WO2015159578A1 - 衛生管理方法 - Google Patents
衛生管理方法 Download PDFInfo
- Publication number
- WO2015159578A1 WO2015159578A1 PCT/JP2015/053798 JP2015053798W WO2015159578A1 WO 2015159578 A1 WO2015159578 A1 WO 2015159578A1 JP 2015053798 W JP2015053798 W JP 2015053798W WO 2015159578 A1 WO2015159578 A1 WO 2015159578A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chlorine dioxide
- dioxide gas
- concentration
- space
- hygiene management
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M13/00—Fumigators; Apparatus for distributing gases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
Definitions
- the present invention relates to a hygiene management method. More specifically, the present invention relates to a hygiene management method for performing hygiene management of a predetermined space using chlorine dioxide gas having a predetermined concentration.
- Patent Document 1 discloses a gas supply device that generates chlorine dioxide gas for sterilization and deodorization. According to Patent Document 1, 1 ppm of chlorine dioxide gas is sufficient for the purpose of sterilization and deodorization.
- Patent Document 2 discloses a cockroach repellent containing chlorine dioxide as an active ingredient. Patent Document 2 discloses that 62.5% of cockroaches are repelled in one day and 100% of cockroaches are repelled in five days.
- Other methods for controlling pests include the use of insecticides (eg, pyrethroids), naphthalene, fungicides (eg, hypochlorite), and desiccants (eg, silica gel desiccants). .
- Patent Document 1 does not assume that hygiene management is performed for the purpose of controlling pests by using chlorine dioxide gas. And, with 1 ppm chlorine dioxide gas, which is sufficient in Patent Document 1, pests are not controlled. Furthermore, in Patent Document 2, it takes a long time (1 to 5 days) to avoid cockroaches. In addition, the invention described in Patent Document 2 merely repels cockroaches and is insufficient to control (exterminate) pests. Therefore, according to these prior arts, sufficient hygiene management including sterilization, deodorization and pest control is not performed.
- the sprayed insecticide is a droplet (mist shape) having a relatively large particle size.
- the insecticide can be gasified to reduce the particle size, the insecticide is easily condensed and becomes mist again because of its high boiling point.
- the present invention has been made in view of such conventional circumstances, and includes sterilization, deodorization, and pest control in a narrow space in a short time without requiring excessive labor and labor. It aims at providing the hygiene management method which can perform sufficient hygiene management.
- the hygiene management method is characterized in that chlorine dioxide gas is used so that the concentration in the space becomes 20 ppm or more with respect to a predetermined space where hygiene management is performed.
- FIG. 1 is a schematic graph showing the change with time of the chlorine dioxide gas concentration in one embodiment of the present invention.
- FIG. 2 is a schematic diagram of a sanitary management device used in an embodiment of the present invention.
- FIG. 3 is a graph showing the change over time of the chlorine dioxide gas concentration measured in the example of the present invention.
- FIG. 4 is a graph showing the change over time in the chlorine dioxide gas concentration measured in the examples of the present invention.
- FIG. 5 is a schematic diagram of a sanitary management device used in a comparative example of the present invention.
- the hygiene management method of this embodiment is characterized in that chlorine dioxide gas is used so that the concentration in the space is equal to or higher than the predetermined concentration for a predetermined space where hygiene management is performed. Moreover, it is preferable that the sanitary management method of this embodiment is used so that chlorine dioxide gas may become a predetermined density
- “hygiene management” includes sanitation management for the purpose of pest control in addition to sterilization and deodorization. Further, “control of pests” includes prevention and repelling of pests and control of pests.
- “predetermined space” refers to various spaces in which hygiene management is to be performed. Specifically, the predetermined space includes facilities such as offices, hospitals, pharmaceutical factories, food factories, and research institutes, and spaces in facilities such as libraries, museums, and museums. More specifically, the “predetermined space” includes a space such as a private room in an office or a hospital, a shared space, a work space, or an exhibition space of a museum. The location of these spaces is not particularly limited, and may be, for example, below the floor, above the floor, or behind the ceiling.
- predetermined space refers to a narrow space between detailed parts formed in ancillary equipment such as equipment installed in the facility, books, works of art, and various materials (for example, cardboard). Including the internal space to be formed. In addition, these spaces may be pest-inhabited spaces, spaces where pest damage has occurred in the past, or spaces where pests are predicted to inhabit in the future. Good. Pests include insects that have harmful effects on humans, livestock, pets, pharmaceuticals, agricultural products, books and other assets. Pests that are suitably controlled in this embodiment will be described later.
- the predetermined concentration in the predetermined space includes 20 ppm or more.
- the concentration of chlorine dioxide gas is preferably 30 ppm or more, more preferably 35 ppm or more, and 50 ppm or more. More preferably it is used.
- the concentration of chlorine dioxide gas is less than a predetermined concentration, the pest control effect is attenuated.
- FIG. 1 is a schematic graph showing the change over time in the chlorine dioxide gas concentration.
- the vertical axis represents chlorine dioxide gas concentration (ppm), and the horizontal axis represents time (minutes). That is, for example, when released from a generation source that generates chlorine dioxide gas, the concentration in the space is gradually increased as time passes, as shown in FIG. Thereafter, the concentration of chlorine dioxide gas decreases after the maximum concentration is exhibited due to the decomposition amount exceeding the generation amount.
- chlorine dioxide gas suitably exhibits the effect of controlling pests by being used so that the maximum concentration becomes a predetermined concentration (for example, 20 ppm) or more in the process of hygiene management.
- the chlorine dioxide gas is used so as to exceed a predetermined concentration, thereby causing a period in which the chlorine dioxide gas concentration is equal to or higher than the predetermined concentration (t 1 to t 2 , see FIG. 1).
- a period in which the chlorine dioxide gas concentration is equal to or higher than the predetermined concentration t 1 to t 2 , see FIG. 1.
- chlorine dioxide gas is preferable as the maximum concentration is larger from the viewpoint of enhancing the control effect.
- the concentration of chlorine dioxide gas becomes too high, depending on the time required for hygiene management, there is a possibility of adverse effects such as corrosion and discoloration on various devices in the space.
- the upper limit of the concentration of chlorine dioxide gas is preferably 500 ppm or less, and more preferably 350 ppm or less.
- the “predetermined concentration integrated value” that is preferably employed includes 4300 (ppm ⁇ min) or more.
- the “concentration integrated value” is an integrated value of “chlorine dioxide gas concentration (ppm)” and “time (minutes)”.
- the integrated density value is expressed as an area of an area defined by the horizontal axis and the graph (area of an area denoted by reference symbol I).
- the integrated value of concentration is more preferably 4500 (ppm ⁇ min) or more, further preferably 5000 (ppm ⁇ min) or more, and particularly preferably 8000 (ppm ⁇ min) or more. The greater the integrated concentration value, the more easily the pest control effect is exhibited.
- the upper limit of the concentration integrated value is not particularly limited from the viewpoint of pest control effect. However, if the concentration integrated value becomes too large, depending on the concentration of chlorine dioxide gas, there is a possibility of adverse effects such as corrosion and discoloration on various devices in the space. From such a viewpoint, the upper limit of the concentration integrated value is preferably 50000 (ppm ⁇ min) or less.
- the predetermined concentration integrated value may be achieved in the time from the start of use of the chlorine dioxide gas until the chlorine dioxide gas is decomposed.
- the predetermined concentration integrated value is preferably achieved within 600 minutes from the start of use of chlorine dioxide gas, more preferably within 360 minutes, and more preferably within 240 minutes. It is particularly preferred that it be achieved within 180 minutes.
- the generation source for generating chlorine dioxide gas is not particularly limited.
- the generation source include chlorine dioxide water in which chlorine dioxide is dissolved. From such chlorine dioxide water, dissolved chlorine dioxide gas is liberated. It does not specifically limit as a density
- a method of sending air into the solution (aeration), a method of reducing pressure, a method of blowing air, or the like may be adopted for chlorine dioxide water to promote liberation of chlorine dioxide gas.
