WO2015156127A1 - 電池用セパレータ - Google Patents

電池用セパレータ Download PDF

Info

Publication number
WO2015156127A1
WO2015156127A1 PCT/JP2015/059065 JP2015059065W WO2015156127A1 WO 2015156127 A1 WO2015156127 A1 WO 2015156127A1 JP 2015059065 W JP2015059065 W JP 2015059065W WO 2015156127 A1 WO2015156127 A1 WO 2015156127A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery separator
battery
separator
air
resin
Prior art date
Application number
PCT/JP2015/059065
Other languages
English (en)
French (fr)
Inventor
水野 直樹
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to PL15776189T priority Critical patent/PL3200257T3/pl
Priority to EP15776189.1A priority patent/EP3200257B1/en
Priority to JP2015516296A priority patent/JP5876616B1/ja
Priority to US15/322,798 priority patent/US10355258B2/en
Priority to SG11201701369VA priority patent/SG11201701369VA/en
Publication of WO2015156127A1 publication Critical patent/WO2015156127A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery separator having a modified porous layer excellent in electrode adhesion, and to a separator excellent in heat resistance.
  • a battery separator useful as a lithium ion battery separator.
  • Thermoplastic resin microporous membranes are widely used as material separation, permselective and isolating materials.
  • a separator for lithium ion secondary batteries it has ion permeability by impregnating with an electrolytic solution, is excellent in electrical insulation, electrolytic solution resistance and oxidation resistance, and at a temperature of about 120 to 150 ° C. when the battery is abnormally heated.
  • a polyethylene porous membrane having a pore closing effect that cuts off current and suppresses excessive temperature rise is suitably used.
  • a film breakage may occur due to a decrease in viscosity of the polyethylene constituting the film and a contraction of the film. This phenomenon is not limited to polyethylene, and even when other thermoplastic resin is used, it cannot be avoided at a temperature higher than the melting point of the resin.
  • Lithium-ion battery separators are deeply involved in battery characteristics, battery productivity, and battery safety. Excellent mechanical characteristics, heat resistance, permeability, dimensional stability, pore clogging characteristics (shutdown characteristics), melt film breaking characteristics (Melt down characteristic) etc. are required. Further, the separator is required to improve the adhesion with the electrode material in order to improve the cycle characteristics of the battery, and to improve the electrolyte permeability to improve the productivity. For this reason, various studies have been made to stack various modified porous layers on a porous membrane. As the modified porous layer, polyamideimide resin, polyimide resin, aromatic polyamide resin, fluorine resin excellent in electrode adhesion, etc. having both heat resistance and electrolyte solution permeability are suitably used. In addition, the modified porous layer as used in the field of this invention means the porous layer which has at least adhesiveness with an electrode material, and a heat shrinkage suppression function (heat resistance).
  • Fluorine-based resins are generally resins with relatively good electrode adhesion, but porous porous layers made of fluorine-based resins have a large thermal contraction rate compared to the case using polyamideimide resin, polyimide resin, and aromatic polyamide resin. When incorporated into an ion battery, it is inferior in safety. In order to improve this heat resistance, a method of adding inorganic particles or organic particles has also been proposed, but electrode adhesion, which is an important required characteristic, is lowered. That is, it is extremely difficult to achieve both electrode adhesion and heat resistance.
  • An organic / inorganic composite porous separator membrane having thermal stability and excellent ion permeability is disclosed.
  • Patent Document 2 for a non-aqueous secondary battery, which is made of a polyvinylidene fluoride resin formed on at least one surface of a porous substrate, and an adhesive porous layer having a crystallinity of 20 to 35% is laminated.
  • a separator is disclosed, and in the examples, a dimethylacetamide / tripropylene glycol mixed solvent solution of a polyvinylidene fluoride resin is applied to both the front and back surfaces of a polyethylene microporous membrane, solidified by immersing the coagulation liquid, and then washed with water. By drying, a separator for a non-aqueous secondary battery in which an adhesive porous layer is laminated to achieve both ion permeability and electrode adhesion is obtained.
  • Patent Document 3 discloses a separator for a non-aqueous electrolyte battery in which a heat-resistant porous layer containing 70% by volume or more of heat-resistant fine particles is formed on the surface of the resin porous membrane.
  • a heat-resistant porous layer containing 70% by volume or more of heat-resistant fine particles is formed on the surface of the resin porous membrane.
  • polyethylene porous material is disclosed. Apply a mixed solution of PVDF in N-methyl-2-pyrrolidone (NMP) solution (solid content ratio 15% by mass): 600 g and NMP: 1000 g to alumina powder: 3000 g, and dry.
  • NMP N-methyl-2-pyrrolidone
  • a slurry containing a mixture of inorganic particles, a polyvinylidene fluoride copolymer binder and acetone, and a slurry consisting only of the binder and acetone are coated on a polyethylene porous membrane and dried simultaneously.
  • a separator having good adhesion to an electrode in which two layers of a porous organic-inorganic composite inner layer and a porous polymer outer layer are laminated.
  • any of the separators disclosed in Patent Documents 1 to 4 is a separator in which a PVDF resin having an adhesive function with an electrode or a modified porous layer containing PVDF resin and heat-resistant fine particles is laminated on a polyolefin porous film It is.
  • the ratio of the resin having an adhesive function with the electrode such as PVDF in the modified porous layer is increased, for example, the modified porous layer made of only the resin ultimately. Is ideal.
  • the effect of suppressing heat shrinkage is reduced, and safety may not be ensured when incorporated in a non-aqueous secondary battery.
  • separators are required to have high ion permeability.
  • the ion permeability inherent in the polyolefin porous membrane is deteriorated to some extent by laminating the modified porous layer on the polyolefin porous membrane.
  • the present inventors have assumed that lithium ion secondary batteries will be widely deployed in applications that will be used in harsh environments such as electric vehicles, and in the past, it has been difficult to achieve compatibility in order to further increase the safety.
  • the present invention aims to provide a battery separator having both electrode adhesion and low heat shrinkage and excellent ion permeability.
  • the present invention is a separator in which a modified porous layer is laminated on a porous film made of a polyolefin-based resin.
  • the modified porous layer has an optimum ratio of a specific fluorine-based resin and inorganic particles.
  • the crystallinity of the resin is controlled by a special control technique.
  • the separator of the present invention has both electrode adhesion and low heat shrinkability.
  • the electrode adhesiveness and heat shrinkability are preferably in the following ranges by the evaluation methods described later.
  • the electrode adhesiveness is preferably 200 mN / 10 mm or more, more preferably 250 mN / 10 mm or more, and still more preferably 300 mN / 10 mm or more.
  • the heat shrinkability is preferably 15% or less, more preferably 13% or less, and still more preferably 12% or less. If it is the said preferable range, it will be easy to maintain safety, when incorporating in a battery.
  • the battery separator of the present invention has the following configuration.
  • a separator for a battery in which a porous layer made of a polyolefin resin and a modified porous layer containing a fluorine resin and inorganic particles are laminated on at least one side, the content of the particles being the sum of the fluorine resin and the particles
  • the battery separator has a fluoric resin crystallinity of 36% or more and less than 70%.
  • the battery separator that satisfies Formula 1 is preferable. 20 ⁇ YX ⁇ 100 Equation 1 X is the air resistance of the porous membrane (sec / 100ccAir) Y is the air resistance of the whole battery separator (sec / 100 cc Air)
  • the battery separator of the present invention is preferably the battery separator, wherein the polyolefin porous membrane has a thickness of 25 ⁇ m or less.
  • the battery separator of the present invention is preferably the battery separator, wherein the inorganic particles include at least one selected from the group consisting of alumina, titania and boehmite.
  • the battery separator of the present invention is preferably the battery separator used as a lithium ion secondary battery separator.
  • a battery separator having both electrode adhesion and low heat shrinkage and excellent ion permeability can be obtained.
  • the present invention relates to a battery separator in which a modified porous layer is laminated on a polyolefin porous film, the modified porous layer contains a fluorine resin having a specific molecular weight and particles in a specific ratio, and the fluorine By controlling the crystallinity of the resin based on advanced processing techniques, it is possible to obtain a battery seterator having excellent electrode adhesion, heat resistance, and ion permeability.
  • the outline of the laminated porous membrane having at least the polyolefin porous membrane and the modified porous layer of the present invention and the laminated porous membrane used as a battery separator will be described, but it is naturally not limited to this representative example.
  • the upper limit of the thickness of the polyolefin porous membrane of the present invention is preferably 25 ⁇ m, more preferably 20 ⁇ m, and even more preferably 16 ⁇ m.
  • the lower limit is preferably 7 ⁇ m, more preferably 9 ⁇ m. If the thickness of the polyolefin porous membrane is within the above preferred range, practical membrane strength and pore blocking function can be retained, and the area per unit volume of the battery case is not restricted, and will proceed in the future. Suitable for increasing battery capacity.
  • the upper limit of the air permeability resistance of the polyolefin porous membrane is preferably 300 sec / 100 cc Air, more preferably 200 sec / 100 cc Air, further preferably 150 sec / 100 cc Air, and the lower limit is preferably 50 sec / 100 cc Air, more preferably 70 sec / 100 cc Air, Preferably, it is 100 sec / 100 cc Air.
  • the upper limit is preferably 70%, more preferably 60%, and even more preferably 55%.
