WO2015159370A1 - 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物 - Google Patents

遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物 Download PDF

Info

Publication number
WO2015159370A1
WO2015159370A1 PCT/JP2014/060747 JP2014060747W WO2015159370A1 WO 2015159370 A1 WO2015159370 A1 WO 2015159370A1 JP 2014060747 W JP2014060747 W JP 2014060747W WO 2015159370 A1 WO2015159370 A1 WO 2015159370A1
Authority
WO
WIPO (PCT)
Prior art keywords
light shielding
shielding material
substrate
group
transparent substrate
Prior art date
Application number
PCT/JP2014/060747
Other languages
English (en)
French (fr)
Inventor
達格 土谷
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020167028760A priority Critical patent/KR20160145589A/ko
Priority to PCT/JP2014/060747 priority patent/WO2015159370A1/ja
Priority to CN201480078018.1A priority patent/CN106233164A/zh
Priority to JP2016513532A priority patent/JP6354840B2/ja
Publication of WO2015159370A1 publication Critical patent/WO2015159370A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks

Definitions

  • the present invention relates to a substrate with a light shielding material, a color filter, and a liquid crystal display device. Specifically, the present invention relates to a substrate with a light shielding material having low reflectance and excellent light shielding properties, a colored resin composition for forming the light shielding material, a color filter having the light shielding material, and a liquid crystal display device.
  • a photosensitive resin obtained by adding a binder resin, a photopolymerization initiator, a photopolymerizable monomer, etc.
  • a colored resin composition obtained by dispersing a pigment with a dispersant or the like.
  • the resin composition is coated on a glass substrate, dried, exposed using a mask, and developed to form a colored pattern, which is then heated to fix the pattern and form pixels. These steps are repeated for each color to form a color filter.
  • Shielding materials used in color filters are required to have various qualities such as shielding properties, patterning properties, and electrical characteristics, one of which is reflectivity.
  • pixels of a color filter and a light shielding material are usually seen through a glass, but the lower the surface reflectivity, the less reflection from the outside, and the better the image can be obtained.
  • the pixel and the light shielding material are made of a mixture of a color material and a resin or a fired product thereof, but reflection occurs between the glass, the pixel, and the light shielding material due to a difference in refractive index.
  • Glass and resin have a refractive index of about 1.5, whereas color materials are generally higher than that, for example, carbon black has a refractive index of about 2.0, so the higher the content, the higher the reflectivity. It is in.
  • Patent Document 1 describes a light shielding layer in which a metal thin film layer is provided on a photocurable resin layer.
  • metal deposition using chromium or the like has a problem that the manufacturing process is long, the productivity is low, the cost is high, and environmental problems are caused by the waste liquid of the etching process.
  • a light shielding layer composed of two or more resin layers is formed on a substrate, the first layer on the substrate side of the light shielding layer is a light absorption layer, and the second and subsequent layers are light-reflecting. It is described that by using a layer, the light is highly shielded, and the reflectance when viewed from the observer side can be lowered.
  • Patent Document 3 a colored resin layer is formed on a substrate, and a black resin layer is further formed thereon, so that the light reflectance is low over the entire visible light wavelength range and the light shielding property is excellent. It is stated that you can.
  • Patent Document 4 describes that an organosilane is added to a protective film for adhesion of an electrodeposition layer.
  • Patent Document 5 describes that granular silica is added to a photosensitive composition for a black matrix for the purpose of improving pattern formation.
  • Japanese Patent No. 3367173 Japanese Unexamined Patent Publication No. 2006-11180 Japanese Laid-Open Patent Publication No. 8-146410 Japanese Laid-Open Patent Publication No. 5-288926 Japanese Unexamined Patent Publication No. 2008-304583
  • substrate with a light shielding material of patent document 2 originated in having used the 2nd layer or later as a light reflection layer, and the subject that it was difficult to reduce a reflectance further had the subject. It was found that there was. Further, it has been found that the substrate with a light shielding material described in Patent Document 3 has a problem that the wavelength dependency of reflectance is not sufficient due to the formation of a colored resin layer on the substrate. It was.
  • the first object of the present invention is to provide a substrate with a light-shielding material that has good productivity and can realize excellent low reflectivity.
  • the second object of the present invention is to provide a substrate with a light-shielding material that realizes excellent low reflectivity and further has less wavelength dependency of reflectivity.
  • a third problem of the present invention is to provide a colored resin composition for forming a substrate with a light shielding material capable of realizing excellent low reflectivity with high productivity.
  • the inventor of the present invention has good productivity by containing specific fine particles in the light shielding material and controlling the concentration distribution in the thickness direction of the fine particles. And found that excellent low reflectivity can be realized.
  • the second problem by including a specific color material on the transparent substrate side and the opposite side of the light shielding material, and by controlling the OD value in the thickness direction, It has been found that excellent low reflectivity can be realized and the wavelength dependency of the reflectivity can be reduced.
  • a substrate with a light shielding material capable of realizing excellent low reflectivity is produced by containing a specific amount of specific particles in the colored resin composition. It was found that it can be formed with high properties.
  • the gist of the present invention is the following [1] to [18].
  • a substrate with a light shielding material having a light shielding material on a transparent substrate A substrate with a light shielding material, wherein the light shielding material includes (A) a color material and (B) an organic binder, and satisfies the following (1) and (2).
  • the light shielding material contains (C) fine particles having a refractive index of 1.2 to 1.8.
  • fine-particles in the said light shielding material differs in the thickness direction, and the opposite side to the said transparent substrate is lower than the said transparent substrate side.
  • a substrate with a light shielding material having a light shielding material on a transparent substrate A substrate with a light shielding material, wherein the light shielding material comprises (A) a color material and (B) an organic binder, and satisfies the following (3) to (5).
  • the transparent substrate side of the light shielding material contains a black pigment as the color material (A).
  • the side opposite to the transparent substrate of the light shielding material contains a pigment as the color material (A).
  • the OD value per 1 ⁇ m of the light shielding material is different in the thickness direction, and the side opposite to the transparent substrate is higher than the side of the transparent substrate.
  • the relative reflectance is a value measured with a mirror plate as a reference by making light incident at an incident angle of 5 degrees from the transparent substrate side.
  • the substrate with a light shielding material according to [10] wherein a difference between an upper limit value and a lower limit value of the relative reflectance at a wavelength of 450 to 650 nm is 0.5% or less.
  • a color filter comprising the substrate with a light shielding material according to any one of [1] to [12].
  • a colored resin composition comprising (A) a color material, (B ′) an organic binder, (C) fine particles having a refractive index of 1.2 to 1.8, and (D) an organic solvent, (C) A colored resin composition having a fine particle content of 15% by mass or more.
  • the colored resin composition according to [16], wherein the inorganic fine particles are silica particles.
  • substrate with a light-shielding material which concerns on the 1st aspect of this invention has favorable productivity, and can implement
  • the colored resin composition according to the third aspect of the present invention can form a substrate with a light shielding material capable of realizing excellent low reflectivity with high productivity.
  • FIG. 1A and FIG. 1B are conceptual diagrams for explaining one mode of a substrate with a light shielding material of the present invention.
  • 2 (a) to 2 (c) are schematic side sectional views for explaining the process for forming the light shielding material of the present invention.
  • FIG. 2 (a) is a coating process
  • FIG. 2 (b) is an exposure process
  • FIG. 2 (c) shows the light shielding material after development.
  • FIG. 3A and FIG. 3B are schematic side sectional views for explaining a method of measuring relative reflectance.
  • 4A and 4B are graphs of the reflectance profile with respect to the wavelength when the reflectance is measured
  • FIG. 4A is a reflectance with an antireflection film in Example 2.
  • FIG. 4 is a graph of the reflectance profile with respect to the wavelength when R1 is measured
  • FIG. 4B is a graph of the reflectance profile with respect to the wavelength when the reflectance R3 is measured without providing an antireflection film in Example 2. It is.
  • the refractive index means a refractive index at a wavelength of 589 nm.
  • (meth) acryl means “acryl and / or methacryl”, and the same applies to “(meth) acrylate” and “(meth) acryloyl”.
  • the “total solid content” means all components other than the solvent contained in the colored resin composition or in the ink described later.
  • a weight average molecular weight means the weight average molecular weight (Mw) of polystyrene conversion by GPC (gel permeation chromatography).
  • Mw weight average molecular weight
  • mass means “weight”.
  • the “amine value” means an amine value in terms of effective solid content unless otherwise specified, and is a value represented by the mass of KOH equivalent to the base amount per 1 g of the solid content of the dispersant. It is. The measuring method will be described later.
  • the “light-shielding material” is a cured product having a light-shielding property provided on a transparent substrate, which is obtained by drying the coating film after applying the colored resin composition, and exposing the coating film. And / or developed one.
  • the light shielding material of the present invention includes a black matrix, a frame, and the like.
  • the substrate with a light shielding material according to the first aspect of the present invention has a light shielding material on a transparent substrate, the light shielding material contains (A) a color material and (B) an organic binder, and the following (1 ) And (2) are satisfied.
  • the light shielding material contains (C) fine particles having a refractive index of 1.2 to 1.8.
  • fine-particles in the said light shielding material differs in the thickness direction, and the opposite side to the said transparent substrate is lower than the said transparent substrate side.
  • the concentration of (C) fine particles having a refractive index of 1.2 or more and 1.8 or less (hereinafter simply referred to as “(C) fine particles”) in the light shielding material is different in the thickness direction, and from the transparent substrate side.
  • a colored resin composition is further formed on the applied colored resin composition. Since there is a tendency that dissolution of the applied colored resin composition, which may occur when applied, can be suppressed, there is a tendency that a light shielding material can be easily formed even by one exposure development.
  • (C) By making the refractive index of the fine particles within a specific range, (C) there is a tendency that reflection of light caused by the fine particles can be suppressed.
  • the concentration of the (C) fine particles 1 in the light shielding material 10 gradually varies in the thickness direction, and the transparent The thing on the opposite side to the said transparent substrate 11 is mentioned rather than the board
  • a colored resin composition containing fine particles may be applied once on a transparent substrate, and (C) a colored resin composition not containing fine particles may be applied thereon.
  • the organic binder (B) in each colored resin composition with the same type or a similar type of material, there is a tendency that the formation of an interface due to multiple coatings can be suppressed.
  • the light shielding material 10 is composed of two or more layers (the first light shielding layer 12 and the second light shielding layer 13), and is opposite to the transparent substrate 11 than the transparent substrate 11 side.
  • C What makes the density
  • a method of applying a colored resin composition having different concentrations of fine particles (C) a plurality of times so that the concentration of fine particles (C) is gradually lowered can be mentioned.
  • a colored resin composition containing fine particles may be applied once on a transparent substrate, and (C) a colored resin composition not containing fine particles may be applied thereon.
  • the laminated structure is not particularly limited.
  • two or more light shielding layers may be laminated in parallel with the contact surface with the transparent substrate.
  • the number of layers is not particularly limited, but if the number of layers is large, the number of steps of applying the colored resin composition at the time of forming the light shielding material is increased, and the production efficiency is deteriorated. It is preferably 2 to 3 layers, more preferably 2 layers.
  • the concentration of (C) fine particles in the light shielding material is different in the thickness direction, And it should just contain the area
  • the light shielding material is the same as the first light shielding layer as the third light shielding layer on the second light shielding layer 13 as well as the first light shielding layer and the second light shielding layer in FIG.
  • (C) a region configured such that the concentration of the fine particles is higher on the side opposite to the transparent substrate than on the transparent substrate side may be included.
  • the fine particles (C) those described below can be preferably used.
  • the reflectivity of the interface between the transparent substrate and the light shielding material varies depending on the difference in refractive index between the transparent substrate and the light shielding material.
  • the refractive index of glass or resin used as a transparent substrate, or resin as a component of the colored resin composition is approximately 1.4 to 1.6.
  • the refractive index of the color material tends to be higher.
  • the refractive index of carbon black is approximately 2.0-i (complex number).
  • the amount of carbon black in the colored resin composition for forming the light shielding material is increased, the refractive index of the colored resin composition increases, and as a result, the difference in refractive index with the transparent substrate increases, The reflectance at the interface with the light shielding material is increased. For this reason, it is difficult to achieve both high light shielding properties and low reflectance.
  • the colored resin composition for the 2nd layer is formed.
  • the first layer coating film may be dissolved by the solvent of the second layer coating solution.
  • the light shielding material in the substrate with the light shielding material according to the first aspect contains (C) fine particles.
  • (C) the effect of adding fine particles has a filler effect, and the solvent resistance of the colored resin composition is improved.
  • solvent resistance improves also when content of the resin component which occupies in a colored resin composition reduces.
  • Fine particles that can be used in the substrate with a light shielding material according to the first aspect include silica fine particles, resin fine particles, and the like, but are not limited thereto.
  • the refractive index of the fine particles is 1.2 or more, preferably 1.3 or more, more preferably 1.4 or more, and 1.8 or less, and 1.7 or less. It is preferable that it is 1.6 or less.
  • the refractive index of the fine particles is too large, the refractive index of the light shielding material is increased, which tends to increase the reflectance at the interface between the transparent substrate and the light shielding material.
  • One kind of fine particles may be used alone, or two or more kinds may be used in combination.
  • Examples of the fine particles having a refractive index satisfying the above range include inorganic fine particles or resin fine particles. From the viewpoint that a particle having a desired particle size can be easily obtained, inorganic fine particles are preferable, and the particle size can be further reduced. From this point of view, oxide particles are more preferable. Examples of the oxide particles include silicon oxide (silica), aluminum oxide, and zirconia oxide. From the viewpoint of dispersibility, silicon oxide (silica) fine particles are more preferable.
  • silica fine particles dry silica, colloidal silica, or a solvent dispersion thereof can be used. These are preferably used in the preparation of a colored resin composition after being dispersed in an organic solvent and then mixed with other components.
  • the colorant and silica may be mixed and dispersed and added.
  • the average particle size of the fine particles can be measured by a BET method or the like, and is preferably 5 nm or more, more preferably 10 nm or more, and preferably 100 nm or less, and 20 nm or less. More preferably.
  • the average particle size of the fine particles is too small, the dispersion stability cannot be maintained, and if too large, the planar uniformity of the formed light shielding material may be hindered.
  • silica fine particles examples include Aerosil series manufactured by Nippon Aerosil Co., Ltd. as dry silica, and Snowtex series and organosilica sol series manufactured by Nissan Chemical Co., Ltd. as colloidal silica.
  • Resin particles include, but are not limited to, acrylic resin fine particles.
  • the resin fine particles (D) dispersed in an organic solvent may be used, or (A) a color material may be mixed and co-dispersed.
  • the average particle diameter of the resin fine particles by the BET method is preferably 20 to 500 nm, more preferably 30 to 300 nm, for the same reason as the silica fine particles.
  • the fine particles are preferably silica fine particles, and more preferably a colloidal silica solvent dispersion.
  • fine-particles can be confirmed with the following method, for example.
  • (1) Secondary electron image of SEM The secondary electron image of SEM of the cross section of a transparent substrate and a light shielding material is confirmed.
  • silica particles or metal oxide particles are stronger than carbon atoms derived from organic binders, photopolymerizable compounds, etc. Concentration distribution can be confirmed in the cross section.
  • the light shielding material according to the first aspect of the present invention has an OD value per 1 ⁇ m (hereinafter referred to as “unit OD value”, and the unit may be represented by “/ ⁇ m”) of 2.5 or more. Is preferably 3.0 or more, more preferably 3.5 or more.
  • unit OD value By setting the unit OD value to be equal to or more than the lower limit value, there is a tendency that sufficient light shielding properties can be obtained.
  • the larger the unit OD value the higher the light shielding property of the light shielding material, which is preferable.
  • increasing the amount of the coloring material to increase the unit OD value may impair the adhesion to the substrate and developability.
  • the unit OD value of the light shielding material is preferably 5.0 / ⁇ m or less, and more preferably 4.5 / ⁇ m or less.
  • the OD value per 1 ⁇ m can be obtained by converting the OD value of the entire light shielding material into a value per 1 ⁇ m thickness.
  • the OD value per 1 ⁇ m of the light shielding material is different in the thickness direction, and the side opposite to the transparent substrate is preferably lower than the transparent substrate side.
  • the unit OD value on the transparent substrate side of the light shielding material is preferably 0.1 / ⁇ m or more, more preferably 0.5 / ⁇ m or more, and 1.5 / ⁇ m or less. Preferably, it is 1.0 / ⁇ m or less.
  • the unit OD value on the transparent substrate side can be obtained, for example, by measuring an OD value in the range from the transparent substrate to a thickness of 0.5 ⁇ m and dividing it by the thickness. When the light shielding material is formed of two or more layers, the unit OD value of the first layer on the transparent substrate may be measured.
  • the unit OD value on the side opposite to the transparent substrate is preferably 2.5 / ⁇ m or more, more preferably 3.0 / ⁇ m or more, and 5.0 / ⁇ m or less. Preferably, it is 4.5 / ⁇ m or less.
  • the unit OD value on the side opposite to the transparent substrate can be obtained, for example, by measuring the OD value in the range from the upper surface of the light shielding material to a thickness of 0.5 ⁇ m and dividing it by the thickness.
  • the unit OD values after the second layer other than the first layer on the transparent substrate may be measured.
  • the relative reflectance at a wavelength of 550 nm is preferably 1.0% or less, more preferably 0.7% or less, and usually 0.1%. % Or more.
  • the relative reflectance can be measured with reference to a specular plate by making light incident at an incident angle of 5 degrees from the transparent substrate side.
  • the reflectance between the substrate and the light shielding material is set to be equal to or less than the upper limit value, it is possible to obtain a light shielding material with less reflection from the outside and obtaining a good image. Further, since the light shielding material contains a color material, the light shielding material is somewhat reflected, and therefore tends to be equal to or more than the lower limit value.
  • the difference between the upper limit value and the lower limit value of the relative reflectance at a wavelength of 450 to 650 nm is preferably 0.5% or less, preferably 0.3% or less. Is more preferable, and is usually 0.01% or more.
  • the color tone of the light shielding material can be made black, and the color tone when the panel is created can be made a desired one.
  • the reflectance of the color material is slightly different depending on the wavelength, a difference of upper and lower limits tends to occur at 0.01% or more.
  • the total film thickness of the light shielding material according to the first aspect of the present invention is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.8 ⁇ m or more, , 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. If the total thickness of the light-shielding material is too thin, sufficient light-shielding properties may not be obtained. If it is too thick, a step is produced at the boundary when color pixels are provided, and a panel is formed as a liquid crystal display panel device. In addition, the overlapping distance as the liquid crystal cell gap becomes non-uniform, which may cause a cell gap defect.
  • the thickness of the first layer on the transparent substrate is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more. It is preferably 5 ⁇ m or less, and more preferably 0.8 ⁇ m or less. If the film thickness of the first layer is too thin, the second and subsequent layers may increase the reflectivity, and if it is too thick, the desired light blocking property may not be achieved with the entire light blocking material.
  • the transparent substrate those described later in the description of the color filter of the present invention are usually used.
  • the (A) color material used for the light shielding material those described in the following ⁇ (A) Color material> can be preferably used.
  • those described in ⁇ Substrate with light shielding material according to the second aspect> may be adopted.
  • (B) organic binder what hardened below-mentioned (B ') organic binder is mentioned, for example.
  • the light shielding material may contain (E) a photopolymerization initiator and other components.
  • the light shielding material in the substrate with the light shielding material according to the first aspect is usually formed using a colored resin composition containing at least (A) a color material, (B) an organic binder, and, if necessary, (C) fine particles. can do.
  • the light shielding material in the substrate with the light shielding material according to the first aspect and the colored resin composition for forming the light shielding material usually contain (A) a color material.
  • the coloring material (A) dyes and pigments can be used, but pigments are preferable from the viewpoint of heat resistance, light resistance and the like.
  • C.I. I. Examples thereof include known pigments to which a pigment number is assigned. Particles made of simple metals are not included in the pigment.
  • the color exhibited by the color material is not particularly limited, but is preferably black from the viewpoint of realizing high light shielding properties.
  • black color material examples include black pigments such as carbon black, titanium black, acetylene black, lamp black, bone black, graphite, aniline black, cyanine black, perylene black (BASF K0084, K0086), and iron oxide black pigment.
  • black pigments such as carbon black, titanium black, acetylene black, lamp black, bone black, graphite, aniline black, cyanine black, perylene black (BASF K0084, K0086), and iron oxide black pigment.
  • fine particles mainly composed of a silver tin alloy described in Japanese Patent Application Laid-Open No. 2010-134453 can be used. In this case, the fine particles are described in the same publication from the viewpoint of suppressing pattern peeling.
  • specific photopolymerization initiators may be used in combination.
  • a specific alkali-soluble resin may be used in combination as described in Japanese Patent Application Laid-Open No. 2013-130843.
  • perylene black perylene black
  • titanium black are preferable from the viewpoints of light shielding rate and image characteristics.
  • Examples of carbon black include the following carbon black.
  • Cabot Corporation Monarch120, Monarch280, Monarch460, Monarch800, Monarch880, Monarch900, Monarch1000, Monarch1100, Monarch1300, Monarch1400, Monarch4630, REGAL99, REGAL99R, REGAL415, REGAL415R, REGAL250, REGAL250R, REGAL330, REGAL400R, REGAL55R0, REGAL660R, BLACK PEARLS480, PEARLS130 , VULCAN XC72R, ELFTEX-8 Colombian (of which Monarch is a registered trademark)
  • carbon black coated with a resin may be used.
  • carbon black described in Japanese Patent Application Laid-Open No. 09-71733 can be suitably used.
  • the total content of Na and Ca is preferably 100 ppm or less.
  • Carbon black is usually raw material oil or combustion oil (or gas) at the time of production, reaction stop water or granulated water, Na mixed from furnace materials of the reactor, Ca, K, Mg, Al, Fe, etc. Is contained in the order of percent.
  • Na and Ca are generally contained in a few hundred ppm or more, but if many of these are present, they penetrate into the transparent electrode (ITO) and other electrodes, causing electrical shorts. This is because there is a case.
  • the combined amount of Na and Ca can be more easily reduced to 100 ppm or less by using both of these methods.
  • the resin-coated carbon black is preferably so-called acidic carbon black having a pH of 6 or less. Such carbon black is suitable because it has a small dispersed diameter (agglomerated diameter) in water, and can cover even fine units. Further, the resin-coated carbon black preferably has a particle size of 40 nm or less and a dibutyl phthalate (DBP) absorption of 140 mL / 100 g or less. If the particle size is larger than 40 nm and the DBP absorption is larger than 140 mL / 100 g, the dispersibility when made into a paste is excellent, but the coating film may not have a sufficient concentration feeling. It is because there is a possibility that it may become scarce.
  • DBP dibutyl phthalate
  • the method of preparing the carbon black coated with the resin is not particularly limited. For example, after appropriately adjusting the blending amount of the carbon black and the resin, 1. After mixing and stirring a resin solution obtained by mixing a resin and a solvent such as cyclohexanone, toluene, xylene and the like, and a suspension obtained by mixing carbon black and water, the carbon black and water are separated, 1. A method in which water is removed and the composition obtained by heating and kneading is formed into a sheet, pulverized, and dried. A method in which the resin solution and the suspension prepared in the same manner as described above are mixed and stirred to granulate carbon black and the resin, and then the obtained granular material is separated and heated to remove the remaining solvent and water. .
  • a carboxylic acid such as maleic acid or fumaric acid is dissolved in the above exemplified solvent, carbon black is added, mixed and dried, the solvent is removed to obtain a carboxylic acid-impregnated carbon black, and then a resin is added thereto. 3.
  • Dry blending method A reactive group-containing monomer component constituting the resin to be coated and water are stirred at a high speed to prepare a suspension. After polymerization, the suspension is cooled to obtain a reactive group-containing resin from the polymer suspension.
  • a method of adding black and kneading, reacting carbon black with a reactive group (grafting carbon black), cooling and pulverizing can be employed.
  • the type of resin to be coated is not particularly limited, but synthetic resins are common, and resins with benzene nuclei in the structure have a stronger function as amphoteric surfactants. From the viewpoint of dispersibility and dispersion stability, it is preferable.
  • thermosetting resins such as phenol resin, melamine resin, xylene resin, diallyl phthalate resin, glyphtal resin, epoxy resin, alkylbenzene resin, polystyrene, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene.
  • Thermoplastic resins such as oxide, polysulfone, polyparaphenylene terephthalamide, polyamide imide, polyimide, polyamino bismaleimide, polyether sulfopolyphenylene sulfone, polyarylate, and polyether ether ketone can be used.
  • the amount of resin coating on carbon black is preferably 1 to 30% by mass with respect to the total amount of carbon black and resin. If the coating amount of this resin is less than 1% by mass, only dispersibility and dispersion stability similar to those of untreated carbon black may be obtained. On the other hand, when it exceeds 30% by mass, the adhesiveness between the resins is strong, and it becomes a dumpling-like mass, and the dispersion may not proceed.
  • the carbon black thus coated with the resin can be used as a black matrix shading material according to a conventional method, and a color filter having this black matrix as a constituent element can be prepared by a conventional method.
  • a black matrix shading material according to a conventional method
  • a color filter having this black matrix as a constituent element can be prepared by a conventional method.
  • titanium black examples include Titanium Black 10S, 12S, 13R, 13M, and 13M-C manufactured by Mitsubishi Materials Corporation.
  • a method for producing titanium black a mixture of titanium dioxide and titanium metal is heated and reduced in a reducing atmosphere (Japanese Patent Application Laid-Open No. 49-5432), and ultra-high temperature obtained by high-temperature hydrolysis of titanium tetrachloride.
  • a method of reducing fine titanium dioxide in a reducing atmosphere containing hydrogen Japanese Unexamined Patent Publication No. 57-205322
  • a method of reducing titanium dioxide or titanium hydroxide at a high temperature in the presence of ammonia Japanese Unexamined Patent Publication No. Sho 60- No.
  • Japanese Laid-Open Patent Publication No. 61-201610 Japanese Laid-Open Patent Publication No. 61-201610
  • a method of attaching a vanadium compound to titanium dioxide or titanium hydroxide and reducing it at high temperature in the presence of ammonia Japanese Laid-Open Patent Publication No. 61-201610
  • ammonia Japanese Laid-Open Patent Publication No. 61-201610
  • color pigments can be mixed and used as a black pigment.
  • colored pigments pigments of various colors such as a blue pigment, a green pigment, a red pigment, a yellow pigment, a purple pigment, an orange pigment, and a brown pigment can be used.
  • organic pigments such as azo, phthalocyanine, quinacridone, benzimidazolone, isoindolinone, dioxazine, indanthrene, and perylene
  • various inorganic pigments can be used. It is.
  • pigments that can be used in the present invention are shown by pigment numbers. Note that terms such as “CI Pigment Red 2” mentioned below mean a color index (CI).
  • C.I. I. Pigment Red 48 1, 122, 168, 177, 202, 206, 207, 209, 224, 242, 254, more preferably C.I. I. Pigment red 177, 209, 224, 254.
  • C.I. I. Pigment Blue 1 As blue pigment, C.I. I. Pigment Blue 1, 1: 2, 9, 14, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 19, 22, 25, 27, 28, 29, 33, 35, 36, 56, 56: 1, 60, 61, 61: 1, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79 Can do. Of these, C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, more preferably C.I. I. Pigment blue 15: 6.
  • Green pigments include C.I. I. Pigment green 1, 2, 4, 7, 8, 10, 13, 14, 15, 17, 18, 19, 26, 36, 45, 48, 50, 51, 54, 55. Of these, C.I. I. And CI Pigment Green 7 and 36.
  • ⁇ As yellow pigment C.I. I. Pigment Yellow 1, 1: 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 41, 42, 43, 48, 53, 55, 61, 62, 62: 1, 63, 65, 73, 74, 75, 81, 83, 86, 87, 93, 94, 95, 97, 100, 101, 104, 105, 108, 109, 110, 111, 116, 117, 119, 120, 125, 126, 127, 127: 1, 128, 129, 133, 134, 136, 137, 138, 139, 142, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168 169, 170, 172, 173, 174, 175, 176,
  • C.I. I. Pigment yellow 83, 117, 129, 138, 139, 150, 154, 155, 180, 185 more preferably C.I. I. Pigment yellow 83, 138, 139, 150, 180.
  • C.I. I. Pigment Orange 1 2, 5, 13, 16, 17, 19, 20, 21, 22, 23, 24, 34, 36, 38, 39, 43, 46, 48, 49, 51, 55, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79.
  • C.I. I. Pigment Violet 1 1, 2, 2: 2, 3, 3: 1, 3: 3, 5, 5: 1, 14, 15, 16, 19, 23, 25, 27, 29, 30, 31, 32, 37, 39, 40, 42, 44, 47, 49, 50.
  • pigment barium sulfate, lead sulfate, titanium oxide, yellow lead, bengara, chromium oxide, or the like can also be used.
  • pigments can be used in combination. For example, blue pigments and red pigments, blue pigments and red pigments and purple pigments, blue pigments and red pigments and purple pigments and yellow pigments, blue pigments and orange pigments, blue pigments and red pigments and orange pigments, blue pigments. And combinations of purple pigments and orange pigments.
  • These pigments are preferably used in a dispersed manner so that the average particle diameter is usually 1 ⁇ m, preferably 0.5 ⁇ m or less, more preferably 0.25 ⁇ m or less.
  • the average particle diameter of the pigment is a value obtained from the pigment particle diameter measured by dynamic light scattering DLS.
  • a sufficiently diluted colored resin composition usually diluted to adjust the pigment concentration to about 0.005 to 0.2% by mass. However, if there is a concentration recommended by the measuring instrument, According to the concentration) and measured at 25 ° C.
  • dyes that can be used as coloring materials include azo dyes, anthraquinone dyes, phthalocyanine dyes, quinoneimine dyes, quinoline dyes, nitro dyes, carbonyl dyes, and methine dyes.
  • azo dyes include C.I. I. Acid Yellow 11, C.I. I. Acid Orange 7, C.I. I. Acid Red 37, C.I. I. Acid Red 180, C.I. I. Acid Blue 29, C.I. I. Direct Red 28, C.I. I. Direct Red 83, C.I. I. Direct Yellow 12, C.I. I. Direct Orange 26, C.I. I. Direct Green 28, C.I. I. Direct Green 59, C.I. I. Reactive Yellow 2, C.I. I. Reactive Red 17, C.I. I. Reactive Red 120, C.I. I. Reactive Black 5, C.I. I. Disperse Orange 5, C.I. I. Disperse thread 58, C.I. I. Disperse blue 165, C.I. I. Basic Blue 41, C.I. I. Basic Red 18, C.I. I. Molded Red 7, C.I. I. Moldant Yellow 5, C.I. I. Examples thereof include Moldant Black 7.
  • anthraquinone dyes examples include C.I. I. Bat Blue 4, C.I. I. Acid Blue 40, C.I. I. Acid Green 25, C.I. I. Reactive Blue 19, C.I. I. Reactive Blue 49, C.I. I. Disperse thread 60, C.I. I. Disperse Blue 56, C.I. I. Disperse Blue 60 etc. are mentioned.
  • Other examples of the phthalocyanine dye include C.I. I. Pad Blue 5 and the like are quinone imine dyes such as C.I. I. Basic Blue 3, C.I. I. Basic Blue 9 and the like are quinoline dyes such as C.I. I. Solvent Yellow 33, C.I. I. Acid Yellow 3, C.I. I. Disperse Yellow 64 and the like are nitro dyes such as C.I. I. Acid Yellow 1, C.I. I. Acid Orange 3, C.I. I. Disperse Yellow 42 and the like.
  • the light shielding material in the substrate with the light shielding material according to the first aspect includes (B) an organic binder.
  • the organic binder can be obtained, for example, by polymerizing and curing the organic binder (B ′) by exposure treatment or thermosetting treatment. Therefore, the colored resin composition for forming the light shielding material usually contains (B ′) an organic binder.
  • the organic binder (B ′) used in the present invention is a component that forms a light-shielding material as a binder resin, and is preferably an alkali-soluble resin from the viewpoint of facilitating development of an ultraviolet unexposed portion.
  • an alkali-soluble resin having an ethylenically unsaturated bond is preferable, an alkali-soluble resin having a carboxyl group and an ethylenically unsaturated bond is more preferable.
  • B1 and / or alkali-soluble resin (B2) are preferred.
  • ⁇ Alkali-soluble resin (B1)> It was obtained by adding an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group to an epoxy resin, and further reacting a polybasic acid and / or an anhydride thereof. Alkali-soluble resin.
  • ⁇ Alkali-soluble resin (B2)> An ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group is added to an epoxy resin, and further reacted with a polyhydric alcohol and a polybasic acid and / or an anhydride thereof. The alkali-soluble resin obtained by this.
  • Examples of the epoxy resin used as a raw material include bisphenol A type epoxy resins (for example, “Epicoat 828”, “Epicoat 1001”, “Epicoat 1002”, “Epicoat 1004”, etc., manufactured by Mitsubishi Chemical Corporation), Epoxy obtained by reaction of alcoholic hydroxyl group and epichlorohydrin (for example, “NER-1302” (epoxy equivalent 323, softening point 76 ° C.) manufactured by Nippon Kayaku Co., Ltd.), bisphenol F type resin (for example “ Epicoat 807 “,” EP-4001 “,” EP-4002 “,” EP-4004 etc.
  • bisphenol A type epoxy resins for example, “Epicoat 828”, “Epicoat 1001”, “Epicoat 1002”, “Epicoat 1004”, etc., manufactured by Mitsubishi Chemical Corporation
  • Epoxy obtained by reaction of alcoholic hydroxyl group and epichlorohydrin for example, “NER-1302” (epoxy equivalent 323, softening point 76 ° C.) manufactured by
  • epoxy resins obtained by reaction of alcoholic hydroxyl groups of bisphenol F type epoxy resins with epichlorohydrin for example, manufactured by Nippon Kayaku Co., Ltd.) "NER-7406” (epoxy equivalent) 50, softening point 66 ° C.)
  • bisphenol S type epoxy resin bisphenol S type epoxy resin, biphenyl glycidyl ether (eg “YX-4000” manufactured by Mitsubishi Chemical Corporation), phenol novolac type epoxy resin (eg “EPPN-” manufactured by Nippon Kayaku Co., Ltd.) 201 ", Mitsubishi Chemical's” EP-152 “,” EP-154 “, Dow Chemical's” DEN-438 "), (o, m, p-) cresol novolac type epoxy resin (for example, Nippon Kayaku) “EOCN-102S”, “EOCN-1020”, “EOCN-104S”), triglycidyl isocyanurate (for example, “TEPIC” manufactured by Nissan Chemical Industries), trisphenolmethane type epoxy
  • XD-1000 manufactured by Nippon Kayaku Co., Ltd. is used as an epoxy resin represented by the following general formula (b1)
  • XD-1000 manufactured by Nippon Kayaku Co., Ltd. is used as an epoxy resin represented by the following general formula (b2).
  • NC-3000 an epoxy resin represented by the following general formula (b4),“ ESF-300 ”manufactured by Nippon Steel Chemical Co., Ltd., and the like.
  • a represents an average value and represents a numerical value within the range of 0 to 10.
  • R 11 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 3 to 10 carbon atoms. Represents a cycloalkyl group, a phenyl group, a naphthyl group or a biphenyl group, wherein a plurality of R 11 present in one molecule may be the same or different from each other.
  • R 21 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 3 to 10 carbon atoms. Represents a cycloalkyl group, a phenyl group, a naphthyl group or a biphenyl group, wherein a plurality of R 21 present in one molecule may be the same or different from each other.
  • X represents a linking group represented by the following general formula (b3-1) or (b3-2), provided that the molecular structure contains one or more adamantane structures. Represents an integer of 2 or 3.
  • R 31 to R 34 and R 35 to R 37 are each independently an adamantyl group optionally having a substituent, a hydrogen atom, An optionally substituted alkyl group having 1 to 12 carbon atoms or an optionally substituted phenyl group. * Represents a bond.
  • d and e each independently represent an integer of 0 to 4
  • R 41 and R 42 each independently represent an alkyl group or a halogen atom.
  • R 43 and R 44 each independently X and y each independently represents an integer of 0 or more, and when there are a plurality of R 43 and R 44 in the formula, they may be the same or different from each other. Good.
  • epoxy resins represented by general formulas (b1) to (b4) it is preferable to use epoxy resins represented by general formulas (b1) to (b4).
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group include (meth) acrylic acid, crotonic acid, o-vinylbenzoic acid, m-vinylbenzoic acid, p- Monobenzoic acid such as vinyl benzoic acid, ⁇ -haloalkyl of (meth) acrylic acid, alkoxyl, halogen, nitro, cyano substitution, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl Adipic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl maleic acid, 2- (meth) acryloyloxypropyl Succinic acid, 2-
  • (meth) acrylic acid is particularly preferable from the viewpoint of sensitivity.
  • an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group can be used as a method for adding an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group.
  • a known method can be used as a method for adding an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group.
  • an epoxy resin at a temperature of 50 to 150 ° C. in the presence of an esterification catalyst. it can.
  • esterification catalyst used here tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine, and benzyldiethylamine, quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride, dodecyltrimethylammonium chloride, and the like can be used.
  • tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine, and benzyldiethylamine
  • quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride, dodecyltrimethylammonium chloride, and the like can be used.
  • the amount of ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group is preferably in the range of 0.5 to 1.2 equivalents relative to 1 equivalent of epoxy group of the epoxy resin. More preferably, it is in the range of 0.7 to 1.1 equivalents.
  • the amount of ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group is small, the amount of unsaturated groups introduced is insufficient, and the subsequent polybasic acid and / or anhydride thereof The reaction with is also insufficient. Also, it is not advantageous that a large amount of epoxy groups remain.
  • Polybasic acids and / or anhydrides thereof include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, benzophenone tetracarboxylic acid, methyl hexahydrophthal
  • examples thereof include one or more selected from acids, endomethylenetetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, biphenyltetracarboxylic acid, and anhydrides thereof.
  • maleic acid succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, biphenyltetracarboxylic acid, or anhydrides thereof.
  • Particularly preferred is tetrahydrophthalic acid, biphenyltetracarboxylic acid, tetrahydrophthalic anhydride, or biphenyltetracarboxylic dianhydride.
  • a known method can be used for addition reaction of polybasic acid and / or anhydride thereof, and ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid having a carboxyl group to epoxy resin.
  • the target product can be obtained by continuing the reaction under the same conditions as in the ester addition reaction.
  • the addition amount of the polybasic acid and / or its anhydride component is preferably such that the acid value of the resulting carboxyl group-containing epoxy (meth) acrylate resin is in the range of 10 to 150 mgKOH / g, and further 20 The degree is preferably in the range of ⁇ 140 mgKOH / g.
