WO2015159863A1 - 長尺構造部材およびそれを用いた構造部材複合体 - Google Patents
長尺構造部材およびそれを用いた構造部材複合体 Download PDFInfo
- Publication number
- WO2015159863A1 WO2015159863A1 PCT/JP2015/061386 JP2015061386W WO2015159863A1 WO 2015159863 A1 WO2015159863 A1 WO 2015159863A1 JP 2015061386 W JP2015061386 W JP 2015061386W WO 2015159863 A1 WO2015159863 A1 WO 2015159863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural member
- section
- long
- cross
- evaluation
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/28—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of materials not covered by groups E04C3/04 - E04C3/20
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D29/00—Superstructures, understructures, or sub-units thereof, characterised by the material thereof
- B62D29/04—Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B35/00—Axle units; Parts thereof ; Arrangements for lubrication of axles
- B60B35/12—Torque-transmitting axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D25/00—Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D25/00—Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
- B62D25/02—Side panels
- B62D25/025—Side sills thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D25/00—Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
- B62D25/08—Front or rear portions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/12—Rigid pipes of plastics with or without reinforcement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/22—Pipes composed of a plurality of segments
Definitions
- the present invention is a structural member made of a fiber reinforced resin, and includes a structural member called a hat channel including a long main body having a U-shaped cross section perpendicular to the axis and a flange, and a flange portion of a plurality of hat channels.
- the present invention relates to a structural member composite having a closed cross-sectional shape.
- Patent Document 1 discloses the effect of a rib for increasing the strength of a hat channel.
- Patent Document 2 discloses a method of reinforcing a hat channel using discontinuous fibers with a tape-like continuous fiber reinforced resin.
- Patent Document 1 it is known that it is effective to take a rib structure inside the hat channel in order to improve the bending strength of the hat channel.
- the rib structure is complicated, there are problems that it is difficult to shape and the weight increases.
- the bending test is actually performed, for example, in the rib structure described in Patent Document 1, due to the difference in elastic modulus depending on the presence or absence of the rib, the stress is concentrated on the rib portion, and the breakage is remarkable there. There is a point.
- the present invention has been made in view of the above circumstances, and provides a hat channel type structural member formed of a fiber reinforced resin that has a simple reinforcing structure and suppresses an increase in the weight of a molded product while exhibiting high mechanical properties. To do.
- the gist of the present invention resides in the following (1) to (8).
- the structural member according to (1) or (2), wherein the matrix resin constituting the fiber reinforced resin is a thermoplastic resin.
- the structural member according to the above (1) or (2), wherein the reinforcing fibers constituting the fiber reinforced resin are carbon fibers or glass fibers.
- a fiber-reinforced resin structural member that exhibits a high mechanical property such as bending strength and bending elastic modulus while having a simple reinforcing structure and suppressing an increase in the weight of a molded product.
- FIG. 1B is a cross-sectional view (side cross-sectional view) perpendicular to the axis of the elongated structural member of FIG. 1A.
- FIG. It is an example of the figure of the cross section orthogonal to the axis of the elongate structural member of one Embodiment of this invention. It is an example of the figure of the cross section orthogonal to the axis of the elongate structural member of one Embodiment of this invention. It is a figure which shows the axial orthogonal cross section of the structural member composite_body
- FIG. 4B is a diagram showing a cross-sectional view perpendicular to the axis of a structural member composite different from FIG. 4A, which has a closed cross-sectional shape in which two long structural members are joined by two flange portions.
- 5 is a view showing a long structural member of Comparative Example 1.
- FIG. It is a sectional side view of the elongate structural member of FIG. 5A. It is a figure which shows the elongate structural member of the comparative example 2.
- FIG. It is a sectional side view of the elongate structural member of FIG. 6A. It is a figure which shows the method of CAE analysis. It is a sectional side view of the structural member used for the CAE analysis of FIG. 7A.
- the fiber reinforced resin molded product of this embodiment is a long structural member having a U-shaped cross section in the longitudinal direction.
- the long shape here means that the dimension in one direction (longitudinal direction) (L in FIG. 1A) is larger than the dimension in the width direction (W0 in FIG. 1B) and the dimension in the height direction (H0 in FIG. 1B).
- it is a long structure, preferably a structure in which the dimension L in the longitudinal direction is 1.5 times or more, more preferably two or more times longer than the dimension W0 in the width direction.
- Examples of the long shape include a pipe shape, a rail shape, or a part of a cord shape.
- the U-shaped cross section means that at least a part of a cross section in a direction perpendicular to the longitudinal direction (a cross section perpendicular to the axis described later), for example, a cross section in the width direction is U-shaped.
- the cross section is an AA cross section in FIG. 1A
- this cross section is U-shaped as shown in FIG. 1B.
- the U-shape is a bottom surface (in the width direction in FIG. 1B, W0) and a standing surface extending in the height direction from both ends of the bottom surface (in FIG. 1B, the height direction dimension is H0).
- the side in the direction in which the standing surfaces extend from the bottom surface and the opposite side of the standing surfaces are U-shaped inside, and the opposite side is U-shaped. Called the outside.
- two corners inside the U-shaped portion of the elongated structural member are reinforced with fiber reinforced resin, and cross sections of the two corners inside the reinforced U-shaped portion.
- both have a triangular cross section that satisfies the following formula.
- W0 Length of the outer surface of the bottom surface portion of the U-shaped section of the long-shaped structural member perpendicular to the axis W: U-shaped portion of the inner corner of the reinforced U-shaped portion of the long-shaped structural member The length H0 of the inner surface of the bottom surface portion of H: the outer surface length H of the U-shaped portion of the long-shaped structural member perpendicular to the axis H: The reinforced U-shaped portion of the rectangular structural surface of the elongated structural member The length of the inner surface of the upright part of the U-shaped part at the inner corner
- the “axis-perpendicular section” in this embodiment is a plane perpendicular to the axial direction (longitudinal direction) of the long structural member and perpendicular to the bottom surface of the U-shaped portion (AA in FIG. 1A). cross section).