  • the lower limit is preferably 30%, more preferably 35%, still more preferably 40%.
  • the average pore size of the polyolefin porous membrane is preferably 0.01 to 1.0 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, and still more preferably 0.1 to 0. 3 ⁇ m.
  • an appropriate peel strength can be obtained between the modified porous layer and the anchor effect of the functional resin.
  • the modified porous layer is laminated, the air permeability resistance of the polyolefin porous membrane is not significantly deteriorated, and the shutdown response at the pore closing temperature of the polyolefin porous membrane is not slowed down. Does not shift to the high temperature side.
  • the polyolefin resin constituting the polyolefin porous membrane is preferably polyethylene or polypropylene. Further, it may be a single substance or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins. In addition to basic characteristics such as electrical insulation and ion permeability, the polyolefin porous film formed of the resin has a pore closing effect that blocks current when the battery is abnormally heated and suppresses excessive temperature rise.
  • polyethylene is preferable from the viewpoint of pore closing performance and is preferable.
  • polyethylene will be described in detail as an example of the polyolefin resin used in the present invention.
  • the polyethylene include ultra high molecular weight polyethylene, high density polyethylene, medium density polyethylene, and low density polyethylene.
  • the polymerization catalyst is not particularly limited, and examples thereof include a Ziegler-Natta catalyst, a Phillips catalyst, and a metallocene catalyst. These polyethylenes may be not only ethylene homopolymers but also copolymers containing small amounts of other ⁇ -olefins.
  • ⁇ -olefins other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, esters of (meth) acrylic acid, styrene, etc. Is preferred.
  • Polyethylene may be a single substance, but is preferably a mixture of two or more kinds of polyethylene.
  • As the polyethylene mixture a mixture of two or more types of ultrahigh molecular weight polyethylene having different weight average molecular weights (Mw), a mixture of similar high density polyethylene, medium density polyethylene and low density polyethylene may be used, or ultra high molecular weight polyethylene.
  • a mixture of two or more polyethylenes selected from the group consisting of high-density polyethylene, medium-density polyethylene, and low-density polyethylene may be used.
  • the polyethylene mixture is preferably a mixture composed of ultrahigh molecular weight polyethylene having an Mw of 5 ⁇ 10 5 or more and polyethylene having an Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 .
  • the Mw of the ultrahigh molecular weight polyethylene is preferably 5 ⁇ 10 5 to 1 ⁇ 10 7 , more preferably 1 ⁇ 10 6 to 5 ⁇ 10 6 .
  • the polyethylene having an Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 any of high density polyethylene, medium density polyethylene and low density polyethylene can be used, and it is particularly preferable to use high density polyethylene.
  • polyethylene having an Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 two or more types having different Mw may be used, or two or more types having different densities may be used.
  • the upper limit of Mw of the polyethylene mixture is set to 15 ⁇ 10 6 or less, melt extrusion can be facilitated.
  • the upper limit of the content of ultrahigh molecular weight polyethylene is preferably 40% by weight, more preferably 30% by weight, still more preferably 10% by weight, and the lower limit is preferably 1% by weight, more preferably 2% by weight. More preferably, it is 5% by weight. If the ultrahigh molecular weight polyethylene content is within the above preferred range, sufficient tensile strength can be obtained even when the thickness of the polyethylene porous membrane is reduced. The tensile strength is preferably 100 MPa or more. There is no particular upper limit.
  • the molecular weight distribution (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polyethylene resin, is preferably in the range of 5 to 200, more preferably 10 to 100.
  • Mw / Mn is used as a measure of molecular weight distribution, that is, in the case of polyethylene consisting of a single substance, the larger this value, the wider the molecular weight distribution.
  • the Mw / Mn of polyethylene composed of a single substance can be appropriately adjusted by multistage polymerization of polyethylene. Moreover, Mw / Mn of the mixture of polyethylene can be suitably adjusted by adjusting the molecular weight and mixing ratio of each component.
  • the polyethylene porous membrane can be freely selected according to the purpose as long as it satisfies the above various characteristics.
  • phase separation is performed in terms of uniform micropores and cost. The method is preferred.
  • phase separation method for example, polyethylene and a molding solvent are heated and melt-kneaded, and the obtained molten mixture is extruded from a die and cooled to form a gel-like molded product, and the obtained gel-like molding is obtained.
  • examples include a method of obtaining a porous film by stretching the product in at least a uniaxial direction and removing the molding solvent.
  • the polyethylene porous film may be a single layer film or a layer structure composed of two or more layers having different molecular weights or average pore diameters.
  • a method for producing a multilayer film composed of two or more layers for example, each of the polyethylene constituting the a layer and the b layer is melt-kneaded with a molding solvent, and the obtained molten mixture is supplied to each die from each extruder.
  • the gel sheets constituting each component can be integrated and co-extruded, or the gel sheets constituting each layer can be superimposed and heat-sealed.
  • the co-extrusion method is more preferable because it is easy to obtain a high interlayer adhesive strength, easily form communication holes between layers, easily maintain high permeability, and is excellent in productivity.
  • the molecular weight and molecular weight distribution of at least one outermost polyethylene resin satisfy the above.
  • the polyethylene porous membrane needs to have a function of blocking pores when the charge / discharge reaction is abnormal. Therefore, the melting point (softening point) of the constituent resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., and further preferably 100 to 130 ° C. When the melting point of the constituent resin is within the above-mentioned preferable range, it is possible to prevent the battery from being unusable due to the occurrence of a pore closing function during normal use, and to ensure safety by the pore closing function being exhibited during an abnormal reaction. it can.
  • the crystallinity of the fluororesin in the modified porous layer of the present invention is preferably 36% or more and less than 70%.
  • the lower limit of the crystallinity is more preferably 40% or more, still more preferably 45% or more, and the upper limit of the crystallinity is more preferably 65% or less, still more preferably 60% or less.
  • the fluororesin used in the present invention is not particularly limited as long as it improves electrode adhesion, heat resistance, and electrolyte permeability, but from the viewpoint of heat resistance and electrode adhesion, vinylidene fluoride homopolymer, fluoride It is preferable to use one or more selected from the group consisting of vinylidene / fluorinated olefin copolymer, vinyl fluoride homopolymer, and vinyl fluoride / fluorinated olefin copolymer. Particularly preferred are polyvinylidene fluoride resins and polyvinylidene fluoride-hexafluoropropylene copolymers. These polymers have electrode adhesion, high affinity with non-aqueous electrolytes, and high chemical and physical stability with respect to non-aqueous electrolytes. The affinity of can be maintained sufficiently.
  • the molecular weight of the polyvinylidene fluoride resin is an important factor in controlling the crystallinity.
  • the lower limit of the molecular weight is preferably 0.9 ⁇ 10 6 in terms of weight average molecular weight (Mw), more preferably 1.0 ⁇ 10 6 , still more preferably 1.1 ⁇ 10 6 , and the upper limit is 2.0 ⁇ 10 6. Is preferably in the range of 1.5 ⁇ 10 6 , more preferably 1.4 ⁇ 10 6 . Within this range, the degree of crystallinity of the polyvinylidene fluoride resin tends to be within the preferred range.
  • the polyvinylidene fluoride resin a commercially available resin can be used. Examples thereof include KF polymer W # 7300, KF polymer W # 9300 (manufactured by Kureha Corporation), and the like.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite and the like.
  • titanium dioxide, alumina, and boehmite are suitable because of the crystal growth property, cost, and availability of the fluororesin.
  • the modified porous layer in the present invention contains at least a fluorine resin and inorganic particles.
  • the inorganic particle content with respect to the total of the fluororesin and inorganic particles of the modified porous layer is preferably 40% by volume or more, more preferably 45% by volume or more, still more preferably 50% by volume or more, and preferably less than 70% by volume, More preferably, it is 65 volume% or less, More preferably, it is 60 volume% or less.
  • the average particle diameter of the inorganic particles is preferably 1.5 times or more and 50 times or less of the average pore diameter of the polyolefin porous membrane. More preferably, it is 2.0 times or more and 20 times or less.
  • the average particle diameter of the particles is within the above-mentioned preferable range, the air resistance is maintained without blocking the pores of the polyolefin porous membrane in a state where the heat-resistant resin and the particles are mixed, and further, in the battery assembly process, the particles Prevents falling off and causing serious battery defects.
  • the film thickness of the modified porous layer is preferably 1 to 5 ⁇ m, more preferably 1 to 4 ⁇ m, and still more preferably 1 to 3 ⁇ m.
  • the film thickness is 1 ⁇ m or more, adhesion to the electrode is ensured, the polyolefin microporous film is prevented from being melted and shrunk at the melting point or more, and the film breaking strength and insulation can be secured.
  • the film thickness is 5 ⁇ m or less, the winding volume can be suppressed, which is suitable for increasing the capacity of batteries that will be developed in the future. Furthermore, curling is prevented from increasing, leading to an improvement in productivity in the battery assembly process. Further, by optimizing the proportion of the polyolefin microporous film, a sufficient pore blocking function can be obtained and abnormal reactions can be suppressed.
  • the porosity of the modified porous layer is preferably 30 to 90%, more preferably 40 to 70%.
  • the porosity is 30% or more, an increase in the electrical resistance of the film can be prevented and a large current can flow. Further, when the porosity is 90% or less, the film strength can be maintained.
  • the upper limit of the total film thickness of the battery separator obtained by laminating the modified porous layer is preferably 30 ⁇ m, more preferably 25 ⁇ m.
  • the lower limit is preferably 5 ⁇ m, more preferably 7 ⁇ m. Sufficient mechanical strength and insulation can be ensured by setting it to be equal to or more than the lower limit of the above preferable range. Since the electrode area that can be filled in the container can be secured by setting the amount to be equal to or less than the upper limit of the above preferable range, a decrease in capacity can be avoided.
  • the method for laminating the modified porous layer will be described.
  • a fluororesin solution that is soluble in a fluororesin and dissolved in a solvent miscible with water and a varnish mainly composed of particles are laminated on the polyolefin microporous film obtained above using a coating method, followed by
  • the modified porous layer can be obtained by placing in a specific moist environment, phase-separating a solvent miscible with the fluororesin and water, and adding the solution to a water bath (coagulation bath) to coagulate the fluororesin.
  • Examples of the method for applying the varnish include a dip coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a Mayer bar coating method, and a pipe.
  • Examples include a doctor method, a blade coating method, and a die coating method, and these methods can be performed alone or in combination.
  • the present invention in order to make the crystallinity of the fluororesin in the modified porous layer not less than 36% and less than 70%, not only the above fluororesin is used, but also after application for a certain time in a specific moist environment. It is important to promote crystallization using inorganic particles as nuclei while phase separation.
  • the term “in a moist environment” as used in this specification does not mean simply an environment in which the humidity is high, but refers to passing through a zone filled with atomized water droplets (hereinafter sometimes abbreviated as “wet zone”).
  • the particle size of the atomized water droplets is preferably 50 to 500 ⁇ m.
  • the particle diameter of the water droplet can be determined by a known laser method.
  • the state filled with atomized water droplets means a state in which a black ring having a width of 1 cm and an inner diameter of 5 cm cannot be visually recognized at an interval of 30 cm.
  • the atomized water droplets can be obtained by supplying compressed air and water from a gas-liquid mixing type two-fluid nozzle. Although the supply amount of water depends on the wet zone volume, the full state can be created by supplying approximately 2 to 5 L / hr per 1 m 3 .
  • the passing time of the wet zone is 1 second or longer, preferably 2 seconds or longer, more preferably 3 seconds or longer. There is no particular upper limit, but 10 seconds is sufficient.
  • the time from passing through the zone to the entrance of the coagulation tank is preferably 0.5 seconds or more and 10 seconds or less. By doing so, the crystallinity can be increased not only to the surface of the coating film but also to the deep part of the coating film.
  • position so that the airflow sprayed from a 2 fluid nozzle may not hit a coating surface directly. This is because if the airflow directly hits the coating surface, the increase in the air resistance may increase.
  • the fluororesin component and inorganic particles coagulate in a three-dimensional network.
  • the immersion time in the coagulation bath is preferably 3 seconds or more. If it is less than 3 seconds, the resin component may not be sufficiently solidified. The upper limit is not limited, but 10 seconds is sufficient.
  • pure water is used by immersing the unwashed microporous membrane in an aqueous solution containing 1 to 20% by weight, more preferably 5 to 15% by weight of a good solvent for the fluororesin constituting the modified porous layer.
  • the final battery separator can be obtained through a washing step and a drying step using hot air of 100 ° C. or lower.
  • the battery separator of the present invention is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
  • the battery separator of the present invention is used for batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium ion secondary batteries, lithium polymer secondary batteries and the like. Although it can be used as a separator, it is particularly preferably used as a separator for a lithium ion secondary battery.
  • the porosity of the modified porous layer is preferably 30 to 90%, more preferably 40 to 70%.
  • the desired porosity can be obtained by appropriately adjusting the concentration of inorganic particles, the binder concentration, and the like.
  • the porosity of the modified porous layer is within the above-mentioned preferable range, the laminated porous film obtained by laminating the modified porous layer has a low electrical resistance, a large current flows easily, and the film strength is maintained. Is done.
  • the air resistance of the battery separator is one of the most important characteristics, and is preferably 50 to 600 sec / 100 cc Air, more preferably 100 to 500 sec / 100 cc Air, and still more preferably 100 to 400 sec / 100 cc Air.
  • the desired air resistance can be obtained by adjusting the porosity of the modified porous layer and adjusting the degree of penetration of the binder into the polyolefin porous membrane.
  • the air permeability resistance of the battery separator is within the above preferable range, sufficient insulation is obtained, and foreign matter clogging, short circuit and film breakage are prevented. Further, by suppressing the film resistance, charge / discharge characteristics and life characteristics within a practically usable range can be obtained.
  • the increasing range of the air resistance means the difference between the air resistance of the polyolefin porous film and the air resistance of the laminated porous film in which the modified porous layer is laminated. That is, the increase in the air resistance is the difference (Y ⁇ X) between the air resistance (Xsec / 100 cc Air) of the polyolefin porous membrane and the air resistance (Ysec / 100 cc Air) of the battery separator, 20 sec / 100 cc Air ⁇ Y ⁇ X ⁇ 100 sec / 100 cc Air is preferable. If it is this range, sufficient adhesiveness and favorable ion permeability will be obtained. More preferably, 20 sec / 100 cc Air ⁇ YX ⁇ 80 sec / 100 cc Air, and further preferably 20 sec / 100 cc Air ⁇ Y ⁇ X ⁇ 50 sec / 100 cc Air. *
  • the measured value in an Example is a value measured with the following method.
  • Electrode adhesion (peel strength) A positive electrode was produced as follows. 94 parts by mass of LiCoMgO 2 (positive electrode active material), which is a lithium-containing composite oxide, is added with 3 parts by mass of carbon black as a conductive additive and mixed. The resulting mixture is polyvinylidene fluoride (KF polymer) having a weight average molecular weight of 280,000. An NMP solution containing 3 parts by mass of W # 1100 (manufactured by Kureha Co., Ltd.) was added and mixed to obtain a positive electrode mixture-containing slurry, which was then collected from an aluminum foil having a thickness of 15 ⁇ m.
  • LiCoMgO 2 positive electrode active material
  • carbon black as a conductive additive
  • peeling speed 100 mm / min, 180 ° peeling The peel strength between the positive electrode and the battery separator was measured. Measurement was performed over time during 100 mm from the start of measurement to the end of measurement, the average value of the measured values was calculated, and converted to a value per 10 mm width to obtain the peel strength. In some cases, a part of the modified porous layer may remain on the polyolefin porous membrane side at the peeling interface, and in this case, the peeling strength between the positive electrode and the battery separator was calculated.
  • Air permeability resistance Gurley type densometer type B manufactured by Tester Sangyo Co., Ltd. is used to fix the polyolefin porous membrane or battery separator so that no wrinkles can enter between the clamping plate and the adapter plate. Any five points were measured according to P8117, and the average value was used as the air resistance [sec / 100 cc Air].
  • the air resistance increase range was obtained from the following equation. Air permeability resistance increase width YX X is the air resistance of the polyolefin porous membrane (sec / 100 cc Air) Y is the air resistance of the whole battery separator (sec / 100 cc Air)
  • Heat Shrinkage The heat resistance of the polyolefin porous membrane and battery separator was determined from the average value of the rate of change with respect to the initial dimensions of MD and TD when stored in an oven at 130 ° C. for 60 minutes.
  • Film thickness It was determined by averaging the measured values at 20 points using a contact-type film thickness meter ("Lightmatic" (registered trademark) series 318 manufactured by Mitutoyo Corporation). The measurement was performed under the condition of a weight of 0.01 N using a carbide spherical measuring element ⁇ 9.5 mm.
  • Example 1 Adjustment of varnish
  • the fluorine resin and alumina particles having an average particle size of 0.5 ⁇ m and N-methyl-2-pyrrolidone are 52% by volume with respect to the total of the fluorine resin and the alumina particles, and the solid content concentration is 17% by weight.
  • the resin component After mixing the resin component completely and dissolving the resin component, it is placed in a polypropylene container together with zirconium oxide beads (manufactured by Toray Industries, Inc., “Traceram” (registered trademark) beads, diameter 0.5 mm), and a paint shaker (Toyo Seiki Seisakusho Co., Ltd.) for 6 hours. Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and prepared the varnish (a). In addition, the varnish was hermetically stored so as not to touch outside air as much as possible until coating.
  • zirconium oxide beads manufactured by Toray Industries, Inc., “Traceram” (registered trademark) beads, diameter 0.5 mm
  • a paint shaker Toyo Seiki Seisakusho Co., Ltd.
  • the varnish (a) is applied to both sides of a polyethylene microporous membrane (thickness 9 ⁇ m, air permeability resistance 240 sec / 100 cc Air) by a dip coating method, followed by a temperature of 25 ° C. in a wet zone filled with atomized water droplets. Pass for 2 seconds, and after 0.5 seconds, enter the aqueous solution (coagulation tank) for 3 seconds, wash with pure water, and then dry by passing through a hot air drying oven at 70 ° C. to a final thickness of 13 ⁇ m. A battery separator was obtained.
  • Example 2 Fluorine resin and alumina particles having an average particle size of 0.5 ⁇ m and N-methyl-2-pyrrolidone were blended so that the total content of the fluorine resin and alumina particles was 43% by volume and the solid content concentration was 16% by weight.
  • a battery separator was obtained in the same manner as in Example 1 except that the varnish (b) was used.
  • Example 3 Fluorine resin and alumina particles having an average particle size of 0.5 ⁇ m and N-methyl-2-pyrrolidone were blended so that the total content of the fluorine resin and alumina particles was 66% by volume and the solid content concentration was 16% by weight.
  • a battery separator was obtained in the same manner as in Example 1 except that the varnish (c) was used.
  • Example 4 A battery separator was obtained in the same manner as in Example 1 except that varnish (d) was used in which the fluororesin was replaced with KF polymer W # 7300 (manufactured by Kureha Co., Ltd.), which is a homopolymer of polyvinylidene fluoride.
  • Example 5 A battery separator was obtained in the same manner as in Example 1 except that varnish (e) was used in which the fluororesin was replaced with KF polymer W # 9300 (manufactured by Kureha Co., Ltd.), which is a modified polymer of polyvinylidene fluoride.
  • Example 6 A battery separator was obtained in the same manner as in Example 1 except that the varnish (f) in which the alumina particles were replaced with titanium dioxide particles having an average particle diameter of 0.38 ⁇ m was used.
  • Example 7 A battery separator was obtained in the same manner as in Example 1 except that the coating liquid (g) in which the alumina particles were replaced with plate-like boehmite fine particles (average particle diameter: 1.0 ⁇ m) was used.
  • Example 8 A battery separator was obtained in the same manner as in Example 1 except that a polyethylene microporous membrane (thickness: 16 ⁇ m, air permeability resistance: 117 sec / 100 cc Air) was used as the polyolefin microporous membrane.
  • Example 9 A battery separator was obtained in the same manner as in Example 1 except that a polyethylene microporous membrane (thickness 20 ⁇ m, air permeability resistance 100 sec / 100 cc Air) was used as the polyolefin microporous membrane.
  • a polyethylene microporous membrane thickness 20 ⁇ m, air permeability resistance 100 sec / 100 cc Air
  • Example 10 A battery separator was obtained in the same manner as in Example 1 except that a polyethylene microporous membrane (thickness 7 ⁇ m, air permeability resistance 248 sec / 100 cc Air) was used as the polyolefin microporous membrane.
  • Example 11 A battery separator was obtained in the same manner as in Example 1 except that the passage time through the wet zone was 1.5 seconds, and the passage time from the wet zone outlet to the coagulation tank inlet was 0.4 seconds.
  • Example 12 A battery separator was obtained in the same manner as in Example 1 except that the passage time through the wet zone was passed for 3.0 seconds and the passage time from the wet zone outlet to the coagulation tank inlet was 0.8 seconds.
  • Comparative Example 1 A battery separator was obtained in the same manner as in Example 1 except that it was directly put into the coagulation tank without passing through the wet zone.
  • Comparative Example 2 Fluorine resin and alumina particles having an average particle size of 0.5 ⁇ m and N-methyl-2-pyrrolidone were blended so that the total content of the fluorine resin and alumina particles was 82% by volume and the solid content concentration was 64% by weight.
  • a battery separator was obtained in the same manner as in Example 1 except that the varnish (h) was used.
  • Comparative Example 3 Fluorine resin and alumina particles having an average particle size of 0.5 ⁇ m and N-methyl-2-pyrrolidone were blended so that the volume of the solid resin was 29% by volume and the solid content concentration was 17% by weight based on the total of the fluorine resin and the alumina particles.
  • a battery separator was obtained in the same manner as in Example 1 except that the varnish (i) was used.
  • Comparative Example 5 Battery separator in the same manner as in Example 1 except that varnish (k) was used instead of KF polymer W # 1100 (manufactured by Kureha Co., Ltd.), which is a polyvinylidene fluoride having a weight average molecular weight of 280,000. Got.
  • Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 12 and Comparative Examples 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

本発明はリチウムイオン二次電池が電気自動車など、過酷な使用環境となる用途に広く展開されることを想定し、その安全性をよりいっそう高めるために、従来、両立が困難であった電極接着性と低熱収縮性を両立させ、且つイオン透過性の優れた電池用セパレータの提供を目指したものである。 ポリオレフィン系樹脂からなる多孔質膜にフッ素系樹脂と無機粒子を含む改質多孔層が少なくとも片面に積層された電池用セパレータであって、該粒子の含有量はフッ素系樹脂と前記粒子の合計に対して40体積%以上、70体積%未満であり、フッ素系樹脂の結晶化度が36%以上、70%未満である電池用セパレータ。

Description

電池用セパレータ
 本発明は、電極接着性に優れた改質多孔層を有する電池用セパレータであり、且つ、耐熱性に優れたセパレータに関する。特に、リチウムイオン電池用セパレータとして有用な電池用セパレータである。
 熱可塑性樹脂微多孔膜は、物質の分離や選択透過及び隔離材等として広く用いられている。たとえば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、又はポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、又は精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料などである。特にリチウムイオン二次電池用セパレータとしては、電解液含浸によりイオン透過性を有し、電気絶縁性、耐電解液性及び耐酸化性に優れ、電池異常昇温時に120~150℃程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞効果をも備えているポリエチレン製多孔質膜が好適に使用されている。しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、膜を構成するポリエチレンの粘度低下及び膜の収縮により、破膜を生じることがある。この現象はポリエチレンに限定された現象ではなく、他の熱可塑性樹脂を用いた場合においても、樹脂の融点以上では避けることができない。
 リチウムイオン電池用セパレータは電池特性、電池生産性及び電池安全性に深く関わっており、優れた機械的特性、耐熱性、透過性、寸法安定性、孔閉塞特性(シャットダウン特性)、溶融破膜特性(メルトダウン特性)等が要求される。さらに、セパレータは電池のサイクル特性向上のために電極材料との接着性向上、生産性向上のための電解液浸透性の向上などが要求される。そのため、これまでに多孔質膜にさまざまな改質多孔層を積層する検討がなされている。改質多孔層としては耐熱性及び電解液浸透性を併せ持つポリアミドイミド樹脂、ポリイミド樹脂、芳香族ポリアミド樹脂、電極接着性に優れたフッ素系樹脂などが好適に用いられている。なお、本発明でいう改質多孔層とは、少なくとも電極材料との接着性、熱収縮抑制機能(耐熱性)を有する多孔層をいう。