- a generation source for generating chlorine dioxide gas for example, a preparation in which a sodium chlorite aqueous solution and chlorine, an inorganic acid, or an organic acid are formulated.
- the inorganic acid include hydrochloric acid and sulfuric acid.
- the organic acid include citric acid, lactic acid, pyruvic acid, citric acid, malic acid, tartaric acid, gluconic acid, glycolic acid, fumaric acid, malonic acid, maleic acid, oxalic acid, succinic acid, acrylic acid and the like.
- Chlorine dioxide gas is easily generated by the reaction of the aqueous sodium chlorite solution with these hydrochloric acid, inorganic acid or organic acid.
- these simple reaction systems simply mix two kinds of raw materials appropriately, so that they can be easily formulated and used by users.
- Examples of the preparation include sprays, smokes, gels, sheets, sticks, and the like that are adjusted so that sodium chlorite can react with chlorine, inorganic acid, or organic acid as appropriate.
- the blending ratio when the aqueous sodium chlorite solution is reacted with chlorine, an inorganic acid or an organic acid is not particularly limited, and is appropriately selected depending on the type of raw material used.
- an aqueous sodium chlorite solution and hydrochloric acid are selected, 0.3 to 15% by mass of hydrochloric acid may be added to 1 to 25% by mass of sodium chlorite.
- the blending amount of sodium chlorite When the blending amount of sodium chlorite is less than 1% by mass, the amount of sodium chlorite aqueous solution required increases and convenience tends to decrease. On the other hand, when the blending amount of sodium chlorite exceeds 25% by mass, it corresponds to a deleterious substance stipulated in the Poisonous and Deleterious Substances Control Law, and the handling tends to be restricted, and the formulation tends to be difficult.
- the maximum concentration of chlorine dioxide gas in a predetermined space is preferably achieved within 90 minutes from the start of use of chlorine dioxide gas, more preferably within 60 minutes, More preferably, it is achieved within 40 minutes.
- the maximum concentration of chlorine dioxide gas is achieved within 90 minutes, the pest control effect is exhibited from an early stage.
- concentration of the chlorine dioxide gas in space falls after showing the maximum density
- a line for example, a pharmaceutical production line
- room temperature and humidity are appropriately adjusted in the space to be sanitized.
- the room temperature is preferably adjusted to 20 to 28 ° C., for example.
- the humidity is preferably adjusted to 60 to 75% RH, for example.
- the space where sanitary management is performed by using chlorine dioxide gas at a predetermined concentration or more is intended to control pests in addition to sterilization and deodorization.
- the hygiene management is performed once.
- such a hygiene management method is simple as long as the generation of chlorine dioxide gas is appropriately adjusted to achieve the above concentration.
- chlorine dioxide gas is decomposed in a relatively short time. For this reason, the time required for hygiene management is short, and labor and labor of post-processing after processing are saved.
- the insect pests subject to hygiene management include minute insects with a body length of 2 mm or less. Since micro insects are very small, for example, they can lurk in the details of various devices such as factories and in small gaps in materials such as cardboard. Examples of the micro insects include phantom chatterworms, flying beetles, scallops, and dust mites. Among these, innocent chatterworms (hereinafter, also simply referred to as “chatagemushi”) are known to damage books, dry foods, leather products, clothing, etc., and prefer to live in dimly lit environments with high humidity. Chatteramushi occurs in the facility and causes great damage if the environmental conditions for inhabiting are in place.
- chatter beetle may lurk in a narrow internal space formed in a packaging material such as cardboard, and can easily come and go between facilities as the packaging material moves.
- the sanitary management method of the present embodiment can sufficiently exert a control effect even for such micro insects. That is, since the chlorine dioxide gas used in the present embodiment is a gas, it is easy to enter a narrow space inhabited by such micro insects (particularly chatterworms). For this reason, chlorine dioxide gas can sufficiently exert a control effect even for a minute insect lurking in a narrow space. In addition, chlorine dioxide gas can enter the narrow internal space of materials (corrugated cardboard, etc.) and exert the effect of controlling micro insects. Therefore, not only hygiene management in facilities but also micro insects between facilities. Can also be prevented.
- the embodiment of the present invention has been described above.
- the present invention is not particularly limited to the above embodiment.
- the above-described embodiments mainly describe the invention having the following configuration.
- a hygiene management method in which chlorine dioxide gas is used so that the concentration in the space becomes 20 ppm or more for a predetermined space where hygiene management is performed.
- chlorine dioxide gas is used so that a density
- concentration may be 20 ppm or more with respect to the predetermined space where hygiene management is carried out.
- chlorine dioxide gas is used so as to have a concentration of 20 ppm or more, in addition to sterilization and deodorization effects, pest control effects are exhibited.
- hygiene management according to various purposes such as sterilization, deodorization, and pest control is performed once, and labor and labor are reduced.
- such a hygiene management method is simple as long as the amount of chlorine dioxide gas used is appropriately adjusted to achieve the above concentration.
- chlorine dioxide gas is decomposed in a relatively short time. Therefore, the time required for hygiene management is short, and the post-processing effort and labor after processing are reduced.
- chlorine dioxide gas is not a mist (generally particle size is 5 to 30 ⁇ m) but a low molecular gas (particle size is 1.5 ⁇ 10 ⁇ 4 ⁇ m), so it can easily enter narrow spaces. . Therefore, even if the predetermined space where hygiene management is performed is a space where various devices such as factories are installed, the sterilization, disinfection and pest control including the narrow space of the details of these devices are sufficient. Hygiene management can be performed.
- the predetermined space to be sanitized is exposed to a sufficient amount of chlorine dioxide gas. As a result, sufficient hygiene management is performed.
- a line for example, a pharmaceutical production line
- a decrease in work efficiency can be suppressed.
- the chlorine dioxide gas is released by aeration of chlorine dioxide water in which chlorine dioxide is dissolved, and the released chlorine dioxide gas is used, according to any one of (1) to (3) Hygiene management method.
- chlorine dioxide gas is efficiently released from chlorine dioxide water by a simple method called aeration. Therefore, the concentration of chlorine dioxide gas tends to increase in a predetermined space where hygiene management is performed. As a result, the time required for hygiene management is likely to be shortened.
- the chlorine dioxide gas is produced by a reaction between a sodium chlorite aqueous solution and hydrochloric acid, an inorganic acid or an organic acid, and the produced chlorine dioxide gas is used.
- the chlorine dioxide gas is relatively easily generated by the reaction between the sodium chlorite aqueous solution and hydrochloric acid, an inorganic acid or an organic acid. Moreover, according to such a reaction system, chlorine dioxide gas is generated only by appropriately mixing only two kinds of raw materials. Therefore, such a reaction system is easy to formulate and is easy for users to use. As a result, hygiene management is easily performed by a simpler operation.
- Examples of spaces where pests are generated include facilities such as pharmaceutical factories and food factories, as well as libraries and museums. According to the said structure, sufficient hygiene management can be performed in a short time also in these various facilities.
- Innocent chatterworms occur in large quantities in various facilities and cause food damage to food and books.
- the free chatter beetle can lurk in a narrow internal space formed in a packaging material such as cardboard, and can easily travel between facilities as the packaging material moves. According to the above-described configuration, even in the case where innocent chatterworms are lurking in such a narrow space, it is possible to sufficiently control these innocuous chatterworms. Therefore, not only the hygiene management in the facility but also the infinite movement of the scallop between the facilities can be prevented.
- FIG. 2 is a schematic diagram of the sanitary management device 1 used in this embodiment.
- the sanitary management device 1 includes a substantially rectangular parallelepiped polyethylene container 2 (internal volume 26 L), a beaker 3 for storing chlorine dioxide water in which chlorine dioxide is dissolved, and chlorine dioxide water stored in the beaker 3.
- the opening of the polyethylene container 2 is closed by the canopy 2a, and the internal space (processing space) of the polyethylene container 2 is sealed.
- the chlorine dioxide gas sensor 6 is connected to a chlorine dioxide gas concentration monitor 7 provided outside the polyethylene container 2 so that the hermeticity of the polyethylene container 2 is not impaired.
