WO2015163242A1 - 電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ - Google Patents

電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ Download PDF

Info

Publication number
WO2015163242A1
WO2015163242A1 PCT/JP2015/061773 JP2015061773W WO2015163242A1 WO 2015163242 A1 WO2015163242 A1 WO 2015163242A1 JP 2015061773 W JP2015061773 W JP 2015061773W WO 2015163242 A1 WO2015163242 A1 WO 2015163242A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
core
valve
fuel
suction
Prior art date
Application number
PCT/JP2015/061773
Other languages
English (en)
French (fr)
Inventor
斉藤 淳治
悟史 臼井
山田 裕之
菅波 正幸
淳 伯耆田
雄太 笹生
将通 谷貝
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP15782339.4A priority Critical patent/EP3135969B1/en
Priority to CN201580022089.4A priority patent/CN106233053B/zh
Priority to JP2016514895A priority patent/JP6311011B2/ja
Publication of WO2015163242A1 publication Critical patent/WO2015163242A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/08Fuel-injection apparatus having special means for influencing magnetic flux, e.g. for shielding or guiding magnetic flux

Definitions

  • the present invention relates to an electromagnetic valve that operates in a liquid, and is represented by, for example, a valve mechanism that controls a fuel discharge amount of a high-pressure fuel supply pump for an internal combustion engine for an automobile or a pressure in a high-pressure fuel pipe including a fuel accumulator chamber. It relates to a solenoid valve.
  • JP-A-2006-307870 and JP-A-2014-25389 there is a magnetic resistance increasing portion made of a cylindrical non-magnetic material that is composed of a separate member from the fixed core.
  • An electromagnetic valve including a movable core that is attracted to the fixed core and allowed to be displaced in the axial direction is described. (See Patent Documents 1 and 2).
  • An object of the present invention is to attenuate cavitation generated in the movable core chamber of the solenoid valve and reduce the occurrence of erosion.
  • the object of the present invention is achieved by forming a sufficient air gap capable of capturing cavitation inside the magnetic resistance increasing portion.
  • the sufficient gap capable of capturing this cavitation can be preferably formed as a cylindrical gap extending on both sides in the axial direction across the magnetic gap.
  • the magnetic gap itself can also function as cavitation for capturing.
  • an axial through passage can be provided in the movable core, and cavitation can be escaped to the region on the diamagnetic gap side of the movable core through this through passage.
  • a spring accommodating cavity communicating with the magnetic air gap is provided at the center of the fixed core facing the movable core, and this cavity can be used for capturing cavitation.
  • the fixed core is composed of two parts, a cup-shaped member whose one end is closed and a cylindrical core part to which the valve mechanism is attached, and the cylindrical core part facing the open end side of the cup-shaped member.
  • the outer periphery of the opposing surface of the magnetic resistance increasing member is sealed with a magnetic resistance increasing member (for example, the magnetic resistance increasing member is formed into a cylindrical shape, and the end of the cup-shaped member and the cylindrical core is inserted from both ends of the outer surface of the magnetic resistance increasing member.
  • the cup-shaped member and the magnetic resistance increasing member, and the cylindrical core and the magnetic resistance increasing member are closely attached and fixed to each other.)
  • a fixed core assembly is formed, and the movable core is assembled therein so as to be movable in the axial direction.
  • a magnetic gap is formed between the movable core and the open end of the cup-shaped member.
  • a gap for capturing cavitation is formed as a cylindrical gap extending on both sides in the axial direction by sandwiching the magnetic gap around the magnetic
  • annular convex portion is provided on the outer periphery of the cup-shaped member, and the outer periphery of the annular convex portion is inserted into one end of the magnetic resistance increasing member so that the inner peripheral surface of the magnetic resistance increasing member becomes the outer peripheral surface of the annular convex portion. Accordingly, the magnetoresistance increasing member and the annular protrusion can be fixed with a laser.
  • annular surface having the same outer diameter as the outer diameter of the annular protrusion provided on the outer periphery of the cup-shaped member is provided on the outer periphery of the end portion on the magnetic gap side of the cylindrical core, and the other end of the magnetoresistance increasing member is provided on this annular surface.
  • the inner peripheral surface of the magnetic resistance increasing member is applied to the outer periphery of the annular surface, and the magnetic resistance increasing member and the annular protrusion are fixed with a laser.
  • a sufficient gap that captures cavitation can be formed around the magnetic gap where cavitation occurs, so that erosion caused by cavitation can be reduced.
  • the radial gap dimension between the inner peripheral surface of the cylindrical core and the outer peripheral surface of the movable core can be as much as possible. While reducing (the aim is that the attractive force can be increased by reducing the magnetic resistance between the movable core and the cylindrical core as much as possible.)
  • the radial dimension of the cavity for capturing cavitation is set to be large for the outer diameter of the annular convex part. By doing so, it can be made large enough.
  • FIG. 1 is an overall configuration diagram of a high-pressure fuel supply system according to a first embodiment in which the present invention is implemented. It is a figure for demonstrating the solenoid valve of the 1st Example by which this invention was implemented.
  • the portion surrounded by a broken line indicates a main body of a high-pressure fuel supply pump (hereinafter referred to as a high-pressure pump), and the mechanisms and components shown in the broken line indicate that the high-pressure pump main body 1 is integrated.
  • the fuel in the fuel tank 20 is pumped up by the feed pump 21 and sent to the suction joint 10 a of the pump body 1 through the suction pipe 28.
  • the fuel that has passed through the suction joint 10a reaches the suction port 30a of the electromagnetic suction valve 30 constituting the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10b.
  • the pulsation prevention mechanism 9 will be described later.
  • the electromagnetic suction valve 30 includes an electromagnetic coil 308.
  • the suction valve body 301 is biased in the valve opening direction due to the difference between the biasing force of the anchor spring 303 and the biasing force of the valve spring 304.
  • the suction port 30b is open.
  • the urging force of the anchor spring 303 and the urging force of the valve spring 304 are Energizing force of anchor spring 303> Energizing force of valve spring 304 It is set to become.
  • the anchor spring 303 When the electromagnetic coil 308 is energized, the anchor spring 303 is maintained in a compressed state while the electromagnetic plunger 305 is moved leftward in FIG.
  • the suction valve body 301 attached so that the tip of the electromagnetic plunger 305 contacts coaxially closes the suction port 30 b connected to the pressurizing chamber 11 of the high-pressure pump by the biasing force of the valve spring 304.
  • the electromagnetic coil 308 remains in a non-energized state and no magnetic biasing force acts. Therefore, the valve remains open by the biasing force of the intake valve body 301 anchor spring 303. Although the volume of the pressurizing chamber 11 decreases as the plunger 2 compresses, in this state, the fuel once sucked into the pressurizing chamber 11 passes through the suction valve body 301 in the valve-opened state once again to the suction passage 10b (suction). Since the pressure is returned to the port 30a), the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • the compression process of the plunger 2 includes a return process and a discharge process. Then, by controlling the energization timing of the electromagnetic coil 308 of the electromagnetic intake valve 30, the amount of high-pressure fuel that is discharged can be controlled. If the timing of energizing the electromagnetic coil 308 is advanced, the ratio of the return process in the compression process is small and the ratio of the discharge process is large. That is, the amount of fuel returned to the suction passage 10b (suction port 30a) is small, and the amount of fuel discharged at high pressure is large.
  • the timing of energization is delayed, the ratio of the return process in the compression process is large and the ratio of the discharge process is small. That is, the amount of fuel returned to the suction passage 10b is large, and the amount of fuel discharged at high pressure is small.
  • the timing of energizing the electromagnetic coil 308 is controlled by a command from the ECU.
