WO2019004137A1 - 二酸化塩素ガスによる除染方法 - Google Patents

二酸化塩素ガスによる除染方法 Download PDF

Info

Publication number
WO2019004137A1
WO2019004137A1 PCT/JP2018/024027 JP2018024027W WO2019004137A1 WO 2019004137 A1 WO2019004137 A1 WO 2019004137A1 JP 2018024027 W JP2018024027 W JP 2018024027W WO 2019004137 A1 WO2019004137 A1 WO 2019004137A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
dioxide gas
ppm
concentration
space
Prior art date
Application number
PCT/JP2018/024027
Other languages
English (en)
French (fr)
Inventor
光良 鈴江
正造 筒井
広次 中尾
Original Assignee
アース製薬株式会社
アース環境サービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アース製薬株式会社, アース環境サービス株式会社 filed Critical アース製薬株式会社
Priority to JP2018548239A priority Critical patent/JP6628898B2/ja
Publication of WO2019004137A1 publication Critical patent/WO2019004137A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine

Definitions

  • the present invention relates to a method of decontaminating a closed space by vapor phase deposition of chlorine dioxide.
  • the decontamination method with formalin has been used as the mainstream of the decontamination method in pharmaceutical manufacturing facilities and the like because of the excellent permeability of formaldehyde.
  • regulations on the use of formalin have been tightened in various countries due to carcinogenic concerns, examination of formalin alternative drugs such as hydrogen peroxide and peracetic acid in decontamination work is in progress.
  • Chlorine dioxide gas has been approved as a fumigant sterilant by the Environmental Protection Agency (EPA) since 1988.
  • EPA Environmental Protection Agency
  • methods for sterilizing chlorine dioxide gas in biosafety cabinets that require environmental disinfection and aseptic manipulation are standardized by the American National Standards Institute (ANSI).
  • Patent Document 1 discloses a decontamination method by introducing chlorine dioxide gas having a predetermined CT value into an enclosed space under environmental control.
  • the present invention is intended for facilities requiring anti-bacterial and anti-fungal measures, and can decontaminate a large space safely and in a short time as compared to the prior art without corroding the contents in the space requiring decontamination. Provides a decontamination method.
  • the present inventors have conventionally introduced chlorine dioxide gas into an enclosed space under a predetermined amount of water vapor or less, without corroding the contents in the space. It has been found that decontamination can be carried out more safely and in a shorter time than in the present invention, and the present invention has been completed.
  • the present invention [1] A method for removing contaminants by vapor phase deposition of chlorine dioxide in an enclosed space, and reducing chemical corrosion of contents in the enclosed space: In the enclosed space under an environment with a water vapor content of 10 g / m 3 or less; Generating chlorine dioxide gas; Introducing chlorine dioxide gas into the enclosed space at a chlorine dioxide gas concentration of 10 to 230 ppm and a CT value of 50 to 2000 ppm ⁇ hour,
  • a method for removing contaminants by vapor phase deposition of chlorine dioxide in a closed space, and reducing chemical corrosion of contents in the closed space In the enclosed space under an environment with a water vapor content of 10 g / m 3 or less; Generating chlorine dioxide gas; Introducing chlorine dioxide gas into the enclosed space at a chlorine dioxide gas concentration of 20 to 230 ppm and a CT value of 60 to 2000 ppm ⁇ hour,
  • a process comprising introducing chlorine dioxide gas into a closed space at a chlorine dioxide gas concentration of 50 to 230 ppm effective for reducing a contaminant by 6 logs and a CT value of 400 to 2000 ppm ⁇ hour, [1] or [2] Described method,
  • [10] [1] or [2] including the step of introducing chlorine dioxide gas into the closed space with a chlorine dioxide gas concentration of 100 to 230 ppm effective for reducing the amount of contaminants by 6 logs and a CT value of 500 to 2000 ppm ⁇ hour Described method,
  • the present invention it is possible to decontaminate a large space in a shorter time in a safer time than in the prior art without corroding the contents in the space requiring decontamination for a facility requiring anti-bacterial and anti-fungal measures. It can be performed. Therefore, the present invention can be a very useful method particularly in decontamination in a pharmaceutical factory, food factory or the like where contamination of foreign matter is strictly limited.
  • Chlorine dioxide gas is characterized by being easily volatilized in an open system, and can be rapidly raised in concentration to a concentration effective for removing contaminants. Moreover, since it is easy to enter into a narrow space, it is possible to sufficiently exhibit the effect of removing contaminants present in the narrow space.
  • Chlorine dioxide is very excellent in bactericidal activity and is about 500,000 times that of anhydrous ethanol generally used as a disinfectant, about 100 times that of chlorhexidine gluconate, about 100 times that of benzalkonium chloride, and hypochlorite It has about 10 times the bactericidal activity of sodium acid. Chlorine dioxide, like chlorine, does not show a decrease in bactericidal activity due to an increase in pH value, and its effectiveness in a wide pH range has been recognized.
  • Chlorine dioxide has a broad antibacterial spectrum and exhibits excellent sterilization and bactericidal effects against contaminants such as bacteria, fungi and viruses.
  • bacteria such as bacteria, fungi and viruses.
  • viruses such as influenza virus, norovirus, HIV, hepatitis B virus, rotavirus and canine parvovirus has also been confirmed.
  • Chlorine dioxide is stable in terms of chemical structure, does not produce carcinogenic substances, and has advantages such as low toxicity to the human body and high safety.
  • Chlorine dioxide gas is decomposed in a relatively short time. Therefore, the time and effort of post-processing after decontamination processing can be saved.
  • the “closed space” does not have to be a completely sealed space, and may be a space filled with chlorine dioxide gas in the space. With such a space, the effects of the present invention can be sufficiently obtained.
  • “closed space” is not particularly limited, it is suitably implemented in production lines, working rooms, laboratory rooms, operating rooms, etc. in facilities such as pharmaceutical plants, food plants, hospitals, laboratories etc. More preferably, they are enclosed spaces.
  • the "closed space” can include a content selected from the group consisting of metallic objects, non-metallic objects, and combinations thereof.
  • the metallic body in the enclosed space can be formed from a metal selected from the group consisting of steel, aluminum, iron, copper, chromium, lead, and combinations thereof.
  • the non-metallic object can be formed from a material selected from the group consisting of wood, brick, stone, cinder concrete, ceramic tiles, ceiling tiles, carpets, textiles, and combinations thereof.
  • contents include, for example, production devices, manufacturing machines, air conditioners, dehumidifiers, measuring instruments, analysis devices, electronic devices (for example, telephone devices, computers, copiers and other electronic office devices), lighting devices Sound equipment, internal building materials and piping, laboratory instruments, surgical tools, tools, and other equipment.
  • production devices for example, production devices, manufacturing machines, air conditioners, dehumidifiers, measuring instruments, analysis devices, electronic devices (for example, telephone devices, computers, copiers and other electronic office devices), lighting devices Sound equipment, internal building materials and piping, laboratory instruments, surgical tools, tools, and other equipment.
  • the "contaminant” in the present embodiment examples include bacteria, fungi, viruses and the like.
  • the "method for removing contaminants” in the present embodiment means a method for disinfecting, sterilizing and / or sterilizing the contaminants.
  • a "bacteria” is a single-celled microorganism that is larger than a virus and has a stiff cell wall.
  • bacteria include sporulation bacteria such as botulinum, welsch, cereus, Bacillus subtilis, tetanus bacteria, anthrax, staphylococci, E. coli, salmonella, legionella, Pseudomonas aeruginosa, cholera, tuberculosis, Streptococcus, Vibrio parahaemolyticus and the like can be mentioned.
  • a high removal effect is exerted against the spore forming bacteria exemplified above, which are highly resistant to drying, high temperature, chemicals and the like and difficult to remove.
  • the spore forming bacteria include Bacillus (Bacillus), Clostridium (Clostridium) and the like.
  • fungus is a generic term of fungi, excluding bacteria and molds (thin molds), and includes molds, mushrooms, yeasts and the like.
  • viruses refers to a construct in which the central nucleic acid (either DNA or RNA) has a simple structure enclosed in a shell called a capsid.
  • examples of the virus include Ebola virus, Norovirus, rotavirus, influenza virus, adenovirus, coronavirus, measles virus, rubella virus, hepatitis virus, herpes virus, HIV and the like.