- the measured chlorine dioxide gas concentration is displayed on the display of the personal computer 8.
- the internal space of the sanitary management device 1 is adjusted to a temperature of 20 to 22 ° C. and a humidity of 65 to 70% RH by a temperature control device and a humidity adjustment device (not shown).
- test insect container 9a containing 13 adult larvae and 26 test insect containers 9b were placed on a steel plate 9p.
- the test insect container 9a is a flat polyethylene bottomed petri dish having an open top, and the opening is covered with a nylon goose. According to the test insect container 9a, it is possible to assume a space (open condition) with good ventilation.
- the test insect container 9b is a flat polyethylene petri dish made of a flat polyethylene whose upper part is closed by a lid material, and 10 holes having a diameter of 2 mm are formed in the lid material. According to the test insect container 9b, a narrow space (quasi-closed condition) with poor air permeability can be assumed.
- the adult fly scallop that is an indefinite chatterworm has a body length of about 1 to 2 mm, and can live in spaces in various facilities (including gaps in materials such as cardboard).
- the test insect container 9b for example, the effect of controlling adult larvae hidden in materials such as details of various devices in the facility and corrugated cardboard (standard: E flute) in which a gap of about 2 mm width is formed inside. Can be confirmed.
- chlorine dioxide water in which 0.2% by mass of chlorine dioxide was dissolved was appropriately aerated by the aeration pump 4. Thereby, chlorine dioxide gas was liberated so that the maximum concentration in the space in the sanitary management device 1 would be 52 ppm.
- the chlorine dioxide gas concentration was measured over time for 360 minutes from the start of use of chlorine dioxide gas (0 minutes), and the integrated concentration value was calculated. The integrated concentration value was 8482.0 (ppm ⁇ min). Thereafter, the pest mortality in the test insect container 9a and the test insect container 9b was calculated, and the control effect was confirmed. Moreover, the presence or absence of corrosion or discoloration of the steel plate 9p was visually confirmed.
- Examples 2 to 7, Comparative Examples 1 and 2 The control effect and the like were confirmed by the same method as in Example 1 except that the number of pests, the chlorine dioxide gas concentration, and the concentration measurement time were changed to the conditions shown in Table 1.
- Table 1 shows the results of the control effect and the like confirmed in Examples 1 to 7 and Comparative Examples 1 and 2.
- Examples 1 to 7 using chlorine dioxide gas so that the maximum concentration exceeded 20 ppm showed the control effect of the test insects in both the open condition and the semi-closed condition. did it.
- Examples 2 to 7 having a maximum concentration of 30 ppm or more more than half of the test insects were controlled.
- Examples 3 to 7 having a maximum concentration of 35 ppm or more about 90 to 100% of the test insects were controlled.
- the big difference was not looked at by the mortality rate of the test insect in an open condition, and the mortality rate of the test insect in a semi-closed condition. Therefore, according to these Examples, it has been found that chlorine dioxide gas can sufficiently enter a narrow space and can exert a control effect.
- Example 7 there was a slight corrosion or discoloration of the steel plate 9p, but in Examples 1 to 6 and Comparative Examples 1 and 2, such corrosion or discoloration was not observed.
- Example 8 Using the hygiene management device 1 shown in FIG. 2, the chlorine dioxide gas concentration is measured over time for 720 minutes from the start of use of the chlorine dioxide gas (0 minutes), and the decomposability (residuality) of the chlorine dioxide gas. evaluated.
- chlorine dioxide gas was liberated by appropriately aeration of chlorine dioxide water using the aeration pump 4.
- the maximum concentration of chlorine dioxide gas in the space in the sanitary management device 1 was 41 ppm. This maximum concentration was achieved 43 minutes after the start of use.
- Example 9 The decomposability of chlorine dioxide gas by the same method as in Example 8 except that the amount of chlorine dioxide gas dissolved in chlorine dioxide water and the conditions of aeration were changed so that the maximum concentration of chlorine dioxide gas was 64 ppm ( Persistence) was confirmed. The maximum concentration of chlorine dioxide gas was achieved 35 minutes after the start of use.
- Example 8 and Example 9 Graphs of chlorine dioxide gas concentrations measured in Example 8 and Example 9 are shown in FIGS. 3 and 4, respectively.
- the concentration of chlorine dioxide gas gradually increases from the beginning of use, and after 35 minutes (see Example 9, FIG. 4) or 43 minutes (Example 8, FIG. 3). Reference) shows the maximum concentration. Thereafter, the concentration of chlorine dioxide gas decreased to 0 ppm after 620 minutes (see Example 8, FIG. 3) and 660 minutes (see Example 9, FIG. 4) from the start of use. As a result, it has been found that chlorine dioxide gas not only exhibits a sufficient control effect against pests lurking in a narrow space (quasi-closed condition), but is then completely decomposed in a short time.
- FIG. 5 is a schematic diagram of the sanitary management device 10 used in this comparative example.
- the hygiene management device 10 has a substantially rectangular parallelepiped polyethylene container 2 (internal volume 26 L) and a room temperature volatilizable insecticide (pyrethroid insecticide, transfluthrin) so that the initial impregnation amount is 200 mg.
- An impregnated carrier (not shown) and a gas phase diffusion fan 11 for diffusing an insecticide volatilized from the carrier in the polyethylene container 2 with the carrier inside are included.
- the opening of the polyethylene container 2 is closed by the canopy 2a, and the internal space (processing space) of the polyethylene container 2 is sealed.
- the internal space of the hygiene management device 10 is adjusted to a temperature of 20 to 22 ° C. and a humidity of 65 to 70% RH.
- the initial volatilization amount of the insecticide was 0.008 mg / min.
- test insect container 9a containing 22 adult larvae and 20 test insect containers 9b were placed.