  • the amount of fuel discharged at a high pressure can be controlled to an amount required by the internal combustion engine by controlling the energization timing to the electromagnetic coil 308.
  • a discharge valve mechanism 8 is provided at the outlet of the pressurizing chamber 11.
  • the discharge valve mechanism 8 includes a discharge valve seat 8a, a discharge valve body 8b, and a discharge valve spring 8c.
  • the discharge valve body 8b When there is no fuel differential pressure in the pressurizing chamber 11 and the fuel discharge port 12, the discharge valve body 8b is formed by the discharge valve spring 8c. The valve is pressed against the discharge valve seat 8a by the urging force and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the fuel discharge port 12, the discharge valve body 8 b opens against the discharge valve spring 8 c, and the fuel in the pressurizing chamber 11 is discharged from the fuel. High pressure is discharged to the common rail 23 through the outlet 12.
  • the fuel guided to the suction joint 10 a is pressurized to a high pressure by the reciprocating motion of the plunger 2 in the pressurizing chamber 11 of the pump body 1, and is pumped from the fuel discharge port 12 to the common rail 23.
  • the common rail 23 is equipped with a direct injection injector 24 (so-called direct injection injector) and a pressure sensor 26.
  • the direct injection injectors 24 are mounted according to the number of cylinders of the internal combustion engine, and are opened and closed according to a control signal from an engine control unit (ECU) 27 to inject fuel into the cylinders.
  • ECU engine control unit
  • the pump body 1 is further provided with a discharge passage 110 communicating with the downstream side of the discharge valve body 8b and the pressurizing chamber 11 by bypassing the discharge valve separately from the discharge passage.
  • the discharge passage 110 is provided with a relief valve 102 that restricts the flow of fuel in only one direction from the discharge passage to the pressurizing chamber 11.
  • the relief valve 102 is pressed against the relief valve seat 101 by a relief spring 104 that generates a pressing force. When the pressure difference between the pressurizing chamber and the relief passage exceeds a specified pressure, the relief valve body 102 is relieved.
  • the valve seat 101 is set so as to be opened and opened.
  • the relief valve body 102 When an abnormally high pressure is generated in the common rail 23 or the like due to a failure of the direct injection injector 24 or the like, the relief valve body 102 is opened when the differential pressure between the discharge passage 110 and the pressurizing chamber 11 exceeds the valve opening pressure of the relief valve body 102. The discharge flow path that has become abnormally high pressure is returned from the discharge flow path 110 to the pressurizing chamber 11, and the high-pressure section piping such as the common rail 23 is protected.
  • the high-pressure pump is fixed in close contact with the plane of the cylinder head 41 of the internal combustion engine using a flange 1e provided in the pump body 1.
  • An O-ring 61 is fitted into the pump main body 1 to keep the cylinder head and the pump main body airtight.
  • the pump body 1 is provided with a cylinder 6 that guides the forward and backward movement of the plunger 2 and has an end formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein. Further, the pressurizing chamber 11 is provided with a plurality of communication holes 11a so as to communicate with an electromagnetic suction valve 30 for supplying fuel and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage. .
  • the cylinder 6 has a large-diameter portion and a small-diameter portion at the outer diameter, and the small-diameter portion is press-fitted into the pump body 1, and a step 6 a between the large-diameter portion and the small-diameter portion is pressure-bonded to the pump body 1 and added in the pressurizing chamber 11. Seals the compressed fuel from leaking to the low pressure side.
  • a tappet 3 that converts the rotational motion of the cam 5 attached to the camshaft of the internal combustion engine into a vertical motion and transmits it to the plunger 2.
  • the plunger 2 is pressure-bonded to the tappet 3 by a spring 4 through a retainer 15. Thereby, the plunger 2 can be moved back and forth (reciprocated) up and down with the rotational movement of the cam 5.
  • the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a slidable contact with the outer periphery of the plunger 2 at the lower end of the cylinder 6 in the figure.
  • the blow-by gap between 6 and 6 is sealed to prevent fuel from leaking outside the pump.
  • lubricating oil including engine oil
  • for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump body 1 through the blow-by gap.
  • the fuel pumped up by the feed pump 21 is sent to the pump body 1 through the suction joint 10a coupled to the suction pipe 28.
  • the damper cover 14 is combined with the pump body 1 to form a low-pressure fuel chamber 10, and the fuel that has passed through the inlet joint 10a flows in.
  • a fuel filter 10 d is attached upstream of the low-pressure fuel chamber 10 by, for example, being press-fitted into the pump body 1 in order to remove foreign matters such as metal powder contained in the fuel.
  • the low-pressure fuel chamber 10 is provided with a pressure pulsation reduction mechanism 9 that reduces and reduces the pressure pulsation generated in the high-pressure pump from spreading to the fuel pipe 28.
  • the pressure pulsation reducing mechanism 9 provided in the low-pressure fuel chamber 10 is formed by a metal damper 9a in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced as the metal damper 9a expands and contracts.
  • Reference numeral 9 b denotes a mounting bracket for fixing the metal damper 9 a to the inner peripheral portion of the pump body 1.
  • the electromagnetic intake valve 30 includes an electromagnetic coil 308 and is a variable control mechanism that is connected to the ECU via a terminal 307 and controls the flow rate of the fuel by controlling the opening and closing of the intake valve by repeating energization and non-energization.
  • the biasing force of the anchor spring 303 is transmitted to the suction valve body 301 via the electromagnetic plunger 305 and the anchor rod 302 formed integrally with the electromagnetic plunger 305.
  • the biasing force of the valve spring 304 installed inside the suction valve body is Biasing Force of Anchor Spring 303>
  • the biasing force of the valve spring 304 is set.
  • the suction valve body 301 is biased in the valve opening direction and the suction port 30b is opened.
  • the anchor rod 302 and the suction valve body 301 are in contact with each other at a portion indicated by 302b (state shown in FIG. 1).
  • the magnetic urging force generated by energizing the coil 308 is set so that the electromagnetic plunger 305 has a force that can be attracted by overcoming the urging force of the anchor spring 303 on the fixed core 306 side.
  • the anchor 303 moves to the fixed core 306 side (left side in the figure), and a stopper 302 a formed at the end of the anchor rod 302 abuts on and is locked to the anchor rod bearing 309.
  • the movement amount of the anchor 301 and the movement amount of the suction valve body 301 are as follows: The clearance is set so that the amount of movement of the anchor 301> and the amount of movement of the suction valve body 301, and the contact portion 302b between the anchor rod 302 and the suction valve body 301 is opened. As a result, the suction valve body 301 has a valve spring 304. And the suction port 30b is closed.
  • a suction valve seat 310 is inserted into the cylindrical boss 1b in a secret manner so that the suction valve body 301 can block the suction port 30b to the pressurizing chamber, and is fixed to the pump body 1.
  • the discharge valve mechanism 8 is a discharge valve seat member provided with a plurality of discharge passages radially provided with respect to the center of the slide shaft of the discharge valve body 8b, and provided with a bearing so as to hold reciprocal sliding at the center. 8a and a discharge valve member 8b having an annular contact surface that can be kept airtight by providing a central shaft so as to be slidable with respect to the bearing of the discharge valve seat member 8a and contacting the discharge valve sheet member 8a on the outer periphery. . Further, a discharge valve spring 33 composed of a string spring for urging the discharge valve member 8b in the valve closing direction is inserted and held.
  • the discharge valve seat member is held in the pump body 1 by, for example, press fitting, and the discharge valve member 8b and the discharge valve spring 8c are inserted and sealed to the pump body 1 by the sealing plug 17 to constitute the discharge valve mechanism 8. Yes.
  • the discharge valve mechanism 8 functions as a check valve that restricts the direction of fuel flow.
  • the relief valve mechanism 100 includes a relief valve stopper 106, a relief valve body 102, a relief valve seat 101, a relief spring stopper 104, and a relief spring 105, as shown.
  • the relief valve seat 103 has a bearing provided so that the relief valve 102 can slide. After the relief valve 102 having an integral sliding shaft is inserted into the relief valve seat 103, the position of the relief spring stopper 104 is specified so that the relief spring 105 has a desired load, and the relief valve body 102 is press-fitted into the relief valve body 102. To fix.
  • the valve opening pressure of the relief valve body 102 is defined by the pressing force by the relief spring 104.
  • the relief valve stopper 106 is inserted between the pump body 1 and the relief valve seat 101 and functions as a stopper that limits the opening amount of the relief valve body 102.
  • the unitized relief valve mechanism 100 is fixed by press-fitting the relief valve seat 101 into the inner peripheral wall of the cylindrical through-hole 1 ⁇ / b> C provided in the pump body 1.
  • the fuel discharge outlet 12 is fixed so as to close the cylindrical through-hole 1C of the pump body 1, and the fuel is prevented from leaking from the high-pressure pump to the outside, and at the same time the connection with the common rail is made possible.
  • the relief spring 105 on the fuel discharge port 12 side of the body 102, the volume of the pressurizing chamber 11 does not increase even if the outlet of the relief valve 102 of the relief valve mechanism 100 is opened to the pressurizing chamber 11.
  • the pressure in the pressurizing chamber 11 increases as the volume decreases.
  • the discharge valve mechanism 8 is opened and fuel is discharged from the pressurization chamber 11 to the discharge passage 110. From the moment when the discharge valve mechanism 8 is opened to the moment, the pressure in the pressurizing chamber overshoots to an extremely high pressure. This high pressure is also propagated in the discharge channel, and the pressure in the discharge channel also overshoots at the same timing.
  • the pressure difference between the inlet and outlet of the relief valve 102 may cause the relief valve mechanism 100 to open due to pressure overshoot in the discharge flow path.
  • the pressure becomes larger than the valve pressure, and the relief valve malfunctions.
  • the pressure in the pressurizing chamber acts on the outlet of the relief valve mechanism 100, and the outlet of the relief valve mechanism 100
  • the pressure in the discharge channel 110 acts.
  • pressure overshoot occurs at the same timing in the pressurizing chamber and in the discharge flow path, the pressure difference between the inlet and outlet of the relief valve does not exceed the valve opening pressure of the relief valve. That is, the relief valve does not malfunction.
  • the direct injection injector fails, that is, when the injection function is stopped and the fuel sent to the common rail 23 cannot be supplied into the combustion chamber of the internal combustion engine, the fuel accumulates between the discharge valve mechanism 8 and the common rail 23 and the fuel pressure becomes abnormal. Become high pressure. In this case, if the pressure rises gradually, an abnormality is detected by the pressure sensor 26 provided on the common rail 23, and the electromagnetic suction valve 30 serving as a capacity control mechanism provided on the suction passage suction passage 10b (suction port 30a) is fed back. Although the safety function to control and reduce the discharge amount operates, instantaneous abnormal high pressure cannot be dealt with by feedback control using this pressure sensor.
  • the discharge pressure becomes abnormally high in an operation state where not much fuel is required.
  • the pressure sensor 26 of the common rail 23 detects an abnormally high pressure, the capacity control mechanism itself is broken, so that the abnormally high pressure cannot be eliminated.
  • the relief valve mechanism 100 of the embodiment functions as a safety valve.
  • the relief valve mechanism 100 causes an inlet / outlet pressure difference higher than the valve opening pressure by the above-described mechanism, and the valve does not open.
  • the fuel pressure in the pressurizing chamber 11 decreases to the same low pressure as that of the suction pipe 28.
  • the pressure in the relief chamber 112 has risen to the same pressure as the common rail 23.
  • a sufficient gap that can capture cavitation is formed inside the magnetic resistance increasing portion.
  • the sufficient gap capable of capturing this cavitation is preferably formed as a cylindrical gap extending on both sides in the axial direction around the magnetic gap.
  • the magnetic gap itself also functions as cavitation for capturing.
  • an axial through-passage is provided in the movable core 305, and cavitation is released through the through-passage to the region on the diamagnetic gap side of the movable core 305.
  • a spring accommodating cavity communicating with the magnetic gap is provided at the center of the fixed core 306 facing the movable core, and this cavity is used for cavitation capture.
  • the fixed core 306 is a cup-shaped part with one end closed, and is composed of two parts: a cylindrical core 312 to which a valve mechanism is attached.
  • the open end side end of the cup-shaped portion of the fixed core 306 is inserted from one end of the cylindrical magnetic resistance increasing member 311, and the outer periphery of the magnetic resistance increasing member 311 is irradiated with a laser to
  • the magnetic resistance increasing member 311 is hermetically fixed, and the end of the cylindrical core 312 opposite to the valve mechanism is inserted from the other end of the cylindrical magnetic resistance increasing member 311 so that the outer periphery of the magnetic resistance increasing member 311 is irradiated with laser. Then, the cylindrical core 312 and the magnetic resistance increasing member 311 are closely fixed to form a fixed core assembly.
  • the movable core 305 is assembled in the fixed core assembly so as to be movable in the axial direction, thereby forming a magnetic gap between the movable core 305 and the open end of the fixed core 306.
  • a cavity for capturing cavitation is formed as a cylindrical gap extending on both sides in the axial direction with the magnetic gap sandwiched around the magnetic gap.
  • annular convex portion is provided on the outer periphery of the fixed core 306, and the outer periphery of the annular convex portion is inserted into one end of the magnetic resistance increasing member 311 so that the inner peripheral surface of the magnetic resistance increasing member 311 is annular convex.
  • the magnetic resistance increasing member 311 and the annular protrusion are fixed with a laser by being applied to the outer peripheral surface of the portion.
  • an annular surface having the same outer diameter as the outer diameter of the annular convex portion provided on the outer periphery of the cup-shaped member is provided on the outer periphery of the end portion on the magnetic gap side of the cylindrical core 312.
  • the magnetoresistive increasing member 311 is inserted into the other end of the member 311 and the inner peripheral surface of the magnetoresistive increasing member 311 is applied to the outer periphery of the annular surface, and the magnetoresistive increasing member 311 and the annular protrusion are fixed by a laser.
  • a sufficient gap that captures cavitation can be formed around the magnetic gap where cavitation occurs, so that erosion caused by cavitation can be reduced.
  • the radial gap dimension between the inner peripheral surface of the cylindrical core and the outer peripheral surface of the movable core can be as much as possible. While reducing (the aim is that the attractive force can be increased by reducing the magnetic resistance between the movable core and the cylindrical core as much as possible.)
  • the radial dimension of the cavity for capturing cavitation is set to be large for the outer diameter of the annular convex part. By doing so, it can be made large enough.
  • the coil 308 has a fixed core 306 and a cylindrical core 312 that form a magnetic path on the inner periphery thereof, and the electromagnetic plunger 305 is magnetically attracted to the fixed core 306 when energized.
  • a magnetic resistance increasing portion 311 is coupled between the fixed core 306 and the cylindrical core 312 so that most of the magnetic flux passes through the electromagnetic plunger 305 and the fixed core.
  • the magnetic resistance increasing portion 311 is made of a material having less magnetism than the fixed core 306, the cylindrical core 312, and the electromagnetic plunger 305.
  • a cylindrical gap is positively provided between the electromagnetic plunger 305 and the magnetic resistance increasing portion 311.
  • the gap is G1, and the gap of the cylindrical gap between the electromagnetic plunger 305 and the cylindrical core 312 is G2. Then, G1> G2 is set, and the cavitation generated with the operation of the electromagnetic plunger 305 is captured and attenuated in the gap G1, thereby reducing the occurrence of erosion to the periphery.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Details Of Valves (AREA)
  • Electromagnets (AREA)