- the “long main body” having a U-shaped cross section perpendicular to the axis refers to a so-called bottom surface and standing surface. For example, in the example shown in FIG. 3, the bottom surface 3 and the standing surface 4 are indicated.
- the above-described long main body It is preferable that a pair of flanges 6 extending in the longitudinal direction are formed at both ends of the bottom surface 3 and the standing surface 4.
- the both ends of the elongate body refer to the portions of both ends 5 in FIG. 3, and are shown as protrusions in FIG.
- two corners located inside the U-shaped portion of the structure are reinforced with fiber reinforced resin.
- “Reinforced” refers to, for example, one in which the thickness of the corner 2 is thicker than the thickness of the other part of the structural member.
- angular part 2 points out what is large compared with any of the average of the thickness of the bottom face 3 in FIG.
- the average thickness is a value obtained by measuring the thickness at a plurality of (2 to 5) points in the vicinity of the central portion and the end portion, and taking the average.
- the portion provided by the fiber reinforced resin in order to increase the thickness of the corner portion 2 is also referred to as a corner portion reinforcing structure.
- the cross-sections of the two corners 2 inside the reinforced U-shaped portion are both in the range of 0.05 ⁇ W / W0 ⁇ 0.15 and 0.15 ⁇ H / H0 ⁇ 0.36.
- the effect of this embodiment can be expressed by having a triangular cross section. If W / W0 is less than 0.05, the reinforcing effect is insufficient, and conversely if it is greater than 0.15, it causes an increase in the weight of the molded product. Similarly, if H / H0 is less than 0.15, the reinforcing effect is insufficient, and if it is greater than 0.36, it causes an increase in the weight of the molded product.
- the W / W0 is preferably 0.05 or more and 0.15 or less, more preferably 0.06 or more and 0.14 or less, in order to suppress the reinforcing effect and the increase in the weight of the molded product.
- the H / H0 is preferably 0.15 or more and 0.36 or less, and more preferably 0.16 or more and 0.35 or less, in order to suppress the reinforcing effect and the increase in the weight of the molded product.
- the side facing the inside of the U-shaped portion in the cross section of the corner portion 2 may be a straight line or a curved line (for example, a curved line having an R or an arc shape). There may be.
- the radius R in the case of a curve or arc having R is preferably greater than 0.01W0 and greater than 0.01H0. When it is smaller than 0.01W0 or 0.01H0, a sufficient reinforcing effect cannot be obtained.
- the radius R may be selected from the condition that it is larger than 0.05W0 and larger than 0.05H0.
- FIG. 4A a structural member having a closed cross-sectional shape in which two long structural members are joined at both ends extending in the longitudinal direction, and FIG. 44B.
- FIG. 2 there is also a structural member having a closed cross-sectional shape in which two long structural members are joined by two flange portions (or both end portions and flange portions are joined together).
- Such a structural member may be joined by any method, but when the fiber reinforced resin constituting the structural member is a fiber reinforced thermoplastic resin, vibration welding, ultrasonic welding, or an adhesive is used. Can be used. In the case of a fiber reinforced thermosetting resin, an adhesive or an adhesive tape can be used.
- the molded product shown in FIG. 3 is a long structural member having a U-shaped cross section called a hat channel and is designed to have strong mechanical properties against bending deformation in the width direction and height direction, for example. Is done. For this purpose, it is a common practice to increase the second moment of section by providing a rib structure inside the long structural member. However, in bending deformation of a long structural member, complicated deformation accompanying bending occurs, such as bending of the bottom surface 3 (FIG. 3) and falling of the standing surface 4 (FIG. 3). Appropriate cross-sectional design in consideration is necessary.
- the long structure member of the present embodiment has corners of the long structure member as shown in FIG. 1A and FIG. Bending strength can be improved more effectively by providing a corner portion reinforcing structure by reinforcing the inside of the portion 2.
- the cross-section of this corner portion reinforcing structure is a straight line connecting the position on the elevation surface that is a distance H from the bottom surface and the position on the bottom surface that is a distance W from the elevation surface. It has a shape and is continuous in the longitudinal direction (longitudinal direction) as shown in FIG. 1A. Further, as shown in FIG. 2, a position on the elevation surface that is separated from the bottom surface by a length H and a position on the bottom surface that is separated from the elevation surface by a length W may be connected by a curve (arc).
- the size of this corner portion reinforcing structure is the width W shown in FIGS. 1A, 1B, and 2 (the bottom portion of the U-shaped portion of the corner portion inside the reinforced U-shaped portion of the elongated structural member in the cross section perpendicular to the axis) It is determined by the length of the inner surface) and the height H (the length of the inner surface of the vertical portion of the U-shaped portion of the reinforced U-shaped portion in the cross section perpendicular to the axis of the long structural member), By making both W and H as small as possible, the weight of the long structure can be suppressed.
- H is preferably 0.15H0 or more and 0.36H0 or less.
- W0, H0, W, and H may be, for example, 10 to 500 mm, 5 to 300 mm, 1.0 to 75, and 1.0 to 100, respectively.
- the corner portion reinforcing structure is continuous in the longitudinal direction because stress concentration does not occur even when bending deformation is applied to an arbitrary place.
- the corner portion reinforcing structure preferably has a portion having a size of 80 to 100% with respect to the size in the longitudinal direction of the long structural member.
- the corner portion reinforcing structure does not need to have a constant cross-sectional shape, and the shape may be different depending on the portion in the longitudinal direction. In that case, the cross-sectional shape may continuously change depending on the portion in the longitudinal direction.
- the angle of the outer surface corner formed by the bottom surface of the U-shaped section of the elongated structural member and the outer surface of the vertical surface is substantially vertical, and the range thereof may be 85 to 95 °. It is acceptable from the viewpoint of strength. If this angle is too large or too small, the strength of the long structural member is poor.
- the reinforcing fiber resin is preferably filled up to the corners of the outer surface.
- the long structural member of the present embodiment is a structural member having a closed cross-sectional shape in which two long structural members are joined at both ends extending in the longitudinal direction, or two long structural members. It is good also as a structural member which has a closed cross-sectional shape by joining two flange parts and / or edge parts.
- the joining method is not particularly limited, and examples thereof include heat welding, vibration welding, and ultrasonic welding. It is also possible to join with various adhesives, various adhesive tapes, rivets or bolts.
- Such a structure composed of a plurality of long structural members is called a structural member composite.
- the structural member composite also includes a member in which a plurality of long structural members are joined by the above-described means, and a member in which a plurality of long structural members are combined and integrally molded.
- the elongate structural member of the present embodiment may be joined (joined) to a member other than the elongate structural member and the flange portion and / or both end portions or other portions.
- a member other than the elongate structural member and the flange portion and / or both end portions or other portions examples include metals in general, and examples of bonding (joining) methods include various adhesives, various adhesive tapes, rivets, and bolts.
- the material that can be used for the long structural member of the present embodiment is preferably a fiber reinforced resin. Since the fiber reinforced resin has high rigidity and high breaking strength, it is preferable to be used for the long structural member of the present embodiment.
- the type of reinforcing fiber is not particularly limited, and inorganic fiber, organic fiber, metal fiber, or a hybrid that combines these fibers Reinforcing fibers of construction can be used.
- inorganic fibers include carbon fibers, graphite fibers, silicon carbide fibers, alumina fibers, tungsten carbide fibers, boron fibers, and glass fibers.
- organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters.
- the metal fibers include fibers such as stainless steel or iron, and may be carbon fibers coated with metal.
- the average fiber diameter of the reinforcing fibers is preferably 1 to 50 ⁇ m, and more preferably 5 to 20 ⁇ m.
- the average fiber diameter of the reinforcing fibers refers to a value measured by means such as a micrometer or a microscope.
- the diameter of the reinforcing fiber is preferably in the range of 1 to 50 ⁇ m.
- the average fiber length of the reinforcing fibers is preferably 5 mm or more.
- the average fiber length of the reinforcing fibers is a value measured by a means such as burning the matrix resin and taking out only the reinforcing fibers and observing them with a microscope, or obtaining from image analysis using X-ray CT or the like. Point to.
- the length of the reinforcing fiber is preferably 5 mm or more. Although there is no restriction
- the content of the reinforcing fiber in the reinforcing fiber resin is preferably 5 to 80% by weight with respect to the total mass of the reinforcing fiber resin.
- the type of resin is not particularly limited, but it is preferable to use a thermoplastic resin.
- thermoplastic resins include polyamide (nylon 6 or nylon 66, etc.), polyolefin (polyethylene, polypropylene, etc.), modified polyolefin, polyester (polyethylene terephthalate or polybutylene terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene oxide, polysulfone.
- the fiber reinforced resin includes a flame retardant, a weather resistance improver, other antioxidants, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, a phase, depending on the required properties of the molded product to be obtained. A solubilizer, a conductive filler, or the like can also be added.
- the matrix resin constituting the fiber reinforced resin that can be used in the hat channel type structure of the present embodiment is not particularly limited, and a thermosetting resin may be used.
- thermosetting resins include epoxy resins, acrylic resins that are radical polymerization resins, or phenol resins.
- the matrix resin includes a flame retardant, a weather resistance improver, other antioxidants, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, or a phase depending on the required characteristics of the molded product to be obtained.
- a solubilizer, a conductive filler, etc. can also be added.
- the hat channel type structure of this embodiment is, for example, an automobile part such as a front subframe, a rear subframe, a front pillar, a center pillar, a side member, a cross member, a side sill, a roof rail, or a propeller shaft, or a subsea oil field. It is suitably used for pipes, electric cable cores, rolls and pipes for printing presses, robot forks, or primary and secondary structural materials for aircraft.
- a sheet-like fiber reinforced resin containing discontinuous fibers in the resin, or a continuous fiber in one direction, and a film-like fiber reinforced resin containing the matrix resin are laminated to form a sheet, such as an infrared heater And a method in which the matrix resin is heated to a molten state and charged into a mold set at a temperature lower than the melting temperature of the fiber reinforced resin, followed by press molding.
- the mold is formed into a U-shaped inner shape of the long structural member. Specifically, the mold has a long shape having a width W0, a height H0, and a longitudinal direction of L or more.
- a corner portion having a height H and a width W is used.
- fibers may be arranged in the reinforced corners so as to be oriented in the longitudinal direction of the long structural member.
- the pellet-like material may contain discontinuous reinforcing fibers, and a fiber reinforced resin sheet in which fibers are oriented in the longitudinal direction of the long structural member in advance is charged in the reinforced corners.
- injection molding may be performed.
- the injection molding conditions depend on the type of fiber reinforced resin, but the cylinder temperature of the injection molding machine is set to a cylinder temperature of 10 ° C. or higher and 100 ° C. or lower than the melting temperature of the fiber reinforced resin, and the mold temperature is the fiber temperature. It is preferable to set the temperature lower by 10 ° C. to 200 ° C. than the solidification temperature of the reinforced resin.
- Mass evaluation method Mass was calculated using ProEngineer (Wildfire 4.0), a 3D CAD software. At that time, the mass ratio of the structural member without reinforcement such as ribs is calculated, and the mass ratio obtained by dividing the mass of the reinforced long structural member by the mass of the long structural member without reinforcement is 1. A case smaller than .3 was judged as an evaluation A, and other cases were judged as an evaluation B.
- the evaluation is A, and the other is evaluation B, and the degree of suppression of stress concentration is evaluated.
- a ratio) of 1.0 or more was evaluated as A, and the others were evaluated as B, and the degree of suppression of the concentration of displacement at the load position was evaluated.
- CAE analysis is performed to calculate the stress value and displacement value, and by dividing by the values when corner reinforcement is not applied, the mass ratio, stress ratio and displacement ratio are calculated. Asked. As a result, the mass ratio was 1.22, evaluation A, the stress ratio was 0.87, evaluation A, and the displacement ratio was 1.07, evaluation A.
- Comparative Example 3 Evaluation was performed in the same manner as in Comparative Example 2 except that the rib pitch p was set to 30 mm. As a result, the mass ratio was 1.63, evaluation B, the stress ratio was 0.78, evaluation A, and the displacement ratio was 1.05, evaluation A.
- the mass ratio was 1.14, evaluation A, the stress ratio was 0.64, evaluation A, and the displacement ratio was 1.06, evaluation A.
- H 5 mm
- a corner member whose opposite side is a straight line is reinforced (FIG. 1B)
- the flange surfaces of the two long structural members are joined to form a structural member having a closed cross-sectional shape (structural member Composite).
- CAE analysis is performed to calculate the stress value and displacement value, and by dividing by the values when corner reinforcement is not applied, the mass ratio, stress ratio and displacement ratio are calculated. Asked. As a result, the mass ratio was 1.08, evaluation A, the stress ratio was 0.44, evaluation A, and the displacement ratio was 1.06, evaluation A.
- a fiber-reinforced resin structural member that exhibits a high mechanical property such as bending strength and bending elastic modulus while having a simple reinforcing structure and suppressing an increase in the weight of a molded product.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本願は、2014年4月14日に日本に出願された特願2014-82517号に基づき優先権を主張し、その内容をここに援用する。
(1) 長手方向の断面がU字状に形成された長尺状構造部材であって、前記U字状部分内側の2つの角部が繊維強化樹脂により補強されており、前記補強されたU字部分内側の2つの角部の断面が、いずれも下記式を満たす三角形状の断面である長尺状構造部材。
0.05 ≦ W/W0 ≦ 0.15
0.15 ≦ H/H0 ≦ 0.36
W0:前記長手方向の断面のU字状部分の底面部分の外面の長さ
W :前記長手方向の断面の補強されたU字状部分内側の角部の、U字状部分の底面部分の内面の長さ
H0:前記長手方向の断面のU字状部分の立面部分の外面の長さ
H :前記長手方向の断面の補強されたU字状部分内側の角部の、U字状部分の立面部分の内面の長さ
(2) 前記角部の断面におけるU字状部分の内側に面する辺が直線である上記(1)に記載の長尺状構造部材。
(3) 繊維強化樹脂を構成するマトリクス樹脂が熱可塑性樹脂である上記(1)又は(2)に記載の構造部材。
(4) 繊維強化樹脂を構成するマトリクス樹脂が熱硬化性樹脂である上記(1)又は(2)に記載の構造部材。
(5) 繊維強化樹脂を構成する強化繊維が、炭素繊維またはガラス繊維である上記(1)又は(2)に記載の構造部材。
(6) 前記長尺状構造部材の長手方向に延びる両端部に、長手方向に延びる一対のフランジが形成されている上記(1)~(5)のいずれかに記載の長尺状構造部材。
(7) 上記(1)から(5)のいずれかに記載の長尺状構造部材の2つを、長手方向に延びる両端部同士で接合した閉断面形状をもつ構造部材複合体。
(8) 上記(6)に記載の長尺状構造部材の2つを、2つのフランジ同士で接合した閉断面形状をもつ構造部材複合体。
本実施形態の繊維強化樹脂成形品は、長手方向の断面がU字状に形成された長尺状構造部材である。ここでいう長尺状とは、一方向(長手方向)の寸法(図1AにおけるL)が幅方向の寸法(図1BにおけるW0)および高さ方向の寸法(図1BにおけるH0)のいずれに比べても長い構造で、好ましくは長手方向の寸法Lが幅方向の寸法W0の1.5倍以上、さらに好ましくは2倍以上長い構造である。長尺状の形状としては、例えばパイプ状、レール状またはコード状の一部などの形状が挙げられる。さらに具体的には、例えば、図1Aおよび図1Bに示すような構造部材である。また、断面がU字状とは、長手方向に対して垂直な方向の断面(後述する軸直角断面)、例えば幅方向の断面のうち少なくとも一部はU字状であることを指す。例えば本実施形態では、前記断面は図1AにおけるA-A断面であり、この断面が図1Bに示すようにU字状となっている。さらに具体的には、例えばU字状とは底面(図1Bにおいて、幅方向の寸法がW0)と、底面の両端からそれぞれ高さ方向に延びる立ち面(図1Bにおいて、高さ方向の寸法がH0)に延びる形状である。
また、以下の記載において、長尺状構造部材のうち、底面から立ち面が伸びている方向の側および立ち面同士の対向する側をU字状の内側、その逆の側をU字状の外側と呼ぶ。
0.05 ≦W/W0 ≦0.15
0.15 ≦H/H0 ≦0.36
W0:長尺状構造部材の軸直角断面のU字部分の底面部分の外面の長さ
W :長尺状構造部材の軸直角断面の補強されたU字部分内側の角部の、U字部分の底面部分の内面の長さ
H0:長尺状構造部材の軸直角断面のU字部分の立面部分の外面の長さ
H :長尺状構造部材の軸直角断面の補強されたU字部分内側の角部の、U字部分の立面部分の内面の長さ
前記角部2の断面におけるU字状部分の内側に面する辺(角部補強構造の角部に対する対辺)は、直線であっても、また曲線(例えば、Rを有する曲線や円弧状)であっても良い。Rを有する曲線や円弧である場合の半径Rは、0.01W0より大きく、かつ0.01H0より大きいことが好ましい。0.01W0もしくは0.01H0より小さい場合は、十分な補強効果が得られない。なお、本実施形態とは別の側面の実施態様としては、半径Rを0.05W0より大きく、かつ0.05H0より大きいという条件から選択してもよい。
図3に示す成形品は、ハットチャンネルと呼ばれる断面がU字とフランジからなる長尺状構造部材であって、例えば幅方向や高さ方向の曲げ変形に対して強い力学物性を持つように設計される。そのためには長尺構造部材内部にリブ構造を持たせて断面二次モーメントを大きくすることが一般的に行われる。しかしながら、長尺状構造部材の曲げ変形においては底面3(図3)のたわみや、立ち面4(図3)の倒れなど、曲げに伴う複雑な変形が生じるために、断面二次モーメント以外も考慮した適切な断面設計が必要となる。
具体的には、W0、H0、W、Hの値は例えば、それぞれ、10~500mm、5~300mm、1.0~75、1.0~100であってもよい。
強化繊維の平均繊維長は5mm以上であることが好ましい。ここで強化繊維の平均繊維長はマトリックス樹脂を燃焼させて強化繊維のみを取り出しそれらを顕微鏡で観察して測定する、またX線CTなどを用いて画像解析より求めるなどの手段で測定した値を指す。強化繊維の長さは5mm以上であることが好ましい。強化繊維の長さに特に制限はないが、長尺状構造部材の長さによる制限を受けるため、通常は長尺構造部材の長さ以下である。 強化繊維の強化繊維樹脂中の含有量は、強化繊維樹脂の全体質量に対して5~80重量%であることが好ましい。
長尺状構造部材の作成方法は特に限定はないが、例えば次の方法が挙げられる。樹脂中に不連続の繊維を含むシート状の繊維強化樹脂、または一方向の連続繊維、および前記マトリックス樹脂を含むフィルム状の繊維強化樹脂を積層し、シート状にしたものを、赤外ヒーター等で前記マトリックス樹脂の溶融状態まで加熱し、繊維強化樹脂の溶融温度より低い温度に設定した金型に仕込んでプレス成形をする方法が挙げられる。金型は、前記長尺状構造部材のU字状内側の形状に成形されたもの、具体的には、寸法がおよそ幅W0、高さH0および長手方向がL以上の長尺状の形で、角部を高さH、幅Wの寸法に面取りしたものなどを用いる。この際、補強された角部には繊維を長尺状構造部材の長手方向に配向して配置してもよい。またペレット状物を射出成形することにより、長尺状構造部材を作成することも可能である。この際、前記ペレット状物には不連続の強化繊維を含んでいてもよく、また補強された角部には、あらかじめ繊維を長尺状構造部材の長手方向に配向した繊維強化樹脂シートを仕込んだ後に、射出成形してもよい。射出成形する条件は、繊維強化樹脂の種類にもよるが、射出成形機のシリンダー温度は前記繊維強化樹脂の溶融温度より10℃以上100℃以下のシリンダー温度に設定し、金型温度は前記繊維強化樹脂の固化温度より10℃から200℃低い温度に設定することが好ましい。
3次元CADソフトウェアであるProEngineer(Wildfire4.0)を用いて、すべてコンピュータ上で形状を作成した。
2本の長尺状構造部材の各々の2つのフランジ面および/または両端面同士をCAD上で完全に接合し、閉断面をもつ構造部材を作成した(図4B)。
3次元CADソフトウェアであるProEngineer(Wildfire4.0)を用いて、質量を計算した。その際、リブ等補強を施していない構造部材との質量比を計算し、補強した長尺状構造部材の質量を、補強を施していない長尺状構造部材の質量で除した質量比が1.3より小さい場合を評価A、それ以外を評価Bと判断した。
3次元CADソフトウェアであるProEngineer(Wildfire4.0)のMechanica機能を用いて3点曲げのCAE解析を行った。その際に、標点間距離300mm(後述するL=400mmの0.75倍)の底面上の2直線を変位および回転を固定し、その反対の底面の中心線に1mmの変位を与えることにより、3点曲げ試験を表現した(図7A及び図7B)。材料物性として弾性率が炭素繊維45体積%である弾性率40GPaを用いて、この境界条件で静解析を実施し、その結果より底面上のコーナー部に沿った直線よりミーゼス応力と変位を抽出した。
CADソフトを用いて、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=25mmのリブ等補強のない長尺状構造部材(図3)を作成し、その2本の長尺状構造部材のフランジ面を接合し、構造部材(構造部材複合体)を作成した。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出した。
角部補強をW=5mm,H=5mmにした以外は、実施例1と同様の方法で評価を実施した。その結果、質量比が1.10で評価A、応力比が0.98で評価A、変位比が1.05で評価Aであった。
角部補強をW=5mm,H=9mmにした以外は、実施例1と同様の方法で評価を実施した。その結果、質量比が1.21で評価A、応力比が0.99で評価A、変位比が1.06で評価Aであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=25mmの長尺状構造部材を作成し、その内部に厚みt=2.5mm、高さh=10mm、長尺方向に2本、それと直角方向にピッチp=54.3mmの8本のリブを作成した(図5A及び図5B)。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出し、さらに実施例1にある補強を施していない場合の値で除して、質量比、応力比および変位比を求めた。その結果、質量比が1.32で評価B、応力比が0.99で評価A、変位比が0.99で評価Bであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=25mmの長尺状構造部材を作成し、その内部に厚みt=2.5mm、高さh=10mm、長尺方向に対する角度が30°、ピッチp=54.3mmのリブを作成した(図6A及び図6B)。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出し、さらに実施例1にある補強を施していない場合の値で除して、質量比、応力比、変位比を求めた。その結果、質量比が1.34で評価B、応力比が1.05で評価B、変位比が0.98で評価Bであった。
リブのピッチp=30mmとした以外は、比較例2と同様の方法で評価を実施した。その結果、質量比が1.63で評価B、応力比が0.78で評価A、変位比が1.05で評価Aであった。
角部補強をW=10mm,H=10mmにした以外は、実施例1と同様の方法で評価を実施した。その結果、質量比が1.46で評価B、応力比が0.39で評価A、変位比が1.07で評価Aであった。
角部補強をW=10mm,H=5mmにした以外は、実施例1と同様の方法で評価を実施した。その結果、質量比が1.21で評価A、応力比が2.27で評価B、変位比が1.05で評価Aであった。
角部補強をW=7mm,H=7mmにし、対辺を半径10mmの円弧で作成した(図2)以外は、実施例1と同様の方法で評価を実施した。その結果、質量比が1.14で評価A、応力比が0.64で評価A、変位比が1.06で評価Aであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=100.0mm,W0=78.1mm,H0=25mmのリブ等補強のない長尺状構造部材(図3)を作成し、その2本の長尺状構造部材のフランジ面を接合し、構造部材(構造部材複合体)を作成した。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出した。
角部補強をW=10mm,H=5mmにした以外は、実施例5と同様の方法で評価を実施した。その結果、質量比が1.17で評価A、応力比が0.60で評価A、変位比が1.07で評価Aであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=100.0mm,W0=78.1mm,H0=25mmの長尺状構造部材を作成し、その内部に厚みt=2.5mm、高さh=10mm、長尺方向に対する角度が30°、ピッチp=54.3mmのリブを作成した(図5A、5B)。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出し、さらに実施例5にある補強を施していない場合の値で除して、質量比、応力比および変位比を求めた。その結果、質量比が1.46で評価B、応力比が0.79で評価A、変位比が0.97で評価Bであった。
角部補強をW=3mm,H=3mmにした以外は、実施例5と同様の方法で評価を実施した。その結果、質量比が1.02で評価A、応力比が1.44で評価B、変位比が1.02で評価Aであった。
角部補強をW=10mm,H=10mmにした以外は、実施例5と同様の方法で評価を実施した。その結果、質量比が1.37で評価B、応力比が0.34で評価A、変位比が1.07で評価Aであった。
角部補強をW=5mm,H=10mmにした以外は、実施例5と同様の方法で評価を実施した。その結果、質量比が1.17で評価A、応力比が1.02で評価B、変位比が1.08で評価Aであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=50mmのリブ等補強のない長尺状構造部材(図3)を作成し、その2本の長尺状構造部材のフランジ面を接合し、閉塞断面形状を有する構造部材(構造部材複合体)を作成した。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出した。
次に、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=50mmのハットチャンネルを作成し、そのハットチャンネルの内側にCAD上でW=10mm、H=7.5mm、対辺が直線で構成された角部補強を施した(図1B)後に、その2本の長尺状構造部材のフランジ面を接合し、構造部材を作成した。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出し、さらに角部補強を施していない場合の値で除して、質量比、応力比および変位比を求めた。その結果、質量比が1.25で評価A、応力比が0.15で評価A、変位比が1.12で評価Aであった。
CADソフトを用いて、厚み2mmでL=400mm,Wa=72.4mm,W0=52.4mm,H0=50mmの長尺状構造部材を作成し、その内部に厚みt=2.5mm、高さh=10mm、長尺方向に対する角度が30°、ピッチp=54.3mmのリブを作成した(図5A、5B)。この構造部材の質量を算出した後に、CAE解析を実施し、応力値と変位値を算出し、さらに実施例1にある補強を施していない場合の値で除して、質量比、応力比および変位比を求めた。その結果、質量比が1.28で評価A、応力比が0.60で評価A、変位比が0.98で評価Bであった。
2 長尺状部材の円弧状の角部
3 底面
4 立ち面
5 長尺本体の両端部
6 両端部に長手方向に延びる一対のフランジ
7 最大応力抽出点
8 変位抽出点
Claims (8)
- 長手方向の断面がU字状に形成された長尺状構造部材であって、前記U字状部分内側の2つの角部が繊維強化樹脂により補強されており、前記補強されたU字状部分内側の2つの角部の断面が、いずれも下記式を満たす三角形状の断面である長尺状構造部材。
0.05 ≦W/W0 ≦0.15
0.15 ≦H/H0 ≦0.36
W0:前記長手方向の断面のU字状部分の底面部分の外面の長さ
W :前記長手方向の断面の補強されたU字状部分内側の角部の、U字状部分の底面部分の内面の長さ
H0:前記長手方向の断面のU字状部分の立面部分の外面の長さ
H :前記長手方向の断面の補強されたU字状部分内側の角部の、U字状部分の立面部分の内面の長さ - 前記角部の断面におけるU字状部分の内側に面する辺が直線である請求項1に記載の長尺状構造部材。
- 前記繊維強化樹脂を構成するマトリクス樹脂が熱可塑性樹脂である請求項又は2に記載の長尺構造部材。
- 繊維強化樹脂を構成するマトリクス樹脂が熱硬化性樹脂である請求項1又は2に記載の長尺構造部材。
- 繊維強化樹脂を構成する強化繊維が、炭素繊維またはガラス繊維である請求項1又は2に記載の長尺構造部材。
- 前記長尺状構造部材の長手方向に延びる両端部に、長手方向に延びる一対のフランジが形成されている請求項1~5のいずれかに記載の長尺状構造部材。
- 請求項1~5のいずれかに記載の長尺状構造部材の2つを、長手方向に延びる両端部同士で接合した閉断面形状をもつ構造部材複合体。
- 請求項6に記載の長尺状構造部材の2つを、2つのフランジ同士で接合した閉断面形状をもつ構造部材複合体。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580016406.1A CN106132672B (zh) | 2014-04-14 | 2015-04-13 | 长条结构构件以及使用了其的结构构件复合体 |
US15/303,421 US11299888B2 (en) | 2014-04-14 | 2015-04-13 | Long structural member and structural member complex using same |
KR1020167027542A KR20160130816A (ko) | 2014-04-14 | 2015-04-13 | 장척 구조 부재 및 그를 이용한 구조 부재 복합체 |
JP2015520455A JP6028859B2 (ja) | 2014-04-14 | 2015-04-13 | 長尺構造部材およびそれを用いた構造部材複合体 |
KR1020187009886A KR20180038080A (ko) | 2014-04-14 | 2015-04-13 | 장척 구조 부재 및 그를 이용한 구조 부재 복합체 |
EP15779669.9A EP3132923B1 (en) | 2014-04-14 | 2015-04-13 | Long structural member and structural member complex using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-082517 | 2014-04-14 | ||
JP2014082517 | 2014-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159863A1 true WO2015159863A1 (ja) | 2015-10-22 |
Family
ID=54324069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061386 WO2015159863A1 (ja) | 2014-04-14 | 2015-04-13 | 長尺構造部材およびそれを用いた構造部材複合体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11299888B2 (ja) |
EP (1) | EP3132923B1 (ja) |
JP (1) | JP6028859B2 (ja) |
KR (2) | KR20160130816A (ja) |
CN (1) | CN106132672B (ja) |
WO (1) | WO2015159863A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132063A (ja) * | 2016-01-25 | 2017-08-03 | 株式会社Subaru | 繊維強化樹脂構造体 |
JP2017132083A (ja) * | 2016-01-26 | 2017-08-03 | 株式会社Subaru | 繊維強化樹脂構造体の製造方法及び繊維強化樹脂構造体 |
WO2019102810A1 (ja) * | 2017-11-27 | 2019-05-31 | 日東電工株式会社 | 補強構造体および補強構造体の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6766780B2 (ja) * | 2017-08-25 | 2020-10-14 | 株式会社オートネットワーク技術研究所 | リンフォースメントモジュール |
US20190260940A1 (en) * | 2018-02-22 | 2019-08-22 | Perspective Components, Inc. | Dynamic camera object tracking |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003278381A (ja) * | 2002-03-20 | 2003-10-02 | Fukuvi Chem Ind Co Ltd | コンクリート打設用型枠 |
JP2010527813A (ja) * | 2007-05-25 | 2010-08-19 | フィッツ ホールディング ベーフェー | 角隅部が強化されたサンドイッチ構造から物体を製造するための方法およびこのタイプの物体 |
JP2010221487A (ja) * | 2009-03-23 | 2010-10-07 | Universal Shipbuilding Corp | Frpサンドイッチパネルの交差部構造 |
WO2013080975A1 (ja) * | 2011-11-28 | 2013-06-06 | 帝人株式会社 | 耐衝撃部材 |
JP2014004728A (ja) * | 2012-06-22 | 2014-01-16 | Toray Ind Inc | Frp製パネル部材 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4461134A (en) * | 1981-07-06 | 1984-07-24 | Lowe Colin F | Sheet metal beam |
SE502781C2 (sv) * | 1993-08-20 | 1996-01-15 | Transman Ab | Universalbalk för rörlig last |
JP2717514B2 (ja) * | 1994-04-28 | 1998-02-18 | 義行 早川 | コンクリート成形用型枠材 |
US6168226B1 (en) | 1994-05-19 | 2001-01-02 | Henkel Corporation | Composite laminate automotive structures |
US6453635B1 (en) * | 1998-07-15 | 2002-09-24 | Powertrusion International, Inc. | Composite utility poles and methods of manufacture |
DE19851327A1 (de) * | 1998-11-06 | 2000-05-11 | Alusuisse Lonza Services Ag | Hohlprofil od. dgl. Werkstück zum Umformen durch Innenhochdruck, Verfahren zum Herstellen eines Profils aus Leichtmetall und Vorrichtung dafür |
US20040139684A1 (en) * | 1999-12-27 | 2004-07-22 | Menendez Jose Miguel | Building elements and building element assemblies formed therewith |
JP2002138344A (ja) * | 2000-10-25 | 2002-05-14 | Nippon Mitsubishi Oil Corp | 一方向性炭素繊維織物、その製造方法、及び補強コンクリート構造物 |
US7228672B2 (en) * | 2002-04-19 | 2007-06-12 | Powertrusion International, Inc. | Fiber architecture for a composite pole |
US6729094B1 (en) * | 2003-02-24 | 2004-05-04 | Tex Rite Building Systems, Inc. | Pre-fabricated building panels and method of manufacturing |
EP1621267B1 (en) * | 2004-07-28 | 2008-07-16 | Nissan Motor Co., Ltd. | Preform, hydroforming method, and hydroformed product |
US7000978B1 (en) | 2004-08-20 | 2006-02-21 | Frank Messano | Thin-skin ultralight recreational vehicle body system |
CA2558333C (en) * | 2005-09-02 | 2012-11-13 | Tecton Products | Structural wall building product |
US20070095002A1 (en) * | 2005-10-28 | 2007-05-03 | Kim-Whitty Suk K | Nx steel lumber |
US20080016816A1 (en) * | 2006-07-19 | 2008-01-24 | Do Yeon Kim | Beam/Column With Stiffening Stick |
US20090113827A1 (en) * | 2007-11-07 | 2009-05-07 | Scafco Corporation | Metal construction member |
US7877962B2 (en) * | 2008-01-16 | 2011-02-01 | Teffenhart Jr Thomas Joseph | System and method having an improved self-mating beam |
US8056303B2 (en) * | 2009-05-06 | 2011-11-15 | Frobosilo Raymond C | Non load-bearing metal wall stud having increased strength |
DE202009012119U1 (de) * | 2009-09-05 | 2009-11-19 | Saint-Gobain Industriekeramik Rödental GmbH | Hochtemperaturstabiles Hohlprofil |
US20120233961A1 (en) * | 2011-03-16 | 2012-09-20 | Matos Sergio Francisco Da Silva | Modular multifunctional mother-beam |
JP5968600B2 (ja) | 2011-06-14 | 2016-08-10 | 三菱レイヨン株式会社 | 繊維強化熱可塑性樹脂成形品とその製造方法、および複合体とその製造方法 |
JP5629411B2 (ja) * | 2011-09-06 | 2014-11-19 | 豊田鉄工株式会社 | 車両用冷却部品支持装置 |
US9027309B2 (en) * | 2012-01-09 | 2015-05-12 | Consolidated Metal Products, Inc. | Welded hot-rolled high-strength steel structural members and methods |
JP2014005498A (ja) * | 2012-06-25 | 2014-01-16 | Daicel Corp | 防錆剤 |
JP6184069B2 (ja) | 2012-09-13 | 2017-08-23 | 三菱ケミカル株式会社 | 繊維強化熱可塑性樹脂成形品の製造方法 |
WO2015120467A1 (en) * | 2014-02-10 | 2015-08-13 | White Distribution, LLC | Self mating beam section |
-
2015
- 2015-04-13 WO PCT/JP2015/061386 patent/WO2015159863A1/ja active Application Filing
- 2015-04-13 KR KR1020167027542A patent/KR20160130816A/ko active Application Filing
- 2015-04-13 KR KR1020187009886A patent/KR20180038080A/ko active Application Filing
- 2015-04-13 CN CN201580016406.1A patent/CN106132672B/zh active Active
- 2015-04-13 JP JP2015520455A patent/JP6028859B2/ja active Active
- 2015-04-13 US US15/303,421 patent/US11299888B2/en active Active
- 2015-04-13 EP EP15779669.9A patent/EP3132923B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003278381A (ja) * | 2002-03-20 | 2003-10-02 | Fukuvi Chem Ind Co Ltd | コンクリート打設用型枠 |
JP2010527813A (ja) * | 2007-05-25 | 2010-08-19 | フィッツ ホールディング ベーフェー | 角隅部が強化されたサンドイッチ構造から物体を製造するための方法およびこのタイプの物体 |
JP2010221487A (ja) * | 2009-03-23 | 2010-10-07 | Universal Shipbuilding Corp | Frpサンドイッチパネルの交差部構造 |
WO2013080975A1 (ja) * | 2011-11-28 | 2013-06-06 | 帝人株式会社 | 耐衝撃部材 |
JP2014004728A (ja) * | 2012-06-22 | 2014-01-16 | Toray Ind Inc | Frp製パネル部材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3132923A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132063A (ja) * | 2016-01-25 | 2017-08-03 | 株式会社Subaru | 繊維強化樹脂構造体 |
JP2017132083A (ja) * | 2016-01-26 | 2017-08-03 | 株式会社Subaru | 繊維強化樹脂構造体の製造方法及び繊維強化樹脂構造体 |
WO2019102810A1 (ja) * | 2017-11-27 | 2019-05-31 | 日東電工株式会社 | 補強構造体および補強構造体の製造方法 |
JPWO2019102810A1 (ja) * | 2017-11-27 | 2020-12-17 | 日東電工株式会社 | 補強構造体および補強構造体の製造方法 |
JP7083356B2 (ja) | 2017-11-27 | 2022-06-10 | 日東電工株式会社 | 補強構造体および補強構造体の製造方法 |
US11964439B2 (en) | 2017-11-27 | 2024-04-23 | Nitto Denko Corporation | Reinforcement structure and producing method of reinforcement structure |
Also Published As
Publication number | Publication date |
---|---|
EP3132923A1 (en) | 2017-02-22 |
US11299888B2 (en) | 2022-04-12 |
KR20160130816A (ko) | 2016-11-14 |
JP6028859B2 (ja) | 2016-11-24 |
US20170030079A1 (en) | 2017-02-02 |
JPWO2015159863A1 (ja) | 2017-04-13 |
KR20180038080A (ko) | 2018-04-13 |
EP3132923A4 (en) | 2017-05-17 |
EP3132923B1 (en) | 2019-06-05 |
CN106132672A (zh) | 2016-11-16 |
CN106132672B (zh) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6028859B2 (ja) | 長尺構造部材およびそれを用いた構造部材複合体 | |
Loos et al. | Is it worth the effort to reinforce polymers with carbon nanotubes? | |
BR102017020215B1 (pt) | Enchimento de raio compósito e método de fabricação de um enchimento de raio | |
Siddiqui et al. | Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes | |
US9783244B2 (en) | Hollow structure body and vehicular component | |
JP5654055B2 (ja) | 複合材構造体、これを備えた航空機主翼および航空機胴体 | |
JP6169465B2 (ja) | 継手及び航空機構造 | |
JP2017516703A (ja) | 航空機胴体用の耐圧隔壁 | |
JP2018034664A (ja) | 車両用骨格構造 | |
JP2013180627A (ja) | 複合材構造体、これを備えた航空機翼および航空機胴体、並びに複合材構造体の製造方法 | |
JP2015226986A (ja) | 繊維強化熱可塑性樹脂成形体 | |
JP6969674B2 (ja) | 自動車構造部材 | |
EP2450270B1 (en) | Bicycle front fork | |
JP2017178072A5 (ja) | ||
US11231060B2 (en) | Hybrid tension/transverse compression structural joint | |
CN107097742A (zh) | 汽车防撞吸能结构及其制作工艺 | |
JP6839284B2 (ja) | 回転翼航空機の降着装置 | |
JP2016022881A (ja) | 接合構造 | |
JP2018012421A (ja) | 車体の補強構造 | |
JP2018134789A (ja) | 繊維強化樹脂材料および繊維強化樹脂成形体 | |
JP2019094953A (ja) | 筒状構造体 | |
JP2018052391A (ja) | フレーム部材 | |
JP6188141B2 (ja) | 自動車内装材及び自動車外装材 | |
JP2017001639A (ja) | 座面部材及びこれを備えた接着部構造 | |
Sureshkumar et al. | Design, fabrication, and analysis of a hybrid carbon and E-glass fibers for automotive fiber composite monoleaf spring using suspension applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015520455 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15779669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167027542 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015779669 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015779669 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15303421 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |