105755417A (zh) * 2016-03-02 2016-07-13 武汉理工大学 一种太阳能选择性吸收涂层的制备方法
CN106670505A (zh) * 2017-01-13 2017-05-17 昆明理工大学 一种喷雾热解法制备钨钴炭复合粉末的方法
CN108247038B (zh) * 2018-01-30 2019-10-18 北京科技大学 一种球形钛-铁-碳系反应喷涂复合粉末及其制备方法
CN108274010B (zh) * 2018-03-05 2021-05-11 无锡市福莱达石油机械有限公司 减少碳化物氧化脱碳热喷涂粉末的制备方法
CN109128141B (zh) * 2018-09-30 2020-10-02 合肥工业大学 一种纳米WC-Co复合粉末的制备方法
CN110434327B (zh) * 2019-08-29 2020-06-19 西安交通大学 一种高粗糙度可再生的高摩擦系数耐磨涂层及其制备方法
CN114789249A (zh) * 2022-03-31 2022-07-26 株洲硬质合金集团有限公司 基于计算机视觉控制硬质合金烧结中成型剂脱除的方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882376A (en) * 1997-05-16 1999-03-16 Korea Institute Of Machinery & Materials Mechanochemical process for producing fine WC/CO composite powder
KR20010113364A (ko) * 2000-06-19 2001-12-28 황해웅 탄화텅스텐/코발트계 초경합금의 입자성장억제제 첨가방법
CN101161841A (zh) * 2007-09-29 2008-04-16 中南大学 一种超细硬质合金复合粉末及其制造方法
CN101186990A (zh) * 2007-10-19 2008-05-28 中南大学 超细硬质合金包覆粉末及其制造方法
CN102198514A (zh) * 2011-05-12 2011-09-28 中南大学 一种超细晶碳化钨/钴系复合粉的制备方法
CN102468479A (zh) * 2010-11-18 2012-05-23 芯和能源股份有限公司 磷酸铁锂正极材料的制造方法
CN103056382A (zh) * 2013-01-04 2013-04-24 湖南顶立科技有限公司 一种纳米结构碳化钨/钴复合粉末的制备方法
CN103056377A (zh) * 2013-01-04 2013-04-24 湖南顶立科技有限公司 一种纳米碳化钨/钴复合粉末的制备方法
CN103920887A (zh) * 2014-05-09 2014-07-16 湖南顶立科技有限公司 一种制备热喷涂用WC-Co粉末的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769348B1 (ko) * 2006-03-17 2007-11-27 주식회사 나노테크 초미립 텅스텐카바이드-코발트 복합분말 제조방법
CN101003089A (zh) * 2006-11-27 2007-07-25 北京矿冶研究总院 超微或纳米金属粉包覆的复合粉末及其制备方法
CN101003092A (zh) * 2006-11-27 2007-07-25 北京矿冶研究总院 一种高钴含量钴-碳化钨热喷涂粉末及其制备技术
CN101148747A (zh) * 2007-11-12 2008-03-26 北京矿冶研究总院 热喷涂WC/Co粉末及涂层制备
CN101423398A (zh) * 2008-12-02 2009-05-06 四川大学 陶瓷包覆粉末及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882376A (en) * 1997-05-16 1999-03-16 Korea Institute Of Machinery & Materials Mechanochemical process for producing fine WC/CO composite powder
KR20010113364A (ko) * 2000-06-19 2001-12-28 황해웅 탄화텅스텐/코발트계 초경합금의 입자성장억제제 첨가방법
CN101161841A (zh) * 2007-09-29 2008-04-16 中南大学 一种超细硬质合金复合粉末及其制造方法
CN101186990A (zh) * 2007-10-19 2008-05-28 中南大学 超细硬质合金包覆粉末及其制造方法
CN102468479A (zh) * 2010-11-18 2012-05-23 芯和能源股份有限公司 磷酸铁锂正极材料的制造方法
CN102198514A (zh) * 2011-05-12 2011-09-28 中南大学 一种超细晶碳化钨/钴系复合粉的制备方法
CN103056382A (zh) * 2013-01-04 2013-04-24 湖南顶立科技有限公司 一种纳米结构碳化钨/钴复合粉末的制备方法
CN103056377A (zh) * 2013-01-04 2013-04-24 湖南顶立科技有限公司 一种纳米碳化钨/钴复合粉末的制备方法
CN103920887A (zh) * 2014-05-09 2014-07-16 湖南顶立科技有限公司 一种制备热喷涂用WC-Co粉末的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479932A1 (de) * 2017-11-03 2019-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung Gesintertes hartmetallgranulat und seine verwendung
CN113976895A (zh) * 2021-09-23 2022-01-28 崇义章源钨业股份有限公司 含板状晶碳化钨热喷涂粉末及其制备方法与应用
CN113976895B (zh) * 2021-09-23 2023-09-15 崇义章源钨业股份有限公司 含板状晶碳化钨热喷涂粉末及其制备方法与应用
CN115504815A (zh) * 2022-10-19 2022-12-23 长沙晶优新材料科技有限公司 一种等离子喷涂制备(C/C)/ZrB2-SiC-LaB6复合涂层材料的方法
CN115504815B (zh) * 2022-10-19 2023-11-03 长沙晶优新材料科技有限公司 一种等离子喷涂制备(C/C)/ZrB2-SiC-LaB6复合涂层材料的方法
CN117887992A (zh) * 2024-03-14 2024-04-16 崇义章源钨业股份有限公司 一种硬质合金及其制备方法
CN117887992B (zh) * 2024-03-14 2024-05-28 崇义章源钨业股份有限公司 一种硬质合金及其制备方法

Also Published As

Publication number Publication date
CN103920887A (zh) 2014-07-16
CN103920887B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2015169132A1 (zh) 一种制备热喷涂用WC-Co粉末的方法
CN108213411B (zh) 基于TiCN-MxC-Co的涂层喷涂和3D打印金属陶瓷材料及其制备方法
CN102071346B (zh) 致密、小晶粒尺寸纳米晶WC-Co硬质合金块体材料的制备方法
US9079778B2 (en) Production of near-stoichiometric spherical tungsten carbide particles
CN108356260B (zh) 一种硬质合金异形制品的3d打印制造方法
CN102350503A (zh) 球形热喷涂粉末的生产方法
CN102311114A (zh) 纳米碳化钨的制备方法
CN101148747A (zh) 热喷涂WC/Co粉末及涂层制备
CN112247142B (zh) 一种具有核壳结构的双硬质相双粘结相金属碳化物陶瓷粉末及其制备方法
CN102534277B (zh) 一种粗颗粒及超粗颗粒硬质合金的制备方法
CN113817947B (zh) 一种粗wc晶粒增强超细硬质合金及其制备方法
CN104475745A (zh) 球形黄铜合金粉末的制造方法
CN110343889A (zh) 一种特粗硬质合金及其制备方法
CN108690946A (zh) 一种喷焊粉末材料及其制备方法和应用
CN113307628A (zh) 一种碳化硅-金刚石复相陶瓷磨环材料及其制备方法
CN112760540A (zh) 复合WC-CrC-CoCr热喷涂粉及其制备方法和应用
CN101514422A (zh) 一种无磁硬质合金粉末及其制备方法
CN107199346B (zh) 一种纳米w/wc复合粉末的工业化制备方法
CN114752801B (zh) 一种板状晶强化网状结构硬质合金及其制备方法
CN112024899A (zh) 一种TiN-Ti复合粉末及其制备方法和应用
Zhu et al. In-situ synthesis and microstructure of TiC–Fe36Ni composite coatings by reactive detonation-gun spraying
CN113880586B (zh) 一种二硼化铪-二硅化钽复合粉体及其制备方法
GB2560256A (en) Coated superhard particles and composite materials made from coated superhard particles
CN101135034B (zh) 抗氧化Ti-Al-Ag三元涂层的制备方法
Wang et al. Microstructure of cermet coating prepared by plasma spraying of Fe–Ti–C powder using sucrose as carbonaceous precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789101

Country of ref document: EP

Kind code of ref document: A1