  • transduced polyfunctional alcohol such as a trimethylol propane, a pentaerythritol, a dipentaerythritol, and introduce
  • the carboxyl group-containing epoxy (meth) acrylate resin is usually a polybasic acid and a reaction product of an epoxy resin and an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group. Or after mixing the anhydride, or a reaction product of an epoxy resin with an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group, Or it is obtained by heating after mixing the anhydride and polyfunctional alcohol. In this case, the mixing order of the polybasic acid and / or its anhydride and the polyfunctional alcohol is not particularly limited.
  • Any hydroxyl group present in the mixture of the reaction product of the epoxy resin with the ⁇ , ⁇ -unsaturated monocarboxylic acid or the ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group and the polyfunctional alcohol by heating.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the carboxyl group-containing epoxy (meth) acrylate resin is usually 1000 or more, preferably 1500 or more, and usually 10,000 or less, preferably 8000. Below, more preferably 6000 or less. If the weight average molecular weight is small, the solubility in the developer is high, and if it is too large, the solubility in the developer is low.
  • carboxyl group-containing epoxy (meth) acrylate resin one kind may be used alone, or two or more kinds may be mixed and used.
  • the organic binder (B ′) used in the present invention a part of the above-mentioned carboxyl group-containing epoxy (meth) acrylate resin may be replaced with another binder resin as long as the performance of the present invention is not impaired. That is, a carboxyl group-containing epoxy (meth) acrylate resin and another binder resin may be used in combination.
  • the proportion of the carboxyl group-containing epoxy (meth) acrylate resin in the (B ′) organic binder is preferably 50% by mass or more, particularly preferably 80% by mass or more.
  • binder resins that can be used in combination with the carboxyl group-containing epoxy (meth) acrylate resin are not limited, and can be selected from resins that are usually used in photosensitive colored resin compositions for color filters. Good. In addition, all other binder resins may be used alone or in combination of two or more.
  • the organic binder in the light-shielding material does not necessarily have the structure of the (B ′) organic binder in the colored resin composition because of polymerization, decomposition, and the like by exposure, development processing, and thermosetting processing described later.
  • the ⁇ , ⁇ -unsaturated monocarboxylic acid, ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group, polyhydric alcohol, polybasic acid and / or anhydride thereof added as a side chain has its structure by heat treatment. Often does not always remain.
  • the main skeleton portion of the resin is relatively likely to remain, and when the epoxy resins represented by the general formulas (b1) to (b4) are used, they are derived from the following (b1) to (b4) There is a tendency to have a structure. (Derived from b1 skeleton)
  • R 11 and a have the same meanings as R 11 and a in the formula (b1). * Represents a bond.
  • R 11 has the same meaning as R 11 in Formula (b1). * Represents a bond. (Derived from b2 skeleton)
  • R 21 and b have the same meanings as R 21 and b in Formula (b2). * Represents a bond.
  • R 21 has the same meaning as R 21 in the general formula (b2). * Represents a bond. (Derived from b3 skeleton)
  • R 31 ⁇ R 37 has the same meaning as R 31 ⁇ R 37 in the formula (b3). * Represents a bond. (Derived from b4 skeleton)
  • R 41 and R 42 have the same meanings as R 41 and R 42 in the general formula (b4). * Represents a bond.
  • the light-shielding material in the substrate with the light-shielding material according to the first aspect is usually a colored resin composition containing at least (A) a color material, (B) an organic binder, and, if necessary, (C) fine particles. Can be used. Various materials contained in the colored resin composition are usually used in a state of being dissolved or dispersed in (D) an organic solvent.
  • (D) It is preferable to select an organic solvent having a boiling point in the range of 100 to 300 ° C. A solvent having a boiling point of 120 to 280 ° C. is more preferable.
  • organic solvents examples include the following.
  • Ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol t-butyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, methoxymethylpentanol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, triethylene glycol monomethyl ether, triethylene glycol mono Chirueteru, glycol monoalkyl ethers such as tripropylene glycol methyl ether;
  • Glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, dipropylene glycol dimethyl ether;
  • Glycol diacetates such as ethylene glycol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanol diacetate;
  • Alkyl acetates such as cyclohexanol acetate
  • Ethers such as amyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, ethyl isobutyl ether, dihexyl ether;
  • Monovalent or polyhydric alcohols such as ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, methoxymethylpentanol, glycerin, benzyl alcohol;
  • Aliphatic hydrocarbons such as n-pentane, n-octane, diisobutylene, n-hexane, hexene, isoprene, dipentene, dodecane;
  • Cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane, methylcyclohexene, bicyclohexyl;
  • Aromatic hydrocarbons such as benzene, toluene, xylene, cumene;
  • Alkoxy carboxylic acids such as 3-methoxypropionic acid and 3-ethoxypropionic acid
  • Halogenated hydrocarbons such as butyl chloride and amyl chloride
  • Ether ketones such as methoxymethylpentanone
  • Nitriles such as acetonitrile and benzonitrile:
  • solvents corresponding to the above include mineral spirits, Valsol # 2, Apco # 18 solvent, Apco thinner, Soal Solvent No. 1 and no. 2, Solvesso # 150, Shell TS28, Solvent, Carbitol, Ethyl Carbitol, Butyl Carbitol, Methyl Cellosolve, Ethyl Cellosolve, Ethyl Cellosolve Acetate, Methyl Cellosolve Acetate, Diglyme It is done.
  • organic solvents may be used alone or in combination of two or more.
  • the organic solvent has a boiling point in the range of 100 to 200 ° C. (under pressure of 101.25 [hPa]. Hereinafter, the same applies to the boiling point). It is preferable to select one. More preferably, it has a boiling point of 120 to 170 ° C. If the boiling point is low, unevenness is likely to occur during drying, and if the boiling point is high, the burden on the dryer is large, or it may remain in the film as a residual solvent.
  • glycol alkyl ether acetates are preferable from the viewpoints of good balance in coating properties, surface tension, and the like, and relatively high solubility of the constituent components in the composition.
  • glycol alkyl ether acetates may be used alone or in combination with other organic solvents.
  • organic solvent used in combination glycol monoalkyl ethers are particularly preferable.
  • propylene glycol monomethyl ether is particularly preferred because of the solubility of the constituent components in the composition.
  • Glycol monoalkyl ethers are highly polar, and if the amount added is too large, the pigment tends to aggregate, and the storage stability such as the viscosity of the colored resin composition obtained later tends to decrease.
  • the proportion of glycol monoalkyl ethers in the solvent is preferably 5% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass.
  • an organic solvent having a boiling point of 150 ° C. or higher (hereinafter sometimes referred to as “high boiling point solvent”).
  • high boiling point solvent an organic solvent having a boiling point of 150 ° C. or higher
  • the colored resin composition becomes difficult to dry, but it has an effect of preventing the uniform dispersion state of the pigment in the composition from being destroyed by rapid drying. That is, for example, there is an effect of preventing the occurrence of a foreign matter defect due to precipitation and solidification of a coloring material at the tip of the slit nozzle.
  • diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-butyl ether acetate, and diethylene glycol monoethyl ether acetate are particularly preferred because of their high effects.
  • the content of the high boiling point solvent in the organic solvent is preferably 3% by mass to 50% by mass, more preferably 5% by mass to 40% by mass, and particularly preferably 5% by mass to 30% by mass. If the amount of the high boiling point solvent is too small, for example, a coloring material may precipitate and solidify at the tip of the slit nozzle to cause a foreign matter defect, and if it is too much, the drying temperature of the composition will be slowed down. There is a concern that the filter manufacturing process may cause problems such as tact defects in the vacuum drying process and pin marks of prebaking.
  • the high boiling point solvent having a boiling point of 150 ° C. or higher may be glycol alkyl ether acetates or glycol alkyl ethers. In this case, a high boiling point solvent having a boiling point of 150 ° C. or higher is separately contained. It doesn't have to be.
  • Preferred high boiling solvents include, for example, diethylene glycol mono-n-butyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, 1,3-butylene glycol diacetate, and 1,6-hexanol diester. Examples include acetate and triacetin.
  • Preferred examples of the high boiling point solvent having a boiling point of 180 ° C. or higher include, for example, diethylene glycol mono-n-butyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, 1,3-butylene glycol among the above-mentioned various solvents. Examples thereof include diacetate, 1,6-hexanol diacetate, and triacetin.
  • an organic solvent having a boiling point lower than 180 ° C. in order to adjust the viscosity and the solubility of the solid content of the ink and colored resin composition described later.
  • an organic solvent those having low viscosity, high solubility and low surface tension are preferable, and ethers, esters, ketones and the like are preferable.
  • cyclohexanone, dipropylene glycol dimethyl ether, cyclohexanol acetate and the like are particularly preferable.
  • alcohol is 20 mass% or less in all the organic solvents, 10 mass% or less is more preferable, and 5 mass% or less is especially preferable.
  • the light shielding material in the substrate with the light shielding material according to the first aspect, and the colored resin composition for forming the light shielding material may further contain (E) a photopolymerization initiator.
  • the photopolymerization initiator is a component having a function of directly absorbing light and causing a decomposition reaction or a hydrogen abstraction reaction to generate a polymerization active radical. If necessary, an additive such as a sensitizing dye may be added and used.
  • Examples of (E) photopolymerization initiators include metallocene compounds including titanocene compounds described in JP-A Nos. 59-152396 and 61-151197; Hexaarylbiimidazole derivatives described in Japanese Patent No. 56118; N-aryl- ⁇ -amino acids such as halomethylated oxadiazole derivatives, halomethyl-s-triazine derivatives and N-phenylglycine described in Japanese Patent Application Laid-Open No.
  • Radical activators such as N-aryl- ⁇ -amino acid salts and N-aryl- ⁇ -amino acid esters, ⁇ -aminoalkylphenone derivatives; Japanese Unexamined Patent Publication No. 2000-80068, Japanese Unexamined Patent Publication No. 2006-36750 And oxime ester derivatives described in Japanese Patent Publication No. Of these, oxime ester derivatives (oxime and ketoxime compounds) are particularly effective from the viewpoints of sensitivity and curability.
  • titanocene derivatives include dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium bisphenyl, dicyclopentadienyl titanium bis (2,3,4,5,6-pentafluoro Phen-1-yl), dicyclopentadienyl titanium bis (2,3,5,6-tetrafluorophen-1-yl), dicyclopentadienyl titanium bis (2,4,6-trifluoropheny) 1-yl), dicyclopentadienyltitanium di (2,6-difluorophen-1-yl), dicyclopentadienyltitanium di (2,4-difluorophen-1-yl), di (methylcyclopenta Dienyl) titanium bis (2,3,4,5,6-pentafluorophen-1-yl), di (methylsilane) Lopentadienyl) titanium bis (2,6-difluorophen-1-yl), di
  • Biimidazole derivatives include 2- (2′-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (2′-chlorophenyl) -4,5-bis (3′-methoxyphenyl) imidazole. Dimer, 2- (2′-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (2′-methoxyphenyl) -4,5-diphenylimidazole dimer, (4′-methoxy) Phenyl) -4,5-diphenylimidazole dimer and the like.
  • halomethylated oxadiazole derivatives examples include 2-trichloromethyl-5- (2′-benzofuryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- [ ⁇ - (2′- Benzofuryl) vinyl] -1,3,4-oxadiazole, 2-trichloromethyl-5- [ ⁇ - (2 ′-(6 ′′ -benzofuryl) vinyl)]-1,3,4-oxadiazole, 2 -Trichloromethyl-5-furyl-1,3,4-oxadiazole and the like.
  • halomethyl-s-triazine derivatives examples include 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6-bis ( Trichloromethyl) -s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-ethoxycarbonylnaphthyl) -4,6-bis (trichloromethyl) -S-triazine and the like.
  • ⁇ -aminoalkylphenone derivatives include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butanone-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 4-dimethylaminoethylbenzoate, 4-dimethylaminoisoamylbenzo Eat, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2,5-bis (4-diethylaminobenzal) cyclohexanone, 7-diethylamino-3- ( 4-diethylaminobenzoyl) coumarin, 4- (diethylamino) chalcone, etc. I can get lost
  • oxime derivatives are particularly effective in terms of sensitivity, and when (B) an alkali-soluble resin containing a phenolic hydroxyl group is used as an organic binder, Since it becomes disadvantageous in terms of sensitivity, oxime derivatives (oxime-based and ketoxime-based compounds) excellent in such sensitivity are particularly useful.
  • oxime compound examples include a compound containing a structural portion represented by the following general formula (6-1), and preferably an oxime ester compound represented by the following general formula (6-2).
  • R 62 is an optionally substituted alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, an alkenoyl group having 3 to 25 carbon atoms, C3-C8 cycloalkanoyl group, C3-C20 alkoxycarbonylalkanoyl group, C8-C20 phenoxycarbonylalkanoyl group, C3-C20 heteroaryloxycarbonylalkanoyl group, C2-C2 A 10-aminoalkylcarbonyl group, an aryloyl group having 7-20 carbon atoms, a heteroaryloyl group having 1-20 carbon atoms, an alkoxycarbonyl group having 2-10 carbon atoms, or an aryloxycarbonyl group having 7-20 carbon atoms.
  • R 61a is a hydrogen atom, or an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 25 carbon atoms, or a hetero atom having 1 to 20 carbon atoms.
  • Loyl group, alkoxycarbonyl group having 2 to 10 carbon atoms, aryloxycarbonyl group having 7 to 20 carbon atoms, or 1 to carbon atoms 10 cycloalkylalkyl groups are shown.
  • R 61b represents an arbitrary substituent containing an aromatic ring or a heteroaromatic ring.
  • R 61a may form a ring together with R 61b , and the linking group thereof may have a substituent, an alkylene group having 1 to 10 carbon atoms, a polyethylene group (— (CH ⁇ CH) r -), A polyethynylene group (-(C ⁇ C) r- ) or a group formed by a combination thereof (where r is an integer of 1 to 3).
  • R 62a is an optionally substituted alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, an alkenoyl group having 3 to 25 carbon atoms, and a cycloalkanoyl group having 3 to 8 carbon atoms.
  • An alkoxycarbonylalkanoyl group having 3 to 20 carbon atoms, a phenoxycarbonylalkanoyl group having 8 to 20 carbon atoms, a heteroaryloxycarbonylalkanoyl group having 3 to 20 carbon atoms, an aminocarbonyl group having 2 to 10 carbon atoms, and 7 carbon atoms Represents an aryloyl group having ⁇ 20, a heteroaryloyl group having 1 to 20 carbons, an alkoxycarbonyl group having 2 to 10 carbons, or an aryloxycarbonyl group having 7 to 20 carbons.
  • R 62 in the general formula (6-1) and R 62a in the general formula (6-2) are preferably an alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, or a carbon atom. Examples thereof include cycloalkanoyl groups of 3 to 8.
  • R 61a is preferably an unsubstituted methyl group, ethyl group, propyl group, or a propyl group substituted with an N-acetyl-N-acetoxyamino group.
  • R 61b in the general formula (6-2) preferably includes an optionally substituted carbazoyl group, an optionally substituted thioxanthonyl group, or an optionally substituted phenyl sulfide group.
  • examples of the optional substituent in the general formulas (6-1) and (6-2) include an alkyl group, an aryl group, an alicyclic group, a heterocyclic group, a halogen group, a hydroxyl group, a carboxyl group, and an amide group. Can be mentioned.
  • ketoxime compound examples include a compound containing a structural portion represented by the following general formula (6-3), and preferably an oxime ester compound represented by the following general formula (6-4).
  • R 64 has the same meaning as R 62 in the general formula (6-1).
  • R 63a is a phenyl group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 25 carbon atoms, or an alkyl group having 1 to 20 carbon atoms, each of which may be substituted.
  • R 63b represents an
  • R 63a may form a ring together with R 63b , and each of the linking groups thereof may have a substituent, an alkylene group having 1 to 10 carbon atoms, a polyethylene group (— (CH ⁇ CH) r -), A polyethynylene group (-(C ⁇ C) r- ) or a group formed by a combination thereof (where r is an integer of 1 to 3).
  • R 64a is each optionally substituted alkanoyl group having 2 to 12 carbon atoms, alkenoyl group having 3 to 25 carbon atoms, cycloalkanoyl group having 4 to 8 carbon atoms, benzoyl group having 7 to 20 carbon atoms, carbon Heteroaryloyl group having 3 to 20 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, aryloxycarbonyl group having 7 to 20 carbon atoms, heteroaryl group having 2 to 20 carbon atoms, or alkylaminocarbonyl having 2 to 20 carbon atoms Represents a group. )
  • R 64 in the general formula (6-3) and R 64a in the general formula (6-4) are preferably an alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, carbon Examples thereof include a cycloalkanoyl group having 3 to 8 carbon atoms and an aryloyl group having 7 to 20 carbon atoms.
  • R 63a in the general formula (6-4) is preferably an unsubstituted ethyl group, propyl group, butyl group, or an ethyl group or propyl group substituted with a methoxycarbonyl group.
  • R 63b in the general formula (6-4) is preferably an optionally substituted carbazoyl group or an optionally substituted phenyl sulfide group.
  • the optional substituents in the above general formulas (6-3) and (6-4) include alkyl groups, aryl groups, alicyclic groups, heterocyclic groups, halogen groups, hydroxyl groups, carboxyl groups, amide groups, and the like. Can be mentioned.
  • oxime ester-based compound and ketoxime ester-based compound suitable for the present invention include the compounds exemplified below, but are not limited to these compounds at all (in the following, , “Me” represents “methyl group”).
  • benzoin alkyl ethers such as benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether and benzoin isopropyl ether; anthraquinone derivatives such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone
  • Benzophenone derivatives such as benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone; 2,2-dimethoxy-2-phenyl Acetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, ⁇ -hydroxy-2-methyl Phenylpropanone, 1-hydroxy-1-methylethyl- (p-isopropy
  • oxime ester derivatives are particularly preferable from the viewpoint of sensitivity.
  • a sensitizing dye corresponding to the wavelength of the image exposure light source can be blended with the photopolymerization initiator for the purpose of increasing the sensitivity.
  • these sensitizing dyes include xanthene dyes described in JP-A-4-221958, JP-A-4-219756, JP-A-3-239703, JP-A-5-289335.
  • amino group-containing sensitizing dyes preferred are amino group-containing sensitizing dyes, and more preferred are compounds having an amino group and a phenyl group in the same molecule. Particularly preferred are, for example, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 2-aminobenzophenone, 4-aminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone.
  • Benzophenone compounds such as 3,4-diaminobenzophenone; 2- (p-dimethylaminophenyl) benzoxazole, 2- (p-diethylaminophenyl) benzoxazole, 2- (p-dimethylaminophenyl) benzo [4,5 ] Benzoxazole, 2- (p-dimethylaminophenyl) benzo [6,7] benzoxazole, 2,5-bis (p-diethylaminophenyl) 1,3,4-oxazole, 2- (p-dimethylaminophenyl) Benzothiazole, 2- (p-di Tilaminophenyl) benzothiazole, 2- (p-dimethylaminophenyl) benzimidazole, 2- (p-diethylaminophenyl) benzimidazole, 2,5-bis (p-diethylaminophenyl) benzimidazole, 2,5-bis (p-
  • a sensitizing dye may also be used individually by 1 type, and may use 2 or more types together.
  • a photopolymerizable compound is further contained in view of sensitivity and the like.
  • Examples of the photopolymerizable compound used in the present invention include compounds having at least one ethylenically unsaturated group in the molecule (hereinafter sometimes referred to as “ethylenic monomer”). Specifically, for example, (meth) acrylic acid, (meth) acrylic acid alkyl ester, acrylonitrile, styrene, a carboxylic acid having one ethylenically unsaturated bond, a monoester of polyhydric or monohydric alcohol, etc. It is done.
  • polyfunctional ethylenic monomers having two or more ethylenically unsaturated groups in one molecule.
  • polyfunctional ethylenic monomers include, for example, esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids; esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids; aliphatic polyhydroxy compounds, aromatics Examples thereof include esters obtained by an esterification reaction of a polyvalent hydroxy compound such as a polyhydroxy compound with an unsaturated carboxylic acid and a polybasic carboxylic acid.
  • ester of the aliphatic polyhydroxy compound and the unsaturated carboxylic acid examples include ethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, Acrylic acid esters of aliphatic polyhydroxy compounds such as pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, glycerol acrylate, etc.
  • itaconic acid ester replaced by itaconate
  • ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid examples include acrylic acid esters and methacrylic acid esters of aromatic polyhydroxy compounds such as hydroquinone diacrylate, hydroquinone dimethacrylate, resorcin diacrylate, resorcin dimethacrylate, pyrogallol triacrylate and the like. Etc.
  • the ester obtained by the esterification reaction of a polybasic carboxylic acid and an unsaturated carboxylic acid and a polyvalent hydroxy compound is not necessarily a single substance, but representative examples include acrylic acid, phthalic acid, and Examples include condensates of ethylene glycol, condensates of acrylic acid, maleic acid and diethylene glycol, condensates of methacrylic acid, terephthalic acid and pentaerythritol, condensates of acrylic acid, adipic acid, butanediol and glycerin.
  • a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate ester or a polyisocyanate compound and a polyol and a hydroxyl group-containing (meth) acrylate ester are reacted.
  • a polymer dispersant having a functional group is preferable, and further, from the viewpoint of dispersion stability, a carboxyl group; a phosphoric acid group; a sulfonic acid group; or a base thereof; a primary, secondary, or tertiary amino group.
  • polymer dispersants having basic functional groups such as primary, secondary or tertiary amino groups; quaternary ammonium bases; groups derived from nitrogen-containing heterocycles such as pyridine, pyrimidine and pyrazine are particularly preferred.
  • polymer dispersants include urethane dispersants, acrylic dispersants, polyethyleneimine dispersants, polyallylamine dispersants, dispersants composed of amino group-containing monomers and macromonomers, and polyoxyethylene alkyl ethers.
  • examples thereof include a dispersant, a polyoxyethylene diester dispersant, a polyether phosphate dispersant, a polyester phosphate dispersant, a sorbitan aliphatic ester dispersant, and an aliphatic modified polyester dispersant.
  • EFKA EFKA Chemicals Beebuy
  • Disperbyk manufactured by BYK Chemie, registered trademark
  • Disparon manufactured by Enomoto Kasei Co., Ltd., registered trademark
  • SOLPERSE Librisol Co., Ltd., registered trademark
  • KP Shin-Etsu Chemical Co., Ltd.
  • Polyflow Kel-Eisha Chemical Co., Ltd.
  • Ajisper Alka Chemical Co., Ltd., registered trademark
  • These polymer dispersants may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the polymer dispersant is usually 700 or more, preferably 1000 or more, and usually 100,000 or less, preferably 50,000 or less.
  • the dispersant contains a urethane polymer dispersant and / or an acrylic polymer dispersant having a functional group in terms of adhesion and linearity.
  • urethane polymer dispersants examples include Disperbyk (registered trademark) 160 to 167 and 182 series (above made by Big Chemie), EFKA4046 and EFKA4047 (above made by BASF), and examples of acrylic polymer dispersants are Disperbyk (registered). Trademarks) 2000, 2001 (manufactured by Big Chemie) and the like.
  • a preferable chemical structure as a urethane-based polymer dispersant include, for example, the same as a polyisocyanate compound and a compound having one or two hydroxyl groups in the molecule and a number average molecular weight of 300 to 10,000.
  • examples thereof include a dispersion resin having a weight average molecular weight of 1,000 to 200,000 obtained by reacting a compound having an active hydrogen and a tertiary amino group in the molecule.
  • polyisocyanate compounds examples include paraphenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene-1,5-diisocyanate, and tolidine diisocyanate.
  • Aromatic diisocyanates hexamethylene diisocyanates, lysine methyl ester diisocyanates, 2,4,4-trimethylhexamethylene diisocyanates, dimer acid diisocyanates and other aliphatic diisocyanates, isophorone diisocyanates, 4,4'-methylenebis (cyclohexyl isocyanate), ⁇ , ⁇ Alicyclic diisocyanates such as '-diisocyanate dimethylcyclohexane, xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetra Aliphatic diisocyanates having an aromatic ring such as tilxylylene diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-hexamethylene triisocyanate Examples thereof include triiso
  • polyisocyanate are trimers of organic diisocyanate, and most preferred are trimerene of tolylene diisocyanate and trimer of isophorone diisocyanate. These may be used alone or in combination of two or more.
  • the polyisocyanate may be converted into an isocyanate group using an appropriate trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylates and the like. And the trimerization is stopped by adding a catalyst poison, and then the unreacted polyisocyanate is removed by solvent extraction and thin-film distillation to obtain the desired isocyanurate group-containing polyisocyanate.
  • an appropriate trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylates and the like.
  • Examples of the compound having one or two hydroxyl groups in the same molecule and having a number average molecular weight of 300 to 10,000 include polyether glycol, polyester glycol, polycarbonate glycol, polyolefin glycol and the like, and one terminal hydroxyl group of these compounds has a carbon number. Examples thereof include those alkoxylated with 1 to 25 alkyl groups and mixtures of two or more thereof.
  • polyether glycols include polyether diols, polyether ester diols, and mixtures of two or more of these.
  • polyether diols are those obtained by homopolymerizing or copolymerizing alkylene oxides such as polyethylene glycol, polypropylene glycol, polyethylene-propylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, polyoxyoctamethylene glycol, and the like. The mixture of 2 or more types of these is mentioned.
  • Polyether ester diols include those obtained by reacting a mixture of ether group-containing diols or other glycols with dicarboxylic acids or their anhydrides or reacting polyester glycols with alkylene oxides, such as poly (poly And oxytetramethylene) adipate.
  • alkylene oxides such as poly (poly And oxytetramethylene) adipate.
  • the polyether glycol is polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol or a compound in which one terminal hydroxyl group of these compounds is alkoxylated with an alkyl group having 1 to 25 carbon atoms.
  • Polyester glycol includes dicarboxylic acid (succinic acid, glutaric acid, adipic acid, sebacic acid, fumaric acid, maleic acid, phthalic acid, etc.) or anhydrides thereof and glycol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, Dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 3-methyl-1,5-pentanediol, neopentyl glycol 2-methyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-2,4 Pentanediol, 2,2,
  • Polycarbonate glycols include poly (1,6-hexylene) carbonate, poly (3-methyl-1,5-pentylene) carbonate, and polyolefin glycols include polybutadiene glycol, hydrogenated polybutadiene glycol, hydrogenated polyisoprene glycol, etc. Is mentioned.
  • the number average molecular weight of the compound having one or two hydroxyl groups in the same molecule is usually 300 to 10,000, preferably 500 to 6,000, and more preferably 1,000 to 4,000.
  • the compound having an active hydrogen and a tertiary amino group in the same molecule used in the present invention will be described.
  • the active hydrogen that is, a hydrogen atom directly bonded to an oxygen atom, a nitrogen atom or a sulfur atom
  • a hydrogen atom in a functional group such as a hydroxyl group, an amino group, and a thiol group.
  • the hydrogen atom of the amino group is preferred.
  • the tertiary amino group is not particularly limited, and examples thereof include an amino group having an alkyl group having 1 to 4 carbon atoms or a heterocyclic structure, and more specifically an imidazole ring or a triazole ring.
  • Examples of such compounds having an active hydrogen and a tertiary amino group in the same molecule include N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, N , N-dipropyl-1,3-propanediamine, N, N-dibutyl-1,3-propanediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dipropylethylenediamine, N, N -Dibutylethylenediamine, N, N-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N-dipropyl-1,4-butanediamine, N, N-dibutyl-1 , 4-butanediamine and the like.
  • examples of the nitrogen-containing heterocyclic ring include pyrazole ring, imidazole ring, triazole ring, tetrazole ring, indole ring, carbazole ring, indazole ring, benzimidazole ring, benzo N-containing hetero 5-membered ring such as triazole ring, benzoxazole ring, benzothiazole ring, benzothiadiazole ring, etc., nitrogen-containing hetero 6-membered ring such as pyridine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, acridine ring, isoquinoline ring A ring is mentioned.
  • nitrogen-containing heterocycles preferred are an imidazole ring or a triazole ring.
  • these compounds having an imidazole ring and an amino group include 1- (3-aminopropyl) imidazole, histidine, 2-aminoimidazole, 1- (2-aminoethyl) imidazole and the like.
  • specific examples of the compound having a triazole ring and an amino group include 3-amino-1,2,4-triazole, 5- (2-amino-5-chlorophenyl) -3-phenyl-1H-1 2,4-triazole, 4-amino-4H-1,2,4-triazole-3,5-diol, 3-amino-5-phenyl-1H-1,3,4-triazole, 5-amino-1 , 4-diphenyl-1,2,3-triazole, 3-amino-1-benzyl-1H-2,4-triazole and the like.
  • N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, 1- (3-aminopropyl) imidazole, and 3-amino-1,2,4-triazole preferable.
  • the preferred blending ratio of the raw materials for producing the urethane polymer dispersant is 10 compounds having a number average molecular weight of 300 to 10,000 having one or two hydroxyl groups in the same molecule with respect to 100 parts by mass of the polyisocyanate compound.
  • the production of the urethane-based polymer dispersant is performed according to a known method for producing a polyurethane resin.
  • a solvent for production usually, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, isophorone, esters such as ethyl acetate, butyl acetate, cellosolve acetate, benzene, toluene, xylene, hexane Hydrocarbons such as diacetone alcohol, isopropanol, sec-butanol, tert-butanol, etc., chlorides such as methylene chloride and chloroform, ethers such as tetrahydrofuran and diethyl ether, dimethylformamide, N-methyl Aprotic polar solvents such as pyrrolidone and dimethyl sulfoxide are used. These may be used alone or in combination of
  • a urethanization reaction catalyst is usually used.
  • the catalyst include tin-based compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, and stannous octoate, iron-based compounds such as iron acetylacetonate and ferric chloride, triethylamine, and triethylenediamine. 1 type, or 2 or more types, such as a secondary amine type
  • the introduction amount of the compound having active hydrogen and tertiary amino group in the same molecule is preferably controlled in the range of 1 to 100 mgKOH / g in terms of the amine value after the reaction. More preferably, it is in the range of 5 to 95 mgKOH / g.
  • the amine value is a value obtained by neutralizing and titrating a basic amino group with an acid, and representing the acid value in mg of KOH. When the amine value is lower than the above range, the dispersing ability tends to be lowered, and when it exceeds the above range, the developability tends to be lowered.
  • the weight average molecular weight (Mw) of the urethane-based polymer dispersant is usually in the range of 1,000 to 200,000, preferably 2,000 to 100,000, more preferably 3,000 to 50,000. If the molecular weight is less than 1,000, the dispersibility and dispersion stability are poor, and if it exceeds 200,000, the solubility is lowered and the dispersibility is poor, and at the same time, it becomes difficult to control the reaction.
  • an unsaturated group-containing monomer having a functional group (the functional group here is the functional group described above as the functional group contained in the polymer dispersant); It is preferable to use a random copolymer, a graft copolymer, or a block copolymer with an unsaturated group-containing monomer having no functional group. These copolymers can be produced by a known method.
  • Examples of the unsaturated group-containing monomer having a functional group include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acrylic acid.
  • Tertiary amino groups such as unsaturated monomers having a carboxyl group such as leuoxyethyl hexahydrophthalic acid and acrylic acid dimer, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate and quaternized products thereof; Specific examples include unsaturated monomers having a quaternary ammonium base. These may be used alone or in combination of two or more.
  • Examples of the unsaturated group-containing monomer having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, t-butyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxymethyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, isobornyl (meth) acrylate, tricyclodecane (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, N-vinylpyrrolidone, styrene and its derivatives
  • the acrylic polymer dispersant is particularly preferably an AB or BAB block copolymer composed of an A block having a functional group and a B block having no functional group.
  • the block may contain an unsaturated group-containing monomer that does not contain the functional group. It may be contained in any form of polymerization or block copolymerization.
  • content in the A block of the partial structure which does not contain a functional group is 80 mass% or less normally, Preferably it is 50 mass% or less, More preferably, it is 30 mass% or less.
  • the B block is composed of an unsaturated group-containing monomer that does not contain the above functional group, but two or more types of monomers may be contained in one B block. It may be contained in any form of random copolymerization or block copolymerization in the block.
  • the AB or BAB block copolymer is prepared, for example, by a living polymerization method.
  • the living polymerization method includes an anion living polymerization method, a cation living polymerization method, and a radical living polymerization method.
  • the anion living polymerization method has a polymerization active species as an anion.
  • the radical living polymerization method the polymerization active species is a radical.
  • the acrylic polymer dispersant used in the present invention is an AB block copolymer or a BAB block copolymer
  • the A block / B block ratio constituting the copolymer is not limited. Is preferably 1/99 to 80/20, and more preferably 5/95 to 60/40 (mass ratio). Outside this range, good heat resistance and dispersibility may not be achieved in some cases.
  • the amount of the quaternary ammonium base in 1 g of the AB block copolymer and the BAB block copolymer according to the present invention is preferably 0.1 to 10 mmol, and outside this range, In some cases, good heat resistance and dispersibility cannot be combined.
  • Such a block copolymer usually contains an amino group produced in the production process, but its amine value is about 1 to 100 mgKOH / g.
  • the amine value of the dispersant such as these block copolymers is expressed by the mass of KOH equivalent to the amount of base per gram of solid content excluding the solvent in the dispersant sample, and is measured by the following method. Disperse 0.5-1.5 g of the dispersant sample in a 100 mL beaker and dissolve with 50 mL of acetic acid. This solution is neutralized with a 0.1 mol / L HClO 4 acetic acid solution using an automatic titrator equipped with a pH electrode. Using the inflection point of the titration pH curve as the end point of titration, the amine value is determined by the following formula.
  • Amine value [mgKOH / g] (561 ⁇ V) / (W ⁇ S) [However, W: Weighing amount of dispersant sample [g], V: Titration amount at the end of titration [mL], S: Solid content concentration [mass%] of the dispersant sample. ]
  • the acid value of the block copolymer depends on the presence and type of the acid group that is the basis of the acid value, but is generally preferably low, and is usually 10 mg KOH / g or less, and its weight average molecular weight (Mw) ) Is preferably in the range of 1000 to 100,000.
  • Mw weight average molecular weight
  • the above dispersant may be used in combination with the following pigment derivatives.
  • pigment derivatives azo, phthalocyanine, quinacridone, benzimidazolone, quinophthalone, isoindolinone, dioxazine, anthraquinone, indanthrene, perylene, perinone, diketopyrrolopyrrole, dioxazine Among them, derivatives such as phthalocyanines and quinophthalones are preferable.
  • Substituents of pigment derivatives include sulfonic acid groups, sulfonamide groups and quaternary salts thereof, phthalimidomethyl groups, dialkylaminoalkyl groups, hydroxyl groups, carboxyl groups, amide groups, etc. directly on the pigment skeleton or alkyl groups, aryl groups, and complex groups. Examples thereof include those bonded via a ring group and the like, and a sulfonic acid group is preferable. Further, a plurality of these substituents may be substituted on one pigment skeleton.
  • the pigment derivative examples include phthalocyanine sulfonic acid derivatives, quinophthalone sulfonic acid derivatives, anthraquinone sulfonic acid derivatives, quinacridone sulfonic acid derivatives, diketopyrrolopyrrole sulfonic acid derivatives, and dioxazine sulfonic acid derivatives. These may be used alone or in combination of two or more.
  • the colored resin composition for forming the light shielding material in the substrate with the light shielding material according to the first aspect includes, in addition to the above-mentioned components, a phosphoric acid-based additive, a silane coupling agent, a surfactant, and a thiol-based additive.
  • a phosphoric acid-based additive for forming the light shielding material in the substrate with the light shielding material according to the first aspect
  • a silane coupling agent e.g., a silane coupling agent, e., a surfactant, and a thiol-based additive.
  • an ultraviolet absorber, an antioxidant and the like can be appropriately blended.
  • Phosphate-based additive As the phosphate-based additive, (meth) acryloyloxy group-containing phosphates are preferable, and those represented by the following general formula (5a), (5b) or (5c) are preferable.
  • R 51 represents a hydrogen atom or a methyl group
  • p and p ′ are integers of 1 to 10
  • q is 1, 2 or 3.
  • These phosphoric acid additives may be used alone or in combination of two or more.
  • silane coupling agent In order to improve the adhesion to the transparent substrate, a silane coupling agent can be added.
  • a silane coupling agent various types such as epoxy-based, (meth) acrylic-based, and amino-based ones can be used alone or in admixture of two or more.
  • Preferred silane coupling agents include, for example, (meth) acryloxysilanes such as 3-methacryloxypropylmethyldimethoxysilane and 3-methacryloxypropyltrimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Epoxy silanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and ureidosilanes such as 3-ureidopropyltriethoxysilane
  • isocyanate silanes such as 3-isocyanatopropyltriethoxysilane are preferable, and epoxy silane silane coupling agents are particularly preferable.
  • silane coupling agents may be used alone or in combination of two or more.
  • surfactant for example, various types such as anionic, cationic, nonionic, and amphoteric surfactants can be used.
  • nonionic surfactants are preferably used because they are less likely to adversely affect various properties, and among them, fluorine-based and silicon-based surfactants are effective in terms of coatability.
  • surfactants examples include TSF4460 (manufactured by GE Toshiba Silicone), DFX-18 (manufactured by Neos), BYK-300, BYK-325, BYK-330 (manufactured by BYK Chemie), and KP340 (Shin-Etsu Silicone).
  • F-470, F-475, F-478, F-559 (Dainippon Ink & Chemicals), SH7PA (Toray Silicone), DS-401 (Daikin), L-77 ( Nippon Unicar Co., Ltd.), FC4430 (Sumitomo 3M Co., Ltd.) and the like.
  • surfactants may be used alone or in combination of two or more in any combination and ratio.
  • thiol-based additive It is also possible to add thiols to increase sensitivity and improve adhesion to a transparent substrate.
  • Types of thiols include hexanedithiol, decanedithiol, 1,4-dimethylmercaptobenzene, butanediol bisthiopropionate, butanediol bisthioglycolate, ethylene glycol bisthioglycolate, trimethylolpropane tristhioglycolate , Butanediol bisthiopropionate, trimethylolpropane tristhiopropionate, trimethylolpropane tristhioglycolate, pentaerythritol tetrakisthiopropionate, pentaerythritol tetrakisthioglycolate, trishydroxyethyl tristhiopropionate, Ethylene glycol bis (3-mercaptobutyrate), butan
  • the content of the (A) color material is usually 1 to 70 with respect to the total solid content in the colored resin composition. It can be selected within the range of mass%. Among these ranges, 10 to 60% by mass is more preferable, and 20 to 55% by mass is particularly preferable. (A) If the content of the color material is too small, the light shielding property as the light shielding material is lowered, and if the content is too large, sufficient image forming properties may not be obtained.
  • the content of the (A) color material is 1 with respect to the total solid content in the colored resin composition. More preferably, the content is more preferably 30% by mass, and particularly preferably 1-20% by mass.
  • (A) Content of a coloring material is 20 with respect to the total solid in a colored resin composition. It is more preferably from 70 to 70% by weight, particularly preferably from 30 to 60% by weight.
  • A When there is too little content of a coloring material, sufficient light-shielding property may not be acquired.
  • the content thereof is usually 50% by mass or less, preferably 30% by mass or less, and usually 1% by mass or more, preferably 3% by mass or more in the solid content of the colored resin composition. Further, the content of the dispersant is usually 5% by mass or more, particularly 10% by mass or more, and usually 200% by mass or less, and particularly preferably 80% by mass or less, with respect to (A) the color material. If the content of the dispersant is too low, sufficient dispersibility may not be obtained. If the content is too high, the proportion of other components is relatively reduced, and the color density, sensitivity, film formability, etc. tend to decrease. is there.
  • the dispersant it is preferable to use a polymer dispersant and a pigment derivative in combination.
  • the blending ratio of the pigment derivative is usually 1 mass relative to the total solid content of the colored resin composition of the present invention. % Or more and usually 10% by mass or less, preferably 5% by mass or less.
  • (B) Content of organic binder is 5 mass% or more normally with respect to the total solid of the colored resin composition of this invention, Preferably it is 10 mass% or more, Usually 85 mass% or less, Preferably it is 80. It is below mass%.