- the insecticide was volatilized so that the cumulative volatilization amount was 0.17 mg in 360 minutes. Thereafter, the pest mortality in the test insect container 9a and the test insect container 9b was calculated, and the control effect was confirmed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Environmental Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Inorganic Chemistry (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Insects & Arthropods (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Catching Or Destruction (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
衛生管理がされる所定の空間に対して、二酸化塩素ガスを、空間における濃度が20ppm以上となるように使用する衛生管理方法。
Description
本発明は、衛生管理方法に関する。より詳細には、本発明は、所定濃度の二酸化塩素ガスを使用して所定の空間の衛生管理を行う衛生管理方法に関する。
従来、多くの施設において、種々のガスや微細な液滴(以下、ガス等という)を使用した衛生管理方法が知られている。このような施設としては、オフィス、病院、製薬工場、食品工場、研究所、図書館、美術館、博物館が例示される。衛生管理の目的としては、殺菌、消臭が例示される。ガス等としては、二酸化塩素、ホルマリン、過酸化水素、オゾンが例示される。特許文献1には、殺菌、消臭のために二酸化塩素ガスを発生させるガス供給装置が開示されている。特許文献1によれば、二酸化塩素ガスは、殺菌、消臭の目的において1ppmで充分である。
ところで、上記施設では、昆虫等の害虫やその死骸が混入するといった問題もある。害虫に対する衛生管理方法として、特許文献2には、二酸化塩素を有効成分とするゴキブリ忌避剤が開示されている。特許文献2によれば、1日間で62.5%のゴキブリが忌避され、5日間で100%のゴキブリが忌避されることが開示されている。他にも、害虫を防除する方法として、殺虫剤(たとえば、ピレスロイド系)、ナフタリン、防カビ剤(たとえば、次亜塩素酸塩)、乾燥剤(たとえば、シリカゲル乾燥剤)を使用する方法がある。
特許文献1に記載の発明は、二酸化塩素ガスを使用することにより害虫を防除することを目的とする衛生管理が行われることを想定していない。そして、特許文献1において充分とされる1ppmの二酸化塩素ガスでは、害虫は、防除されない。さらに、特許文献2では、ゴキブリを忌避するために長時間(1日~5日)を要する。また、特許文献2に記載の発明は、単にゴキブリを忌避するに過ぎず、害虫を防除(駆除)するには不充分である。そのため、これらの従来技術によれば、殺菌、消臭および害虫の防除を含む充分な衛生管理は行われない。
また、殺虫剤等を使用して害虫を防除する方法として、たとえば粉剤やスプレー剤を害虫に直接噴霧するか、生息場所に噴霧する方法がある。しかしながら、粉剤は、持続性がない、水に弱い、舞い散りやすい、速効性がない等の問題がある。また、くん煙殺虫剤は、薬剤が残留した場合、製品を汚染する。そのため、処理後は、中性洗剤で殺虫剤を洗い落とす必要があり、手間と労力がかかる。特に、製薬工場、食品工場等では、製品に薬剤が残留することを避けるため、殺虫剤は、製造現場において使用することができない。その結果、殺虫剤は、施設の天井裏や床下など限られた場所にしか使用することができない。さらに、このような限られた場所に使用する場合であっても、殺虫剤が製造現場内に入らないように、処理前にわずかな隅間にもテープ止めを行なう必要がある。また、処理後には、現場内に殺虫剤の残留がないかを確認する必要がある。さらに、薬剤処理作業には数日間を要する。そのため、粉剤やスプレー剤を噴霧する方法は、数日間、製造ラインを停止する必要があり、生産効率が低下する。ほかにも、噴霧された殺虫剤は、比較的粒子径の大きな液滴(ミスト状)である。また、殺虫剤は、仮にガス化して粒子径を小さくできたとしても、沸点が高いため容易に凝縮して再びミスト状となる。その結果、殺虫剤は狭隘な空間に進入しにくく、施設の隅々まで充分に衛生管理を行うことができない。また、オゾン等のガスを使用する場合には、狭隘な空間に進入させることができたとしても、分解されるまでに長時間を要する。そのため、衛生管理時に休止されていたラインを復旧するために長時間を要する。
本発明は、このような従来の事情に鑑みてなされたものであり、過度の手間や労力を要することなく、短時間のうちに、狭隘な空間にまで殺菌、消臭および害虫の防除を含む充分な衛生管理を行うことのできる衛生管理方法を提供することを目的とする。
本発明者らは、鋭意検討の末、所定の濃度以上の二酸化塩素ガスを用いる簡便な方法により、狭隘な空間を含む施設の隅々において充分な衛生管理を短時間で行い得ることを見出し、本発明を完成させた。
すなわち、本発明の一局面による衛生管理方法は、衛生管理がされる所定の空間に対して、二酸化塩素ガスを、前記空間における濃度が20ppm以上となるように使用することを特徴とする。
以下、本発明の一実施形態の衛生管理方法が、詳細に説明される。本実施形態の衛生管理方法は、衛生管理がされる所定の空間に対して、二酸化塩素ガスを、空間における濃度が所定の濃度以上となるように使用することを特徴とする。また、本実施形態の衛生管理方法は、二酸化塩素ガスが所定の濃度以上となるように使用されることに加え、所定の濃度積算値以上となるように使用されることが好ましい。
なお、本実施形態において、「衛生管理」とは、殺菌、消臭のほか、害虫の防除を目的とする衛生管理を含む。また、「害虫の防除」とは、害虫を予防、忌避することや、害虫を駆除することを含む。本実施形態において、「所定の空間」とは、衛生管理を行うべき種々の空間をいう。具体的には、所定の空間は、オフィス、病院、製薬工場、食品工場、研究所等の施設や、図書館、美術館、博物館等の施設内の空間を含む。より具体的には、「所定の空間」は、オフィスや病院における個室、共用スペース、作業スペース内や、美術館の展示スペース内等の空間を含む。また、これらの空間の場所は特に限定されず、たとえば床下、床上、天井裏であってもよい。他にも、「所定の空間」は、上記施設内に設置される機器等の付帯設備、書籍、美術品等に形成される細部の部品間の狭隘な空間や、各種資材(たとえば段ボール)に形成される内部空間等を含む。また、これらの空間は、害虫の生息している空間であってもよく、過去に害虫の被害が発生した空間であってもよく、害虫が将来的に生息すると予測される空間であってもよい。害虫としては、ヒト、家畜、ペット、医薬品、農産物、書籍等の財産などにとって有害な作用をもたらす虫が挙げられる。本実施形態において好適に防除される害虫は後述される。
上記所定の空間における所定の濃度(所定の空間における雰囲気の濃度)としては、20ppm以上が挙げられる。二酸化塩素ガスの濃度は、害虫を防除する効果を高める観点から、30ppm以上となるように使用されることが好ましく、35ppm以上となるように使用されることがより好ましく、50ppm以上となるように使用されることがさらに好ましい。二酸化塩素ガスの濃度が所定の濃度未満である場合、害虫の防除効果は減弱される。
なお、二酸化塩素ガス濃度の上限は、害虫の防除効果を高める観点からは特に限定されない。図1は、二酸化塩素ガス濃度の経時変化を表す概略的なグラフである。縦軸は二酸化塩素ガス濃度(ppm)を示し、横軸は時間(分)を示している。すなわち、たとえば二酸化塩素ガスを発生する発生源から放出される場合には、図1に示されるように、時間の経過とともに徐々に空間内の濃度が高められる。その後、二酸化塩素ガスの濃度は、発生量よりも分解量が上回ることにより、最大濃度を示した後に減少する。本実施形態では、二酸化塩素ガスは、衛生管理の過程において、最大濃度が所定の濃度(たとえば20ppm)以上となるように使用されることにより、害虫を防除する効果を好適に発揮する。その際、二酸化塩素ガスは、所定の濃度を超えるように使用されることにより、二酸化塩素ガス濃度が所定の濃度以上となっている期間が生じる(t1~t2、図1参照)。このような期間は、二酸化塩素ガスの最大濃度が所定の濃度よりも大きくなればなるほど長くなる傾向がある。したがって、二酸化塩素ガスは、防除効果を高める観点からは、最大濃度が大きいほど好ましい。
しかしながら、二酸化塩素ガスの濃度が高くなりすぎる場合、衛生管理の所要時間にもよるが、空間内の各種機器に腐食や変色などの悪影響を及ぼす可能性がある。このような観点によれば、二酸化塩素ガスの濃度の上限は、500ppm以下であることが好ましく、350ppm以下であることがより好ましい。
本実施形態において、好ましくは採用される「所定の濃度積算値」としては、4300(ppm・分)以上が挙げられる。なお、本実施形態において、「濃度積算値」とは、「二酸化塩素ガスの濃度(ppm)」と「時間(分)」との積分値である。図1において、濃度積算値は、横軸とグラフとにより画定される領域の面積(参照符号Iの付された領域の面積)として表される。濃度積算値は、4500(ppm・分)以上であることがより好ましく、5000(ppm・分)以上であることがさらに好ましく、8000(ppm・分)以上であることが特に好ましい。濃度積算値が大きいほど、害虫の防除効果が発揮されやすい。
なお、濃度積算値の上限は、害虫の防除効果の観点からは特に限定されない。しかしながら、濃度積算値が大きくなりすぎる場合、二酸化塩素ガスの濃度にもよるが、空間内の各種機器に腐食や変色などの悪影響を及ぼす可能性がある。このような観点によれば、濃度積算値の上限は、50000(ppm・分)以下であることが好ましい。
本実施形態では、所定の濃度積算値は、二酸化塩素ガスの使用開始時から二酸化塩素ガスが分解されるまでの時間において達成されればよい。中でも、所定の濃度積算値は、二酸化塩素ガスの使用開始時から600分以内に達成されることが好ましく、360分以内に達成されることがより好ましく、240分以内に達成されることがさらに好ましく、180分以内に達成されることが特に好ましい。所定の濃度積算値が短時間で達成されることにより、衛生管理の所要時間が短縮される。そのため、種々の施設(たとえば製薬工場)において、衛生管理時に休止されていたライン(たとえば医薬品の生産ライン)を早期に再開することができ、業務効率の低下が抑えられる。
二酸化塩素ガスを発生させる発生源としては、特に限定されない。発生源としては、たとえば、二酸化塩素が溶存された二酸化塩素水が挙げられる。このような二酸化塩素水からは、溶存された二酸化塩素ガスが遊離される。二酸化塩素水に溶存される二酸化塩素の濃度としては特に限定されず、衛生管理すべき空間の容積や、目的とする二酸化塩素ガス濃度に応じて適宜調整される。二酸化塩素は、たとえば0.01~0.8質量%となるように溶存されていればよい。本実施形態では、二酸化塩素水に対して、溶液中に空気を送り込む方法(エアレーション)、減圧する方法、送風する方法等を採用して、二酸化塩素ガスの遊離が促されてもよい。これらの中でも、二酸化塩素水に対してエアレーションを行うことにより、二酸化塩素ガスの遊離が促されやすく、衛生管理される空間の二酸化塩素ガス濃度は高められやすい。その結果、衛生管理の所要時間は短縮化されやすい。
ほかにも、二酸化塩素ガスを発生させる発生源としては、たとえば、亜塩素酸ナトリウム水溶液と、塩素、無機酸または有機酸とを製剤化した製剤が挙げられる。無機酸としては、塩酸、硫酸等が例示される。有機酸としては、クエン酸、乳酸、ピルビン酸、クエン酸、リンゴ酸、酒石酸、グルコン酸、グリコール酸、フマル酸、マロン酸、マレイン酸、シュウ酸、コハク酸、アクリル酸等が例示される。亜塩素酸ナトリウム水溶液と、これら塩酸、無機酸または有機酸との反応により、二酸化塩素ガスが簡便に生成される。また、これら簡便な反応系は、わずか2種類の原料を適切に混合するだけであるため、製剤化されやすく、かつ、利用者が利用しやすい。製剤としては、亜塩素酸ナトリウムと、塩素、無機酸または有機酸とが適宜反応し得るように調整されたスプレー剤、くん煙剤、ゲル剤、シート剤、スティック剤等が例示される。
亜塩素酸ナトリウム水溶液と、塩素、無機酸または有機酸とを反応させる際の配合割合としては特に限定されず、使用する原料の種類により適宜選択される。たとえば、亜塩素酸ナトリウム水溶液と塩酸とが選択される場合には、亜塩素酸ナトリウム1~25質量%に対して、塩酸が0.3~15質量%配合されればよい。この場合において、亜塩素酸ナトリウム5~25質量%に対して塩酸が1.5~12質量%配合されることが好ましく、亜塩素酸ナトリウム10~25質量%に対して塩酸が3~12質量%配合されることがより好ましい。亜塩素酸ナトリウムの配合量が1質量%未満の場合、必要とされる亜塩素酸ナトリウム水溶液の量が増え、利便性が低下する傾向がある。一方、亜塩素酸ナトリウムの配合量が25質量%を超える場合、毒物劇物取締法に規定される劇物に該当し、取扱いが制限され、製剤化が困難となる傾向がある。
また、本実施形態において、所定の空間における二酸化塩素ガスの最大濃度は、二酸化塩素ガスの使用開始時から90分以内に達成されることが好ましく、60分以内に達成されることがより好ましく、40分以内に達成されることがさらに好ましい。二酸化塩素ガスの最大濃度が90分以内に達成される場合、早い段階から害虫の防除効果が発揮される。また、空間内の二酸化塩素ガスの濃度は、最大濃度を示した後に低下する(図1参照)。そのため、90分という早い段階で最大濃度を示すことにより、たとえばヒトが立ち入ることができる程度である0.05ppm未満までの所要時間は、短縮化される。その結果、種々の施設(たとえば製薬工場)において、衛生管理時に休止されていたライン(たとえば医薬品の生産ライン)が早期に再開され、業務効率の低下が抑えられる。
本実施形態では、衛生管理される空間は、室温および湿度が適切に調整されていることが好ましい。具体的には、室温は、たとえば20~28℃に調整されることが好ましい。湿度は、たとえば60~75%RHに調整されることが好ましい。室温および湿度が適切に調整されることにより、二酸化塩素ガスが凝縮してミスト状となることが防がれる。その結果、二酸化塩素ガスは、ガスの状態で空間中に存在しやすく、狭隘な空間にも進入しやすい。
以上、本実施形態の衛生管理方法によれば、二酸化塩素ガスが所定の濃度以上となるよう使用されることにより、衛生管理がされる空間は、殺菌、消臭に加え、害虫の防除を目的とした衛生管理が一回的に行われる。また、このような衛生管理方法は、上記濃度となるよう二酸化塩素ガスの生成が適宜調整されればよく、簡便である。さらに、二酸化塩素ガスは、比較的短時間で分解される。そのため、衛生管理の所要時間が短く、かつ、処理後の後処理の手間や労力が省かれる。
ここで、衛生管理の対象となる害虫の中には、体長が2mm以下の微小昆虫が含まれる。微小昆虫は、微小であるため、たとえば工場等の各種機器の細部や、段ボール等の資材のわずかな隙間に潜むことができる。微小昆虫としては、無翅のチャタテムシ、トビムシ、ハネカクシ、塵性ダニなどが例示される。これらの中でも、無翅のチャタテムシ(以下、単にチャタテムシともいう)は、書籍、乾燥食品、皮革製品、衣類などを食害するものとして知られ、高湿度の薄暗い環境を好んで生息する。チャタテムシは、生息するための環境条件が整えば、施設内で大発生して、甚大な被害をもたらす。また、チャタテムシは、風通しを良くして、低温、低湿、清潔を保ったとしても、増殖を完全に防ぐことが困難である。さらに、チャタテムシは、たとえば段ボール等の梱包資材に形成された狭隘な内部空間に潜むことがあり、梱包資材の移動に合わせて容易に施設間を往き来することができる。
本実施形態の衛生管理方法は、このような微小昆虫に対しても防除効果を充分に発揮することができる。すなわち、本実施形態において使用される二酸化塩素ガスは、ガスであるため、このような微小昆虫(特にチャタテムシ)の生息する狭隘な空間にも進入しやすい。そのため、二酸化塩素ガスは、狭隘な空間に潜む微小昆虫に対しても充分に防除効果を発揮することができる。また、二酸化塩素ガスは、たとえば資材(段ボール等)の狭隘な内部空間にも進入して微小昆虫の防除効果を発揮することができるため、施設内の衛生管理だけでなく、施設間の微小昆虫の移動も予防することができる。
以上、本発明の一実施形態について説明した。本発明は、上記実施形態に格別限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
(1)衛生管理がされる所定の空間に対して、二酸化塩素ガスを、前記空間における濃度が20ppm以上となるように使用する、衛生管理方法。
このような構成によれば、二酸化塩素ガスは、衛生管理がされる所定の空間に対して、濃度が20ppm以上となるように使用される。二酸化塩素ガスが20ppm以上となるよう使用される場合、殺菌、消臭効果に加え、害虫の防除効果が発揮される。その結果、本発明によれば、殺菌、消臭、害虫の防除等の種々の目的に応じた衛生管理が一回的に行われ、手間や労力が低減される。また、このような衛生管理方法は、上記濃度となるよう二酸化塩素ガスの使用量が適宜調整されればよく、簡便である。また、二酸化塩素ガスは、比較的短時間で分解される。そのため、衛生管理の所要時間が短く、かつ、処理後の後処理の手間や労力が低減される。さらに、二酸化塩素ガスは、ミスト状(一般的に粒子径が5~30μm)ではなく低分子ガス(粒子径が1.5×10-4μm)であるため、狭隘な空間にも進入しやすい。そのため、衛生管理がされる所定の空間が、たとえば工場等の各種機器が設置された空間であっても、それら機器の細部の狭隘な空間を含めて充分に殺菌、消毒および害虫の防除等の衛生管理を行うことができる。
(2)前記二酸化塩素ガスは、濃度積算値が4300(ppm・分)以上となるように使用される、(1)記載の衛生管理方法。
このような構成によれば、衛生管理される所定の空間は、充分な量の二酸化塩素ガスに曝される。その結果、充分な衛生管理が行われる。
(3)前記濃度積算値は、前記二酸化塩素ガスの使用開始時から600分以内に達成される、(2)記載の衛生管理方法。
このような構成によれば、比較的短時間である600分以内に充分な衛生管理が行われる。そのため、種々の施設(たとえば製薬工場)において、衛生管理時に休止されていたライン(たとえば医薬品の生産ライン)を早期に再開することができ、業務効率の低下が抑えられる。
(4)前記二酸化塩素ガスは、二酸化塩素が溶存された二酸化塩素水をエアレーションすることにより遊離され、遊離された前記二酸化塩素ガスが使用される、(1)~(3)のいずれかに記載の衛生管理方法。
このような構成によれば、二酸化塩素ガスは、エアレーションという簡便な方法により二酸化塩素水から効率よく遊離される。そのため、衛生管理がされる所定の空間において、二酸化塩素ガスの濃度は高まりやすい。その結果、衛生管理の所要時間が短縮化されやすい。
(5)前記二酸化塩素ガスは、亜塩素酸ナトリウム水溶液と、塩酸、無機酸または有機酸との反応により生成され、生成された前記二酸化塩素ガスが使用される、(1)~(3)のいずれかに記載の衛生管理方法。
このような構成によれば、二酸化塩素ガスは、亜塩素酸ナトリウム水溶液と、塩酸、無機酸または有機酸との反応により比較的簡便に生成される。また、このような反応系によれば、二酸化塩素ガスは、わずか2種類の原料を適切に混合するだけで発生する。そのため、このような反応系は、製剤化しやすく、利用者が利用しやすい。その結果、衛生管理は、より簡便な操作により行われやすい。
(6)前記衛生管理は、害虫の防除を目的とする衛生管理であり、前記空間は、害虫が発生する空間である、(1)~(5)のいずれかに記載の衛生管理方法。
害虫が発生する空間としては、たとえば製薬工場や食品工場といった施設のほか、図書館や博物館などの施設が挙げられる。上記構成によれば、これら種々の施設においても充分な衛生管理を短時間のうちに行うことができる。
(7)前記害虫は、体長2mm以下の微小昆虫である、(6)記載の衛生管理方法。
体長2mm以下の微小昆虫は、たとえば工場等の各種機器の細部や、段ボール等の資材のわずかな隙間などの狭隘な空間に潜むことができる。上記構成によれば、二酸化塩素ガスを使用するため、このような空間に潜む微小昆虫に対しても充分に防除することができる。
(8)前記微小昆虫は、無翅のチャタテムシである、(7)記載の衛生管理方法。
無翅のチャタテムシは、各種施設において大量発生し、食品や書籍などに食害を及ぼす。また、無翅のチャタテムシは、たとえば段ボール等の梱包資材に形成された狭隘な内部空間に潜むことができ、梱包資材の移動に合わせて容易に施設間を往き来することができる。上記構成によれば、このような狭隘な空間に無翅のチャタテムシが潜んでいる場合であっても、これら無翅のチャタテムシを充分に防除することができる。そのため、施設内の衛生管理だけでなく、施設間の無翅のチャタテムシの移動も予防することができる。
以下、実施例により本発明をより具体的に説明する。本発明は、これら実施例に何ら限定されるものではない。
<防除効果の確認>
(実施例1)
図2に示される衛生管理装置1を用いて、害虫(ヒラタチャタテ成虫)に対する防除効果を確認した。図2は、本実施例において使用される衛生管理装置1の模式図である。衛生管理装置1は、上部が開口した略直方体状のポリエチレン製容器2(内容積26L)と、二酸化塩素が溶存された二酸化塩素水を貯留するビーカー3と、ビーカー3に貯留された二酸化塩素水をエアレーションするためのエアレーションポンプ4と、ポリエチレン製容器2内の気相部分を拡散するための気相拡散ファン5と、二酸化塩素ガスの濃度を測定するための二酸化塩素ガスセンサー6(ATi社製ガス検知器)とを含む。ポリエチレン製容器2の開口は、天蓋2aにより閉止され、ポリエチレン製容器2の内部空間(処理空間)は密閉される。二酸化塩素ガスセンサー6は、ポリエチレン製容器2の密閉性が損なわれないように、ポリエチレン製容器2の外部に設けられた二酸化塩素ガス濃度モニター7に接続される。測定された二酸化塩素ガス濃度は、パーソナルコンピュータ8のディスプレイに表示される。衛生管理装置1の内部空間は、図示しない温度制御装置および湿度調整装置により、温度が20~22℃に調整され、湿度が65~70%RHに調整される。
(実施例1)
図2に示される衛生管理装置1を用いて、害虫(ヒラタチャタテ成虫)に対する防除効果を確認した。図2は、本実施例において使用される衛生管理装置1の模式図である。衛生管理装置1は、上部が開口した略直方体状のポリエチレン製容器2(内容積26L)と、二酸化塩素が溶存された二酸化塩素水を貯留するビーカー3と、ビーカー3に貯留された二酸化塩素水をエアレーションするためのエアレーションポンプ4と、ポリエチレン製容器2内の気相部分を拡散するための気相拡散ファン5と、二酸化塩素ガスの濃度を測定するための二酸化塩素ガスセンサー6(ATi社製ガス検知器)とを含む。ポリエチレン製容器2の開口は、天蓋2aにより閉止され、ポリエチレン製容器2の内部空間(処理空間)は密閉される。二酸化塩素ガスセンサー6は、ポリエチレン製容器2の密閉性が損なわれないように、ポリエチレン製容器2の外部に設けられた二酸化塩素ガス濃度モニター7に接続される。測定された二酸化塩素ガス濃度は、パーソナルコンピュータ8のディスプレイに表示される。衛生管理装置1の内部空間は、図示しない温度制御装置および湿度調整装置により、温度が20~22℃に調整され、湿度が65~70%RHに調整される。
ポリエチレン製容器2内には、ヒラタチャタテ成虫を13匹入れた供試虫容器9aおよび、26匹入れた供試虫容器9bをスチール板9p上に載置した。供試虫容器9aは、上部が開口した扁平なポリエチレン製の有底円筒状シャーレであり、開口部には、ナイロン製ゴースを被せた。供試虫容器9aによれば、通気性の良い空間(開放条件)を想定することができる。一方、供試虫容器9bは、上部が蓋材により閉止された扁平なポリエチレン製の有底円筒状シャーレであり、蓋材には、直径2mmの孔が10個形成されている。供試虫容器9bによれば、通気性の悪い狭隘な空間(準閉鎖条件)を想定することができる。なお、無翅のチャタテムシであるヒラタチャタテ成虫は、体長が1~2mm程度であり、種々の施設内の空間(段ボール等の資材の隙間を含む)に生息し得る。供試虫容器9bによれば、たとえば施設内の種々の機器における細部や、内部に約2mm幅の空隙が形成された段ボール(規格:Eフルート)等の資材に潜むヒラタチャタテ成虫に対する防除効果を確認することができる。
本実施例では、0.2質量%の二酸化塩素が溶存された二酸化塩素水を、エアレーションポンプ4により適宜エアレーションした。これにより、二酸化塩素ガスは、衛生管理装置1内の空間における最大濃度が52ppmとなるように遊離された。二酸化塩素ガスの使用開始時(0分)から360分間、二酸化塩素ガス濃度を経時的に測定し、濃度積算値を算出した。濃度積算値は、8482.0(ppm・分)であった。その後、供試虫容器9aおよび供試虫容器9bにおける害虫の死亡率を算出し、防除効果を確認した。また、スチール板9pの腐食または変色の有無を目視で確認した。
(実施例2~実施例7、比較例1~2)
害虫の数、二酸化塩素ガス濃度および濃度の計測時間を表1に示される条件に変更した以外は、実施例1と同様の方法により、防除効果等を確認した。
害虫の数、二酸化塩素ガス濃度および濃度の計測時間を表1に示される条件に変更した以外は、実施例1と同様の方法により、防除効果等を確認した。
実施例1~7および比較例1~2において確認された防除効果等の結果を表1に示す。
表1に示されるように、最大濃度が20ppmを超えるように二酸化塩素ガスを使用した実施例1~7では、開放条件および準閉鎖条件のいずれにおいても供試虫の防除効果を示すことが確認できた。中でも、最大濃度が30ppm以上である実施例2~7では、半数以上の供試虫が防除された。特に、最大濃度が35ppm以上である実施例3~7では、約90~100%の供試虫が防除された。また、それぞれの実施例において、開放条件における供試虫の死亡率と準閉鎖条件における供試虫の死亡率に大きな差は見られなかった。そのため、これらの実施例によれば、二酸化塩素ガスは、狭隘な空間に対しても充分に進入することができ、防除効果を発揮できることが分かった。一方、最大濃度が20ppm未満である比較例1および比較例2では、濃度積算値に関係なく供試虫は防除されなかった。なお、実施例7において、スチール板9pの腐食または変色が僅かに有ったが、実施例1~6、比較例1~2では、そのような腐食または変色は見られなかった。
<二酸化塩素ガスの分解性(残留性)>
(実施例8)
図2に示される衛生管理装置1を用いて、二酸化塩素ガスの使用開始時(0分)から720分間、二酸化塩素ガス濃度を経時的に測定し、二酸化塩素ガスの分解性(残留性)について評価した。本実施例では、エアレーションポンプ4を用いて適宜二酸化塩素水をエアレーションすることにより二酸化塩素ガスを遊離させた。二酸化塩素ガスは、衛生管理装置1内の空間における最大濃度が41ppmであった。また、この最大濃度は使用開始時から43分後に達成された。
(実施例8)
図2に示される衛生管理装置1を用いて、二酸化塩素ガスの使用開始時(0分)から720分間、二酸化塩素ガス濃度を経時的に測定し、二酸化塩素ガスの分解性(残留性)について評価した。本実施例では、エアレーションポンプ4を用いて適宜二酸化塩素水をエアレーションすることにより二酸化塩素ガスを遊離させた。二酸化塩素ガスは、衛生管理装置1内の空間における最大濃度が41ppmであった。また、この最大濃度は使用開始時から43分後に達成された。
(実施例9)
二酸化塩素ガスの最大濃度が64ppmとなるように二酸化塩素水に溶存する二酸化塩素ガスの量や、エアレーションの条件を変更した以外は、実施例8と同様の方法により、二酸化塩素ガスの分解性(残留性)を確認した。なお、二酸化塩素ガスの最大濃度は使用開始時から35分後に達成された。
二酸化塩素ガスの最大濃度が64ppmとなるように二酸化塩素水に溶存する二酸化塩素ガスの量や、エアレーションの条件を変更した以外は、実施例8と同様の方法により、二酸化塩素ガスの分解性(残留性)を確認した。なお、二酸化塩素ガスの最大濃度は使用開始時から35分後に達成された。
実施例8および実施例9において測定された二酸化塩素ガス濃度のグラフを図3および図4にそれぞれ示す。
図3および図4に示されるように、二酸化塩素ガスは、使用開始時から徐々に濃度が上昇し、35分後(実施例9、図4参照)または43分後(実施例8、図3参照)に最大濃度を示した。その後、二酸化塩素ガスの濃度は低下し、使用開始時から620分後(実施例8、図3参照)および660分後(実施例9、図4参照)に0ppmとなった。その結果、二酸化塩素ガスは、狭隘な空間(準閉鎖条件)に潜む害虫に対しても充分な防除効果を示すだけでなく、その後、短時間のうちに完全に分解されることが分かった。
<従来の殺虫剤の防除効果>
(比較例3)
図5に示される衛生管理装置10を用いて、害虫(ヒラタチャタテ成虫)に対する防除効果を確認した。図5は、本比較例において使用される衛生管理装置10の模式図である。なお、図5において、図1の衛生管理装置1と同様の構成については同じ参照符号が付され、説明が適宜省略される。衛生管理装置10は、上部が開口した略直方体状のポリエチレン製容器2(内容積26L)と、常温揮散性の殺虫剤(ピレスロイド系殺虫剤、トランスフルトリン)を初期含浸量が200mgとなるよう含浸させた担体(図示せず)と、この担体を内部に備え、担体から揮散する殺虫剤をポリエチレン製容器2内の気相部分を拡散するための気相拡散ファン11とを含む。ポリエチレン製容器2の開口は、天蓋2aにより閉止され、ポリエチレン製容器2の内部空間(処理空間)は密閉される。衛生管理装置10の内部空間は、温度が20~22℃に調整され、湿度が65~70%RHに調整される。殺虫剤の初期揮散量は0.008mg/分であった。
(比較例3)
図5に示される衛生管理装置10を用いて、害虫(ヒラタチャタテ成虫)に対する防除効果を確認した。図5は、本比較例において使用される衛生管理装置10の模式図である。なお、図5において、図1の衛生管理装置1と同様の構成については同じ参照符号が付され、説明が適宜省略される。衛生管理装置10は、上部が開口した略直方体状のポリエチレン製容器2(内容積26L)と、常温揮散性の殺虫剤(ピレスロイド系殺虫剤、トランスフルトリン)を初期含浸量が200mgとなるよう含浸させた担体(図示せず)と、この担体を内部に備え、担体から揮散する殺虫剤をポリエチレン製容器2内の気相部分を拡散するための気相拡散ファン11とを含む。ポリエチレン製容器2の開口は、天蓋2aにより閉止され、ポリエチレン製容器2の内部空間(処理空間)は密閉される。衛生管理装置10の内部空間は、温度が20~22℃に調整され、湿度が65~70%RHに調整される。殺虫剤の初期揮散量は0.008mg/分であった。
ポリエチレン製容器2内には、ヒラタチャタテ成虫を22匹入れた供試虫容器9aおよび、20匹入れた供試虫容器9bを載置した。
本比較例では、360分間で累積揮散量が0.17mgとなるよう殺虫剤を揮散させた。その後、供試虫容器9aおよび供試虫容器9bにおける害虫の死亡率を算出し、防除効果を確認した。
(比較例4~5)
害虫の数、殺虫剤の初期含浸量、初期揮散量および累積揮散量を表2に示される条件に変更した以外は、比較例3と同様の方法により、防除効果を確認した。
害虫の数、殺虫剤の初期含浸量、初期揮散量および累積揮散量を表2に示される条件に変更した以外は、比較例3と同様の方法により、防除効果を確認した。
表2に示されるように、比較例3~5において使用された従来のピレスロイド系殺虫剤によれば、初期含浸量、初期揮散量、累積揮散量を増大させるに従って供試虫の死亡率を高めることができた。しかしながら、同一条件下では、開放条件に比べて準閉鎖条件では防除効果が著しく損なわれることが分かった。すなわち、従来の殺虫剤によれば、通気性の悪い狭隘な空間に潜む害虫を充分に防除できないことが分かった。
<従来の殺虫剤の分解性(残留性)>
(比較例6)
100ppmの殺虫剤(ピレスロイド系殺虫剤、トランスフルトリン)を含むエタノール溶液を、対象物(ポリプロピレン(PP)板(直径100mm)、ポリ袋(10cm角)、コピー紙(10cm角)および米粉1g)に均等に塗布し、風乾させた。その後、対象物を室温22~25℃、湿度50%RH、約540ルクスの室内に24時間載置し、24時間経過後の殺虫剤の残留量をガスクロマトグラフィーを用いて計測した。得られた残留量からそれぞれの対象物における殺虫剤の残留率を算出した。結果を表3に示す。
(比較例6)
100ppmの殺虫剤(ピレスロイド系殺虫剤、トランスフルトリン)を含むエタノール溶液を、対象物(ポリプロピレン(PP)板(直径100mm)、ポリ袋(10cm角)、コピー紙(10cm角)および米粉1g)に均等に塗布し、風乾させた。その後、対象物を室温22~25℃、湿度50%RH、約540ルクスの室内に24時間載置し、24時間経過後の殺虫剤の残留量をガスクロマトグラフィーを用いて計測した。得られた残留量からそれぞれの対象物における殺虫剤の残留率を算出した。結果を表3に示す。
表3に示されるように、いずれの対象物においても、24時間経過後に殺虫剤の残留が確認された。特に、ポリ袋や米粉では、多くの殺虫剤が残留することが分かった。そのため、従来の殺虫剤では、害虫を防除できたとしても、その後に殺虫剤が残留しやすく、たとえば衛生管理時に休止されていたラインを早期に再開することができず、業務効率が低下しやすいことが分かった。また、従来の殺虫剤では、薬剤の残留が問題となる製薬工場、食品工場等では使用できないことが確認された。
1、10 衛生管理装置
2 ポリエチレン製容器
2a 天蓋
3 ビーカー
4 エアレーションポンプ
5、11 気相拡散ファン
6 二酸化塩素ガスセンサー
7 二酸化塩素ガス濃度モニター
8 パーソナルコンピュータ
9a、9b 供試虫容器
9p スチール板
2 ポリエチレン製容器
2a 天蓋
3 ビーカー
4 エアレーションポンプ
5、11 気相拡散ファン
6 二酸化塩素ガスセンサー
7 二酸化塩素ガス濃度モニター
8 パーソナルコンピュータ
9a、9b 供試虫容器
9p スチール板
Claims (8)
- 衛生管理がされる所定の空間に対して、二酸化塩素ガスを、前記空間における濃度が20ppm以上となるように使用する、衛生管理方法。
- 前記二酸化塩素ガスは、濃度積算値が4300(ppm・分)以上となるように使用される、請求項1記載の衛生管理方法。
- 前記濃度積算値は、前記二酸化塩素ガスの使用開始時から600分以内に達成される、請求項2記載の衛生管理方法。
- 前記二酸化塩素ガスは、二酸化塩素が溶存された二酸化塩素水をエアレーションすることにより遊離され、遊離された前記二酸化塩素ガスが使用される、請求項1~3のいずれか1項に記載の衛生管理方法。
- 前記二酸化塩素ガスは、亜塩素酸ナトリウム水溶液と、塩酸、無機酸または有機酸との反応により生成され、生成された前記二酸化塩素ガスが使用される、請求項1~3のいずれか1項に記載の衛生管理方法。
- 前記衛生管理は、害虫の防除を目的とする衛生管理であり、
前記空間は、害虫が発生する空間である、請求項1~5のいずれか1項に記載の衛生管理方法。 - 前記害虫は、体長2mm以下の微小昆虫である、請求項6記載の衛生管理方法。
- 前記微小昆虫は、無翅のチャタテムシである、請求項7記載の衛生管理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016513656A JPWO2015159578A1 (ja) | 2014-04-16 | 2015-02-12 | 衛生管理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-084731 | 2014-04-16 | ||
JP2014084731 | 2014-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159578A1 true WO2015159578A1 (ja) | 2015-10-22 |
Family
ID=54323796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053798 WO2015159578A1 (ja) | 2014-04-16 | 2015-02-12 | 衛生管理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015159578A1 (ja) |
WO (1) | WO2015159578A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019004137A1 (ja) * | 2017-06-26 | 2019-01-03 | アース製薬株式会社 | 二酸化塩素ガスによる除染方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008016943A (ja) * | 2006-07-03 | 2008-01-24 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2012000235A (ja) * | 2010-06-16 | 2012-01-05 | Nipro Corp | 二酸化塩素ガス発生消臭剤 |
JP2012046375A (ja) * | 2010-08-26 | 2012-03-08 | Amatera:Kk | 二酸化塩素ガスの発生放出方法 |
JP2012528674A (ja) * | 2009-06-04 | 2012-11-15 | サブレ インテレクチュアル プロパティー ホールディングズ エルエルシー | ガス状二酸化塩素を用いた閉鎖空間の除染 |
JP5441285B1 (ja) * | 2013-04-17 | 2014-03-12 | 株式会社Fmi | 二酸化塩素ガス発生装置および医療器具用滅菌ボックス |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5204399B2 (ja) * | 2006-12-28 | 2013-06-05 | 株式会社ナチュラルネットワーク | 食品害虫忌避剤 |
-
2015
- 2015-02-12 JP JP2016513656A patent/JPWO2015159578A1/ja active Pending
- 2015-02-12 WO PCT/JP2015/053798 patent/WO2015159578A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008016943A (ja) * | 2006-07-03 | 2008-01-24 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2012528674A (ja) * | 2009-06-04 | 2012-11-15 | サブレ インテレクチュアル プロパティー ホールディングズ エルエルシー | ガス状二酸化塩素を用いた閉鎖空間の除染 |
JP2012000235A (ja) * | 2010-06-16 | 2012-01-05 | Nipro Corp | 二酸化塩素ガス発生消臭剤 |
JP2012046375A (ja) * | 2010-08-26 | 2012-03-08 | Amatera:Kk | 二酸化塩素ガスの発生放出方法 |
JP5441285B1 (ja) * | 2013-04-17 | 2014-03-12 | 株式会社Fmi | 二酸化塩素ガス発生装置および医療器具用滅菌ボックス |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019004137A1 (ja) * | 2017-06-26 | 2019-01-03 | アース製薬株式会社 | 二酸化塩素ガスによる除染方法 |
JPWO2019004137A1 (ja) * | 2017-06-26 | 2019-06-27 | アース製薬株式会社 | 二酸化塩素ガスによる除染方法 |
JP2019166408A (ja) * | 2017-06-26 | 2019-10-03 | アース製薬株式会社 | 二酸化塩素ガスによる除染方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015159578A1 (ja) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200306399A1 (en) | Systems for sequential delivery of aqueous compositions | |
CN111066808B (zh) | 一种瓷砖防蟑剂及其制备方法、瓷砖防蟑方法、防蟑瓷砖 | |
JP6663228B2 (ja) | 揮発性閉鎖空間防害虫剤 | |
JP6576643B2 (ja) | 揮発性閉鎖空間防害虫剤 | |
JP2015027982A (ja) | 害虫防除用エアゾール、及びこれを用いた害虫防除方法 | |
JP2014205625A (ja) | 殺虫・殺菌用噴霧剤 | |
WO2015159578A1 (ja) | 衛生管理方法 | |
WO2015105128A1 (ja) | トコジラミ駆除剤、トコジラミ駆除用組成物及びトコジラミ駆除方法 | |
JP2002020202A (ja) | 全量噴射型エアゾールの噴霧処理方法 | |
JP2022140536A (ja) | イソプロピルメチルフェノールの持続性向上方法及び定量噴射型除菌用エアゾール | |
JP2009073792A (ja) | ゴキブリ忌避剤およびゴキブリ忌避方法 | |
JP2015113295A (ja) | 防虫剤および防虫方法 | |
CN105530812B (zh) | 昆虫驱避剂和昆虫驱避方法 | |
JP2006257050A (ja) | ジョチュウギクと植物精油を有効成分とする害虫駆除用エアゾール | |
CN102239886B (zh) | 一种硫酰氟复配剂 | |
JP2007126376A (ja) | 屋内ダニ忌避活性増強剤 | |
JP2021075526A (ja) | 害虫、ダニ防除方法、及び害虫、ダニ防除用エアゾール | |
JP2007077140A (ja) | ジハロピリタジンを有効成分とする殺虫剤 | |
JP2000351702A (ja) | 燻煙殺虫剤組成物 | |
JP7437112B2 (ja) | 自噴式殺虫キット、自噴式殺虫剤組成物、自噴式殺虫装置及び殺虫方法 | |
JP3066671B2 (ja) | 屋内ダニ駆除組成物 | |
Koolaard | Effective aerosol treatment of mould mites and onion thrips in tissue culture | |
JP3053001U (ja) | オゾン害獣虫忌避装置 | |
JP2023064833A (ja) | 抗菌又は抗ウイルス処理方法 | |
JP2003226602A (ja) | 空間処理用殺虫剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780614 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016513656 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15780614 Country of ref document: EP Kind code of ref document: A1 |