Abstract

 電磁弁の稼動部周辺に発生するキャビテーションを減衰し、エロージョンの発生を防ぐ電磁弁を提供する。電磁弁の稼動部周辺に発生するキャビテーションを捕獲、減衰し、エロージョンの発生を防ぐ構造と、低コストを両立する。 磁気抵抗増大部の内側にキャビテーションを捕獲できる十分な空隙を形成することによって達成される。

Description

電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ
 本発明は、液体中で作動する電磁弁に関し、例えば自動車用内燃機関用の高圧燃料供給ポンプの燃料吐出量あるいは燃料蓄圧室を含む高圧燃料配管内の圧力を制御する弁機構などに代表される電磁弁に関する。
 自動車等の内燃機関の内、燃焼室へ直接的に燃料を燃焼室内部へ噴射する直接噴射タイプにおいて、燃料を高圧化するための高圧燃料供給ポンプが広く用いられている。
 特開2006-307870号公報及び特開2014-25389号公報においては、固定コアと別部材で構成される筒状の非磁性体からなる磁気抵抗増大部があり、当該磁気抵抗増大部内周部に当該固定コアに吸引されて軸方向に変位が許容される可動コアを備える電磁弁が記載されている。(特許文献1及び2参照)。
特開2006-307870号 特開2014-25389号
 しかしながら、上記従来技術においては、磁気抵抗増大部内周と可動コアの外周で形成される隙間が狭いために、可動コアの作動に伴い発生するキャビテーションの逃げ場が無く、作動条件によっては可動コアおよび固定コアの内部に形成される可動コア室の内壁にエロージョンが発生することがあった。
 本発明の目的は、電磁弁の可動コア室内に発生するキャビテーションを減衰し、エロージョンの発生を低減するものである。
 本発明の目的は、磁気抵抗増大部の内側にキャビテーションを捕獲できる十分な空隙を形成することによって達成される。
 このキャビテーションを捕獲できる十分な空隙とは好適には前記磁気空隙を挟んで軸方向両側に広がる筒状空隙として形成することができる。
 また、磁気空隙が可動コアの吸引時にも残る構成(可動コアが固定コアに衝突しない構成)とすることでこの磁気空隙自体もキャビテーションを捕獲用の空隙として機能させることもできる。
 さらに可動コアに軸方向の貫通通路を設けこの貫通通路を通して、可動コアの反磁気空隙側の領域にキャビテーションを逃がすることもできる。
 さらに、可動コアと対面する固定コアの中心に磁気空隙に連通するばね収納用のキャビティーを設けこのキャビティーをキャビテーション捕獲用に用いることもできる。
 より具体的には、固定コアを一端が閉じたカップ状部材とバルブ機構が取り付けられる筒状コア部との2部分から構成し、カップ状部材の解放端側とこれと対面する筒状コア部の対抗面の外周を磁気抵抗増大部材で密封して(例えば、磁気抵抗増大部材を筒状とし、その両端部からカップ状部材と筒状コアの端部を挿入し、磁気抵抗増大部材の外周にレーザーを照射してカップ状部材と磁気抵抗増大部材、筒状コアと磁気抵抗増大部材を密着固定する。)固定コア組体を形成し、その内部に可動コアを軸方向に移動可能に組み付ける構成とし、これによって、可動コアとカップ状部材の解放端との間に磁気空隙を構成する。そして、この磁気空隙の周囲にこの磁気空隙を挟んで、軸方向両側に広がる筒状空隙として、キャビテーションの捕獲用空隙を形成する。
 この時、カップ状部材の外周に環状凸部を設けておき、この環状凸部の外周を磁気抵抗増大部材の一端に挿入して磁気抵抗増大部材の内周面を環状凸部の外周面にあてがって、磁気抵抗増大部材と環状突起とをレーザーで固定することができる。
 一方、筒状コアの磁気空隙側端部の外周にはカップ状部材の外周に設けた環状凸部の外径と同じ外径の環状面を設け、この環状面に磁気抵抗増大部材の他端に挿入して磁気抵抗増大部材の内周面を環状面の外周にあてがって磁気抵抗増大部材と環状突起とをレーザーで固定する。
 このように構成した本発明によれば、キャビテーションの発生する磁気空隙の周りに、キャビテーションを捕獲する十分な空隙を形成できたので、キャビテーションが起因となって発生するエロージョンを低減できる。
 具体的構成によれば、環状凸部の高さ分の環状空隙を磁気空隙の周りに形成することで、筒状コアの内周面と可動コアの外周面の間の径方向空隙寸法をできるだけ小さくしながら(可動コアと筒状コア部の間の磁気抵抗をできるだけ小さくしたほうが吸引力を大きくできる、というねらい。)キャビテーション捕獲用の空隙の径方向寸法を環状凸部の外径を大きく設定することで、十分な大きさにできる。
 また、通路加工の追加や高強度材による保護部材の追加や表面処理等による保護膜の追加が不要で、簡便な構造で、キャビテーションを減衰し、エロージョンの発生を低減することができ、結果電磁弁を低コスト化できる。
本発明が実施された第一実施例の高圧燃料供給ポンプの縦断面図である。 本発明が実施された第一実施例の高圧燃料供給ポンプの別縦断面図であり、図1とは別角度の縦断面を表す。 本発明が実施された第一実施例の高圧燃料供給ポンプの横断面図である。 本発明が実施された第一実施例の高圧燃料供給システム全体構成図である。 本発明が実施された第一実施例の電磁弁を説明するための図である。
 以下、本発明に係る実施例を説明する。
 図4に示すシステムの全体構成図を用いてシステムの構成と動作を説明する。
 破線で囲まれた部分が高圧燃料供給ポンプ(以下高圧ポンプと呼ぶ)本体を示し、この破線の中に示されている機構,部品は高圧ポンプ本体1に一体に組み込まれていることを示す。燃料タンク20の燃料はフィードポンプ21によって汲み上げられ、吸入配管28を通してポンプ本体1の吸入ジョイント10aに送られる。
 吸入ジョイント10aを通過した燃料は圧力脈動低減機構9,吸入通路10bを介して容量可変機構を構成する電磁吸入弁30の吸入ポート30aに至る。脈動防止機構9については後述する。
 電磁吸入弁30は電磁コイル308を備え、電磁コイル308が通電されていない時は、アンカーばね303の付勢力と弁ばね304の付勢力の差により、吸入弁体301は開弁方向に付勢され吸入口30bは開けられた状態となっている。尚、アンカーばね303の付勢力と弁ばね304の付勢力は、
 アンカーばね303の付勢力 > 弁ばね304の付勢力  
となるよう設定されている。
 この電磁コイル308が通電されている状態では電磁プランジャ305が図4の左方に移動した状態で、アンカーばね303が圧縮された状態が維持される。電磁プランジャ305の先端が同軸で接触するように取り付けられた吸入弁体301は弁ばね304の付勢力により高圧ポンプの加圧室11につながる吸入口30bを閉じている。
 以下、高圧ポンプの動作について説明する。