  • the amount of (B) organic binder to (A) colorant is usually in the range of 10 to 500% by mass, preferably 30 to 300% by mass, more preferably 50 to 200% by mass. (A) If the content of (B) the organic binder with respect to the colorant is too low, the solubility of the unexposed portion in the developing solution is lowered, and it is easy to induce development failure. It becomes difficult to obtain.
  • the content of (B) the organic binder is (A) the color material and (C) the fine particles.
  • the content is preferably 10 to 300% by mass, more preferably 20 to 200% by mass, based on the total amount.
  • the content of (C) fine particles in the light shielding material on the transparent substrate side and the colored resin composition for forming the first layer in the light shielding material is usually 10 with respect to the total solid content of the colored resin composition of the present invention. It is used in the range of ⁇ 40% by mass, preferably in the range of 15 to 35% by mass.
  • the colored resin composition used for formation of the layer on the opposite side to the transparent substrate or the second and subsequent layers in the light shielding material does not contain (C) fine particles.
  • (E) Content of a photoinitiator is 0.1 mass% or more normally with respect to the total solid of the colored resin composition of this invention, Preferably it is 0.5 mass% or more, More preferably, it is 0.7. It is at least mass%, usually at most 30 mass%, preferably at most 20 mass%.
  • an accelerator with a photoinitiator content of an accelerator is 0 mass% or more normally with respect to the total solid of the colored resin composition of this invention, Preferably it is 0.02 mass% or more. In general, it is 10% by mass or less, preferably 5% by mass or less, and the accelerator is used in an amount of 0.1 to 50% by mass, particularly 0.1 to 10% by mass with respect to (E) the photopolymerization initiator. It is preferable to use it.
  • the blending ratio of the photopolymerization initiator system component composed of a photopolymerization initiator and an accelerator is extremely low, the sensitivity to exposure light may be reduced. The solubility in the liquid may be reduced, leading to poor development.
  • the blending ratio of the sensitizing dye in the colored resin composition of the present invention is usually 0 to 20% by mass, preferably 0 to 15% by mass, and more preferably based on the total solid content in the colored resin composition. 0 to 10% by mass.
  • a photopolymerizable compound When a photopolymerizable compound is used, its content is usually 90% by mass or less, preferably 80% by mass or less, based on the total solid content of the colored resin composition of the present invention. When there is too much content of a photopolymerizable compound, the permeability
  • the minimum of content of a photopolymerizable compound is 1 mass% or more normally, Preferably it is 5 mass% or more.
  • the content thereof is usually 0.1 to 5% by mass, preferably 0.2 to 0.2% by mass based on the total solid content in the coloring composition. It is 3% by mass, more preferably 0.4-2% by mass. If the content of the silane coupling agent and / or phosphoric acid additive is less than the above range, the effect of improving the adhesion cannot be sufficiently obtained. If the content is too large, the sensitivity is lowered or the residue remains after development. It may become.
  • the content thereof is usually 0.001 to 10% by mass, preferably 0.005 to 1% by mass, more preferably 0.01 to 10% by mass with respect to the total solid content in the colored resin composition. 0.5% by mass, most preferably 0.03 to 0.3% by mass. If the surfactant content is less than the above range, the smoothness and uniformity of the coating film may not be expressed. If the content is large, the smoothness and uniformity of the coating film may not be expressed, and other properties may deteriorate. There is a case.
  • the thiol-based additive When the thiol-based additive is used, its content is usually 0.1% by mass or more, preferably 0.3% by mass or more, more preferably 0.00% by mass, based on the total solid content of the colored resin composition of the present invention. It is 5 mass% or more, and is 10 mass% or less normally, Preferably it is 5 mass% or less. If the content of the thiol-based additive is too small, the sensitivity may be lowered. On the other hand, if the content is too large, the storage stability may be deteriorated.
  • the colored resin composition of the present invention is prepared using the organic solvent (D) described above so that the solid content concentration is usually 5 to 50% by mass, preferably 10 to 30% by mass. .
  • the colored resin composition (hereinafter sometimes referred to as “resist”) for forming the light shielding material in the substrate with the light shielding material according to the first aspect is produced according to a conventional method.
  • the colorant (A) is finely divided by the dispersion treatment, the resist coating characteristics are improved.
  • a black color material is used as the color material (A), it contributes to an improvement in light shielding ability.
  • the dispersion treatment is usually performed in a system in which (A) a color material, (D) an organic solvent, and, if necessary, a dispersant, and (B) an organic binder and / or a part or all of other binder resins are used in combination. It is preferable to carry out.
  • the mixture to be subjected to the dispersion treatment and the composition obtained by the treatment may be referred to as “ink”.
  • the resulting ink and resist are time-lapsed. This is preferable because the increase in the viscosity is suppressed (that is, the dispersion stability is excellent).
  • a highly reactive component may be denatured due to heat generated during the dispersion treatment. Therefore, it is preferable to perform the dispersion treatment in a system containing the above-described components.
  • the temperature is usually from 0 ° C. to 100 ° C., and preferably from room temperature to 80 ° C.
  • the dispersion time is appropriately adjusted because the appropriate time varies depending on the composition of the liquid and the size of the dispersion treatment apparatus.
  • the standard of dispersion is to control the gloss of the ink so that the 20-degree specular gloss of the resist (JIS Z8741-1997) is in the range of 100 to 200.
  • the dispersion treatment is not sufficient, and rough pigment (coloring material) particles often remain, which may result in insufficient developability, adhesion, resolution, and the like.
  • the dispersion treatment is performed until the gloss value exceeds the above range, the pigment is crushed and a large number of ultrafine particles are generated, so that the dispersion stability tends to be impaired.
  • the ink obtained by the dispersion treatment and the other components contained in the resist are mixed to obtain a uniform solution.
  • fine dust is often mixed in the liquid, and thus the obtained resist is preferably filtered by a filter or the like.
  • Examples of the method for forming the light shielding material of the present invention include a method of etching a coating film of a colored resin composition with a positive resist and a method of using a photosensitive coloring composition.
  • a desired pattern is formed with a coating film of a positive type photoresist, and then etched using an etching solution, and finally a positive type photo resist is formed.
  • the light shielding material can be formed by peeling the resist with a release agent.
  • the photosensitive coloring resin composition When using the photosensitive coloring composition, the photosensitive coloring resin composition is applied on a transparent substrate, dried, and then a photomask is overlaid on the formed coating film, and image exposure is performed through this photomask. Then, a pixel image is formed by development and, if necessary, thermosetting or photocuring to form a light shielding material.
  • the light-shielding material of the present invention is obtained by laminating two or more light-shielding layers on a transparent substrate. Therefore, in the above-described method for producing a light-shielding material, a colored resin composition or photosensitive coloring is used for each light-shielding layer. After forming a coating film by applying and drying the resin composition to form a multilayer coating film, in the case of positive etching, after forming a positive photoresist coating film, etching is performed to form a photosensitive colored resin. When using the composition, image exposure is performed.
  • FIGS. 2 (a) to 2 (c) a case where a light shielding material in which two light shielding layers are laminated using a photosensitive colored resin composition will be described with reference to FIGS. 2 (a) to 2 (c).
  • the method for forming the light shielding material is not limited to this method. Further, when forming a light shielding material having three or more light shielding layers, it may be performed in the same manner as described below except that the coating film formation for the second light shielding layer is similarly performed a plurality of times. it can.
  • a first light-shielding layer coating film 12A is formed by applying and drying a photosensitive colored resin composition for forming a first light-shielding layer on a transparent substrate 11.
  • the second light-shielding layer coating film 13A is formed by applying and drying a photosensitive colored resin composition for forming a second light-shielding layer.
  • a photomask 15 is overlaid on the laminated coating film, exposed through the photomask 15, and developed, and a pixel image is formed by heat curing or photocuring as necessary.
  • a light shielding material having a laminated structure formed by the first light shielding layer 12 and the second light shielding layer 13 as shown in FIG. 2C is formed.
  • the photosensitive colored resin composition can be applied by a spinner method, a wire bar method, a flow coating method, a die coating method, a roll coating method, a spray coating method, or the like.
  • the die coating method significantly reduces the amount of coating solution used, and has no influence from mist adhering to the spin coating method. To preferred.
  • the thickness of the coating film is set to such a thickness that the above-described light shielding material, the first light shielding layer, and the second light shielding layer have suitable film thicknesses.
  • Drying of coating film The drying of the coating film after applying the photosensitive colored resin composition to the transparent substrate is preferably performed by a drying method using a hot plate, an IR oven, or a convection oven. Drying conditions can be appropriately selected according to the type of the solvent component, the performance of the dryer used, and the like.
  • the drying time is usually selected in the range of 15 to 10 minutes at a temperature of 40 to 200 ° C., preferably 50 to 150 ° C., depending on the type of solvent component, the performance of the dryer used, and the like. It is selected in the range of 30 seconds to 5 minutes.
  • the drying conditions for the first light-shielding layer coating film are particularly preferably selected at a temperature of 100 to 150 ° C. in a range of 60 seconds to 5 minutes. If this drying is too weak, the coating film for the first light-shielding layer dissolves when the photosensitive colored resin composition for forming the second light-shielding layer is applied, and if it is too strong, development failure or the like may occur. is there.
  • the drying process of this coating film may perform the reduced pressure drying method which does not raise temperature but performs drying in a reduced pressure chamber.
  • Exposure Image exposure is performed by superimposing a negative mask pattern on the laminated coating film of the photosensitive colored resin composition and irradiating a UV or visible light source through the mask pattern. At this time, if necessary, exposure may be performed after an oxygen blocking layer such as a polyvinyl alcohol layer is formed on the photopolymerizable coating film in order to prevent a decrease in sensitivity of the photopolymerizable layer due to oxygen.
  • the light source used for said image exposure is not specifically limited.
  • Examples of the light source include a xenon lamp, a halogen lamp, a tungsten lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, and a fluorescent lamp, an argon ion laser, a YAG laser, Examples include an excimer laser, a nitrogen laser, a helium cadmium laser, and a laser light source such as a semiconductor laser. An optical filter can also be used when used by irradiating light of a specific wavelength.
  • the image of the coating film made of the photosensitive colored resin composition is exposed with the above light source, the image is formed on the substrate by development using an organic solvent or an aqueous solution containing a surfactant and an alkaline compound. Can be formed.
  • This aqueous solution may further contain an organic solvent, a buffering agent, a complexing agent, a dye or a pigment.
  • Alkaline compounds include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium silicate, potassium silicate, sodium metasilicate, sodium phosphate, potassium phosphate
  • Inorganic alkaline compounds such as sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium hydroxide, mono-di- or triethanolamine, mono-di- or trimethylamine , Mono-di- or triethylamine, mono- or diisopropylamine, n-butylamine, mono-di- or triisopropanolamine, ethyleneimine, ethylenediimine, tetramethylammonium hydroxide (TMAH), choline, etc.
  • Organic alkaline compounds. These alkaline compounds may be a mixture of two or more.
  • surfactant examples include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl aryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl aryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • anionic surfactants such as salts, alkylnaphthalene sulfonates, alkyl sulfates, alkyl sulfonates, and sulfosuccinate esters
  • amphoteric surfactants such as alkylbetaines and amino acids.
  • organic solvent examples include isopropyl alcohol, benzyl alcohol, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, propylene glycol, diacetone alcohol and the like.
  • the organic solvent may be used alone or in combination with an aqueous solution.
  • the development processing conditions are not particularly limited, and the development temperature is usually in the range of 10 to 50 ° C., particularly 15 to 45 ° C., particularly preferably 20 to 40 ° C.
  • the development methods are immersion development, spray development, brush Any of a developing method, an ultrasonic developing method and the like can be used.
  • thermosetting treatment After development, a thermosetting treatment may be performed.
  • the thermosetting treatment conditions at this time are selected such that the temperature is in the range of 100 to 280 ° C., preferably in the range of 150 to 250 ° C., and the time is in the range of 5 to 60 minutes.
  • the light shielding material of the present invention is mainly used for a black matrix of a color filter, but is not limited to a black matrix.
  • the content of the color material (A) is the total mass of the light-shielding material because the color material in the colored resin composition remains in the light-shielding material. On the other hand, it is usually in the range of 1 to 70% by mass, preferably 10 to 60% by mass.
  • the content of the color material (A) is more preferably 1 to 30% by mass and particularly preferably 1 to 20% by mass with respect to the total mass of the light shielding material.
  • the content of the color material (A) is more preferably 20 to 70% by mass, and particularly preferably 30 to 60% by mass with respect to the total mass of the light shielding material.
  • the composition is generally as follows. When a dispersant is used, it is usually 50% by mass or less, preferably 30% by mass or less, and usually 1% by mass or more, preferably 3% by mass or more with respect to the total mass of the light shielding material.
  • the organic binder is usually 5% by mass or more, preferably 10% by mass or more, and usually 85% by mass or less, preferably 80% by mass or less, based on the total mass of the light shielding material.
  • a photoinitiator is 0.01 mass% or more normally 30 mass% or less with respect to the total mass of a light shielding material. When a photopolymerizable compound is used, it is usually 90% by mass or less and usually 0.01% by mass or more with respect to the total mass of the light shielding material.
  • the (D) organic solvent occupying the light shielding material of the present invention is usually lost by evaporation or the like during the exposure, development processing and thermosetting processing described above, and is usually 0 to 1% by mass with respect to the total mass of the light shielding material. However, it tends to remain only.
  • the substrate with a light shielding material according to the second aspect of the present invention has a light shielding material on a transparent substrate, the light shielding material contains (A) a color material and (B) an organic binder, and the following (3 ) To (5) are satisfied.
  • the transparent substrate side of the light shielding material contains a black pigment as the color material (A).
  • the side opposite to the transparent substrate of the light shielding material contains a pigment as the color material (A).
  • the OD value per 1 ⁇ m of the light shielding material is different in the thickness direction, and the side opposite to the transparent substrate is higher than the side of the transparent substrate.
  • the transparent substrate side of the light shielding material contains the black pigment as the color material (A), so that the light incident from the transparent substrate side can be efficiently absorbed regardless of the wavelength, and the wavelength dependency of the reflectance. There is a tendency that can be reduced. Moreover, there exists a tendency which can suppress the reflection of the light which can occur on the opposite side to a transparent substrate because the opposite side to the transparent substrate of a light shielding material contains a pigment as (A) color material. Furthermore, since the OD value per 1 ⁇ m of the light shielding material is different in the thickness direction and the side opposite to the transparent substrate is higher than the transparent substrate side, there is a tendency that both high light shielding properties and low reflection properties can be easily achieved.
  • the OD value per 1 ⁇ m of the light shielding material is gradually different in the thickness direction, and the opposite side of the transparent substrate is higher than the transparent substrate side.
  • (A) a method of applying a colored resin composition having different colorant concentrations (A) a plurality of times so as to gradually increase the concentration of (A) colorant can be mentioned.
  • the organic binder (B) in each colored resin composition with the same type or a similar type of material, there is a tendency that the formation of an interface due to multiple coatings can be suppressed.
  • the light shielding material is composed of two or more layers, and the OD value per 1 ⁇ m in the layer on the side opposite to the transparent substrate is higher than the layer on the transparent substrate side.
  • A a method of applying a colored resin composition having different colorant concentrations (A) a plurality of times so that the concentration of the colorant gradually increases (A) can be mentioned. It is done. In this case, there is a tendency that an interface can be formed at the time of a plurality of coatings by configuring the organic binder (B) in each colored resin composition with different types of materials.
  • the laminated structure is not particularly limited.
  • two or more light shielding layers may be laminated in parallel with the contact surface with the transparent substrate.
  • the number of layers is not particularly limited, but if the number of layers is large, the number of steps of applying the colored resin composition at the time of forming the light shielding material is increased, and the production efficiency is deteriorated. It is preferably 2 to 3 layers, more preferably 2 layers.
  • the values described in the first aspect are preferably adopted. Can do. Furthermore, it is preferable that the relative reflectance at a wavelength of 550 nm and the difference between the upper limit value and the lower limit value of the relative reflectance at a wavelength of 450 to 650 nm are set to the values described in the first embodiment. As in the first embodiment, (C) fine particles may be contained. As a specific configuration, the one described in the first aspect can be preferably employed.
  • black pigment contained in the transparent substrate side of the light shielding material according to the second aspect for example, those exemplified in the above-mentioned ⁇ (A) Color material> can be used, and from the viewpoint of color tone, aniline black, Organic black pigments such as perylene black and cyanine black, and carbon black are preferred. Also, a combination of pigments in which a red pigment, a yellow pigment, an orange pigment, or the like is mixed with a black pigment to reduce the difference in reflectance depending on the wavelength can be used. Among these, carbon black is more preferable from the viewpoints of color tone and light shielding properties.
  • the pigment contained on the side opposite to the transparent substrate of the light shielding material for example, those exemplified in the above-mentioned ⁇ (A) Color material> can be used.
  • aniline black, perylene black Organic black pigments such as cyanine black, carbon black, and titanium black are preferable.
  • a blue pigment, a red pigment, a yellow pigment, an orange pigment, and the like can be used in combination.
  • carbon black and titanium black are more preferable from the viewpoint of light shielding properties.
  • substrate with a light shielding material which concerns on a 1st aspect is also employable.
  • organic binder what hardened the above-mentioned (B ') organic binder is mentioned, for example.
  • organic binder (B ′) containing the above-mentioned (E) photopolymerization initiator and other components it may contain (E) a photopolymerization initiator and other components.
  • transparent substrate those described later in the description of the color filter of the present invention are usually used.
  • the light shielding material in the substrate with the light shielding material according to the second aspect can be formed using the colored resin composition described in the first aspect.
  • the colored resin composition according to the third aspect of the present invention is a photosensitive colored resin composition, comprising (A) a color material, (B ′) an organic binder, and (C) a refractive index of 1.2 or more and 1.8.
  • the following fine particles and (D) an organic solvent are contained, and the content of (C) fine particles is 15% by mass or more.
  • this colored resin composition is applied onto a substrate, and another colored resin composition is further applied thereon.
  • dissolution of the colored resin composition can be suppressed, and a substrate with a light-shielding material that can achieve excellent low reflectivity tends to be formed with high productivity.
  • fine-particles is 15 mass% or more, it is preferable that it is 20 mass% or more, it is preferable that it is 40 mass% or less, and it is more preferable that it is 30 mass% or less.
  • the (A) color material those described in the above-mentioned ⁇ (A) color material> can be preferably used.
  • the (B ′) organic binder the above-mentioned ⁇ (B ′) organic binder>
  • the organic solvent described in the above ⁇ (D) organic solvent> can be preferably used as the organic solvent (D).
  • adhesion improver such as silane coupling agent, coatability improver, development improver, ultraviolet absorber, antioxidant, surface activity
  • adhesion improver such as silane coupling agent, coatability improver, development improver, ultraviolet absorber, antioxidant, surface activity
  • Other compounding components, such as an agent and a pigment derivative may be included, and each compounding component is normally used in a state dissolved or dispersed in (D) an organic solvent.
  • substrate with a light shielding material which concerns on a 1st aspect is also employable.
  • the light-shielding material of the present invention is provided as a light-shielding layer such as a black matrix of a color filter for liquid crystal display devices, in order to reduce the reflection of the display device, reflection is performed on the surface opposite to the side where the light-shielding material is formed on the transparent substrate.
  • a prevention film may be provided.
  • the antireflection film an antireflection film in which several kinds of films having different refractive indexes are laminated, an antireflection film in which air is introduced into the material by any method, and the like are effective.
  • This antireflection film may be an antireflection layer integrally formed with the transparent substrate.
  • a method of forming a fine uneven structure on the surface of a transparent film is widely known. According to this method, since the refractive index of the entire surface layer on which the fine concavo-convex structure is formed is determined by the volume ratio between air and the material forming the fine concavo-convex structure, the refractive index is greatly lowered. Therefore, the reflectance can be reduced even when the number of stacked layers is small.
  • an antireflection film in which pyramid-shaped convex portions are continuously formed on the entire film as described in Japanese National Publication No. 2008-096872 may be used.
  • An antireflection film with pyramidal projections (fine concavo-convex structure) has a continuously changing cross-sectional area when cut in the film surface direction, and the refractive index gradually increases from the air to the substrate. It becomes an effective antireflection means.
  • the antireflection film exhibits excellent optical performance that cannot be replaced by other methods.
  • the height of the convex portion is preferably 100 nm or more, and more preferably 150 nm or more. If the height is less than 100 nm, the minimum reflectance increases or the reflectance at a specific wavelength increases, resulting in insufficient antireflection properties.
  • the aspect ratio (height of the convex portion / interval between adjacent convex portions) is preferably 1.0 to 5.0, more preferably 1.2 to 4.0. Most preferably, it is from 5 to 3.0. When the aspect ratio is less than 1.0, the minimum reflectance increases or the reflectance at a specific wavelength increases, resulting in insufficient antireflection properties. Since it is easy to break, the scratch resistance is lowered or the antireflection performance is not exhibited.
  • the method for forming the fine concavo-convex structure on the surface of the transparent film is not particularly limited.
  • a method for forming the fine concavo-convex structure by injection molding or press-molding the transparent film using a stamper having the fine concavo-convex structure After filling the active energy ray-curable composition between the stamper with the fine relief structure and the transparent film, and curing the active energy ray-curable composition by active energy ray irradiation to transfer the uneven shape of the stamper
  • the transparent substrate of the color filter is not particularly limited as long as it is transparent and has an appropriate strength.
  • the material include polyester resins such as polyethylene terephthalate, polyolefin resins such as polypropylene and polyethylene, thermoplastic resin sheets such as polycarbonate, polymethyl methacrylate, and polysulfone, epoxy resins, unsaturated polyester resins, and poly (meth).
  • thermosetting resin sheets such as acrylic resins, and various glasses. Among these, glass and heat resistant resin are preferable from the viewpoint of heat resistance.
  • the transparent substrate may be subjected to corona discharge treatment, ozone treatment, silane coupling agent, thin film formation treatment of various resins such as urethane resins, etc., as necessary, in order to improve surface properties such as adhesiveness. .
  • the thickness of the transparent substrate is usually 0.05 to 10 mm, preferably 0.1 to 7 mm.
  • the film thickness is usually 0.01 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m.
  • a color filter can be manufactured by providing a black matrix on a transparent substrate and usually forming pixel images of red, green, and blue.
  • the light shielding material of the present invention is mainly used for a black matrix, but is not limited thereto.
  • the black matrix of the color filter is formed by the light shielding material of the present invention
  • the black matrix is formed according to the method for forming the light shielding material described above.
  • the black matrix is formed according to a conventional method.
  • a color filter image can be formed by performing this operation for each of the three colored photosensitive colored resin compositions of red, green, and blue.
  • Application of the colored resin composition for the color filter can be performed by the same method as the method for applying the photosensitive colored resin composition in the above-described method for forming a light shielding material of the present invention.
  • the thickness of the coating film is usually preferably in the range of 0.2 to 20 ⁇ m, more preferably in the range of 0.5 to 10 ⁇ m, and still more preferably in the range of 0.8 to 5 ⁇ m as the film thickness after drying. It is a range.
  • the color filter according to the present invention comprises a developing method in the above-described method for forming a light shielding material of the present invention after the coating film made of a photosensitive colored resin composition is subjected to image exposure with the above light source.
  • an image can be formed on a substrate by development using an organic solvent or an aqueous solution containing a surfactant and an alkaline compound.
  • the aqueous solution used for development is the same as the developer used in the formation of the light shielding material of the present invention described above.
  • thermosetting treatment The color filter substrate after development is subjected to thermosetting treatment.
  • the thermosetting treatment conditions at this time are selected such that the temperature is in the range of 100 to 280 ° C., preferably in the range of 150 to 250 ° C., and the time is in the range of 5 to 60 minutes.
  • the patterning image formation for one color is completed. This process is sequentially repeated to pattern black, red, green, and blue to form a color filter. Note that the order of patterning the four colors is not limited to the order described above.
  • the color filter forms a transparent electrode such as ITO on the image and is used as a part of components such as a color display and a liquid crystal display device.
  • a top coat layer such as polyamide or polyimide can be provided on the image as necessary.
  • the transparent electrode may not be formed.
  • the liquid crystal display device of the present invention is manufactured using the above-described color filter of the present invention.
  • a liquid crystal display device usually forms an alignment film on a color filter, spreads spacers on the alignment film, and then bonds to a counter substrate to form a liquid crystal cell, injects liquid crystal into the formed liquid crystal cell, Complete by connecting to the counter electrode.
  • a resin film such as polyimide is suitable.
  • a gravure printing method and / or a flexographic printing method is usually employed, and the thickness of the alignment film is several tens of nm.
  • the alignment film is cured by thermal baking, it is surface-treated by irradiation with ultraviolet rays or a rubbing cloth to be processed into a surface state in which the tilt of the liquid crystal can be adjusted.
  • spacer a spacer having a size corresponding to the gap (gap) with the counter substrate is used, and a spacer of 2 to 8 ⁇ m is usually preferable.
  • a photo spacer (PS) of a transparent resin film can be formed on the color filter substrate by photolithography, and this can be used instead of the spacer.
  • the counter substrate an array substrate is usually used, and a TFT (thin film transistor) substrate is particularly preferable.
  • the gap for bonding to the counter substrate varies depending on the use of the liquid crystal display device, but is usually selected in the range of 2 to 8 ⁇ m.
  • a sealing material such as an epoxy resin.
  • the sealing material is cured by UV irradiation and / or heating, and the periphery of the liquid crystal cell is sealed.
  • the liquid crystal cell whose periphery is sealed is cut into panel units, then decompressed in a vacuum chamber, the liquid crystal injection port is immersed in liquid crystal, and then the liquid crystal is injected into the liquid crystal cell by leaking in the chamber.
  • the degree of decompression in the liquid crystal cell is usually 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 7 Pa, preferably 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 6 Pa. Further, it is preferable to heat the liquid crystal cell during decompression, and the heating temperature is usually 30 to 100 ° C., more preferably 50 to 90 ° C.
  • the warming holding at the time of depressurization is usually in the range of 10 to 60 minutes, and then immersed in the liquid crystal.
  • the liquid crystal cell into which the liquid crystal is injected has a liquid crystal display device (panel) completed by sealing the liquid crystal injection port by curing the UV curable resin.
  • the type of liquid crystal is not particularly limited, and is a conventionally known liquid crystal such as an aromatic, aliphatic, or polycyclic compound, and may be any of lyotropic liquid crystal, thermotropic liquid crystal, and the like.
  • thermotropic liquid crystal nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, and the like are known, but any of them may be used.
  • the color filter of the present invention is not limited to a liquid crystal display device, and can be suitably used for other liquid crystal display devices such as an organic EL display device.
  • Carbon black was produced by a normal oil furnace method. However, ethylene bottom oil with a small amount of Na, Ca, and S was used as the raw material oil, and combustion was performed using gas fuel. Furthermore, as reaction stop water, it manufactured using the pure water processed with the ion exchange resin. 540 g of the obtained carbon black was stirred at 5,000 to 6,000 rpm for 30 minutes together with 14500 g of pure water using a homomixer to obtain a slurry.
  • the slurry was transferred to a container with a screw type stirrer, and 600 g of toluene in which 60 g of epoxy resin “Epicoat 828” (manufactured by Mitsubishi Chemical Corporation) was dissolved was added little by little while mixing at about 1,000 rpm. In about 15 minutes, the entire amount of carbon black dispersed in water was transferred to the toluene side, and became particles of about 1 mm. Next, after draining with a 60 mesh wire net, it was put into a vacuum dryer and dried at 70 ° C. for 7 hours, and toluene and water were completely removed to obtain coated carbon black.
  • ⁇ Production Example 2 Production of ink (a1)> With respect to 20 parts by mass of the coated carbon black prepared in Production Example 1, 4.4 parts by mass of Disperbyk-167 (manufactured by Big Chemie) as a dispersant and 1 part by mass of S12000 (manufactured by Lubrizol) as a pigment derivative were added to form a solid. Propylene glycol monomethyl ether acetate (PGMEA) was added so that the partial concentration was 35% by mass. This was sufficiently stirred with a stirrer and premixed. Next, a dispersion treatment was carried out in the range of 25 to 45 ° C. for 6 hours using a paint shaker. As beads, 0.5 mm ⁇ zirconia beads were used, and 60 g of dispersion and 180 g of beads were added. After the completion of dispersion, the beads and the dispersion were separated by a filter to produce ink (a1).
  • PGMEA Propylene glycol monomethyl ether acetate
  • TMP trimethylolpropane
  • BPDA biphenyltetracarboxylic dianhydride
  • THPA tetrahydrophthalic anhydride
  • the resin solution When the resin solution becomes transparent, it is diluted with methoxybutyl acetate, prepared to have a solid content of 50% by mass, an organic bond having an acid value of 131 mgKOH / g and a polystyrene-reduced weight average molecular weight (Mw) of 2600 measured by GPC A material (b′1) was obtained.
  • the reaction vessel was replaced with air, 27.0 parts by mass of acrylic acid, 0.7 parts by mass of trisdimethylaminomethylphenol and 0.12 parts by mass of hydroquinone were added, and the reaction was continued at 120 ° C. for 6 hours. Thereafter, 52.0 parts by mass of tetrahydrophthalic anhydride (THPA) and 0.7 parts by mass of triethylamine were added and reacted at 120 ° C. for 3.5 hours to obtain a dispersed resin solution.
  • THPA tetrahydrophthalic anhydride
  • the obtained dispersion resin had a weight average molecular weight (Mw) of about 15000 and an acid value of 100 mgKOH / g.
  • ⁇ Oxime ester body> The oxime (2.22 g, 4.77 mmol) and acetyl chloride (1.34 g, 17.0 mmol) were added to 20 ml of dichloromethane, and the mixture was ice-cooled. Triethylamine (1.77 g, 17.5 mmol) was added dropwise, and 1 Reacted for hours. After confirming disappearance of the raw material by thin layer chromatography, water was added to stop the reaction. The reaction solution was washed twice with 5 ml of saturated aqueous sodium hydrogen carbonate solution and twice with 5 ml of saturated brine, and dried over anhydrous sodium sulfate.
  • Ink (a3): Organic pigment mixed color ink Solid content ratio B15: 6 / R254 / V23 / Y139 50% / 19% / 6% / 25%, Polyethyleneimine dispersant 17%, Resin (b2) 32% Solid content concentration 30% Propylene glycol monomethyl ether acetate solution fine particles (c1): Organo silica sol PMA-ST manufactured by Nissan Chemical Co., Ltd.
  • Fine particles (Silica content 30.7% propylene glycol monomethyl ether acetate dispersion solution, Average particle diameter (BET method) 10 nm, refractive index 1.7) Fine particles (c2): Organo silica sol MEK-ST manufactured by Nissan Chemical Co., Ltd. (Silica content 30.4% methyl ethyl ketone dispersion, average particle size (BET method) 40 nm, refractive index 1.7) Fine particles (c3): Organo silica sol MEK-ST manufactured by Nissan Chemical Co., Ltd.
  • ⁇ Production Example 6 Preparation of antireflection film> 1.5 parts by mass of Irgacure 184 (Ciba Specialty Chemicals) was dissolved in 20 parts by mass of dipentaerythritol hexaacrylate, 70 parts by mass of Aronix M-260 (manufactured by Toa Gosei Co., Ltd.) and 10 parts by mass of hydroxyethyl acrylate, An active energy ray-curable composition was obtained.
  • Irgacure 184 Ciba Specialty Chemicals
  • this curable composition A few drops are dropped on a stamper made of anodized porous alumina, coated with an acrylic resin film while being spread, and then irradiated with ultraviolet rays at an energy of 400 mJ / cm 2 from the film side to activate the active energy.
  • the line curable composition was photocured.
  • the film and the stamper were peeled off to obtain an antireflection film having a fine concavo-convex structure (aspect ratio 1.0) in which the distance between adjacent convex portions was 200 nm and the height of the convex portions was 200 nm.
  • ⁇ Measurement of unit OD value> Measure the film thickness of the first light-shielding layer and the film thickness after application of the second light-shielding layer of the obtained substrate with light-shielding material with a non-contact surface / layer cross-sectional shape measurement system (“Vert Scan” manufactured by Ryoka Systems Inc.) did.
  • FIG. 3A and FIG. 3B show a reflectance measurement method.
  • reference numeral 16 indicates a measurement incident optical path
  • reference numeral 17 indicates a measurement reflected optical path.
  • a jig for specular reflection measurement was installed in a spectrophotometer (“UV-3100” manufactured by Shimadzu Corporation).
  • UV-3100 manufactured by Shimadzu Corporation
  • the antireflection film 14 prepared in Production Example 6 was provided on the glass substrate surface on which the light shielding material was not formed, which was the back surface of the sample substrate. In this state, using the mirror plate as a reference plate, the relative reflectance at an incident angle of 5 degrees was measured as shown in FIG.
  • the reflectance obtained by converting the relative reflectance of 380 to 780 nm into the wavelength of the white light source (D65) measured with the antireflection film 14 as shown in FIG. (%) Is R2 (%), and the relative reflectance (%) at 550 nm measured without providing the antireflection film 14 as shown in FIG.
  • the converted reflectance (%) is shown in Table 3 as R4 (%).
  • the relative reflectance (%) at 550 nm of the substrate provided with the antireflection film on both surfaces of the glass substrate not provided with the light shielding material was 0.338%.
  • FIG. 4A shows a graph of the reflectance profile with respect to the wavelength when the reflectance R1 is measured with the antireflection film in Example 2.
  • FIG. 4B shows a graph of the reflectance profile with respect to the wavelength when the reflectance R3 is measured without providing the antireflection film in Example 2.
  • 4 (a) and 4 (b) it can be seen that the light-shielding material of the example according to the present invention has less variation in relative reflectance regardless of the wavelength over the entire visible light region.
  • surface in FIG. 4 (a) and FIG.4 (b) shows the value of the reflectance in the graph of a reflectance profile every wavelength 50nm.
  • the resist (1) was applied to a glass substrate with a spin coater under the condition that the film thickness after firing was 0.6 ⁇ m. Then, it dried for 60 second with the vacuum dryer, and dried for 5 minutes at 140 degreeC with the hotplate subsequently.
  • a resist (6) is applied on the first light-shielding layer coating film with a spin coater under the condition that the total film thickness after firing is 1.6 ⁇ m. did. Then, it dried for 60 seconds with the vacuum dryer. Then, it dried for 2 minutes at 110 degreeC with the hotplate, and the board
  • the light shielding materials of Examples 1 to 48 have a relative reflectance between the substrate and the light shielding material of 1.0 even though the OD value per 1 ⁇ m is 2.5 or more. % Or less, the gloss is suppressed, low reflection, and excellent light shielding properties. Further, the developability and the patterning property are good. In particular, as apparent from Examples 1 to 3, it does not depend on the content ratio of the fine particles (C) in the first layer, and as apparent from Examples 4 and 5, it does not depend on the total film thickness. As is apparent from 6 to 8, the color material density of the first layer is not affected, and it has low reflection and excellent light shielding properties. Further, as is clear from Example 9, even when the color material density of the second layer is low, low reflection can be realized.
  • the light shielding materials of Comparative Examples 1 to 3 have an OD value of 2.5 or more per 1 ⁇ m, the relative reflectance between the substrate and the light shielding material exceeds 1.0%, and the light shielding properties. Is excellent, but the reflectivity is insufficient.
  • the light shielding materials of Examples 5 and 10 were formed by using the resist with the first layer (C) having a fine particle content of 15% by mass or more.
  • a substrate with a light-shielding material having a relative reflectance of 1.0% or less in the meantime can be formed with high production by one firing.
  • the light shielding material of Comparative Example 4 is formed by using a resist in which the content ratio of the fine particles (C) is less than 15 mass% in the first layer, and the relative reflectance between the substrate and the light shielding material is high. It has exceeded 1.0%. This is because the first layer is dissolved when the second layer is applied, and a desired layer structure cannot be formed.
  • the light shielding material of Examples 11 and 12 is (C) the substrate and the light shielding material in any of the examples, although the average particle diameter of the fine particles was changed in the range of 40 to 100 nm. It can be seen that the relative reflectance between the first and second layers is 1.0% or less, and the reflection is low and the light-shielding property is excellent with low gloss.
  • the light shielding materials of Examples 13, 14, and 15 have a refractive index in the range of 1.2 to 1.8 even though fine particles other than silica are used as the fine particles (C). It can be seen that the same effect as silica can be obtained by selecting and using fine particles.
  • a black matrix having a low reflectivity and a high light shielding property can be formed using a colored resin composition that can be patterned by exposure and development.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、生産性が良好で、優れた低反射性を実現する遮光材付き基板を提供する。本発明の基板は、透明基板上に遮光材を有する遮光材付き基板であって、前記遮光材が、(A)色材および(B)有機結合材を含み、かつ、下記(1)および(2)を満たす。 (1) 前記遮光材が、(C)屈折率1.2以上1.8以下の微粒子を含有する。 (2) 前記遮光材中の前記微粒子の濃度が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が低い。