 フッ素系樹脂は一般に電極接着性に比較的優れる樹脂であるが、フッ素系樹脂からなる多孔質多孔層はポリアミドイミド樹脂、ポリイミド樹脂、芳香族ポリアミド樹脂を用いた場合と比べ熱収縮率が大きくリチウムイオン電池に組み入れた際、安全性に劣る。この耐熱性を改良するために無機粒子、あるいは、有機粒子を添加する方法も提案されているが、重要な要求特性である電極接着性が低下する。すなわち、電極接着性と耐熱性を両立させるのは極めて困難であった。
 また、電気自動車用など過酷な使用環境が予想される電池においては安全性の確保のみならず、低コスト化、高容量化に伴い容器内に充填できる面積を増加させるためにセパレータの薄膜化がいっそう進むことが予想される。
 特許文献1の実施例では、ポリエチレンセパレータ膜上に無機物粒子とポリビニリデンフルオライドを含む共重合体からなるバインダーとの混合物(無機物粒子/バインダー=90/10(重量%))のアセトン溶液を塗布して得られる、熱的安定性と優れたイオン透過性を有する有無機複合多孔性セパレータ膜が開示されている。 
 特許文献2では多孔質基材の少なくとも一方の面に形成された、ポリフッ化ビニリデン系樹脂からなり、結晶化度が20~35%の接着性多孔質層が積層された非水系二次電池用セパレータが開示されており、実施例では、ポリエチレン微多孔膜の表裏両面にポリフッ化ビニリデン系樹脂のジメチルアセトアミド/トリプロピレングリコール混合溶媒溶液を塗布し、凝固液を浸漬することで固化させ、次いで水洗、乾燥することによって、接着性多孔質層を積層した、イオン透過性と電極との接着性を両立させた非水系二次電池用セパレータを得ている。 
 特許文献3では樹脂多孔質膜表面に耐熱性微粒子を70体積%以上含有する耐熱多孔質層を形成させた非水電解質電池用セパレータが開示されており、具体的に実施例1ではポリエチレン製多孔質膜にPVDFのN-メチル-2-ピロリドン(NMP)溶液(固形分比率15質量%):600gと、NMP:1000gとの溶解液にアルミナ粉末:3000gを加えた混合溶液を塗布し、乾燥させることによって高温時の寸法安定性に優れた非水電解質電池用セパレータを得ている。
 特許文献4の実施例ではポリエチレン多孔性膜上に無機物粒子、ポリフッ化ビニリデン系共重合体からなるバインダー及びアセトンの混合物を含むスラリーと前記バインダーとアセトンのみからなるスラリーを塗布し、同時に乾燥させることによって、多孔性有機無機複合内部層と多孔性高分子外郭層の2層を積層した電極に対する接着性が良好なセパレータを開示している。
 特許文献1~4に開示されているセパレータはいずれもポリオレフィン系多孔質膜に電極との接着性機能を有するPVDF系樹脂、またはPVDF系樹脂と耐熱性微粒子を含む改質多孔層を積層したセパレータである。一般に、電極との接着性を向上させるには改質多孔層中のPVDF等の電極との接着性機能を有する樹脂の比率を高くする、例えば究極的には前記樹脂のみからなる改質多孔層が理想である。しかしながら、この場合、熱収縮を抑制する効果が低下し、非水二次電池に組み込んだ際に安全性が確保できない場合がある。反対に耐熱性微粒子の比率を高くすれば熱収縮を抑制する効果は大きくなるが、電極との接着性が低下する。すなわち、単に両者の比率を調整したのみでは電極との接着性と熱収縮を抑制する効果を十分に満足できないのが実情である。
 さらに、近年の非水二次電池の高性能化に伴い、セパレータには高いイオン透過性が求められる。しかしながら、ポリオレフィン系多孔質膜に改質多孔層を積層することによってポリオレフィン系多孔質膜が本来持つイオン透過性をある程度悪化させることは避けられない。予め透気抵抗度の小さい、換言すれば開孔率の大きいポリオレフィン系多孔質膜を用いて改質多孔層を積層する方法もあるが開孔率の大きいポリオレフィン系多孔質膜は機械的強度が低く、今後急速に進むであろう低コスト化、高容量化に伴う、高速加工化、セパレータの薄膜化の要求に対して、適当な手段とは言えない。 
 すなわち、電極に対する接着性、熱収縮抑制(耐熱性)効果を両立させ、尚且つ、改質多孔層を積層することによる透気抵抗度の上昇幅を小さく抑えた電池用セパレータは存在しなかった。
特表2008-524824号公報 特許第4988973号公報 特開2008-123996号公報 特表2013-506259号公報
 本発明者らはリチウムイオン二次電池が電気自動車など、過酷な使用環境となる用途に広く展開されることを想定し、その安全性をよりいっそう高めるために、従来、両立が困難であった電極接着性と低熱収縮性を両立させ、且つイオン透過性の優れた電池用セパレータの提供を目指したものである。
 本発明は、ポリオレフィン系樹脂からなる多孔質膜に改質多孔層を積層したセパレータであるが、改質多孔層は特定のフッ素系樹脂と無機粒子との最適な比率からなり、さらに、フッ素系樹脂の結晶化度を特殊な制御技術をもって制御したものである。これにより、本発明のセパレータは電極接着性と低熱収縮性を両立させたものである。
 電極接着性と熱収縮性は後述する評価方法でそれぞれ以下の範囲が好ましい。電極接着性は200mN/10mm以上が好ましく、より好ましくは250mN/10mm以上、さらに好ましくは300mN/10mm以上である。熱収縮性は15%以下が好ましく、より好ましくは13%以下、さらに好ましくは12%以下である。上記好ましい範囲であれば電池に組み込んだとき安全性を保ちやすい。
 上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
 ポリオレフィン系樹脂からなる多孔質膜にフッ素系樹脂と無機粒子を含む改質多孔質層が少なくとも片面に積層された電池用セパレータであって、該粒子の含有量はフッ素系樹脂と前記粒子の合計に対して40体積%以上、70体積%未満であり、フッ素系樹脂の結晶化度が36%以上、70%未満である電池用セパレータ、である。
 本発明の電池用セパレータの好ましい態様としては、式1を満足する前記電池用セパレータ、であることが好ましい。
20≦Y-X≦100・・・・・式1
Xは多孔質膜の透気抵抗度(sec/100ccAir)
Yは電池用セパレータ全体の透気抵抗度(sec/100ccAir)
 本発明の電池用セパレータは前記ポリオレフィン多孔質膜の厚さが25μm以下である前記電池用セパレータ、であることが好ましい。
 本発明の電池用セパレータは前記無機粒子がアルミナ、チタニア及びベーマイトからなる群から選ばれる少なくとも1種を含む前記電池用セパレータ、であることが好ましい。
 本発明の電池用セパレータはリチウムイオン二次電池用セパレータとして用いる前記電池用セパレータ、であることが好ましい。
 本発明によれば、電極接着性と低熱収縮性を両立させ、且つイオン透過性の優れた電池用セパレータが得られる。
 本発明はポリオレフィン多孔質膜に改質多孔層を積層した電池用セパレータであって、改質多孔層は特定の分子量を有するフッ素系樹脂及び粒子を特定の比率で含有しており、さらに前記フッ素系樹脂の結晶化度を高度な加工技術によって制御することにより優れた電極接着性と耐熱性、イオン透過性を具備した電池用セタレータを得ることができる。 
 本発明のポリオレフィン多孔質膜と改質多孔層とを少なくとも有する積層多孔質膜及び電池用セパレータとして用いる前記積層多孔質膜について概要を説明するが、当然この代表例に限定されるものではない。
 まず、本発明のポリオレフィン多孔質膜について説明する。
 本発明のポリオレフィン多孔質膜の厚さの上限は25μmが好ましく、より好ましくは20μm、さらに好ましくは16μmである。下限は7μmが好ましく、より好ましくは9μmである。ポリオレフィン多孔質膜の厚さが上記好ましい範囲であると、実用的な膜強度と孔閉塞機能を保有させることができ、電池ケースの単位容積当たりの面積が制約されず、今後、進むであろう電池の高容量化に適する。
 ポリオレフィン多孔質膜の透気抵抗度の上限は300sec/100ccAirが好ましく、より好ましくは200sec/100ccAir、さらに好ましくは150sec/100ccAirであり、下限は50sec/100ccAirが好ましく、より好ましくは70sec/100ccAir、さらに好ましくは100sec/100ccAirである。
 ポリオレフィン多孔質膜の空孔率については、上限は70%が好ましく、より好ましくは60%、さらに好ましくは55%である。下限は30%が好ましく、より好ましくは35%、さらに好ましくは40%である。ポリオレフィン多孔質膜は透気抵抗度および空孔率が上記好ましい範囲であると、電池用セパレータとして用いた場合、電池の充放電特性、特にイオン透過性(充放電作動電圧)および電池の寿命(電解液の保持量と密接に関係する)において、電池の機能を十分に発揮することができる。また前記ポリオレフィン多孔質膜は十分な機械的強度と絶縁性が得られることで、これを用いた電池は充放電時に短絡が起こる可能性が低くなる。
 ポリオレフィン多孔質膜の平均孔径については、孔閉塞性能に大きく影響を与えるため、好ましくは0.01~1.0μm、より好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。ポリオレフィン多孔質膜の平均孔径が上記好ましい範囲であると、機能性樹脂のアンカー効果により、改質多孔層との間で適度な剥離強度が得られる。また、改質多孔層を積層した際に、ポリオレフィン多孔質膜の透気抵抗度が大幅に悪化せず、ポリオレフィン多孔質膜の孔閉塞温度におけるシャットダウン応答が緩慢になることもなく、孔閉塞温度が高温側にシフトすることもない。
 ポリオレフィン多孔質膜を構成するポリオレフィン樹脂としては、ポリエチレンやポリプロピレンが好ましい。また、単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えばポリエチレンとポリプロピレンの混合物であってもよいし、異なるオレフィンの共重合体でもよい。上記樹脂により形成されるポリオレフィン多孔質膜は電気絶縁性、イオン透過性などの基本特性に加え、電池異常昇温時に電流を遮断し、過度の昇温を抑制する孔閉塞効果を具備する。
 特にポリエチレンは孔閉塞性能の観点から優れており、好ましい。以下、本発明で用いるポリオレフィン樹脂としてポリエチレンを例に詳述する。
 ポリエチレンは、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンなどが挙げられる。また重合触媒にも特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒などが挙げられる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。ポリエチレンは単一物でもよいが、2種以上のポリエチレンからなる混合物であることが好ましい。ポリエチレン混合物としては重量平均分子量(Mw)の異なる2種類以上の超高分子量ポリエチレン同士の混合物、同様な高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上ポリエチレンの混合物を用いてもよい。
 なかでもポリエチレン混合物としては、Mwが5×10以上の超高分子量ポリエチレンとMwが1×10以上~5×10未満のポリエチレンからなる混合物が好ましい。超高分子量ポリエチレンのMwは5×10~1×10であることが好ましく、より好ましくは1×10~5×10である。Mwが1×10以上~5×10未満のポリエチレンとしては、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンのいずれも使用することが出来るが、特に高密度ポリエチレンを使用することが好ましい。Mwが1×10以上~5×10未満のポリエチレンとしてはMwが異なるものを2種以上使用してもよいし、密度の異なるものを2種以上使用してもよい。ポリエチレン混合物のMwの上限を15×10以下にすることにより、溶融押出を容易にすることが出来る。
 本発明においては超高分子量ポリエチレンの含有量の上限は40重量%が好ましく、より好ましくは30重量%、さらに好ましくは10重量%であり、下限は1重量%が好ましく、より好ましくは2重量%、さらに好ましくは5重量%である。超高分子量ポリエチレンの含有量が上記好ましい範囲内であると、ポリエチレン多孔質膜の厚さを薄膜化させた場合であっても、十分な引っ張り強度が得られる。なお、引っ張り強度は100MPa以上が好ましい。上限は特に定めない。
 ポリエチレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比である分子量分布(Mw/Mn)は5~200の範囲内であることが好ましく、10~100であることがより好ましい。Mw/Mnの範囲が上記好ましい範囲であると、ポリエチレン樹脂溶液の押出が容易であり、ポリエチレン多孔質膜の厚さを薄膜化させた場合、十分な機械的強度が得られる。Mw/Mnは分子量分布の尺度として用いられるものであり、すなわち単一物からなるポリエチレンの場合、この値が大きい程分子量分布の幅が大きい。単一物からなるポリエチレンのMw/Mnはポリエチレンの多段重合により適宜調整することができる。またポリエチレンの混合物のMw/Mnは各成分の分子量や混合割合を調整することにより適宜調整することができる。
 ポリエチレン多孔質膜は、上記の各種特徴を満足する範囲内ならば、目的に応じた製造方法を自由に選択することができる。多孔質膜の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。
 相分離法による製造方法としては、例えばポリエチレンと成形用溶剤とを加熱溶融混練し、得られた溶融混合物をダイより押出し、冷却することによりゲル状成形物を形成し、得られたゲル状成形物に対して少なくとも一軸方向に延伸を実施し、前記成形用溶剤を除去することによって多孔質膜を得る方法などが挙げられる。
 ポリエチレン多孔質膜は単層膜であってもよいし、分子量あるいは平均細孔径の異なる二層以上からなる層構成であってもよい。二層以上からなる多層膜の製造方法としては、例えばa層及びb層を構成するポリエチレンのそれぞれを成形用溶剤と溶融混練し、得られた溶融混合物をそれぞれの押出機から1つのダイに供給し各成分を構成するゲルシートを一体化させて共押出する方法、各層を構成するゲルシートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、高い層間接着強度を得やすく、層間に連通孔を形成しやすいために高い透過性を維持しやすく、生産性にも優れているためにより好ましい。二層以上からなる層構成の場合、少なくとも一つの最外層のポリエチレン樹脂の分子量、および分子量分布が前記を満足することが好ましい。
 ポリエチレン多孔質膜は、充放電反応の異常時に孔が閉塞する機能を有することが必要である。そのために、構成する樹脂の融点(軟化点)は、70~150℃が好ましく、より好ましくは80~140℃、さらに好ましくは100~130℃である。構成する樹脂の融点が上記好ましい範囲であると、正常使用時に孔閉塞機能が発現することにより電池が使用できなくなることを防ぎ、また、異常反応時に孔閉塞機能が発現することで安全性を確保できる。
 次に、本発明に用いる改質多孔層について説明する。
 本発明の改質多孔層中のフッ素系樹脂の結晶化度は36%以上、70%未満が好ましい。結晶化度の下限はより好ましくは40%以上、さらに好ましくは45%以上、結晶化度の上限はより好ましくは65%以下、さらに好ましくは60%以下である。結晶化度が上記好ましい範囲内にすることによって、優れた耐熱性、電極接着性が得られる。
 本発明に用いるフッ素系樹脂は電極接着性、耐熱性、電解液浸透性を向上させるものであれば特に制限されないが、耐熱性および電極接着性の観点からはフッ化ビニリデン単独重合体、フッ化ビニリデン/フッ化オレフィン共重合体、フッ化ビニル単独重合体、及びフッ化ビニル/フッ化オレフィン共重合体からなる群より選ばれる1種以上を使用することが好ましい。特に好ましいものはポリフッ化ビニリデン樹脂及びポリフッ化ビニリデン-ヘキサフルオロプロピレンで共重合体ある。これらの重合体は、電極接着性を有し、非水電解液とも親和性が高く、非水電解液に対する化学的、物理的な安定性が高いため、高温下での使用にも電解液との親和性を十分維持できる。
 ポリフッ化ビニリデン系樹脂の分子量は結晶化度を制御する上で重要な因子である。分子量の下限としては、重量平均分子量(Mw)で0.9×10が好ましく、より好ましくは1.0×10、さらに好ましくは1.1×10、上限は2.0×10が好ましく、好ましくは1.5×10、より好ましくは1.4×10の範囲である。この範囲であるとポリフッ化ビニリデン系樹脂の結晶化度を上記好ましい範囲内にしやすくなる。ポリフッ化ビニリデン系樹脂は市販されている樹脂を用いることができる。例えば、KFポリマーW#7300、KFポリマーW#9300((株)クレハ製)等が挙げられる。
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。特にフッソ系樹脂の結晶成長性、コスト、入手のしやすさから二酸化チタン、アルミナ、ベーマイトが好適である。
 本発明における改質多孔層は少なくともフッ素系樹脂と無機粒子を含有する。改質多孔層のフッ素系樹脂と無機粒子の合計に対する無機粒子含有量は40体積%以上が好ましく、より好ましくは45体積%以上、さらに好ましく50体積%以上であり、70体積%未満が好ましく、より好ましくは65体積%以下、さらに好ましくは60体積%以下である。上記好ましい範囲にすることによって、電極接着性、耐熱性、透気抵抗度上昇幅の良好なバランスが得られやすい。
 無機粒子の平均粒径はポリオレフィン多孔質膜の平均細孔径の1.5倍以上、50倍以下であることが好ましい。より好ましくは2.0倍以上、20倍以下である。粒子の平均粒径が上記好ましい範囲であると、耐熱性樹脂と粒子が混在した状態でポリオレフィン多孔質膜の細孔を塞ぐことなく透気抵抗度を維持し、さらに電池組み立て工程において前記粒子が脱落し、電池の重大な欠陥を招くのを防ぐ。
 粒子の形状は真球形状、略球形状、板状、針状が挙げられるが特に限定されない。
 改質多孔層の膜厚については1~5μmが好ましく、より好ましくは1~4μm、さらに好ましくは1~3μmである。膜厚が1μm以上であれば、電極に対する接着性が確保され、ポリオレフィン微多孔膜が融点以上で溶融収縮することを防ぎ、破膜強度と絶縁性を確保できる。膜厚が5μm以下であれば、巻き嵩を抑えることができ、今後、進むであろう電池の高容量化に適している。さらに、カールが大きくなるのを防ぎ、電池組み立て工程での生産性の向上に繋がる。また、ポリオレフィン微多孔膜の占める割合を最適化することで十分な孔閉塞機能が得られ異常反応を抑制できる。
 改質多孔層の空孔率は30~90%が好ましく、より好ましくは40~70%である。空孔率が30%以上では、膜の電気抵抗の上昇を防ぎ、大電流を流すことができる。また、空孔率が90%以下では膜強度を維持できる。
 改質多孔層を積層して得られた電池用セパレータの全体の膜厚の上限は30μmが好ましく、より好ましくは25μmである。下限は5μmが好ましく、より好ましくは7μmである。上記好ましい範囲の下限値以上とすることで十分な機械強度と絶縁性を確保できる。上記好ましい範囲の上限値以下とすることで容器内に充填できる電極面積を確保できるため容量の低下を回避することができる。
 改質多孔層の積層方法について説明する。フッ素系樹脂に対して可溶で且つ水と混和する溶剤で溶解したフッ素系樹脂溶液と粒子を主成分とするワニスを前述で得られたポリオレフィン微多孔膜に塗布法を用いて積層し、続いて特定の湿潤環境下に置き、フッ素系樹脂と水と混和する溶剤を相分離させ、さらに水浴(凝固浴)に投入してフッ素系樹脂を凝固させることによって、改質多孔層は得られる。
 前記ワニスを塗布する方法としては、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法は単独であるいは組み合わせて行うことができる。また、ワニスは塗工時まで極力外気に触れないように密閉保管することが重要である。
 本発明において、改質多孔層におけるフッ素系樹脂の結晶化度を36%以上、70%未満とするには前記のフッ素系樹脂を用いるだけではなく、塗布後に特定の湿潤環境下に一定時間置き、相分離させながら無機粒子を核として結晶化を促進させることが重要である。本明細書でいう湿潤環境下とは単に湿度が高い環境下という意味ではなく、微粒化した水滴が充満したゾーン(以下湿潤ゾーンと略記する場合がある。)を通過させることを言う。微粒化した水滴の粒径は50~500μmが好ましい。水滴の粒径は公知のレーザー法によって求めることができる。また、微粒化した水滴が充満した状態とは30cmの間隔をおいて幅1cm、内径5cmの黒色リングが視認できない状態をいう。微粒化した水滴は気液混合方式の2流体ノズルから圧搾空気と水を供給することによって得ることができる。水の供給量は湿潤ゾーン容積にもよるが1m当たりおよそ2~5L/hrの供給で前記充満状態を作ることができる。
 湿潤ゾーンの通過時間は1秒以上、好ましくは2秒以上、さらに好ましくは3秒以上である。上限は特に定めないが10秒もあれば十分である。また、前記ゾーンの通過後から凝固槽入り口までの時間は0.5秒以上10秒以下が好ましい。このようにすることによって塗膜表面のみならず塗膜の深部にまで結晶化度を高めることができる。なお、2流体ノズルから噴霧される気流は直接、塗工面にあたらないように配置するのが好ましい。気流が直接、塗工面にあたると透気抵抗度の上昇幅が大きくなる場合があるためである。
 凝固浴内では、フッ素系樹脂成分と無機粒子が三次元網目状に凝固する。凝固浴内での浸漬時間は3秒以上とすることが好ましい。3秒未満では、十分に樹脂成分の凝固が行われない場合がある。上限は制限されないが、10秒もあれば十分である。さらに、改質多孔層を構成するフッ素系樹脂に対する良溶媒を1~20重量%、さらに好ましくは5~15重量%含有する水溶液中に上記の未洗浄微多孔膜を浸漬させ、純水を用いた洗浄工程、100℃以下の熱風を用いた乾燥工程を経て、最終的な電池用セパレータを得ることができる。
 溶剤を除去するための洗浄については、加温、超音波照射やバブリングといった一般的な手法を用いることができる。さらに、各浴槽内の濃度を一定に保ち、洗浄効率を上げるためには、浴間で微多孔膜内部の溶液を取り除く手法が有効である。具体的には、空気または不活性ガスで多孔層内部の溶液を押し出す手法、ガイドロールによって物理的に膜内部の溶液を絞り出す手法などが挙げられる。
 本発明の電池用セパレータは、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
 また、本発明の電池用セパレータは、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池等の二次電池などの電池用セパレータとして用いることができるが、特にリチウムイオン二次電池のセパレータとして用いるのが好ましい。
 改質多孔層の空孔率は30~90%が好ましく、より好ましくは40~70%である。所望の空孔率にするには、無機粒子の濃度、バインダー濃度などを適宜調整することにより得られる。改質多孔層の空孔率が上記好ましい範囲であると、改質多孔層を積層して得られた積層多孔質膜は膜の電気抵抗が低く、大電流が流れやすく、また膜強度が維持される。
 電池用セパレータの透気抵抗度は、もっとも重要な特性のひとつであり、好ましくは50~600sec/100ccAir、より好ましくは100~500sec/100ccAir、さらに好ましくは100~400sec/100ccAirである。所望の透気抵抗度にするには、改質多孔層の空孔率を調整し、バインダーのポリオレフィン多孔質膜への浸み込み程度を調整することにより得られる。電池用セパレータの透気抵抗度が上記好ましい範囲であると、十分な絶縁性が得られ、異物詰まり、短絡および破膜を防ぐ。また、膜抵抗を抑えることで実使用可能な範囲の充放電特性、寿命特性が得られる。
 透気抵抗度の上昇幅とは、ポリオレフィン多孔質膜の透気抵抗度と改質多孔層が積層された積層多孔質膜との透気抵抗度の差を意味する。すなわち、透気抵抗度の上昇幅はポリオレフィン多孔質膜の透気抵抗度(Xsec/100ccAir)と電池用セパレータの透気抵抗度(Ysec/100ccAir)の差(Y-X)であり、20sec/100ccAir≦Y-X≦100sec/100ccAirが好ましい。この範囲であれば十分な接着性と良好なイオン透過性が得られる。より好ましくは20sec/100ccAir≦Y-X≦80sec/100ccAir、さらに好ましくは20sec/100ccAir≦Y-X≦50sec/100ccAirである。 