  • 3 log reduction, 4 log reduction, 5 log reduction and 6 log reduction are the order number of the number of bacteria remaining by the sterilization operation relative to the initial number of bacteria carried on the biological indicator (BI), respectively. It is an index indicating whether the Specifically, for example, when the initial number of bacteria is 2.8 ⁇ 10 6 cfu, 3 log reduction is 2.8 ⁇ 10 3 cfu or less, 4 log reduction is 2.8 ⁇ 10 2 cfu or less, and 5 log reduction is the number of bacteria Is 2.8 ⁇ 10 6 cfu or less, and 6 log reduction indicates that the number of bacteria is 2.8 cfu or less.
  • fecting refers to the process of cleaning the enclosed space and the contents of the enclosed space, and generally refers to a 3-log reduction of viable bacteria, ie, a reduction of 99.9% or more.
  • fecting refers to a closed space and a process of removing pathogens on the contents of the closed space or inactivating them, for example, killing or harming pathogens and / or bacteria.
  • a process generally a 4 log reduction of viable bacteria, ie a reduction of 99.99% or more.
  • “sterilize” refers to a process for completely removing the viability of microorganisms, such as killing all non-pathogenic and pathogenic spores, fungi, bacteria, and viruses. Refers to a 6 log reduction of viable bacteria, ie a reduction of 99.9999% or more. This is statistically understood by the person skilled in the art as destroying all the microorganisms and their spores, ie with a viable viability of zero.
  • the present embodiment is characterized in that the amount of water vapor in the closed space to be decontaminated is adjusted to 10 g / m 3 or less. Even if the relative humidity in the enclosed space is low, when the amount of water vapor is 10 g / m 3 or more, the risk of corrosion is particularly high for iron, aluminum, copper, etc. that are not surface-treated, The room management by relative humidity (for example, patent document 1) conventionally implemented at the time of decontamination was inadequate to prevent corrosion of the contents. Further, by setting the amount of water vapor in the enclosed space to 10 g / m 3 or less, there is an advantage that the diffusion of chlorine dioxide gas becomes better.
  • the effects of the present invention can be sufficiently obtained.
  • the lower limit of the amount of water vapor in the enclosed space is not particularly limited, and, for example, 0.1 g / m 3 or more, 0.5 g / m 3 or more, 1.0 g / m 3 or more, 2.0 g / m 3 or more, 3 .0g / m 3 or more, it may be 4.0 g / m 3 or more.
  • the temperature in the enclosed space (dry bulb temperature) is preferably adjusted to 31 ° C. or less. Within this range, the amount of water vapor is always 10 g / m 3 or less at relative humidity of 31% or less (see FIG. 5).
  • the room temperature in the enclosed space is preferably 5 to 31 ° C., more preferably 16 to 30 ° C., still more preferably 18 to 28 ° C., particularly preferably 20 to 26 ° C.
  • the relative humidity in the enclosed space is preferably 60% or less, more preferably 45% or less, more preferably 37% or less, more preferably 31% or less, and still more preferably 30% or less. And particularly preferably 28% or less.
  • the lower limit in particular of relative humidity in enclosed space is not restricted, for example, 0.1% or more, 0.5% or more, 1.0% or more, 5.0% or more, 10% or more, 15% or more, 20 % Or more.
  • the amount of water vapor can be determined by substituting the water vapor partial pressure (hPa) and the dry bulb temperature (° C.) into the equation of state of gas.
  • the water vapor partial pressure (hPa) can be determined by multiplying the saturated water vapor pressure (hPa) by the relative humidity (%).
  • the saturated water vapor pressure (hPa) can be determined by substituting the dry bulb temperature (° C.) into the equation of Telens (1930).
  • FIG. 5 shows a water vapor amount conversion table obtained from relative humidity (%) and dry bulb temperature (° C.).
  • the air conditioner and / or the dehumidifier it is not always necessary to operate the air conditioner and / or the dehumidifier during the decontamination if the amount of water vapor in the enclosed space is controlled to be 10 g / m 3 or less.
  • the generation source for generating chlorine dioxide gas is not particularly limited, and examples thereof include chlorine dioxide water in which chlorine dioxide is dissolved. Dissolved chlorine dioxide gas is liberated from such chlorine dioxide water.
  • the concentration of chlorine dioxide dissolved in chlorine dioxide water is not particularly limited, and is appropriately adjusted according to the volume of the space to be sanitized and the target chlorine dioxide gas concentration.
  • Chlorine dioxide may be dissolved to be, for example, 0.01 to 0.8% by mass.
  • release of chlorine dioxide gas may be promoted by adopting a method of feeding air into the solution (aeration), a method of reducing pressure, a method of blowing air, or the like with respect to chlorine dioxide water.
  • a generation source for generating chlorine dioxide gas for example, a preparation prepared by formulating an aqueous solution of sodium chlorite and chlorine, an inorganic acid or an organic acid can be mentioned.
  • an inorganic acid hydrochloric acid, sulfuric acid and the like are exemplified.
  • organic acids include citric acid, lactic acid, pyruvic acid, malic acid, tartaric acid, gluconic acid, glycolic acid, fumaric acid, malonic acid, maleic acid, oxalic acid, succinic acid, acrylic acid and the like.
  • Chlorine dioxide gas is conveniently produced by the reaction of an aqueous solution of sodium chlorite with these chlorine, inorganic acid or organic acid.
  • these simple reaction systems are easy to be formulated and easy for users to use because only two kinds of raw materials are appropriately mixed.
  • the preparation include a spray, a smoking agent, a gel, a sheet, a stick and the like adjusted so that sodium chlorite can appropriately react with chlorine, an inorganic acid or an organic acid.
  • the blending amount of sodium chlorite is less than 1% by mass, the amount of the aqueous sodium chlorite solution required is increased, and the convenience tends to decrease.
  • the blending amount of sodium chlorite exceeds 25% by mass, the substance corresponds to a toxic substance specified in the Toxics and Substances Control Act, the handling is limited, and formulation tends to be difficult.
  • the concentration of chlorine dioxide gas introduced into the closed space is preferably 10 ppm or more, more preferably 15 ppm or more, and still more preferably 20 ppm or more, from the viewpoint of enhancing the effect of removing contaminants. Moreover, it is preferable that it is 230 ppm or less from a viewpoint of preventing corrosion of the content by the gaseous-phase addition of chlorine dioxide.
  • FIG. 2 and FIG. 3 are schematic graphs showing the time course of chlorine dioxide gas concentration in high concentration exposure tests of 80 ppm or more and low concentration exposure tests of less than 80 ppm, respectively.
  • the vertical axis represents chlorine dioxide gas concentration (ppm), and the horizontal axis represents time (hour). That is, for example, when released from a source that generates chlorine dioxide gas, the concentration in the space is gradually increased with the passage of time. After that, the concentration of chlorine dioxide gas decreases after exhibiting the maximum concentration by the decomposition amount exceeding the generation amount.
  • chlorine dioxide gas exerts a decontamination effect suitably by being used so that the maximum concentration becomes a predetermined concentration (for example, 10 ppm) or more in the process of decontamination.
  • the reaction amounts of the two types of reaction liquids are automatically adjusted by the discharge amount of the chemical solution pump, and necessary chlorine dioxide gas is supplied to the closed space.
  • the concentration can be increased to a predetermined chlorine dioxide target concentration, and thereafter, it can be automatically controlled so as to obtain a substantially constant chlorine dioxide gas concentration.
  • the “CT value” is an integral value of “concentration of chlorine dioxide gas (ppm)” and “time (hour)”.
  • the CT value is represented as the area of the region defined by the horizontal axis and the graph. It may be expressed as a concentration integrated value.
  • FIG. 6 is a graph showing the relationship between the chlorine dioxide gas CT value and the number of remaining bacteria in Examples 1 to 7.
  • CT values achieving 3 log and 4 log under low concentration condition tend to be lower than CT values achieving 3 log and 4 log under high concentration condition, and 5 log under high concentration condition It can be seen that the CT values achieving 6 log and 6 log tend to be lower than those achieving 5 log and 6 log in the condition of low concentration exposure.
  • chlorine dioxide gas concentration is preferably 10 to 100 ppm; more preferably 15 to 100 ppm; more preferably 20 to 100 ppm; still more preferably 30 to 80 ppm; particularly 30 to 60 ppm preferable.
  • the CT value is preferably 50 to 150 ppm ⁇ hour; 55 to 150 ppm ⁇ hour is more preferable; 60 to 150 ppm ⁇ hour is more preferable; 90 to 120 ppm ⁇ hour is further preferable; 100 to 110 ppm ⁇ hour is particularly preferable.
  • the chlorine dioxide gas concentration is preferably 20 to 150 ppm; more preferably 25 to 150 ppm; more preferably 50 to 150 ppm; still more preferably 50 to 100 ppm; particularly preferably 50 to 80 ppm.
  • the CT value is preferably 100 to 330 ppm ⁇ hour; 110 to 330 ppm ⁇ hour is more preferable; 150 to 330 ppm ⁇ hour is more preferable; 180 to 250 ppm ⁇ hour is further preferable; 190 to 240 ppm ⁇ hour is particularly preferable.
  • the chlorine dioxide gas concentration is preferably 40 to 200 ppm; more preferably 60 to 200 ppm; more preferably 80 to 200 ppm; still more preferably 80 to 180 ppm; particularly preferably 100 to 150 ppm.
  • the CT value is preferably 130 to 600 ppm ⁇ hour; 200 to 600 ppm ⁇ hour is more preferable; 300 to 600 ppm ⁇ hour is more preferable; 330 to 400 ppm ⁇ hour is further preferable; 350 to 380 ppm ⁇ hour is particularly preferable.
  • the chlorine dioxide gas concentration is preferably 50 to 230 ppm; more preferably 70 to 230 ppm; more preferably 100 to 230 ppm; still more preferably 130 to 200 ppm; particularly preferably 160 to 190 ppm.
  • the CT value is preferably 400 to 2000 ppm ⁇ hour; 450 to 2000 ppm ⁇ hour is more preferable; 500 to 2000 ppm ⁇ hour is more preferable; 550 to 1500 ppm ⁇ hour is further preferable; 580 to 1000 ppm ⁇ hour is particularly preferable.
  • the predetermined CT value may be achieved in the time from the start of use of chlorine dioxide gas to the decomposition of chlorine dioxide gas.
  • the predetermined CT value is preferably achieved within 4 hours from the start of use of chlorine dioxide gas, more preferably within 3 hours, further preferably within 2 hours, 1 It is particularly preferred to be achieved within .5 hours. Since the required time for decontamination can be shortened by achieving a predetermined CT value in a short time, lines (for example, pharmaceutical products) which have been suspended for decontamination in various facilities (for example, pharmaceutical plants) The production line can be resumed early, and the decline in business efficiency can be suppressed.
  • the maximum concentration of chlorine dioxide gas in a predetermined space is preferably achieved within 60 minutes from the start of use of chlorine dioxide gas, and more preferably within 40 minutes. It is further preferred that this be achieved within 30 minutes.
  • the maximum concentration is reached in a short time, the decontamination efficiency becomes high, and the loss due to the concentration decrease rate due to decomposition decreases with respect to the concentration increase rate.
  • the concentration of chlorine dioxide gas in the space decreases after exhibiting the maximum concentration (see, for example, FIG. 3). Therefore, by showing the maximum concentration as early as 60 minutes, the required time to less than 0.1 ppm, which is the concentration at which humans can enter, for example, is shortened.
  • the lines e.g., pharmaceutical product production lines
  • Teflon (registered trademark) tube 11 (outside diameter ⁇ 6 mm ⁇ length 20 m) connected to the suction device of chlorine dioxide gas concentration meter 3 (Earth Pharmaceutical Co., Ltd. CDM-5) ) was fixed in place in the room.
  • Set the chlorine dioxide gas generator 1 (CD-700 manufactured by Earth Pharmaceutical Co., Ltd.) and chlorine dioxide gas concentration measuring devices 2 and 3 in the machine installation room outside the space, and make a predetermined amount to the aseptic room through the gas supply piping 9 Chlorine dioxide gas was supplied.
  • the chlorine dioxide gas diluted in space was recycled to the gas generator through the pipe 10 for reducing the indoor air.
  • the reaction volume of the two types of reaction liquids 8a and 8b (25% sodium chlorite water and 9% hydrochloric acid) is automatically adjusted by the discharge rate of the chemical solution pump to the target concentration of chlorine dioxide gas, and the necessary chlorine dioxide gas is aseptically compatible It was supplied to the room.
  • the measurement interval of indoor concentration was once every two minutes.
  • the target concentration was increased over about 30 minutes, and thereafter, automatic control was performed to obtain a substantially constant chlorine dioxide gas concentration.
  • the chlorine dioxide gas concentration was measured over time to calculate a CT value.
  • the activated carbon adsorption type chlorine dioxide gas recovery machine 4 was operated to remove the chlorine dioxide gas in the space that became unnecessary.
  • the circulator 6 was operated at all times.
  • the biological indicator 7 placed in the enclosed space is sampled every time passage, removed from the wrapping paper from the packaging paper with a sterile tweezers in a clean bench, immersed in 2 mL of physiological saline and added with 3 glass beads, The BI was ground for 20-30 minutes with a Bortex mixer. The whole pulverized solution obtained was mixed with SCDLP agar medium, and cultured at about 37 ° C. for about 2 days in an incubator to count the number of generated colonies.
  • a chlorine dioxide gas concentration meter manufactured by ATi Co. can be used as a standard concentration meter for chlorine dioxide gas.
  • the concentration calibration method with the chlorine dioxide gas concentration measurement device CDM-5 manufactured by Earth Pharmaceutical Co., Ltd. is as follows.
  • chlorine dioxide gas was collected from chlorine dioxide gas generator 1, and 10 mL of chlorine dioxide gas was collected in a syringe shielded from light by aluminum foil.
  • the collected chlorine dioxide gas was injected by a syringe into a separate container containing 2 mL of a 50 ppm aqueous solution of ethylenediamine, and the mixture was carefully shaken and mixed so that the chlorine dioxide gas was dissolved in the aqueous ethylene diamine solution.
  • the mixed solution was used as a sample solution, and the reaction product of ethylenediamine and chlorine dioxide was quantitatively analyzed by ion chromatography, and the amount of reacted chlorine dioxide gas was calculated from the obtained quantitative result.
  • a calibration curve was prepared from the indicated values of the chlorine dioxide gas concentration meter manufactured by ATi and the quantitative results of chlorine dioxide gas. Based on a chlorine dioxide gas concentration meter manufactured by ATi, a correction coefficient was previously input to a program of the meter such that the concentration displayed on the monitor of the meter was equal to the true chlorine dioxide gas concentration.
  • the closed space 12 was exposed to a high concentration of chlorine dioxide gas of 80 ppm or more.
  • the air conditioner 13 and the dehumidifier 5 adjusted the temperature to 19 to 26 ° C., the amount of steam to 5 to 10 g / m 3 , and the relative humidity to 25 to 42%.
  • Five biological indicators 7 were collected at each predetermined exposure time, and the number of remaining bacteria was evaluated (Table 1).
  • the air conditioner 13 and the dehumidifier 5 adjusted the temperature to 19 to 26 ° C., the amount of water vapor to 5 to 10 g / m 3 , and the relative humidity to 25 to 42%.
  • the chlorine dioxide gas in the space that became unnecessary was recovered by operating the activated carbon adsorption type chlorine dioxide gas recovery device 4. After about 43 minutes, the chlorine dioxide concentration in the enclosed space 12 became 0 ppm, and the recovery of chlorine dioxide gas ended.
  • the rate of rise and diffusion of space supply of chlorine dioxide gas can be done quickly; and recovery of chlorine dioxide gas is different from formalin, and re-transpiration due to adsorption on materials and adsorption It was confirmed that the gas concentration in the space was 0 ppm in a short time, and that the operator could safely enter the closed space after decontamination.
  • Example 33 Chlorine dioxide gas was exposed twice under the following conditions. The total CT value of 2 times was 2280 ppm ⁇ hour.
  • the average room temperature, the average relative humidity, and the average amount of water vapor during introduction of chlorine dioxide gas are as follows. First time Average temperature: 20 ° C, Average relative humidity: 41%, Average amount of water vapor: 7.10 g / m 3 Second time Average temperature: 22 ° C, Average relative humidity: 41%, Average amount of water vapor: 7.97g / m 3 No rust was observed in the iron bearings after the second exposure, and it was confirmed that there was no effect on the shaft rotation.
  • the present invention it is possible to decontaminate a large space in a safer and shorter time than in the prior art without corroding the contents in the space requiring decontamination for a facility requiring anti-bacterial and anti-fungal measures. It can be performed. Therefore, the present invention can be a very useful method particularly in decontamination in a pharmaceutical factory, food factory or the like where contamination of foreign matter is strictly limited.
  • Chlorine dioxide gas generator 2 Chlorine dioxide gas concentration meter (measurement unit) 3: Chlorine dioxide gas concentration measuring instrument (suction part) 4: Chlorine dioxide gas recovery machine 5: Dehumidifier 6: Circulator 7: Biological indicator (BI) 8a, 8b: 2 types of reaction liquid (sodium chlorite water and hydrochloric acid) 9: gas supply piping 10: gas suction piping 11: Teflon (registered trademark) tube 12 for gas suction: closed space 13: air conditioner 14: temperature humidity indicator