後述するカムの回転により、プランジャ2が図4の下方に変位して吸入工程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この工程で加圧室11内の燃料圧力が吸入通路10b(吸入ポート30a)の圧力よりも低くなると、燃料は、開口状態にある吸入口30bを通り加圧室11に流入する。プランジャ2が吸入工程を終了し圧縮工程へと移行した場合、プランジャ2が圧縮工程(図1の上方へ移動する状態)に移る。ここで電磁コイル308は無通電状態を維持したままであり磁気付勢力は作用しない。よって、吸入弁体301アンカーばね303の付勢力により開弁したままである。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度加圧室11に吸入された燃料が、再び開弁状態の吸入弁体301を通して吸入通路10b(吸入ポート30a)へと戻されるので、加圧室の圧力が上昇することは無い。この工程を戻し工程と称する。
 この状態で、エンジンコントロールユニット27(以下ECUと呼ぶ)からの制御信号が電磁吸入弁30に印加されると電磁吸入弁30の電磁コイル308には電流が流れ、磁気付勢力により電磁プランジャ305が図4の左方に移動し、アンカーばね303が圧縮された状態が維持される。その結果、吸入弁体301にはアンカーばね303の付勢力が作用しなくなり、 弁ばね304による付勢力と燃料が吸入通路10b(吸入ポート30a)に流れ込むことによる流体力が働く。そのため、吸入弁体301は閉弁し吸入口30bを閉じる。吸入口30bが閉じるとこのときから加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇する。そして、燃料吐出口12の圧力以上になると、吐出弁機構8を介して加圧室11に残っている燃料の高圧吐出が行われ、コモンレール23へと供給される。この工程を吐出工程と称する。
 すなわち、プランジャ2の圧縮工程(下始点から上始点までの間の上昇工程)は、戻し工程と吐出工程からなる。そして、電磁吸入弁30の電磁コイル308への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル308へ通電するタイミングを早くすれば、圧縮工程中の、戻し工程の割合が小さく、吐出工程の割合が大きい。すなわち、吸入通路10b(吸入ポート30a)に戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮工程中の、戻し工程の割合が大きく吐出工程の割合が小さい。すなわち、吸入通路10bに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル308への通電タイミングは、ECUからの指令によって制御される。
 以上のように構成することで、電磁コイルへ308への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
 加圧室11の出口には吐出弁機構8が設けられている。吐出弁機構8は吐出弁シート8a,吐出弁体8b,吐出弁ばね8cを備え、加圧室11と燃料吐出口12に燃料差圧が無い状態では、吐出弁体8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、燃料吐出口12の燃料圧力よりも大きくなった時に始めて、吐出弁体8bは吐出弁ばね8cに逆らって開弁し、加圧室11内の燃料は燃料吐出口12を経てコモンレール23へと高圧吐出される。
 かくして、吸入ジョイント10aに導かれた燃料はポンプ本体1の加圧室11にてプランジャ2の往復動によって必要な量が高圧に加圧され、燃料吐出口12からコモンレール23に圧送される。
 コモンレール23には、直接噴射用インジェクタ24(所謂直噴インジェクタ),圧力センサ26が装着されている。直噴インジェクタ24は、内燃機関の気筒数に合わせて装着されており、エンジンコントロールユニット(ECU)27の制御信号にてしたがって開閉弁して、燃料をシリンダ内に噴射する。
 ポンプ本体1にはさらに、吐出弁体8bの下流側と加圧室11とを連通する吐出流路110が吐出流路とは別に吐出弁をバイパスして設けられている。吐出流路110には燃料の流れを吐出流路から加圧室11への一方向のみに制限するリリーフ弁102が設けられている。リリーフ弁102は、押付力を発生するリリーフばね104によりリリーフ弁シート101に押付けられており、加圧室内とリリーフ通路内との間の圧力差が規定の圧力以上になるとリリーフ弁体102がリリーフ弁シート101から離れ、開弁するように設定している。
 直噴インジェクタ24の故障等によりコモンレール23等に異常高圧が発生した場合、吐出流路110と加圧室11の差圧がリリーフ弁体102の開弁圧力以上になると、リリーフ弁体102が開弁し、異常高圧となった吐出流路は吐出流路110から加圧室11へと戻され、コモンレール23等の高圧部配管が保護される。
 以下に高圧燃料ポンプの構成,動作を図1乃至図4を用いてさらに詳しく説明する。
 一般に高圧ポンプはポンプ本体1に設けられたフランジ1eを用い内燃機関のシリンダヘッド41の平面に密着して固定される。シリンダヘッドとポンプ本体間の気密保持のためにOリング61がポンプ本体1に嵌め込まれている。
 ポンプ本体1にはプランジャ2の進退運動をガイドし、かつ内部に加圧室11を形成するよう端部が有底筒型状に形成されたシリンダ6が取り付けられている。さらに加圧室11は燃料を供給するための電磁吸入弁30と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8に連通するよう複数個の連通穴11aが設けられている。
 シリンダ6はその外径において大径部と小径部を有し小径部がポンプ本体1に圧入され、かつ大径部と小径部の段差6aがポンプ本体1に面圧着し加圧室11で加圧された燃料が低圧側に漏れることをシールする。
 プランジャ2の下端には、内燃機関のカムシャフトに取り付けられたカム5の回転運動を上下運動に変換し、プランジャ2に伝達するタペット3が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット3に圧着されている。これによりカム5の回転運動に伴い、プランジャ2を上下に進退(往復)運動させることができる。
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下端部においてプランジャ2の外周に摺動可能に接触する状態で設置されており、これによりプランジャ2とシリンダ6との間のブローバイ隙間がシールされ、燃料がポンプ外部に漏れることを防止する。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がブローバイ隙間を介してポンプ本体1の内部に流入するのを防止する。
 フィードポンプ21によって汲み上げられた燃料は、吸入配管28と結合された吸入ジョイント10aを介してポンプ本体1に送られる。
 ダンパーカバー14は、ポンプ本体1と結合することにより低圧燃料室10を形成し、入ジョイント10aを通過した燃料が流入する。低圧燃料室10の上流には、燃料中に含まれる金属粉等の異物を除去するために燃料フィルタ10dが、たとえばポンプ本体1に圧入されるなどして取り付けられている。