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。
1.電極接着性(剥離強度)
 次のようにして正極を作製した。リチウム含有複合酸化物であるLiCoMgO(正極活物質)94質量部に、導電助剤としてカーボンブラック3質量部を加えて混合し、この混合物に重量平均分子量が28万のポリフッ化ビニリデン(KFポリマーW#1100((株)クレハ製)を3質量部含むNMP溶液を加えて混合して正極合剤含有スラリーとした。この正極合剤含有スラリーを、厚みが15μmのアルミニウム箔からなる正極集電体の両面に均一に塗付して乾燥し、その後、ロールプレス機により圧縮成形して総厚さを100μmにし、正極を作製した。
 正極および電池用セパレータをそれぞれ2cm×20cmの大きさに切り出した。次いで電池用セパレータの改質多孔層面にプロピレンカーボネートを十分染みこませ、正極の活物質面と電池用セパレータの改質多孔層面を合わせ、貼り合わせ面の温度を100℃に保持しながら1MPaの圧力で6分間プレスした。
 その後、23℃、50%RH条件下で引張り試験機((株)エー・アンド・デイ製「テンシロンRTM-100」)を用いて、ピール法(剥離速度100mm/分、180°剥離)にて正極と電池用セパレータの剥離強度を測定した。測定開始から測定終了までの100mmの間において、経時的に測定し、測定値の平均値を算出し、幅10mm当たりの値に換算して剥離強度とした。なお、前記剥離界面において、ポリオレフィン多孔質膜側に改質多孔層の一部が残存する場合があるが、この場合も正極と電池用セパレータの剥離強度として算出した。
2.結晶化度
 実施例及び比較例で得た電池用セパレータの改質多孔層を片刃のカミソリ刃でかき取り、Si無反射板上にコロジオン-エタノール溶液で固定した。測定条件を以下に示す。
微小部X線回折法   
   X線源    CuKα線
   出 力    50kV、22mA
   スリット系  1.0mm ピンホール
   検出器    2次元PSPC
   カメラ長   約15cm
   測定範囲中心 2θ=25°
   積算時間   30分/1フレーム
3.透気抵抗度
 テスター産業(株)製のガーレー式デンソメーターB型を使用して、ポリオレフィン多孔質膜又は電池用セパレータをクランピングプレートとアダプタープレートの間にシワが入らないように固定し、JIS P8117に従って任意の5点を測定し、その平均値を透気抵抗度[sec/100ccAir]として用いた。
透気抵抗度上昇幅は次式より求めた。
透気抵抗度上昇幅 Y-X 
Xはポリオレフィン多孔質膜の透気抵抗度(sec/100ccAir)
Yは電池用セパレータ全体の透気抵抗度(sec/100ccAir)
4.熱収縮率
 ポリオレフィン多孔質膜及び電池用セパレータの耐熱性は130℃のオーブンで60分間保管したときのMDとTDの初期寸法に対する変化率の平均値から求めた。
5.膜厚
 接触式膜厚計((株)ミツトヨ製“ライトマチック”(登録商標)series318)を使用して20点の測定値を平均することによって求めた。超硬球面測定子φ9.5mmを用い、加重0.01Nの条件で測定した。
実施例1
(ワニスの調整)
 フッ素系樹脂として、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VdF/HFP=92/8(重量比))(重量平均分子量が100万)を用いた。前記フッ素系樹脂及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンをアルミナ粒子がフッ素系樹脂とアルミナ粒子の合計に対して52体積%、固形分濃度が17重量%となるように配合し、樹脂成分を完全に溶解させた後、酸化ジルコニウムビーズ(東レ(株)製、“トレセラム”(登録商標)ビーズ、直径0.5mm)と共に、ポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、ワニス(a)を調合した。また、ワニスは塗工時まで極力外気に触れないように密閉保管した。
(改質多孔層の積層)
 前記ワニス(a)を浸漬コート法にてポリエチレン微多孔膜(厚さ9μm、透気抵抗度240sec/100ccAir)の両面に塗布し、引き続き温度25℃、微粒化した水滴が充満した湿潤ゾーン中に2秒間通過させ、連続して0.5秒後に水溶液中(凝固槽)に3秒間進入させ、純水で洗浄した後、70℃の熱風乾燥炉を通過させることで乾燥して最終厚み13μmの電池用セパレータを得た。
実施例2
 フッ素系樹脂及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンがフッ素系樹脂とアルミナ粒子の合計に対して43体積%、固形分濃度が16重量%となるように配合したワニス(b)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例3
 フッ素系樹脂及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンがフッ素系樹脂とアルミナ粒子の合計に対して66体積%、固形分濃度が16重量%となるように配合したワニス(c)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例4
 フッ素系樹脂をポリフッ化ビニリデンのホモポリマーであるKFポリマーW#7300((株)クレハ製)に替えたワニス(d)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例5
 フッ素系樹脂をポリフッ化ビニリデンの変性ポリマーであるKFポリマーW#9300((株)クレハ製)に替えたワニス(e)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例6
 アルミナ粒子を平均粒子径0.38μmの二酸化チタン粒子に替えたワニス(f)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例7
 アルミナ粒子を板状ベーマイト微粒子(平均粒子径1.0μm)替えた塗布液(g)を用いた以外は実施例1と同様にして、電池用セパレータを得た。
実施例8
 ポリオレフィン微多孔膜としてポリエチレン微多孔膜(厚さ16μm、透気抵抗度117sec/100ccAir)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例9
 ポリオレフィン微多孔膜としてポリエチレン微多孔膜(厚さ20μm、透気抵抗度100sec/100ccAir)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例10
 ポリオレフィン微多孔膜としてポリエチレン微多孔膜(厚さ7μm、透気抵抗度248sec/100ccAir)を用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例11
 湿潤ゾーンの通過時間を1.5秒間通過させ、湿潤ゾーン出口から凝固槽入り口までの通過時間を0.4秒とした以外は実施例1と同様にして電池用セパレータを得た。
実施例12
 湿潤ゾーンの通過時間を3.0秒間通過させ、湿潤ゾーン出口から凝固槽入り口までの通過時間を0.8秒とした以外は実施例1と同様にして電池用セパレータを得た。
比較例1
 湿潤ゾーンを通過させず直接凝固槽に投入させた以外は実施例1と同様にして電池用セパレータを得た。
比較例2
 フッ素系樹脂及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンがフッ素系樹脂とアルミナ粒子の合計に対して82体積%、固形分濃度が64重量%となるように配合したワニス(h)を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例3
 フッ素系樹脂及び平均粒径0.5μmのアルミナ粒子、N-メチル-2-ピロリドンがフッ素系樹脂とアルミナ粒子の合計に対して29体積%、固形分濃度が17重量%となるように配合したワニス(i)を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例4
 フッ素系樹脂を重量平均分子量が57万のポリフッ化ビニリデンであるSolvay社製のSolef1015に替え、フッ素系樹脂、N-メチル-2-ピロリドンをそれぞれ54:46の重量比率で配合したワニス(j)を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例5
 フッ素系樹脂を重量平均分子量が28万のポリフッ化ビニリデンであるKFポリマーW#1100((株)クレハ製)に替えたワニス(k)を用いた以外は実施例1と同様にして電池用セパレータを得た。
 実施例1~12、比較例1~5で得られた電池用セパレータの特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1. ポリオレフィン系樹脂からなる多孔質膜にフッ素系樹脂と無機粒子を含む改質多孔層が少なくとも片面に積層された電池用セパレータであって、該粒子の含有量はフッ素系樹脂と前記粒子の合計に対して40体積%以上、70体積%未満であり、フッ素系樹脂の結晶化度が36%以上、70%未満である電池用セパレータ。
  2. 式(1)を満足する請求項1に記載の電池用セパレータ。
    20≦Y-X≦100・・・・・式(1)
    Xは多孔質膜の透気抵抗度(sec/100ccAir)
    Yは電池用セパレータ全体の透気抵抗度(sec/100ccAir)
  3. 前記ポリオレフィン多孔質膜の厚さが25μm以下である請求項1または2に記載の電池用セパレータ
  4. 前記無機粒子がアルミナ、チタニア、ベーマイトからなる群から選ばれる少なくとも1種を含む請求項1~3のいずれかに記載の電池用セパレータ。
  5. リチウムイオン二次電池用セパレータとして用いる請求項1~4のいずれか1つに記載の電池用セパレータ。
PCT/JP2015/059065 2014-04-11 2015-03-25 電池用セパレータ WO2015156127A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL15776189T PL3200257T3 (pl) 2014-04-11 2015-03-25 Separator do baterii
EP15776189.1A EP3200257B1 (en) 2014-04-11 2015-03-25 Separator for battery
JP2015516296A JP5876616B1 (ja) 2014-04-11 2015-03-25 電池用セパレータ
US15/322,798 US10355258B2 (en) 2014-04-11 2015-03-25 Separator for battery
SG11201701369VA SG11201701369VA (en) 2014-04-11 2015-03-25 Separator for battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082047 2014-04-11
JP2014-082047 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156127A1 true WO2015156127A1 (ja) 2015-10-15

Family

ID=54287704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059065 WO2015156127A1 (ja) 2014-04-11 2015-03-25 電池用セパレータ

Country Status (7)

Country Link
US (1) US10355258B2 (ja)
EP (1) EP3200257B1 (ja)
JP (1) JP5876616B1 (ja)
HU (1) HUE048712T2 (ja)
PL (1) PL3200257T3 (ja)
SG (1) SG11201701369VA (ja)
WO (1) WO2015156127A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162699A (ja) * 2016-03-10 2017-09-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. 巻回型二次電池用セパレータ(separator)、巻回型二次電池用セパレータの製造方法、扁平状巻回素子、巻回型二次電池、及び巻回型二次電池の製造方法