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

閉鎖空間内での二酸化塩素の気相付与によって汚染物質を除去し、かつ前記閉鎖空間内にある内容物の化学腐食を低減する方法であって、水蒸気量10g/m3以下の環境下とした前記閉鎖空間において、二酸化塩素ガスを発生させる工程と、二酸化塩素ガス濃度10~230ppm、かつCT値50~2000ppm・時で二酸化塩素ガスを前記閉鎖空間へ導入する工程とを含む方法。

Description

二酸化塩素ガスによる除染方法
 本発明は、二酸化塩素の気相付与による閉鎖空間の除染方法に関する。
 ホルマリンによる除染方法は、ホルムアルデヒドの優れた浸透力から医薬品製造施設等における除染方法の主流として活用されてきた。しかし、発がん性の懸念から各国においてホルマリンの使用規制が強化されたため、除染作業における過酸化水素や過酢酸等のホルマリン代替薬品の検討が進んでいる。
 過酸化水素は、凝縮による生産装置や内装建材の腐食が懸念されること、また残留ガスの除去に時間がかかることから、特に異物の混入が厳しく制限される無菌室の除染においては使用が困難となる場合がある。また、過酢酸製剤は通常霧状で使用されることから、気中拡散性に劣り、広い空間の除染には適していないという問題がある。
 二酸化塩素ガスは、アメリカ環境保護局(Environmental Protection Agency,EPA)において燻蒸の滅菌剤として1988年より認可されている。また、環境消毒や無菌操作が求められるバイオセイフティキャビネット内を二酸化塩素ガスで滅菌する方法は、米国国家規格協会(ANSI)によって規格化されている。
 特許文献1には、閉鎖空間に環境制御下で所定のCT値の二酸化塩素ガスを導入することによる除染方法が開示されている。
特許第5823957号公報
 本発明は、防菌、防カビ対策が必要な施設を対象として、除染を必要とする空間内の内容物を腐食することなく、従来に比べ安全かつ短時間に大空間の除染が可能な除染方法を提供するものである。
 本発明者らは、上記課題解決のため鋭意検討した結果、閉鎖空間に、所定の水蒸気量以下の環境下、二酸化塩素ガスを導入することにより、空間内の内容物を腐食することなく、従来に比べ安全かつ短時間に除染を実施できることを見出し、本発明を完成させた。
 すなわち、本発明は、
〔1〕閉鎖空間内での二酸化塩素の気相付与によって汚染物質を除去し、かつ前記閉鎖空間内にある内容物の化学腐食を低減する方法であって:
水蒸気量10g/m3以下の環境下とした前記閉鎖空間において;
二酸化塩素ガスを発生させる工程と;
二酸化塩素ガス濃度10~230ppm、かつCT値50~2000ppm・時で二酸化塩素ガスを前記閉鎖空間へ導入する工程とを含む方法、
〔2〕閉鎖空間内での二酸化塩素の気相付与によって汚染物質を除去し、かつ前記閉鎖空間内にある内容物の化学腐食を低減する方法であって:
水蒸気量10g/m3以下の環境下とした前記閉鎖空間において;
二酸化塩素ガスを発生させる工程と;
二酸化塩素ガス濃度20~230ppm、かつCT値60~2000ppm・時で二酸化塩素ガスを前記閉鎖空間へ導入する工程とを含む、〔1〕記載の方法、
〔3〕汚染物質を3log低減するのに有効な二酸化塩素ガス濃度10~100ppm、かつCT値50~200ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔4〕汚染物質を3log低減するのに有効な二酸化塩素ガス濃度20~100ppm、かつCT値60~150ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔5〕汚染物質を4log低減するのに有効な二酸化塩素ガス濃度20~150ppm、かつCT値100~330ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔6〕汚染物質を4log低減するのに有効な二酸化塩素ガス濃度50~150ppm、かつCT値150~330ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔7〕汚染物質を5log低減するのに有効な二酸化塩素ガス濃度40~200ppm、かつCT値130~600ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔8〕汚染物質を5log低減するのに有効な二酸化塩素ガス濃度80~200ppm、かつCT値300~600ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔9〕汚染物質を6log低減するのに有効な二酸化塩素ガス濃度50~230ppm、かつCT値400~2000ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔10〕汚染物質を6log低減するのに有効な二酸化塩素ガス濃度100~230ppm、かつCT値500~2000ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、〔1〕または〔2〕記載の方法、
〔11〕閉鎖空間内の相対湿度が60%以下である、〔1〕~〔10〕のいずれかに記載の方法、
〔12〕閉鎖空間内の相対湿度が45%以下である、〔1〕~〔10〕のいずれかに記載の方法、
〔13〕汚染物質が、細菌、真菌、およびウイルスからなる群から選ばれる1種以上である、〔1〕~〔12〕のいずれかに記載の方法、
〔14〕汚染物質が、芽胞形成菌である、〔1〕~〔12〕のいずれかに記載の方法、に関する。
 本発明によれば、防菌、防カビ対策が必要な施設を対象として、除染を必要とする空間内の内容物を腐食することなく、従来に比べ安全で短時間に大空間の除染を行うことができる。したがって、本発明は、特に異物の混入が厳しく制限される医薬品工場や食品工場等における除染の際に非常に有用な手法となり得る。
本実施形態において使用される除染システムの模式図である。 高濃度曝露試験における二酸化塩素ガス濃度の経時変化を表す概略的なグラフである。 低濃度曝露試験における二酸化塩素ガス濃度の経時変化を表す概略的なグラフである。 実施例32の、閉鎖空間内の二酸化塩素ガス濃度の経時変化を示すグラフである。 相対湿度と乾球温度より求めた水蒸気量換算表である。 実施例1~7の二酸化塩素ガスCT値と残存菌数との関係を示すグラフである。
 以下、本発明の構成について詳述する。
<二酸化塩素ガスの特徴>
 二酸化塩素ガスは、解放系では揮散しやすいという特徴を有し、汚染物質の除去に有効な濃度まで迅速に濃度を上昇させることができる。また、狭隘な空間にも進入しやすいことから、狭隘な空間に存在する汚染物質に対しても十分に除去効果を発揮することができる。
 二酸化塩素は、殺菌力が非常に優れており、殺菌消毒液として一般に使用されている無水エタノールの約50万倍、グルコン酸クロルヘキシジンの約100倍、塩化ベンザルコニウムの約100倍、次亜塩素酸ナトリウムの約10倍の殺菌力を有している。また、二酸化塩素は、塩素のようにpH値の上昇による殺菌力の低下が見られず、広範囲なpH領域での有効性が認められている。
 二酸化塩素は、抗菌スペクトルが幅広く、細菌、真菌、ウイルス等の汚染物質に対し優れた滅菌および殺菌効果を示す。例えば、大腸菌やサルモネラ菌の他、レジオネラ菌、緑膿菌、腸炎ビブリオ、乳酸球菌、乳酸桿菌、セレウス菌、クロストリジウム、カンピロバクター、クラドスポリウム、フザリウム、クモノスカビ、青カビ、白癬菌等に対する殺菌試験でその効果が確認されている。また、インフルエンザウイルス、ノロウイルス、HIV、B型肝炎ウイルス、ロタウイルス、イヌパルボウイルス等のウイルスに対する不活化も確認されている。
 二酸化塩素は化学構造的に安定であり、発がん性物質を生成せず、かつ人体に対する毒性も少なく安全性が高い等の利点もある。
 二酸化塩素ガスは、比較的短時間で分解される。そのため、除染処理後の後処理の手間や労力が省かれる。
<汚染物質の除去について>