Description

遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物
 本発明は、遮光材付き基板、カラーフィルタ及び液晶表示装置に関するものである。詳しくは、反射率が低くて遮光性に優れる遮光材付き基板と、この遮光材を形成するための着色樹脂組成物と、この遮光材を有するカラーフィルタ及び液晶表示装置に関する。
 従来、顔料を用いたカラーフィルタの製造法としては、染色法、電着法、インクジェット法、顔料分散法などが知られている。
 顔料分散法によるカラーフィルタの製造の場合、通常、分散剤などにより顔料を分散してなる着色樹脂組成物に、バインダー樹脂、光重合開始剤、光重合性単量体等を添加した感光性着色樹脂組成物をガラス基板上にコートして乾燥後、マスクを用いて露光し、現像を行うことによって着色パターンを形成し、その後これを加熱することによりパターンを固着して画素を形成する。これらの工程を色ごとに繰り返してカラーフィルタを形成する。
 カラーフィルタに用いられる遮光材においては、遮光性、パターニング性、電気特性等さまざまな品質が要求されるが、そのひとつに反射性も挙げられる。液晶パネルでは通常ガラスごしにカラーフィルタの画素、遮光材を見るが、表面の反射性が低いほど外部からの映りこみが少なく、良好な画像が得られる。通常、画素、遮光材は色材と樹脂の混合物もしくはその焼成物から成るが、ガラスと画素、遮光材との間で屈折率の違いにより反射が起こる。ガラスや樹脂は屈折率が1.5ぐらいであるのに対し、色材は一般的にそれよりも高く、例えばカーボンブラックでは2.0ほどあり、そのため含有量が高いほど反射性も高くなる傾向にある。
 近年、液晶表示装置には、より高い遮光性が求められるようになり、それにともなって色材の増量が必要であり、結果として反射性もより高くなる傾向にある。特許文献1では光硬化性樹脂層に金属薄膜層を設けた遮光層について記載されている。しかしクロム等による金属蒸着は製造工程が長く且つ生産性が低く、高コストであり、またエッチング処理の廃液などによる環境問題が生じる等の問題も抱えていた。
 また、特許文献2には、基板上に2層以上の樹脂層からなる遮光層を形成し、かつ、該遮光層の基板側の第1層を光吸収層とし、第2層以降を光反射層とすることで、高遮光であり、観察者側から見た時の反射率を低くすることができると記載されている。
 さらに特許文献3には、基板上に着色樹脂層を形成し、さらにその上に黒色樹脂層を形成することで、可視光波長全域で光線反射率が低く、遮光性に優れたものとすることができると記載されている。
 一方、粒状シリカ等を感光性樹脂組成物に配合することについては、いくつかの文献に記載されている。例えば、特許文献4では、電着層の密着化のため、保護膜にオルガノシランを添加することが記載されている。また、特許文献5ではブラックマトリックス用の感光性組成物にパターン形成性の改善を目的として、粒状シリカを添加することが記載されている。
日本国特許第3367173号公報 日本国特開2006-11180号公報 日本国特開平8-146410号公報 日本国特開平5-288926号公報 日本国特開2008-304583号公報
 本発明者が検討したところ、特許文献2に記載の遮光材付き基板は、第2層以降を光反射層としていることに起因して、反射率をさらに低減させることが困難であるという課題があることが見出された。
 また、特許文献3に記載の遮光材付き基板は、基板上に着色樹脂層を形成していることに起因して、反射率の波長依存性が十分ではないという課題があることが見出された。
 本発明の第1の課題は、生産性が良好で、優れた低反射性を実現し得る遮光材付き基板を提供することにある。
 本発明の第2の課題は、優れた低反射性を実現し、さらに、反射率の波長依存性が少ない遮光材付き基板を提供することにある。
 本発明の第3の課題は、優れた低反射性を実現し得る遮光材付き基板を生産性高く形成するための着色樹脂組成物を提供することにある。
 本発明者は上記第1の課題を解決すべく鋭意検討を重ねた結果、遮光材に特定の微粒子を含有させ、かつ、当該微粒子の厚み方向の濃度分布を制御することにより、生産性が良好で、優れた低反射性を実現し得ることを見出した。
 また、上記第2の課題を解決すべく鋭意検討を重ねた結果、遮光材の透明基板側とその反対側に特定の色材を含有させ、かつ、厚み方向のOD値を制御することにより、優れた低反射性を実現し、さらに、反射率の波長依存性を少なくできることを見出した。
 さらに、上記第3の課題を解決すべく鋭意検討を重ねた結果、着色樹脂組成物中に特定の粒子を特定量含有させることにより、優れた低反射性を実現し得る遮光材付き基板を生産性高く形成することができることを見出した。
 即ち本発明は以下の[1]~[18]を要旨とする。
[1]透明基板上に遮光材を有する遮光材付き基板であって、
 前記遮光材が、(A)色材および(B)有機結合材を含み、かつ、下記(1)および(2)を満たす、遮光材付き基板。
 (1)前記遮光材が、(C)屈折率1.2以上1.8以下の微粒子を含有する。
 (2)前記遮光材中の前記微粒子の濃度が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が低い。
[2]前記遮光材の1μmあたりのOD値が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が高い、前記[1]に記載の遮光材付き基板。
[3](C)微粒子が、無機微粒子である、前記[1]又は[2]に記載の遮光材付き基板。
[4]前記無機微粒子が、シリカ粒子である、前記[3]に記載の遮光材付き基板。
[5](A)色材が、カーボンブラック、チタンブラック及び有機着色顔料よりなる群から選ばれる1種類以上を含有する、前記[1]~[4]のいずれか1つに記載の遮光材付き基板。
[6]透明基板上に遮光材を有する遮光材付き基板であって、
 前記遮光材が、(A)色材および(B)有機結合材を含み、かつ、下記(3)~(5)を満たす、遮光材付き基板。
 (3)前記遮光材の透明基板側が、(A)色材として黒色顔料を含有する。
 (4)前記遮光材の透明基板と反対側が、(A)色材として顔料を含有する。
 (5)前記遮光材の1μmあたりのOD値が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が高い。
[7]前記遮光材の1μmあたりのOD値が2.5以上である、前記[1]~[6]のいずれか1つに記載の遮光材付き基板。
[8](B)有機結合材が、アルカリ可溶性樹脂の硬化物である、前記[1]~[7]のいずれか1つに記載の遮光材付き基板。
[9]前記遮光材がさらに(E)光重合開始剤を含有する、前記[1]~[8]のいずれか1つに記載の遮光材付き基板。
[10]波長550nmにおける相対反射率が1.0%以下である、前記[1]~[9]のいずれか1つに記載の遮光材付き基板。
(ただし、前記相対反射率は、前記透明基板側から入射角5度にて光を入射させて鏡面板を基準として測定した値である。)
[11]波長450~650nmにおける前記相対反射率の上限値と下限値との差が0.5%以下である、前記[10]に記載の遮光材付き基板。
[12]前記遮光材が2以上の層により構成されている、前記[1]~[11]のいずれか1つに記載の遮光材付き基板。
[13]前記[1]~[12]のいずれか1つに記載の遮光材付き基板を有する、カラーフィルタ。
[14]前記[13]に記載のカラーフィルタを有する、液晶表示装置。
[15](A)色材、(B’)有機結合材、(C)屈折率1.2以上1.8以下の微粒子、および(D)有機溶剤を含む着色樹脂組成物であって、
 (C)微粒子の含有量が15質量%以上である、着色樹脂組成物。
[16](C)微粒子が、無機微粒子である、前記[15]に記載の着色樹脂組成物。
[17]前記無機微粒子が、シリカ粒子である、前記[16]に記載の着色樹脂組成物。
[18](A)色材が、カーボンブラック、チタンブラック及び有機着色顔料よりなる群から選ばれる1種類以上を含有する、前記[15]~[17]のいずれか1つに記載の着色樹脂組成物。
 本発明の第1の態様に係る遮光材付き基板は、生産性が良好で、優れた低反射性を実現し得る。
 また、本発明の第2の態様に係る遮光材付き基板は、優れた低反射性を実現し、さらに、反射率の波長依存性が少ない。
 さらに、本発明の第3の態様に係る着色樹脂組成物は、優れた低反射性を実現し得る遮光材付き基板を生産性高く形成することができる。
図1(a)及び図1(b)は、本発明の遮光材付き基板の一態様を説明するための概念図である。 図2(a)~図2(c)は、本発明の遮光材の形成工程を説明する概要側断面図であり、図2(a)は塗布工程、図2(b)は露光工程、図2(c)は現像後の遮光材をそれぞれ示す。 図3(a)及び図3(b)は、相対反射率の測定方法を説明する概要側断面図である。 図4(a)及び図4(b)は、反射率を測定したときの、波長に対する反射率プロファイルのグラフであり、図4(a)は、実施例2にて反射防止膜ありで反射率R1を測定したときの、波長に対する反射率プロファイルのグラフであり、図4(b)は実施例2にて反射防止膜を設けず反射率R3を測定したときの、波長に対する反射率プロファイルのグラフである。
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本発明において、屈折率とは波長589nmにおける屈折率を意味する。
 また、本発明において、「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味し、「(メタ)アクリレート」、「(メタ)アクリロイル」についても同様である。
 また、本発明において「全固形分」とは、着色樹脂組成物中又は後述するインク中に含まれる、溶剤以外の全成分を意味するものとする。
 また、本発明において、重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の重量平均分子量(Mw)をさす。尚、本明細書において、「質量」は「重量」のことを意味するものとする。
 また、本発明において、「アミン価」とは、特に断りのない限り、有効固形分換算のアミン価を表し、分散剤の固形分1gあたりの塩基量と当量のKOHの質量で表される値である。なお、測定方法については後述する。
 また、本発明において、「遮光材」とは、透明基板上に設けられた遮光性を有する硬化物であり、着色樹脂組成物を塗布後に乾燥して塗膜化したもの、その塗膜を露光及び/又は現像したもの、などを意味する。本発明の遮光材には、ブラックマトリクス、額縁等も含まれる。
<第1の態様に係る遮光材付き基板>
 本発明の第1の態様に係る遮光材付き基板は、透明基板上に遮光材を有し、前記遮光材が(A)色材および(B)有機結合材を含み、かつ、次の(1)および(2)を満たすことを特徴とする。
 (1)前記遮光材が、(C)屈折率1.2以上1.8以下の微粒子を含有する。
 (2)前記遮光材中の前記微粒子の濃度が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が低い。
 このように、遮光材中の(C)屈折率1.2以上1.8以下の微粒子(以下、単に「(C)微粒子」という。)の濃度が厚み方向で異なり、かつ、透明基板側よりも、透明基板と反対側が低くなるように構成することで、着色樹脂組成物を複数回塗布して遮光材を形成する場合において、塗布済みの着色樹脂組成物の上にさらに着色樹脂組成物を塗布した際に生じ得る、塗布済みの着色樹脂組成物の溶解を抑制することができる傾向があるため、1回の露光現像でも容易に遮光材を構成することができる傾向がある。更に、(C)微粒子の屈折率を特定範囲内にすることで、(C)微粒子に起因する光の反射を抑制することができる傾向がある。
 本発明の第1の態様に係る遮光材付き基板の一例として、図1(a)のように、遮光材10中の(C)微粒子1の濃度が厚み方向で徐々に異なり、かつ、前記透明基板11側よりも前記透明基板11と反対側が低いものが挙げられる。このような遮光材付き基板を得るには、(C)微粒子の濃度が徐々に低くなるように、(C)微粒子の濃度が異なる着色樹脂組成物を複数回塗布する方法が挙げられる。(C)微粒子を含有する着色樹脂組成物を透明基板上に1回塗布し、その上に(C)微粒子を含有しない着色樹脂組成物を塗布してもよい。この場合、各々の着色樹脂組成物における(B)有機結合材を同一種類又は類似種類の材料で構成することで、複数塗布に起因する界面の形成を抑制できる傾向がある。
 また、図1(b)のように、遮光材10を2以上の層(第1の遮光層12と第2の遮光層13)により構成し、透明基板11側よりも透明基板11と反対側の層における(C)微粒子1の濃度を低くするものが挙げられる。例えば、このような遮光材付き基板を得るには、(C)微粒子の濃度が徐々に低くなるように、(C)微粒子の濃度が異なる着色樹脂組成物を複数回塗布する方法が挙げられる。(C)微粒子を含有する着色樹脂組成物を透明基板上に1回塗布し、その上に(C)微粒子を含有しない着色樹脂組成物を塗布してもよい。この場合、各々の着色樹脂組成物における(B)有機結合材を異なる種類の材料で構成することで、複数塗布時に界面を形成できる傾向がある。積層構造については特に限定されないが、例えば、2以上の遮光層を透明基板との接触面に対して平行に積層してもよい。また、積層数には特に制限はないが、積層数が多いと、遮光材形成時の着色樹脂組成物の塗布工程数が多くなり、製造効率が悪くなるため、2~4層であることが好ましく、2~3層であることがより好ましく、2層であることがさらに好ましい。
 このように、本発明の第1の態様に係る遮光材付き基板は、図1(a)や図1(b)のように、遮光材中に(C)微粒子の濃度が厚み方向で異なり、かつ、前記透明基板側よりも前記透明基板と反対側が低くなるように構成された領域を少なくとも含んでいればよい。例えば遮光材が図1(b)の第1の遮光層及び第2の遮光層だけでなく、第2の遮光層13の上にさらに、第3の遮光層として第1の遮光層と同一の層を含むことで、(C)微粒子の濃度が透明基板側よりも透明基板と反対側が高くなるように構成された領域を含んでいてもよい。
 (C)微粒子としては、以下に記載のものを好ましく採用することができる。
 通常、透明基板と遮光材との界面の反射率は、透明基板と遮光材との屈折率の差によって程度が異なるものとなる。例えば透明基板として使用されるガラスや樹脂、また着色樹脂組成物の成分となる樹脂の屈折率は概ね1.4~1.6である。それに対して、(A)色材の屈折率はそれよりも高い傾向にある。例えば、カーボンブラックの屈折率は概ね2.0-i(複素数)である。そのため遮光材形成のための着色樹脂組成物中のカーボンブラックを増量するに従い、着色樹脂組成物の屈折率は高くなり、その結果、透明基板との屈折率の差が大きくなって、透明基板と遮光材との界面の反射率が高くなる。そのため、高遮光性と低反射率の両立は困難となる。
 一方、通常の着色樹脂組成物で多層化を実施しようとした場合、着色樹脂組成物を塗布、乾燥して1層目の塗膜を形成した後、2層目のための着色樹脂組成物を塗布すると、2層目の塗布液の溶剤によって1層目の塗膜が溶解してしまう場合がある。
 このような問題を解決するために、第1の態様に係る遮光材付き基板における遮光材は、(C)微粒子を含有している。本発明において、(C)微粒子添加の効果としてはフィラー効果があり、着色樹脂組成物の耐溶剤性が向上することが挙げられる。また、着色樹脂組成物中に占める樹脂成分の含有量が減ることによっても、耐溶剤性が向上する。これらの効果は(A)色材の添加でも多少とも得られるものであるが、上述の理由により(A)色材を増量すると反射率が上がってしまう原因となる傾向がある。
 第1の態様に係る遮光材付き基板で用いることができる(C)微粒子としては、シリカ微粒子、樹脂微粒子等が挙げられるが、これらに限定されるものではない。(C)微粒子の屈折率は1.2以上であり、1.3以上であることが好ましく、1.4以上であることがより好ましく、また、1.8以下であり、1.7以下であることが好ましく、1.6以下であることがより好ましい。(C)微粒子の屈折率が大きすぎると遮光材の屈折率が大きくなり、透明基板と遮光材との界面の反射率を上げる原因となる傾向がある。(C)微粒子は1種類を単独で用いても、2種以上を組み合わせて使用してもよい。
 屈折率が上記範囲を満足する微粒子としては、例えば、無機微粒子又は樹脂微粒子が挙げられ、簡便に所望の粒子径のものが得られるとの観点からは無機微粒子が好ましく、粒径をさらに小さくできるという観点から、酸化物粒子であることがより好ましい。
 酸化物粒子としては、例えば、酸化ケイ素(シリカ)、酸化アルミニウム、酸化ジルコニアが挙げられ、分散性の観点からは酸化ケイ素(シリカ)の微粒子であることがより好ましい。
 シリカ微粒子としては、乾式シリカ、コロイダルシリカ、またはその溶剤分散品などが使用できる。これらは有機溶剤中に分散させた後に、他の成分と混合して着色樹脂組成物の調製に用いることが好ましい。もしくは(A)色材とシリカとを混合して分散させて添加してもよい。
 (C)微粒子の平均粒子径は、BET法等で測定することができ、5nm以上であることが好ましく、10nm以上であることがより好ましく、また、100nm以下であることが好ましく、20nm以下であることがより好ましい。(C)微粒子の平均粒子径が小さすぎると分散安定性を保持できなくなり、また大きすぎると、形成される遮光材の平面均一性に支障をきたす場合がある。
 本発明に使用できるシリカ微粒子の一例として、乾式シリカとしては、日本アエロジル社製のアエロジルシリーズが、コロイダルシリカとしては、日産化学社製のスノーテックスシリーズ、オルガノシリカゾルシリーズなどが挙げられる。
 樹脂粒子としては、アクリル樹脂微粒子が挙げられるがこの限りではない。着色樹脂組成物の調製に当たり、樹脂微粒子は(D)有機溶剤中に分散させたものを用いてもよいし、(A)色材と混合して共分散させてもよい。樹脂微粒子のBET法による平均粒子径は、シリカ微粒子と同様の理由から、20~500nmであることが好ましく、30~300nmであることがより好ましい。
 第1の態様に係る遮光材付き基板において、(C)微粒子としては、上記の中でもシリカ微粒子が好ましく、さらにコロイダルシリカの溶剤分散品が好ましい。
 また(C)微粒子の、遮光材中の厚み方向に対する濃度については、例えば以下の方法で確認することができる。
(1)SEMの2次電子像
 透明基板及び遮光材の断面のSEMの2次電子像を確認する。例えば、(C)微粒子としてシリカ粒子や金属酸化物粒子等を用いた場合、シリカ粒子や金属酸化物粒子等は有機結合材、光重合性化合物等に由来する炭素原子よりも強度が強いため、断面において濃度分布が確認できる。
(2)SEM-EDSによる元素分析
 透明基板及び遮光材の断面をSEM-EDSにより元素分析し、厚さ方向に対する強度分布を測定する(線分析)。
 例えば透明基板がガラス基板で(C)微粒子がシリカ粒子の場合などは、本発明の遮光材付き基板とシリカ粒子を含有しない遮光材付きの基板とを測定し、ガラス面で規格化し、その差スペクトルの厚さ方向への強度分布を求めることで、濃度分布が確認できる。
 即ち、差スペクトルの強度が厚さ方向に均一であれば、(C)微粒子の厚さ方向への濃度分布はなく、一方で差スペクトルの強度が透明基板側が強ければ、透明基板側の(C)微粒子の濃度が高いことがわかる。
 本発明の第1の態様に係る遮光材は、1μmあたりのOD値(以下「単位OD値」と称し、その単位を「/μm」で表す場合がある。)が2.5以上であることが好ましく、3.0以上であることがより好ましく、3.5以上であることがさらに好ましい。この単位OD値を前記下限値以上とすることで、十分な遮光性を得ることができる傾向がある。一方で、単位OD値は大きい程遮光材の遮光性が高められ好ましいが、単位OD値をより高くするために色材の添加量を増やすと、基板への密着性、現像性を損なう場合があるので、遮光材の単位OD値は5.0/μm以下であることが好ましく、4.5/μm以下がさらに好ましい。1μmあたりのOD値は、遮光材全体としてのOD値を厚さ1μm当たりの値に換算することにより求めることができる。
 また本発明の第1の態様に係る遮光材は、遮光材の1μmあたりのOD値が厚み方向で異なり、透明基板側よりも、透明基板と反対側が低いことが好ましい。このように構成することで、より簡便に高遮光性と低反射性とを両立できる傾向がある。
 例えば、遮光材の透明基板側の単位OD値は0.1/μm以上であることが好ましく、0.5/μm以上であることがより好ましく、また、1.5/μm以下であることが好ましく、1.0/μm以下であることがより好ましい。前記下限値以上にすることで、複数塗布する際に、塗布済みの着色樹脂組成物の溶解を抑制することができる傾向があり、また、前記上限値以下にすることで反射率を低くすることができる傾向がある。透明基板側の単位OD値は例えば、透明基板から厚み0.5μmまでの範囲のOD値を測定し、それを厚みで除算することにより求めることができる。なお、遮光材が2以上の層から形成されている場合には、透明基板上の第1層の単位OD値を測定することでもよい。
 一方で、透明基板と反対側の単位OD値は2.5/μm以上であることが好ましく、3.0/μm以上であることがより好ましく、また、5.0/μm以下であることが好ましく、4.5/μm以下であることがより好ましい。前記範囲内とすることで、遮光材全体として所望の遮光性を実現することができる傾向がある。透明基板と反対側の単位OD値は例えば、遮光材の上面から厚み0.5μmまでの範囲のOD値を測定し、それを厚みで除算することにより求めることができる。なお、遮光材が2以上の層から形成されている場合には、透明基板上の第1層以外の、第2層目以降の単位OD値を測定することでもよい。
 また本発明の第1の態様に係る遮光材は、波長550nmにおける相対反射率が1.0%以下であることが好ましく、0.7%以下であることがより好ましく、また、通常0.1%以上である。前記相対反射率は、透明基板側から入射角5度にて光を入射させて鏡面板を基準として測定することができる。このように、基板と遮光材間の反射率を前記上限値以下とすることで、外部からの映りこみが少なく良好な画像が得られる遮光材とすることができる。また、遮光材は色材を含有することで多少とも反射が発生するため、前記下限値以上となる傾向がある。
 また本発明の第1の態様に係る遮光材は、波長450~650nmにおける相対反射率の上限値と下限値との差が0.5%以下であること好ましく、0.3%以下であることがより好ましく、通常0.01%以上である。前記上限値以下とすることで、遮光材の色調を黒にすることができ、パネルを作成した際の色調を所望のものにすることができる傾向がある。また、色材の反射率は波長により多少とも差異があるため、0.01%以上は上下限差が生じる傾向がある。
 本発明の第1の態様に係る遮光材の総膜厚は、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.8μm以上であることがさらに好ましく、また、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。遮光材の総膜厚が薄過ぎると十分な遮光性を得ることができない場合があり、厚過ぎると、色画素を設けたときに境界部に段差が生じ、液晶表示パネル装置としてパネル化した際に、液晶セルギャップとしての重ね合わせ離間距離が不均一になり、セルギャップ不良の原因となる場合がある。
 遮光材を2以上の層で構成する場合には、透明基板上の第1層の膜厚は0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、また、1.5μm以下であることが好ましく、0.8μm以下であることがより好ましい。第1層の膜厚が薄過ぎると第2層以降の層が反射率を上げる場合があり、厚過ぎると遮光材全体で所望の遮光性を達成しない場合がある。
 透明基板としては、通常、本発明のカラーフィルタの説明において後述するものが用いられる。
 遮光材に用いる(A)色材としては、以下の<(A)色材>に記載のものを好ましく採用することができる。特に、<第2の態様に係る遮光材付き基板>に記載のものを採用してもよい。
 また、(B)有機結合材としては、例えば、後述の(B’)有機結合材を硬化させたものが挙げられる。(E)光重合開始剤やそのほかの成分を含む(B’)有機結合材を用いた場合には、遮光材が(E)光重合開始剤やそのほかの成分を含んでいてもよい。
 第1の態様に係る遮光材付き基板における遮光材は通常、少なくとも(A)色材、(B)有機結合材、及び必要に応じて(C)微粒子を含有する着色樹脂組成物を用いて形成することができる。
<(A)色材>
 第1の態様に係る遮光材付き基板における遮光材、及び、該遮光材を形成するための着色樹脂組成物は、通常(A)色材を含有する。(A)色材としては、染顔料が使用できるが、耐熱性、耐光性等の点から顔料が好ましい。例えば、C.I.ピグメントナンバーが付与されている公知の顔料が挙げられる。金属単体からなる粒子は顔料には含まれない。
 色材が呈する色については特に限定されないが、高い遮光性を実現するとの観点からは黒色であることが好ましい。
 黒色色材としては、カーボンブラック、チタンブラック、アセチレンブラック、ランプブラック、ボーンブラック、黒鉛、アニリンブラック、シアニンブラック、ペリレンブラック(BASF K0084、K0086)、酸化鉄系黒色顔料等の黒色顔料が挙げられる。
 また、日本国特開2010-134453号公報に記載の銀錫合金を主成分とする微粒子等も用いることができ、この場合にはパターンの剥がれ等を抑制するとの観点から、同公報に記載されているように特定の光重合開始剤を組み合わせて用いてもよい。また、所望のパターン形状にするとの観点から、日本国特開2013-130843号公報に記載されているように特定のアルカリ可溶性樹脂を組み合わせて用いてもよい。さらに、所望のパターン形状にするとの観点から、日本国特開2013-134264号公報に記載されているように特定のペリレン系黒色顔料(ペリレンブラック)と組み合わせて用いてもよい。
 これらの中で、カーボンブラック、チタンブラックが遮光率、画像特性の観点から好ましい。
 カーボンブラックの例としては、以下のようなカーボンブラックが挙げられる。
三菱化学社製:MA7、MA77、MA8、MA11、MA100、MA100R、MA220、MA230、MA600、#5、#10、#20、#25、#30、#32、#33、#40、#44、#45、#47、#50、#52、#55、#650、#750、#850、#950、#960、#970、#980、#990、#1000、#2200、#2300、#2350、#2400、#2600、#3050、#3150、#3250、#3600、#3750、#3950、#4000、#4010、OIL7B、OIL9B、OIL11B、OIL30B、OIL31B
デグサ社製:Printex3、Printex3OP、Printex30、Printex30OP、Printex40、Printex45、Printex55、Printex60、Printex75、Printex80、Printex85、Printex90、Printex A、Printex L、Printex G、Printex P、Printex U、Printex V、PrintexG、SpecialBlack550、SpecialBlack350、SpecialBlack250、SpecialBlack100、SpecialBlack6、SpecialBlack5、SpecialBlack4、Color Black FW1、Color Black FW2、Color Black FW2V、Color Black FW18、Color Black FW18、Color Black FW200、Color Black S160、Color Black S170(これらのうち、Printexは登録商標)
キャボット社製:Monarch120、Monarch280、Monarch460、Monarch800、Monarch880、Monarch900、Monarch1000、Monarch1100、Monarch1300、Monarch1400、Monarch4630、REGAL99、REGAL99R、REGAL415、REGAL415R、REGAL250、REGAL250R、REGAL330、REGAL400R、REGAL55R0、REGAL660R、BLACK PEARLS480、PEARLS130、VULCAN XC72R、ELFTEX-8コロンビヤン(これらのうち、Monarchは登録商標)
カーボン社製:RAVEN11、RAVEN14、RAVEN15、RAVEN16、RAVEN22RAVEN30、RAVEN35、RAVEN40、RAVEN410、RAVEN420、RAVEN450、RAVEN500、RAVEN780、RAVEN850、RAVEN890H、RAVEN1000、RAVEN1020、RAVEN1040、RAVEN1060U、RAVEN1080U、RAVEN1170、RAVEN1190U、RAVEN1250、RAVEN1500、RAVEN2000、RAVEN2500U、RAVEN3500、RAVEN5000、RAVEN5250、RAVEN5750、RAVEN7000(これらのうち、RAVENは登録商標)
 カーボンブラック含有量を多くした上で体積抵抗値を大きくするために、樹脂で被覆されたカーボンブラックを使用してもよい。例えば日本国特開平09-71733号公報に記載されているカーボンブラック等が好適に使用できる。
 被覆処理するカーボンブラックとしては、NaとCaの合計含有量が100ppm以下であることが好ましい。カーボンブラックは、通常製造時の原料油や燃焼油(又はガス)、反応停止水や造粒水、更には反応炉の炉材等から混入したNaや、Ca、K、Mg、Al、Fe等を組成とする灰分がパーセントのオーダーで含有されている。この内、NaやCaは、各々数百ppm以上含有されているのが一般的であるが、これらが多く存在すると、透明電極(ITO)やその他の電極に浸透し、電気的短絡の原因となる場合があるからである。
 これらのNaやCaを含む灰分の含有量を低減する方法としては、カーボンブラックを製造する際の原料油や燃料油(又はガス)並びに反応停止水として、これらの含有量が極力少ないものを厳選すること及びストラクチャーを調整するアルカリ物質の添加量を極力少なくする方法が挙げられる。
 他の方法としては、炉から製出したカーボンブラックを水や塩酸等で洗うことによりNaやCaを溶解させて除去する方法が挙げられる。
 具体的にはカーボンブラックを水又は塩酸、過酸化水素水に混合分散させた後、水に難溶の溶媒を添加していくとカーボンブラックは溶媒側に移行し、水と完全に分離すると共にカーボンブラック中に存在した殆どのNaやCaは、水や酸に溶解、除去される。
 NaとCaの合計量を100ppm以下に低減するためにはこの両方式を併用することにより更に容易にNaとCaの合計量を100ppm以下とすることができる。
 また、樹脂被覆カーボンブラックは、pH6以下のいわゆる酸性カーボンブラックであることが好ましい。このようなカーボンブラックは、水中での分散径(アグロミレート径)が小さくなるので、微細ユニットまでの被覆が可能となり好適である。さらに樹脂被覆カーボンブラックは、粒子径40nm以下、ジブチルフタレート(DBP)吸収量140mL/100g以下であることが好ましい。粒子径が40nmより大きく、DBP吸収量が140mL/100gより大きいと、ペーストにした場合の分散性には優れるが、塗膜の濃度感が十分でない場合があり、膜厚1~2μm程度では遮光性に乏しくなるおそれがあるからである。
 樹脂で被覆されたカーボンブラックを調製する方法には特に限定されないが、例えばカーボンブラック及び樹脂の配合量を適宜調整した後、
 1.樹脂とシクロヘキサノン、トルエン、キシレンなどの溶剤とを混合して加熱溶解させた樹脂溶液と、カーボンブラック及び水を混合した懸濁液とを混合撹拌し、カーボンブラックと水とを分離させた後、水を除去して加熱混練して得られた組成物をシート状に成形し、粉砕した後、乾燥させる方法
 2.前記と同様にして調製した樹脂溶液と懸濁液とを混合撹拌してカーボンブラック及び樹脂を粒状化した後、得られた粒状物を分離、加熱して残存する溶剤及び水を除去する方法
 3.前記例示した溶剤にマレイン酸、フマル酸などのカルボン酸を溶解させ、カーボンブラックを添加、混合して乾燥させ、溶剤を除去してカルボン酸添着カーボンブラックを得た後、これに樹脂を添加してドライブレンドする方法
 4.被覆させる樹脂を構成する反応性基含有モノマー成分と水とを高速撹拌して懸濁液を調製し、重合後冷却して重合体懸濁液から反応性基含有樹脂をえた後、これにカーボンブラックを添加して混練し、カーボンブラックと反応性基とを反応させ(カーボンブラックをグラフトさせ)、冷却及び粉砕する方法
などを採用することができる。
 被覆処理する樹脂の種類も特に限定されるものではないが、合成樹脂が一般的であり、さらに構造の中にベンゼン核を有した樹脂の方が両性系界面活性剤的な働きがより強いため分散性及び分散安定性の点から好ましい。
 具体的な合成樹脂としては、フェノール樹脂、メラミン樹脂、キシレン樹脂、ジアリルフタレート樹脂、グリプタル樹脂、エポキシ樹脂、アルキルベンゼン樹脂等の熱硬化性樹脂や、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、変性ポリフェニレンオキサイド、ポリスルフォン、ポリパラフェニレンテレフタルアミド、ポリアミドイミド、ポリイミド、ポリアミノビスマレイミド、ポリエーテルスルフォポリフェニレンスルフォン、ポリアリレート、ポリエーテルエーテルケトン等の熱可塑性樹脂が使用できる。
 カーボンブラックに対する樹脂の被覆量は、カーボンブラックと樹脂の合計量に対し1~30質量%が好ましい。この樹脂の被覆量が1質量%未満では、未処理のカーボンブラックと同様の分散性や分散安定性しか得られないおそれがある。一方、30質量%を超えると、樹脂同士の粘着性が強く、団子状の固まりとなり、分散が進まなくなるおそれがある。
 このようにして樹脂で被覆処理してなるカーボンブラックは、常法に従いブラックマトリックスの遮光材として用いることができ、このブラックマトリックスを構成要素とするカラーフィルタを常法により作成することができる。このようなカーボンブラックを用いると、高遮光率でかつ表面反射率が低くまた膜厚の薄いブラックマトリックスを低コストで達成できる傾向がある。これは、ブラックマトリックス液を構成する樹脂や溶媒に対し、カーボンブラックの分散性や分散安定性が格段に向上したためと推測される(従来のカーボンブラックであると、いかに混練しても分散粒子径として0.1μm以下まで分散することは困難であり、分散したとしても安定性が悪く、時間とともに凝集が大きくなる。)。また、カーボンブラック表面を樹脂で被覆したことにより、CaやNaをカーボンブラック中に封じ込める働きもあることも推測される。
 また、チタンブラックの市販品の例としては、三菱マテリアル社製チタンブラック10S、12S、13R、13M、13M-Cなどが挙げられる。
 チタンブラックの製造方法としては、二酸化チタンと金属チタンの混合体を還元雰囲気で加熱し還元する方法(日本国特開昭49-5432号公報)、四塩化チタンの高温加水分解で得られた超微細二酸化チタンを水素を含む還元雰囲気中で還元する方法(日本国特開昭57-205322号公報)、二酸化チタン又は水酸化チタンをアンモニア存在下で高温還元する方法(日本国特開昭60-65069号公報、日本国特開昭61-201610号公報)、二酸化チタン又は水酸化チタンにバナジウム化合物を付着させ、アンモニア存在下で高温還元する方法(日本国特開昭61-201610号公報)などがあるが、これらに限定されるものではない。
 また、他の着色顔料を混合して黒色顔料として用いることもできる。
 その他の着色顔料としては青色顔料、緑色顔料、赤色顔料、黄色顔料、紫色顔料、オレンジ顔料、ブラウン顔料等各種の色の顔料を使用することができる。また、その構造としてはアゾ系、フタロシアニン系、キナクリドン系、ベンズイミダゾロン系、イソインドリノン系、ジオキサジン系、インダンスレン系、ペリレン系等の有機顔料の他に種々の無機顔料等も利用可能である。
 以下に、本発明に使用できる顔料の具体例をピグメントナンバーで示す。なお、以下に挙げる「C.I.ピグメントレッド2」等の用語は、カラーインデックス(C.I.)を意味する。
 赤色顔料としては、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、12、14、15、16、17、21、22、23、31、32、37、38、41、47、48、48:1、48:2、48:3、48:4、49、49:1、49:2、50:1、52:1、52:2、53、53:1、53:2、53:3、57、57:1、57:2、58:4、60、63、63:1、63:2、64、64:1、68、69、81、81:1、81:2、81:3、81:4、83、88、90:1、97、101、101:1、104、108、108:1、109、112、113、114、122、123、144、146、147、149、151、166、168、169、170、172、173、174、175、176、177、178、179、180、181、184、185、187、188、190、192、193、194、200、202、206、207、208、209、210、214、215、216、217、220、221、223、224、226、227、228、230、231、232、233、235、236、237、238、239、240、242、243、245、247、249、250、251、253、254、255、256、257、258、259、260、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276を挙げることができる。この中でも、好ましくはC.I.ピグメントレッド48:1、122、168、177、202、206、207、209、224、242、254、更に好ましくはC.I.ピグメントレッド177、209、224、254を挙げることができる。
 青色顔料としては、C.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:3、15:4、15:6、16、17、19、22、25、27、28、29、33、35、36、56、56:1、60、61、61:1、62、63、64、66、67、68、71、72、73、74、75、76、78、79を挙げることができる。この中でも、好ましくはC.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、更に好ましくはC.I.ピグメントブルー15:6を挙げることができる。
 緑色顔料としては、C.I.ピグメントグリーン1、2、4、7、8、10、13、14、15、17、18、19、26、36、45、48、50、51、54、55を挙げることができる。この中でも、好ましくはC.I.ピグメントグリーン7、36を挙げることができる。
 黄色顔料としては、C.I.ピグメントイエロー1、1:1、2、3、4、5、6、9、10、12、13、14、16、17、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、41、42、43、48、53、55、61、62、62:1、63、65、73、74、75、81、83、86、87、93、94、95、97、100、101、104、105、108、109、110、111、116、117、119、120、125、126、127、127:1、128、129、133、134、136、、137、138、139、142、147、148、150、151、153、154、155、157、158、159、160、161、162、163、164、165、166、167、168、169、170、172、173、174、175、176、180、181、182、183、184、185、188、189、190、191、191:1、192、193、194、195、196、197、198、199、200、202、203、204、205、206、207、208を挙げることができる。この中でも、好ましくはC.I.ピグメントイエロー83、117、129、138、139、150、154、155、180、185、更に好ましくはC.I.ピグメントイエロー83、138、139、150、180を挙げることができる。
 オレンジ顔料としては、C.I.ピグメントオレンジ1、2、5、13、16、17、19、20、21、22、23、24、34、36、38、39、43、46、48、49、51、55、59、61、62、64、65、67、68、69、70、71、72、73、74、75、77、78、79を挙げることができる。この中でも、好ましくは、C.I.ピグメントオレンジ38、64、71を挙げることができる。
 紫色顔料としては、C.I.ピグメントバイオレット1、1:1、2、2:2、3、3:1、3:3、5、5:1、14、15、16、19、23、25、27、29、30、31、32、37、39、40、42、44、47、49、50を挙げることができる。この中でも、好ましくはC.I.ピグメントバイオレット19、23、更に好ましくはC.I.ピグメントバイオレット23を挙げることができる。