JP2017226122A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JP2017226121A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JP2020155208A (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US11183735B2 (en) 2015-03-24 2021-11-23 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205525B1 (ja) 2015-11-11 2017-09-27 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN106848160B (zh) 2016-03-11 2019-05-17 住友化学株式会社 多孔层
JP6123006B1 (ja) * 2016-03-11 2017-04-26 住友化学株式会社 多孔質層
KR102576219B1 (ko) * 2016-09-12 2023-09-07 에스케이이노베이션 주식회사 역삼투막 및 이의 제조방법
CN108539103A (zh) * 2017-03-03 2018-09-14 住友化学株式会社 非水电解液二次电池用间隔件
US10553902B2 (en) * 2017-04-14 2020-02-04 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer
JP6884627B2 (ja) * 2017-04-14 2021-06-09 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
KR20220011154A (ko) * 2019-05-24 2022-01-27 셀가드 엘엘씨 개선된 코팅된 전지 분리기 및 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266942A (ja) * 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
WO2011114626A1 (ja) * 2010-03-17 2011-09-22 パナソニック株式会社 非水電解質二次電池用正極、その製造方法および非水電解質二次電池
JP2012104422A (ja) * 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法
JP4988973B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2012522669A (ja) * 2009-04-06 2012-09-27 エスケー イノベーション シーオー., エルティーディー. 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜
WO2012137376A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2013122009A (ja) * 2011-12-12 2013-06-20 Murata Mfg Co Ltd フッ素樹脂系接着剤、それを用いた蓄電デバイス用のセパレータ、絶縁性接着層、および蓄電デバイス
WO2013133074A1 (ja) * 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426165B1 (en) * 2000-12-20 2002-07-30 Polystor Corporation Electrochemical cell separators with high crystallinity binders
TWI318018B (en) * 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
JP5158678B2 (ja) 2006-10-16 2013-03-06 日立マクセル株式会社 非水電解質電池用セパレータおよび非水電解質電池
KR101437852B1 (ko) * 2007-12-26 2014-09-04 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
CA2775316C (en) 2009-09-29 2014-04-22 Lg Chem, Ltd. Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
WO2011118735A1 (ja) * 2010-03-24 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜及びその製造方法、非水系二次電池用セパレータ、並びに非水系二次電池
JP5664138B2 (ja) * 2010-11-08 2015-02-04 ソニー株式会社 耐収縮性微多孔膜、電池用セパレータ及びリチウムイオン二次電池
TWI497791B (zh) 2011-04-08 2015-08-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
US20130001171A1 (en) * 2011-06-28 2013-01-03 Rick Harve Maxey Process for controlling hardness in open recirculating systems
JP6186783B2 (ja) * 2013-03-19 2017-08-30 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266942A (ja) * 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
JP2012522669A (ja) * 2009-04-06 2012-09-27 エスケー イノベーション シーオー., エルティーディー. 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜
WO2011114626A1 (ja) * 2010-03-17 2011-09-22 パナソニック株式会社 非水電解質二次電池用正極、その製造方法および非水電解質二次電池
JP2012104422A (ja) * 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法
JP4988973B1 (ja) * 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2012137376A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2013122009A (ja) * 2011-12-12 2013-06-20 Murata Mfg Co Ltd フッ素樹脂系接着剤、それを用いた蓄電デバイス用のセパレータ、絶縁性接着層、および蓄電デバイス
WO2013133074A1 (ja) * 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU LIU ET AL.: "Progress in the production and modification of PVDF membranes", JOURNAL OF MEMBRANE SCIENCE, vol. 375, 2011, pages 1 - 27, XP028209253 *
See also references of EP3200257A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183735B2 (en) 2015-03-24 2021-11-23 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
JP2017162699A (ja) * 2016-03-10 2017-09-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. 巻回型二次電池用セパレータ(separator)、巻回型二次電池用セパレータの製造方法、扁平状巻回素子、巻回型二次電池、及び巻回型二次電池の製造方法
JP2017226122A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JP2017226121A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
CN107521197A (zh) * 2016-06-21 2017-12-29 住友化学株式会社 层叠体
JP2020155208A (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Also Published As

Publication number Publication date
SG11201701369VA (en) 2017-03-30
EP3200257B1 (en) 2019-12-11
PL3200257T3 (pl) 2020-05-18
JP5876616B1 (ja) 2016-03-02
EP3200257A4 (en) 2018-04-11
JPWO2015156127A1 (ja) 2017-04-13
US20170229698A1 (en) 2017-08-10
US10355258B2 (en) 2019-07-16
EP3200257A1 (en) 2017-08-02
HUE048712T2 (hu) 2020-08-28

Similar Documents

Publication Publication Date Title
JP5876616B1 (ja) 電池用セパレータ
JP5774249B2 (ja) 電池用セパレータ及びその電池用セパレータの製造方法
JP2017152268A (ja) 電池用セパレータ
JP5412009B1 (ja) 電池用セパレータ及びその製造方法
KR102443544B1 (ko) 폴리올레핀 다층 미세 다공질 막, 이의 제조 방법 및 전지용 세퍼레이터
JP5202949B2 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
JP5296917B1 (ja) 電池用セパレータ
KR102226140B1 (ko) 리튬 이온 이차 전지용 다층 하이브리드 전지 분리막
JP5148093B2 (ja) ポリエチレン多層微多孔膜及びその製造方法、並びに電池用セパレータ
KR101183912B1 (ko) 폴리에틸렌 다층 미세 다공막 및 이를 이용한 전지용세퍼레이터 및 전지
JP5283383B2 (ja) ポリエチレン微多孔膜の製造方法及び電池用セパレータ
US10135054B2 (en) Battery separator and manufacturing method thereof
JP5358774B1 (ja) 電池セパレータ及びその製造方法
KR20180132630A (ko) 폴리올레핀 미다공막 및 그 제조 방법, 전지용 세퍼레이터, 및 전지
WO2017170288A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JP5778836B1 (ja) 電池用セパレータの製造方法
JP2020111469A (ja) リール、及びリールの製造方法
WO2019131927A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015516296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015776189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776189

Country of ref document: EP