 本実施形態に係る除染方法によれば、閉鎖空間内での二酸化塩素の気相付与によって汚染物質を短時間で効果的に除去することができる。
 本実施形態において「閉鎖空間」とは、完全に密閉された空間である必要はなく、二酸化塩素ガスが空間内において充満されるような空間であればよい。このような空間であれば、本発明の効果を十分に得ることができる。「閉鎖空間」は特に制限されないが、異物の混入が厳しく制限される、医薬品工場、食品工場、病院、研究所等の施設おける製造ライン、作業室、実験室、手術室等において好適に実施され、これらは密閉された空間であることがより好ましい。
 「閉鎖空間」には、金属製物体、非金属製物体、およびそれらの組み合わせからなる群から選択される内容物を含むことができる。閉鎖空間内の金属製物体は、鋼、アルミニウム、鉄、銅、クロム、鉛、およびそれらの組み合わせからなる群から選択される金属から形成されることができる。非金属製物体は、木材、れんが、石材、シンダーコンクリート、セラミックタイル、天井タイル、カーペット、織物、およびそれらの組み合わせからなる群から選択される材料から形成されることができる。内容物の具体例としては、例えば、生産装置、製造機械、空調機、除湿機、計測器、分析機器、電子機器(例えば、電話機器、コンピューター、コピー機および他の電子オフィス機器)、照明機器、音響機器、内部建材および配管、実験器具、手術用具、工具、その他の備品等が挙げられる。
 本実施形態における「汚染物質」としては、例えば、細菌、真菌、ウイルス等が挙げられる。また、本実施形態における「汚染物質の除去方法」とは、前記汚染物質を、消毒、殺菌および/または滅菌する方法を意味する。
 「細菌」とは、ウイルスよりも大きく、硬い細胞壁を持つ単細胞の微生物である。細菌としては、例えば、ボツリヌス菌、ウェルシュ菌、セレウス菌、枯草菌、破傷風菌、炭疽菌等の芽胞形成菌や、ブドウ球菌、大腸菌、サルモネラ菌、レジオネラ菌、緑膿菌、コレラ菌、結核菌、レンサ球菌、腸炎ビブリオ等が挙げられる。本実施形態においては、乾燥、高温、薬品等に強い抵抗性を示し除去が困難とされる、前記に例示される芽胞形成菌に対しても高い除去効果を発揮する。芽胞形成菌としては、例えば、バシラス属(Bacillus)、クロストリジウム属(Clostridium)等が挙げられる。
 「真菌」とは、菌類のうち、細菌および変形菌(粘菌)を除くものの総称であって、カビ類、キノコ類、酵母類等が含まれる。
 「ウイルス」とは、中心の核酸(DNAもしくはRNAのいずれか)がカプシドと呼ばれる殻に包まれた単純な構造を有している構造体のことをいう。ウイルスとしては、例えば、エボラウイルス、ノロウイルス、ロタウイルス、インフルエンザウイルス、アデノウイルス、コロナウイルス、麻疹ウイルス、風疹ウイルス、肝炎ウイルス、ヘルペスウイルス、HIV等が挙げられる。
 本実施形態において、3log低減、4log低減、5log低減、6log低減とは、それぞれ、バイオロジカルインジケーター(BI)に担持された初期菌数に対して、殺菌操作により残存した菌数がどの位のオーダーまで低減したかを表す指標である。具体的には、例えば、初期菌数が2.8×106 c.f.u.の場合、3log低減は菌数が2.8×103 c.f.u.以下、4log低減は菌数が2.8×102 c.f.u.以下、5log低減は菌数が2.8×10 c.f.u.以下、6log低減は菌数が2.8c.f.u.以下となることを示す。
 本実施形態において「消毒する」とは、閉鎖空間および閉鎖空間の内容物を清浄化するプロセスを指し、一般的には、生菌の3log低減、すなわち99.9%以上の減少を指す。
 本実施形態において「殺菌する」とは、閉鎖空間および閉鎖空間の内容物上にある病原体を除去するまたはこれらを不活性化させるプロセス、例えば、病原菌および/または細菌を殺作用するまたは無害化するプロセスを指し、一般的には、生菌の4log低減、すなわち99.99%以上の減少を指す。
 本実施形態において「滅菌する」とは、微生物の生存能力を完全に除去するプロセス、例えば、非病原性および病原性の胞子、真菌、細菌、およびウイルスを全て殺作用することを指し、一般的には、生菌の6log低減、すなわち99.9999%以上の減少を指す。これは、統計学的には、微生物およびそれらの胞子を全て破壊すること、すなわち生菌生存率が0であるものと当業者に理解される。
<環境条件の設定>
 本実施形態では、除染される閉鎖空間内の水蒸気量が10g/m3以下に調整されることを特徴とする。閉鎖空間内の相対湿度が低い場合であっても、水蒸気量が10g/m3以上となった場合、特に表面処理が施されていない鉄、アルミニウム、銅などは腐食の発生リスクが高くなり、従来から除染時に実施されている相対湿度による室内管理(例えば、特許文献1)では、内容物の腐食を防止するのに不十分であった。また、閉鎖空間内の水蒸気量を10g/m3以下とすることにより、二酸化塩素ガスの拡散がより良好となる利点がある。閉鎖空間内の水蒸気量が、二酸化塩素発生時から除染終了時まで10g/m3以下に維持されていれば、本発明の効果を十分に得ることができる。好ましくは9.5g/m3以下であり、より好ましくは9.0g/m3以下であり、さらに好ましくは8.5g/m3以下であり、特に好ましくは8.0g/m3以下である。閉鎖空間内の水蒸気量の下限値は特に制限されないが、例えば、0.1g/m3以上、0.5g/m3以上、1.0g/m3以上、2.0g/m3以上、3.0g/m3以上、4.0g/m3以上とすることができる。
 閉鎖空間内の温度(乾球温度)は、31℃以下に調整されることが好ましい。この範囲内であれば、相対湿度が31%以下において常に水蒸気量が10g/m3以下となる(図5参照)。閉鎖空間内の室温は、好ましくは5~31℃であり、より好ましくは16~30℃であり、さらに好ましくは18~28℃であり、特に好ましくは20~26℃である。
 閉鎖空間内の相対湿度は、好ましくは60%以下であり、より好ましくは45%以下であり、より好ましくは37%以下であり、より好ましくは31%以下であり、さらに好ましくは30%以下であり、特に好ましくは28%以下である。閉鎖空間内の相対湿度の下限値は特に制限されないが、例えば、0.1%以上、0.5%以上、1.0%以上、5.0%以上、10%以上、15%以上、20%以上とすることができる。
 水蒸気量(g/m3)は、気体の状態方程式に水蒸気分圧(hPa)および乾球温度(℃)を代入することにより求めることができる。水蒸気分圧(hPa)は、飽和水蒸気圧(hPa)に相対湿度(%)を掛けることにより求めることができる。飽和水蒸気圧(hPa)は、Telens(1930)の式に乾球温度(℃)を代入することにより求めることができる。図5に、相対湿度(%)と乾球温度(℃)より求めた水蒸気量換算表を示す。
 なお、本実施形態では、閉鎖空間内の水蒸気量が10g/m3以下であることが管理されていれば、除染中において空調機および/または除湿機を稼働することを必ずしも要しない。
<二酸化塩素の発生>
 二酸化塩素ガスを発生させる発生源としては特に限定されないが、例えば、二酸化塩素が溶存された二酸化塩素水が挙げられる。このような二酸化塩素水からは、溶存された二酸化塩素ガスが遊離される。二酸化塩素水に溶存される二酸化塩素の濃度としては特に限定されず、衛生管理すべき空間の容積や、目的とする二酸化塩素ガス濃度に応じて適宜調整される。二酸化塩素は、例えば0.01~0.8質量%となるように溶存されていればよい。本実施形態では、二酸化塩素水に対して、溶液中に空気を送り込む方法(エアレーション)、減圧する方法、送風する方法等を採用して、二酸化塩素ガスの遊離が促されてもよい。これらの中でも、二酸化塩素水に対してエアレーションを行うことにより、二酸化塩素ガスの遊離が促されやすく、除染される閉鎖空間の二酸化塩素ガス濃度は高められやすい。その結果、除染の所要時間は短縮化されやすい。