低圧燃料室10には高圧ポンプ内で発生した圧力脈動が燃料配管28へ波及するのを低減減させる圧力脈動低減機構9が設置されている。一度加圧室11に吸入された燃料が、容量制御状態のため再び開弁状態の吸入弁体301を通して吸入通路10b(吸入ポート30a)へと戻される場合、吸入通路10b(吸入ポート30a)へ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダンパ9aで形成されており、圧力脈動はこの金属ダンパ9aが膨張・収縮することで吸収低減される。9bは金属ダンパ9aをポンプ本体1の内周部に固定するための取り付け金具である。
 電磁吸入弁30は電磁コイル308を備え、端子307を介しECUと接続され通電と無通電を繰り返すことにより吸入弁の開閉を制御することにより燃料の流量を制御する可変制御機構である。
 電磁コイル308が通電されていない時、吸入弁体301には、電磁プランジャ305及び電磁プランジャ305に一体となるよう形成されたアンカーロッド302を介しアンカーばね303の付勢力が伝達される。吸入弁体内側に設置された弁ばね304の付勢力は、
 アンカーばね303の付勢力 > 弁ばね304の付勢力
となるよう設定されており、結果、吸入弁体301は開弁方向に付勢され吸入口30bは開けられた状態となっている。この時アンカーロッド302と吸入弁体301は302bに示す部位で接触している(図1に示す状態)。
 コイル308の通電により発生する磁気付勢力は、電磁プランジャ305が固定コア306側にアンカーばね303の付勢力に打ち勝って吸引可能な力を有するように設定される。通電時アンカー303は固定コア306側に移動(図の左側)し、アンカーロッド302端部に形成されたストッパ302aがアンカーロッド軸受309に当接して係止する。この時アンカー301の移動量と吸入弁体301の移動量は、
 アンカー301の移動量>と吸入弁体301の移動量
となる様にクリアランスが設定されておりアンカーロッド302と吸入弁体301の接触部302bは開放され、結果吸入弁体301は、弁ばね304により付勢され吸入口30bは閉じられた状態となる。
 電磁吸入弁30は吸入弁体301が加圧室への吸入口30bを塞ぐことができるよう吸入弁シート310が筒状ボス部1bに機密を保って挿入され、ポンプ本体1に固定される。電磁吸入弁30がポンプ本体1に取り付けられた際、吸入ポート30aと吸入通路10bとが接続される。
 吐出弁機構8は、吐出弁体8bの摺動軸中心に対し放射状に複数個設けられた吐出通路が穿設され、中心に往復摺動を保持可能なように軸受を設けた吐出弁シート部材8aと、吐出弁シート部材8aの軸受けに対し摺動可能な様に中心軸を設け外周部に吐出弁シート部材8aと接触することにより気密保持可能な環状接触面を有する吐出弁部材8bを有する。さらに吐出弁部材8bを閉弁方向に付勢する弦巻ばねで構成される吐出弁ばね33が挿入,保持されている。吐出弁シート部材はたとえば圧入によりポンプ本体1に保持され,吐出弁部材8b,吐出弁ばね8cが挿入され封止プラグ17によりポンプ本体1に封止されることにより吐出弁機構8を構成している。以上のように構成することで、吐出弁機構8は燃料の流通方向を制限する逆止弁として作用する。
 さらに、リリーフ弁機構の動作を詳細に説明する。リリーフ弁機構100は図示するように、リリーフ弁ストッパ106,リリーフ弁体102,リリーフ弁シート101,リリーフばねストッパ104,リリーフばね105からなる。リリーフ弁シート103は、リリーフ弁102が摺動可能なように設けられた軸受を有している。摺動軸を一体に有しているリリーフ弁102はリリーフ弁シート103に挿入した後、リリーフばね105を所望の荷重になる様にリリーフばねストッパ104の位置を規定、リリーフ弁体102に圧入等により固定する。リリーフ弁体102の開弁圧力はこのリリーフばね104による押付力で規定される。また、リリーフ弁ストッパ106は、ポンプ本体1とリリーフ弁シート101の間に挿入されリリーフ弁体102の開口量を制限するストッパとして機能する。
 こうしてユニット化されたリリーフ弁機構100をポンプ本体1に設けた筒状貫通口1Cの内周壁にリリーフ弁シート101を圧入することによって固定する。ついで燃料吐出出口12をポンプ本体1の筒状貫通口1Cを塞ぐように固定し、燃料が高圧ポンプから外部へ漏れるのを防止すると同時に、コモンレールとの接続を可能とする
 このように、リリーフ弁体102の燃料吐出口12側にリリーフばね105を設けることで、リリーフ弁機構100のリリーフ弁102の出口を加圧室11に開口しても加圧室11の容積が増加することはない。
 プランジャ2の動きにより、加圧室11の容積が減少を始めると、加圧室内の圧力は容積減少に伴って増大していく。そして、ついに吐出流路110内の圧力よりも加圧室内の圧力が高くなると、吐出弁機構8が開弁し燃料は加圧室11から吐出流路110へと吐出されていく。この吐出弁機構8が開弁する瞬間から直後にかけて、加圧室内の圧力はオーバーシュートして非常な高圧となる。この高圧が吐出流路内にも伝播して、吐出流路内の圧力も同じタイミングでオーバーシュートする。もしここで、リリーフ弁機構100の出口が吸入流路10bに接続されていたならば、吐出流路内の圧力オーバーシュートにより、リリーフ弁102の入口・出口の圧力差がリリーフ弁機構100の開弁圧力よりも大きくなってしまい、リリーフ弁が誤動作してしまう。これに対し実施例では、リリーフ弁機構100の出口が加圧室11に接続されているので、リリーフ弁機構100の出口には加圧室内の圧力が作用し、リリーフ弁機構100の入口には吐出流路110内の圧力が作用する。ここで、加圧室内と吐出流路内では同じタイミングで圧力オーバーシュートが発生しているので、リリーフ弁の入口・出口の圧力差はリリーフ弁の開弁圧力以上になることがない。すなわち、リリーフ弁が誤動作することはない。
 プランジャ2の動きにより加圧室11の容積が増加を始めると容積増加に伴って加圧室内の圧力は減少し、吸入通路10b(吸入ポート30a)内の圧力よりも低くなると、燃料は吸入通路10b(吸入ポート30a)から加圧室11に流入する。そして再びプランジャ2の動きにより、加圧室11の容積が減少を始めると上記のメカニズムにより燃料を高圧に加圧して吐出する。
 次に、直噴インジェクタ24の故障等によりコモンレール23等に異常高圧が発生した場合について詳しく説明する。
 直噴インジェクタの故障、つまり噴射機能が停止してコモンレール23に送られてきた燃料を内燃機関の燃焼室内に供給できなくなると、吐出弁機構8とコモンレール23間に燃料がたまり、燃料圧力が異常高圧になる。この場合緩やかな圧力上昇であれば、コモンレール23に設けた圧力センサ26で異常が検知され、吸入通路吸入通路10b(吸入ポート30a)に設けた容量制御機構であるところの電磁吸入弁30をフィードバック制御して吐出量を少なくする安全機能が動作するが、瞬間的な異常高圧はこの圧力センサを使ったフィードバック制御では対処できない。また、電磁吸入弁30が故障して最大容量時の様態のまま機能しなくなった場合、燃料がそれほど多く要求されていない運転状態では吐出圧力が異常に高圧になる。この場合はコモンレール23の圧力センサ26が異常高圧を検知しても、容量制御機構そのものが故障しているので、この異常高圧を解消することができない。