 また、顔料として、硫酸バリウム、硫酸鉛、酸化チタン、黄色鉛、ベンガラ、酸化クロム等を用いることもできる。
 これら各種の顔料は、複数種を併用することもできる。黒色に近づけるため、例えば青色顔料と赤色顔料、青色顔料と赤色顔料と紫色顔料、青色顔料と赤色顔料と紫色顔料と黄色顔料、青色顔料とオレンジ顔料、青色顔料と赤色顔料とオレンジ顔料、青色顔料と紫色顔料とオレンジ顔料等の組み合わせを挙げることができる。
 なお、これらの顔料は、平均粒径が通常1μm、好ましくは0.5μm以下、更に好ましくは0.25μm以下となるよう、分散して用いることが好ましい。
 なお、本発明において、顔料の平均粒径は、動的光散乱DLSにより測定された顔料粒径から求めた値である。粒径測定は、十分に希釈された着色樹脂組成物(通常は希釈して、顔料濃度を0.005~0.2質量%程度に調整する。但し測定機器により推奨された濃度があれば、その濃度に従う。)に対して行い、25℃にて測定する。
 また、色材として使用できる染料としては、アゾ系染料、アントラキノン系染料、フタロシアニン系染料、キノンイミン系染料、キノリン系染料、ニトロ系染料、カルボニル系染料、メチン系染料等が挙げられる。
 アゾ系染料としては、例えば、C.I.アシッドイエロー11、C.I.アシッドオレンジ7、C.I.アシッドレッド37、C.I.アシッドレッド180、C.I.アシッドブルー29、C.I.ダイレクトレッド28、C.I.ダイレクトレッド83、C.I.ダイレクトイエロー12、C.I.ダイレクトオレンジ26、C.I.ダイレクトグリーン28、C.I.ダイレクトグリーン59、C.I.リアクティブイエロー2、C.I.リアクティブレッド17、C.I.リアクティブレッド120、C.I.リアクティブブラック5、C.I.ディスパースオレンジ5、C.I.ディスパースレッド58、C.I.ディスパースブルー165、C.I.ベーシックブルー41、C.I.ベーシックレッド18、C.I.モルダントレッド7、C.I.モルダントイエロー5、C.I.モルダントブラック7等が挙げられる。
 アントラキノン系染料としては、例えば、C.I.バットブルー4、C.I.アシッドブルー40、C.I.アシッドグリーン25、C.I.リアクティブブルー19、C.I.リアクティブブルー49、C.I.ディスパースレッド60、C.I.ディスパースブルー56、C.I.ディスパースブルー60等が挙げられる。
 この他、フタロシアニン系染料として、例えば、C.I.パッドブルー5等が、キノンイミン系染料として、例えば、C.I.ベーシックブルー3、C.I.ベーシックブルー9等が、キノリン系染料として、例えば、C.I.ソルベントイエロー33、C.I.アシッドイエロー3、C.I.ディスパースイエロー64等が、ニトロ系染料として、例えば、C.I.アシッドイエロー1、C.I.アシッドオレンジ3、C.I.ディスパースイエロー42等が挙げられる。
<(B’)有機結合材>
 第1の態様に係る遮光材付き基板における遮光材は(B)有機結合材を含む。(B)有機結合材は、例えば(B’)有機結合材を露光処理や熱硬化処理により重合及び硬化させて得ることができる。従って、前記遮光材を形成するための着色樹脂組成物は、通常(B’)有機結合材を含む。
 本発明で用いる(B’)有機結合材は、バインダー樹脂として遮光材を形成する成分であり、紫外線未露光部をより現像しやすくするとの観点から、アルカリ可溶性樹脂であることが好ましい。特に紫外線露光部の硬化性を高めるとの観点から、エチレン性不飽和結合を有するアルカリ可溶性樹脂が好ましく、カルボキシル基とエチレン性不飽和結合を有するアルカリ可溶性樹脂がより好ましく、とりわけ、下記アルカリ可溶性樹脂(B1)及び/又はアルカリ可溶性樹脂(B2)(以下「カルボキシル基含有エポキシ(メタ)アクリレート樹脂」と称す場合がある。)が好ましい。
<アルカリ可溶性樹脂(B1)>
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルを付加させ、さらに、多塩基酸及び/又はその無水物を反応させることによって得られたアルカリ可溶性樹脂。
<アルカリ可溶性樹脂(B2)>
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルを付加させ、さらに、多価アルコール、及び多塩基酸及び/又はその無水物と反応させることによって得られたアルカリ可溶性樹脂。
 原料となるエポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂(例えば、三菱化学社製の「エピコート828」、「エピコート1001」、「エピコート1002」、「エピコート1004」等)、ビスフェノールA型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ(例えば、日本化薬社製の「NER-1302」(エポキシ当量323,軟化点76℃))、ビスフェノールF型樹脂(例えば、三菱化学社製の「エピコート807」、「EP-4001」、「EP-4002」、「EP-4004等」)、ビスフェノールF型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ樹脂(例えば、日本化薬社製の「NER-7406」(エポキシ当量350,軟化点66℃))、ビスフェノールS型エポキシ樹脂、ビフェニルグリシジルエーテル(例えば、三菱化学社製の「YX-4000」)、フェノールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EPPN-201」、三菱化学社製の「EP-152」、「EP-154」、ダウケミカル社製の「DEN-438」)、(o,m,p-)クレゾールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EOCN-102S」、「EOCN-1020」、「EOCN-104S」)、トリグリシジルイソシアヌレート(例えば、日産化学社製の「TEPIC」)、トリスフェノールメタン型エポキシ樹脂(例えば、日本化薬社製の「EPPN-501」、「EPN-502」、「EPPN-503」)、脂環式エポキシ樹脂(ダイセル化学工業社製の「セロキサイド2021P」、「セロキサイドEHPE」)、ジシクロペンタジエンとフェノールの反応によるフェノール樹脂をグリシジル化したエポキシ樹脂(例えば、大日本インキ社製の「EXA-7200」、日本化薬社製の「NC-7300」)、下記一般式(b1)~(b4)で表されるエポキシ樹脂等を好適に用いることができる。具体的には、下記一般式(b1)で表されるエポキシ樹脂として日本化薬社製の「XD-1000」、下記一般式(b2)で表されるエポキシ樹脂として日本化薬社製の「NC-3000」、下記一般式(b4)で表されるエポキシ樹脂として新日鐵化学社製の「ESF-300」等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(上記一般式(b1)において、aは平均値を示し0~10の範囲内の数値を示す。R11は水素原子、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基、フェニル基、ナフチル基又はビフェニル基を表す。なお、1分子中に存在する複数のR11は互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002
(上記一般式(b2)において、bは平均値を示し0~10の範囲内の数値を示す。R21は水素原子、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基、フェニル基、ナフチル基又はビフェニル基を表す。なお、1分子中に存在する複数のR21は互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(上記一般式(b3)において、Xは下記一般式(b3-1)又は(b3-2)で表される連結基を示す。但し、分子構造中に1つ以上のアダマンタン構造を含む。cは2又は3の整数を示す。)
Figure JPOXMLDOC01-appb-C000004
(上記一般式(b3-1)及び(b3-2)において、R31~R34及びR35~R37は、それぞれ独立に、置換基を有していてもよいアダマンチル基、水素原子、置換基を有していてもよい炭素数1~12のアルキル基又は置換基を有していてもよいフェニル基を示す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000005
(上記一般式(b4)において、d及びeはそれぞれ独立に0~4の整数を表し、R41及びR42はそれぞれ独立してアルキル基又はハロゲン原子を表す。R43及びR44はそれぞれ独立してアルキレン基を表す。x及びyはそれぞれ独立して0以上の整数を表す。なお、式中にR43及びR44が複数存在する場合は、それぞれ互いに同一であっても異なっていてもよい。)
 これらの中で、一般式(b1)~(b4)で表されるエポキシ樹脂を用いるのが好ましい。
 α,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとしては、(メタ)アクリル酸、クロトン酸、o-ビニル安息香酸、m-ビニル安息香酸、p-ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、シアノ置換体などのモノカルボン酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルアジピン酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルマレイン酸、2-(メタ)アクリロイロキシプロピルコハク酸、2-(メタ)アクリロイロキシプロピルアジピン酸、2-(メタ)アクリロイロキシプロピルテトラヒドロフタル酸、2-(メタ)アクリロイロキシプロピルフタル酸、2-(メタ)アクリロイロキシプロピルマレイン酸、2-(メタ)アクリロイロキシブチルコハク酸、2-(メタ)アクリロイロキシブチルアジピン酸、2-(メタ)アクリロイロキシブチルヒドロフタル酸、2-(メタ)アクリロイロキシブチルフタル酸、2-(メタ)アクリロイロキシブチルマレイン酸(メタ)、アクリル酸にε-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン等のラクトン類を付加させたものである単量体、或いはヒドロキシアルキル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートに(無水)コハク酸、(無水)フタル酸、(無水)マレイン酸などの酸(無水物)を付加させた単量体、(メタ)アクリル酸ダイマーなどが挙げられる。
 これらの内、感度の点から、特に好ましいものは(メタ)アクリル酸である。
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルを付加させる方法としては、公知の手法を用いることができる。例えば、エステル化触媒の存在下、50~150℃の温度で、α,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとエポキシ樹脂とを反応させることができる。ここで用いるエステル化触媒としては、トリエチルアミン、トリメチルアミン、ベンジルジメチルアミン、ベンジルジエチルアミン等の3級アミン、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド等の4級アンモニウム塩等を用いることができる。
 なお、エポキシ樹脂、α,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステル及びエステル化触媒はいずれも、1種を単独で用いてもよく、2種以上を併用してもよい。
 α,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルの使用量は、エポキシ樹脂のエポキシ基1当量に対し0.5~1.2当量の範囲が好ましく、さらに好ましくは0.7~1.1当量の範囲である。
 α,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルの使用量が少ないと不飽和基の導入量が不足し、引き続く多塩基酸及び/又はその無水物との反応も不十分となる。また、多量のエポキシ基が残存することも有利ではない。一方、該使用量が多いとα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルが未反応物として残存する。いずれの場合も硬化特性が悪化する傾向が認められる。
 多塩基酸及び/又はその無水物としては、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸及びこれらの無水物等から選ばれた1種又は2種以上が挙げられる。
 好ましくは、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ビフェニルテトラカルボン酸、又はこれらの無水物である。特に好ましくは、テトラヒドロフタル酸、ビフェニルテトラカルボン酸、無水テトラヒドロフタル酸、又はビフェニルテトラカルボン酸二無水物である。
 多塩基酸及び/又はその無水物の付加反応に関しても公知の手法を用いることができ、エポキシ樹脂へのα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルの付加反応と同様な条件下で、継続反応させて目的物を得ることができる。多塩基酸及び/又はその無水物成分の付加量は、生成するカルボキシル基含有エポキシ(メタ)アクリレート樹脂の酸価が10~150mgKOH/gの範囲となるような程度であることが好ましく、さらに20~140mgKOH/gの範囲となるような程度であることが好ましい。カルボキシル基含有エポキシ(メタ)アクリレート樹脂の酸価が上記範囲未満であるとアルカリ現像性に乏しくなる傾向があり、また、上記範囲を超えると硬化性能に劣る傾向が認められる。
 なお、この多塩基酸及び/又はその無水物の付加反応時に、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどの多官能アルコールを添加し、多分岐構造を導入したものとしてもよい。
 カルボキシル基含有エポキシ(メタ)アクリレート樹脂は、通常、エポキシ樹脂とα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとの反応物に、多塩基酸及び/又はその無水物を混合した後、もしくは、エポキシ樹脂とα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとの反応物に、多塩基酸及び/又はその無水物及び多官能アルコールを混合した後に、加温することにより得られる。この場合、多塩基酸及び/又はその無水物と多官能アルコールの混合順序に、特に制限はない。加温により、エポキシ樹脂とα,β-不飽和モノカルボン酸又はカルボキシル基を有するα,β-不飽和モノカルボン酸エステルとの反応物と多官能アルコールとの混合物中に存在するいずれかの水酸基に対して多塩基酸及び/又はその無水物が付加反応する。
 カルボキシル基含有エポキシ(メタ)アクリレート樹脂の、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は通常1000以上、好ましくは1500以上であり、通常10000以下、好ましくは8000以下、より好ましくは6000以下である。この重量平均分子量が小さいと、現像液に対する溶解性が高く、大きすぎると現像液に対する溶解性が低い。
 カルボキシル基含有エポキシ(メタ)アクリレート樹脂は、1種を単独で用いても、2種以上の樹脂を混合して用いてもよい。
 また、本発明で用いる(B’)有機結合材は、前述のカルボキシル基含有エポキシ(メタ)アクリレート樹脂の一部を、本発明の性能を損なわない限り、他のバインダー樹脂に置き換えてもよい。即ち、カルボキシル基含有エポキシ(メタ)アクリレート樹脂と他のバインダー樹脂を併用してもよい。この場合において、(B’)有機結合材におけるカルボキシル基含有エポキシ(メタ)アクリレート樹脂の割合を、50質量%以上、特に80質量%以上とすることが好ましい。
 本発明の性能を損なわない限り、カルボキシル基含有エポキシ(メタ)アクリレート樹脂と併用しうる他のバインダー樹脂に制限は無く、カラーフィルタ用感光性着色樹脂組成物に通常使用される樹脂から選択すればよい。
 なお、他のバインダー樹脂はいずれも、1種類を単独で用いても、2種以上を組み合わせて使用してもよい。
<(B)有機結合材>
 遮光材中の有機結合材は後述の露光、現像処理、熱硬化処理による重合、分解等のため、必ずしも着色樹脂組成物中の(B’)有機結合材の構造をそのまま有するものではない。
 側鎖として付加した、α,β-不飽和モノカルボン酸、カルボキシル基を有するα,β-不飽和モノカルボン酸エステル、多価アルコール、多塩基酸及び/又はその無水物は、熱処理によりその構造が必ずしも残留していないことが多い。
 樹脂の主骨格部分は比較的残留する可能性が高く、前記一般式(b1)~(b4)で表されるエポキシ樹脂を用いた場合には、以下に示す(b1)~(b4)由来の構造を有する傾向がある。
(b1骨格由来)
Figure JPOXMLDOC01-appb-C000006
 上記式(b1-1)中、R11及びaは、前記一般式(b1)におけるR11及びaと同義である。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000007
 上記式(b1-2)~式(b1-4)中、R11は前記一般式(b1)におけるR11と同義である。*は結合手を表す。
(b2骨格由来)
Figure JPOXMLDOC01-appb-C000008
 上記式(b2-1)中、R21及びbは前記一般式(b2)におけるR21及びbと同義である。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000009
 上記式(b2-2)~式(b2-4)中、R21は前記一般式(b2)におけるR21と同義である。*は結合手を表す。
(b3骨格由来)
Figure JPOXMLDOC01-appb-C000010
 上記式(b3-1-1)および式(b3-2-1)中、R31~R37は前記一般式(b3)におけるR31~R37と同義である。*は結合手を表す。
(b4骨格由来)
Figure JPOXMLDOC01-appb-C000011
 上記式(b4-1)中、R41及びR42は前記一般式(b4)におけるR41及びR42と同義である。*は結合手を表す。
<(D)有機溶剤>
 前述のとおり、第1の態様に係る遮光材付き基板における遮光材は通常、少なくとも(A)色材、(B)有機結合材、及び必要に応じて(C)微粒子を含有する着色樹脂組成物を用いて形成することができる。着色樹脂組成物に含まれる各種材料は、通常、(D)有機溶剤に溶解又は分散した状態で使用される。
 (D)有機溶剤としては、沸点が100~300℃の範囲のものを選択するのが好ましい。より好ましくは120~280℃の沸点をもつ溶剤である。
 このような有機溶剤としては、例えば、次のようなものが挙げられる。
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコール-t-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、メトキシメチルペンタノール、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールメチルエーテルのようなグリコールモノアルキルエーテル類;
 エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテルのようなグリコールジアルキルエーテル類;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートのようなグリコールアルキルエーテルアセテート類;
 エチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテートなどのグリコールジアセテート類;
 シクロヘキサノールアセテートなどのアルキルアセテート類;
 アミルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテルのようなエーテル類;
 アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトン、メトキシメチルペンタノンのようなケトン類;
 エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、メトキシメチルペンタノール、グリセリン、ベンジルアルコールのような1価又は多価アルコール類;
 n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカンのような脂肪族炭化水素類;
 シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類;
 ベンゼン、トルエン、キシレン、クメンのような芳香族炭化水素類;
 アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトンのような鎖状又は環状エステル類;
 3-メトキシプロピオン酸、3-エトキシプロピオン酸のようなアルコキシカルボン酸類;
 ブチルクロライド、アミルクロライドのようなハロゲン化炭化水素類;
 メトキシメチルペンタノンのようなエーテルケトン類;
 アセトニトリル、ベンゾニトリルのようなニトリル類等:
 上記に該当する市販の溶剤としては、ミネラルスピリット、バルソル#2、アプコ#18ソルベント、アプコシンナー、ソーカルソルベントNo.1及びNo.2、ソルベッソ#150、シェルTS28 ソルベント、カルビトール、エチルカルビトール、ブチルカルビトール、メチルセロソルブ、エチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ジグライム(いずれも商品名、セロソルブは登録商標)などが挙げられる。
 これらの有機溶剤は、単独で用いてもよく、2種以上を併用してもよい。
 フォトリソグラフィー法にてカラーフィルタの画素又はブラックマトリックスを形成する場合、有機溶剤としては沸点が100~200℃(圧力1013.25[hPa]条件下。以下、沸点に関しては全て同様。)の範囲のものを選択するのが好ましい。より好ましくは120~170℃の沸点を持つものである。沸点が低いと乾燥時にムラとなりやすく、沸点が高いと乾燥機への負担が大きく、あるいは残留溶剤として膜中に残留してしまうことがある。
 上記有機溶剤のうち、塗布性、表面張力などのバランスが良く、組成物中の構成成分の溶解度が比較的高い点からは、グリコールアルキルエーテルアセテート類が好ましい。
 また、グリコールアルキルエーテルアセテート類は、単独で使用してもよいが、他の有機溶剤を併用してもよい。併用する有機溶剤として、特に好ましいのはグリコールモノアルキルエーテル類である。中でも、特に組成物中の構成成分の溶解性からプロピレングリコールモノメチルエーテルが好ましい。なお、グリコールモノアルキルエーテル類は極性が高く、添加量が多すぎると顔料が凝集しやすく、後に得られる着色樹脂組成物の粘度が上がっていくなどの保存安定性が低下する傾向があるので、溶剤中のグリコールモノアルキルエーテル類の割合は5質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。
 また、150℃以上の沸点をもつ有機溶剤(以下「高沸点溶剤」と称す場合がある。)を併用することも好ましい。このような高沸点溶剤を併用することにより、着色樹脂組成物は乾きにくくなるが、組成物中における顔料の均一な分散状態が、急激な乾燥により破壊されることを防止する効果がある。すなわち、例えばスリットノズル先端における、色材などの析出・固化による異物欠陥の発生を防止する効果がある。このような効果が高い点から、上述の各種溶剤の中でも、特にジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ブチルエーテルアセテート、及びジエチレングリコールモノエチルエーテルアセテートが好ましい。
 有機溶剤中の高沸点溶剤の含有割合は、3質量%~50質量%が好ましく、5質量%~40質量%がより好ましく、5質量%~30質量%が特に好ましい。高沸点溶剤の量が少なすぎると、例えばスリットノズル先端で色材などが析出・固化して異物欠陥を惹き起こす可能性があり、また多すぎると組成物の乾燥温度が遅くなり、後述するカラーフィルタ製造工程における、減圧乾燥プロセスのタクト不良や、プリベークのピン跡といった問題を惹き起こすことが懸念される。
 なお、沸点150℃以上の高沸点溶剤が、グリコールアルキルエーテルアセテート類であってもよく、またグリコールアルキルエーテル類であってもよく、この場合は、沸点150℃以上の高沸点溶剤を別途含有させなくてもかまわない。
 好ましい高沸点溶剤として、例えば前述の各種溶剤の中ではジエチレングリコールモノ-n-ブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート、トリアセチンなどが挙げられる。
 また、沸点180℃以上の高沸点溶剤の好ましい例として、例えば前述の各種溶剤の中ではジエチレングリコールモノ-n-ブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート、トリアセチンなどが挙げられる。
 さらに、後述するインクや着色樹脂組成物の、粘度調整や固形分の溶解度調整のためには、沸点が180℃より低い有機溶剤を一部含有することも効果的である。このような有機溶剤としては、低粘度で溶解性が高く、低表面張力であるものが好ましく、エーテル類、エステル類やケトン類などが好ましい。中でも特に、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、シクロヘキサノールアセテートなどが特に好ましい。
 一方、有機溶剤がアルコール類を含有すると、インクジェット法における吐出安定性が劣化する場合がある。よって、アルコール類は全有機溶剤中20質量%以下とすることが好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。
<(E)光重合開始剤>
 第1の態様に係る遮光材付き基板における遮光材、及び、該遮光材を形成するための着色樹脂組成物は、更に(E)光重合開始剤を含有していてもよい。
 (E)光重合開始剤は、光を直接吸収し、分解反応又は水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する成分である。必要に応じて増感色素等の付加剤を添加して使用してもよい。
 (E)光重合開始剤としては、例えば、日本国特開昭59-152396号公報、日本国特開昭61-151197号各公報に記載のチタノセン化合物を含むメタロセン化合物;日本国特開2000-56118号公報に記載のヘキサアリールビイミダゾール誘導体;日本国特開平10-39503号公報記載のハロメチル化オキサジアゾール誘導体、ハロメチル-s-トリアジン誘導体、N-フェニルグリシン等のN-アリール-α-アミノ酸類、N-アリール-α-アミノ酸塩類、N-アリール-α-アミノ酸エステル類等のラジカル活性剤、α-アミノアルキルフェノン誘導体;日本国特開2000-80068号公報、日本国特開2006-36750号公報等に記載されているオキシムエステル誘導体等が挙げられる。
 この中でも特に、感度、硬化性の観点からオキシムエステル誘導体類(オキシム系及びケトオキシム系化合物)が有効である。
 具体的には、例えば、チタノセン誘導体類としては、ジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムビスフェニル、ジシクロペンタジエニルチタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,3,5,6-テトラフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,4-ジフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウム〔2,6-ジ-フルオロ-3-(ピロ-1-イル)-フェニ-1-イル〕等が挙げられる。
 また、ビイミダゾール誘導体類としては、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾール2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-メトキシフエニル)-4,5-ジフェニルイミダゾール2量体、(4’-メトキシフエニル)-4,5-ジフェニルイミダゾール2量体等が挙げられる。
 また、ハロメチル化オキサジアゾール誘導体類としては、2-トリクロロメチル-5-(2’-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-(6”-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等が挙げられる。
 また、ハロメチル-s-トリアジン誘導体類としては、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。
 また、α-アミノアルキルフェノン誘導体類としては、2-メチル-1〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、4-ジメチルアミノエチルベンゾエ-ト、4-ジメチルアミノイソアミルベンゾエ-ト、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエート、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等が挙げられる。
 光重合開始剤としては、特に、感度の点でオキシム誘導体類(オキシム系及びケトオキシム系化合物)が有効であり、(B)有機結合材としてフェノール性水酸基を含むアルカリ可溶性樹脂を用いる場合などは、感度の点で不利になるため、特にこのような感度に優れたオキシム誘導体類(オキシム系及びケトオキシム系化合物)が有用である。
 オキシム系化合物としては、下記一般式(6-1)で示される構造部分を含む化合物が挙げられ、好ましくは、下記一般式(6-2)で示されるオキシムエステル系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式(6-1)中、R62は、それぞれ置換されていてもよい、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数3~20のアルコキシカルボニルアルカノイル基、炭素数8~20のフェノキシカルボニルアルカノイル基、炭素数3~20のヘテロアリ-ルオキシカルボニルアルカノイル基、炭素数2~10のアミノアルキルカルボニル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基又は炭素数7~20のアリールオキシカルボニル基を示す。)
Figure JPOXMLDOC01-appb-C000013
(式(6-2)中、R61aは、水素原子、またはそれぞれ置換されていてもよい、炭素数1~20のアルキル基、炭素数2~25のアルケニル基、炭素数1~20のヘテロアリールアルキル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のフェノキシカルボニルアルキル基、炭素数1~20のヘテロアリールオキシカルボニルアルキル基もしくはヘテロアリールチオアルキル基、炭素数1~20のアミノアルキル基、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基又は炭素数1~10のシクロアルキルアルキル基を示す。
 R61bは芳香環あるいはヘテロ芳香環を含む任意の置換基を示す。
 なお、R61aはR61bと共に環を形成してもよく、その連結基は、それぞれ置換基を有していてもよい炭素数1~10のアルキレン基、ポリエチレン基(-(CH=CH)-)、ポリエチニレン基(-(C≡C)-)あるいはこれらを組み合わせてなる基が挙げられる(なお、rは1~3の整数である。)。
 R62aは、それぞれ置換されていてもよい、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数3~20のアルコキシカルボニルアルカノイル基、炭素数8~20のフェノキシカルボニルアルカノイル基、炭素数3~20のヘテロアリ-ルオキシカルボニルアルカノイル基、炭素数2~10のアミノカルボニル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基又は炭素数7~20のアリールオキシカルボニル基を示す。)
 上記一般式(6-1)におけるR62及び上記一般式(6-2)におけるR62aとしては、好ましくは、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基又は炭素数3~8のシクロアルカノイル基が挙げられる。
 上記一般式(6-2)におけるR61aとしては、好ましくは無置換のメチル基、エチル基、プロピル基や、N-アセチル-N-アセトキシアミノ基で置換されたプロピル基が挙げられる。
 また、上記一般式(6-2)におけるR61bとしては、好ましくは置換されていてもよいカルバゾイル基、置換されていてもよいチオキサントニル基又は置換されていてもよいフェニルスルフィド基が挙げられる。
 また、上記一般式(6-1)及び(6-2)における任意の置換基としては、アルキル基、アリール基、脂環基、複素環基、ハロゲン基、水酸基、カルボキシル基、アミド基等が挙げられる。
 またケトオキシム系化合物としては、下記一般式(6-3)で示される構造部分を含む化合物が挙げられ、好ましくは、下記一般式(6-4)で示されるオキシムエステル系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(上記一般式(6-3)において、R64は、前記一般式(6-1)におけるR62と同義である。)
Figure JPOXMLDOC01-appb-C000015
(上記一般式(6-4)において、R63aは、それぞれ置換されていてもよい、フェニル基、炭素数1~20のアルキル基、炭素数2~25のアルケニル基、炭素数1~20のヘテロアリールアルキル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のフェノキシカルボニルアルキル基、炭素数2~20のアルキルチオアルキル基、炭素数1~20のヘテロアリールオキシカルボニルアルキル基もしくはヘテロアリールチオアルキル基、炭素数1~20のアミノアルキル基、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基又は炭素数1~10のシクロアルキルアルキル基を示す。
 R63bは芳香環あるいはヘテロ芳香環を含む任意の置換基を示す。
 なお、R63aはR63bと共に環を形成してもよく、その連結基は、それぞれ置換基を有していてもよい炭素数1~10のアルキレン基、ポリエチレン基(-(CH=CH)-)、ポリエチニレン基(-(C≡C)-)あるいはこれらを組み合わせてなる基が挙げられる(なお、rは、1~3の整数である。)。
 R64aは、それぞれ置換されていてもよい、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数4~8のシクロアルカノイル基、炭素数7~20のベンゾイル基、炭素数3~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数2~20のヘテロアリール基又は炭素数2~20のアルキルアミノカルボニル基を表す。)
 上記一般式(6-3)におけるR64及び上記一般式(6-4)におけるR64aとしては、好ましくは、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~8のシクロアルカノイル基又は炭素数7~20のアリーロイル基が挙げられる。
 上記一般式(6-4)におけるR63aとしては、好ましくは無置換のエチル基、プロピル基、ブチル基や、メトキシカルボニル基で置換されたエチル基またはプロピル基が挙げられる。
 また、上記一般式(6-4)におけるR63bとしては、好ましくは置換されていてもよいカルバゾイル基又は置換されていてもよいフェニルスルフィド基が挙げられる。
 また、上記一般式(6-3)及び(6-4)における任意の置換基としては、アルキル基、アリール基、脂環基、複素環基、ハロゲン基、水酸基、カルボキシル基、アミド基等が挙げられる。
 本発明に好適なオキシムエステル系化合物、ケトオキシムエステル系化合物として具体的には、以下に例示されるような化合物が挙げられるが、何らこれらの化合物に限定されるものではない(なお、以下において、「Me」は「メチル基」を表す。)。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 その他に、ベンゾインメチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル類;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン誘導体類;ベンゾフェノン、ミヒラーズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン誘導体類;2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-メチルチオフェニル)-2-モルホリノ-1-プロパノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン等のアセトフェノン誘導体類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン誘導体類;p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体類;9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等のアクリジン誘導体類;9,10-ジメチルベンズフェナジン等のフェナジン誘導体類;ベンズアンスロン等のアンスロン誘導体類等も挙げられる。
 これらの光重合開始剤の中では、感度の点からオキシムエステル誘導体類(オキシムエステル系化合物)が特に好ましい。
 光重合開始剤には、必要に応じて、感応感度を高める目的で、画像露光光源の波長に応じた増感色素を配合させることができる。これら増感色素としては、日本国特開平4-221958号公報、日本国特開平4-219756号公報に記載のキサンテン色素、日本国特開平3-239703号公報、日本国特開平5-289335号公報に記載の複素環を有するクマリン色素、日本国特開平3-239703号公報、日本国特開平5-289335号公報に記載の3-ケトクマリン化合物、日本国特開平6-19240号公報に記載のピロメテン色素、その他、日本国特開昭47-2528号公報、日本国特開昭54-155292号公報、日本国特公昭45-37377号公報、日本国特開昭48-84183号公報、日本国特開昭52-112681号公報、日本国特開昭58-15503号公報、日本国特開昭60-88005号公報、日本国特開昭59-56403号公報、日本国特開平2-69号公報、日本国特開昭57-168088号公報、日本国特開平5-107761号公報、日本国特開平5-210240号公報、日本国特開平4-288818号公報に記載のジアルキルアミノベンゼン骨格を有する色素等を挙げることができる。
 これらの増感色素のうち好ましいものは、アミノ基含有増感色素であり、更に好ましいものは、アミノ基及びフェニル基を同一分子内に有する化合物である。特に、好ましいのは、例えば、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-アミノベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン等のベンゾフェノン系化合物;2-(p-ジメチルアミノフェニル)ベンゾオキサゾール、2-(p-ジエチルアミノフェニル)ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[4,5]ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[6,7]ベンゾオキサゾール、2,5-ビス(p-ジエチルアミノフェニル)1,3,4-オキサゾール、2-(p-ジメチルアミノフェニル)ベンゾチアゾール、2-(p-ジエチルアミノフェニル)ベンゾチアゾール、2-(p-ジメチルアミノフェニル)ベンズイミダゾール、2-(p-ジエチルアミノフェニル)ベンズイミダゾール、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-チアジアゾール、(p-ジメチルアミノフェニル)ピリジン、(p-ジエチルアミノフェニル)ピリジン、(p-ジメチルアミノフェニル)キノリン、(p-ジエチルアミノフェニル)キノリン、(p-ジメチルアミノフェニル)ピリミジン、(p-ジエチルアミノフェニル)ピリミジン等のp-ジアルキルアミノフェニル基含有化合物等である。
 このうち最も好ましいものは、4,4’-ジアルキルアミノベンゾフェノンである。
 増感色素もまた1種を単独で用いてもよく、2種以上を併用してもよい。
<光重合性化合物>
 第1の態様に係る遮光材付き基板における遮光材を形成するための着色樹脂組成物においては、更に光重合性化合物を含むことが、感度等の点で好ましい。
 本発明に用いられる光重合性化合物としては、分子内にエチレン性不飽和基を少なくとも1個有する化合物(以下、「エチレン性単量体」と称することがある)を挙げることができる。具体的には、例えば(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、アクリロニトリル、スチレン、及びエチレン性不飽和結合を1個有するカルボン酸と、多価又は1価アルコールのモノエステル等が挙げられる。
 本発明においては、特に、1分子中にエチレン性不飽和基を二個以上有する多官能エチレン性単量体を使用することが望ましい。
 かかる多官能エチレン性単量体の例としては、例えば脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;脂肪族ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物と、不飽和カルボン酸及び多塩基性カルボン酸とのエステル化反応により得られるエステルなどが挙げられる。
 前記脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、グリセロールアクリレート等の脂肪族ポリヒドロキシ化合物のアクリル酸エステル、これら例示化合物のアクリレートをメタクリレートに代えたメタクリル酸エステル、同様にイタコネートに代えたイタコン酸エステル、クロネートに代えたクロトン酸エステルもしくはマレエートに代えたマレイン酸エステル等が挙げられる。
 芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、ハイドロキノンジアクリレート、ハイドロキノンジメタクリレート、レゾルシンジアクリレート、レゾルシンジメタクリレート、ピロガロールトリアクリレート等の芳香族ポリヒドロキシ化合物のアクリル酸エステル及びメタクリル酸エステル等が挙げられる。
 多塩基性カルボン酸及び不飽和カルボン酸と、多価ヒドロキシ化合物のエステル化反応により得られるエステルとしては必ずしも単一物ではないが、代表的な具体例を挙げれば、アクリル酸、フタル酸、及びエチレングリコールの縮合物、アクリル酸、マレイン酸、及びジエチレングリコールの縮合物、メタクリル酸、テレフタル酸及びペンタエリスリトールの縮合物、アクリル酸、アジピン酸、ブタンジオール及びグリセリンの縮合物等が挙げられる。
 その他、本発明に用いられる多官能エチレン性単量体の例としては、ポリイソシアネート化合物と水酸基含有(メタ)アクリル酸エステル又はポリイソシアネート化合物とポリオール及び水酸基含有(メタ)アクリル酸エステルを反応させて得られるようなウレタン(メタ)アクリレート類;多価エポキシ化合物とヒドロキシ(メタ)アクリレート又は(メタ)アクリル酸との付加反応物のようなエポキシアクリレート類;エチレンビスアクリルアミド等のアクリルアミド類;フタル酸ジアリル等のアリルエステル類;ジビニルフタレート等のビニル基含有化合物等が有用である。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 <分散剤>
 第1の態様に係る遮光材付き基板における遮光材、及び、該遮光材を形成するための着色樹脂組成物においては、(A)色材を微細に分散させ、且つその分散状態を安定化させることが品質の安定性確保には重要なため、分散剤を含むことが好ましい。
 分散剤としては、官能基を有する高分子分散剤が好ましく、更には、分散安定性の面からカルボキシル基;リン酸基;スルホン酸基;又はこれらの塩基;一級、二級又は三級アミノ基;四級アンモニウム塩基;ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基、等の官能基を有する高分子分散剤が好ましい。中でも特に、一級、二級又は三級アミノ基;四級アンモニウム塩基;ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基等の塩基性官能基を有する高分子分散剤が特に好ましい。
 また高分子分散剤としては、例えばウレタン系分散剤、アクリル系分散剤、ポリエチレンイミン系分散剤、ポリアリルアミン系分散剤、アミノ基を持つモノマーとマクロモノマーからなる分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレンジエステル系分散剤、ポリエーテルリン酸系分散剤、ポリエステルリン酸系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤等を挙げることができる。
 このような分散剤の具体例としては、商品名で、EFKA(エフカーケミカルズビーブイ(EFKA)社製)、Disperbyk(ビックケミー社製、登録商標)、ディスパロン(楠本化成社製、登録商標)、SOLSPERSE(ルーブリゾール社製、登録商標)、KP(信越化学工業社製)、ポリフロー(共栄社化学社製)、アジスパー(味の素社製、登録商標)等を挙げることができる。
 これらの高分子分散剤は1種を単独で使用してもよく、又は2種以上を併用してもよい。
 高分子分散剤の重量平均分子量(Mw)は通常700以上、好ましくは1000以上であり、また通常100,000以下、好ましくは50,000以下である。
 これらの内、密着性及び直線性の面から、分散剤は官能基を有するウレタン系高分子分散剤及び/又はアクリル系高分子分散剤を含むことが、特に好ましい。
 ウレタン系高分子分散剤としては例えばDisperbyk(登録商標)160~167、182シリーズ(以上ビックケミー社製)、EFKA4046、EFKA4047(以上BASF社製)が、アクリル系高分子分散剤としては、Disperbyk(登録商標)2000、2001(以上ビックケミー社製)等が挙げられる。
 ウレタン系高分子分散剤として好ましい化学構造を具体的に例示するならば、例えば、ポリイソシアネート化合物と、分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物と、同一分子内に活性水素と3級アミノ基を有する化合物とを反応させることによって得られる、重量平均分子量1,000~200,000の分散樹脂等が挙げられる。
 上記のポリイソシアネート化合物の例としては、パラフェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)、ω,ω′-ジイソシネートジメチルシクロヘキサン等の脂環族ジイソシアネート、キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリス(イソシアネートフェニルメタン)、トリス(イソシアネートフェニル)チオホスフェート等のトリイソシアネート、及びこれらの3量体、水付加物、及びこれらのポリオール付加物等が挙げられる。ポリイソシアネートとして好ましいのは有機ジイソシアネートの三量体で、最も好ましいのはトリレンジイソシアネートの三量体とイソホロンジイソシアネートの三量体である。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 イソシアネートの三量体の製造方法としては、前記ポリイソシアネート類を適当な三量化触媒、例えば第3級アミン類、ホスフィン類、アルコキシド類、金属酸化物、カルボン酸塩類等を用いてイソシアネート基の部分的な三量化を行い、触媒毒の添加により三量化を停止させた後、未反応のポリイソシアネートを溶剤抽出、薄膜蒸留により除去して目的のイソシアヌレート基含有ポリイソシアネートを得る方法が挙げられる。
 同一分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物としては、ポリエーテルグリコール、ポリエステルグリコール、ポリカーボネートグリコール、ポリオレフィングリコール等、及びこれらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化されたもの及びこれら2種類以上の混合物が挙げられる。
 ポリエーテルグリコールとしては、ポリエーテルジオール、ポリエーテルエステルジオール及びこれら2種類以上の混合物が挙げられる。ポリエーテルジオールとしては、アルキレンオキシドを単独又は共重合させて得られるもの、例えばポリエチレングリコール、ポリプロピレングリコール、ポリエチレン-プロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシヘキサメチレングリコール、ポリオキシオクタメチレングリコール及びそれらの2種以上の混合物が挙げられる。
 ポリエーテルエステルジオールとしては、エーテル基含有ジオールもしくは他のグリコールとの混合物をジカルボン酸又はそれらの無水物と反応させるか、又はポリエステルグリコールにアルキレンオキシドを反応させることによって得られるもの、例えばポリ(ポリオキシテトラメチレン)アジペート等が挙げられる。ポリエーテルグリコールとして最も好ましいのはポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール又はこれらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化された化合物である。
 ポリエステルグリコールとしては、ジカルボン酸(コハク酸、グルタル酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、フタル酸等)又はそれらの無水物とグリコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジーオル、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,8-オクタメチレングリコール、2-メチル-1,8-オクタメチレングリコール、1,9-ノナンジオール等の脂肪族グリコール、ビスヒドロキシメチルシクロヘキサン等の脂環族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、N-メチルジエタノールアミン等のN-アルキルジアルカノールアミン等)とを重縮合させて得られたもの、例えばポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリエチレン/プロピレンアジペート等、又は前記ジオール類又は炭素数1~25の1価アルコールを開始剤として用いて得られるポリラクトンジオール又はポリラクトンモノオール、例えばポリカプロラクトングリコール、ポリメチルバレロラクトン及びこれらの2種以上の混合物が挙げられる。ポリエステルグリコールとして最も好ましいのはポリカプロラクトングリコール又は炭素数1~25のアルコールを開始剤としたポリカプロラクトンである。
 ポリカーボネートグリコールとしては、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等、ポリオレフィングリコールとしてはポリブタジエングリコール、水素添加型ポリブタジエングリコール、水素添加型ポリイソプレングリコール等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 同一分子内に水酸基を1個又は2個有する化合物の数平均分子量は、通常300~10,000、好ましくは500~6,000、更に好ましくは1,000~4,000である。
 本発明に用いられる同一分子内に活性水素と3級アミノ基を有する化合物を説明する。活性水素、即ち、酸素原子、窒素原子又はイオウ原子に直接結合している水素原子としては、水酸基、アミノ基、チオール基等の官能基中の水素原子が挙げられ、中でもアミノ基、特に1級のアミノ基の水素原子が好ましい。
 3級アミノ基は、特に限定されないが、例えば炭素数1~4のアルキル基を有するアミノ基又はヘテロ環構造、より具体的にはイミダゾール環又はトリアゾール環などが挙げられる。
 このような同一分子内に活性水素と3級アミノ基を有する化合物を例示するならば、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジプロピル-1,3-プロパンジアミン、N,N-ジブチル-1,3-プロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジプロピルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジプロピル-1,4-ブタンジアミン、N,N-ジブチル-1,4-ブタンジアミン等が挙げられる。
 また、3級アミノ基が含窒素ヘテロ環構造である場合の該含窒素ヘテロ環としては、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、インドール環、カルバゾール環、インダゾール環、ベンズイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾチアジアゾール環等のN含有ヘテロ5員環、ピリジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、アクリジン環、イソキノリン環等の含窒素ヘテロ6員環が挙げられる。これらの含窒素ヘテロ環のうち好ましいものはイミダゾール環又はトリアゾール環である。
 これらのイミダゾール環とアミノ基を有する化合物を具体的に例示するならば、1-(3-アミノプロピル)イミダゾール、ヒスチジン、2-アミノイミダゾール、1-(2-アミノエチル)イミダゾール等が挙げられる。また、トリアゾール環とアミノ基を有する化合物を具体的に例示するならば、3-アミノ-1,2,4-トリアゾール、5-(2-アミノ-5-クロロフェニル)-3-フェニル-1H-1,2,4-トリアゾール、4-アミノ-4H-1,2,4-トリアゾール-3,5-ジオール、3-アミノ-5-フェニル-1H-1,3,4-トリアゾール、5-アミノ-1,4-ジフェニル-1,2,3-トリアゾール、3-アミノ-1-ベンジル-1H-2,4-トリアゾール等が挙げられる。中でも、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、1-(3-アミノプロピル)イミダゾール、3-アミノ-1,2,4-トリアゾールが好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 ウレタン系高分子分散剤を製造する際の原料の好ましい配合比率はポリイソシアネート化合物100質量部に対し、同一分子内に水酸基を1個又は2個有する数平均分子量300~10,000の化合物が10~200質量部、好ましくは20~190質量部、更に好ましくは30~180質量部、同一分子内に活性水素と3級アミノ基を有する化合物が0.2~25質量部、好ましくは0.3~24質量部である。
 ウレタン系高分子分散剤の製造はポリウレタン樹脂製造の公知の方法に従って行われる。製造する際の溶媒としては、通常、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等のケトン類、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類、ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類、ダイアセトンアルコール、イソプロパノール、第二ブタノール、第三ブタノール等一部のアルコール類、塩化メチレン、クロロホルム等の塩化物、テトラヒドロフラン、ジエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキサイド等の非プロトン性極性溶媒等が用いられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 上記製造に際して、通常、ウレタン化反応触媒が用いられる。この触媒としては、例えば、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジオクトエート、スタナスオクトエート等の錫系、鉄アセチルアセトナート、塩化第二鉄等の鉄系、トリエチルアミン、トリエチレンジアミン等の3級アミン系等の1種又は2種以上が挙げられる。
 同一分子内に活性水素と3級アミノ基を有する化合物の導入量は反応後のアミン価で1~100mgKOH/gの範囲に制御するのが好ましい。より好ましくは5~95mgKOH/gの範囲である。アミン価は、塩基性アミノ基を酸により中和滴定し、酸価に対応させてKOHのmg数で表した値である。アミン価が上記範囲より低いと分散能力が低下する傾向があり、また、上記範囲を超えると現像性が低下しやすくなる。
 なお、以上の反応で高分子分散剤にイソシアネート基が残存する場合には更に、アルコールやアミノ化合物でイソシアネート基を潰すと生成物の経時安定性が高くなるので好ましい。
 ウレタン系高分子分散剤の重量平均分子量(Mw)は通常1,000~200,000、好ましくは2,000~100,000、より好ましくは3,000~50,000の範囲である。この分子量が1,000未満では分散性及び分散安定性が劣り、200,000を超えると溶解性が低下し分散性が劣ると同時に反応の制御が困難となる。
 アクリル系高分子分散剤としては、官能基(ここでいう官能基とは、高分子分散剤に含有される官能基として前述した官能基である。)を有する不飽和基含有単量体と、官能基を有さない不飽和基含有単量体とのランダム共重合体、グラフト共重合体、ブロック共重合体を使用することが好ましい。これらの共重合体は公知の方法で製造することができる。
 官能基を有する不飽和基含有単量体としては、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、アクリル酸ダイマー等のカルボキシル基を有する不飽和単量体、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート及びこれらの4級化物などの3級アミノ基、4級アンモニウム塩基を有する不飽和単量体が具体例として挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 官能基を有さない不飽和基含有単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、N-ビニルピロリドン、スチレン及びその誘導体、α-メチルスチレン、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミドなどのN-置換マレイミド、アクリロニトリル、酢酸ビニル及びポリメチル(メタ)アクリレートマクロモノマー、ポリスチレンマクロモノマー、ポリ2-ヒドロキシエチル(メタ)アクリレートマクロモノマー、ポリエチレングリコールマクロモノマー、ポリプロピレングリコールマクロモノマー、ポリカプロラクトンマクロモノマーなどのマクロモノマー等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 アクリル系高分子分散剤は、特に好ましくは、官能基を有するAブロックと官能基を有さないBブロックからなるA-B又はB-A-Bブロック共重合体であるが、この場合、Aブロック中には上記官能基を含む不飽和基含有単量体の他に、上記官能基を含まない不飽和基含有単量体が含まれていてもよく、これらが該Aブロック中においてランダム共重合又はブロック共重合のいずれの態様で含有されていてもよい。また、官能基を含まない部分構造の、Aブロック中の含有量は、通常80質量%以下であり、好ましくは50質量%以下、更に好ましくは30質量%以下である。
 Bブロックは、上記官能基を含まない不飽和基含有単量体からなるものであるが、1つのBブロック中に2種以上の単量体が含有されていてもよく、これらは、該Bブロック中においてランダム共重合又はブロック共重合のいずれの態様で含有されていてもよい。
 該A-B又はB-A-Bブロック共重合体は、例えば、リビング重合法にて調製される。
 リビング重合法には、アニオンリビング重合法、カチオンリビング重合法、ラジカルリビング重合法があり、このうち、アニオンリビング重合法は、重合活性種がアニオンでる。ラジカルリビング重合法は重合活性種がラジカルである。
 このアクリル系高分子分散剤を合成するに際しては、日本国特開平9-62002号公報や、P.Lutz, P.Masson et al, Polym. Bull. 12, 79(1984)、B.C.Anderson, G.D.Andrews et al, Macromolecules, 14, 1601(1981)、K.Hatada, K.Ute,et al, Polym. J. 17, 977(1985), 18, 1037(1986)、右手浩一、畑田耕一、高分子加工、36, 366(1987)、東村敏延、沢本光男、高分子論文集、46, 189(1989)、M.Kuroki, T.Aida, J. Am. Chem. Sic, 109, 4737(1987)、相田卓三、井上祥平、有機合成化学、43, 300(1985)、D.Y.Sogoh, W.R.Hertler et al, Macromolecules, 20, 1473(1987)などに記載の公知の方法を採用することができる。
 本発明で用いるアクリル系高分子分散剤がA-Bブロック共重合体であっても、B-A-Bブロック共重合体であっても、その共重合体を構成するAブロック/Bブロック比は1/99~80/20、特に5/95~60/40(質量比)であることが好ましく、この範囲外では、良好な耐熱性と分散性を兼備することができない場合がある。
 また、本発明に係るA-Bブロック共重合体、B-A-Bブロック共重合体1g中の4級アンモニウム塩基の量は、通常0.1~10mmolであることが好ましく、この範囲外では、良好な耐熱性と分散性を兼備することができない場合がある。
 なお、このようなブロック共重合体中には、通常、製造過程で生じたアミノ基が含有される場合があるが、そのアミン価は1~100mgKOH/g程度である。
 ここで、これらのブロック共重合体等の分散剤のアミン価は、分散剤試料中の溶剤を除いた固形分1gあたりの塩基量と当量のKOHの質量で表し、次の方法により測定する。100mLのビーカーに分散剤試料の0.5~1.5gを精秤し、50mLの酢酸で溶解する。pH電極を備えた自動滴定装置を使って、この溶液を0.1mol/LのHClO酢酸溶液にて中和滴定する。滴定pH曲線の変曲点を滴定終点とし次式によりアミン価を求める。
 アミン価[mgKOH/g]=(561×V)/(W×S)
〔但し、W:分散剤試料秤取量[g]、V:滴定終点での滴定量[mL]、S:分散剤試料の固形分濃度[質量%]を表す。〕
 また、このブロック共重合体の酸価は、該酸価の元となる酸性基の有無及び種類にもよるが、一般に低い方が好ましく、通常10mgKOH/g以下であり、その重量平均分子量(Mw)は、1000~100,000の範囲が好ましい。ブロック共重合体の重量平均分子量が1000未満であると分散安定性が低下する傾向があり、100,000を超えると現像性、解像性が低下する傾向にある。
<顔料誘導体>
 分散安定性向上の点から、上記の分散剤は、以下の顔料誘導体と併用してもよい。
 顔料誘導体としてはアゾ系、フタロシアニン系、キナクリドン系、ベンズイミダゾロン系、キノフタロン系、イソインドリノン系、ジオキサジン系、アントラキノン系、インダンスレン系、ペリレン系、ペリノン系、ジケトピロロピロール系、ジオキサジン系等の誘導体が挙げられるが、中でもフタロシアニン系、キノフタロン系が好ましい。
 顔料誘導体の置換基としてはスルホン酸基、スルホンアミド基及びその4級塩、フタルイミドメチル基、ジアルキルアミノアルキル基、水酸基、カルボキシル基、アミド基等が顔料骨格に直接又はアルキル基、アリール基、複素環基等を介して結合したものが挙げられ、好ましくはスルホン酸基である。またこれら置換基は一つの顔料骨格に複数置換していてもよい。顔料誘導体の具体例としてはフタロシアニンのスルホン酸誘導体、キノフタロンのスルホン酸誘導体、アントラキノンのスルホン酸誘導体、キナクリドンのスルホン酸誘導体、ジケトピロロピロールのスルホン酸誘導体、ジオキサジンのスルホン酸誘導体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<着色樹脂組成物のその他の配合成分>
 第1の態様に係る遮光材付き基板における遮光材を形成するための着色樹脂組成物には、上述の成分の他、リン酸系添加剤、シランカップリング剤、界面活性剤、チオール系添加剤、紫外線吸収剤、酸化防止剤などを適宜配合することができる。
(1)リン酸系添加剤
 リン酸系添加剤としては、(メタ)アクリロイルオキシ基含有ホスフェート類が好ましく、下記一般式(5a)、(5b)または(5c)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000021
[上記一般式(5a)、(5b)及び(5c)において、R51は水素原子又はメチル基を示し、p及びp’は1~10の整数、qは1、2又は3である。]
 これらのリン酸系添加剤は、1種類を単独で用いても、2種以上を組み合わせて使用してもよい。
(2)シランカップリング剤
 透明基板との密着性を改善するため、シランカップリング剤を添加することも可能である。
 シランカップリング剤の種類としては、エポキシ系、(メタ)アクリル系、アミノ系等種々のものが1種を単独で、或いは2種以上を混合して使用できる。
 好ましいシランカップリング剤として、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシシラン類、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、等のエポキシシラン類、3-ウレイドプロピルトリエトキシシラン等のウレイドシラン類、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン類が挙げられるが、特に好ましくは、エポキシシラン類のシランカップリング剤が挙げられる。
 これらのシランカップリング剤は、1種類を単独で用いても、2種以上を組み合わせて使用してもよい。
(3)界面活性剤
 界面活性剤としては、例えば、アニオン系、カチオン系、非イオン系、両性界面活性剤等各種のものを用いることができる。中でも、諸特性に悪影響を及ぼす可能性が低い点で、非イオン系界面活性剤を用いるのが好ましく、中でもフッ素系やシリコン系の界面活性剤が塗布性の面で効果的である。
 このような界面活性剤としては、例えば、TSF4460(ジーイー東芝シリコーン社製)、DFX-18(ネオス社製)、BYK-300、BYK-325、BYK-330(ビックケミー社製)、KP340(信越シリコーン社製)、F-470、F-475、F-478、F-559(大日本インキ化学工業社製)、SH7PA(トーレシリコーン社製)、DS-401(ダイキン社製)、L-77(日本ユニカー社製)、FC4430(住友3M社製)等が挙げられる。
 これらの界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(4)チオール系添加剤
 高感度化、透明基板への密着性の向上のため、チオール類を添加することも可能である。チオール類の種類としては、ヘキサンジチオール、デカンジチオール、1,4-ジメチルメルカプトベンゼン、ブタンジオールビスチオプロピオネート、ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ブタンジオールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、トリスヒドロキシエチルトリスチオプロピオネート、エチレングリコールビス(3-メルカプトブチレート)、ブタンジオールビス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールトリス(3-メルカプトブチレート)、エチレングリコールビス(3-メルカプトイソブチレート)、ブタンジオールビス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられ、これらは種々のものを1種を単独で、或いは2種以上を混合して使用できる。
<着色樹脂組成物中の成分配合量>
 第1の態様に係る遮光材付き基板における遮光材を形成するための着色樹脂組成物において、(A)色材の含有量は、着色樹脂組成物中の全固形分に対して通常1~70質量%の範囲で選ぶことができる。
 この範囲の中でも、10~60質量%がより好ましく、20~55質量%が特に好ましい。(A)色材の含有量が少なすぎると遮光材としての遮光性が低くなり、含有量が多すぎると、十分な画像形成性が得られなくなることがある。
 また、その中でも透明基板側の遮光材や、遮光材における第1層を形成する着色樹脂組成物においては、(A)色材の含有量は着色樹脂組成物中の全固形分に対して1~30質量%がより好ましく、1~20質量%が特に好ましい。(A)色材の含有量が多すぎると透明基板と遮光材との界面の反射率が高くなり、好ましくない。
 また、透明基板と反対側や、遮光材における第2層以降の層を形成する着色樹脂組成物においては、(A)色材の含有量は着色樹脂組成物中の全固形分に対して20~70質量%がより好ましく、30~60質量%が特に好ましい。(A)色材の含有量が少なすぎると十分な遮光性が得られなくなる場合がある。
 分散剤を用いる場合、その含有量は、着色樹脂組成物の固形分中、通常50質量%以下、好ましくは30質量%以下で、通常1質量%以上、好ましくは3質量%以上である。また、分散剤の含有量は、(A)色材に対して、通常5質量%以上、特に10質量%以上であり、通常200質量%以下、特に80質量%以下であることが好ましい。分散剤の含有量が少な過ぎると、十分な分散性が得られない場合があり、多過ぎると相対的に他の成分の割合が減って色濃度、感度、成膜性等が低下する傾向がある。
 特に、分散剤としては、高分子分散剤と顔料誘導体とを併用することが好ましいが、この場合、顔料誘導体の配合割合は本発明の着色樹脂組成物の全固形分に対して、通常1質量%以上で、通常10質量%以下、好ましくは5質量%以下とすることが好ましい。
 (B)有機結合材の含有量は、本発明の着色樹脂組成物の全固形分に対して、通常5質量%以上、好ましくは10質量%以上であり、通常85質量%以下、好ましくは80質量%以下である。
 (B)有機結合材がアルカリ可溶性樹脂の場合、その含有量が著しく少ないと、未露光部分の現像液に対する溶解性が低下し、現像不良を誘起させやすくなる。逆に、(B)有機結合材の含有量が多すぎると、露光部への現像液の浸透性が高くなる傾向があり、画素のシャープ性や密着性が低下する場合がある。
 また、(B)有機結合材の(A)色材に対する量は、通常10~500質量%、好ましくは30~300質量%、より好ましくは50~200質量%の範囲である。(A)色材に対する(B)有機結合材の含有量が低すぎると、未露光部分の現像液に対する溶解性が低下し、現像不良を誘起させやすく、著しく高いと、所望の画素膜厚が得られ難くなる。
 また、その中でも透明基板側の遮光材や、遮光材における第1層を形成する着色樹脂組成物においては、(B)有機結合材の含有量は、(A)色材と(C)微粒子との合計に対する含有量として、10~300質量%であることが好ましく、特に20~200質量%であることが好ましい。
 透明基板側の遮光材や、遮光材における第1層を形成するための着色樹脂組成物における(C)微粒子の含有量は、本発明の着色樹脂組成物の全固形分に対して、通常10~40質量%の範囲で、好ましくは15~35質量%の範囲で使用される。(C)微粒子の含有量が少なすぎると、透明基板と反対側の遮光材や、遮光材における第2層以降の層を形成する際、着色樹脂組成物を塗布したときに、透明基板側の遮光材や、遮光材における第1層の塗膜が溶解してしまうおそれがあり、反対に多すぎると未露光部分の現像液に対する溶解性が低下し、現像不良を誘起させやすい。なお、透明基板と反対側や、遮光材における第2層以降の層の形成に用いる着色樹脂組成物は、(C)微粒子を含有しないことが好ましい。
 (E)光重合開始剤の含有量は、本発明の着色樹脂組成物の全固形分に対して、通常0.1質量%以上、好ましくは0.5質量%以上、更に好ましくは0.7質量%以上であり、通常30質量%以下、好ましくは20質量%以下である。(E)光重合開始剤の含有量が少なすぎると感度低下を起こすことがあり、反対に多すぎると未露光部分の現像液に対する溶解性が低下し、現像不良を誘起させやすい。
 (E)光重合開始剤と共に加速剤を用いる場合、加速剤の含有量は、本発明の着色樹脂組成物の全固形分に対して、通常0質量%以上、好ましくは0.02質量%以上で、通常10質量%以下、好ましくは5質量%以下であり、加速剤は、(E)光重合開始剤に対して0.1~50質量%、特に0.1~10質量%の割合で用いることが好ましい。(E)光重合開始剤と加速剤等よりなる光重合開始剤系成分の配合割合が著しく低いと露光光線に対する感度が低下する原因となることがあり、反対に著しく高いと未露光部分の現像液に対する溶解性が低下し、現像不良を誘起させることがある。
 また、本発明の着色樹脂組成物中に占める増感色素の配合割合は着色樹脂組成物中の全固形分に対して、通常0~20質量%、好ましくは0~15質量%、更に好ましくは0~10質量%である。
 光重合性化合物を用いる場合、その含有量は、本発明の着色樹脂組成物の全固形分に対して、通常90質量%以下、好ましくは80質量%以下である。光重合性化合物の含有量が多すぎると、露光部への現像液の浸透性が高くなり、良好な画像を得ることが困難となる場合がある。なお、光重合性化合物の含有量の下限は、通常1質量%以上、好ましくは5質量%以上である。
 また、シランカップリング剤及び/又はリン酸系添加剤を用いる場合、これらの含有量は、着色組成物中の全固形分に対して通常0.1~5質量%、好ましくは0.2~3質量%、さらに好ましくは0.4~2質量%である。シランカップリング剤及び/又はリン酸系添加剤の含有量が上記範囲よりも少ないと密着性の向上効果を十分に得ることができず、多いと感度が低下したり、現像後に残渣が残り欠陥となったりする場合がある。
 界面活性剤を用いる場合、その含有量は、着色樹脂組成物中の全固形分に対して通常0.001~10質量%、好ましくは0.005~1質量%、さらに好ましくは0.01~0.5質量%、最も好ましくは0.03~0.3質量%である。界面活性剤の含有量が上記範囲よりも少ないと塗膜の平滑性、均一性が発現できない可能性があり、多いと塗膜の平滑性、均一性が発現できない他、他の特性が悪化する場合がある。
 チオール系添加剤を用いる場合、その含有量は、本発明の着色樹脂組成物の全固形分に対して、通常0.1質量%以上、好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、通常10質量%以下、好ましくは5質量%以下である。チオール系添加剤の含有量が少なすぎると感度低下を起こすことがあり、反対に多すぎると保存安定性が悪くなる場合がある。
 なお、本発明の着色樹脂組成物は、前述の(D)有機溶剤を使用して、その固形分濃度が通常5~50質量%、好ましくは10~30質量%となるように調液される。
<着色樹脂組成物の製造方法>
 第1の態様に係る遮光材付き基板における遮光材を形成するための着色樹脂組成物(以下、「レジスト」と称することがある。)は、常法に従って製造される。
 通常、(A)色材は、予めペイントコンディショナー、サンドグラインダー、ボールミル、ロールミル、ストーンミル、ジェットミル、ホモジナイザー等を用いて分散処理するのが好ましい。分散処理により(A)色材が微粒子化されるため、レジストの塗布特性が向上する。また、(A)色材として黒色色材を使用した場合は遮光能力の向上に寄与する。
 分散処理は、通常、(A)色材、(D)有機溶剤、及び必要に応じて分散剤、並びに(B)有機結合材及び/又は他のバインダー樹脂の一部又は全部を併用した系にて行うことが好ましい。(以下、分散処理に供する混合物、及び該処理にて得られた組成物を「インク」と称することがある。)特に分散剤として高分子分散剤を用いると、得られたインク及びレジストの経時の増粘が抑制される(すなわち、分散安定性に優れる)ので好ましい。
 なお、着色樹脂組成物に配合する全成分を含有する液に対して分散処理を行った場合、分散処理時に生じる発熱のため、高反応性の成分が変性する可能性がある。従って、前述した成分を含む系にて分散処理を行うことが好ましい。
 サンドグラインダーで(A)色材を分散させる場合には、0.1~8mm程度の径のガラスビーズ又はジルコニアビーズが好ましく用いられる。分散処理条件は、温度は通常、0℃から100℃であり、好ましくは、室温から80℃の範囲である。分散時間は液の組成及び分散処理装置のサイズ等により適正時間が異なるため適宜調節する。レジストの20度鏡面光沢度(JIS Z8741-1997)が100~200の範囲となるように、インキの光沢を制御するのが分散の目安である。レジストの光沢度が低い場合には、分散処理が十分でなく荒い顔料(色材)粒子が残っていることが多く、現像性、密着性、解像性等が不十分となる可能性がある。また、光沢値が上記範囲を超えるまで分散処理を行うと、顔料が破砕して超微粒子が多数生じるため、却って分散安定性が損なわれる傾向がある。
 次に、上記分散処理により得られたインキと、レジスト中に含まれる、上記の他の成分を混合し、均一な溶液とする。レジストの製造工程においては、微細なゴミが液中に混じることが多いため、得られたレジストはフィルター等により濾過処理するのが望ましい。
[遮光材の形成方法]
 以下に、上述の本発明の着色樹脂組成物を用いて透明基板上に本発明の遮光材を形成する方法について説明する。
 なお、透明基板としては、後述のカラーフィルタの説明において例示した透明基板を用いることができる。
 本発明の遮光材の形成方法としては、ポジ型レジスト等により着色樹脂組成物の塗膜をエッチングする方法と、感光性着色組成物を使用する方法等が挙げられる。
 エッチングする方法としては、着色樹脂組成物の塗膜を透明基板に形成した後、ポジ型フォトレジストの塗膜で所望のパターンを形成し、次いでエッチング液を用いて蝕刻し、最後にポジ型フォトレジストを剥離剤で剥離することによって、遮光材を形成することができる。
 感光性着色組成物を使用する場合は、感光性着色樹脂組成物を透明基板上に塗布し、乾燥した後、形成された塗膜の上にフォトマスクを重ね、このフォトマスクを介して画像露光、現像、必要に応じて熱硬化又は光硬化により画素画像を形成させて遮光材を形成する。
 本発明の遮光材は、透明基板上に2層以上の遮光層が積層形成されたものであり、従って、上記の遮光材の製造方法において、各遮光層毎に着色樹脂組成物又は感光性着色樹脂組成物の塗布、乾燥による塗膜の形成を行い、複数層の積層塗膜を形成した後、ポジ型エッチングによる場合はポジ型フォトレジスト塗膜を形成した後エッチングを行い、感光性着色樹脂組成物を用いる場合は画像露光を行う。
 以下に、感光性着色樹脂組成物を用いて、遮光層が2層積層された遮光材を形成する場合を、図2(a)~図2(c)を参照して説明するが、本発明の遮光材の形成方法は何らこの方法に限定されるものではない。また、3層以上の遮光層を有する遮光材を形成する場合も、第2の遮光層用の塗膜形成を同様に複数回行うこと以外は、以下に説明する方法と同様にして行うことができる。
 図2(a)に示すように、透明基板11上に、第1の遮光層形成用の感光性着色樹脂組成物を塗布して乾燥することにより、第1の遮光層用塗膜12Aを形成し、次いで第2の遮光層形成用の感光性着色樹脂組成物を塗布して乾燥することにより、第2の遮光層用塗膜13Aを形成する。その後、図2(b)のように、この積層塗膜の上にフォトマスク15を重ね、フォトマスク15を介して露光を行い、現像、必要に応じて熱硬化又は光硬化により画素画像を形成させて、図2(c)に示すような第1の遮光層12と第2の遮光層13とで形成される積層構造の遮光材を形成する。
(1)感光性着色樹脂組成物の塗布
 感光性着色樹脂組成物の塗布は、スピナー法、ワイヤーバー法、フローコート法、ダイコート法、ロールコート法、又はスプレーコート法などによって行うことができる。中でも、ダイコート法によれば、塗布液使用量が大幅に削減され、かつ、スピンコート法によった際に付着するミストなどの影響が全くなく、異物発生が抑制されるなど、総合的な観点から好ましい。
 塗膜の厚さは、厚すぎると、パターン現像が困難となるとともに、例えば、液晶表示装置のカラーフィルタ用途では、液晶セル化工程でのギャップ調整が困難となることがあり、薄すぎると顔料濃度を高めることが困難となり所望の遮光性に達成しないことがある。塗膜の厚さは、前述の遮光材、第1の遮光層、及び第2の遮光層の好適膜厚の層が形成されるような厚さとする。
(2)塗膜の乾燥
 透明基板に感光性着色樹脂組成物を塗布した後の塗膜の乾燥は、ホットプレート、IRオーブン、又はコンベクションオーブンを使用した乾燥法によるのが好ましい。乾燥の条件は、前記溶剤成分の種類、使用する乾燥機の性能などに応じて適宜選択することができる。乾燥時間は、溶剤成分の種類、使用する乾燥機の性能などに応じて、通常は、40~200℃の温度で15秒~10分間の範囲で選ばれ、好ましくは50~150℃の温度で30秒~5分間の範囲で選ばれる。
 そのうち第1の遮光層用塗膜の乾燥条件は、100~150℃の温度で60秒~5分間の範囲で選ばれることが特に好ましい。
 この乾燥が、弱すぎると第2の遮光層の形成のための感光性着色樹脂組成物の塗布時に第1の遮光層用塗膜が溶解してしまい、強すぎると現像不良等を生じる場合がある。
 なお、この塗膜の乾燥工程は、温度を高めず、減圧チャンバー内で乾燥を行う、減圧乾燥法を行ってもよい。
 上記の感光性着色樹脂組成物の塗布と乾燥は、形成する遮光層毎に行い、必要な積層数の塗膜を形成した後、次の露光を行う。
(3)露光
 画像露光は、感光性着色樹脂組成物の積層塗膜上に、ネガのマスクパターンを重ね、このマスクパターンを介し、紫外線又は可視光線の光源を照射して行う。この際、必要に応じ、酸素による光重合性層の感度の低下を防ぐため、光重合性の塗膜上にポリビニルアルコール層などの酸素遮断層を形成した後に露光を行ってもよい。上記の画像露光に使用される光源は、特に限定されるものではない。光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプなどのランプ光源や、アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザーなどのレーザー光源などが挙げられる。特定の波長の光を照射して使用する場合には、光学フィルタを利用することもできる。
(4)現像
 感光性着色樹脂組成物による塗膜を、上記の光源によって画像露光を行った後、有機溶剤、又は、界面活性剤とアルカリ性化合物とを含む水溶液を用いる現像によって、基板上に画像を形成することができる。この水溶液には、更に有機溶剤、緩衝剤、錯化剤、染料又は顔料を含ませることができる。
 アルカリ性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、リン酸ナトリウム、リン酸カリウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、水酸化アンモニウムなどの無機アルカリ性化合物や、モノ-・ジ-又はトリエタノールアミン、モノ-・ジ-又はトリメチルアミン、モノ-・ジ-又はトリエチルアミン、モノ-又はジイソプロピルアミン、n-ブチルアミン、モノ-・ジ-又はトリイソプロパノールアミン、エチレンイミン、エチレンジイミン、テトラメチルアンモニウムヒドロキシド(TMAH)、コリンなどの有機アルカリ性化合物が挙げられる。これらのアルカリ性化合物は、2種以上の混合物であってもよい。
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、モノグリセリドアルキルエステル類などのノニオン系界面活性剤、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキル硫酸塩類、アルキルスルホン酸塩類、スルホコハク酸エステル塩類などのアニオン性界面活性剤、アルキルベタイン類、アミノ酸類などの両性界面活性剤が挙げられる。
 有機溶剤としては、例えば、イソプロピルアルコール、ベンジルアルコール、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、プロピレングリコール、ジアセトンアルコールなどが挙げられる。有機溶剤は、単独で用いてもよく、また、水溶液と併用してもよい。
 現像処理の条件は特に制限はなく、通常、現像温度は10~50℃の範囲、中でも15~45℃、特に好ましくは20~40℃で、現像方法は、浸漬現像法、スプレー現像法、ブラシ現像法、超音波現像法などのいずれかの方法によることができる。
(5)熱硬化処理
 現像の後は、熱硬化処理を施してもよい。この際の熱硬化処理条件は、温度は100~280℃の範囲、好ましくは150~250℃の範囲で選ばれ、時間は5~60分間の範囲で選ばれる。
 なお、本発明の遮光材は、主としてカラーフィルタのブラックマトリックス用として使用されるが、何らブラックマトリックスに限定されるものではない。
[遮光材中の成分配合量]
 第1の態様に係る遮光材付き基板における遮光材遮光材において、(A)色材の含有量は、着色樹脂組成物中の色材が遮光材中に残留するため、遮光材の全質量に対して通常1~70質量%、好ましくは10~60質量%の範囲となる。
 またその中でも透明基板側の領域では、(A)色材の含有量は遮光材の全質量に対し1~30質量%より好ましく、1~20質量%が特に好ましい。
 また透明基板と反対側の領域では、(A)色材の含有量は遮光材の全質量に対し20~70質量%がより好ましく、30~60質量%が特に好ましい。
 (A)色材以外は、前述記載の露光、現像処理、熱硬化処理による重合、分解等のため、遮光材中では必ずしも着色樹脂組成物として添加された組成と同じ状態では形成されていないが、その組成は概ね以下のとおりである。
 分散剤を用いる場合、遮光材の全質量に対し通常50質量%以下、好ましくは30質量%以下で、通常1質量%以上、好ましくは3質量%以上となる。
 (B)有機結合材は、遮光材の全質量に対して、通常5質量%以上、好ましくは10質量%以上となり、通常85質量%以下、好ましくは80質量%以下となる。
 (E)光重合開始剤は、遮光材の全質量に対して、通常0.01質量以上、通常30質量%以下となる。
 光重合性化合物を用いる場合、遮光材の全質量に対し、通常90質量%以下、通常0.01質量%以上となる。
 なお本発明の遮光材に占める(D)有機溶剤は、前述記載の露光、現像処理、熱硬化処理時に大半が蒸発等により損失するため、遮光材の全質量に対し、通常0~1質量%しか残留しない傾向にある。
<第2の態様に係る遮光材付き基板>
 本発明の第2の態様に係る遮光材付き基板は、透明基板上に遮光材を有し、前記遮光材が(A)色材および(B)有機結合材を含み、かつ、次の(3)~(5)を満たすことを特徴とする。
 (3)前記遮光材の透明基板側が、(A)色材として黒色顔料を含有する。
 (4)前記遮光材の透明基板と反対側が、(A)色材として顔料を含有する。
 (5)前記遮光材の1μmあたりのOD値が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が高い。
 このように、遮光材の透明基板側が(A)色材として黒色顔料を含有することで、透明基板側から入射した光を波長によらず効率よく吸収させることができ、反射率の波長依存性を低減することができる傾向がある。また、遮光材の透明基板と反対側が、(A)色材として顔料を含有することで、透明基板と反対側において生じ得る光の反射を抑制することができる傾向がある。さらに、遮光材の1μmあたりのOD値が厚み方向で異なり、透明基板側よりも、透明基板と反対側が高いことにより、簡便に高遮光性と低反射性とを両立できる傾向がある。
 本発明の第2の態様に係る遮光材付き基板の一例として、遮光材の1μmあたりのOD値が厚み方向で徐々に異なり、かつ、前記透明基板側よりも前記透明基板と反対側が高いものが挙げられる。このような遮光材付き基板を得るには、(A)色材の濃度が徐々に高くなるように、(A)色材の濃度が異なる着色樹脂組成物を複数回塗布する方法が挙げられる。この場合、各々の着色樹脂組成物における(B)有機結合材を同一種類又は類似種類の材料で構成することで、複数塗布に起因する界面の形成を抑制できる傾向がある。
 また、遮光材を2以上の層により構成し、透明基板側の層よりも、透明基板と反対側の層における1μmあたりのOD値を高くするものが挙げられる。例えば、このような遮光材付き基板を得るには、(A)色材の濃度が徐々に高くなるように、(A)色材の濃度が異なる着色樹脂組成物を複数回塗布する方法が挙げられる。この場合、各々の着色樹脂組成物における(B)有機結合材を異なる種類の材料で構成することで、複数塗布時に界面を形成できる傾向がある。積層構造については特に限定されないが、例えば、2以上の遮光層を透明基板との接触面に対して平行に積層してもよい。また、積層数には特に制限はないが、積層数が多いと、遮光材形成時の着色樹脂組成物の塗布工程数が多くなり、製造効率が悪くなるため、2~4層であることが好ましく、2~3層であることがより好ましく、2層であることがさらに好ましい。
 遮光材の透明基板側の単位OD値、透明基板と反対側の単位OD値、遮光材全体としての単位OD値や、膜厚については、第1の態様にて述べた値を好ましく採用することができる。
 さらに、波長550nmにおける相対反射率や、波長450~650nmにおける相対反射率の上限値と下限値との差を、第1の態様にて述べた値にすることが好ましい。
 なお、第1の態様と同様に、(C)微粒子を含有してもよい。具体的な構成については、第1の態様にて述べたものを好ましく採用することが出来る。
 第2の態様に係る遮光材の透明基板側が含有する黒色顔料としては例えば、前述の<(A)色材>にて例示するものを用いることができ、色調との観点からは、アニリンブラック、ペリレンブラック、シアニンブラック等の有機黒色顔料、カーボンブラックが好ましい。また黒色顔料に赤色顔料、黄色顔料、オレンジ顔料等を混合し、波長による反射率の差を小さくした顔料の組み合わせを使用することもできる。なかでも色調と遮光性との観点からはカーボンブラックがより好ましい。
 また、遮光材の透明基板と反対側が含有する顔料としては、例えば、前述の<(A)色材>にて例示するものを用いることができ、遮光性の観点からは、アニリンブラック、ペリレンブラック、シアニンブラック等の有機黒色顔料、カーボンブラック、チタンブラックが好ましい。また青色顔料、赤色顔料、黄色顔料、オレンジ顔料等を組み合わせて使用することもできる。なかでも遮光性との観点からカーボンブラック、チタンブラックがより好ましい。
 その他、第1の態様に係る遮光材付き基板として例示した構成を採用することもできる。
 また、(B)有機結合材としては、例えば前述の(B’)有機結合材を硬化させたものが挙げられる。前述の(E)光重合開始剤やそのほかの成分を含む(B’)有機結合材を用いた場合には、(E)光重合開始剤やそのほかの成分を含んでいてもよい。透明基板としては、通常、本発明のカラーフィルタの説明において後述するものが用いられる。
 第2の態様に係る遮光材付き基板における遮光材は、第1の態様に記載した着色樹脂組成物を用いて形成することができる。
<第3の態様に係る着色樹脂組成物>
 本発明の第3の態様に係る着色樹脂組成物は感光性着色樹脂組成物であって、(A)色材、(B’)有機結合材、(C)屈折率1.2以上1.8以下の微粒子、および(D)有機溶剤を含み、(C)微粒子の含有量が15質量%以上であることを特徴とする。
 このように、屈折率が特定範囲内の(C)微粒子を特定量以上含むことで、この着色樹脂組成物を基板上に塗布し、さらにその上に他の着色樹脂組成物を塗布した場合にも当該着色樹脂組成物の溶解を抑制することができ、優れた低反射性を実現し得る遮光材付き基板を生産性高く形成することができる傾向がある。
 (C)微粒子としては、第1の態様にて例示したものを好ましく採用することができる。
 (C)微粒子の含有量は、15質量%以上であるが、20質量%以上であることが好ましく、また、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。前記下限値以上とすることで塗布済みの着色樹脂組成物の溶解を抑制することができる傾向があり、また、前記上限値以下とすることで適正な現像性を付与できる傾向がある。
 (A)色材としては、前述の<(A)色材>に記載のものを好ましく採用することができ、(B’)有機結合材としては、前述の<(B’)有機結合材>に記載のものを好ましく採用することができ、また、(D)有機溶剤としては、前述の<(D)有機溶剤>に記載のものを好ましく採用することができる。さらに、必要に応じて前述の(E)光重合開始剤、光重合性化合物、シランカップリング剤等の密着向上剤、塗布性向上剤、現像改良剤、紫外線吸収剤、酸化防止剤、界面活性剤、顔料誘導体等、その他の配合成分を含んでいてもよく、通常、各配合成分は(D)有機溶剤に溶解又は分散した状態で使用される。
 その他、第1の態様に係る遮光材付き基板の遮光材を形成するための着色樹脂組成物として例示した構成を採用することもできる。
[反射防止膜]
 本発明の遮光材を、液晶表示装置用カラーフィルタのブラックマトリックス等の遮光層として設ける場合、表示装置の反射を減らすために、透明基板において遮光材を形成する側と反対側の面に、反射防止膜を設けてもよい。反射防止膜としては、屈折率の異なる数種のフィルムを積層した反射防止膜、何らかの方法で材料中に空気を導入した反射防止膜等が有効である。この反射防止膜は、透明基板と一体成形された反射防止層であってもよい。
 その一つとして、例えば、透明フィルムの表面に微細凹凸構造を形成する方法が広く知られている。この方法によれば、微細凹凸構造が形成された表面の層全体の屈折率は、空気と微細凹凸構造を形成する材料との体積比で決定されたものとなるため、大幅に屈折率を下げることが可能になり、積層数が少なくても反射率を低下させることができる。
 また、例えば日本国再表2008-096872号公報に記載されるような、角錐状の凸部が膜全体に連続的に形成された反射防止膜を使用してもよい。角錐状の凸部(微細凹凸構造)が形成された反射防止膜は、膜面方向に切断した時の断面積が連続的に変化し、空気から基板まで徐々に屈折率が増大していくため、有効な反射防止の手段となる。また、該反射防止膜は、他の方法では置き換えられない優れた光学性能を示す。
 前記凸部の高さは100nm以上であることが好ましく、150nm以上であることがより好ましい。この高さが100nm未満では最低反射率が上昇したり、特定波長の反射率が上昇したりして、反射防止性が不十分となる。
 また、アスペクト比(前記凸部の高さ/隣り合う凸部同士の間隔)は、1.0~5.0であることが好ましく、1.2~4.0であることがより好ましく、1.5~3.0であることが最も好ましい。アスペクト比が1.0より小さいと、最低反射率が上昇したり、特定波長の反射率が上昇したりして、反射防止性が不十分となり、5より大きいと、擦った際に凸部が折れやすいため、耐擦傷性が低下したり、反射防止性能を示さなくなったりする。
 透明フィルムの表面に微細凹凸構造を形成する方法は特に限定されないが、例えば、微細凹凸構造が形成されたスタンパを用いて、透明フィルムを射出成形、プレス成形して微細凹凸構造を形成する方法;微細凹凸構造が形成されたスタンパと透明フィルムの間に活性エネルギー線硬化性組成物を充填し、活性エネルギー線照射にて活性エネルギー線硬化性組成物を硬化してスタンパの凹凸形状を転写した後、離型することで透明フィルムに対して微細凹凸構造の表面層を積層形成する方法;微細凹凸構造が形成されたスタンパと透明基板の間に活性エネルギー線硬化性組成物を充填し、活性エネルギー線硬化性組成物にスタンパの凹凸形状を転写した後離型し、その後に活性エネルギー線を照射して活性エネルギー線硬化性組成物を硬化することで透明フィルムに対して微細凹凸構造の表面層を積層形成する方法が挙げられる。
 なお、後述の実施例の項においては、簡易的に、微細凹凸構造が形成されたスタンパを用いて別途成形した反射防止膜を透明フィルムに貼り付けて用いた。
[カラーフィルタ]
 次に、本発明の遮光材を有するカラーフィルタについて、その製造方法に従って説明する。
(1)透明基板
 カラーフィルタの透明基板としては、透明で適度の強度があれば、その材質は特に限定されるものではない。材質としては、例えば、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂、ポリカーボネート、ポリメチルメタクリレート、ポリスルホンなどの熱可塑性樹脂製シート、エポキシ樹脂、不飽和ポリエステル樹脂、ポリ(メタ)アクリル系樹脂などの熱硬化性樹脂シート、又は各種ガラスなどが挙げられる。この中でも、耐熱性の観点からガラス、耐熱性樹脂が好ましい。
 透明基板には、接着性などの表面物性の改良のため、必要に応じ、コロナ放電処理、オゾン処理、シランカップリング剤や、ウレタン系樹脂などの各種樹脂の薄膜形成処理などを行ってもよい。
 透明基板の厚さは、通常0.05~10mm、好ましくは0.1~7mmの範囲とされる。また各種樹脂の薄膜形成処理を行う場合、その膜厚は、通常0.01~10μm、好ましくは0.05~5μmの範囲である。
(2)ブラックマトリックス(遮光材)
 透明基板上に、ブラックマトリックスを設け、通常、赤色、緑色、青色の画素画像を形成することにより、カラーフィルタを製造することができる。
 前述の如く、本発明の遮光材は主にブラックマトリックス用に使用されるが、これに限定したものではない。
 カラーフィルタのブラックマトリックスを本発明の遮光材により形成する場合は、前述の遮光材の形成方法に従ってブラックマトリックスを形成する。
 本発明の遮光材をカラーフィルタのブラックマトリックス以外、例えば表示パネルの額縁等に用い、ブラックマトリックスとしては本発明の遮光材以外のものを用いる場合、ブラックマトリックスは常法に従って形成される。
(3)画素の形成
(3-1)感光性着色樹脂組成物の塗布
 ブラックマトリックスを設けた透明基板上に、赤色、緑色、青色のうち一色の色材を含有する感光性着色樹脂組成物を塗布し、乾燥した後、塗膜の上にフォトマスクを重ね、このフォトマスクを介して画像露光、現像、必要に応じて熱硬化又は光硬化により画素画像を形成させ、着色層を作成する。この操作を、赤色、緑色、青色の三色の感光性着色樹脂組成物についてそれぞれ行うことによって、カラーフィルタ画像を形成することができる。
 カラーフィルタ用の着色樹脂組成物の塗布は、前述の本発明の遮光材の形成方法における感光性着色樹脂組成物の塗布方法と同様の方法を採用することができる。
 塗膜の厚さは、厚すぎると、パターン現像が困難となるとともに、液晶セル化工程でのギャップ調整が困難となることがあり、薄すぎると顔料濃度を高めることが困難となり所望の遮光性に達成しないことがある。塗膜の厚さは、乾燥後の膜厚として、通常0.2~20μmの範囲とするのが好ましく、より好ましいのは0.5~10μmの範囲、更に好ましいのは0.8~5μmの範囲である。
(3-2)塗膜の乾燥
 基板に感光性着色樹脂組成物を塗布した後の塗膜の乾燥は、前述の本発明の遮光材の形成方法における塗膜の乾燥方法と同様の方法及び条件を採用することができる。
(3-3)露光
 画像露光についても、前述の本発明の遮光材の形成方法における露光方法と同様の操作方法を採用することができる。
(3-4)現像
 本発明に係るカラーフィルタは、感光性着色樹脂組成物による塗膜を、上記の光源によって画像露光を行った後、前述の本発明の遮光材の形成方法における現像方法と同様にして、有機溶剤、又は、界面活性剤とアルカリ性化合物とを含む水溶液を用いる現像によって、基板上に画像を形成して作製することができる。現像に用いる水溶液についても、前述の本発明の遮光材の形成における現像液と同様である。
(3-5)熱硬化処理
 現像の後のカラーフィルタ基板には、熱硬化処理を施す。この際の熱硬化処理条件は、温度は100~280℃の範囲、好ましくは150~250℃の範囲で選ばれ、時間は5~60分間の範囲で選ばれる。これら一連の工程を経て、一色のパターニング画像形成は終了する。この工程を順次繰り返し、ブラック、赤色、緑色、青色をパターニングし、カラーフィルタを形成する。なお、4色のパターニングの順番は、上記した順番に限定されるものではない。
(4)透明電極の形成
 カラーフィルタは、このままの状態で画像上にITOなどの透明電極を形成して、カラーディスプレー、液晶表示装置などの部品の一部として使用されるが、表面平滑性や耐久性を高めるため、必要に応じ、画像上にポリアミド、ポリイミドなどのトップコート層を設けることもできる。また一部、平面配向型駆動方式(IPSモード)などの用途においては、透明電極を形成しないこともある。
[液晶表示装置]
 本発明の液晶表示装置は、上述の本発明のカラーフィルタを用いて作製されたものである。
 液晶表示装置は、通常、カラーフィルタ上に配向膜を形成し、この配向膜上にスペーサーを散布した後、対向基板と貼り合わせて液晶セルを形成し、形成した液晶セルに液晶を注入し、対向電極に結線して完成する。配向膜としては、ポリイミド等の樹脂膜が好適である。配向膜の形成には、通常、グラビア印刷法及び/又はフレキソ印刷法が採用され、配向膜の厚さは数10nmとされる。熱焼成によって配向膜の硬化処理を行った後、紫外線の照射やラビング布による処理によって表面処理し、液晶の傾きを調整しうる表面状態に加工される。
 スペーサーとしては、対向基板とのギャップ(隙間)に応じた大きさのものが用いられ、通常2~8μmのものが好適である。カラーフィルタ基板上に、フォトリソグラフィ法によって透明樹脂膜のフォトスペーサー(PS)を形成し、これをスペーサーの代わりに活用することもできる。対向基板としては、通常、アレイ基板が用いられ、特にTFT(薄膜トランジスタ)基板が好適である。
 対向基板との貼り合わせのギャップは、液晶表示装置の用途によって異なるが、通常2~8μmの範囲で選ばれる。対向基板と貼り合わせた後、液晶注入口以外の部分は、エポキシ樹脂等のシール材によって封止する。シール材は、UV照射及び/又は加熱することによって硬化させ、液晶セル周辺がシールされる。
 周辺をシールされた液晶セルは、パネル単位に切断した後、真空チャンバー内で減圧とし、上記液晶注入口を液晶に浸漬した後、チャンバー内をリークすることによって、液晶を液晶セル内に注入する。液晶セル内の減圧度は、通常、1×10-2~1×10-7Paであるが、好ましくは1×10-3~1×10-6Paである。また、減圧時に液晶セルを加温するのが好ましく、加温温度は通常30~100℃であり、より好ましくは50~90℃である。減圧時の加温保持は、通常10~60分間の範囲とされ、その後液晶中に浸漬される。液晶を注入した液晶セルは、液晶注入口をUV硬化樹脂を硬化させて封止することによって、液晶表示装置(パネル)が完成する。
 液晶の種類には特に制限がなく、芳香族系、脂肪族系、多環状化合物等、従来から知られている液晶であって、リオトロピック液晶、サーモトロピック液晶等のいずれでもよい。サーモトロピック液晶には、ネマティック液晶、スメスティック液晶及びコレステリック液晶等が知られているが、いずれであってもよい。
 なお、本発明のカラーフィルタは液晶表示装置に限られず、有機EL表示装置などの他の液晶表示装置にも好適に用いることができる。
 次に、製造例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
<製造例1:被覆カーボンブラックの製造>
 カーボンブラックは、通常のオイルファーネス法で製造した。但し、原料油としては、Na,Ca,S分量の少ないエチレンボトム油を用い、ガス燃料を用いて燃焼を行った。更に、反応停止水としては、イオン交換樹脂で処理した純水を用い製造した。得られたカーボンブラック540gを純水14500gと共にホモミキサーを用い5,000~6,000rpmで30分撹拌しスラリーを得た。このスラリーをスクリュー型撹拌機付容器に移し約1,000rpmで混合しながらエポキシ樹脂「エピコート828」(三菱化学社製)60gを溶解したトルエン600gを少量ずつ添加していった。約15分で、水に分散していたカーボンブラックは全量トルエン側に移行し、約1mmの粒となった。
 次に、60メッシュ金網で水切りを行った後真空乾燥機に入れ、70℃で7時間乾燥し、トルエンと水を完全に除去して、被覆カーボンブラックを得た。
<製造例2:インク(a1)の製造>
 製造例1で調製した被覆カーボンブラック20質量部に対し、分散剤としてDisperbyk-167(ビックケミー社製)を4.4質量部、顔料誘導体としてS12000(ルーブリゾール社製)を1質量部加え、固形分濃度が35質量%となるようにプロピレングリコールモノメチルエーテルアセテート(PGMEA)を加えた。
 これを攪拌機により十分に攪拌し、プレミキシングを行った。次に、ペイントシェーカーにより25~45℃の範囲で6時間分散処理を行った。ビーズとしては、0.5mmφのジルコニアビーズを用い、分散液60gとビーズ180gを加えた。分散終了後、フィルターによりビーズと分散液を分離して、インク(a1)を製造した。
<製造例3:有機結合材(b’1)の合成>
Figure JPOXMLDOC01-appb-C000022
 上記構造のエポキシ化合物(エポキシ当量264)50g、アクリル酸13.65g、メトキシブチルアセテート60.5g、トリフェニルホスフィン0.936g、及びパラメトキシフェノール0.032gを、温度計、攪拌機及び冷却管を取り付けたフラスコに入れ、攪拌しながら90℃で酸価が5mgKOH/g以下になるまで反応させた。反応には12時間を要し、エポキシアクリレート溶液を得た。
 上記エポキシアクリレート溶液25質量部及び、トリメチロールプロパン(TMP)0.76質量部、ビフェニルテトラカルボン酸2無水物(BPDA)3.3質量部、テトラヒドロフタル酸無水物(THPA)3.5質量部を、温度計、攪拌機及び冷却管を取り付けたフラスコに入れ、攪拌しながら105℃までゆっくり昇温し反応させた。
 樹脂溶液が透明になったところで、メトキシブチルアセテートで希釈し、固形分50質量%となるよう調製し、酸価131mgKOH/g、GPCで測定したポリスチレン換算の重量平均分子量(Mw)2600の有機結合材(b’1)を得た。
<製造例4:分散樹脂の調製>
 プロピレングリコールモノメチルエーテルアセテート145質量部を、反応容器内を窒素置換しながら攪拌し120℃に昇温した。ここに、スチレン20質量部、グリシジルメタクリレート57質量部及びトリシクロデカン骨格を有するモノアクリレート(日立化成社製「FA-513M」)82質量部を滴下し、更に、120℃で2時間攪拌し続けた。
 次いで、反応容器内を空気置換し、アクリル酸27.0質量部、トリスジメチルアミノメチルフェノール0.7質量部及びハイドロキノン0.12質量部を投入し、120℃で6時間反応を続けた。その後、テトラヒドロ無水フタル酸(THPA)52.0質量部、トリエチルアミン0.7質量部を加え、120℃で3.5時間反応させて分散樹脂溶液を得た。得られた分散樹脂の重量平均分子量(Mw)は約15000、酸価は100mgKOH/gであった。
<製造例5:光重合開始剤(e1)の合成>
 <ジケトン体>
 エチルカルバゾール(5g、25.61mmol)とo-ナフトイルクロリド(5.13g、26.89mmol)を30mlのジクロロメタンに溶解し、氷水バスにて2℃に冷却して攪拌し、AlCl(3.41g、25.61mmol)を添加した。さらに室温にて3時間攪拌後、反応液にクロトノイルクロリド(2.81g、26.89mmol)の15mlジクロロメタン溶液を加え、AlCl(4.1g、30.73mmol)を添加し、さらに1時間30分攪拌した。反応液を氷水200mlに入れ、ジクロロメタン200mlを添加し有機層を分液した。回収した有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮し、白色固体(10g)を得た。
 <オキシム体>
 ジケトン体(3.00g、7.19mmol)、NHOH・HCl(1.09g、15.81mmol)、及び酢酸ナトリウム(1.23g、15.08mmol)をイソプロパノール30mlに混合し、3時間還流した。
 反応終了後、反応液を濃縮し、得られた残渣に酢酸エチル30mlを加え、飽和炭酸水素ナトリウム水溶液30ml及び飽和食塩水30mlで順次洗浄し、無水硫酸マグネシウムで乾燥した。濾過後、有機層を減圧下濃縮し、固体3.01gを得た。これをカラムクロマトグラフィーで精製し、淡黄色固体2.22gを得た。
 <オキシムエステル体>
 オキシム体(2.22g、4.77mmol)とアセチルクロリド(1.34g、17.0mmol)をジクロロメタン20mlに加えて氷冷し、トリエチルアミン(1.77g、17.5mmol)を滴下して、そのまま1時間反応した。薄層クロマトグラフィーにより原料の消失を確認した後、水を加えて反応を停止した。反応液を飽和炭酸水素ナトリウム水溶液5mlで2回、飽和食塩水5mlで2回洗浄し、無水硫酸ナトリウムで乾燥した。濾過後、有機層を減圧下濃縮し、得られた残渣をカラムクロマトグラフィー(酢酸エチル/ヘキサン=体積比2/1)で精製して、0.79gの淡黄色固体として、光重合開始剤(e1)(以下「開始剤(e1)」と記載する。)を得た。
 得られた開始剤(e1)のH-NMRでの測定値及び構造式を下記に示す。
 H NMR(CDCl):σ1.17(d,3H),1.48(t,3H),1.53(s,3H),1.81(s,3H),2.16(s,3H),2.30(s,3H),3.17-3.32(m,2H),4.42(q,2H),4.78-4.94(br,1H),7.45-7.59(m,5H),7.65(dd,1H),7.95(m,2H),8.04(m,2H),8.14(dd,1H),8.42(d,1H),8.64(d,1H)
Figure JPOXMLDOC01-appb-C000023
<製造例6:レジストの調製>
 レジスト固形分中の比率が下記表1に示す割合となるように各成分を加え、さらにレジスト固形分濃度が20質量%となるように有機溶剤(d1)としてプロピレングリコールモノメチルエーテルアセテートを加え、スターラーにより攪拌、溶解させて、ブラックレジスト(1)~(16)を調製した。
 なお、インク(a2)及び(a3)、微粒子(c1)~(c6)、光重合性化合物、界面活性剤としては、以下のものを用いた。また、以下において、成分組成の含有割合を示す「%」はいずれも「質量%」である。
インク(a2):チタンブラックインク
        (チタンブラック顔料15%、ウレタン系塩基性分散剤
        3.5%、助剤1%、プロピレングリコールモノメチル
        エーテルアセテート80.5%)
インク(a3):有機顔料混色インク
        固形分比 B15:6 /R254/V23/Y139
              =50%/19%/6%/25%、
        ポリエチレンイミン分散剤17%、樹脂(b2)32%
        固形分濃度30% プロピレングリコールモノメチル
        エーテルアセテート溶液
微粒子(c1):日産化学社製 オルガノシリカゾル PMA-ST
        (シリカ含有量30.7% プロピレングリコールモノ
        メチルエーテルアセテート分散溶液、
        平均粒子径(BET法)10nm、屈折率1.7)
微粒子(c2):日産化学社製 オルガノシリカゾル MEK-ST
        (シリカ含有量30.4% メチルエチルケトン分散溶液
        、平均粒子径(BET法)40nm、屈折率1.7)
微粒子(c3):日産化学社製 オルガノシリカゾル MEK-ST
        (シリカ含有量30.6% メチルエチルケトン分散溶液
        、平均粒子径(BET法)70nm、屈折率1.7)
微粒子(c4):触媒化成工業製 酸化ジルコニウム分散液
        (20% メタノール溶液、平均粒子径 46nm
        被覆酸化ジルコニウム 屈折率1.7)
微粒子(c5):触媒化成工業製 酸化ジルコニウム分散液
        (20% イソプロパノール溶液、平均粒子径 14nm
        被覆酸化ジルコニウム 屈折率1.7)
微粒子(c6):ハリマ化成製 酸化アルミニウム分散液
        (20% プロピレングリコールモノメチルエーテルアセ
        テート溶液、平均粒子径 54nm
        酸化アルミニウム 屈折率1.45)
光重合性化合物:日本化薬社製 ジペンタエリスリトールヘキサアクリレート
界面活性剤:DIC社製 フッ素系界面活性剤 F475
Figure JPOXMLDOC01-appb-T000024
<製造例6:反射防止膜の作成>
 ジペンタエリスリトールヘキサアクリレート20質量部、アロニックスM-260(東亜合成社製)70質量部、ヒドロキシエチルアクリレート10質量部にイルガキュア184(チバ・スペシャリティーケミカルズ社製)を1.5質量部溶解させ、活性エネルギー線硬化性組成物を得た。この硬化性組成物を、陽極酸化によるポーラスアルミナより作成したスタンパ上に数滴垂らし、アクリル樹脂フィルムで押し広げながら被覆した後、フィルム側から400mJ/cmのエネルギーで紫外線を照射して活性エネルギー線硬化性組成物を光硬化させた。フィルムとスタンパを剥離して、隣り合う凸部同士の距離が200nm、凸部の高さが200nmの微細凹凸構造(アスペクト比1.0)を有する反射防止膜を得た。
[実施例1~15、比較例1~4]
{評価実験1}
<遮光材付基板の作成>
 第1の遮光層用塗膜を形成するために、レジスト(1)をスピンコーターにてガラス基板に、焼成後の膜厚が0.6μmとなる条件で塗布した。その後、真空乾燥機で60秒間乾燥し、続いてホットプレートで140℃にて5分間乾燥した。次に第2の遮光層用塗膜を形成するため、焼成後の総膜厚が1.6μmとなる条件で第1の遮光層用塗膜の上にレジスト(6)をスピンコーターにて塗布した。その後、真空乾燥機で60秒間乾燥した。続いてホットプレートで110℃にて2分間乾燥した。この基板をオーブンにて230℃で25分間焼成して実施例1の遮光材付基板を得た。
 同様にして、レジスト種、膜厚等を表2、4、5及び6に記載する内容にて同じ操作を行い、実施例2~15、比較例1~4の遮光材付き基板を得た。
 このうち実施例2及び4の遮光材付き基板を、前述の方法にて基板の断面をSEM-EDSにて元素分析したところ、遮光材中において透明基板側と、透明基板と反対側とで(C)微粒子の濃度が厚み方向に異なり、特に、透明基板側よりもその反対側のほうが濃度が低いことが確認できた。
<単位OD値の測定>
 得られた遮光材付基板の第1の遮光層の膜厚および第2の遮光層塗布後の膜厚を非接触表面・層断面形状計測システム(菱化システム社製「Vert Scan」)で測定した。
 一方、第1の遮光層のOD値及び第2の遮光層塗布後のOD値を大塚電子社製分光特性検査装置「LCF」で測定し、単位OD値(/μm)を、単位OD値=測定OD値/膜厚にて算出した。結果を表2、4、5及び6に示す。
<反射率の測定>
 図3(a)及び図3(b)に反射率の測定方法を示す。図3(a)及び図3(b)において、符号16は測定入射光路を示し、符号17は測定反射光路を示す。
 分光光度計(島津社製「UV-3100」)に鏡面反射測定用の冶具を設置した。次にサンプル基板の裏面となる、遮光材が形成されていない側のガラス基板面に製造例6で作成した反射防止膜14を設けた。この状態で、鏡面板を基準板として、図3(b)のように入射角5度における相対反射率を測定し、波長が550nmのときの相対反射率(%)をR1(%)とした。
 別に、遮光材を設けていないガラス基板の両面に、製造例3で作成した反射防止膜を設けた基板の反射率を同様にして測定したところ、波長が550nmのときの反射率は0.337%であった。
 透明基板と遮光材との間の反射率R(%)を、
 R(%)=R1(%)-(0.337/2)
で算出し、これらの結果を表2、4、5及び6に示した。
 次に、各例の遮光材付基板について、図3(b)のようにして反射防止膜14を設けて測定した、380~780nmの相対反射率を白色光源(D65)波長に換算した反射率(%)をR2(%)として、また、図3(a)のようにして反射防止膜14を設けないで測定した、550nmの相対反射率(%)をR3(%)、白色光源波長に換算した反射率(%)をR4(%)として表3に記載した。なお、遮光材を設けていないガラス基板の両面に反射防止膜を設けた基板の550nmの相対反射率(%)は0.338%であった。
 表3より、反射防止膜の無い場合には、空気とガラス間の反射が含まれるため反射率の絶対値は高くなるものの、本発明に係る実施例の遮光材は比較例に比べて低い反射率を達成していることが分かる。
 実施例2にて反射防止膜ありで反射率R1を測定したときの、波長に対する反射率プロファイルのグラフを図4(a)に示す。実施例2にて反射防止膜を設けず反射率R3を測定したときの、波長に対する反射率プロファイルのグラフを図4(b)に示す。図4(a)及び図4(b)より、本発明に係る実施例の遮光材は、可視光領域全体に渡って、波長によらず相対反射率の変動が少なくなっていることがわかる。なお、図4(a)及び図4(b)中の表は、反射率プロファイルのグラフにおける反射率の値を波長50nmおきに示したものである。
<遮光材の外観評価>
 遮光材が形成されていない側のガラス基板面側から白色光をあて、映りこみを目視で外観評価した。映りこみが低いものを「○」、映りこみが若干高いものを「△」、映りこみが高いものを「×」とし、結果を表2に示した。
{評価実験2}
 第1の遮光層用塗膜を形成するために、レジスト(1)をスピンコーターにてガラス基板に、焼成後の膜厚が0.6μmとなる条件で塗布した。その後、真空乾燥機で60秒間乾燥し、続いてホットプレートで140℃にて5分間乾燥した。次に第2の遮光層用塗膜を形成するため、焼成後の総膜厚が1.6μmとなる条件で第1の遮光層用塗膜の上にレジスト(6)をスピンコーターにて塗布した。その後、真空乾燥機で60秒間乾燥した。続いてホットプレートで110℃にて2分間乾燥し、実施例1の露光前基板を得た。
 このサンプルに対して、開口10μmの線状フォトマスクを通して(フォトマスクとサンプルとの間隔は200μm)高圧水銀灯を用いて50mJ/cmで露光した。その後、温度25℃で、濃度0.05質量%のKOH水溶液を用いてスプレー現像し、パターニング性を下記基準で評価した。
 パターニング性:現像後に、フォトマスクの10μm開口部の線が再現されているか否かを光学顕微鏡で確認し、再現されているものを「○」、再現されていないものを「×」とした。
 同様にして、レジスト種、膜厚等を表2及び4に記載する内容にて同じ操作を行い、実施例2~10、比較例1~4のパターニング性を評価した。結果を表2及び4に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 ただし、実施例12を光学顕微鏡で膜面を見たところ、凹凸が発生していた。これは微粒子の平均粒子径が大きすぎるためである。
Figure JPOXMLDOC01-appb-T000029
 表2から明らかなように、実施例1~48の遮光材は、1μmあたりのOD値が2.5以上であるにも関わらず、基板と遮光材との間の相対反射率を1.0%以下とすることで、光沢が抑制された、低反射で遮光性に優れたものとなっている。また、現像性もパターニング性も良好である。特に、実施例1~3から明らかなように第1層の(C)微粒子の含有割合に寄らず、また、実施例4及び5から明らかなように総膜厚に寄らず、さらに、実施例6~8から明らかなように第1層の色材濃度に寄らず、低反射で遮光性に優れたものとなっている。また、実施例9から明らかなように、第2層の色材濃度が低めの場合にも低反射化が実現できている。一方で、比較例1~3の遮光材は、1μmあたりのOD値が2.5以上であるものの、基板と遮光材との間の相対反射率が1.0%を超えており、遮光性には優れるものの、反射性が不十分となっている。
 表4から明らかなように、実施例5、10の遮光材は、第1層を(C)微粒子の含有割合が15質量%以上のレジストを用いて形成することにより、基板と遮光材との間の相対反射率を1.0%以下の遮光材付き基板を、1回の焼成で生産高く形成できている。一方で比較例4の遮光材は、第1層を(C)微粒子の含有割合が15質量%を下回ったレジストを用いて形成したものであり、基板と遮光材との間の相対反射率が1.0%を超えてしまっている。これは第2層を塗布する際に第1層が溶解し、所望の層構成が形成できていないためである。
 表5から明らかなように、実施例11、12の遮光材は、(C)微粒子の平均粒子径を40~100nmの範囲で変更したにも関わらず、いずれの実施例においても基板と遮光材との間の相対反射率を1.0%以下とすることができ、光沢が抑制された低反射で遮光性に優れたものとなっていることがわかる。
 表6から明らかなように、実施例13、14、15の遮光材は、(C)微粒子としてシリカ以外の微粒子を用いたにもかかわらず、屈折率を1.2~1.8の範囲の微粒子を選択して用いることでシリカと同様の効果が得られることがわかる。
 以上の結果より、本発明によれば、低反射性で遮光性が高いブラックマトリクスを、露光、現像によるパターニングが可能な着色樹脂組成物を用いて形成することができることが分かる。
 1  微粒子
 10 遮光材
 11 透明基板
 12 第1の遮光層
 12A 第1の遮光層用塗膜
 13 第2の遮光層
 13A 第2の遮光層用塗膜
 14 反射防止膜
 15 フォトマスク
 16 測定入射光路
 17 測定反射光路

Claims (18)

  1.  透明基板上に遮光材を有する遮光材付き基板であって、
     前記遮光材が、(A)色材および(B)有機結合材を含み、かつ、下記(1)および(2)を満たす、遮光材付き基板。
     (1)前記遮光材が、(C)屈折率1.2以上1.8以下の微粒子を含有する。
     (2)前記遮光材中の前記微粒子の濃度が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が低い。
  2.  前記遮光材の1μmあたりのOD値が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が高い、請求項1に記載の遮光材付き基板。
  3.  (C)微粒子が、無機微粒子である、請求項1又は請求項2に記載の遮光材付き基板。
  4.  前記無機微粒子が、シリカ粒子である、請求項3に記載の遮光材付き基板。
  5.  (A)色材が、カーボンブラック、チタンブラック及び有機着色顔料よりなる群から選ばれる1種類以上を含有する、請求項1~請求項4のいずれか1項に記載の遮光材付き基板。
  6.  透明基板上に遮光材を有する遮光材付き基板であって、
     前記遮光材が、(A)色材および(B)有機結合材を含み、かつ、下記(3)~(5)を満たす、遮光材付き基板。
     (3)前記遮光材の透明基板側が、(A)色材として黒色顔料を含有する。
     (4)前記遮光材の透明基板と反対側が、(A)色材として顔料を含有する。
     (5)前記遮光材の1μmあたりのOD値が厚み方向で異なり、前記透明基板側よりも、前記透明基板と反対側が高い。
  7.  前記遮光材の1μmあたりのOD値が2.5以上である、請求項1~請求項6のいずれか1項に記載の遮光材付き基板。
  8.  (B)有機結合材が、アルカリ可溶性樹脂の硬化物である、請求項1~請求項7のいずれか1項に記載の遮光材付き基板。
  9.  前記遮光材がさらに(E)光重合開始剤を含有する、請求項1~請求項8のいずれか1項に記載の遮光材付き基板。
  10.  波長550nmにおける相対反射率が1.0%以下である、請求項1~請求項9のいずれか1項に記載の遮光材付き基板。
    (ただし、前記相対反射率は、前記透明基板側から入射角5度にて光を入射させて鏡面板を基準として測定した値である。)
  11.  波長450~650nmにおける前記相対反射率の上限値と下限値との差が0.5%以下である、請求項10に記載の遮光材付き基板。
  12.  前記遮光材が2以上の層により構成されている、請求項1~請求項11のいずれか1項に記載の遮光材付き基板。
  13.  請求項1~請求項12のいずれか1項に記載の遮光材付き基板を有する、カラーフィルタ。
  14.  請求項13に記載のカラーフィルタを有する、液晶表示装置。
  15.  (A)色材、(B’)有機結合材、(C)屈折率1.2以上1.8以下の微粒子、および(D)有機溶剤を含む着色樹脂組成物であって、
     (C)微粒子の含有量が15質量%以上である、着色樹脂組成物。
  16.  (C)微粒子が、無機微粒子である、請求項15に記載の着色樹脂組成物。
  17.  前記無機微粒子が、シリカ粒子である、請求項16に記載の着色樹脂組成物。
  18.  (A)色材が、カーボンブラック、チタンブラック及び有機着色顔料よりなる群から選ばれる1種類以上を含有する、請求項15~請求項17のいずれか1項に記載の着色樹脂組成物。
PCT/JP2014/060747 2014-04-15 2014-04-15 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物 WO2015159370A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167028760A KR20160145589A (ko) 2014-04-15 2014-04-15 차광재가 형성된 기판, 컬러 필터 및 액정 표시 장치 그리고 이 차광재를 형성하기 위한 착색 수지 조성물
PCT/JP2014/060747 WO2015159370A1 (ja) 2014-04-15 2014-04-15 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物
CN201480078018.1A CN106233164A (zh) 2014-04-15 2014-04-15 带遮光材料的基板、滤色器、液晶显示装置、以及用于形成该遮光材料的着色树脂组合物
JP2016513532A JP6354840B2 (ja) 2014-04-15 2014-04-15 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060747 WO2015159370A1 (ja) 2014-04-15 2014-04-15 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物

Publications (1)

Publication Number Publication Date
WO2015159370A1 true WO2015159370A1 (ja) 2015-10-22

Family

ID=54323616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060747 WO2015159370A1 (ja) 2014-04-15 2014-04-15 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物

Country Status (4)

Country Link
JP (1) JP6354840B2 (ja)
KR (1) KR20160145589A (ja)
CN (1) CN106233164A (ja)
WO (1) WO2015159370A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703685A (zh) * 2016-08-08 2018-02-16 东京应化工业株式会社 层叠体和层叠体的制造方法
WO2019231097A1 (ko) * 2018-05-30 2019-12-05 주식회사 엘지화학 임프린팅용 포토마스크 및 이의 제조방법
WO2020059381A1 (ja) * 2018-09-20 2020-03-26 富士フイルム株式会社 遮光性組成物、硬化膜、カラーフィルタ、遮光膜、光学素子、固体撮像素子、ヘッドライトユニット
JP2020170050A (ja) * 2019-04-01 2020-10-15 キヤノン株式会社 回折光学素子、光学機器、撮像装置および回折光学素子の製造方法
JPWO2019107100A1 (ja) * 2017-11-30 2020-11-19 マクセル株式会社 蛍光体部材及び光源装置
WO2021106221A1 (ja) * 2019-11-29 2021-06-03 昭和電工マテリアルズ株式会社 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
WO2021132585A1 (ja) * 2019-12-27 2021-07-01 ソマール株式会社 黒色遮光部材
KR20220040388A (ko) 2020-09-23 2022-03-30 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 차광막 형성용 감광성 수지 조성물, 차광막, 및, 표시장치
US11614571B2 (en) 2019-12-27 2023-03-28 Somar Corporation Black light shielding member
JP7493575B2 (ja) 2021-12-31 2024-05-31 エルジー ディスプレイ カンパニー リミテッド 表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621891B (zh) * 2017-05-25 2018-04-21 大立光電股份有限公司 二次模造環型光學元件、成像鏡片組、成像裝置及電子裝置
CN107728373B (zh) * 2017-11-22 2019-05-03 深圳市华星光电技术有限公司 一种彩膜基板及其制造方法、液晶面板
TW202104131A (zh) * 2018-12-14 2021-02-01 日商日鐵化學材料股份有限公司 顯示裝置用基板及其製造方法、以及這些中使用的防反射層用樹脂組成物溶液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275218A (ja) * 2004-03-26 2005-10-06 Toyo Ink Mfg Co Ltd 感光性黒色組成物、それを用いたブラックマトリックス基板およびカラーフィルタ
JP2006163233A (ja) * 2004-12-10 2006-06-22 Toppan Printing Co Ltd カラーフィルタ基板及びその製造方法
JP2006251237A (ja) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd 遮光画像付き基板及び遮光画像の形成方法、転写材料、カラーフィルター、並びに表示装置
JP2007322485A (ja) * 2006-05-30 2007-12-13 Nippon Sheet Glass Co Ltd 遮光隔壁形成用のアルカリ現像型黒色感光性樹脂組成物
JP2008304583A (ja) * 2007-06-06 2008-12-18 Nippon Steel Chem Co Ltd ブラックレジスト用感光性樹脂組成物及びこれを用いた遮光膜並びにカラーフィルター
JP2014067028A (ja) * 2012-09-10 2014-04-17 Mitsubishi Chemicals Corp 遮光材、着色樹脂組成物、カラーフィルタ、及び液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288926A (ja) 1992-04-08 1993-11-05 A G Technol Kk カラーフィルター保護膜形成用組成物及びカラーフィルター付き電極基板
JPH08146410A (ja) 1994-11-17 1996-06-07 Dainippon Printing Co Ltd ブラックマトリックス基板およびこれを用いたカラーフィルタ
JP4694157B2 (ja) 2004-06-28 2011-06-08 富士フイルム株式会社 遮光画像付き基板及び遮光画像の製造方法、転写材料、カラーフィルター、並びに表示装置
WO2014136738A1 (ja) * 2013-03-07 2014-09-12 東レ株式会社 ブラックマトリクス基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275218A (ja) * 2004-03-26 2005-10-06 Toyo Ink Mfg Co Ltd 感光性黒色組成物、それを用いたブラックマトリックス基板およびカラーフィルタ
JP2006163233A (ja) * 2004-12-10 2006-06-22 Toppan Printing Co Ltd カラーフィルタ基板及びその製造方法
JP2006251237A (ja) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd 遮光画像付き基板及び遮光画像の形成方法、転写材料、カラーフィルター、並びに表示装置
JP2007322485A (ja) * 2006-05-30 2007-12-13 Nippon Sheet Glass Co Ltd 遮光隔壁形成用のアルカリ現像型黒色感光性樹脂組成物
JP2008304583A (ja) * 2007-06-06 2008-12-18 Nippon Steel Chem Co Ltd ブラックレジスト用感光性樹脂組成物及びこれを用いた遮光膜並びにカラーフィルター
JP2014067028A (ja) * 2012-09-10 2014-04-17 Mitsubishi Chemicals Corp 遮光材、着色樹脂組成物、カラーフィルタ、及び液晶表示装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703685A (zh) * 2016-08-08 2018-02-16 东京应化工业株式会社 层叠体和层叠体的制造方法
CN107703685B (zh) * 2016-08-08 2022-03-18 东京应化工业株式会社 层叠体和层叠体的制造方法
JPWO2019107100A1 (ja) * 2017-11-30 2020-11-19 マクセル株式会社 蛍光体部材及び光源装置
WO2019231097A1 (ko) * 2018-05-30 2019-12-05 주식회사 엘지화학 임프린팅용 포토마스크 및 이의 제조방법
US11966163B2 (en) 2018-05-30 2024-04-23 Lg Chem, Ltd. Photomask for imprinting and manufacturing method therefor
WO2020059381A1 (ja) * 2018-09-20 2020-03-26 富士フイルム株式会社 遮光性組成物、硬化膜、カラーフィルタ、遮光膜、光学素子、固体撮像素子、ヘッドライトユニット
JP2020170050A (ja) * 2019-04-01 2020-10-15 キヤノン株式会社 回折光学素子、光学機器、撮像装置および回折光学素子の製造方法
JP7414399B2 (ja) 2019-04-01 2024-01-16 キヤノン株式会社 回折光学素子、光学機器、撮像装置および回折光学素子の製造方法
JP7414076B2 (ja) 2019-11-29 2024-01-16 株式会社レゾナック 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
WO2021106221A1 (ja) * 2019-11-29 2021-06-03 昭和電工マテリアルズ株式会社 遮光用紫外線硬化性組成物、遮光膜、及び、遮光膜を有する物品を製造する方法
JPWO2021106221A1 (ja) * 2019-11-29 2021-06-03
JP2021107896A (ja) * 2019-12-27 2021-07-29 ソマール株式会社 黒色遮光部材
US11614571B2 (en) 2019-12-27 2023-03-28 Somar Corporation Black light shielding member
JP7157042B2 (ja) 2019-12-27 2022-10-19 ソマール株式会社 黒色遮光部材
WO2021132585A1 (ja) * 2019-12-27 2021-07-01 ソマール株式会社 黒色遮光部材
KR20220040388A (ko) 2020-09-23 2022-03-30 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 차광막 형성용 감광성 수지 조성물, 차광막, 및, 표시장치
JP7493575B2 (ja) 2021-12-31 2024-05-31 エルジー ディスプレイ カンパニー リミテッド 表示装置

Also Published As

Publication number Publication date
KR20160145589A (ko) 2016-12-20
JP6354840B2 (ja) 2018-07-11
JPWO2015159370A1 (ja) 2017-04-13
CN106233164A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6361838B2 (ja) 感光性着色組成物、硬化物、ブラックマトリクス、着色スペーサー及び画像表示装置
JP6354840B2 (ja) 遮光材付き基板、カラーフィルタ及び液晶表示装置並びにこの遮光材を形成するための着色樹脂組成物
JP6241153B2 (ja) 遮光材、着色樹脂組成物、カラーフィルタ、及び液晶表示装置
JP4513736B2 (ja) 液晶パネル用樹脂組成物、並びにそれを用いたカラーフィルタ及び液晶パネル
JP6341351B1 (ja) 感光性樹脂組成物、硬化物及び画像表示装置
JP6620743B2 (ja) 樹脂、感光性樹脂組成物、硬化物、カラーフィルタ及び画像表示装置
JP6365118B2 (ja) 感光性樹脂組成物、それを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置
WO2018151079A1 (ja) 感光性着色組成物、硬化物、着色スペーサー、画像表示装置
JP2013011845A (ja) カラーフィルタ用感光性着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
WO2017138605A1 (ja) 着色スペーサー形成用感光性着色組成物、硬化物、着色スペーサー、画像表示装置
JP2016177190A (ja) 着色スペーサー形成用感光性着色組成物、硬化物、着色スペーサー、画像表示装置
JP2013167687A (ja) 感光性着色樹脂組成物、及びカラーフィルタ、及び液晶表示装置
JP6845469B2 (ja) 画像表示装置用着色硬化膜、画像表示装置用感光性着色組成物及び画像表示装置
JP5957952B2 (ja) 感光性着色樹脂組成物、及びカラーフィルタ、及び液晶表示装置
JP2013195681A (ja) 感光性樹脂組成物、カラーフィルタ、液晶表示装置、及び有機elディスプレイ
TWI636083B (zh) 附有遮光材之基板,彩色濾光片及液晶顯示裝置
JP2013065000A (ja) 感光性着色樹脂組成物、カラーフィルタ、及び液晶表示装置
JP6561533B2 (ja) 感光性着色組成物、硬化物、着色スペーサー、画像表示装置
JP6344108B2 (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置
JP2018159930A (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置
JP6607054B2 (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
JP5040807B2 (ja) 着色樹脂組成物、カラーフィルタ、及び液晶表示装置
JP6065645B2 (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、カラーフィルタ及び液晶表示装置
JP2022108724A (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
JP2020003819A (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513532

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167028760

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889651

Country of ref document: EP

Kind code of ref document: A1