 上記の他に、二酸化塩素ガスを発生させる発生源としては、例えば、亜塩素酸ナトリウム水溶液と、塩素、無機酸または有機酸とを製剤化した製剤が挙げられる。無機酸としては、塩酸、硫酸等が例示される。有機酸としては、クエン酸、乳酸、ピルビン酸、リンゴ酸、酒石酸、グルコン酸、グリコール酸、フマル酸、マロン酸、マレイン酸、シュウ酸、コハク酸、アクリル酸等が例示される。亜塩素酸ナトリウム水溶液と、これら塩素、無機酸または有機酸との反応により、二酸化塩素ガスが簡便に生成される。また、これら簡便な反応系は、わずか2種類の原料を適切に混合するだけであるため、製剤化されやすく、かつ、利用者が利用しやすい。製剤としては、亜塩素酸ナトリウムと、塩素、無機酸または有機酸とが適宜反応し得るように調整されたスプレー剤、くん煙剤、ゲル剤、シート剤、スティック剤等が例示される。
 亜塩素酸ナトリウム水溶液と、塩素、無機酸または有機酸とを反応させる際の配合割合としては特に限定されず、使用する原料の種類により適宜選択される。例えば、亜塩素酸ナトリウム水溶液と塩酸とが選択される場合には、亜塩素酸ナトリウム1~25質量%に対して、塩酸が0.3~15質量%配合されればよい。この場合において、亜塩素酸ナトリウム5~25質量%に対して塩酸が1.5~12質量%配合されることが好ましく、亜塩素酸ナトリウム10~25質量%に対して塩酸が3~12質量%配合されることがより好ましい。亜塩素酸ナトリウムの配合量が1質量%未満の場合、必要とされる亜塩素酸ナトリウム水溶液の量が増え、利便性が低下する傾向がある。一方、亜塩素酸ナトリウムの配合量が25質量%を超える場合、毒物劇物取締法に規定される劇物に該当し、取扱いが制限され、製剤化が困難となる傾向がある。
<二酸化塩素の導入>
 閉鎖空間に導入する二酸化塩素ガス濃度は、汚染物質を除去する効果を高める観点から、10ppm以上となるように使用されることが好ましく、15ppm以上がより好ましく、20ppm以上がさらに好ましい。また、二酸化塩素の気相付与による内容物の腐食を防止する観点から、230ppm以下であることが好ましい。
 図2および図3は、それぞれ、80ppm以上の高濃度曝露試験および80ppm未満の低濃度曝露試験における二酸化塩素ガス濃度の経時変化を表す概略的なグラフである。縦軸は二酸化塩素ガス濃度(ppm)を示し、横軸は時間(時)を示している。すなわち、例えば二酸化塩素ガスを発生する発生源から放出される場合には、時間の経過とともに徐々に空間内の濃度が高められる。その後、二酸化塩素ガスの濃度は、発生量よりも分解量が上回ることにより、最大濃度を示した後に減少する。本実施形態では、二酸化塩素ガスは、除染の過程において最大濃度が所定の濃度(例えば10ppm)以上となるように使用されることにより、除染効果を好適に発揮する。なお、本実施形態によれば、2種類の反応液(亜塩素酸ナトリウム水および塩酸)の反応量を薬液ポンプ吐出量で自動調整させ、必要な二酸化塩素ガスを閉鎖空間へ供給することにより、所定の二酸化塩素目標濃度まで高め、以降はほぼ一定の二酸化塩素ガス濃度となるように自動制御することができる。
 本実施形態において「CT値」とは、「二酸化塩素ガスの濃度(ppm)」と「時間(時)」との積分値である。例えば、図2および図3において、CT値は、横軸とグラフとにより画定される領域の面積として表される。濃度積算値と表現されることもある。
 3logないし4log低減のためには、二酸化塩素ガスが80ppm未満の低濃度曝露では少なくとも50ppm・時、80ppm以上の高濃度曝露では少なくとも140ppm・時のCT値を要する。高濃度曝露は、必要とする薬液が多くなること、また閉鎖空間内の内容物の腐食リスクを最小限にするため、3logないし4log低減のためには、80ppm未満の低濃度曝露が好ましい。一方、5logないし6log低減のためには、低濃度曝露では除染に長時間を要し非効率であり、高濃度曝露の方が効率的に菌数を低減できる。図6に、実施例1~7の二酸化塩素ガスCT値と残存菌数との関係を表すグラフを示す。低濃度曝露の条件で3logと4logを達成しているCT値は、高濃度曝露の条件で3logと4logを達成しているCT値よりも低い傾向であること、また高濃度曝露の条件で5logと6logを達成しているCT値は、低濃度曝露の条件で5logと6logを達成しているCT値よりも低い傾向であることがわかる。
 より具体的には、3log低減のためには、二酸化塩素ガス濃度は10~100ppmが好ましく;15~100ppmがより好ましく;20~100ppmがより好ましく;30~80ppmがさらに好ましく;30~60ppmが特に好ましい。CT値は、50~150ppm・時が好ましく;55~150ppm・時がより好ましく;60~150ppm・時がより好ましく;90~120ppm・時がさらに好ましく;100~110ppm・時が特に好ましい。
 4log低減のためには、二酸化塩素ガス濃度は20~150ppmが好ましく;25~150ppmがより好ましく;50~150ppmがより好ましく;50~100ppmがさらに好ましく;50~80ppmが特に好ましい。CT値は、100~330ppm・時が好ましく;110~330ppm・時がより好ましく;150~330ppm・時がより好ましく;180~250ppm・時がさらに好ましく;190~240ppm・時が特に好ましい。
 5log低減のためには、二酸化塩素ガス濃度は40~200ppmが好ましく;60~200ppmがより好ましく;80~200ppmがより好ましく;80~180ppmがさらに好ましく;100~150ppmが特に好ましい。CT値は、130~600ppm・時が好ましく;200~600ppm・時がより好ましく;300~600ppm・時がより好ましく;330~400ppm・時がさらに好ましく;350~380ppm・時が特に好ましい。
 6log低減のためには、二酸化塩素ガス濃度は50~230ppmが好ましく;70~230ppmがより好ましく;100~230ppmがより好ましく;130~200ppmがさらに好ましく;160~190ppmが特に好ましい。CT値は、400~2000ppm・時が好ましく;450~2000ppm・時がより好ましく;500~2000ppm・時がより好ましく;550~1500ppm・時がさらに好ましく;580~1000ppm・時が特に好ましい。
 本実施形態では、所定のCT値は、二酸化塩素ガスの使用開始時から二酸化塩素ガスが分解されるまでの時間において達成されればよい。所定のCT値は、二酸化塩素ガスの使用開始時から4時間以内に達成されることが好ましく、3時間以内に達成されることがより好ましく、2時間以内に達成されることがさらに好ましく、1.5時間以内に達成されることが特に好ましい。所定のCT値が短時間で達成されることにより、除染の所要時間が短縮されることから、種々の施設(例えば製薬工場)において、除染のために休止されていたライン(例えば医薬品の生産ライン)を早期に再開することができ、業務効率の低下が抑えられる。
 また、本実施形態において、所定の空間における二酸化塩素ガスの最大濃度は、二酸化塩素ガスの使用開始時から60分以内に達成されることが好ましく、40分以内に達成されることがより好ましく、30分以内に達成されることがさらに好ましい。短時間で最大濃度に到達すると除染効率が高くなり、また濃度上昇速度に対して分解による濃度低下速度によるロスが少なくなる。また、空間内の二酸化塩素ガスの濃度は、最大濃度を示した後に低下する(例えば、図3参照)。そのため、60分という早い段階で最大濃度を示すことにより、例えばヒトが立ち入ることができる濃度である0.1ppm未満までの所要時間は、短縮化される。その結果、種々の施設(例えば製薬工場)において、除染のために休止されていたライン(例えば医薬品の生産ライン)が早期に再開され、業務効率の低下が抑えられる。
 本発明を実施例に基づいて説明するが、本発明は、実施例にのみ限定されるものではない。
<殺菌試験>
 図1に示される除染システムを用いて、除染効果を確認した。閉鎖空間12(無菌対応室:空間容積約33m3)内にバイオロジカルインジケーター7(MesaLabs社製Mesa Strip,SPORE STRIP BIOLOGICAL INDICATOR(BI)、品番ACD/6、二酸化塩素ガス用、菌種 Bacillus atrophaeus、初期菌数 2.5~2.8×106 c.f.u.)を時間毎に必要枚数だけをサンプリングできるよう吊り下げた。除湿機5、空調機13、および温度湿度指示計14(VAISALA社製)により室内の温度および湿度制御を行い、空間の水蒸気量10g/m3以下とした。
 室内の二酸化塩素ガス濃度を計測するため、二酸化塩素ガス濃度計測器3(アース製薬(株)製CDM-5)の吸引装置に接続したテフロン(登録商標)チューブ11(外径φ6mm×長さ20m)を室内の所定場所に固定させた。二酸化塩素ガス発生機1(アース製薬(株)製CD-700)および二酸化塩素ガス濃度計測器2並びに3を、空間外部の機械設置室にセットし、ガス供給配管9を通じて無菌対応室へ所定量の二酸化塩素ガスを供給した。空間で希釈された二酸化塩素ガスは、室内空気を還元する配管10を通じてガス発生機に戻す循環式とした。
 二酸化塩素ガス目標濃度に対して2種類の反応液8aおよび8b(25%亜塩素酸ナトリウム水および9%塩酸)の反応量を薬液ポンプ吐出量で自動調整させ、必要な二酸化塩素ガスを無菌対応室へ供給した。室内濃度の計測間隔は2分間に1回とした。約30分間かけて目標濃度まで高め、以降はほぼ一定の二酸化塩素ガス濃度となるよう自動制御した。二酸化塩素ガス濃度を経時的に測定し、CT値を算出した。
 曝露終了後、不要となった空間中の二酸化塩素ガスを除去するため、活性炭吸着型二酸化塩素ガス回収機4を作動させた。ガスの拡散を補助するため、常時サーキュレーター6を作動させた。
 閉鎖空間内に設置したバイオロジカルインジケーター7を時間経過毎にサンプリングし、クリーンベンチ内で包装紙から滅菌ピンセットを用いて取り出し、生理食塩水2mL中に浸漬してガラスビーズ3個を加えた後、ボルテクスミキサーで20~30分BIを粉砕した。得られた粉砕液全量をSCDLP寒天培地に混釈し、約37℃、約2日間インキュベーターで培養し発生したコロニー数を計測した。
 なお、二酸化塩素ガスの標準濃度計測器として、ATi社製二酸化塩素ガス濃度計測器を使用することもできる。アース製薬(株)製二酸化塩素ガス濃度計測器CDM-5との濃度校正方法は以下のとおりである。
 テドラーバッグ(登録商標)を用いて、二酸化塩素ガス発生機1から二酸化塩素ガスを捕集し、アルミホイルで遮光したシリンジに二酸化塩素ガスを10mL採取した。50ppmエチレンジアミン水溶液2mLを入れた別の容器に、採取した二酸化塩素ガスをシリンジで注入し、二酸化塩素ガスがエチレンジアミン水溶液に溶け込むよう、入念に振りながら混合させた。混合液を試料溶液とし、イオンクロマトグラフィーによりエチレンジアミンと二酸化塩素との反応生成物を定量分析し、得られた定量結果から、反応した二酸化塩素ガス量を算出した。ATi社製二酸化塩素ガス濃度計測器の表示値と二酸化塩素ガスの定量結果から検量線を作成した。ATi社製二酸化塩素ガス濃度計測器を基準として、計測器のモニターに表示される濃度が真の二酸化塩素ガス濃度と同等となるよう、補正係数を計測器のプログラムに予め入力した。
(高濃度曝露試験)
 80ppm以上の高濃度の二酸化塩素ガスを閉鎖空間12に曝露した。閉鎖空間内は、空調機13および除湿機5により、温度を19~26℃、水蒸気量を5~10g/m3、相対湿度を25~42%に調整した。所定の曝露時間ごとにバイオロジカルインジケーター7を5個ずつ回収し、それぞれの残存菌数を評価した(表1)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(低濃度曝露試験)
 80ppm未満の低濃度の二酸化塩素ガスを閉鎖空間12に曝露した。閉鎖空間内は、空調機13および除湿機5により、温度を19~26℃、水蒸気量を5~10g/m3、相対湿度を25~42%に調整した。所定の曝露時間ごとにバイオロジカルインジケーター7を5個ずつ回収し、それぞれの残存菌数を評価した(表2)。
(3log低減試験)
 3log低減を達成した実施例8~13-2の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(4log低減試験)
 4log低減を達成した実施例14~19-2の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(5log低減試験)
 5log低減を達成した実施例20~25-2の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(6log低減試験)
 6log低減を達成した実施例26~31-2の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 <二酸化塩素ガスの分解性(残留性)>
(実施例32)
 図1に示される除染システムを用いて、二酸化塩素ガスの使用開始時(0分)から11.5時間、二酸化塩素ガス濃度を経時的に測定し、二酸化塩素ガスの分解性(残留性)について評価した。閉鎖空間内の二酸化塩素ガス濃度の経時変化を表7および図4に示す。
Figure JPOXMLDOC01-appb-T000007
 閉鎖空間12(無菌対応室:空間容積約33m3)に対し、25%亜塩素酸ナトリウム水溶液約170mLと9%塩酸約170mLとを17mL/分でそれぞれ吐出して反応させた。約18分後の空間内の二酸化塩素ガス濃度は200ppmまで到達し、濃度はほぼ安定した。以降、空間内の二酸化塩素ガス濃度が安定するように、所定量の反応液を供給および停止しながら濃度制御を行い、約10時間曝露させた。空間内は、空調機13および除湿機5により、温度を19~26℃、水蒸気量を5~10g/m3、相対湿度を25~42%に調整した。除染終了後、不要となった空間中の二酸化塩素ガスを、活性炭吸着型二酸化塩素ガス回収機4を作動させて回収した。約43分後には閉鎖空間12の二酸化塩素濃度が0ppmとなり、二酸化塩素ガスの回収が終了した。
 二酸化塩素ガスの空間供給の立上げ速度および拡散性は、過酸化水素などとは異なり迅速に行えること;また、二酸化塩素ガスの回収は、ホルマリンとは異なり、材料への吸着や吸着による再蒸散がほとんどなく、短時間で空間のガス濃度が0ppmとなり、除染終了後、作業者が安全に閉鎖空間に入室可能であることが確認された。
 <内容物の腐食試験>
 図1に示される除染システム(除染対象空間は約33m3)において、ポンプ軸受、コンプレッサー軸受、造粒機、打錠機、充填機に使用された鉄製ベアリングを除染終了後に観察した。
(実施例33)
 以下の条件で二酸化塩素ガスを2回曝露した。2回の総CT値は2280ppm・時であった。二酸化塩素ガス導入中の室内の平均温度、平均相対湿度、および平均水蒸気量は以下のとおりである。
 1回目 平均温度:20℃、平均相対湿度:41%、平均水蒸気量:7.10g/m3
 2回目 平均温度:22℃、平均相対湿度:41%、平均水蒸気量:7.97g/m3
 2回曝露後の鉄製ベアリングに錆は確認されず、軸回転にも影響がないことが確認された。
(比較例1)
 平均温度29℃、平均相対湿度39.4%の条件下で二酸化塩素ガスを曝露した。水蒸気量換算表(図5)より、平均水蒸気量は約11.4g/m3と推定される。CT値は196ppm・時であった。曝露後の鉄製ベアリングには錆が確認された。
 本発明によれば、防菌、防カビ対策が必要な施設を対象として、除染を必要とする空間内の内容物を腐食することなく、従来に比べ安全かつ短時間に大空間の除染を行うことができる。したがって、本発明は、特に異物の混入が厳しく制限される医薬品工場や食品工場等における除染の際に非常に有用な手法となり得る。
1:二酸化塩素ガス発生機
2:二酸化塩素ガス濃度計測器(計測部)
3:二酸化塩素ガス濃度計測器(吸引部)
4:二酸化塩素ガス回収機
5:除湿機
6:サーキュレーター
7:バイオロジカルインジケーター(BI)
8a、8b:反応液2種類(亜塩素酸ナトリウム水および塩酸)
9:ガス供給配管
10:ガス吸入配管
11:ガス吸引用テフロン(登録商標)チューブ
12:閉鎖空間
13:空調機
14:温度湿度指示計