 このような異常高圧が発生した場合に実施例のリリーフ弁機構100が安全弁として機能する。
 プランジャ2の動きにより加圧室11の容積が増加を始めると容積増加に伴って加圧室内の圧力は減少し、リリーフ弁機構100の入口すなわち吐出流路の圧力が、リリーフ弁の出口すなわち加圧室11の圧力よりもリリーフ弁機構100の開弁圧力以上に高くなると開弁し、コモンレール内で異常高圧となった燃料を加圧室内に戻す。これにより、異常高圧発生時でも規定の圧力以上にはならず、コモンレール23等の高圧配管系の保護がなされる。
 本実施例の場合、吐出工程時は前述したメカニズムによりリリーフ弁機構100には開弁圧力以上の入口・出口圧力差が発生せす、開弁することはない。
 吸入工程、および戻し工程においては加圧室11の燃料圧力は吸入配管28と同じ低い圧力まで低下する。一方、リリーフ室112の圧力はコモンレール23と同じ圧力にまで上昇している。リリーフ室112と加圧室の差圧がリリーフ弁102の開弁圧力以上になると、リリーフ弁102が開弁し、異常高圧となった燃料はリリーフ室112から加圧室11へと戻され、コモンレール23等の高圧配管系が保護される。
 次に、電磁吸入弁の構成を、図5を用いて更に詳しく説明する。
 実施例に示す電磁弁では、磁気抵抗増大部の内側にキャビテーションを捕獲できる十分な空隙が形成されている。
 このキャビテーションを捕獲できる十分な空隙とは好適には磁気空隙の周囲に磁気空隙を挟んで軸方向両側に広がる筒状空隙として形成されている。
 また、磁気空隙が可動コア305の吸引時にも残る構成(可動コア305が固定コア306に衝突しない構成)とすることでこの磁気空隙自体もキャビテーションを捕獲用の空隙として機能させている。
 さらに可動コア305に軸方向の貫通通路を設けこの貫通通路を通して、可動コア305の反磁気空隙側の領域にキャビテーションを逃がしている。
 さらに、可動コアと対面する固定コア306の中心に磁気空隙に連通するばね収納用のキャビティーを設けこのキャビティーをキャビテーション捕獲用に用いている。
 より具体的には、固定コア306は一端が閉じたカップ状部で、バルブ機構が取り付けられる筒状コア312との2部分から構成されている。
 筒状の磁気抵抗増大部材311の一端部から固定コア306のカップ状部の解放端側端部を挿入し、磁気抵抗増大部材311の外周にレーザーを照射して固定コア306のカップ状部と磁気抵抗増大部材311を密封固定し、また筒状の磁気抵抗増大部材311の他端部から筒状コア312の反バルブ機構側端部を挿入し、磁気抵抗増大部材311の外周にレーザーを照射して筒状コア312と磁気抵抗増大部材311とを密着固定することで固定コア組体を形成している。
 固定コア組体の内部に可動コア305を軸方向に移動可能に組み付け、これによって、可動コア305と固定コア306の解放端との間に磁気空隙を構成する。
 そして、この磁気空隙の周囲にこの磁気空隙を挟んで、軸方向両側に広がる筒状空隙として、キャビテーションの捕獲用空隙が形成されている。
 実施例では特に、固定コア306の外周に環状凸部が設けられており、この環状凸部の外周を磁気抵抗増大部材311の一端に挿入して磁気抵抗増大部材311の内周面を環状凸部の外周面にあてがって、磁気抵抗増大部材311と環状突起とをレーザーで固定している。
 一方、筒状コア312の磁気空隙側端部の外周にはカップ状部材の外周に設けた環状凸部の外径と同じ外径の環状面が設けられており、この環状面を磁気抵抗増大部材311の他端に挿入して磁気抵抗増大部材311の内周面を環状面の外周にあてがって磁気抵抗増大部材311と環状突起とをレーザーで固定している。
 このように構成した実施例によれば、キャビテーションの発生する磁気空隙の周りに、キャビテーションを捕獲する十分な空隙を形成できたので、キャビテーションが起因となって発生するエロージョンを低減できる。
 具体的構成によれば、環状凸部の高さ分の環状空隙を磁気空隙の周りに形成することで、筒状コアの内周面と可動コアの外周面の間の径方向空隙寸法をできるだけ小さくしながら(可動コアと筒状コア部の間の磁気抵抗をできるだけ小さくしたほうが吸引力を大きくできる、というねらい。)キャビテーション捕獲用の空隙の径方向寸法を環状凸部の外径を大きく設定することで、十分な大きさにできる。
 また、通路加工の追加や高強度材による保護部材の追加や表面処理等による保護膜の追加が不要で、簡便な構造で、キャビテーションを減衰し、エロージョンの発生を低減することができ、結果電磁弁を低コスト化できる。
 以下より具体的に、図5に基づいて実施例を説明する。
コイル308の内周部に磁気通路を構成する固定コア306と筒状コア312があり、通電時に電磁プランジャ305は固定コア306に磁気的に吸引される。その吸引力を効率よく発揮するために、固定コア306と筒状コア312の間には磁気抵抗増大部311が結合され、磁束の多くが電磁プランジャ305と固定コアを通るようにしている。この磁気抵抗増大部311は固定コア306や筒状コア312や電磁プランジャ305よりも磁性が少ない材料で構成されている。
電磁プランジャ305と磁気抵抗増大部311の間には積極的に筒状空隙が設けられており、そのギャップをG1とし、電磁プランジャ305と筒状コア312の間の筒状空隙のギャップをG2とすると、G1 > G2となるよう設定されており、電磁プランジャ305の稼動に伴って発生したキャビテーションがギャップG1内で捕獲減衰され、周辺へのエロージョンの発生を低減する。
1 ポンプ本体
1C ポンプ本体1の筒状貫通口
1e フランジ
2 プランジャ
3 タペット
4 ばね
5 カム
6 シリンダ
6a 大径部と小径部の段差
7 シールホルダ
8 吐出弁機構
8a 吐出弁シート
8b 吐出弁体
8c 吐出弁ばね
9 圧力脈動低減機構
9a 金属ダンパ
9b 取り付け金具
10 低圧燃料室
10a 吸入ジョイント
10b 吸入通路
10c ダンパー室
10d 燃料フィルタ
100 リリーフ弁機構
101 リリーフ弁シート
102 リリーフ弁体
103 リリーフ弁体ガイド
104 リリーフばねストッパ
105 リリーフばね
106 リリーフ弁ストッパ
11 加圧室
11a 連通穴
110 吐出通路
12 燃料吐出口
13 プランジャシール
14 ダンパーカバー
15 リテーナ
17 封止プラグ
20 燃料タンク
21 フィードポンプ
23 コモンレール
24 直接噴射用インジェクタ
26 圧力センサ
27 エンジンコントロールユニット(ECU)
28 吸入配管
30 電磁吸入弁
30a 吸入ポート
30b 吸入口
301 吸入弁体
302 アンカーロッド(可動コア)
302a アンカーロッド302のストッパ部
302b アンカーロッド302と吸入弁体301の接触部
303 アンカーばね
304 弁ばね
305 電磁プランジャ
306 固定コア
307 端子
308 電磁コイル
309 アンカーロッド軸受
310 吸入弁シート
311 磁気抵抗増大部材
312 筒状コア
G1 電磁プランジャ305と磁気抵抗増大部311の間の筒状空隙のギャップ
G2 電磁プランジャ305と筒状コア312の間の筒状空隙のギャップ
41 シリンダヘッド
61 Oリング

Claims (3)

  1.  電磁コイル(308)の内周部に磁気回路を構成する固定コア(306)と、前記固定コアに吸引されて軸方向に変位が許容される可動コア(306)を備え、
    前記可動コアと前記固定コアの吸引面間に磁気空隙が形成されており、
    当該磁気空隙の周りに、磁気抵抗増大部(311)が設けられており、
    前記磁気抵抗増大部が、前記固定コアや前記可動コアと別部材で構成されており、
    前記磁気抵抗増大部の内側に前記磁気空隙を挟んで軸方向両側に広がる筒状空隙が設けられている電磁弁。
  2.  前記磁気抵抗増大部を挟み、前記固定コアの対向側に形成された筒状コア(312)を持ち、前記可動コア外周と前記筒状コア内周で形成される筒状隙間(G2)よりも、前記可動コア外周と前記磁気抵抗増大部内周で形成される筒状隙間(G1)の方が大きいことを特徴とする請求項1に記載の電磁弁。
  3.  前記可動コアの最大径と最大可動変位量で決まる可動容積よりも、前記磁気抵抗増大部内周と前記筒状コアと前記固定コアと前記可動コア外周で形成される筒状隙間の容積の方が大きいことを特徴とする請求項1に記載の電磁弁。
PCT/JP2015/061773 2014-04-25 2015-04-17 電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ WO2015163242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15782339.4A EP3135969B1 (en) 2014-04-25 2015-04-17 Electromagnetic valve
CN201580022089.4A CN106233053B (zh) 2014-04-25 2015-04-17 电磁阀、具有该电磁阀作为吸入阀机构的高压燃料供给泵
JP2016514895A JP6311011B2 (ja) 2014-04-25 2015-04-17 電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014090818 2014-04-25
JP2014-090818 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163242A1 true WO2015163242A1 (ja) 2015-10-29

Family

ID=54332408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061773 WO2015163242A1 (ja) 2014-04-25 2015-04-17 電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ

Country Status (4)

Country Link
EP (1) EP3135969B1 (ja)
JP (2) JP6311011B2 (ja)
CN (2) CN106233053B (ja)
WO (1) WO2015163242A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142930A1 (ja) * 2017-01-31 2018-08-09 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473692B2 (en) * 2017-11-22 2022-10-18 Eagle Industry Co., Ltd. Solenoid valve
CN112136065A (zh) 2018-05-25 2020-12-25 松下知识产权经营株式会社 光学滤波器及多重光学滤波器、以及使用了它们的发光装置及照明系统
JP7055898B2 (ja) * 2018-11-16 2022-04-18 日立Astemo株式会社 ソレノイド機構及び高圧燃料ポンプ
CN113748286A (zh) * 2019-06-28 2021-12-03 浙江三花智能控制股份有限公司 一种电子膨胀阀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741002A (en) * 1994-12-27 1998-04-21 Herion-Werke Kg Control valve
JP2013197433A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Ltd ソレノイド
JP2013241952A (ja) * 2012-05-17 2013-12-05 Nippon Soken Inc 電磁弁

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825135A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
JP2001123907A (ja) * 1999-10-26 2001-05-08 Aisan Ind Co Ltd 燃料噴射弁
CN2619100Y (zh) * 2003-05-12 2004-06-02 浙江三花股份有限公司 常开直流电磁阀
JP2006307870A (ja) * 2005-03-31 2006-11-09 Denso Corp 燃料ポンプ用電磁弁
JP5331731B2 (ja) * 2010-03-03 2013-10-30 日立オートモティブシステムズ株式会社 電磁式の流量制御弁及びそれを用いた高圧燃料供給ポンプ
ES2865184T3 (es) * 2011-11-17 2021-10-15 Stanadyne Llc Válvula de alivio de presión auxiliar en bomba de combustible de un solo pistón
JP6115032B2 (ja) * 2012-06-29 2017-04-19 マツダ株式会社 直噴エンジンの燃料噴射弁
EP2775132A1 (en) * 2013-03-07 2014-09-10 Continental Automotive GmbH Valve body and fluid injector
CN103398205A (zh) * 2013-08-06 2013-11-20 吉林东光奥威汽车制动系统有限公司 一种汽车制动系统用电磁阀

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741002A (en) * 1994-12-27 1998-04-21 Herion-Werke Kg Control valve
JP2013197433A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Ltd ソレノイド
JP2013241952A (ja) * 2012-05-17 2013-12-05 Nippon Soken Inc 電磁弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135969A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142930A1 (ja) * 2017-01-31 2018-08-09 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
CN110199109A (zh) * 2017-01-31 2019-09-03 日立汽车系统株式会社 高压燃料供给泵

Also Published As

Publication number Publication date
JPWO2015163242A1 (ja) 2017-05-25
CN106233053B (zh) 2019-01-18
CN110094569A (zh) 2019-08-06
JP6561158B2 (ja) 2019-08-14
EP3135969A4 (en) 2017-12-06
EP3135969A1 (en) 2017-03-01
CN106233053A (zh) 2016-12-14
EP3135969B1 (en) 2021-11-17
CN110094569B (zh) 2021-05-28
JP2018100776A (ja) 2018-06-28
JP6311011B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6561158B2 (ja) 電磁弁、この電磁弁を吸入弁機構として備えた高圧燃料供給ポンプ
JP4415929B2 (ja) 高圧燃料供給ポンプ
JP6293290B2 (ja) 高圧燃料供給ポンプ
JP6470267B2 (ja) 高圧燃料供給ポンプ
JP2016094913A (ja) 高圧燃料供給ポンプ
JP6689178B2 (ja) 高圧燃料供給ポンプ
JP6697552B2 (ja) 高圧燃料供給ポンプ
WO2014083979A1 (ja) 高圧燃料供給ポンプ
JP6649483B2 (ja) 高圧燃料供給ポンプ
CN109072843B (zh) 高压燃料供给泵的控制装置和高压燃料供给泵
JP2015218678A (ja) リリーフ弁を備えた高圧燃料供給ポンプ
JP6268279B2 (ja) 高圧燃料供給ポンプ
US20220316470A1 (en) Fuel Pump
WO2016103945A1 (ja) バルブ機構、及びこれを備えた高圧燃料供給ポンプ
JP2018105274A (ja) 高圧燃料供給ポンプ
JP2017145731A (ja) 高圧燃料供給ポンプ
JP6754902B2 (ja) 電磁吸入弁、及びこれを備えた高圧燃料ポンプ
JP2019027334A (ja) 高圧燃料供給ポンプ
WO2019207904A1 (ja) 燃料供給ポンプ及び燃料供給ポンプの製造方法
JP2014148980A (ja) 高圧燃料供給ポンプ
JP2019027335A (ja) 燃料ポンプ
JP2017072027A (ja) 高圧燃料供給ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514895

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015782339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782339

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE