WO2016103945A1 - バルブ機構、及びこれを備えた高圧燃料供給ポンプ - Google Patents

バルブ機構、及びこれを備えた高圧燃料供給ポンプ Download PDF

Info

Publication number
WO2016103945A1
WO2016103945A1 PCT/JP2015/081680 JP2015081680W WO2016103945A1 WO 2016103945 A1 WO2016103945 A1 WO 2016103945A1 JP 2015081680 W JP2015081680 W JP 2015081680W WO 2016103945 A1 WO2016103945 A1 WO 2016103945A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve mechanism
pressure
spring
seat
Prior art date
Application number
PCT/JP2015/081680
Other languages
English (en)
French (fr)
Inventor
悟史 臼井
雄太 笹生
俊亮 有冨
宏泰 城吉
淳 伯耆田
菅波 正幸
稔 橋田
将通 谷貝
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016566018A priority Critical patent/JP6572241B2/ja
Publication of WO2016103945A1 publication Critical patent/WO2016103945A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls

Definitions

  • the present invention relates to a valve mechanism and a high-pressure fuel supply pump that includes the valve mechanism and pumps fuel to a fuel injection valve of an internal combustion engine.
  • the present invention relates to a high-pressure fuel supply pump provided with a valve mechanism as an electromagnetic intake valve that adjusts the amount of fuel to be discharged.
  • Japanese Patent No. 5103138 includes a relief valve for relieving abnormal high pressure fuel when the fuel pressure becomes abnormally high in the high pressure fuel supply pump, and prevents damage to the high pressure fuel supply pump and other parts, It plays a role in preventing fuel leakage.
  • Patent Document 2 discloses that the outlet of the relief valve is a pressurizing chamber of a high-pressure fuel supply pump.
  • the relief valve has a function to relieve abnormal high pressure that occurs due to a failure of the high-pressure fuel supply pump.
  • a ball is used for the valve of the relief valve, and this ball valve is pressed against the relief seat by the load of the relief spring.
  • the valve opening pressure of the relief valve is adjusted by the load of the relief spring and is set higher than the maximum fuel pressure used.
  • the relief valve opens and abnormally high-pressure fuel is opened to the low-pressure side.
  • the gap between the ball valve and the relief seat is very narrow, and the fuel passage cross-sectional area is small. This part became a restriction (orifice), and the fuel pressure that became an abnormally high pressure could not be released to a sufficiently low pressure.
  • the clearance between the outer peripheral side surface of the ball holder that transmits the spring load of the relief spring to the ball valve and the member located on the outer periphery thereof is made very small, and the restrictor (orifice) is arranged downstream of the ball valve in the relief valve. ).
  • this structure has the following problems.
  • the relief valve opens.
  • the pressure in the intermediate chamber becomes higher than the low pressure side
  • the ball holder and the ball valve are moved with a large stroke, and the abnormally high pressure fuel is released to the low pressure side. That is, once the relief valve is opened, the pressure in the intermediate chamber is higher than that on the low pressure side, so that the valve is greatly opened and the state is maintained. Further, in an actual high pressure pipe, pressure pulsation due to the movement of the high pressure fuel supply pump occurs.
  • the relief valve opening pressure may be set higher than the peak pressure of the high-pressure piping, but the pressure pulsation in the fuel piping is as large as about +/ ⁇ 10 MPa, and the relief valve opening pressure is higher than the maximum fuel pressure used. Must be set higher by 10 MPa or more. Then, it is necessary to design the pressure resistance of the high pressure fuel supply pump and the high pressure piping to be equal to or higher than the maximum fuel pressure to be used +10 MPa, and the high pressure fuel supply pump has a problem that the cost of the high pressure piping becomes high.
  • the fuel pressure in the pressurizing chamber is repeatedly switched between a low pressure (0. several MPa) and a high pressure (several tens MPa) in normal operation, and the intermediate chamber is hydraulically connected to the pressurizing chamber. Therefore, the pressure in the intermediate chamber repeats low and high pressures at the same timing as the pressurizing chamber.
  • the intermediate chamber is affected by the restriction (orifice) provided by making the gap between the outer peripheral side surface of the ball holder and the member located on the outer periphery very small. The pressure drop rate was slower than the pressure drop rate in the pressurized chamber.
  • the present invention provides a valve mechanism that allows a relief valve to operate normally when the fuel pressure of the high-pressure pipe becomes an abnormal pressure while allowing normal high-pressure discharge of the fuel, and a high-pressure fuel supply pump including the valve mechanism.
  • the purpose is to improve the performance.
  • the valve mechanism of the present invention provides: “A sheet member having a seat part; a spring receiving member having an end surface facing the inner wall surface of the sheet member, and a gap formed between the end surface and the inner wall surface of the sheet member; and the spring receiving member And a valve member formed between the seat portion and a spring member that presses the valve member against the seat portion by pressing the spring receiving member from the side opposite to the end face to the seat portion side.
  • the end face of the spring receiving member is arranged closer to the seat portion than the center of gravity of the valve member ”.
  • a valve mechanism in which a relief valve operates normally when the fuel pressure in the high-pressure pipe becomes an abnormal pressure while allowing normal high-pressure discharge of the fuel, and a high-pressure fuel supply pump including the valve mechanism are provided. Reliability can be improved. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
  • 1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention. It is another longitudinal cross-sectional view of the high pressure fuel supply pump by the 1st Example of this invention. 1 is a cross-sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention. 1 is an enlarged longitudinal sectional view of an electromagnetic suction valve of a high-pressure fuel supply pump according to a first embodiment of the present invention, showing a state where the electromagnetic suction valve is in an open state. It is an expanded sectional view of the relief valve of the high-pressure fuel supply pump by the first example of the present invention, and shows the closed state of the relief valve.
  • 1 is an example of a fuel supply system diagram including a high-pressure fuel supply pump according to a first embodiment of the present invention. It is an expanded sectional view of the relief valve of the high-pressure fuel supply pump by the 2nd example of the present invention, and shows the valve closing state of a relief valve. It is an expanded sectional view of the relief valve of the high-pressure fuel supply pump by the 3rd example of the present invention, and shows the closed state of a relief valve.
  • Example 1 of the present invention will be described in detail with reference to the drawings.
  • a portion surrounded by a broken line indicates a main body of a high-pressure fuel supply pump (hereinafter referred to as a high-pressure pump), and a mechanism / part shown in the broken line indicates that it is integrated into the pump body 1.
  • a high-pressure pump a high-pressure fuel supply pump
  • Fuel in the fuel tank 20 is pumped up by a feed pump 21 based on a signal from an engine control unit 27 (hereinafter referred to as ECU).
  • ECU engine control unit 27
  • the fuel is pressurized to an appropriate feed pressure and sent to the low-pressure fuel inlet 10a of the high-pressure pump through the suction pipe 28.
  • the fuel that has passed through the suction joint 51 from the low-pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 constituting the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10d.
  • the fuel that has flowed into the electromagnetic suction valve 300 passes through the suction valve 30 and flows into the pressurizing chamber 11.
  • the reciprocating power is applied to the plunger 2 by the cam mechanism 93 of the engine.
  • the reciprocating motion of the plunger 2 sucks fuel from the suction valve 30 during the downward stroke of the plunger 2 and pressurizes the fuel during the upward stroke.
  • the discharge valve mechanism 8 the fuel is pumped to the common rail 23 to which the pressure sensor 26 is attached.
  • the injector 24 injects fuel into the engine based on a signal from the ECU 27.
  • the high-pressure pump discharges the fuel flow rate so as to obtain a desired supply fuel by a signal from the ECU 27 to the electromagnetic suction valve 300.
  • the configuration and operation of the high-pressure pump will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.
  • the high-pressure pump of the present embodiment uses a mounting flange 1 e provided in the pump body 1, is in close contact with the plane of the cylinder head 90 of the internal combustion engine, and is fixed by a plurality of bolts 91.
  • the mounting flange 1e is welded and joined to the pump body 1 at the welded portion 1f to form an annular fixed portion. In this embodiment, laser welding is used.
  • ⁇ O-ring 61 is fitted into the pump body 1 for sealing between the cylinder head 90 and the pump body 1 to prevent engine oil from leaking to the outside.
  • the pump body 1 is provided with a cylinder 6 that guides the reciprocating movement of the plunger 2 and has an end formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein.
  • An electromagnetic suction valve 300 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage are provided.
  • An annular groove 6 a that communicates the pressurizing chamber 11 with the electromagnetic suction valve 300 or the discharge valve mechanism 8 is provided on the outer peripheral side of the pressurizing chamber 11. Further, a plurality of communication holes 6 b that communicate the annular groove 6 a and the pressurizing chamber 11 are provided.
  • the cylinder 6 is fixed to the pump body 1 by press-fitting on the outer peripheral side thereof.
  • the surface of the cylindrical press-fit portion is sealed so that fuel pressurized from the gap with the pump body 1 does not leak to the low pressure side.
  • a small diameter portion 6 c is provided on the outer peripheral portion of the cylinder 6 on the pressurizing chamber side.
  • the force of the cylinder 6 acts toward the lower surface side low pressure fuel chamber 10 c side of the low pressure pulsation reducing mechanism 9.
  • the pump body 1 is also provided with the small-diameter portion 1a, the cylinder 6 is prevented from coming out to the low-pressure fuel chamber 10c side.
  • a tappet 92 that converts the rotational movement of the cam 93 attached to the camshaft of the internal combustion engine into a vertical movement and transmits it to the plunger 2.
  • the plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 can be reciprocated up and down with the rotational movement of the cam 93.
  • the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a slidable contact with the outer periphery of the plunger 2 at the lower part of the cylinder 6 in the figure.
  • lubricating oil including engine oil
  • a suction joint 51 is attached to the pump body 1.
  • the suction joint 51 is connected to a low-pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high-pressure pump.
  • the suction filter 52 in the suction joint 51 serves to prevent foreign matter existing between the fuel tank 20 and the low-pressure fuel inlet 10a from being absorbed into the high-pressure fuel supply pump by the flow of fuel.
  • the fuel that has passed through the low pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 via the pressure pulsation reducing mechanism 9 and the low pressure fuel flow path 10d.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve spring that urges the discharge valve 8b toward the discharge valve sheet 8a. 8c, and a stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.
  • the discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e to block the fuel and the outside.
  • the discharge valve 8b When there is no fuel differential pressure in the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12. When the discharge valve 8b is opened, the discharge valve 8b comes into contact with the discharge valve stopper 8d, and the stroke is limited.
  • the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d.
  • the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so that the discharge valve 8b moves only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel.
  • the pressurizing chamber 11 includes the pump housing 1, the electromagnetic suction valve 300, the plunger 2, the cylinder 6, and the discharge valve mechanism 8.
  • the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. If the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction passage 10d in this stroke, the suction valve 30 is in an open state. Therefore, the fuel passes through the opening 30 e, passes through the communication hole 1 a provided in the pump body 1, the groove 6 a of the cylinder 6, and the communication hole 6 b and flows into the pressurizing chamber 11.
  • the rod biasing spring 40 is set to have a biasing force necessary and sufficient to keep the suction valve 30 open in a non-energized state.
  • a so-called normally open high pressure pump is shown, but the present invention is not limited to this, and can be applied to a normally closed high pressure pump.
  • the volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 is again sucked through the opening 30 e of the intake valve 30 in the valve open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • the compression stroke of the plunger 2 (the upward stroke from the lower start point to the upper start point) includes a return stroke and a discharge stroke.
  • the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the coil 43 of the electromagnetic suction valve 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return stroke during the compression stroke is small and the ratio of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the energization timing is delayed, the ratio of the return stroke during the compression stroke is large and the ratio of the discharge stroke is small.
  • the energization timing to the electromagnetic coil 43 is controlled by a command from the ECU 27. By controlling the energization timing to the electromagnetic coil 43 as described above, the amount of fuel discharged at high pressure can be controlled to an amount required by the internal combustion engine.
  • the low pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 that reduces and reduces the pressure pulsation generated in the high pressure pump from spreading to the fuel pipe 28.
  • a pressure pulsation reducing mechanism 9 that reduces and reduces the pressure pulsation generated in the high pressure pump from spreading to the fuel pipe 28.
  • Reference numeral 9b denotes a mounting bracket for fixing the metal damper to the inner peripheral portion of the pump body 1, and since it is installed on the fuel passage, a plurality of holes are provided so that fluid can freely go back and forth on the mounting bracket 9b. I have to.
  • the plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub chamber 7a increases or decreases as the plunger reciprocates.
  • the sub chamber 7a communicates with the low pressure fuel chamber 10 through a fuel passage 10e. When the plunger 2 descends, fuel flows from the sub chamber 7a to the low pressure fuel chamber 10, and when it rises, fuel flows from the low pressure fuel chamber 10 to the sub chamber 7a.
  • FIG. 5 shows the closed state of the relief valve 200
  • FIG. 6 shows the opened state of the relief valve 200
  • FIG. 7 shows the state of pressure at each part around the relief valve 200.
  • the relief valve 200 includes a relief body 201, a valve member 202, a valve holder 203, a relief spring 204, and a spring stopper 205.
  • the relief body 201 is provided with a tapered sheet portion 201a.
  • the valve member 202 is loaded with the load of the relief spring 204 via the valve holder 203, pressed against the seat portion 201a, and shuts off the fuel in cooperation with the seat portion 201a.
  • the valve opening pressure of the valve member 202 is determined by the load of the relief spring 204.
  • the spring stopper 205 is press-fitted and fixed to the relief body 201, and is a mechanism that adjusts the load of the relief spring 204 according to the press-fitting and fixing position.
  • a gap 211 between the outermost periphery of the valve holder 203 and the inner body of the relief body 201 is so small that a throttling effect occurs when fuel passes. Specifically, it is about 0.005 to 0.2 mm.
  • a space surrounded by the three parts of the valve holder 203, the relief body 201, and the valve member 202 is referred to as an intermediate chamber 210, and a space in which the relief spring 204 is accommodated is referred to as a relief spring chamber 212.
  • the relief spring chamber 212 is connected to the pressurizing chamber 11 via a relief passage 213.
  • the valve holder 203 is composed of a protruding portion that protrudes from the valve holder 203 to the opposite side of the seat portion 201a.
  • the spring stopper 205 is formed with a hole into which the protruding portion is inserted on the inner peripheral side.
  • the valve holder 203 of the valve holder 203 is formed in a disk shape or a cylindrical shape, and holds the valve 202 on the inner peripheral side thereof.
  • the discharge joint 60 is welded and fixed to the pump body 1 by a welding portion 61 to secure a fuel passage.
  • FIG. 7 shows a pressure state around the relief valve 200 at this time.
  • the target fuel pressure of the common rail 23 is 14.5 MPa.
  • the pressure in the common rail 23 repeats pulsation with time, but the average value is 14.5 MPa.
  • the pressure in the pressurizing chamber 11 suddenly rises and rises above the pressure in the common rail 23, and in this embodiment rises to a peak value of about 23 MPa. Along with this, the pressure of the fuel discharge port 12 also rises and in this embodiment rises to a peak of about 21.5 MPa.
  • the intermediate chamber 210 and the gap 211, the relief spring chamber 212, the relief passage 213, and the pressurizing chamber 11 are hydraulically connected. Therefore, the pressure in the intermediate chamber 210 and the relief spring chamber 212 is about the same as the pressure in the pressurizing chamber 11, and is about 21.5 MPa at the peak in this embodiment.
  • the valve opening pressure of the relief valve 200 is set to 19 MPa in this embodiment, and the pressure of the fuel discharge port 12 that is the inlet of the relief valve 200 exceeds the valve opening pressure, but the relief valve 200 does not open. This is because the pressure in the intermediate chamber 210 and the relief spring chamber 212 also exceeds the valve opening pressure of the relief valve 200, and the difference between the inlet pressure and the outlet pressure of the valve member 202 is 19.5 MPa or less.
  • the intermediate chamber 210 and the pressurizing chamber 11 are hydraulically connected to solve the problem that the relief valve 200 is opened due to the peak pressure generated in the fuel discharge port 12 immediately after the discharge stroke. I was able to do it.
  • the pressure in the pressurizing chamber 11 becomes low pressure (about 0.5 MPa), and the pressure in the fuel discharge port 12 decreases to the same level as the pressure in the common rail 23. Also at this time, the relief valve 200 is not opened because the difference between the inlet pressure and the outlet pressure of the valve member 202 is 19.5 MPa or less.
  • the pressure in the pressurizing chamber 11 increases as described above, so the pressure difference between the inlet and outlet of the leaf valve 200 does not exceed 19 MPa, and the relief valve 200 does not open. Therefore, the relief valve 200 cannot open an abnormally high pressure during the discharge stroke. Therefore, even if the abnormally high pressure is relieved in the intake stroke and the return stroke, the pressure of the fuel discharge port 12 rises again in the pressurization stroke, so that the rigidity of the high pressure fuel supply pump and the high pressure piping cannot be ensured or is difficult. there were.
  • a constricted portion is provided as a gap 211 at a facing portion between the outer peripheral surface of the valve holder 203 (spring receiving member) and the inner peripheral surface of the relief body 201 which is a seat member.
  • the outermost outer periphery of the valve holder 203 and the inner week gap 211 of the relief body 201 are small enough to generate a throttling effect when the fuel passes, and specifically, the outer periphery of the spring receiving member (valve holder 203).
  • the clearance in the outer peripheral direction between the surface and the inner peripheral surface of the relief body 201 as a sheet member is such that it is formed to be 0.005 to 0.2 mm or less.
  • the relief valve 200 is opened to release the abnormally high pressure as described above.
  • the valve member 202 is separated from the seat portion 201 a and the abnormally high pressure fuel at the fuel discharge port 12 flows into the intermediate chamber 210.
  • valve member 202 since the valve member 202 receives the load of the relief spring 204, the valve member 202 is separated from the seat portion 201a, but its stroke is very small.
  • the fuel flowing into the intermediate chamber 210 passes through the gap 211 and is released to the pressurizing chamber 11 through the relief spring chamber 212 and the relief passage 213.
  • a throttling effect is generated in the gap 211, and the pressure in the intermediate chamber 210 becomes higher than that in the relief spring chamber 212, the relief passage 213 and the pressurizing chamber 11, and a leftward force in the drawing acts on the valve holder 203. That is, the forces applied to the valve member 202 and the valve holder 203 are listed as follows.
  • the valve member 202 is in a state of being largely separated from the seat portion 201a. Therefore, before the valve member 202 is seated on the seat portion 201a by the valve closing motion and the relief valve 200 is closed, the pressurization stroke is completed and the next suction process is started, and the valve member 202 is returned from the seat portion 201a again. It will be in a state of being largely separated. As a result, the relief valve 200 is always kept open, and the valve member 202 is in a state of being largely separated from the seat portion 201a, so that the throttle effect at this portion is small or absent.
  • the first method is to reduce the throttling effect by increasing the cross-sectional area of the gap 211. By doing so, the differential pressure between the intermediate chamber 211 and the pressurizing chamber 11 can be reduced. On the other hand, however, the relief effect when an abnormal high pressure occurs is reduced.
  • Another method is to reduce the volume of the intermediate chamber 210. There is no change in the volume of fuel passing through the gap 211 from the intermediate chamber 210 to the pressurizing chamber 11, but the pressure drop rate is large because the volume of the intermediate chamber 210 is small. There is no effect on the relief effect when abnormally high pressure occurs. That is, according to this method, it is possible to suppress the relief valve 200 from being opened during normal operation and to obtain a relief effect at an abnormally high pressure.
  • the valve is a ball valve and is separate from the valve holder.
  • Advantages of adopting a ball valve include low cost and high accuracy (sphericity). Since the valve member 202 has a function of sealing the fuel in contact with the seat portion 201a, the higher the accuracy, the better.
  • the valve holder 203 is provided with a valve guide portion 203a having a cylindrical shape, and the valve guide portion 203a is more than the center of the ball type valve member 202.
  • the structure protrudes toward the seat portion 201 a, and the end surface 203 b of the valve holder 203 faces the end surface 201 b of the relief body 201 to form a gap, and this gap becomes the intermediate chamber 210.
  • a relief body 201 that is a sheet member having a seat portion 201a, and an end surface 203b that faces the inner wall surface (relief body end surface 201b) of the sheet member (relief body 201), and the end surface 203b and the sheet member (relief body 201).
  • a valve holder 203 in which a gap is formed between the inner wall surface (relief body end surface 201b). Since the valve holder 203 receives the relief spring 204 on the side opposite to the spring stopper, it may be called a spring receiving member.
  • valve member 202 formed between the spring receiving member (valve holder 203) and the seat portion 201a and the spring receiving member (valve holder 203) are pressed against the seat portion 201a from the side opposite to the end face 203b.
  • the end face 203b of the spring receiving member (valve holder 203) is arranged closer to the seat portion 201a than the center of gravity of the valve member 202.
  • the end surface 203b of the spring receiving member (valve holder 203) is disposed closer to the seat portion 201a than the center of the ball valve 202.
  • the portion of the ball valve 202 closest to the spring receiving member (valve holder 203) is the outermost peripheral portion of the ball valve 202, the end surface 203b of the spring receiving member (valve holder 203) is seated from the outermost peripheral portion of the ball valve 202. Located on the side of the part.
  • a valve guide portion 203a for guiding the valve member 202 is formed at a portion of the inner peripheral surface portion of the spring receiving member (valve holder 203) facing the valve member 202. It is desirable that the valve guide portion 203a has a linear portion that is substantially parallel to the moving direction (stretching direction) of the relief spring 204. In other words, it is desirable that the valve guide portion 203a is formed with a substantially cylindrical portion along the moving direction of the spring member. Further, it is desirable that the valve guide portion 203a has an inclined portion that is inclined from the straight portion to the center side opposite to the seat portion 201a.
  • valve member 202 and the spring receiving member are separate bodies, and the spring receiving member (valve holder 203) is a valve member in the moving direction of the relief spring 204 as shown in FIG. It arrange
  • the high-pressure fuel supply pump includes the suction valve mechanism (electromagnetic suction valve 300) disposed on the suction side of the pressurization chamber 11 and the discharge disposed on the discharge side of the pressurization chamber 11.
  • suction valve mechanism electromagnettic suction valve 300
  • discharge valve mechanism 8 When the pressure of fuel in the discharge mechanism on the discharge side of the valve mechanism 8 and the discharge valve mechanism 8 exceeds a predetermined value, the fuel in the discharge path is returned to the pressurizing chamber 11 or the low pressure fuel path.
  • a relief valve mechanism relief valve 200. The valve mechanism of this embodiment is adopted as the relief valve mechanism.
  • valve guide portion 203a of the present embodiment is disposed between the pressurizing chamber 11 or the low pressure fuel flow path and the discharge flow path on the discharge side of the discharge valve mechanism 8. Further, the valve guide portion 203a has a substantially cylindrical portion so as to be along the moving direction of the relief spring 204, which is a spring member.
  • the ball-type valve member 202 When the abnormal high pressure fuel is relieved, the ball-type valve member 202 is greatly displaced, but at this time, the valve member 202 is ball-type, so that it is detached from the valve holder 203 and the operation becomes unstable. Previously. On the other hand, by adopting the structure of this embodiment described above, the operation can be stabilized without the valve member 202 being detached from the valve holder 203.
  • Example 2 of the present invention will be described with reference to FIG.
  • the sheet member 206 is provided as a member different from the relief body 201.
  • the seat member 206 is disposed on the inner peripheral side of the relief body 201 and on the opposite side of the relief spring 204 with respect to the valve holding member 203.
  • the end surface 201b of the relief body 201 in the first embodiment is formed on the sheet member 206 in the present embodiment.
  • the intermediate chamber 210 is formed by a gap formed by the seat member 206 and the inner wall surface 203a of the valve holding member 203 facing each other.
  • the sheet portion 201a can be easily processed, and cost reduction can be realized. Other effects can be obtained as in the first embodiment.
  • Example 3 of the present invention will be described with reference to FIG.
  • valve member 202 and the spring receiving member 203 are configured as an integral member. Since the other points are the same as those in the first embodiment, detailed description thereof is omitted.

Abstract

 本発明の目的は、燃料の正常な高圧吐出を可能しつつ、高圧配管の燃料圧力が異常圧力となった場合にリリーフバルブが正常に動作するバルブ機構、及びこれを備えた高圧燃料供給ポンプの信頼性を向上させることである。 本発明のバルブ機構は、シート部を有するシート部材と、前記シート部材の内壁面に対向する端面を有し、該端面と前記シート部材の内壁面との間に隙間が形成されるばね受け部材と、前記ばね受け部材と前記シート部との間に形成されたバルブ部材と、前記ばね受け部材を前記端面と反対側から前記シート部の側に押し付けることで前記バルブ部材を前記シート部に押し付けるばね部材と、を備え、前記ばね受け部材の端面は前記バルブ部材の重心よりも前記シート部の側に配置される。

Description

バルブ機構、及びこれを備えた高圧燃料供給ポンプ
 本発明は、バルブ機構、及びこれを備え、内燃機関の燃料噴射弁に燃料を圧送する高圧燃料供給ポンプに関する。特には、吐出する燃料の量を調節する電磁吸入弁としてのバルブ機構を備えた高圧燃料供給ポンプに関する。
 自動車等の内燃機関の内、燃焼室へ直接的に燃料を燃焼室内部へ噴射する直接噴射タイプにおいて、燃料を高圧化し所望の燃料流量を吐出する電磁吸入弁を備えた高圧燃料供給ポンプが広く用いられている。
 特許5103138号公報においては、高圧燃料供給ポンプにおいて燃料圧力が異常高圧となった場合に、その異常高圧燃料をリリーフするリリーフバルブを備え、高圧燃料供給ポンプその他の部品の破損を防ぐと同時に、外部への燃料漏れを防ぐ役目を果たす。
 また特許文献2においては、リリーフバルブの出口を高圧燃料供給ポンプの加圧室とすることが開示されている。
特許第5103138号公報 特許第4488486号公報
 リリーフバルブは、高圧燃料供給ポンプの故障等により発生した異常高圧をリリーフする機能を有する。リリーフバルブのバルブにはボールを用いており、このボールバルブをリリーフシートにリリーフばねの荷重によって押し付ける構造である。リリーフバルブの開弁圧力はリリーフばねの荷重によって調整し、使用最大燃料圧力よりも高く設定されている。高圧燃料の圧力がこのセット圧力を超過すると、リリーフバルブが開弁し異常高圧燃料を低圧側へ開放するが、このときボールバルブとリリーフシート間の隙間が非常に狭く燃料通路断面積が小さいので、この部分が絞り(オリフィス)になってしまい、異常高圧となった燃料圧力を十分に低い圧力に開放することが出来なかった。
 そのため、ボールバルブにリリーフばねのばね荷重を伝達するボールホルダの外周側面と、その外周に位置する部材との隙間を非常に小さくして、リリーフバルブ内のボールバルブより下流側に、絞り(オリフィス)を設ける構造とすることが考えられる。
 これにより、ボールホルダとリリーフシートの間の中間室の圧力が低圧側よりも高くなり、ボールホルダとボールバルブを大きなストロークで移動さることが出来る。すると、ボールバルブとリリーフシート間の隙間を大きく開放することが可能となり、この部分の燃料通路断面積を大きく確保できるので、これにより、この部分の絞り(オリフィス)効果により異常高圧となった燃料を十分に低い圧力に開放することが出来る。
 しかしながら、この構造には、次のような問題がある。 
 高圧配管の圧力がリリーフバルブの開弁圧よりも上昇するとリリーフバルブが開弁する。この場合、前述の通り中間室の圧力が低圧側より高くなりボールホルダとボールバルブを大きなストロークで移動し、異常高圧燃料を低圧側に開放する。つまり、リリーフバルブは一度開弁すると中間室の圧力が低圧側より高いために、大きく開弁した状態となり、その状態が維持される。さらに、実際の高圧配管においては、高圧燃料供給ポンプの運動による圧力脈動が発生する。高圧側の燃料が正常圧力に調圧されても(圧力脈動の平均値が正常圧力に調圧されても)、この圧力脈動のピーク値がリリーフバルブの開弁圧力よりも高くなると、リリーフバルブは開弁状態を維持し、高圧配管燃料を低圧側に開放してしまう。その結果、通常の高圧吐出が出来ないと言う問題がある。
 さらには、リリーフバルブの開弁圧力を高圧配管のピーク圧力よりも高くすれば良いが、燃料配管内の圧力脈動は+/-10MPa程度と大きく、リリーフバルブの開弁圧力は使用最大燃料圧力よりも10MPa以上高く設定しなくてはならない。すると、高圧燃料供給ポンプや高圧配管の耐圧性を、使用最大燃料圧力+10MPa以上に設計する必要があり、高圧燃料供給ポンプは高圧配管のコストが高くなるといった問題がある。
 また、特許文献2に記載のリリーフバルブの出口を高圧燃料供給ポンプの加圧室とすると、加圧室内で発生した圧力脈動のピークが同じ値で高圧配管に波及するので、圧力脈動のピーク値はリリーフバルブの入口と出口に等しく負荷されることになる。これにより高圧配管内の圧力脈動ピーク値によってリリーフバルブが開いてしまうと言う問題は解決できたが、次のような問題がある。
 高圧燃料供給ポンプにおいては、正常動作において加圧室内の燃料圧力は低圧(0.数MPa)と高圧(数十MPa)を交互に繰り返し、中間室は加圧室に液圧的に接続されているので、中間室内の圧力も加圧室と同じタイミングで低圧と高圧を繰り返す。ここで、中間室の圧力が高圧から低圧に移行するときには、ボールホルダの外周側面とその外周に位置する部材との隙間を非常に小さくすることで設けた絞り(オリフィス)の影響で、中間室内の圧力低下速度が加圧室内の圧力低下速度よりも遅くなった。
 その結果、加圧室内の圧力が中間室内の圧力よりも小さくなり、その差圧によってリリーフバルブが予期しないタイミングで開弁してしまうという問題があった。上述のタイミングでリリーフバルブが開弁してしまうと、高圧配管の燃料圧力が開放されてしまい、燃料の正常な高圧吐出が不可能になってしまう。
 そこで本発明は、燃料の正常な高圧吐出を可能しつつ、高圧配管の燃料圧力が異常圧力となった場合にリリーフバルブが正常に動作するバルブ機構、及びこれを備えた高圧燃料供給ポンプの信頼性を向上させることを目的とする。
 上記目的を達成するために本発明のバルブ機構は、 
 「シート部を有するシート部材と、 前記シート部材の内壁面に対向する端面を有し、該端面と前記シート部材の内壁面との間に隙間が形成されるばね受け部材と、 前記ばね受け部材と前記シート部との間に形成されたバルブ部材と、 前記ばね受け部材を前記端面と反対側から前記シート部の側に押し付けることで前記バルブ部材を前記シート部に押し付けるばね部材と、を備え、 前記ばね受け部材の端面は前記バルブ部材の重心よりも前記シート部の側に配置されること」を特徴とするものである。
 本発明によれば、燃料の正常な高圧吐出を可能しつつ、高圧配管の燃料圧力が異常圧力となった場合にリリーフバルブが正常に動作するバルブ機構、及びこれを備えた高圧燃料供給ポンプの信頼性を向上させることが可能となる。 
 本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
本発明の第一実施例による高圧燃料供給ポンプの縦断面図である。 本発明の第一実施例による高圧燃料供給ポンプの別の縦断面図である。 本発明の第一実施例による高圧燃料供給ポンプの横断面図である。 本発明の第一実施例による高圧燃料供給ポンプの電磁吸入弁の拡大縦断面図であり、電磁吸入弁が開弁状態にある状態を示す。 本発明の第一実施例による高圧燃料供給ポンプのリリーフバルブの拡大断面図であり、リリーフバルブの閉弁状態を示す。 本発明の第一実施例による高圧燃料供給ポンプのリリーフバルブの拡大断面図であり、リリーフバルブの開弁状態を示す。 本発明の第一実施例による高圧燃料供給ポンプの各部位での圧力状態を示すグラフである。 本発明の第一実施例による高圧燃料供給ポンプを含む燃料供給システム図の一例である。 本発明の第二実施例による高圧燃料供給ポンプのリリーフバルブの拡大断面図であり、リリーフバルブの閉弁状態を示す。 本発明の第三実施例による高圧燃料供給ポンプのリリーフバルブの拡大断面図であり、リリーフバルブの閉弁状態を示す。
 以下、本発明の実施例について図面を用いて詳細に説明する。
 まず本発明の実施例1について図面を用いて詳細に説明する。
図8に示すシステムの全体構成図を用いてシステムの構成と動作を説明する。
破線で囲まれた部分が高圧燃料供給ポンプ(以下、高圧ポンプと呼ぶ)本体を示し、この破線の中に示されている機構・部品はポンプ本体1に一体に組み込まれていることを示す。
 燃料タンク20の燃料は、エンジンコントロールユニット27(以下ECUと称す)からの信号に基づきフィードポンプ21によって汲み上げられる。この燃料は適切なフィード圧力に加圧されて吸入配管28を通して高圧ポンプの低圧燃料吸入口10aに送られる。
 低圧燃料吸入口10aから吸入ジョイント51を通過した燃料は圧力脈動低減機構9、吸入通路10dを介して容量可変機構を構成する電磁吸入弁300の吸入ポート31bに至る。
 電磁吸入弁300に流入した燃料は、吸入弁30を通過し加圧室11に流入する。エンジンのカム機構93によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁30から燃料を吸入し、上昇行程には、燃料が加圧される。吐出弁機構8を介し、圧力センサ26が装着されているコモンレール23へ燃料が圧送される。そしてECU27からの信号に基づきインジェクタ24がエンジンへ燃料を噴射する。
 高圧ポンプは、ECU27から電磁吸入弁300への信号により、所望の供給燃料となるよう燃料流量を吐出する。
図1、図2、図3及び図4を用いて高圧ポンプの構成及び動作について述べる。 
 本実施例の高圧ポンプはポンプ本体1に設けられた取付けフランジ1eを用い内燃機関のシリンダヘッド90の平面に密着し、複数のボルト91で固定される。取付けフランジ1eは溶接部1fにてポンプ本体1に全周を溶接結合されて環状固定部を形成している。本実施例では、レーザー溶接を用いている。
 シリンダヘッド90とポンプ本体1との間のシールのためにOリング61がポンプ本体1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。
 ポンプ本体1にはプランジャ2の往復運動をガイドし、かつ内部に加圧室11を形成するよう端部が有底筒型状に形成されたシリンダ6が取り付けられている。また燃料を加圧室11に供給するための電磁吸入弁300と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8が設けられている。そして加圧室11と電磁吸入弁300、又は吐出弁機構8とを連通する環状の溝6aが加圧室11の外周側に設けられている。さらに環状の溝6aと加圧室11とを連通する複数個の連通穴6bが設けられている。
 シリンダ6はその外周側において、ポンプ本体1と圧入により固定される。円筒状の圧入部の表面によりポンプ本体1との隙間から加圧した燃料が低圧側に漏れないようシールしている。ここで、シリンダ6の加圧室側の外周部に小径部6cを有している。加圧室11の燃料が加圧されることにより、低圧脈動低減機構9の下面側低圧燃料室10cの側に向かってシリンダ6の力が作用する。しかし、ポンプ本体1にも小径部1aを設けているため、シリンダ6が低圧燃料室10c側に抜けることを防止している。シリンダ6の小径部6cとポンプ本体1の小径部1aとを軸方向に平面に接触させることで、ポンプ本体1とシリンダ6との円筒状の圧入部のシールに加え、二重のシールの機能をも果たす。
 プランジャ2の下端には、内燃機関のカムシャフトに取り付けられたカム93の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム93の回転運動に伴い、プランジャ2を上下に往復運動させることができる。
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールし内燃機関内部へ流入するのを防ぐ。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプ本体1の内部に流入するのを防止する。
 ポンプ本体1には吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの燃料を供給する低圧配管に接続されており、燃料はここから高圧ポンプ内部に供給される。吸入ジョイント51内の吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって高圧燃料供給ポンプ内に吸収することを防ぐ役目がある。
 低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁300の吸入ポート31bに至る。
 加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bのストローク(移動距離)を決めるストッパ8dから構成される。吐出弁ストッパ8dとポンプ本体1は当接部8eで溶接により接合され燃料と外部を遮断している。
 加圧室11と吐出弁室12aに燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cに逆らって開弁する。そして、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12b、燃料吐出口12を経てコモンレール23へと吐出される。吐出弁8bは開弁した際、吐出弁ストッパ8dと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、吐出弁室12aへ高圧吐出された燃料が、再び加圧室11内に逆流してしまうのを防止でき、高圧ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ストッパ8dの外周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。
 以上に説明したように、加圧室11は、ポンプハウジング1、電磁吸入弁300、プランジャ2、シリンダ6、吐出弁機構8にて構成される。
 カム93の回転により、プランジャ2がカム93の方向に移動して吸入行程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入通路10dの圧力よりも低くなると、吸入弁30は開口状態にある。そのため燃料は開口部30eを通り、ポンプ本体1に設けられた連通穴1aと、シリンダ6の溝6a、連通孔6bを通過し、加圧室11に流入する。
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ圧縮行程に移る。ここで電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね40は、無通電状態において吸入弁30を開弁維持するのに必要十分な付勢力を有するよう設定されている。本実施例ではいわゆるノーマルオープン式の高圧ポンプを示しているが、本発明はこれに限定される訳ではなく、ノーマルクローズ式の高圧ポンプにも適用可能である。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁30の開口部30eを通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。
 この状態で、エンジンコントロールユニット27(以下ECUと呼ぶ)からの制御信号が電磁吸入弁300に印加されると、電磁コイル43には端子46を介して電流が流れる。すると、磁気付勢力がロッド付勢ばね40の付勢力に打ち勝ってロッド35が吸入弁30から離れる方向に移動する。よって、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール23へと供給される。この行程を吐出行程と称する。
 すなわち、プランジャ2の圧縮行程(下始点から上始点までの間の上昇行程)は、戻し行程と吐出行程からなる。そして、電磁吸入弁300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、圧縮行程中の、戻し行程の割合が小さく、吐出行程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮行程中の、戻し行程の割合が大きく吐出行程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、ECU27からの指令によって制御される。
以上のように電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
 低圧燃料室10には高圧ポンプ内で発生した圧力脈動が燃料配管28へ波及するのを低減減させる圧力脈動低減機構9が設置されている。一度加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体30を通して吸入通路10dへと戻される場合、吸入通路10dへ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。9bは金属ダンパをポンプ本体1の内周部に固定するための取付金具であり、燃料通路上に設置されるため、複数の穴を設け前記取付金具9bの表裏に流体が自由に行き来できるようにしている。
 プランジャ2は、大径部2aと小径部2bを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは燃料通路10eにより低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から副室7aへと燃料の流れが発生する。
 このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧ポンプ内部で発生する圧力脈動を低減する機能を有している。
 次に、図5、図6および図7を用いて本実施例のリリーフバルブを詳述する。 
 図5はリリーフバルブ200の閉弁状態を示し、図6はリリーフバルブ200の開弁状態を示す。図7はリリーフバルブ200周辺の各部位の圧力の状態を示す。 
 リリーフ弁200はリリーフボディ201、バルブ部材202、バルブホルダ203、リリーフばね204、ばねストッパ205からなる。リリーフボディ201には、テーパー形状のシート部201a設けられている。バルブ部材202はリリーフばね204の荷重がバルブホルダ203を介して負荷され、シート部201aに押圧され、シート部201aと協働して燃料を遮断している。
 バルブ部材202の開弁圧力はリリーフばね204の荷重によって決定せられる。ばねストッパ205はリリーフボディ201に圧入固定されており、圧入固定の位置によってリリーフばね204の荷重を調整する機構である。バルブホルダ203の最外周とリリーフボディ201の内週の隙間211は燃料が通過する際に絞り効果が発生する程度に小さい。具体的には0.005~0.2mm程度である。バルブホルダ203、リリーフボディ201とバルブ部材202の3部品で囲まれた空間を中間室210、リリーフばね204が収容されている空間をリリーフばね室212と称する。リリーフばね室212はリリーフ通路213を介して加圧室11に接続している。
 バルブホルダ203は図5に示すようにバルブホルダ203からシート部201aと反対側に突出する突出部とから構成される。ばねストッパ205はこの突出部が内周側に挿入される穴が形成されている。またバルブホルダ203のバルブ保持部は、円盤形状、あるいは円筒形状に形成され、その内周側においてバルブ202を保持する。吐出ジョイント60はポンプ本体1に溶接部61にて溶接固定され燃料通路を確保している。
 高圧燃料供給ポンプが正常に作動している場合、加圧室11によって加圧された燃料は燃料吐出通路12bを通過して燃料吐出口12から高圧吐出される。このとき、リリーフバルブ200の周りの圧力状態を示した図が図7である。
 本実施例では、コモンレール23の目標燃料圧力は14.5MPaである。コモンレール23内の圧力は時間とともに脈動を繰り返すが平均値が14.5MPaである。
 加圧行程の開始直後に加圧室11内の圧力は急上昇してコモンレール23内の圧力よりも上昇して本実施例ではピーク値で約23MPaまで上昇する。それに伴い燃料吐出口12の圧力も上昇して本実施例ではピークで21.5MPa程度まで上昇する。中間室210と隙間211、リリーフバネ室212、リリーフ通路213、および加圧室11は液圧的に接続している。そのため、中間室210およびリリーフばね室212の圧力は加圧室11内の圧力と同程度となっており、本実施例ではピークで21.5MPa程度である。
 リリーフバルブ200の開弁圧力は本実施例では19MPaにセットされており、リリーフバルブ200の入り口である燃料吐出口12の圧力は開弁圧力を超えるがリリーフバルブ200は開弁しない。それは、中間室210およびリリーフばね室212の圧力もリリーフバルブ200の開弁圧力を超え、バルブ部材202の入り口圧力と出口圧力の差が開弁圧力19.5MPa以下であるからである。
 以上の様に中間室210と加圧室11を液圧的に接続することで、吐出行程直後に燃料吐出口12内で発生するピーク圧力によってリリーフバルブ200が開弁してしまう問題を解決することが出来た。
 加圧行程から吸入行程に移行すると、加圧室11内の圧力は低圧(0.5MPa程度)となり、燃料吐出口12の圧力はコモンレール23内の圧力と同程度まで低下する。この時も、バルブ部材202の入り口圧力と出口圧力の差が開弁圧力19.5MPa以下であるからリリーフバルブ200は開弁しない。
 次に、異常高圧燃料が発生した場合について述べる。 
 高圧燃料供給ポンプの電磁吸入弁300の故障等により、燃料吐出口12の圧力が異常に高圧になった場合は、リリーフバルブ200により異常高圧をリリーフする。 
 吸入工程、及び戻し工程においては加圧室11内の圧力は0.5MPa程度であり、リリーフバルブ200の開弁圧力は19MPaであるから、燃料吐出口12の圧力が19.5MPa以上になるとリリーフバルブ200の入り口と出口の圧力差が19MPaを超えてリリーフバルブ200が開弁(バルブ部材202がシート部201aより離座)して異常高圧を加圧室11へと逃がす。
 吐出行程においては、前述のごとく加圧室11の圧力は上昇するので、リーフバルブ200の入り口と出口の圧力差が19MPaを超えず、リリーフバルブ200が開弁しない。よって、吐出行程ではリリーフバルブ200は異常高圧を開放することが出来ない。そのため、吸入行程、戻し行程において異常高圧をリリーフしても加圧行程において再び燃料吐出口12の圧力が上昇してしまい、高圧燃料供給ポンプや高圧配管の剛性確保できない、または難しいと言う問題があった。
 この問題を解決するために、本実施例においてはバルブホルダ203(ばね受け部材)の外周面とシート部材であるリリーフボディ201の内周面との対面部位に隙間211として絞り部を設けた。前述の如く、バルブホルダ203の最外周とリリーフボディ201の内週の隙間211は燃料が通過する際に絞り効果が発生する程度に小さく、具体的にはばね受け部材(バルブホルダ203)の外周面とシート部材であるリリーフボディ201の内周面との外周方向の隙間は0.005~0.2mm以下に形成される程度である。吸入行程、戻し行程において、リリーフバルブ200は開弁して異常高圧を開放することは前述の通りである。バルブ部材202がシート部201aより離座して燃料吐出口12の異常高圧燃料が中間室210に流入する。
 この時、バルブ部材202はリリーフばね204の荷重を受けているから、バルブ部材202がシート部201aより離座するがそのストロークは非常に小さい。中間室210に流入した燃料は隙間211を通ってリリーフばね室212、リリーフ通路213を通って加圧室11へと開放される。この時、隙間211で絞り効果が発生し中間室210の圧力が、リリーフばね室212、リリーフ通路213および加圧室11よりも高くなり、バルブホルダ203には図中左方向力が働く。すなわち、バルブ部材202とバルブホルダ203に負荷される力を列記すると下記の通りである。
 (1)リリーフばね204による力 : 閉弁方向
 (2)燃料吐出口12と中間室210の差圧による力 : 開弁方向
 (3)中間室210とリリーフばね室212の差圧による力 : 開弁方向
 そして、以下の関係が成立するとバルブ部材202、バルブホルダ203は大きく開弁方向に移動する。
(1) < (2) + (3)
 バルブホルダ203がポンプ本体のストッパ部214に接触すると開弁運動を止める。このようにして本実施例のリリーフばね204は密着しないように設計されているものである。リリーフばね204が密着してしまうと、リリーフばね室212からリリーフ通路213に燃料が開放されないので、異常高圧を開放できない。
 さらに、吸入行程または戻し行程から加圧行程に移行した直後には、バルブ部材202はシート部201aより大きく離座した状態である。よって、バルブ部材202が閉弁運動によってシート部201aに着座しリリーフバルブ200が閉弁するより前に、加圧行程が終了して次の吸入工程が始まり、バルブ部材202は再びシート部201aより大きく離座した状態となる。結果的に、リリーフバルブ200は常に開弁状態を保ち、更にバルブ部材202はシート部201aより大きく離座した状態であるため、この部分での絞り効果は少ない、または無い。
 ここで、正常運転時において、加圧行程から吸入行程へ移行した瞬間に着目してみる。
 プランジャ2が下降運動を開始すると、加圧室11および中間室210の圧力は低下を始めるが、中間室210の圧力降下は加圧室11の圧力降下より遅い。これは、中間室210と加圧室11の間には存在する隙間211の影響である。加圧室11の圧力が降下すると、中間室210内の燃料の一部が隙間211を通って加圧室11側へ移動し、中間室の圧力が低下する。前述の通り、隙間211は、燃料が流れる際に絞り効果が発生する程度に小さいので、この絞り効果の影響で中間室210と加圧室11の間に差圧が発生し、バルブ部材202およびバルブホルダ203には開弁方向に力が発生する。
 この時にバルブ部材202とバルブホルダ203に負荷される力を下記する。 
 (1)リリーフばね204による力 : 閉弁方向 
 (2)燃料吐出口12と中間室210の差圧による力 : 開弁方向 
 (3)中間室210とリリーフばね室212の差圧による力 : 開弁方向 
 前述した、隙間211によって発生する力は(2)である。 
 正常運転においては、リリーフバルブ200は開弁してはならず、その時の条件は下記となる。 (1) > (2) + (3) 本不等式が成立するためには、(2)が十分小さい必要がある。
 内燃機関の駆動回転速度が小さいときは、プランジャ2の運動速度も小さいので隙間211を通過する燃料速度も小さい。よって絞り効果も小さく(2)は十分小さいので問題とはならない。 
 内燃機関の駆動回転速度が大きいときは、プランジャ2の運動速度も大きいので隙間211を通過する燃料速度も大きい。よって、絞り効果も大きく(2)の値が大きい為に上記の不等式が成立しないという問題があることを発明者らは鋭意検討の末、突き止めた。
 そして、この問題を解決する方法は二つあることが分かった。 
 一つ目は、隙間211の流路断面積を大きくすることで絞り効果を小さくするという方法である。このようにする事で、中間室211と加圧室11の差圧を小さく出来る。しかし一方、異常高圧が発生した際のリリーフ効果が小さくなってしまう。
 もう一つは中間室210の体積を小さくするという方法である。中間室210から加圧室11へと隙間211を通過する燃料体積に変化は無いが、中間室210の体積が小さいので圧力の降下速度は大きい。異常高圧が発生した際のリリーフ効果には影響は無い。すなわち、この方法によれば、正常運転においてリリーフバルブ200が開弁するのを抑制し、かつ、異常高圧におけるリリーフ効果を得ることが可能となる。
 ここで、後者の中間室210の体積を小さくするための本実施例の構成について説明する。 
 本実施例においては、バルブはボールバルブとなっており、バルブホルダとは別体となっている。ボールバルブを採用する利点としては、低コスト・高精度(真球度)が挙げられる。バルブ部材202はシート部201aと接触して燃料をシールする機能があるので、その精度は高いほど良い。
 以上のようなボール式のバルブ部材202において中間室210を小さくするために、バルブホルダ203に円筒形状であるバルブガイド部203aを設け、バルブガイド部203aはボール型のバルブ部材202の中心よりもシート部201a側に突出する構造とし、バルブホルダ203の端面203bがリリーフボディ201の端面201bと対面して隙間を構成し、この隙間を中間室210となる構成とした。
 すなわち、シート部201aを有するシート部材であるリリーフボディ201と、シート部材(リリーフボディ201)の内壁面(リリーフボディ端面201b)に対向する端面203bを有し、端面203bとシート部材(リリーフボディ201)の内壁面(リリーフボディ端面201b)との間に隙間が形成されるバルブホルダ203とを備える。なお、このバルブホルダ203はばねストッパと反対側にリリーフばね204を受けているため、ばね受け部材と呼んでも良い。
 また、ばね受け部材(バルブホルダ203)とシート部201aとの間に形成されたバルブ部材202と、ばね受け部材(バルブホルダ203)を端面203bと反対側からシート部201aの側に押し付けることでバルブ部材202をシート部201aに押し付けるばね部材であるリリーフばね204と、を備える。そしてばね受け部材(バルブホルダ203)の端面203bはバルブ部材202の重心よりもシート部201aの側に配置されるようにしたものである。
 より具体的にはバルブ保持部材の端面と前記シート部材の内壁面との間の隙間は小さければ小さい程、その効果が得られることを確認しており、0.4mm以下に形成されることが望ましい。別の言い方をすると、ばね受け部材(バルブホルダ203)の端面203bはボールバルブ202の中心よりもシート部201aの側に配置される。あるいは、ボールバルブ202の最もばね受け部材(バルブホルダ203)に近い部位をボールバルブ202の最外周部とすると、ばね受け部材(バルブホルダ203)の端面203bがボールバルブ202の最外周部よりシート部の側に位置する。
 これにより中間室210の体積を十分に小さくすることができた。その結果として、吐出行程が終了して吸入行程に移行する過程において中間室210内の圧力降下と加圧室11内の圧力降下の差に発生した圧力差によって、リリーフバルブ200が開弁状態になってしまう問題を解決することが出来た。
 すなわち、吸入行程において、加圧室内の圧力が中間室内の圧力よりも小さくなり、その差圧によってリリーフバルブが予期しないタイミングで開弁してしまい、リリーフバルブが開弁してしまう。そのため高圧配管の燃料圧力が開放されてしまい、燃料の正常な高圧吐出が不可能になってしまうという問題があったが、本実施例によればこの問題を解決することが出来る。
 本実施例では、図5、6に示すようにばね受け部材(バルブホルダ203)の内周面部のバルブ部材202との対面部位に、バルブ部材202を案内するバルブガイド部203aが形成される。このバルブガイド部203aはリリーフばね204の移動方向(伸縮方向)と略平行な直線部を有することが望ましい。換言すると、バルブガイド部203aはばね部材の移動方向と沿うように略円筒部が形成されることが望ましい。またバルブガイド部203aは、直線部からシート部201aと反対側の中央側に傾斜する傾斜部を有することが望ましい。
 そして、本実施例ではバルブ部材202とばね受け部材(バルブホルダ203)とは別体であり、図5に示すようにばね受け部材(バルブホルダ203)は、リリーフばね204の移動方向においてバルブ部材202の半径より大きく重なるように配置される。
 以上に説明したように本実施例の高圧燃料供給ポンプは、加圧室11の吸入側に配置される吸入弁機構(電磁吸入弁300)と、加圧室11の吐出側に配置される吐出弁機構8と、吐出弁機構8の吐出側の吐出流路の燃料の圧力が所定値以上になった場合に、この吐出流路の燃料を加圧室11に、又は低圧燃料流路に戻すリリーフ弁機構(リリーフバルブ200)と、を備えている。そして、このリリーフ弁機構として本実施例のバルブ機構を採用したものである。
 つまり、本実施例のバルブガイド部203aは加圧室11又は低圧燃料流路と、吐出弁機構8の吐出側の吐出流路との間に配置される。さらにバルブガイド部203aはばね部材であるリリーフばね204の移動方向と沿うように略円筒部略が形成される。
 異常高圧燃料をリリーフする際にボール型のバルブ部材202は大きく変位するが、その時にバルブ部材202がボール型であるためにバルブホルダ203より外れてしまい、動作が不安定になると言った問題が従来あった。これに対して上記した本実施例の構造を採用することにより、バルブ部材202がバルブホルダ203から外れることなく、動作を安定させることが可能となる。
 本発明の実施例2について図9を用いて説明する。
 本実施例ではリリーフボディ201とは別の部材でシート部材206を設けた。シート部材206はリリーフボディ201の内周側に、かつ、バルブ保持部材203に対してリリーフばね204と反対側に配置したものである。実施例1におけるリリーフボディ201の端面201bは、本実施例ではこのシート部材206に形成される。また中間室210はシート部材206とバルブ保持部材203の内壁面203aとが対面して隙間を構成することで形成される。
 その他の点については実施例1と同様であるため、詳細な説明は省略する。このような構造とすることにより、シート部201aを加工しやすくなり、低コスト化を実現できる。それ以外の効果も実施例1と同様のものを得ることが出来る。
 本発明の実施例3について図10を用いて説明する。
 本実施例では、バルブ部材202とばね受け部材203を一体の部材として構成した点が第一実施例と異なる。その他の点については実施例1と同様であるため、詳細な説明は省略する。
 このような構造とすることにより、バルブ部材202のあばれを防ぐことが出来、部品点数削減によりコスト削減を図ることが可能となる。それ以外の効果も実施例1と同様のものを得ることが出来る。
1 ポンプ本体
2 プランジャ
6 シリンダ
7 シールホルダ
8 吐出弁機構
9 圧力脈動低減機構
10a 低圧燃料吸入口
11 加圧室
12 燃料吐出口
13 プランジャシール
30 吸入弁
40 ロッド付勢ばね
43 電磁コイル
100 圧力脈動伝播防止機構
101 弁シート
102 弁
103 ばね
104 ばねストッパ
200 リリーフバルブ
201 リリーフボディ
202 バルブホルダ
203 リリーフばね
204 ばねストッパ
300 電磁吸入弁

Claims (19)

  1.  シート部を有するシート部材と、
     前記シート部材の内壁面に対向する端面を有し、該端面と前記シート部材の内壁面との間に隙間が形成されるばね受け部材と、
     前記ばね受け部材と前記シート部との間に形成されたバルブ部材と、
     前記ばね受け部材を前記端面と反対側から前記シート部の側に押し付けることで前記バルブ部材を前記シート部に押し付けるばね部材と、を備え、
     前記ばね受け部材の端面は前記バルブ部材の重心よりも前記シート部の側に配置されることを特徴とするバルブ機構。
  2.  シート部を有するシート部材と、
     前記シート部材の内壁面に対向する端面を有し、該端面と前記シート部材の内壁面との間に隙間が形成されるばね受け部材と、
     前記ばね受け部材と前記シート部との間に形成されたバルブ部材と、
     前記ばね受け部材を前記端面と反対側から前記シート部の側に押し付けることで前記バルブ部材を前記シート部に押し付けるばね部材と、を備え、
     前記ばね受け部材の端面と前記シート部材の内壁面との間の隙間は0.4mm以下に形成されることを特徴とするバルブ機構。
  3.  請求項1又は2に記載のバルブ機構において、
     前記ばね受け部材の外周面と前記シート部材の内周面との対面部位に絞り部が形成されることを特徴とするバルブ機構。
  4.  請求項1又は2に記載のバルブ機構において、
     前記バルブ部材がボールバルブであり、前記ばね受け部材の端面は前記ボールバルブの中心よりも前記シート部の側に配置されることを特徴とするバルブ機構。
  5.  請求項1又は2に記載のバルブ機構において、
     前記バルブ部材がボールバルブであり、前記ばね受け部材の前記端面が前記ボールバルブの最外周部より前記シート部の側に位置することを特徴とするバルブ機構。
  6.  請求項1又は2に記載のバルブ機構において、
     前記バルブ部材と前記ばね受け部材とは別体であり、前記ばね受け部材は、前記ばね部材の移動方向において前記バルブ部材の半径より大きく重なるように配置されることを特徴とするバルブ機構。
  7.  請求項1又は2に記載のバルブ機構において、
     前記バルブ部材と前記ばね受け部材とは別体であり、前記ばね受け部材の内周面部の前記バルブ部材との対面部位に、前記バルブ部材を案内するバルブガイド部が形成されることを特徴とするバルブ機構。
  8.  請求項7に記載のバルブ機構において、
     前記バルブガイド部は前記ばね部材の移動方向と略平行な直線部を有することを特徴とするバルブ機構。
  9.  請求項8に記載のバルブ機構において、
     前記バルブガイド部は、前記直線部から前記シート部と反対側の中央側に傾斜する傾斜部を有することを特徴とするバルブ機構。
  10.  シート部を有するシート部材と、
     前記シート部と接触、又は離間するバルブ部材と、
     前記シート部材の内壁面と対向する端面を有し、前記バルブ部材を保持するバルブ保持部材と、
     前記端面と反対側から前記バルブ保持部材を前記シート部の側に押し付けることで前記バルブ部材を前記シート部に押し付けるばね部材と、を備え、
     前記ばね受け部材の内周面部の前記バルブ部材との対面部位に、前記バルブ部材を案内するバルブガイド部が形成されることを特徴とするバルブ機構。
  11.  請求項10に記載のバルブ機構において、
     前記バルブガイド部は前記ばね部材の移動方向と略平行な直線部を有することを特徴とするバルブ機構。
  12.  請求項11に記載のバルブ機構において、
     前記バルブガイド部は、前記直線部から前記シート部と反対側の中央側に傾斜する傾斜部を有することを特徴とするバルブ機構。
  13.  請求項10に記載のバルブ機構において、
     前記ばね受け部材の端面は前記バルブ部材の重心よりも前記シート部の側に配置されることを特徴とするバルブ機構。
  14.  請求項10に記載のバルブ機構において、
     前記バルブ保持部材の端面と前記シート部材の内壁面との間の隙間は0.4mm以下に形成されることを特徴とするバルブ機構。
  15.  請求項10に記載のバルブ機構において、
     前記ばね受け部材の外周面と前記シート部材の内周面との外周方向の隙間は0.2mm以下に形成されることを特徴とするバルブ機構。
  16.  請求項10に記載のバルブ機構において、
     前記バルブガイド部は前記ばね部材の移動方向と沿うように略円筒部略が形成されることを特徴とするバルブ機構。
  17.  プランジャにより加圧される加圧室と、
     前記加圧室の吸入側に配置される吸入弁機構と、
     前記加圧室の吐出側に配置される吐出弁機構と、
     前記吐出弁機構の吐出側の吐出流路の燃料の圧力が所定値以上になった場合に、前記吐出流路の燃料を前記加圧室に、又は低圧燃料流路に戻すリリーフ弁機構と、を備えた高圧燃料供給ポンプにおいて、
     前記リリーフ弁機構に請求項1、2、10の何れかに記載のバルブ機構が用いられたことを特徴とする高圧燃料供給ポンプ。
  18.  請求項17に記載の高圧燃料供給ポンプにおいて、
     前記バルブガイド部は前記加圧室又は低圧燃料流路と、前記吐出流路との間に配置されることを特徴とする高圧燃料供給ポンプ。
  19.  請求項17に記載の高圧燃料供給ポンプにおいて、
     前記バルブガイド部は前記ばね部材の移動方向と沿うように略円筒部略が形成されることを特徴とする高圧燃料供給ポンプ。
PCT/JP2015/081680 2014-12-25 2015-11-11 バルブ機構、及びこれを備えた高圧燃料供給ポンプ WO2016103945A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566018A JP6572241B2 (ja) 2014-12-25 2015-11-11 バルブ機構、及びこれを備えた高圧燃料供給ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-261540 2014-12-25
JP2014261540 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016103945A1 true WO2016103945A1 (ja) 2016-06-30

Family

ID=56149979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081680 WO2016103945A1 (ja) 2014-12-25 2015-11-11 バルブ機構、及びこれを備えた高圧燃料供給ポンプ

Country Status (2)

Country Link
JP (1) JP6572241B2 (ja)
WO (1) WO2016103945A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155144A (ja) * 2017-03-16 2018-10-04 株式会社デンソー 高圧ポンプ
JP2019190426A (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料供給ポンプ及び燃料供給ポンプの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299672A (ja) * 1985-10-22 1987-05-09 ウエ−バ− ソチエタ ペル アツイオニ アジエンダ アルテクナ デイ−ゼル機関用燃料噴射ポンプの送出し弁
JP2005147096A (ja) * 2003-11-19 2005-06-09 Yanmar Co Ltd 燃料噴射ポンプのデリベリバルブ
JP5021710B2 (ja) * 2009-04-02 2012-09-12 エムアーエヌ・ディーゼル・エスエー 燃料供給装置のバルブユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550758B2 (ja) * 1990-07-26 1996-11-06 日本電装株式会社 燃料噴射ポンプの圧力調整弁
JP2002250258A (ja) * 2001-02-22 2002-09-06 Denso Corp 燃料噴射装置用定残圧弁
JP2009209801A (ja) * 2008-03-04 2009-09-17 Yanmar Co Ltd 燃料噴射ポンプのデリベリバルブ
JP4998837B2 (ja) * 2009-12-10 2012-08-15 株式会社デンソー 高圧ポンプ
JP2013241835A (ja) * 2012-05-17 2013-12-05 Nippon Soken Inc 高圧燃料ポンプのリリーフ弁
JP2015075049A (ja) * 2013-10-10 2015-04-20 株式会社デンソー 高圧ポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299672A (ja) * 1985-10-22 1987-05-09 ウエ−バ− ソチエタ ペル アツイオニ アジエンダ アルテクナ デイ−ゼル機関用燃料噴射ポンプの送出し弁
JP2005147096A (ja) * 2003-11-19 2005-06-09 Yanmar Co Ltd 燃料噴射ポンプのデリベリバルブ
JP5021710B2 (ja) * 2009-04-02 2012-09-12 エムアーエヌ・ディーゼル・エスエー 燃料供給装置のバルブユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155144A (ja) * 2017-03-16 2018-10-04 株式会社デンソー 高圧ポンプ
JP2019190426A (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料供給ポンプ及び燃料供給ポンプの製造方法
WO2019207904A1 (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料供給ポンプ及び燃料供給ポンプの製造方法
JP7089399B2 (ja) 2018-04-27 2022-06-22 日立Astemo株式会社 燃料供給ポンプ及び燃料供給ポンプの製造方法

Also Published As

Publication number Publication date
JPWO2016103945A1 (ja) 2017-08-03
JP6572241B2 (ja) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6633195B2 (ja) 高圧燃料供給ポンプ
JP2007138762A (ja) 高圧燃料供給ポンプ
JP4940329B2 (ja) 高圧燃料供給ポンプ
JP2008057451A (ja) 高圧燃料供給ポンプ
WO2015163245A1 (ja) 高圧燃料供給ポンプ
WO2015163246A1 (ja) 高圧燃料供給ポンプ
WO2014083979A1 (ja) 高圧燃料供給ポンプ
JP6934519B2 (ja) 高圧燃料ポンプ
EP3543519B1 (en) High-pressure fuel supply pump
JP6649483B2 (ja) 高圧燃料供給ポンプ
JP6697552B2 (ja) 高圧燃料供給ポンプ
JP6572241B2 (ja) バルブ機構、及びこれを備えた高圧燃料供給ポンプ
JP2019143562A (ja) 吐出弁機構およびそれを備えた燃料供給ポンプ
JP6862574B2 (ja) 高圧燃料供給ポンプ
US20220316470A1 (en) Fuel Pump
JP2019167897A (ja) 燃料供給ポンプ
WO2021095556A1 (ja) 燃料供給ポンプ
JP2019002308A (ja) 高圧燃料供給ポンプ
JP7139265B2 (ja) 高圧燃料供給ポンプ及びリリーフ弁機構
WO2019097990A1 (ja) リリーフ弁機構およびこれを備えた燃料供給ポンプ
JP6596542B2 (ja) バルブ機構及びこれを備えた高圧燃料供給ポンプ
JP2019090365A (ja) 燃料供給ポンプ
JP6385840B2 (ja) バルブ機構及びこれを備えた高圧燃料供給ポンプ
WO2019207904A1 (ja) 燃料供給ポンプ及び燃料供給ポンプの製造方法
WO2022014150A1 (ja) 燃料ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872514

Country of ref document: EP

Kind code of ref document: A1