Claims (7)

  1.  閉鎖空間内での二酸化塩素の気相付与によって汚染物質を除去し、かつ前記閉鎖空間内にある内容物の化学腐食を低減する方法であって:
    水蒸気量10g/m3以下の環境下とした前記閉鎖空間において;
    二酸化塩素ガスを発生させる工程と;
    二酸化塩素ガス濃度10~230ppm、かつCT値50~2000ppm・時で二酸化塩素ガスを前記閉鎖空間へ導入する工程とを含む方法。
  2.  汚染物質を3log低減するのに有効な二酸化塩素ガス濃度10~100ppm、かつCT値50~200ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、請求項1に記載の方法。
  3.  汚染物質を4log低減するのに有効な二酸化塩素ガス濃度20~150ppm、かつCT値100~330ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、請求項1に記載の方法。
  4.  汚染物質を5log低減するのに有効な二酸化塩素ガス濃度40~200ppm、かつCT値130~600ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、請求項1に記載の方法。
  5.  汚染物質を6log低減するのに有効な二酸化塩素ガス濃度50~230ppm、かつCT値400~2000ppm・時で二酸化塩素ガスを閉鎖空間へ導入する工程を含む、請求項1に記載の方法。
  6.  閉鎖空間内の相対湿度が60%以下である、請求項1~5のいずれか一項に記載の方法。
  7.  汚染物質が芽胞形成菌である、請求項1~6のいずれか一項に記載の方法。
PCT/JP2018/024027 2017-06-26 2018-06-25 二酸化塩素ガスによる除染方法 WO2019004137A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018548239A JP6628898B2 (ja) 2017-06-26 2018-06-25 二酸化塩素ガスによる除染方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124628 2017-06-26
JP2017-124628 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019004137A1 true WO2019004137A1 (ja) 2019-01-03

Family

ID=64741627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024027 WO2019004137A1 (ja) 2017-06-26 2018-06-25 二酸化塩素ガスによる除染方法

Country Status (2)

Country Link
JP (2) JP6628898B2 (ja)
WO (1) WO2019004137A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155363A (ja) * 2014-01-20 2015-08-27 高砂熱学工業株式会社 二酸化塩素ガスの発生装置
WO2015159578A1 (ja) * 2014-04-16 2015-10-22 アース・バイオケミカル株式会社 衛生管理方法
JP5823957B2 (ja) * 2009-06-04 2015-11-25 サブレ インテレクチュアル プロパティー ホールディングズ エルエルシーSabre Intellectual Property Holdings LLC ガス状二酸化塩素を用いた閉鎖空間の除染
JP2016517315A (ja) * 2013-03-15 2016-06-16 セイバー インテレクチュアル プロパティ ホールディングス リミティド ライアビリティ カンパニー 殺生物剤を集中的に気相施用する装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823957B2 (ja) * 2009-06-04 2015-11-25 サブレ インテレクチュアル プロパティー ホールディングズ エルエルシーSabre Intellectual Property Holdings LLC ガス状二酸化塩素を用いた閉鎖空間の除染
JP2016517315A (ja) * 2013-03-15 2016-06-16 セイバー インテレクチュアル プロパティ ホールディングス リミティド ライアビリティ カンパニー 殺生物剤を集中的に気相施用する装置及び方法
JP2015155363A (ja) * 2014-01-20 2015-08-27 高砂熱学工業株式会社 二酸化塩素ガスの発生装置
WO2015159578A1 (ja) * 2014-04-16 2015-10-22 アース・バイオケミカル株式会社 衛生管理方法

Also Published As

Publication number Publication date
JP6628898B2 (ja) 2020-01-15
JPWO2019004137A1 (ja) 2019-06-27
JP6637631B2 (ja) 2020-01-29
JP2019166408A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
Davies et al. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment
Krause et al. Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide
JP6761563B2 (ja) 除染装置および除染方法
Wood et al. Evaluating the environmental persistence and inactivation of MS2 bacteriophage and the presumed Ebola virus surrogate phi6 using low concentration hydrogen peroxide vapor
WO2010132948A1 (en) Disinfection aerosol, method of use and manufacture
KR20190028712A (ko) 비완충 차아할로스산 조성물에 의한 고 내성 감염성 미생물 및 단백질의 불활성화
Bueno Models of evaluation of antimicrobial activity of essential oils in vapour phase: a promising use in healthcare decontamination
Tu et al. Study of ozone disinfection in the hospital environment
Li et al. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas
Kačer et al. Vapor phase hydrogen peroxide-method for decontamination of surfaces and working areas from organic pollutants
Czarneski et al. Isolator decontamination using chlorine dioxide gas
Czarneski et al. Validation of chlorine dioxide sterilization
JP6628898B2 (ja) 二酸化塩素ガスによる除染方法
Eylath et al. Successful sterilization using chlorine dioxide gas
CN111526895A (zh) 使用硝酸蒸汽的消毒系统和方法
Tao et al. Bactericidal efficacy of a low concentration of vaporized hydrogen peroxide with validation in a BSL-3 laboratory
JP2003519536A (ja) 腐食促進微生物を燻蒸するためにエチレンオキシドを使用する方法
Bukłaha et al. New trends in application of the fumigation method in medical and non-medical fields
Rogers Healthcare Sterilisation: Challenging Practices, Volume 2
Rogers et al. Large-scale inactivation of Bacillus anthracis Ames, Vollum, and Sterne spores using vaporous hydrogen peroxide
Brady Evaluating Chlorine Dioxide Gas as an Antiviral Agent: Insights from the Development, Optimization, and Application of a MS2 Bacteriophage Model System
Haas Decontamination using chlorine dioxide
JP2024118316A (ja) 二酸化塩素ガスによる除染方法及び除染装置
Castro et al. Assessment of biological indicators in the validation of isolator decontamination with hydrogen peroxide
Sandle Biodecontamination of Cleanrooms and Laboratories Using Gassing Systems| IVT

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823746

Country of ref document: EP

Kind code of ref document: A1